Multifunctional PEG-GO/CuS nanocomposites for near-therapy

Biomaterials

35, 5805-5813

DOI: 10.1016/j.biomaterials.2014.04.008

Citation Report

#	Article	IF	CITATIONS
1	Recent Applications of Polyethylene Glycols (PEGs) and PEG Derivatives. Modern Chemistry $\&$ Applications, 2014, 02, .	0.2	84
2	Activatable Hyaluronic Acid Nanoparticle as a Theranostic Agent for Optical/Photoacoustic Image-Guided Photothermal Therapy. ACS Nano, 2014, 8, 12250-12258.	7.3	210
3	Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications. Bioconjugate Chemistry, 2014, 25, 1609-1619.	1.8	116
4	Two-way combination chemotherapy for synergistic tumor capture. Journal of Controlled Release, 2015, 213, e113-e114.	4.8	O
5	Anisamide-functionalized intelligent polymersomes mediate targeted delivery of methotrexate into lung cancer cells. Journal of Controlled Release, 2015, 213, e114.	4.8	1
6	Imagingâ€Guided Combined Photothermal and Radiotherapy to Treat Subcutaneous and Metastatic Tumors Using Iodineâ€131â€Doped Copper Sulfide Nanoparticles. Advanced Functional Materials, 2015, 25, 4689-4699.	7.8	207
7	Graphene as Cancer Theranostic Tool: Progress and Future Challenges. Theranostics, 2015, 5, 710-723.	4.6	236
8	Facile synthesis of CuS mesostructures with high photothermal conversion efficiency. RSC Advances, 2015, 5, 35317-35324.	1.7	21
9	Mesoporous carbon/CuS nanocomposites for pH-dependent drug delivery and near-infrared chemo-photothermal therapy. RSC Advances, 2015, 5, 93226-93233.	1.7	42
10	Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials, 2015, 42, 66-77.	5.7	140
11	Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids and Surfaces B: Biointerfaces, 2015, 127, 281-291.	2.5	151
12	A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug. Biomaterials, 2015, 51, 12-21.	5.7	109
13	PEGylated Cs _x WO ₃ nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells. RSC Advances, 2015, 5, 7074-7082.	1.7	32
14	Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials, 2015, 66, 21-28.	5.7	192
15	Reduced graphene oxide gated mesoporous silica nanoparticles as a versatile chemo-photothermal therapy system through pH controllable release. Journal of Materials Chemistry B, 2015, 3, 6377-6384.	2.9	29
16	Shape Focusing During the Anisotropic Growth of CuS Triangular Nanoprisms. Chemistry of Materials, 2015, 27, 4957-4963.	3.2	63
17	Synthesis of Ultrastable Copper Sulfide Nanoclusters via Trapping the Reaction Intermediate: Potential Anticancer and Antibacterial Applications. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 7082-7092.	4.0	111
18	Fe ₂ O ₃ @Au core@shell nanoparticle–graphene nanocomposites as theranostic agents for bioimaging and chemo-photothermal synergistic therapy. RSC Advances, 2015, 5, 84980-84987.	1.7	35

