Clostridium difficile spore biology: sporulation, germin proteins

Trends in Microbiology 22, 406-416 DOI: 10.1016/j.tim.2014.04.003

Citation Report

#	ARTICLE	IF	CITATIONS
2	Investigation of sporulation in the <scp><i>D</i></scp> <i>esulfotomaculum</i> genus: a genomic comparison with the genera <scp><i>B</i></scp> <i>acillus</i> and <scp><i>C</i></scp> <i>lostridium</i> . Environmental Microbiology Reports, 2014, 6, 756-766.	1.0	3
3	Conserved Oligopeptide Permeases Modulate Sporulation Initiation in Clostridium difficile. Infection and Immunity, 2014, 82, 4276-4291.	1.0	108
4	Functional Characterisation of Germinant Receptors in Clostridium botulinum and Clostridium sporogenes Presents Novel Insights into Spore Germination Systems. PLoS Pathogens, 2014, 10, e1004382.	2.1	40
5	A mother cell-to-forespore channel: current understanding and future challenges. FEMS Microbiology Letters, 2014, 358, 129-136.	0.7	29
6	Synthetic Polymers Active against <i>Clostridium difficile</i> Vegetative Cell Growth and Spore Outgrowth. Journal of the American Chemical Society, 2014, 136, 14498-14504.	6.6	62
7	Spore Germination. Microbiology Spectrum, 2015, 3, .	1.2	62
8	Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model. Scientific Reports, 2015, 5, 12666.	1.6	38
9	Flooding and Clostridium difficile Infection: A Case-Crossover Analysis. International Journal of Environmental Research and Public Health, 2015, 12, 6948-6964.	1.2	16
10	Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Frontiers in Microbiology, 2015, 6, 1050.	1.5	258
11	Genome-Guided Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights into Environmental Adaptations and Syntrophic Acetate Oxidation. PLoS ONE, 2015, 10, e0121237.	1.1	28
12	Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics. PLoS ONE, 2015, 10, e0127036.	1.1	13
13	Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. PLoS Pathogens, 2015, 11, e1005239.	2.1	66
14	Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Current Opinion in Microbiology, 2015, 24, 88-95.	2.3	116
15	Variation in germination of Clostridium difficile clinical isolates correlates to disease severity. Anaerobe, 2015, 33, 64-70.	1.0	47
16	New Perspectives in Clostridium difficile Disease Pathogenesis. Infectious Disease Clinics of North America, 2015, 29, 1-11.	1.9	21
17	<scp>SpollID</scp> â€mediated regulation of σ <scp>^K</scp> function during <scp><i>C</i></scp> <i>lostridium difficile</i> sporulation. Molecular Microbiology, 2015, 95, 189-208.	1.2	66
18	Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. Journal of Bacteriology, 2015, 197, 2361-2373.	1.0	60
19	Clostridium Difficile Infection from a Surgical Perspective. Journal of Gastrointestinal Surgery, 2015, 19, 1363-1377.	0.9	31

ARTICLE IF CITATIONS Clostridium difficile., 2015, , 181-206. 20 1 Diverse supramolecular structures formed by selfâ€assembling proteins of the 1.2 <scp><i>B</i></scp><i>acillus subtilis</i> spore coat. Molecular Microbiology, 2015, 97, 347-359. Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of 23 2.1 25 the vegetative cell. Food Microbiology, 2015, 51, 45-50. Effects of Surotomycin on Clostridium difficile Viability and Toxin ProductionIn Vitro. Antimicrobial 24 Agents and Chemotherapy, 2015, 59, 4199-4205. Modulation of Bacterial Proliferation as a Survival Strategy. Advances in Applied Microbiology, 2015, 25 1.3 24 92, 127-171. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. Journal of Proteomics, 2015, 123, 1-13. 1.2 Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore 27 1.0 85 Germination. Journal of Bacteriology, 2015, 197, 2276-2283. The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host. 28 2.9 124 Microbiology and Molecular Biology Reviews, 2015, 79, 437-457. Comparative genomic and phenomic analysis of Clostridium difficile and Clostridium sordellii, two 29 1.2 21 related pathogens with differing host tissue preference. BMC Genomics, 2015, 16, 448. Memory of Germinant Stimuli in Bacterial Spores. MBio, 2015, 6, e01859-15. 1.8 Dynamics and Establishment of Clostridium difficile Infection in the Murine Gastrointestinal Tract. 31 1.0 140 Infection and Immunity, 2015, 83, 934-941. Integration of metabolism and virulence in Clostridium difficile. Research in Microbiology, 2015, 166, 146 375-383. Recent advances in germination of Clostridium spores. Research in Microbiology, 2015, 166, 236-243. 33 1.0 35 Spore Germination., 2016, , 217-236. 34 Bacterial Spores and its Relatives as Agents of Mass Destruction. Journal of Bioterrorism & 35 0.1 7 Biodefense, 2016, 07, . A Population Biology Perspective on the Stepwise Infection Process of the Bacterial Pathogen 1.4 70 Pasteuria ramosa inÂDaphnia. Advances in Parasitology, 2016, 91, 265-310. Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost 37 Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the 1.8 62 Intestinal Mucosa. Frontiers in Cellular and Infection Microbiology, 2016, 6, 99. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells. Frontiers in 38 1.5 89 Microbiology, 2016, 7, 1698.

