EU agricultural reform fails on biodiversity

Science 344, 1090-1092

DOI: 10.1126/science.1253425

Citation Report

#	Article	IF	CITATIONS
1	Analysing Landscape Fragmentation and Classifying Threats for Habitats of Community Interest in the "lron Gates―Natural Park (Romania). Transylvanian Review of Systematical and Ecological Research, 2014, 16, 197-210.	0.9	О
2	Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation. PLoS ONE, 2014, 9, e103256.	1.1	69
3	Species, Habitats, Society: An Evaluation of Research Supporting EU's Natura 2000 Network. PLoS ONE, 2014, 9, e113648.	1.1	82
4	Spatial analysis of lanner falcon habitat preferences: Implications for agro-ecosystems management at landscape scale and raptor conservation. Biological Conservation, 2014, 178, 173-184.	1.9	15
5	Hypothesizing if responses to climate change affect herbicide exposure risk for amphibians. Environmental Sciences Europe, 2014, 26, .	2.6	9
6	Uncertainties in Ecosystem Service Maps: A Comparison on the European Scale. PLoS ONE, 2014, 9, e109643.	1.1	149
7	Environmentally friendly management as an intermediate strategy between organic and conventional agriculture to support biodiversity. Biological Conservation, 2014, 178, 146-154.	1.9	38
8	Ecological and economic conditions and associated institutional challenges for conservation banking in dynamic landscapes. Landscape and Urban Planning, 2014, 130, 64-72.	3.4	70
9	Spiders in the context of agricultural land abandonment in Greek Mountains: species responses, community structure and the need to preserve traditional agricultural landscapes. Journal of Insect Conservation, 2014, 18, 599-611.	0.8	21
10	Wintering Farmland Bird Assemblages in West Hungary. Polish Journal of Ecology, 2015, 63, 608-615.	0.2	1
11	The role of agriâ€environment schemes in conservation and environmental management. Conservation Biology, 2015, 29, 1006-1016.	2.4	687
12	How much flowerâ€rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecological Entomology, 2015, 40, 22-35.	1.1	130
14	The alignment of agricultural and nature conservation policies in the European Union. Conservation Biology, 2015, 29, 996-1005.	2.4	99
15	10. Sustainability Indicators For Agriculture In The European Union. , 2015, , 182-204.		O
16	Opportunities within the Revised EU Common Agricultural Policy to Address the Decline of Farmland Birds: An Irish Perspective. Diversity, 2015, 7, 307-317.	0.7	6
17	Patterns in long-term changes of farmland bird populations in areas differing by agricultural management within an Eastern European country. Bird Study, 2015, 62, 315-330.	0.4	8
18	Weeds for bees? A review. Agronomy for Sustainable Development, 2015, 35, 891-909.	2.2	213
19	High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151369.	1.2	155

#	Article	IF	CITATIONS
20	Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. Applied Soil Ecology, 2015, 96, 251-260.	2.1	50
21	Why socio-political borders and boundaries matter in conservation. Trends in Ecology and Evolution, 2015, 30, 132-139.	4.2	117
22	Spatial variation in the decline of European birds as shown by the Barn Owl <i>Tyto alba</i> diet. Bird Study, 2015, 62, 271-275.	0.4	10
23	Comparison of trends in butterfly populations between monitoring schemes. Journal of Insect Conservation, 2015, 19, 313-324.	0.8	26
24	Critique and transformation: On the hypothetical nature of ecosystem service value and its neo-Marxist, liberal and pragmatist criticisms. Ecological Economics, 2015, 117, 173-181.	2.9	20
25	High Nature Value farming: From indication to conservation. Ecological Indicators, 2015, 57, 557-563.	2.6	67
26	â€Best available techniques' as a mandatory basic standard for more sustainable agricultural land use in Europe?. Land Use Policy, 2015, 47, 342-351.	2.5	17
27	Advancing sustainability through mainstreaming a social–ecological systems perspective. Current Opinion in Environmental Sustainability, 2015, 14, 144-149.	3.1	274
28	Impact of land cover homogenization on the Corncrake (Crex crex) in traditional farmland. Landscape Ecology, 2015, 30, 1483-1495.	1.9	16
29	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	1.9	172
30	Do conservation and agri-environmental regulations effectively support traditional small-scale farming in East-Central European cultural landscapes?. Biodiversity and Conservation, 2015, 24, 3305-3327.	1.2	68
31	Pesticide authorization in the EUâ€"environment unprotected?. Environmental Science and Pollution Research, 2015, 22, 19632-19647.	2.7	80
32	Bridging the research-practice gap: Conservation research priorities in a Central and Eastern European country. Journal for Nature Conservation, 2015, 28, 133-148.	0.8	11
33	Assessing the effect of agricultural land abandonment on bird communities in southern-eastern Europe. Journal of Environmental Management, 2015, 164, 171-179.	3.8	45
34	Spatial congruence between organic farming and biodiversity related landscape features in Germany. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11, 330-340.	2.9	5
35	Socioecological drivers facilitating biodiversity conservation in traditional farming landscapes. Ecosystem Health and Sustainability, $2015,1,1$ -9.	1.5	163
36	The challenge of implementing the European network of protected areas Natura 2000. Conservation Biology, 2015, 29, 260-270.	2.4	141
37	Integrating different understandings of landscape stewardship into the design of agri-environmental schemes. Environmental Conservation, 2016, 43, 350-358.	0.7	23

#	Article	IF	Citations
38	Evaluation of Ecological Criteria of Biofuel Certification in Germany. Sustainability, 2016, 8, 936.	1.6	7
39	Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools. Sustainability, 2016, 8, 971.	1.6	40
40	EDITOR'S CHOICE: How much would it cost to monitor farmland biodiversity in Europe?. Journal of Applied Ecology, 2016, 53, 140-149.	1.9	21
41	Common and conflicting objectives and practices of herders and conservation managers: the need for a conservation herder. Ecosystem Health and Sustainability, 2016, 2, .	1.5	30
42	Actionable knowledge for ecological intensification of agriculture. Frontiers in Ecology and the Environment, 2016, 14, 209-216.	1.9	117
43	Three Decades of Policy Layering and Politically Sustainable Reform in the <scp>E</scp> uropean <scp>U</scp> nion's Agricultural Policy. Governance, 2016, 29, 265-280.	1.5	67
44	Supporting local diversity of habitats and species on farmland: a comparison of three wildlifeâ€friendly schemes. Journal of Applied Ecology, 2016, 53, 171-180.	1.9	28
45	Biodiversity scenarios neglect future landâ€use changes. Global Change Biology, 2016, 22, 2505-2515.	4.2	201
46	Food Production and Nature Conservation. , 0, , .		9
47	Enhancing the Effectiveness of CAP Greening as a Conservation Tool: a Plea for Regional Targeting Considering Landscape Constraints. Current Landscape Ecology Reports, 2016, 1, 168-177.	1.1	40
48	How Agricultural Intensification Affects Biodiversity and Ecosystem Services. Advances in Ecological Research, 2016, 55, 43-97.	1.4	234
49	The network BiodiversityKnowledge in practice: insights from three trial assessments. Biodiversity and Conservation, 2016, 25, 1301-1318.	1.2	14
50	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	1.4	115
51	Greening and producing: An economic assessment framework for integrating trees in cropping systems. Agricultural Systems, 2016, 148, 44-57.	3.2	18
52	An applied farming systems approach to infer conservation-relevant agricultural practices for agri-environment policy design. Land Use Policy, 2016, 58, 165-172.	2.5	35
53	Food production, ecosystem services and biodiversity: We can't have it all everywhere. Science of the Total Environment, 2016, 573, 1422-1429.	3.9	81
54	Grassland winners and arable land losers: The effects of post-totalitarian land use changes on long-term population trends of farmland birds. Agriculture, Ecosystems and Environment, 2016, 232, 208-217.	2.5	26
55	Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biological Conservation, 2016, 201, 370-376.	1.9	65

