Water movement and fate of nitrogen during drip dispersion semi-arid landscape

Water Research 52, 178-187 DOI: 10.1016/j.watres.2013.12.031

Citation Report

#	Article	IF	CITATIONS
1	Fate of Effluentâ€Borne Nitrogen in the Mounded Drainfield of an Onsite Wastewater Treatment System. Vadose Zone Journal, 2015, 14, 1-12.	2.2	20
2	Evaluation of Water Quality Functions of Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems. Journal of Environmental Quality, 2015, 44, 953-962.	2.0	32
3	Mass Balance of Water and Nitrogen in the Mounded Drainfield of a Dripâ€Dispersal Septic System. Journal of Environmental Quality, 2016, 45, 1392-1399.	2.0	8
4	High Removal of Effluentâ€borne Nitrogen with Multiple External Electron Donors in the Engineered Drainfield of an Advanced Septic System. Journal of Environmental Quality, 2016, 45, 1874-1882.	2.0	7
5	Nitrogen transformations in different types of soil treatment areas receiving domestic wastewater. Ecological Engineering, 2016, 94, 22-29.	3.6	14
6	Catalytic activity of Fe3â^'Cu O4 (0 ≤≤0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process. Applied Catalysis B: Environmental, 2016, 180, 434-441.	20.2	87
7	Introduction to Decentralized Infrastructure for Wastewater Treatment and Water Reclamation. , 2017, , 1-37.		0
8	Nitrogen Loading from Onsite Wastewater Treatment Systems in the Greater Narragansett Bay (Rhode) Tj ETQq1 1.	1 0.7843 2.4	14 rgBT /C 25
9	Novel visible light-driven Cu-based MOFs/Ag ₂ O composite photocatalysts with enhanced photocatalytic activity toward the degradation of orange G: their photocatalytic mechanism and optimization study. New Journal of Chemistry, 2018, 42, 9720-9734.	2.8	65
10	Environmental risk of chlorine-controlled clogging in drip irrigation system using reclaimed water: the perspective of soil health. Journal of Cleaner Production, 2019, 232, 1452-1464.	9.3	27
11	Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes. Applied Surface Science, 2019, 483, 114-122.	6.1	88
12	Electrochemical synthesis of Zn:ZnO/Ni2P and efficient photocatalytic degradation of Auramine O in aqueous solution under multi-variable experimental design optimization. Polyhedron, 2019, 165, 1-8.	2.2	26
13	Electrochemical synthesis and efficient photocatalytic degradation of azo dye alizarin yellow R by Cu/CuO nanorods under visible LED light irradiation using experimental design methodology. Polyhedron, 2019, 158, 506-514.	2.2	43
14	S-scheme heterojunction g-C3N4/TiO2 with enhanced photocatalytic activity for degradation of a binary mixture of cationic dyes using solar parabolic trough reactor. Chemical Engineering Research and Design, 2021, 174, 307-318.	5.6	36
15	A 2020 Vision of Subsurface Drip Irrigation in the U.S Transactions of the ASABE, 2021, 64, 1319-1343.	1.1	24
16	Treatment Using Landscape Drip Dispersal. , 2017, , 641-699.		0
17	Hybrid of sodium polytungstate polyoxometalate supported by the green substrate for photocatalytic degradation of auramine-O dye. Environmental Science and Pollution Research, 2022, 29, 56055-56067.	5.3	8