#	Article	IF	CITATIONS
39	Variability in DPA and Calcium Content in the Spores of Clostridium Species. Frontiers in Microbiology, 2016, 7, 1791.	1.5	27
40	Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase. Journal of Bacteriology, 2016, 198, 1694-1707.	1.0	58
41	Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains. Food Microbiology, 2016, 59, 205-212.	2.1	21
42	Surviving Between Hosts: Sporulation and Transmission. Microbiology Spectrum, 2016, 4, .	1.2	52
43	Assessing the Risk of Hospital-Acquired <i>Clostridium Difficile</i> Infection With Proton Pump Inhibitor Use: A Meta-Analysis. Infection Control and Hospital Epidemiology, 2016, 37, 1408-1417.	1.0	56
44	The Spore Coat. Microbiology Spectrum, 2016, 4, .	1.2	90
45	Antibiotic Treatment of Hospitalized Patients with Pneumonia Complicated by Clostridium Difficile Infection. Advances in Experimental Medicine and Biology, 2016, , 1.	0.8	0
46	Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism. MSphere, 2016, 1, .	1.3	49
47	A Quaternary Ammonium Disinfectant Containing Germinants Reduces Clostridium difficile Spores on Surfaces by Inducing Susceptibility to Environmental Stressors. Open Forum Infectious Diseases, 2016, 3, ofw196.	0.4	10
48	The SpollQâ€SpollIAH complex of <scp><i>C</i></scp> <i>lostridium difficile</i> controls forespore engulfment and late stages of gene expression and spore morphogenesis. Molecular Microbiology, 2016, 100, 204-228.	1.2	46
49	Culturing of â€~unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature, 2016, 533, 543-546.	13.7	958
50	Clostridium difficile infection. Nature Reviews Disease Primers, 2016, 2, 16020.	18.1	588
51	Host response to Clostridium difficile infection: Diagnostics and detection. Journal of Global Antimicrobial Resistance, 2016, 7, 93-101.	0.9	19
52	Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms. Applied and Environmental Microbiology, 2016, 82, 5892-5898.	1.4	46
53	Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiology, 2016, 14, 609-620.	13.6	436
54	Inducing and Quantifying Clostridium difficile Spore Formation. Methods in Molecular Biology, 2016, 1476, 129-142.	0.4	32
55	Antibiotic Treatment of Hospitalized Patients with Pneumonia Complicated by Clostridium Difficile Infection. Advances in Experimental Medicine and Biology, 2016, 952, 59-64.	0.8	4
56	Germinants and Their Receptors in Clostridia. Journal of Bacteriology, 2016, 198, 2767-2775.	1.0	60

#	ARTICLE	IF	CITATIONS
57	Advancements in Clinical Research. Advances in Experimental Medicine and Biology, 2016, , .	0.8	2
58	Detecting Cortex Fragments During Bacterial Spore Germination. Journal of Visualized Experiments, 2016, , .	0.2	7
59	Effects of High-Pressure Treatment on Spores of Clostridium Species. Applied and Environmental Microbiology, 2016, 82, 5287-5297.	1.4	32
60	Ridinilazole: a novel therapy for Clostridium difficile infection. International Journal of Antimicrobial Agents, 2016, 48, 137-143.	1.1	41
61	A novel regulator controls <scp><i>C</i></scp> <i>lostridium difficile</i> sporulation, motility and toxin production. Molecular Microbiology, 2016, 100, 954-971.	1.2	90
62	Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Clinical Microbiology and Infection, 2016, 22, 266.e1-266.e7.	2.8	33
63	Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe, 2016, 37, 85-95.	1.0	28
64	Novel therapeutic strategies for Clostridium difficile infections. Expert Opinion on Therapeutic Targets, 2016, 20, 269-285.	1.5	8
65	A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores. Open Forum Infectious Diseases, 2016, 3, ofv206.	0.4	10
66	Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores. Applied and Environmental Microbiology, 2016, 82, 2202-2209.	1.4	51
67	Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annual Review of Food Science and Technology, 2016, 7, 457-482.	5.1	117
68	Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor. Journal of Bacteriology, 2016, 198, 777-786.	1.0	52
69	Inactivation of <i>Clostridium difficile</i> in sewage sludge by anaerobic thermophilic digestion. Canadian Journal of Microbiology, 2016, 62, 16-23.	0.8	15
70	Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie, 2016, 122, 243-254.	1.3	60
71	MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst, The, 2017, 142, 442-448.	1.7	43
72	Geometric protein localization cues in bacterial cells. Current Opinion in Microbiology, 2017, 36, 7-13.	2.3	12
73	Updates on Clostridium difficile spore biology. Anaerobe, 2017, 45, 3-9.	1.0	38
74	TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. Journal of Experimental Medicine, 2017, 214, 1297-1311.	4.2	33