#	ARTICLE	IF	CITATIONS
56	Delayed mowing promotes planthoppers, leafhoppers and spiders in extensively managed meadows. Insect Conservation and Diversity, 2016, 9, 536-545.	1.4	21
57	Surviving in Europe: geopolitics of biodiversity conservation illustrated by a proxy species <i>Viola uliginosa </i> . Ecosphere, 2016, 7, e01401.	1.0	1
58	How effective is greening policy in reducing GHG emissions from agriculture? Evidence from Italy. Science of the Total Environment, 2016, 573, 1115-1124.	3.9	69
59	Akzeptanz als Rahmenbedingung fýr das erfolgreiche Management von Landnutzungen und biologischer Vielfalt in GroÃÝschutzgebieten. Raumforschung Und Raumordnung Spatial Research and Planning, 2016, 74, .	1.5	11
60	Multi-scale effects of agri-environment schemes on carabid beetles in intensive farmland. Agriculture, Ecosystems and Environment, 2016, 229, 48-56.	2.5	22
61	The basic motivational drivers of northern and central European farmers. Journal of Rural Studies, 2016, 46, 93-101.	2.1	40
62	A survey exploring private farm advisor perspectives of agri-environment schemes: The case of England's Environmental Stewardship programme. Land Use Policy, 2016, 55, 240-256.	2.5	22
63	An indicator framework to help maximise potential benefits for ecosystem services and biodiversity from ecological focus areas. Ecological Indicators, 2016, 69, 859-872.	2.6	20
64	The Geographic Distribution and Characterisation of EU Arable Land Affected by the â€~Greening' of the Common Agricultural Policy. EuroChoices, 2016, 15, 39-46.	0.6	0
65	Evaluating conservation tools in Polish grasslands: The occurrence of birds in relation to agri-environment schemes and Natura 2000 areas. Biological Conservation, 2016, 194, 150-157.	1.9	39
66	How can higher-yield farming help to spare nature?. Science, 2016, 351, 450-451.	6.0	195
67	Habitat- and density-dependent demography of a colonial raptor in Mediterranean agro-ecosystems. Biological Conservation, 2016, 193, 116-123.	1.9	17
68	Can agri-environmental schemes enhance non-target species? Effects of sown wildflower fields on the common hamster (Cricetus cricetus) at local and landscape scales. Biological Conservation, 2016, 194, 168-175.	1.9	27
69	Spatial impacts of the CAP post-2013 and climate change scenarios on agricultural intensification and environment in Austria. Ecological Economics, 2016, 123, 35-56.	2.9	24
70	Diversity in the monotony? Habitat traits and management practices shape avian communities in intensive vineyards. Agriculture, Ecosystems and Environment, 2016, 223, 250-260.	2.5	53
71	Community composition of butterflies and bumblebees in fallows: niche breadth and dispersal capacity modify responses to fallow type and landscape. Journal of Insect Conservation, 2016, 20, 23-34.	0.8	17
72	Bird communities in agricultural landscapes: What are the current drivers of temporal trends?. Ecological Indicators, 2016, 65, 113-121.	2.6	22
73	Landscape complexity and farmland biodiversity: Evaluating the CAP target on natural elements. Journal for Nature Conservation, 2016, 30, 19-26.	0.8	32

#	ARTICLE	IF	CITATIONS
74	Revisiting production and ecosystem services on the farm scale for evaluating land use alternatives. Environmental Science and Policy, 2016, 57, 50-59.	2.4	9
75	Farmland bird diversity in contrasting agricultural landscapes of southwestern Poland. Landscape and Urban Planning, 2016, 148, 108-119.	3.4	22
76	Linking farm management and ecosystem service provision: Challenges and opportunities for soil erosion prevention in Mediterranean silvo-pastoral systems. Land Use Policy, 2016, 51, 54-65.	2.5	37
77	A Novel, Spatiotemporally Explicit Ecologicalâ€economic Modeling Procedure for the Design of Costâ€effective Agriâ€environment Schemes to Conserve Biodiversity. American Journal of Agricultural Economics, 2016, 98, 489-512.	2.4	72
78	Relating costs to the user value of farmland biodiversity measurements. Journal of Environmental Management, 2016, 165, 286-297.	3.8	7
79	Policy impacts on regulating ecosystem services: looking at the implications of 60Âyears of landscape change on soil erosion prevention in a Mediterranean silvo-pastoral system. Landscape Ecology, 2016, 31, 271-290.	1.9	47
80	Generating spatially optimized habitat in a tradeâ€off between social optimality and budget efficiency. Conservation Biology, 2017, 31, 221-225.	2.4	32
81	Disintegration of Italian rural landscapes to international environmental agreements. International Environmental Agreements: Politics, Law and Economics, 2017, 17, 161-172.	1.5	11
82	Optimal allocations of agricultural intensity reveal win-no loss solutions for food production and biodiversity. Regional Environmental Change, 2017, 17, 1397-1408.	1.4	16
83	Relationships among multiple aspects of agriculture's environmental impact and productivity: a metaâ€analysis to guide sustainable agriculture. Biological Reviews, 2017, 92, 716-738.	4.7	96
84	The nature and developments of the Common Agricultural Policy: lessons for European integration from the UK perspective. Journal of European Integration, 2017, 39, 373-388.	1.4	8
85	Assessing common birds' ecological requirements to address nature conservation in permanent crops: Lessons from Italian vineyards. Journal of Environmental Management, 2017, 191, 145-154.	3.8	33
86	Why geese benefit from the transition from natural vegetation to agriculture. Ambio, 2017, 46, 188-197.	2.8	98
87	The impact of biogas plants on regional dynamics of permanent grassland and maize area—The example of Hesse, Germany (2005–2010). Agriculture, Ecosystems and Environment, 2017, 241, 24-38.	2.5	28
88	Genetic monitoring to evaluate reintroduction attempts of a highly endangered rodent. Conservation Genetics, 2017, 18, 877-892.	0.8	22
89	Collaboration or fragmentation? Biodiversity management through the common agricultural policy. Land Use Policy, 2017, 64, 1-12.	2.5	77
90	Impact of recent changes in agricultural land use on farmland bird trends. Agriculture, Ecosystems and Environment, 2017, 239, 334-341.	2.5	38
91	The value of abandoned olive groves for blackcaps (Sylvia atricapilla) in a Mediterranean agroecosystem: a year-round telemetry study. European Journal of Wildlife Research, 2017, 63, 1.	0.7	13