#	ARTICLE	IF	CITATIONS
19	Overview on in vitro and in vivo investigations of nanocomposite based cancer diagnosis and therapeutics. RSC Advances, 2015, 5, 72638-72652.	1.7	18
20	A novel biomacromolecule controlled-release system based on mesoporous silica nanoparticles with large pore size and small particle size. Journal of Controlled Release, 2015, 213, e114-e115.	4.8	1
21	Using Plasmonic Copper Sulfide Nanocrystals as Smart Light-Driven Sterilants. ACS Nano, 2015, 9, 10335-10346.	7.3	96
22	Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20801-20812.	4.0	58
23	Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.	5.7	189
24	The advancing uses of nano-graphene in drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 601-612.	2.4	104
25	Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 2015, 39, 67-74.	5.7	277
26	Fabrication of Graphene and AuNP Core Polyaniline Shell Nanocomposites as Multifunctional Theranostic Platforms for SERS Real-time Monitoring and Chemo-photothermal Therapy. Theranostics, 2016, 6, 1096-1104.	4.6	73
27	Potential and Challenges of Graphene in Medicine. Carbon Nanostructures, 2016, , 3-33.	0.1	2
28	One-step reduction and PEIylation of PEGylated nanographene oxide for highly efficient chemo-photothermal therapy. Journal of Materials Chemistry B, 2016, 4, 2972-2983.	2.9	31
29	Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Advanced Drug Delivery Reviews, 2016, 105, 228-241.	6.6	352
30	Egg white-mediated green synthesis of CuS quantum dots as a biocompatible and efficient 980 nm laser-driven photothermal agent. RSC Advances, 2016, 6, 40480-40488.	1.7	35
31	PEGylated Copper Nanowires as a Novel Photothermal Therapy Agent. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12082-12090.	4.0	92
32	Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination Chemistry Reviews, 2016, 320-321, 100-117.	9.5	159
33	Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomaterialia, 2016, 38, 129-142.	4.1	146
34	SPION@Cu _{2â^'x} S nanoclusters for highly sensitive MRI and targeted photothermal therapy of hepatocellular carcinoma. Journal of Materials Chemistry B, 2016, 4, 4119-4129.	2.9	18
35	Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine. Laser Physics Letters, 2016, 13, 075604.	0.6	20
36	Uptake and Toxicity of Copper Oxide Nanoparticles in C6 Glioma Cells. Neurochemical Research, 2016, 41, 3004-3019.	1.6	34

3

#	Article	IF	Citations
37	Microfluidic Synthesis and Biological Evaluation of Photothermal Biodegradable Copper Sulfide Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21545-21554.	4.0	44
38	CuS–Pt(<scp>iv</scp>)–PEG–FA nanoparticles for targeted photothermal and chemotherapy. Journal of Materials Chemistry B, 2016, 4, 5938-5946.	2.9	30
39	Hybrid of gold nanostar and indocyanine green for targeted imaging-guided diagnosis and phototherapy using low-density laser irradiation. Journal of Materials Chemistry B, 2016, 4, 5842-5849.	2.9	25
40	Humanâ€Serumâ€Albuminâ€Coated Prussian Blue Nanoparticles as pHâ€∫Thermotriggered Drugâ€Delivery Vehicles for Cancer Thermochemotherapy. Particle and Particle Systems Characterization, 2016, 33, 53-62.	1.2	42
42	Hydrothermal Reduction of Polyethylenimine and Polyethylene Glycol Dual-Functionalized Nanographene Oxide for High-Efficiency Gene Delivery. ACS Applied Materials & Interfaces, 2016, 8, 31311-31320.	4.0	21
43	Self-therapeutic Applications of Noble Metal Nanostructures. , 2016, , 1-36.		0
44	Self-therapeutic Applications of Noble Metal Nanostructures. , 2016, , 1-53.		0
45	A Bifunctional Biomaterial with Photothermal Effect forÂTumor Therapy and Bone Regeneration. Advanced Functional Materials, 2016, 26, 1197-1208.	7.8	238
46	Graphene–polyglycerol–curcumin hybrid as a near-infrared (NIR) laser stimuli-responsive system for chemo-photothermal cancer therapy. RSC Advances, 2016, 6, 61141-61149.	1.7	28
47	Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Advanced Drug Delivery Reviews, 2016, 105, 190-204.	6.6	385
48	Structural evolution from CuS nanoflowers to Cu9S5 nanosheets and their applications in environmental pollution removal and photothermal conversion. RSC Advances, 2016, 6, 63820-63826.	1.7	30
50	Facile-synthesized ultrasmall CuS nanocrystals as drug nanocarriers for highly effective chemo–photothermal combination therapy of cancer. RSC Advances, 2016, 6, 20949-20960.	1.7	21
51	Multimodal imaging-guided, dual-targeted photothermal therapy for cancer. Journal of Materials Chemistry B, 2016, 4, 2038-2050.	2.9	23
52	Doxorubicin-conjugated CuS nanoparticles for efficient synergistic therapy triggered by near-infrared light. Dalton Transactions, 2016, 45, 5101-5110.	1.6	40
53	Photosensitizer-assembled PEGylated graphene-copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent. Expert Opinion on Drug Delivery, 2016, 13, 155-165.	2.4	32
54	PEGylated Cu ₃ BiS ₃ hollow nanospheres as a new photothermal agent for 980 nm-laser-driven photothermochemotherapy and a contrast agent for X-ray computed tomography imaging. Nanoscale, 2016, 8, 1374-1382.	2.8	52
55	Cooperative Strategies for Enhancing Performance of Photothermal Therapy (PTT) Agent: Optimizing Its Photothermal Conversion and Cell Internalization Ability. Small, 2017, 13, 1603275.	5.2	49
56	Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon, 2017, 115, 781-790.	5.4	108