		EPORT	
#	Article	IF	CITATIONS
75	Cell Death Pathway That Monitors Spore Morphogenesis. Trends in Microbiology, 2017, 25, 637-647.	3.5	21
76	Sporulation: how to survive on planet Earth (and beyond). Current Genetics, 2017, 63, 831-838.	0.8	65
77	Ribotypes associated with Clostridium difficile outbreaks in Brazil display distinct surface protein profiles. Anaerobe, 2017, 45, 120-128.	1.0	7
78	Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Scientific Reports, 2017, 7, 44452.	1.6	27
79	Analysis of Germination Capacity and Germinant Receptor (Sub)clusters of Genome-Sequenced Bacillus cereus Environmental Isolates and Model Strains. Applied and Environmental Microbiology, 2017, 83, .	1.4	12
80	Covalent attachment and Proâ€Pro endopeptidase (PPEPâ€1)â€mediated release of <i>Clostridium difficile</i> cell surface proteins involved in adhesion. Molecular Microbiology, 2017, 105, 663-673.	1.2	13
81	Survival of Clostridium difficile spores at low water activity. Food Microbiology, 2017, 65, 274-278.	2.1	11
82	Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores. MSphere, 2017, 2, .	1.3	16
83	Revisiting the Role of Csp Family Proteins in Regulating Clostridium difficile Spore Germination. Journal of Bacteriology, 2017, 199, .	1.0	27
84	New class of precision antimicrobials redefines role of <i>Clostridium difficile</i> S-layer in virulence and viability. Science Translational Medicine, 2017, 9, .	5.8	64
85	Germination of Spores of the Orders <i>Bacillales</i> and <i>Clostridiales</i> . Annual Review of Microbiology, 2017, 71, 459-477.	2.9	170
86	Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma. Scientific Reports, 2017, 7, 41814.	1.6	27
87	Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis. Scientific Reports, 2017, 7, 14672.	1.6	79
88	Introducing the sporobiota and sporobiome. Gut Pathogens, 2017, 9, 38.	1.6	52
89	Sex Steroids Mediate Bidirectional Interactions Between Hosts and Microbes. Hormones and Behavior, 2017, 88, 45-51.	1.0	72
90	Dissemination of <i>Clostridium difficile</i> in food and the environment: Significant sources of <i>C. difficile</i> community-acquired infection?. Journal of Applied Microbiology, 2017, 122, 542-553.	1.4	69
91	Clostridium difficile Infection: Pathogenesis, Diagnosis and Treatment. , 0, , .		4
92	Overview of Clostridium difficile Infection: Life Cycle, Epidemiology, Antimicrobial Resistance and Treatment. , 0, , .		9

#	Article	IF	CITATIONS
93	Improving culture media for the isolation of Clostridium difficile from compost. Anaerobe, 2018, 51, 1-7.	1.0	13
94	"Oneâ€Pot" Sample Processing Method for Proteomeâ€Wide Analysis of Microbial Cells and Spores. Proteomics - Clinical Applications, 2018, 12, e1700169.	0.8	50
95	Genomic and phenotypic diversity of Clostridium difficile during long-term sequential recurrences of infection. International Journal of Medical Microbiology, 2018, 308, 364-377.	1.5	14
96	Effects of natural products on several stages of the spore cycle ofClostridium difficile in vitro. Journal of Applied Microbiology, 2018, 125, 710-723.	1.4	6
97	Two Groups of Cocirculating, Epidemic Clostridiodes difficile Strains Microdiversify through Different Mechanisms. Genome Biology and Evolution, 2018, 10, 982-998.	1.1	8
98	Identification of <i>Clostridium difficile</i> Immunoreactive Spore Proteins of the Epidemic Strain R20291. Proteomics - Clinical Applications, 2018, 12, e1700182.	0.8	16
99	The role of gut microbiota in Clostridium difficile infection. European Journal of Internal Medicine, 2018, 50, 28-32.	1.0	58
100	Novel FR-900493 Analogues That Inhibit the Outgrowth of <i>Clostridium difficile</i> Spores. ACS Omega, 2018, 3, 1726-1739.	1.6	21
101	Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe, 2018, 49, 41-47.	1.0	53
102	High Prevalence and Genetic Diversity of Large phiCD211 (phiCDIF1296T)-Like Prophages in Clostridioides difficile. Applied and Environmental Microbiology, 2018, 84, .	1.4	24
103	Phase variation of <i>Clostridium difficile </i> virulence factors. Gut Microbes, 2018, 9, 76-83.	4.3	43
104	Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically–relevant faecal environment, with implications for pathogenicity. Scientific Reports, 2018, 8, 16691.	1.6	7
105	Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria. Genes, 2018, 9, 225.	1.0	27
106	PrsA2 (CD630_35000) of Clostridioides difficile Is an Active Parvulin-Type PPIase and a Virulence Modulator. Frontiers in Microbiology, 2018, 9, 2913.	1.5	13
107	Single-cell analysis reveals individual spore responses to simulated space vacuum. Npj Microgravity, 2018, 4, 26.	1.9	9
108	N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance. Journal of Biological Chemistry, 2018, 293, 18040-18054.	1.6	24
109	Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions. MSphere, 2018, 3, .	1.3	35
110	Antimicrobial Effect of Asiatic Acid Against Clostridium difficile Is Associated With Disruption of Membrane Permeability. Frontiers in Microbiology, 2018, 9, 2125.	1.5	19