#	Article	IF	CITATIONS
92	Governing the transformation towards †nature-inclusive†agriculture: insights from the Netherlands. International Journal of Agricultural Sustainability, 2017, 15, 340-349.	1.3	38
93	The EU's ecological focus areas – How experts explain farmers' choices in Germany. Land Use Policy, 2017, 65, 93-108.	2.5	55
94	Biodiversity on the waves of history: Conservation in a changing social and institutional environment in Hungary, a post-soviet EU member state. Biological Conservation, 2017, 211, 67-75.	1.9	25
95	The role of EU rural development policy in the neo-productivist agricultural paradigm. Regional Studies, 2017, 51, 1860-1870.	2.5	22
96	Nest density, nest-site selection, and breeding success of birds in vineyards: Management implications for conservation in a highly intensive farming system. Biological Conservation, 2017, 205, 23-33.	1.9	42
97	Effects of a coordinated farmland bird conservation project on farmers' intentions to implement nature conservation practices – Evidence from the Swedish Volunteer & Durner Alliance. Journal of Environmental Management, 2017, 187, 8-15.	3.8	25
98	A modelling approach to evaluating the effectiveness of Ecological Focus Areas: The case of the European brown hare. Land Use Policy, 2017, 61, 63-79.	2.5	14
99	Evaluation of an unpalatable species (Anthemis arvensis L.) as an alternative cover crop in olive groves under high grazing pressure by rabbits. Agriculture, Ecosystems and Environment, 2017, 246, 48-54.	2.5	8
100	Insectivorous birds as †non-traditional†flagship species in vineyards: Applying a neglected conservation paradigm to agricultural systems. Ecological Indicators, 2017, 80, 275-285.	2.6	23
101	An economic perspective on land use decisions in agricultural landscapes: Insights from the TEEB Germany Study. Ecosystem Services, 2017, 25, 69-78.	2.3	27
102	How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere, 2017, 8, e01741.	1.0	60
103	Canadian Agricultural Business Risk Management Programs: Implications for Farm Wealth and Environmental Stewardship. Canadian Journal of Agricultural Economics, 2017, 65, 543-565.	1.2	5
104	Does organic farming enhance biodiversity in Mediterranean vineyards? A case study with bats and arachnids. Agriculture, Ecosystems and Environment, 2017, 249, 112-122.	2.5	65
105	Tracking Progress Toward EU Biodiversity Strategy Targets: EU Policy Effects in Preserving its Common Farmland Birds. Conservation Letters, 2017, 10, 395-402.	2.8	94
106	A combined approach to assess the impacts of Ecological Focus Areas on regional structural development and agricultural land use. Review of Agricultural Food and Environmental Studies, 2017, 98, 111-144.	0.2	6
107	The development of a national typology for High Nature Value farmland in Ireland based on farm-scale characteristics. Land Use Policy, 2017, 67, 401-414.	2.5	17
108	Do agriâ€environment schemes result in improved water quality?. Journal of Applied Ecology, 2017, 54, 537-546.	1.9	38
109	Sensitivity of the farmland bird community to crop diversification in <scp>S</scp> weden: does the <scp>CAP</scp> fit?. Journal of Applied Ecology, 2017, 54, 518-526.	1.9	31

#	Article	IF	CITATIONS
110	Reconciling agriculture and biodiversity in European public policies: a bio-economic perspective. Regional Environmental Change, 2017, 17, 1421-1428.	1.4	7
111	Adding Some Green to the Greening: Improving the EU's Ecological Focus Areas for Biodiversity and Farmers. Conservation Letters, 2017, 10, 517-530.	2.8	140
112	Spatial and temporal characteristics of the damage caused by wild ungulates in maize (<i>Zea) Tj ETQq0 0 0 rgBT</i>	/Overlock	10 Tf 50 66
113	The Common Agricultural Policy. , 2017, , 245-254.		O
114	Managing Multiple Catchment Demands for Sustainable Water Use and Ecosystem Service Provision. Water (Switzerland), 2017, 9, 677.	1.2	23
115	Ignoring Ecosystem-Service Cascades Undermines Policy for Multifunctional Agricultural Landscapes. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	9
116	Sustainable agriculture and protection of the environment. E3S Web of Conferences, 2017, 19, 02022.	0.2	0
117	Bringing diversity back to agriculture: Smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecological Indicators, 2018, 90, 65-73.	2.6	92
118	The potential virtue of garden bird feeders: More birds in citizen backyards close to intensive agricultural landscapes. Biological Conservation, 2018, 222, 14-20.	1.9	10
119	Decline in atmospheric sulphur deposition and changes in climate are the major drivers of long-term change in grassland plant communities in Scotland. Environmental Pollution, 2018, 235, 956-964.	3.7	18
120	Doing Business in Europe. Contributions To Management Science, 2018, , .	0.4	5
121	Effectiveness of Tradable Permits for the Conservation of Metacommunities With Two Competing Species. Ecological Economics, 2018, 147, 189-196.	2.9	29
122	Failure of EU Biodiversity Strategy in Mediterranean farmland protected areas. Journal for Nature Conservation, 2018, 42, 62-66.	0.8	31
123	Beautiful agricultural landscapes promote cultural ecosystem services and biodiversity conservation. Agriculture, Ecosystems and Environment, 2018, 256, 200-210.	2.5	97
124	Weed control method drives conservation tillage efficiency on farmland breeding birds. Agriculture, Ecosystems and Environment, 2018, 256, 74-81.	2.5	18
125	Landscapeâ€level crop diversity benefits biological pest control. Journal of Applied Ecology, 2018, 55, 2419-2428.	1.9	127
126	Implementing green infrastructure policy in agricultural landscapesâ€"scenarios for Saxony-Anhalt, Germany. Regional Environmental Change, 2018, 18, 899-911.	1.4	10
127	The contribution of CAP greening measures to conservation biological control at two spatial scales. Agriculture, Ecosystems and Environment, 2018, 255, 84-94.	2.5	21

