Effects of Rho-kinase inhibition in lung tissue with chro

Respiratory Physiology and Neurobiology 192, 134-146 DOI: 10.1016/j.resp.2013.12.012

Citation Report

#	Article	IF	CITATIONS
1	Ca2+ handling and sensitivity in airway smooth muscle: Emerging concepts for mechanistic understanding and therapeutic targeting. Pulmonary Pharmacology and Therapeutics, 2014, 29, 108-120.	1.1	32
2	Y-27632 is associated with corticosteroid-potentiated control of pulmonary remodeling and inflammation in guinea pigs with chronic allergic inflammation. BMC Pulmonary Medicine, 2015, 15, 85.	0.8	33
3	Evidences of Herbal Medicine-Derived Natural Products Effects in Inflammatory Lung Diseases. Mediators of Inflammation, 2016, 2016, 1-14.	1.4	59
4	The Plant-Derived <i>Bauhinia bauhinioides</i> Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice. Mediators of Inflammation, 2016, 2016, 1-12.	1.4	18
5	Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacological Reviews, 2016, 68, 788-815.	7.1	93
6	Inundation of asthma target research: Untangling asthma riddles. Pulmonary Pharmacology and Therapeutics, 2016, 41, 60-85.	1.1	6
7	Sakuranetin reverses vascular peribronchial and lung parenchyma remodeling in a murine model of chronic allergic pulmonary inflammation. Acta Histochemica, 2016, 118, 615-624.	0.9	23
8	Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation. Pulmonary Pharmacology and Therapeutics, 2016, 40, 52-68.	1.1	25
9	The effects of particulate matter on inflammation of respiratory system: Differences between male and female. Science of the Total Environment, 2017, 586, 284-295.	3.9	35
10	Role of <scp>ROCK</scp> 2 in <scp>CD</scp> 4 ⁺ cells in allergic airways responses in mice. Clinical and Experimental Allergy, 2017, 47, 224-235.	1.4	3
11	Effect of Rho-kinase inhibition on complexity of breathing pattern in a guinea pig model of asthma. PLoS ONE, 2017, 12, e0187249.	1.1	19
12	A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice. International Journal of Molecular Sciences, 2017, 18, 403.	1.8	21
13	Effect of Anti-IL17 Antibody Treatment Alone and in Combination With Rho-Kinase Inhibitor in a Murine Model of Asthma. Frontiers in Physiology, 2018, 9, 1183.	1.3	34
14	The Plant Proteinase Inhibitor <i>CrataBL</i> Plays a Role in Controlling Asthma Response in Mice. BioMed Research International, 2018, 2018, 1-15.	0.9	15
15	Protective Effects of Anti-IL17 on Acute Lung Injury Induced by LPS in Mice. Frontiers in Pharmacology, 2018, 9, 1021.	1.6	40
16	Effects of Anti-IL-17 on Inflammation, Remodeling, and Oxidative Stress in an Experimental Model of Asthma Exacerbated by LPS. Frontiers in Immunology, 2017, 8, 1835.	2.2	76
17	Low dose of chlorine exposure exacerbates nasal and pulmonary allergic inflammation in mice. Scientific Reports, 2018, 8, 12636.	1.6	8
18	Analysis of respiratory mechanics in animal models: Its use in understanding lung behavior in emphysema and asthma. Drug Discovery Today: Disease Models, 2019, 29-30, 11-17.	1.2	2

CITATION REPORT

#	Article	IF	CITATIONS
19	Effects of the serine protease inhibitor rBmTI-A in an experimental mouse model of chronic allergic pulmonary inflammation. Scientific Reports, 2019, 9, 12624.	1.6	6
20	iNOS Inhibition Reduces Lung Mechanical Alterations and Remodeling Induced by Particulate Matter in Mice. Pulmonary Medicine, 2019, 2019, 1-12.	0.5	16
21	Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies?. Cells, 2019, 8, 342.	1.8	95
22	Vesicular acetylcholine transport deficiency potentiates some inflammatory responses induced by diesel exhaust particles. Ecotoxicology and Environmental Safety, 2019, 167, 494-504.	2.9	14
23	ROCK-2-selective targeting and its therapeutic outcomes. Drug Discovery Today, 2020, 25, 446-455.	3.2	19
24	Bronchial Vascular Remodeling Is Attenuated by Anti-IL-17 in Asthmatic Responses Exacerbated by LPS. Frontiers in Pharmacology, 2020, 11, 1269.	1.6	15
25	Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. International Journal of Molecular Sciences, 2020, 21, 9317.	1.8	28
26	Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacological Research, 2020, 159, 104995.	3.1	8
27	Low-dose chlorine exposure impairs lung function, inflammation and oxidative stress in mice. Life Sciences, 2021, 267, 118912.	2.0	9
28	Effects of Eugenol and Dehydrodieugenol B from <i>Nectandra leucantha</i> against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation. Journal of Natural Products, 2021, 84, 2282-2294.	1.5	11
29	Cold bubble humidification of low-flow oxygen does not prevent acute changes in inflammation and oxidative stress at nasal mucosa. Scientific Reports, 2021, 11, 14352.	1.6	3
30	New Pharmacological Targets for Asthma Drug Development. Journal of Allergy & Therapy, 2014, 05, .	0.1	4
31	Advance of antioxidants in asthma treatment. World Journal of Respirology, 2017, 7, 17.	0.5	15
32	Matrix Metalloproteinases in Asthma-Associated Airway Remodeling – Dr. Jekyll or Mr. Hyde ?. , 0, , .		2
33	Effect of anti-IL17 and/or Rho-kinase inhibitor treatments on vascular remodeling induced by chronic allergic pulmonary inflammation. Therapeutic Advances in Respiratory Disease, 2020, 14, 175346662096266.	1.0	5
34	Fasudil, an inhibitor of Rho-associated coiled-coil kinase, attenuates hyperoxia-induced pulmonary fibrosis in neonatal rats. International Journal of Clinical and Experimental Pathology, 2015, 8, 12140-50.	0.5	19
35	The Role and Mechanisms of Traditional Chinese Medicine for Airway Inflammation and Remodeling in Asthma: Overview and Progress. Frontiers in Pharmacology, 0, 13, .	1.6	2
36	Lung Mechanics Over the Century: From Bench to Bedside and Back to Bench. Frontiers in Physiology, 0, 13, .	1.3	2

ARTICLE

IF CITATIONS