#	Article	IF	Citations
57	Fabricating Aptamerâ€Conjugated PEGylatedâ€MoS ₂ /Cu _{1.8} S Theranostic Nanoplatform for Multiplexed Imaging Diagnosis and Chemoâ€Photothermal Therapy of Cancer. Advanced Functional Materials, 2017, 27, 1605592.	7.8	107
58	Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics. Acta Biomaterialia, 2017, 53, 631-642.	4.1	58
59	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6109.	23.0	670
60	Folic acid-modified and functionalized CuS nanocrystal-based nanoparticles for combined tumor chemo- and photothermal therapy. Journal of Drug Targeting, 2017, 25, 425-435.	2.1	21
61	Metal–Organic Framework/Graphene Quantum Dot Nanoparticles Used for Synergistic Chemo- and Photothermal Therapy. ACS Omega, 2017, 2, 1249-1258.	1.6	140
62	Aptamer-modified CuS nanocrystals/graphene oxide composites for controlled release of glucosamine and chemo-photothermal therapy of tumor cells. Materials Letters, 2017, 195, 131-135.	1.3	11
63	From CdS to Cu ₇ S ₄ Nanorods via a Cation Exchange Route and Their Applications: Environmental Pollution Removal, Photothermal Conversion and Light-Induced Water Evaporation. ChemistrySelect, 2017, 2, 3039-3048.	0.7	21
64	Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Progress in Materials Science, 2017, 88, 89-135.	16.0	84
65	Polypyrrole-modified CuS nanoprisms for efficient near-infrared photothermal therapy. RSC Advances, 2017, 7, 10143-10149.	1.7	22
66	Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids and Surfaces B: Biointerfaces, 2017, 154, 104-114.	2.5	52
67	Electrochemically stimulated drug release from flexible electrodes coated electrophoretically with doxorubicin loaded reduced graphene oxide. Chemical Communications, 2017, 53, 4022-4025.	2.2	36
68	Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials. Advanced Healthcare Materials, 2017, 6, 1700073.	3.9	205
69	pH-Responsive, Self-Sacrificial Nanotheranostic Agent for Potential In Vivo and In Vitro Dual Modal MRI/CT Imaging, Real-Time, and In Situ Monitoring of Cancer Therapy. Bioconjugate Chemistry, 2017, 28, 400-409.	1.8	89
70	Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation. Nanotechnology, 2017, 28, 505101.	1.3	11
71	Unimolecular micelles of pH-responsive star-like copolymers for co-delivery of anticancer drugs and small-molecular photothermal agents: a new drug-carrier for combinational chemo/photothermal cancer therapy. Journal of Materials Chemistry B, 2017, 5, 8514-8524.	2.9	26
72	Functionalized hBN as targeted photothermal chemotherapy for complete eradication of cancer cells. International Journal of Pharmaceutics, 2017, 534, 206-212.	2.6	25
73	Janus Silver/Silica Nanoplatforms for Light-Activated Liver Cancer Chemo/Photothermal Therapy. ACS Applied Materials & Distriction (2017), 9, 30306-30317.	4.0	80
74	Possible role of nanocarriers in drug delivery against cervical cancer. Nano Reviews & Experiments, 2017, 8, 1335567.	3.6	52