#	Article	IF	CITATIONS
128	Nonâ€interacting impacts of fertilization and habitat area on plant diversity via contrasting assembly mechanisms. Diversity and Distributions, 2018, 24, 509-520.	1.9	7
129	Tillage and herbicide reduction mitigate the gap between conventional and organic farming effects on foraging activity of insectivorous bats. Ecology and Evolution, 2018, 8, 1496-1506.	0.8	17
130	The economic value of high nature value farming and the importance of the Common Agricultural Policy in sustaining income: The case study of the Natura 2000 Zarandul de Est (Romania). Journal of Rural Studies, 2018, 60, 176-187.	2.1	14
131	The agglomeration bonus in practice—An exploratory assessment of the Swiss network bonus. Journal for Nature Conservation, 2018, 43, 126-135.	0.8	54
132	The impact of sown flower strips on plant reproductive success in Southern Sweden varies with landscape context. Agriculture, Ecosystems and Environment, 2018, 259, 127-134.	2.5	10
133	Continuous population declines for specialist farmland birds 1987-2014 in Denmark indicates no halt in biodiversity loss in agricultural habitats. Bird Conservation International, 2018, 28, 278-292.	0.7	40
134	The role of co-evolutionary development and value change debt in navigating transitioning cultural landscapes: the case of Southern Transylvania. Journal of Environmental Planning and Management, 2018, 61, 800-817.	2.4	19
135	Landscape heterogeneity correlates with recreational values: a case study from Swedish agricultural landscapes and implications for policy. Landscape Research, 2018, 43, 696-707.	0.7	21
136	Farming for Biodiversity'—a new model for integrating nature conservation achievements on organic farms in north-eastern Germany. Organic Agriculture, 2018, 8, 79-86.	1.2	7
137	Spatial correlation of agri-environmental measures with high levels of ecosystem services. Ecological Indicators, 2018, 84, 364-370.	2.6	22
138	The concept of stewardship in sustainability science and conservation biology. Biological Conservation, 2018, 217, 363-370.	1.9	56
139	A Spatially Explicit Choice Model to Assess the Impact of Conservation Policy on High Nature Value Farming Systems. Ecological Economics, 2018, 145, 331-338.	2.9	27
140	Challenges and Action Points to Amplify Agroecology in Europe. Sustainability, 2018, 10, 1598.	1.6	47
141	Operationalizing Sustainability as a Safe Policy Space. Sustainability, 2018, 10, 3682.	1.6	4
142	Evaluating On-Farm Biodiversity: A Comparison of Assessment Methods. Sustainability, 2018, 10, 4812.	1.6	5
143	Die Gemeinsame Agrarpolitik. , 2018, , 1-27.		2
144	Towards a greener Common Agricultural Policy. Nature Ecology and Evolution, 2018, 2, 1830-1833.	3.4	50
145	Crop diversity and stability of revenue on farms in Central Europe: An analysis of big data from a comprehensive agricultural census in Bavaria. PLoS ONE, 2018, 13, e0207454.	1.1	20

#	Article	IF	CITATIONS
146	Self-initiated nature conservation by farmers: an analysis of Dutch farming. International Journal of Agricultural Sustainability, 2018, 16, 486-497.	1.3	11
147	Relational values in agroecosystem governance. Current Opinion in Environmental Sustainability, 2018, 35, 108-115.	3.1	48
148	Evaluating the effectiveness of conservation measures for European grasslandâ€breeding waders. Ecology and Evolution, 2018, 8, 10555-10568.	0.8	41
149	Agriâ€environment schemes and farmland bird populations: Is the glass halfâ€full or halfâ€empty?. Animal Conservation, 2018, 21, 193-194.	1.5	3
150	Representation of decision-making in European agricultural agent-based models. Agricultural Systems, 2018, 167, 143-160.	3.2	108
151	Moving window growthâ€"A method to characterize the dynamic growth of crops in the context of bird abundance dynamics with the example of Skylark (⟨i⟩Alauda arvensis⟨ i⟩). Ecology and Evolution, 2018, 8, 8880-8893.	0.8	11
152	Are farming and birds irreconcilable? A 21-year study of bustard nesting ecology in intensive agroecosystems. Biological Conservation, 2018, 228, 27-35.	1.9	25
153	Organic Amendment Under Increasing Agricultural Intensification: Effects on Soil Bacterial Communities and Plant Productivity. Frontiers in Microbiology, 2018, 9, 2612.	1.5	11
154	A robustness-based viewpoint on the production-ecology trade-off in agroecosystems. Agricultural Systems, 2018, 167, 1-9.	3.2	4
155	Manipulating hedgerow quality: Embankment size influences animal biodiversity in a peri-urban context. Urban Forestry and Urban Greening, 2018, 35, 1-7.	2.3	9
156	Rethinking biodiversity governance in European agricultural landscapes: Acceptability of alternative governance scenarios. Land Use Policy, 2018, 77, 84-93.	2.5	18
157	Population age structure as an indicator for assessing the quality of breeding areas of Common quail (Coturnix coturnix). Ecological Indicators, 2018, 93, 1136-1142.	2.6	6
158	Farmland abandonment in Europe: an overview of drivers, consequences, and assessment of the sustainability implications. Environmental Reviews, 2018, 26, 396-416.	2.1	121
159	The SER Standards: a globally relevant and inclusive tool for improving restoration practice—a reply to Higgs et al Restoration Ecology, 2018, 26, 426-430.	1.4	25
160	Beyond Biodiversity Conservation: Land Sharing Constitutes Sustainable Agriculture in European Cultural Landscapes. Sustainability, 2018, 10, 1395.	1.6	15
161	Sustainable Land Use, Soil Protection and Phosphorus Management from a Cross-National Perspective. Sustainability, 2018, 10, 1988.	1.6	22
162	Typology and distribution of small farms in Europe: Towards a better picture. Land Use Policy, 2018, 75, 784-798.	2.5	110
163	The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 2018, 4, eaar8195.	4.7	339