#	ARTICLE	IF	CITATIONS
111	Effect of natural products on the production and activity of Clostridium difficile toxins in vitro. Scientific Reports, 2018, 8, 15735.	1.6	16
112	Conservation of the "Outside-in―Germination Pathway in Paraclostridium bifermentans. Frontiers in Microbiology, 2018, 9, 2487.	1.5	8
113	Identification of Escherichia coli strains for the heterologous overexpression of soluble Clostridium difficile exosporium proteins. Journal of Microbiological Methods, 2018, 154, 46-51.	0.7	2
114	A High-Throughput Organoid Microinjection Platform to Study Gastrointestinal Microbiota and Luminal Physiology. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 301-319.	2.3	168
115	Examination of the Clostridioides (Clostridium) difficile VanZ ortholog, CD1240. Anaerobe, 2018, 53, 108-115.	1.0	16
116	<i>Clostridium difficile</i> Lipoprotein GerS Is Required for Cortex Modification and Thus Spore Germination. MSphere, 2018, 3, .	1.3	33
117	Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 29.	1.8	102
118	Targeting Clostridium difficile Surface Components to Develop Immunotherapeutic Strategies Against Clostridium difficile Infection. Frontiers in Microbiology, 2018, 9, 1009.	1.5	37
119	A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile. Frontiers in Microbiology, 2018, 9, 1206.	1.5	17
120	Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of Clostridium difficile Infections. Frontiers in Microbiology, 2018, 9, 1242.	1.5	69
121	In Vitro Activity of Tedizolid, Dalbavancin, and Ceftobiprole Against Clostridium difficile. Frontiers in Microbiology, 2018, 9, 1256.	1.5	5
122	The Design, Synthesis, and Characterizations of Spore Germination Inhibitors Effective against an Epidemic Strain of <i>Clostridium difficile</i> . Journal of Medicinal Chemistry, 2018, 61, 6759-6778.	2.9	16
123	Clostridium difficile colitis and zoonotic origins—a narrative review. Gastroenterology Report, 2018, 6, 157-166.	0.6	20
124	Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract. PLoS Pathogens, 2018, 14, e1007004.	2.1	11
125	Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS Pathogens, 2018, 14, e1007199.	2.1	61
126	A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiology, 2019, 77, 118-129.	2.1	56
127	Integrated genomic epidemiology and phenotypic profiling of Clostridium difficile across intra-hospital and community populations in Colombia. Scientific Reports, 2019, 9, 11293.	1.6	12
128	Cephamycins inhibit pathogen sporulation and effectively treat recurrent Clostridioides difficile infection. Nature Microbiology, 2019, 4, 2237-2245.	5.9	27

#	ARTICLE In silico, inÂvitro and inÂvivo analysis of putative virulence factors identified in large clostridial	IF	Citations
129	toxin-negative, binary toxin- producing C.Âdifficile strains. Anaerobe, 2019, 60, 102083.	1.0	5
130	Comparative genomics identifies potential virulence factors in <i>Clostridium tertium</i> and <i>C. paraputrificum</i> . Virulence, 2019, 10, 657-676.	1.8	13
131	From Root to Tips: Sporulation Evolution and Specialization in <i>Bacillus subtilis</i> and the Intestinal Pathogen <i>Clostridioides difficile</i> . Molecular Biology and Evolution, 2019, 36, 2714-2736.	3.5	29
132	The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genetics, 2019, 15, e1008224.	1.5	32
133	The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in Clostridium difficile. Frontiers in Cellular and Infection Microbiology, 2019, 9, 356.	1.8	17
134	Crosstalk between Vaginal Microbiome and Female Health: A review. Microbial Pathogenesis, 2019, 136, 103696.	1.3	86
135	Vegetative Cell and Spore Proteomes of <i>Clostridioides difficile</i> Show Finite Differences and Reveal Potential Protein Markers. Journal of Proteome Research, 2019, 18, 3967-3976.	1.8	10
136	Characterization of Clostridioides difficile ribotypes in domestic dogs in Rio de Janeiro, Brazil. Anaerobe, 2019, 58, 22-29.	1.0	12
137	The Ser/Thr Kinase PrkC Participates in Cell Wall Homeostasis and Antimicrobial Resistance in Clostridium difficile. Infection and Immunity, 2019, 87, .	1.0	28
138	New insights for vaccine development against Clostridium difficile infections. Anaerobe, 2019, 58, 73-79.	1.0	12
139	Terbium chloride influences Clostridium difficile spore germination. Anaerobe, 2019, 58, 80-88.	1.0	13
140	The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA. PLoS Pathogens, 2019, 15, e1007681.	2.1	41
141	Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019, 20, 377-388.	7.7	411
142	SpoIVA-SipL Complex Formation Is Essential for <i>Clostridioides difficile</i> Spore Assembly. Journal of Bacteriology, 2019, 201, .	1.0	19
143	Evaluation of growth and sporulation of a non-toxigenic strain of Clostridioides difficile (Z31) and its shelf viability. Brazilian Journal of Microbiology, 2019, 50, 263-269.	0.8	1
144	Sporulation and Germination in Clostridial Pathogens. , 0, , 903-926.		2
145	Virulence Factors of Clostridioides (Clostridium) difficile Linked to Recurrent Infections. Canadian Journal of Infectious Diseases and Medical Microbiology, 2019, 2019, 1-7.	0.7	12
146	Sporulation and Germination in Clostridial Pathogens. Microbiology Spectrum, 2019, 7, .	1.2	60