#	Article	IF	Citations
75	(Meth)acrylated poly(ethylene glycol)s as precursors for rheology modifiers, superplasticizers and electrolyte membranes: a review. Polymer International, 2017, 66, 1765-1786.	1.6	10
76	Diversified copper sulfide (Cu _{2â^'x} S) micro-/nanostructures: a comprehensive review on synthesis, modifications and applications. Nanoscale, 2017, 9, 11357-11404.	2.8	154
77	Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances, 2017, 7, 37887-37897.	1.7	47
79	Supramolecular hybrids of carbon dots with doxorubicin: synthesis, stability and cellular trafficking. Materials Chemistry Frontiers, 2017, 1, 354-360.	3.2	59
80	Graphene Quantum Dotsâ€Capped Magnetic Mesoporous Silica Nanoparticles as a Multifunctional Platform for Controlled Drug Delivery, Magnetic Hyperthermia, and Photothermal Therapy. Small, 2017, 13, 1602225.	5.2	379
81	In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy. Nano Research, 2017, 10, 37-48.	5.8	64
82	Graphene-Based Nanomaterials for Theranostic Applications. Reports in Advances of Physical Sciences, 2017, 01, 1750011.	0.6	27
83	Fluorescence properties of doxorubicin coupled carbon nanocarriers. Applied Optics, 2017, 56, 7498.	0.9	28
84	SiRNA Delivery with PEGylated Graphene Oxide Nanosheets for Combined Photothermal and Genetherapy for Pancreatic Cancer. Theranostics, 2017, 7, 1133-1148.	4.6	165
85	Current applications and future prospects of nanomaterials in tumor therapy. International Journal of Nanomedicine, 2017, Volume 12, 1815-1825.	3.3	71
86	Recent Advances in the Synthesis of Graphene-Based Nanomaterials for Controlled Drug Delivery. Applied Sciences (Switzerland), 2017, 7, 1175.	1.3	63
87	Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biology and Medicine, 2017, 14, 212.	1.4	98
88	A cancer cell turn-on protein-CuSMn nanoparticle as the sensor of breast cancer cell and CH3O-PEG-phosphatide. Chinese Chemical Letters, 2018, 29, 1528-1532.	4.8	13
89	Nanocarrierâ€Mediated Photochemotherapy and Photoradiotherapy. Advanced Healthcare Materials, 2018, 7, e1701211.	3.9	43
90	Resonance Energy Transfer-Promoted Photothermal and Photodynamic Performance of Gold–Copper Sulfide Yolk–Shell Nanoparticles for Chemophototherapy of Cancer. Nano Letters, 2018, 18, 886-897.	4.5	163
91	Cu _{2–<i>x</i>} S Nanocrystals Cross-Linked with Chlorin e6-Functionalized Polyethylenimine for Synergistic Photodynamic and Photothermal Therapy of Cancer. ACS Applied Materials & Damp; Interfaces, 2018, 10, 16344-16351.	4.0	51
92	Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opinion on Drug Delivery, 2018, 15, 137-152.	2.4	16
93	Evaluation of the combined effect of NIR laser and ionizing radiation on cellular damages induced by IUdR-loaded PLGA-coated Nano-graphene oxide. Photodiagnosis and Photodynamic Therapy, 2018, 21, 91-97.	1.3	29