#	Article	IF	CITATIONS
164	Impacts of selected Ecological Focus Area options in European farmed landscapes on climate regulation and pollination services: a systematic map protocol. Environmental Evidence, 2018, 7, .	1.1	7
165	Wild bees respond complementarily to †high-quality' perennial and annual habitats of organic farms in a complex landscape. Journal of Insect Conservation, 2018, 22, 551-562.	0.8	15
166	Lesser kestrel diet and agricultural intensification in the Mediterranean: An unexpected win-win solution?. Journal for Nature Conservation, 2018, 45, 122-130.	0.8	20
167	Public funding for public goods: A post-Brexit perspective on principles for agricultural policy. Land Use Policy, 2018, 79, 293-300.	2.5	74
168	Institutional Economics of Agricultural Soil Ecosystem Services. Sustainability, 2018, 10, 2447.	1.6	26
169	Collapse of farmland bird populations in an Eastern European country following its EU accession. Conservation Letters, 2019, 12, e12585.	2.8	80
170	Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16442-16447.	3.3	312
171	Varying potential of conservation tools of the Common Agricultural Policy for farmland bird preservation. Science of the Total Environment, 2019, 694, 133618.	3.9	21
172	The relative effectiveness of seed addition methods for restoring or re-creating species rich grasslands: a systematic review protocol. Environmental Evidence, 2019, 8, .	1.1	9
173	Demands on land: Mapping competing societal expectations for the functionality of agricultural soils in Europe. Environmental Science and Policy, 2019, 100, 113-125.	2.4	31
174	Assessing agri-environmental schemes for semi-natural grasslands during a 5-year period: can we see positive effects for vascular plants and pollinators?. Biodiversity and Conservation, 2019, 28, 3989-4005.	1.2	18
175	Assessing species richness trends: Declines of bees and bumblebees in the Netherlands since 1945. Ecology and Evolution, 2019, 9, 13056-13068.	0.8	9
176	Species-specific responses to habitat and livestock management call for carefully targeted conservation strategies for declining meadow birds. Journal for Nature Conservation, 2019, 52, 125757.	0.8	20
177	Contribution of the land use allocation model for agroecosystems: The case of Torrecchia Vecchia. Journal of Environmental Management, 2019, 252, 109607.	3.8	5
178	Priority questions for biodiversity conservation in the Mediterranean biome: Heterogeneous perspectives across continents and stakeholders. Conservation Science and Practice, 2019, 1, e118.	0.9	11
179	Constraints and opportunities for mainstreaming biodiversity and ecosystem services in the EU's Common Agricultural Policy: Insights from the IPBES assessment for Europe and Central Asia. Land Use Policy, 2019, 88, 104099.	2.5	61
180	Who is researching biodiversity hotspots in Eastern Europe? A case study on the grasslands in Romania. PLoS ONE, 2019, 14, e0217638.	1.1	26
181	Renewing the Governance of Rural Land after Brexit: an Ecosystems Policy Approach. EuroChoices, 2019, 18, 4-10.	0.6	4

#	Article	IF	CITATIONS
182	Long-term effect of different management regimes on the survival and population structure of Gladiolus imbricatus in Estonian coastal meadows. Global Ecology and Conservation, 2019, 20, e00761.	1.0	5
183	EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics. PLoS ONE, 2019, 14, e0222949.	1.1	3
184	Integrating MAES implementation into protected area management under climate change: A fine-scale application in Greece. Science of the Total Environment, 2019, 695, 133530.	3.9	30
185	Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. Journal of Environmental Management, 2019, 251, 109372.	3.8	35
186	Voluntary sustainability standards could significantly reduce detrimental impacts of global agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2130-2137.	3.3	31
187	Atlas of Ecosystem Services. , 2019, , .		28
188	Landscapeâ€scale biodiversity governance: Scenarios for reshaping spaces of governance. Environmental Policy and Governance, 2019, 29, 170-184.	2.1	22
189	Country-scale mapping of ecosystem services provided by semi-natural grasslands. Science of the Total Environment, 2019, 661, 212-225.	3.9	39
190	Understanding the Spatial Agglomeration of Participation in Agri-Environmental Schemes: The Case of the Tuscany Region. Sustainability, 2019, 11, 2753.	1.6	13
191	Grazing Abandonment Delays the Effect of Temperature on Aboveground Net Primary Production in Atlantic Grasslands. Rangeland Ecology and Management, 2019, 72, 822-831.	1.1	2
192	The state of water quality strategies in the Mississippi River Basin: Is cooperative federalism working?. Science of the Total Environment, 2019, 677, 241-249.	3.9	24
193	Organic animal farms increase farmland bird abundance in the Boreal region. PLoS ONE, 2019, 14, e0216009.	1.1	9
194	Bringing the neighbors in: A choice experiment on the influence of coordination and social norms on farmers' willingness to accept agro-environmental schemes across Europe. Land Use Policy, 2019, 84, 200-215.	2.5	54
195	Rural areas receptivity to innovative and sustainable agrifood processes. A case study in a viticultural territory of Central Spain. Regional Science Policy and Practice, 2019, 11, 307-327.	0.8	3
196	Crop Diversity and Common Agricultural Policyâ€"The Case of Slovakia. Sustainability, 2019, 11, 1416.	1.6	20
197	Greening the common agricultural policy: a behavioural perspective and lab-in-the-field experiment in Germany. European Review of Agricultural Economics, 2019, 46, 367-392.	1.5	28
198	Integrating biodiversity and ecosystem services into European agricultural policy: a challenge for the Common Agricultural Policy., 2019,, 315-339.		1
199	A suboptimal array of options erodes the value of CAP ecological focus areas. Land Use Policy, 2019, 85, 407-418.	2.5	22

#	Article	IF	CITATIONS
200	Land grabbing and the making of an authoritarian populist regime in Hungary. Journal of Peasant Studies, 2019, 46, 606-625.	3.0	42
201	Does the CAP reflect the population's concerns about agricultural landscapes? A qualitative study in Lower Saxony, Germany. Land Use Policy, 2019, 83, 240-255.	2.5	6
202	Valuing and mapping cork and carbon across land use scenarios in a Portuguese montado landscape. PLoS ONE, 2019, 14, e0212174.	1.1	11
203	Bioeconomic impacts of agroforestry policies in France. Land Use Policy, 2019, 85, 239-248.	2.5	7
204	A nationâ€wide survey of neonicotinoid insecticides in agricultural land with implications for agriâ€environment schemes. Journal of Applied Ecology, 2019, 56, 1502-1514.	1.9	71
205	Conservation ecology of butterflies on Cyprus in the context of Natura 2000. Biodiversity and Conservation, 2019, 28, 1759-1782.	1.2	2
206	The consequences of land sparing for birds in the United Kingdom. Journal of Applied Ecology, 2019, 56, 1870-1881.	1.9	11
207	Grasslandsâ€"more important for ecosystem services than you might think. Ecosphere, 2019, 10, e02582.	1.0	476
208	Weak effects of farming practices corresponding to agricultural greening measures on farmland bird diversity in boreal landscapes. Landscape Ecology, 2019, 34, 389-402.	1.9	17
209	Making Brexit work for the environment and livelihoods: Delivering a stakeholder informed vision for agriculture and fisheries. People and Nature, 2019, 1, 442-456.	1.7	9
210	Comparison of land cover and farming intensity-based models for mapping High Nature Value farmland in Cyprus. Bird Study, 2019, 66, 317-328.	0.4	6
211	Anatomy and resilience of the global production ecosystem. Nature, 2019, 575, 98-108.	13.7	203
212	The use of agri-environmental measures to address environmental pressures in Germany: Spatial mismatches and options for improvement. Land Use Policy, 2019, 84, 347-362.	2.5	36
213	Toward the next Common Agricultural Policy reform: Determinants of avian communities in hay meadows reveal current policy's inadequacy for biodiversity conservation in grassland ecosystems. Journal of Applied Ecology, 2019, 56, 604-617.	1.9	39
214	Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions. Ecological Modelling, 2019, 393, 135-151.	1.2	27
215	An evaluation of Scottish woodland grant schemes using site suitability modelling. Land Use Policy, 2019, 80, 309-317.	2.5	5
216	Exploring the effect of soil management intensity on taxonomic and functional diversity of ants in Mediterranean olive groves. Agricultural and Forest Entomology, 2019, 21, 109-118.	0.7	14
217	Identifying key factors, actors and relevant scales in landscape and conservation planning, management and decision making: Promoting effective citizen involvement. Journal for Nature Conservation, 2019, 47, 12-27.	0.8	13