#	Article	IF	CITATIONS
147	CotL, a new morphogenetic spore coat protein of <i>Clostridium difficile</i> . Environmental Microbiology, 2019, 21, 984-1003.	1.8	16
148	Synthetic developmental regulator MciZ targets FtsZ across Bacillus species and inhibits bacterial division. Molecular Microbiology, 2019, 111, 965-980.	1.2	16
149	Novel therapies and preventative strategies for primary and recurrent <i>Clostridium difficile</i> infections. Annals of the New York Academy of Sciences, 2019, 1435, 110-138.	1.8	40
150	Antibacterial and antivirulence activities of auranofin against Clostridium difficile. International Journal of Antimicrobial Agents, 2019, 53, 54-62.	1.1	61
151	Influence of prior appendectomy and cholecystectomy on Clostridioides difficile infection recurrence and mortality. American Journal of Surgery, 2020, 220, 203-207.	0.9	5
152	Transcriptomic and Phenotypic Analysis of a spollE Mutant in Clostridium beijerinckii. Frontiers in Microbiology, 2020, 11, 556064.	1.5	8
153	Prebioticsâ€Encapsulated Probiotic Spores Regulate Gut Microbiota and Suppress Colon Cancer. Advanced Materials, 2020, 32, e2004529.	11.1	128
154	A Revised Understanding of Clostridioides difficile Spore Germination. Trends in Microbiology, 2020, 28, 744-752.	3.5	26
155	Bezlotoxumab for Preventing Recurrent Clostridioides difficile Infection: A Narrative Review from Pathophysiology to Clinical Studies. Infectious Diseases and Therapy, 2020, 9, 481-494.	1.8	11
156	Membrane Cholesterol Is Crucial for Clostridium difficile Surface Layer Protein Binding and Triggering Inflammasome Activation. Frontiers in Immunology, 2020, 11, 1675.	2.2	12
157	Quantifying bacterial spore germination by single-cell impedance cytometry for assessment of host microbiota susceptibility to Clostridioides difficile infection. Biosensors and Bioelectronics, 2020, 166, 112440.	5.3	19
158	Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation. Journal of Bacteriology, 2020, 202, .	1.0	9
159	Novel spore lytic enzyme from a Bacillus phage leading to spore killing. Enzyme and Microbial Technology, 2020, 142, 109698.	1.6	4
160	Two Bacillus isolates recovered from a radiation therapy facility differ greatly in their ability to attach to four immobilization masks. Journal of Medical Imaging and Radiation Sciences, 2020, 51, 590-598.	0.2	2
161	Enhancing the Inactivation of Bacterial Spores during Pressure-Assisted Thermal Processing. Food Engineering Reviews, 2021, 13, 431-441.	3.1	9
162	Massive Hydrothorax and Ascites as the Primary Manifestation of Infection With Clostridium difficile: A Case Report and Literature Review. Frontiers in Pediatrics, 2020, 8, 254.	0.9	3
163	Diagnosis of Clostridiodes difficile infection: Assessing the performance of Quik Chek complete kit assay versus the GeneXpert PCR assay at a major tertiary care center in Lebanon. Meta Gene, 2020, 25, 100715.	0.3	0
164	Characterization of sporulation dynamics of Pseudoclostridium thermosuccinogenes using flow cytometry. Anaerobe, 2020, 63, 102208.	1.0	8

#	Article	IF	CITATIONS
165	Structural elucidation of the <i>Clostridioides difficile</i> transferase toxin reveals a single-site binding mode for the enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6139-6144.	3.3	17
166	Systems approaches for the clinical diagnosis of Clostridioides difficile infection. Translational Research, 2020, 220, 57-67.	2.2	6
167	Clostridium species as probiotics: potentials and challenges. Journal of Animal Science and Biotechnology, 2020, 11, 24.	2.1	234
168	In Vitro Production and Immunogenicity of a Clostridium difficile Spore-Specific BclA3 Glycopeptide Conjugate Vaccine. Vaccines, 2020, 8, 73.	2.1	9
169	Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models. BMC Microbiology, 2020, 20, 27.	1.3	6
170	Inhibitory effect of fidaxomicin on biofilm formation in Clostridioides difficile. Journal of Infection and Chemotherapy, 2020, 26, 685-692.	0.8	12
171	Repurposing a platelet aggregation inhibitor ticagrelor as an antimicrobial against Clostridioides difficile. Scientific Reports, 2020, 10, 6497.	1.6	13
172	Pharmacokinetics of CamSA, a potential prophylactic compound against Clostridioides difficile infections. Biochemical Pharmacology, 2021, 183, 114314.	2.0	9
173	Diagnostic value of fecal cultures in dogs with chronic diarrhea. Journal of Veterinary Internal Medicine, 2021, 35, 199-208.	0.6	9
175	A common protocol for the simultaneous processing of multiple clinically relevant bacterial species for whole genome sequencing. Scientific Reports, 2021, 11, 193.	1.6	3
176	Invisible steps for a global endemy: molecular strategies adopted by Clostridioides difficile. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110327.	1.4	8
177	Clostridium paraputrificum: An atypical and rare case of septic arthritis mimicking an acute sickle cell crisis. IDCases, 2021, 23, e01031.	0.4	3
178	Persistence of Intracellular Bacterial Pathogens—With a Focus on the Metabolic Perspective. Frontiers in Cellular and Infection Microbiology, 2020, 10, 615450.	1.8	26
179	Grad-seq identifies KhpB as a global RNA-binding protein in <i>Clostridioides difficile</i> that regulates toxin production. MicroLife, 2021, 2, .	1.0	25
180	Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nature Communications, 2021, 12, 1140.	5.8	60
182	Metabolic strategies of dormancy of a marine bacterium Microbulbifer aggregans CCB-MM1: Its alternative electron transfer chain and sulfate-reducing pathway. Genomics, 2022, 114, 443-455.	1.3	3
184	Transgenic plants expressing a <scp><i>Clostridium difficile</i></scp> spore antigen as an approach to develop lowâ€cost oral vaccines. Biotechnology Progress, 2021, 37, e3141.	1.3	3
185	Sporulation in solventogenic and acetogenic clostridia. Applied Microbiology and Biotechnology, 2021, 105, 3533-3557.	1.7	28