#	Article	IF	CITATIONS
97	Gold Nanorods/Polypyrrole/m-SiO ₂ Core/Shell Hybrids as Drug Nanocarriers for Efficient Chemo-Photothermal Therapy. Langmuir, 2018, 34, 14661-14669.	1.6	43
98	Monitoring of topoisomerase (I) inhibitor camptothecin release from endogenous redox-stimulated GO-polymer hybrid carrier. Journal of Photochemistry and Photobiology B: Biology, 2018, 189, 14-20.	1.7	2
99	Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nature Communications, 2018, 9, 4236.	5.8	139
100	Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. International Journal of Molecular Sciences, 2018, 19, 3264.	1.8	226
101	Engineering Cross-Linkable Plasmonic Vesicles for Synergistic Chemo-Photothermal Therapy Using Orthogonal Light Irradiation. Macromolecules, 2018, 51, 8530-8538.	2.2	33
102	Photothermal-conversion-enhanced photocatalytic activity of flower-like CuS superparticles under solar light irradiation. Solar Energy, 2018, 170, 586-593.	2.9	56
103	Prussian blue decorated mesoporous silica hybrid nanocarriers for photoacoustic imaging-guided synergistic chemo-photothermal combination therapy. Journal of Materials Chemistry B, 2018, 6, 5220-5233.	2.9	40
104	Intelligent MnO ₂ /Cu _{2–<i>x</i>} S for Multimode Imaging Diagnostic and Advanced Single-Laser Irradiated Photothermal/Photodynamic Therapy. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 17732-17741.	4.0	90
105	Synthetic routes to nanomaterials containing anthracyclines: noncovalent systems. Biomaterials Science, 2018, 6, 2552-2565.	2.6	7
106	Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy. Theranostics, 2018, 8, 4574-4590.	4.6	92
107	Graphene-based materials for application in pharmaceutical nanotechnology., 2018,, 297-329.		4
108	Stimuli-Responsive Nanocarrier for Co-delivery of MiR-31 and Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied Materials & Doxorubicin To Suppress High MtEF4 Cancer. ACS Applied MtEF4 Cancer. ACS Applied MtEF4 Cancer. ACS Applied MtEF4 Cancer. ACS Applied MtEF4 Cancer. ACS	4.0	47
109	Graphene-based nanomaterials in cancer treatment and diagnosis., 2018,, 331-374.		20
110	Recent progress of functionalised graphene oxide in cancer therapy. Journal of Drug Targeting, 2019, 27, 125-144.	2.1	28
111	Biodegradable Black Phosphorus-based Nanomaterials in Biomedicine: Theranostic Applications. Current Medicinal Chemistry, 2019, 26, 1788-1805.	1.2	38
112	Plasmonic Nanohybrid with High Photothermal Conversion Efficiency for Simultaneously Effective Antibacterial/Anticancer Photothermal Therapy. ACS Applied Bio Materials, 2019, 2, 3942-3953.	2.3	49
113	Biomineralization synthesis of HBc-CuS nanoparticles for near-infrared light-guided photothermal therapy. Journal of Materials Science, 2019, 54, 13255-13264.	1.7	18
114	Gold nanoparticles modified hollow carbon system for dual-responsive release and chemo-photothermal synergistic therapy of tumor. Journal of Colloid and Interface Science, 2019, 554, 239-249.	5.0	42