#	Article	IF	CITATIONS
218	A Horizon Scan of Emerging Issues for Global Conservation in 2019. Trends in Ecology and Evolution, 2019, 34, 83-94.	4.2	43
219	Interacting effects of agriculture and landscape on breeding wader populations. Agriculture, Ecosystems and Environment, 2019, 272, 246-253.	2.5	11
220	Time, geography and weather provide insights into the ecological strategy of a migrant species. Science of the Total Environment, 2019, 649, 1096-1104.	3.9	4
221	Sustainable development goal 2: Improved targets and indicators for agriculture and food security. Ambio, 2019, 48, 685-698.	2.8	162
222	Developing biodiversity indicators for African birds. Oryx, 2020, 54, 62-73.	0.5	22
223	Long-term effects of combined land-use and climate changes on local bird communities in mosaic agricultural landscapes. Agriculture, Ecosystems and Environment, 2020, 289, 106722.	2.5	26
224	A Metaâ€analysis of the Willingness to Pay for Cultural Services from Grasslands in Europe. Journal of Agricultural Economics, 2020, 71, 357-383.	1.6	22
225	Mitigating bioenergy-driven biodiversity decline: A modelling approach with the European brown hare. Ecological Modelling, 2020, 416, 108914.	1.2	1
226	Friends or foes? A compatibility assessment of bioeconomy-related Sustainable Development Goals for European policy coherence. Journal of Cleaner Production, 2020, 254, 119832.	4.6	84
227	Mowing is the greatest threat to Whinchat Saxicola rubetra nests even when compared to several natural induced threats. Journal for Nature Conservation, 2020, 54, 125781.	0.8	7
228	Optimizing biodiversity gain of European agriculture through regional targeting and adaptive management of conservation tools. Biological Conservation, 2020, 241, 108384.	1.9	44
229	Land-use history impacts functional diversity across multiple trophic groups. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1573-1579.	3.3	89
230	High ecosystem service delivery potential of small woodlands in agricultural landscapes. Journal of Applied Ecology, 2020, 57, 4-16.	1.9	46
231	Increased crop diversity reduces the functional space available for weeds. Weed Research, 2020, 60, 121-131.	0.8	13
232	Reconciling biodiversity conservation, food production and farmers' demand in agricultural landscapes. Ecological Modelling, 2020, 416, 108889.	1.2	31
233	The extended Value-Belief-Norm theory predicts committed action for nature and biodiversity in Europe. Environmental Impact Assessment Review, 2020, 81, 106338.	4.4	41
234	Balancing biodiversity and agriculture: Conservation scenarios for the Dutch dairy sector. Agriculture, Ecosystems and Environment, 2020, 302, 107103.	2.5	13
235	Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nature Ecology and Evolution, 2020, 4, 1150-1152.	3.4	54

#	Article	IF	CITATIONS
236	Billions in Misspent EU Agricultural Subsidies Could Support the Sustainable Development Goals. One Earth, 2020, 3, 237-250.	3.6	111
237	Field sizes and the future of farmland biodiversity in European landscapes. Conservation Letters, 2020, 13, e12752.	2.8	60
238	To what extent does the European common agricultural policy affect key landscape determinants of biodiversity?. Environmental Science and Policy, 2020, 114, 595-605.	2.4	17
239	Infectious Diseases and Meat Production. Environmental and Resource Economics, 2020, 76, 1019-1044.	1.5	129
240	Bridging the Gap Between Biofuels and Biodiversity Through Monetizing Environmental Services of <i>Miscanthus</i> Cultivation. Earth's Future, 2020, 8, .	2.4	18
241	Continentâ€wide gradients in openâ€habitat insectivorous bird declines track spatial patterns in agricultural intensity across Europe. Global Ecology and Biogeography, 2020, 29, 1988-2013.	2.7	28
242	Predation and survival in reintroduced populations of the Common hamster Cricetus cricetus in the Netherlands. Mammalian Biology, 2020, 100, 569-579.	0.8	6
243	Results of Implementing Less-Favoured Area Subsidies in the 2014–2020 Time Frame: Are the Measures of Environmental Concern Complementary?. Sustainability, 2020, 12, 10534.	1.6	6
244	Farmland birds occupying forest clear-cuts respond to both local and landscape features. Forest Ecology and Management, 2020, 478, 118519.	1.4	7
245	Public preferences for post 2020 agri-environmental policy in the Czech Republic: A choice experiment approach. Land Use Policy, 2020, 99, 104988.	2.5	6
246	Combining management plans and payment schemes for targeted grassland conservation within the Habitats Directive in Saxony, Eastern Germany. Land Use Policy, 2020, 97, 104642.	2.5	22
247	Delimitation of nutrient vulnerable zones - a comprehensive method to manage a persistent problem of agriculture. Agricultural Systems, 2020, 183, 102858.	3.2	3
248	Fit for the task? Integration of biodiversity policy into the post-2020 Common Agricultural Policy: Illustration on the case of Slovenia. Journal for Nature Conservation, 2020, 54, 125804.	0.8	15
249	Renewable Energy from Wildflowers—Perennial Wild Plant Mixtures as a Socialâ€Ecologically Sustainable Biomass Supply System. Advanced Sustainable Systems, 2020, 4, 2000037.	2.7	16
250	The impact of pastoral activities on animal biodiversity in Europe: A systematic review and meta-analysis. Journal for Nature Conservation, 2020, 56, 125863.	0.8	25
251	Woody elements benefit bird diversity to a larger extent than semi-natural grasslands in cereal-dominated landscapes. Basic and Applied Ecology, 2020, 46, 15-23.	1.2	11
252	Action needed for the EU Common Agricultural Policy to address sustainability challenges. People and Nature, 2020, 2, 305-316.	1.7	259
253	An Effective Way to Map Land-Use Intensity with a High Spatial Resolution Based on Habitat Type and Environmental Data. Remote Sensing, 2020, 12, 969.	1.8	4