#	Article	IF	CITATIONS
186	No Light, No Germination: Excitation of the Rhodospirillum centenum Photosynthetic Apparatus Is Necessary and Sufficient for Cyst Germination. MBio, 2021, 12, .	1.8	2
187	Structure–Activity Relationship for the Picolinamide Antibacterials that Selectively Target Clostridioides difficile. ACS Medicinal Chemistry Letters, 2021, 12, 991-995.	1.3	0
190	Levels and Characteristics of mRNAs in Spores of Firmicute Species. Journal of Bacteriology, 2021, 203, e0001721.	1.0	1
191	Inhibition of spores to prevent the recurrence of Clostridioides difficile infection - A possibility or an improbability?. Journal of Microbiology, Immunology and Infection, 2021, 54, 1011-1017.	1.5	9
192	Visualization of fidaxomicin association with the exosporium layer of Clostridioides difficile spores. Anaerobe, 2021, 69, 102352.	1.0	7
193	Microbiological features, epidemiology, and clinical presentation of Clostridioides difficile strains from MLST Clade 2: A narrative review. Anaerobe, 2021, 69, 102355.	1.0	7
195	Clostridioides difficile SpoVAD and SpoVAE Interact and Are Required for Dipicolinic Acid Uptake into Spores. Journal of Bacteriology, 2021, 203, e0039421.	1.0	9
196	Clostridioides difficile spores stimulate inflammatory cytokine responses and induce cytotoxicity in macrophages. Anaerobe, 2021, 70, 102381.	1.0	7
197	Opportunities for Nanomedicine in Clostridioides difficile Infection. Antibiotics, 2021, 10, 948.	1.5	4
198	A cortex-specific penicillin-binding protein contributes to heat resistance in Clostridioides difficile spores. Anaerobe, 2021, 70, 102379.	1.0	13
199	Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. Genome Biology, 2021, 22, 204.	3.8	25
201	Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Cell Reports, 2021, 36, 109683.	2.9	16
202	The small acid-soluble proteins of Clostridioides difficile are important for UV resistance and serve as a check point for sporulation. PLoS Pathogens, 2021, 17, e1009516.	2.1	10
203	Differential effects of â€~resurrecting' Csp pseudoproteases during <i>Clostridioides difficile</i> spore germination. Biochemical Journal, 2020, 477, 1459-1478.	1.7	5
204	Carvacrol reduces Clostridium difficile sporulation and spore outgrowth in vitro. Journal of Medical Microbiology, 2017, 66, 1229-1234.	0.7	9
205	Investigating the transient and persistent effects of heat on Clostridium difficile spores. Journal of Medical Microbiology, 2019, 68, 1445-1454.	0.7	4
212	Surviving Between Hosts: Sporulation and Transmission. , 0, , 567-591.		5
213	The Spore Coat. , 0, , 179-200.		13

#	Article	IF	CITATIONS
214	Redefining the Clostridioides difficile σ ^B Regulon: σ ^B Activates Genes Involved in Detoxifying Radicals That Can Result from the Exposure to Antimicrobials and Hydrogen Peroxide. MSphere, 2020, 5, .	1.3	15
215	A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile. PLoS Genetics, 2016, 12, e1006312.	1.5	42
216	A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genetics, 2017, 13, e1006701.	1.5	103
217	Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions. PLoS ONE, 2015, 10, e0132805.	1.1	17
218	Efficacy and Safety of Metronidazole Monotherapy versus Vancomycin Monotherapy or Combination Therapy in Patients with Clostridium difficile Infection: A Systematic Review and Meta-Analysis. PLoS ONE, 2015, 10, e0137252.	1.1	25
219	Deciphering Adaptation Strategies of the Epidemic Clostridium difficile 027 Strain during Infection through In Vivo Transcriptional Analysis. PLoS ONE, 2016, 11, e0158204.	1.1	21
220	More than 50% of Clostridium difficile Isolates from Pet Dogs in Flagstaff, USA, Carry Toxigenic Genotypes. PLoS ONE, 2016, 11, e0164504.	1.1	64
221	A Gut Odyssey: The Impact of the Microbiota on Clostridium difficile Spore Formation and Germination. PLoS Pathogens, 2015, 11, e1005157.	2.1	53
222	Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS Pathogens, 2017, 13, e1006443.	2.1	78
223	Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovremennye Tehnologii V Medicine, 2020, 12, 105.	0.4	6
225	Determination of the in vitro Sporulation Frequency of Clostridium difficile. Bio-protocol, 2017, 7, .	0.2	30
226	Phaseâ€variable expression of <i>pdcB</i> , a phosphodiesterase, influences sporulation in <i>Clostridioides difficile</i> . Molecular Microbiology, 2021, 116, 1347-1360.	1.2	16
227	Analysis of the germination proteins in Alicyclobacillus acidoterrestris spores subjected to external factors. Acta Biochimica Polonica, 2017, 64, 301-305.	0.3	3
228	An in silico evaluation of treatment regimens for recurrent Clostridium difficile infection. PLoS ONE, 2017, 12, e0182815.	1.1	0
229	Spores of Anaerobic Bacteria: Characteristics and Behaviors during Restoration from Damaged Status. Journal of the Japanese Society for Food Science and Technology, 2018, 65, 142-147.	0.1	1
237	Bacterial Spores: Mechanisms of Stability and Targets for Modern Biotechnologies. Biomedical Journal of Scientific & Technical Research, 2019, 20, .	0.0	4
244	Prevalence of and its toxigenic genotype in beef samples in west of Iran. Iranian Journal of Microbiology, 2017, 9, 169-173.	0.8	7
245	Clostridioides difficile spore germination: initiation to DPA release. Current Opinion in Microbiology, 2022, 65, 101-107.	2.3	12