#	Article	IF	CITATIONS
116	Facile Evaluation of Nanoparticle–Protein Interaction Based on Charge Neutralization with Pulsed Streaming Potential Measurement. Analytical Chemistry, 2019, 91, 15670-15677.	3.2	4
117	The ultra-flexible films of super conductive carbon black/poly(vinylidene fluoride) as electrothermal materials. Materials Research Express, 2019, 6, 116402.	0.8	4
118	Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. Materials, 2019, 12, 2889.	1.3	53
119	Graphene Oxide for Drug Delivery and Cancer Therapy. , 2019, , 447-488.		16
120	HAp@GO drug delivery vehicle with dualâ€stimuliâ€triggered drug release property and efficient synergistic therapy function against cancer. Journal of Biomedical Materials Research - Part A, 2019, 107, 2296-2309.	2.1	29
121	Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. Journal of Pharmaceutical Investigation, 2019, 49, 519-526.	2.7	75
122	Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics. International Journal of Pharmaceutics, 2019, 562, 135-150.	2.6	55
123	NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chemical Science, 2019, 10, 4699-4706.	3.7	90
124	Carbon Nanomaterials for Targeted Cancer Therapy Drugs: A Critical Review. Chemical Record, 2019, 19, 502-522.	2.9	63
125	Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Advanced Drug Delivery Reviews, 2019, 138, 211-232.	6.6	56
126	Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics, 2019, 11, 3.	2.0	33
127	Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 2019, 294, 131-153.	4.8	424
128	Nanotechnology-based photoimmunological therapies for cancer. Cancer Letters, 2019, 442, 429-438.	3.2	63
129	Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy. Journal of Colloid and Interface Science, 2019, 539, 433-441.	5.0	35
130	Facile Fabrication of Magnetic Microrobots Based on <i>Spirulina</i> Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4745-4756.	4.0	110
131	Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons, 2019, 6, 434-469.	6.4	310
132	Functionalization of Graphene for Nanodelivery of Drugs. , 2019, , 157-176.		2
133	Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids and Surfaces B: Biointerfaces, 2019, 173, 539-548.	2.5	68

#	Article	IF	CITATIONS
134	Synthesis of gadolinium-based Bi ₂ S ₃ nanoparticles as cancer theranostics for dual-modality computed tomography/magnetic resonance imaging-guided photothermal therapy. Nanotechnology, 2019, 30, 075101.	1.3	11
135	Polydopamine-mediated bio-inspired synthesis of copper sulfide nanoparticles for T1-weighted magnetic resonance imaging guided photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 173, 607-615.	2.5	28
136	Polymeric nanoparticles of poly(2-oxazoline), tannic acid and doxorubicin for controlled release and cancer treatment. Chinese Chemical Letters, 2020, 31, 501-504.	4.8	10
137	Fluorine-Doped Carbon Dots with Intrinsic Nucleus-Targeting Ability for Drug and Dye Delivery. Bioconjugate Chemistry, 2020, 31, 646-655.	1.8	45
138	Mussel-Inspired Highly Stretchable, Tough Nanocomposite Hydrogel with Self-Healable and Near-Infrared Actuated Performance. Industrial & Engineering Chemistry Research, 2020, 59, 166-174.	1.8	18
139	Supramolecular hybrids of carbon dots and dihydroartemisinin for enhanced anticancer activity and mechanism analysis. Journal of Materials Chemistry B, 2020, 8, 9777-9784.	2.9	7
140	Inorganic hybrid nanoparticles in cancer theranostics: understanding their combinations for better clinical translation. Materials Today Chemistry, 2020, 18, 100381.	1.7	24
141	Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Advances, 2020, 10, 38621-38630.	1.7	18
142	Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. International Journal of Molecular Sciences, 2020, 21, 6280.	1.8	95
143	Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Research, 2020, 13, 2156-2164.	5.8	63
144	pH/photothermal dual-responsive drug delivery and synergistic chemo-photothermal therapy by novel porous carbon nanofibers. Chemical Engineering Journal, 2020, 397, 125402.	6.6	40
145	Hollow Mesoporous Bi@PEG-FA Nanoshell as a Novel Dual-Stimuli-Responsive Nanocarrier for Synergistic Chemo-Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31172-31181.	4.0	31
146	Two-dimensional nanoparticles for the delivery of anticancer drugs and cancer therapy. Frontiers of Nanoscience, 2020, 16, 151-199.	0.3	6
147	Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale, 2020, 12, 17222-17237.	2.8	54
148	Synthesis of SiO2@Cu2-xSe nanospheres for efficient near-infrared radiation mediated treatment and care of gastric cancer patients. Journal of Photochemistry and Photobiology B: Biology, 2020, 206, 111849.	1.7	6
149	Nucleic acid hybridization on a plasmonic nanointerface of optical microfiber enables ultrahigh-sensitive detection and potential photothermal therapy. Biosensors and Bioelectronics, 2020, 156, 112147.	5.3	29
150	NIR-triggered doxorubicin photorelease using CuS@Albumin composites and in-vitro effect over HeLa cells. Journal of Drug Delivery Science and Technology, 2020, 57, 101642.	1.4	1
151	Light sources for photonanotechnology. , 2020, , 1-21.		2