#	Article	IF	CITATIONS
254	How can policy processes remove barriers to sustainable food systems in Europe? Contributing to a policy framework for agri-food transitions. Food Policy, 2020, 96, 101871.	2.8	57
255	Integrating farmland in urban green infrastructure planning. An evidence synthesis for informed policymaking. Land Use Policy, 2020, 99, 104823.	2.5	23
256	How does the land market capitalize environmental, historical and cultural components in rural areas? Evidences from Italy. Journal of Environmental Management, 2020, 269, 110776.	3.8	19
258	Grasslands of the Palaearctic Biogeographic Realm: Introduction and Synthesis. , 2020, , 617-637.		38
259	Adherence to Environmental Regulation in the European Union Common Agricultural Policy: Social Representations and Conditionality among French Farmers. Journal of Agricultural and Food Information, 2020, 21, 104-125.	1.1	6
260	Impacts of the EU's Common Agricultural Policy "Greening―Reform on Agricultural Development, Biodiversity, and Ecosystem Services. Applied Economic Perspectives and Policy, 2020, 42, 716-738.	3.1	39
261	Spatial monitoring of grassland management using multi-temporal satellite imagery. Ecological Indicators, 2020, 113, 106201.	2.6	39
262	The influence of land cover data on farm-scale valuations of natural capital. Ecosystem Services, 2020, 42, 101065.	2.3	6
263	Changing the fallow paradigm: A win–win strategy for the postâ€2020 Common Agricultural Policy to halt farmland bird declines. Journal of Applied Ecology, 2020, 57, 642-649.	1.9	38
265	Drivers of population change in common farmland birds in Germany. Bird Conservation International, 2020, 30, 335-354.	0.7	35
266	Changes in land-cover within high nature value farmlands inside and outside Natura 2000 sites in Europe: A preliminary assessment. Ambio, 2020, 49, 1958-1971.	2.8	22
267	Paradise lost? Pesticide pollution in a European region with considerable amount of traditional agriculture. Water Research, 2021, 188, 116528.	5.3	28
268	Finding clarity in ecological outcomes using empirical integrated social–ecological systems: A case study of agricultureâ€dependent grassland birds. Journal of Applied Ecology, 2021, 58, 528-538.	1.9	8
269	Habitat selection of foraging male Great Snipes on floodplain meadows: importance of proximity to the lek, vegetation cover and bare ground. Ibis, 2021, 163, 486-506.	1.0	7
270	Long-term effectiveness of Natura 2000 network to protect biodiversity: A hint of optimism for common birds. Biological Conservation, 2021, 253, 108871.	1.9	10
271	Do the EU's Common agricultural policy funds negatively affect the diversity of farmland birds? Evidence from Slovenia. Agriculture, Ecosystems and Environment, 2021, 306, 107200.	2.5	8
272	A farming systems approach to linking agricultural policies with biodiversity and ecosystem services. Frontiers in Ecology and the Environment, 2021, 19, 168-175.	1.9	16
273	Using fire to enhance rewilding when agricultural policies fail. Science of the Total Environment, 2021, 755, 142897.	3.9	19

#	Article	IF	CITATIONS
274	Latent relationships between environmental impacts of cultivation practices and land market: Evidences from a spatial quantile regression analysis in Italy. Journal of Cleaner Production, 2021, 279, 123648.	4.6	11
275	Twenty years of Baltic Boreal coastal meadow restoration: has it been long enough?. Restoration Ecology, 2021, 29, e13266.	1.4	3
276	A fuzzy cognitive mapping approach for the assessment of public-goods governance in agricultural landscapes. Land Use Policy, 2021, 107, 103972.	2.5	7
277	The legitimacy of result-oriented and action-oriented agri-environmental schemes: A comparison of farmers' and citizens' perceptions. Land Use Policy, 2021, 107, 104358.	2.5	23
278	Effects of Landscape Structure on Abundance and Family Richness of Hymenopteran Parasitoids in the Olive Agroecosystem. SSRN Electronic Journal, 0, , .	0.4	0
279	The Agri-Environment-Climate Measure as an Element of the Bioeconomy in Poland—A Spatial Study. Agriculture (Switzerland), 2021, 11, 110.	1.4	11
281	Cultured Meat: Promises and Challenges. Environmental and Resource Economics, 2021, 79, 33-61.	1.5	88
282	Flowering fields, organic farming and edge habitats promote diversity of plants and arthropods on arable land. Journal of Applied Ecology, 2021, 58, 1155-1166.	1.9	13
283	Movements of birds of prey reveal the importance of tree lines, small woods and forest edges in agricultural landscapes. Landscape Ecology, 2021, 36, 1409-1421.	1.9	6
284	Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Scientific Data, 2021, 8, 21.	2.4	39
285	A Rapid Method for Monitoring Landscape Structure and Ecological Value in European Farmlands: the LISA approach. Landscape Online, 0, 90, 1-24.	0.0	5
286	Sen2Grass: A Cloud-Based Solution to Generate Field-Specific Grassland Information Derived from Sentinel-2 Imagery. AgriEngineering, 2021, 3, 118-137.	1.7	6
287	Sowing enriched pastures for extensive livestock enhances the abundance of birds and arthropods in Mediterranean grasslands. European Journal of Wildlife Research, 2021, 67, 1.	0.7	1
288	Agricultural policy in the era of digitalisation. Food Policy, 2021, 100, 102019.	2.8	80
289	Ecosystem-Based Food Production: Consumers′ Preferred Practices and Willingness to Buy and Pay. Sustainability, 2021, 13, 4542.	1.6	3
290	Governance, Values, and Conservation Processes in Multifunctional Landscapes. Land, 2021, 10, 478.	1.2	1
291	Functional traits driving pollinator and predator responses to newly established grassland strips in agricultural landscapes. Journal of Applied Ecology, 2021, 58, 1728-1737.	1.9	13
292	Good Pastures, Good Meadows: Mountain Farmers' Assessment, Perceptions on Ecosystem Services, and Proposals for Biodiversity Management. Sustainability, 2021, 13, 5609.	1.6	7