#	ARTICLE	IF	CITATIONS
246	Identification of ClpP Dual Isoform Disruption as an Antisporulation Strategy for Clostridioides difficile. Journal of Bacteriology, 2022, 204, JB0041121.	1.0	3
247	A Bioluminescent Sensor for Rapid Detection of PPEP-1, a Clostridioides difficile Biomarker. Sensors, 2021, 21, 7485.	2.1	5
248	Dormant spores sense amino acids through the B subunits of their germination receptors. Nature Communications, 2021, 12, 6842.	5.8	22
250	An Aniline-Substituted Bile Salt Analog Protects both Mice and Hamsters from Multiple Clostridioides difficile Strains. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0143521.	1.4	4
251	Epidemiology of Clostridioides difficile in South Africa. PLoS ONE, 2021, 16, e0259771.	1.1	3
252	Effect of oxygen on the germination and culturability of Bacillus atrophaeus spores. International Microbiology, 2022, 25, 353-363.	1.1	3
253	Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures. International Journal of Molecular Sciences, 2022, 23, 550.	1.8	1
254	The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients, 2022, 14, 624.	1.7	19
257	Reviving the view: evidence that macromolecule synthesis fuels bacterial spore germination. MicroLife, 2022, 3, .	1.0	6
258	Potential Role of the Host-Derived Cell-Wall Binding Domain of Endolysin CD16/50L as a Molecular Anchor in Preservation of Uninfected Clostridioides difficile for New Rounds of Phage Infection. Microbiology Spectrum, 2022, 10, e0236121.	1.2	9
259	Ecological and Evolutionary Implications of Microbial Dispersal. Frontiers in Microbiology, 2022, 13, 855859.	1.5	36
260	Assembly of the exosporium layer in Clostridioides difficile spores. Current Opinion in Microbiology, 2022, 67, 102137.	2.3	8
261	Gut Homeostasis; Microbial Cross Talks in Health and Disease Management. Current Research in Nutrition and Food Science, 2021, 9, 1017-1045.	0.3	0
262	sRNARFTarget: a fast machine-learning-based approach for transcriptome-wide sRNA target prediction. RNA Biology, 2022, 19, 44-54.	1.5	9
263	The development of live biotherapeutics against <i>Clostridioides difficile</i> infection towards reconstituting gut microbiota. Gut Microbes, 2022, 14, 2052698.	4.3	9
275	Capturing the environment of the Clostridioides difficile infection cycle. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 508-520.	8.2	22
276	Lactiplantibacillus plantarum E51 protects against Clostridioides difficile-induced damages on Caco-2 intestinal barrier functions. Archives of Microbiology, 2022, 204, 290.	1.0	1
277	The Alternative Sigma Factor SigL Influences Clostridioides difficile Toxin Production, Sporulation, and Cell Surface Properties. Frontiers in Microbiology, 2022, 13, .	1.5	3