#	Article	IF	CITATIONS
152	Targeted nanosystem combined with chemo-photothermal therapy for hepatocellular carcinoma treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596, 124711.	2.3	9
153	Near-infrared-driven Au-decorated polymer-metal protein microfibers with bacterial filtration ability for use in photothermal sterilization. Chemical Engineering Journal, 2020, 388, 124236.	6.6	14
154	Recent trends in nano photo-chemo therapy approaches and future scopes. Coordination Chemistry Reviews, 2020, 411, 213252.	9.5	29
155	PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports, 2020, 10, 2717.	1.6	132
156	The combination of artesunate and carboplatin exerts a synergistic antiâ€tumour effect on nonâ€small cell lung cancer. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1083-1091.	0.9	12
157	Neuron-like cell differentiation of hADSCs promoted by a copper sulfide nanostructure mediated plasmonic effect driven by near-infrared light. Nanoscale, 2020, 12, 9833-9841.	2.8	9
158	Near infrared light-driven release of pesticide with magnetic collectability using gel-based nanocomposite. Chemical Engineering Journal, 2021, 411, 127881.	6.6	35
159	Inorganic Nanomaterials for Photothermalâ€Based Cancer Theranostics. Advanced Therapeutics, 2021, 4, 2000207.	1.6	11
160	Construction of all-in-one peptide nanomedicine with photoacoustic imaging guided mild hyperthermia for enhanced cancer chemotherapy. Chemical Engineering Journal, 2021, 405, 127008.	6.6	23
161	Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide. Journal of Materials Chemistry B, 2021, 9, 1792-1803.	2.9	16
162	Bionanocomposites forÂln SituÂDrug Delivery inÂCancerÂTherapy: Early and Late Evaluations. Materials Horizons, 2021, , 145-165.	0.3	0
163	Design of graphenic nanocomposites containing chitosan and polyethylene glycol for spinal cord injury improvement. RSC Advances, 2021, 11, 19992-20002.	1.7	11
164	Synthesis and molecular dynamics simulation of CuS@GO–CS hydrogel for enhanced photothermal antibacterial effect. New Journal of Chemistry, 2021, 45, 6895-6903.	1.4	13
165	Clearable Nanoparticles for Cancer Photothermal Therapy. Advances in Experimental Medicine and Biology, 2021, 1295, 121-134.	0.8	2
166	Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. Journal of Pharmaceutical Investigation, 2021, 51, 245-280.	2.7	7
167	Sulfobetaine methacrylate-albumin-coated graphene oxide incorporating IR780 for enhanced breast cancer phototherapy. Nanomedicine, 2021, 16, 453-464.	1.7	5
168	Recent Advances in Tannic Acid (Gallotannin) Anticancer Activities and Drug Delivery Systems for Efficacy Improvement; A Comprehensive Review. Molecules, 2021, 26, 1486.	1.7	55
169	Engineering Polymeric Nanosystems against Oral Diseases. Molecules, 2021, 26, 2229.	1.7	5