#	Article	IF	CITATIONS
278	Japanese Clinical Practice Guidelines for Management of Clostridioides (Clostridium) difficile infection. Journal of Infection and Chemotherapy, 2022, 28, 1045-1083.	0.8	15
279	Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the <i>Firmicutes</i> . Journal of Bacteriology, 2022, 204, .	1.0	20
280	Local barriers configure systemic communications between the host and microbiota. Science, 2022, 376, 950-955.	6.0	20
282	Gut metabolites predict Clostridioides difficile recurrence. Microbiome, 2022, 10, .	4.9	17
283	Auranofin and Baicalin Inhibit Clostridioides difficile Growth and Sporulation: An In vitro Study. Journal of Pure and Applied Microbiology, 0, , .	0.3	0
284	The Distinguishing Bacterial Features From Active and Remission Stages of Ulcerative Colitis Revealed by Paired Fecal Metagenomes. Frontiers in Microbiology, 0, 13, .	1.5	1
285	Imaging Clostridioides difficile Spore Germination and Germination Proteins. Journal of Bacteriology, 2022, 204, .	1.0	5
286	Inanimate Surfaces as a Source of Hospital Infections Caused by Fungi, Bacteria and Viruses with Particular Emphasis on SARS-CoV-2. International Journal of Environmental Research and Public Health, 2022, 19, 8121.	1.2	17
287	Severe Diverticulitis Associated to <i>Clostridioides difficile</i> Infection in a 91 Year Old Patient (Clinical Case). Russian Journal of Gastroenterology Hepatology Coloproctology, 2022, 32, 93-98.	0.2	0
288	Efficacy of Dry Heat Treatment against Clostridioides difficile Spores and Mycobacterium tuberculosis on Filtering Facepiece Respirators. Pathogens, 2022, 11, 871.	1.2	1
289	Crosstalk between mucosal microbiota, host gene expression, and sociomedical factors in the progression of colorectal cancer. Scientific Reports, 2022, 12, .	1.6	3
290	Systematic Review and Meta-Analysis on the Frequency of Antibiotic-Resistant Clostridium Species in Saudi Arabia. Antibiotics, 2022, 11, 1165.	1.5	6
291	<i>Clostridioides difficile</i> spore: coat assembly and formation. Emerging Microbes and Infections, 2022, 11, 2340-2349.	3.0	4
292	Dietary-protein sources modulate host susceptibility to Clostridioides difficile infection through the gut microbiota. Cell Reports, 2022, 40, 111332.	2.9	7
293	Role of the Spore Coat Proteins CotA and CotB, and the Spore Surface Protein CDIF630_02480, on the Surface Distribution of Exosporium Proteins in Clostridioides difficile 630 Spores. Microorganisms, 2022, 10, 1918.	1.6	1
294	Characterization of the glmS ribozymes from Listeria monocytogenes and Clostridium difficile. Chemistry - A European Journal, 0, , .	1.7	4
295	Features of diet therapy for <i>Clostridium difficile</i> - associated disease. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 229-239.	0.1	2
296	<i>Clostridioides difficile</i> infection recurrence in the VINC at hospitals: a prospective observational cohort study. Future Microbiology, 0, , .	1.0	0

#	Article	IF	CITATIONS
297	Peroxisome proliferator-activated receptor-Î ³ as the gatekeeper of tight junction in Clostridioides difficile infection. Frontiers in Microbiology, 0, 13, .	1.5	2
298	Pathogenicity and virulence of <i>Clostridioides difficile</i> . Virulence, 2023, 14, .	1.8	24
299	Make It Less difficile: Understanding Genetic Evolution and Global Spread of Clostridioides difficile. Genes, 2022, 13, 2200.	1.0	7
300	Redistribution of the Novel Clostridioides difficile Spore Adherence Receptor E-Cadherin by TcdA and TcdB Increases Spore Binding to Adherens Junctions. Infection and Immunity, 2023, 91, .	1.0	2
301	Comparison between Symptomatic and Asymptomatic Mice after Clostridioides difficile Infection Reveals Novel Inflammatory Pathways and Contributing Microbiota. Microorganisms, 2022, 10, 2380.	1.6	1
302	Rapid-format recombinant antibody-based methods for the diagnosis of Clostridioides difficile infection: Recent advances and perspectives. Frontiers in Microbiology, 0, 13, .	1.5	5
303	Overcoming Antibiotic Resistance with Novel Paradigms of Antibiotic Selection. Microorganisms, 2022, 10, 2383.	1.6	7
304	Pseudomembranous colitis in patients with COVID-19 (review). Koloproktologia, 2022, 21, 111-119.	0.1	1
305	Emerging Options for the Prevention and Management of Clostridioides difficile Infection. Drugs, 2023, 83, 105-116.	4.9	10
306	Characterization of a Clostridioides difficile ST-293 isolate from a recurrent infection in Argentina. Revista Argentina De Microbiologia, 2023, , .	0.4	0
307	Clostridioides difficile infection in children hospitalised in Motol University Hospital. Cesko-Slovenska Pediatrie, 2022, 77, 340-344.	0.0	0
308	Cytotoxic synergism of <i>Clostridioides difficile</i> toxin B with proinflammatory cytokines in subjects with inflammatory bowel diseases. World Journal of Gastroenterology, 0, 29, 582-596.	1.4	4
309	Clostridium difficile infection and gut microbiota: From fundamentals to microbiota-centered strategies. , 2023, , 547-561.		0
310	Microbiota–Liver Diseases Interactions. International Journal of Molecular Sciences, 2023, 24, 3883.	1.8	6
311	Clostridioides difficile infection: traversing host–pathogen interactions in the gut. Microbiology (United Kingdom), 2023, 169, .	0.7	3
312	Synthesis of Muramylâ€Î∕‣actam in Spore Peptidoglycan of Clostridioides difficile. ChemBioChem, 0, , .	1.3	0
330	Assembling the Bacillus subtilis Spore Coat Basement Layer on Spherical Supported Lipid Bilayers. Methods in Molecular Biology, 2024, , 215-225.	0.4	0
336	Clostridioides difficile Sporulation. Advances in Experimental Medicine and Biology, 2024, , 273-314.	0.8	1

IF

CITATIONS

0

ARTICLE

Bacterial growth and cultivation. , 2024, , 155-175.

Endospores, sporulation, and germination. , 2024, , 141-152.