#	Article	IF	CITATIONS
170	Vaginal drug delivery approaches for localized management of cervical cancer. Advanced Drug Delivery Reviews, 2021, 174, 114-126.	6.6	24
171	Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy?. Coordination Chemistry Reviews, 2021, 440, 213974.	9.5	22
172	Magnetic and GRPR-targeted reduced graphene oxide/doxorubicin nanocomposite for dual-targeted chemo-photothermal cancer therapy. Materials Science and Engineering C, 2021, 128, 112311.	3.8	27
173	Near-infrared responsive reduced graphene oxide supported CuS: Enhanced electrocatalytic hydrogen evolution performance. International Journal of Hydrogen Energy, 2021, 46, 35239-35247.	3.8	4
174	Niacin Metal-Organic Framework-Laden Self-Healing Hydrogel for Wound Healing. Journal of Biomedical Nanotechnology, 2020, 16, 1719-1726.	0.5	6
175	Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO + DOX. Biomedical Optics Express, 2020, 11, 3783.	1.5	15
176	Polymer Functionalized Graphene Oxide: A Versatile Nanoplatform for Drug/Gene Delivery. Current Organic Chemistry, 2015, 19, 1828-1837.	0.9	6
177	Photosensitive nanocomposites: environmental and biological applications. Journal of Composites and Compounds, 2019, 2, 50-60.	0.4	13
178	Tailor made magnetic nanolights: fabrication to cancer theranostics applications. Nanoscale Advances, 2021, 3, 6762-6796.	2.2	57
179	Copper sulfide nanostructures: easy synthesis, photocatalytic and doxorubicin anticancer drug delivery applications. New Journal of Chemistry, 2021, 45, 22344-22353.	1.4	5
180	Photothermal therapy technology of metastatic colorectal cancer. American Journal of Translational Research (discontinued), 2020, 12, 3089-3115.	0.0	7
181	Targeted drug delivery in cervical cancer: Current perspectives. European Journal of Pharmacology, 2022, 917, 174751.	1.7	16
182	Light activation of 3D-printed structures: from millimeter to sub-micrometer scale. Nanophotonics, 2022, 11, 461-486.	2.9	12
183	Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon, 2022, 190, 194-244.	5.4	24
184	The marriage of two-dimensional materials and phase change materials for energy storage, conversion and applications. EnergyChem, 2022, 4, 100071.	10.1	42
185	NIR-regulated dual-functional silica nanoplatform for infected-wound therapy via synergistic sterilization and anti-oxidation. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112414.	2.5	7
186	Current Strategies for Real-Time Enzyme Activation. Biomolecules, 2022, 12, 599.	1.8	3
187	Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review. Advances in Cancer Biology Metastasis, 2022, 4, 100041.	1.1	10

#	Article	IF	CITATIONS
188	PtBi-Î ² -CD-Ce6 Nanozyme for Combined Trimodal Imaging-Guided Photodynamic Therapy and NIR-II Responsive Photothermal Therapy. Inorganic Chemistry, 2022, 61, 6852-6860.	1.9	11
189	Graphene-based polymer nanocomposites in biomedical applications., 2022,, 199-245.		2
190	A comparison between mesoporous and nonporous polydopamine as nanoplatforms for synergistic chemo-photothermal therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 130005.	2.3	10
191	Customized multi-stimuli nanovehicles with dissociable †bomblets†for photothermal-enhanced synergetic tumor therapy. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113083.	2.5	1
192	CuS-131I-PEG Nanotheranostics-Induced "Multiple Mild-Hyperthermia―Strategy to Overcome Radio-Resistance in Lung Cancer Brachytherapy. Pharmaceutics, 2022, 14, 2669.	2.0	0
193	Photothermal-augmented reactive oxygen species oxidative synergistic therapy based on nanoceria doped mesoporous polydopamine nanoplatform. Materials and Design, 2023, 225, 111590.	3.3	3
194	Photoheating Effects of CuS@PEI_GQDs Nanoshells under Near-Infrared Laser and Sunlight Irradiation. Crystal Growth and Design, 2023, 23, 1697-1708.	1.4	2
195	Design, development, and drug delivery applications of graphene polymeric nanocomposites and bionanocomposites. Emergent Materials, 2023, 6, 777-807.	3.2	19
196	Carbon Dots-Based Nanozyme for Drug-Resistant Lung Cancer Therapy by Encapsulated Doxorubicin/siRNA Cocktail. International Journal of Nanomedicine, 0, Volume 18, 933-948.	3.3	7