#	Article	IF	CITATIONS
293	The potential of fallow management to promote steppe bird conservation within the next EU Common Agricultural Policy reform. Journal of Applied Ecology, 2021, 58, 1545-1556.	1.9	5
294	Introducing the index-based ecological condition assessment framework (IBECA). Ecological Indicators, 2021, 124, 107252.	2.6	15
295	Aligning agri-environmental subsidies and environmental needs: a comparative analysis between the US and EU. Environmental Research Letters, 2021, 16, 054067.	2.2	15
296	Environmental Objectives of Spanish Agriculture: Scientific Guidelines for their Effective Implementation under the Common Agricultural Policy 2023-2030. Ardeola, 2021, 68, .	0.4	15
297	Forest management can mitigate negative impacts of climate and land-use change on plant biodiversity: Insights from the Republic of Korea. Journal of Environmental Management, 2021, 288, 112400.	3.8	20
298	Time-Dynamic Markov Random Fields for price outcome prediction in the presence of lobbying. Applied Intelligence, $0, 1$.	3.3	1
299	How can academic research on UK agri-environment schemes pivot to meet the addition of climate mitigation aims?. Land Use Policy, 2021, 106, 105441.	2.5	3
300	Distribution, Population Size, and Habitat Characteristics of the Endangered European Ground Squirrel (Spermophilus citellus, Rodentia, Mammalia) in Its Southernmost Range. Sustainability, 2021, 13, 8411.	1.6	6
301	Habitats supporting wader communities in Europe and relations between agricultural land use and breeding densities: A review. Global Ecology and Conservation, 2021, 28, e01657.	1.0	6
302	Drivers of songbird territory density in the boundaries of a lowland arable farm. Acta Oecologica, 2021, 111, 103720.	0.5	3
303	Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design. Land, 2021, 10, 846.	1.2	7
304	Agri-environment schemes do not support Brown Hare populations due to inadequate scheme application. Acta Zoologica Academiae Scientiarum Hungaricae, 2021, 67, 263-288.	0.1	3
305	The costs of diversity: higher prices for more diverse grassland seed mixtures. Environmental Research Letters, 2021, 16, 094011.	2.2	10
306	Are soil sealing indicators sufficient to guide urban planning? Insights from an ecosystem services assessment in the Paris metropolitan area. Environmental Research Letters, 2021, 16, 104019.	2.2	7
307	The ambiguous role of agri-environment-climate measures in the safeguarding of High Nature Value Farming Systems: The case of the Montado in Portugal. Agriculture, Ecosystems and Environment, 2021, 319, 107562.	2.5	8
308	Decoupling of traditional burnings and grazing regimes alters plant diversity and dominant species competition in high-mountain grasslands. Science of the Total Environment, 2021, 790, 147917.	3.9	16
309	The conservation of cultural heritage in rural areas: Stakeholder preferences regarding historical rural buildings in Apulia, southern Italy. Land Use Policy, 2021, 109, 105662.	2.5	24
310	Natural potential versus rationality of allocation of Common Agriculture Policy funds dedicated for supporting organic farming development – Assessment of spatial suitability: The case of Poland. Ecological Indicators, 2021, 130, 108039.	2.6	17

#	Article	IF	CITATIONS
311	Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	317
312	Policies and Regulatory Frames in the EU and the Needed Link with Spatial Planning. Cities and Nature, 2020, , 141-188.	0.6	1
313	Governance Risks in Designing Policy Responses to Manage Ecosystem Services. , 2019, , 315-320.		2
316	Resolving Conflicts between Agriculture and the Natural Environment. PLoS Biology, 2015, 13, e1002242.	2.6	102
317	Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context. PLoS ONE, 2015, 10, e0135921.	1.1	24
318	Conservation of Pollinators in Traditional Agricultural Landscapes – New Challenges in Transylvania (Romania) Posed by EU Accession and Recommendations for Future Research. PLoS ONE, 2016, 11, e0151650.	1.1	35
319	Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions. PLoS ONE, 2016, 11, e0153862.	1.1	24
320	Where can flood refugees go? Re-distribution of Corncrakes (Crex crex) due to floods and its consequences on grassland conservation in North-Eastern Hungary. Ornis Hungarica, 2016, 24, 18-31.	0.1	1
321	The Role of Farm Management Characteristics in Understanding the Spatial Distribution of Landscape Elements: A Case Study in the Netherlands. Rural Landscapes, 2016, 3, 7.	0.8	4
322	CAP 2013 reform: consistency between agricultural challenges and measures. Applied Studies in Agribusiness and Commerce, 2015, 9, 47-55.	0.1	1
323	Effect of Habitat Structure and Crop Diversity on Common and Threatened Birds Breeding in Semi-Natural Field Margins. Acta Ornithologica, 2020, 54, 181.	0.1	6
324	Are All Conservation Measures for Endangered Species Legitimate? Lines of Thinking With the European Hamster. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	1
325	Floristic Composition Mediates Change in Forage Nutritive Quality of Atlantic Mountain Grasslands after Experimental Grazing Exclusion. Agronomy, 2021, 11, 25.	1.3	4
326	Pollinator species richness: Are the declines slowing down?. Nature Conservation, 0, 15, 11-22.	0.0	5
327	High nature value farmlands: challenges in identification and interpretation using Cyprus as a case study. Nature Conservation, 0, 31, 53-70.	0.0	15
328	Confronting and Coping with Uncertainty in Biodiversity Research and Praxis. Nature Conservation, 0, 8, 45-75.	0.0	10
329	Reconciliation ecology, from biological to social challenges. Revue D'ethnoÃ@cologie, 2014, , .	0.1	6
330	Habitat Use of Eurasian Scops Owls Otus scops in an Agricultural Mosaic Landscape. Ardea, 2019, 107, 119.	0.3	8

#	Article	IF	Citations
331	Short communication. The role of rabbit density and the diversity of weeds in the development of cover crops in olive groves. Spanish Journal of Agricultural Research, 2015, 13, e03SC01.	0.3	11
332	Spatial structure of grassland patches in Poland: implications for nature conservation. Acta Societatis Botanicorum Poloniae, 2019, 88, .	0.8	6
333	Village modernization may contribute more to farmland bird declines than agricultural intensification. Conservation Letters, 2021, 14, e12843.	2.8	9
336	How consistent is the new common agricultural policy with the challenges it faces?. Society and Economy, 2015, 37, 225-243.	0.2	1
337	The Case of German Bioenergy Policy. Lecture Notes in Energy, 2016, , 193-271.	0.2	0
338	Towards a Rational Bioenergy Policy Concept. Lecture Notes in Energy, 2016, , 273-383.	0.2	0
339	The Ecological and Perpetual Dimensions of European Food Security: The Case for Sustainable Agriculture. Legal Issues in Transdisciplinary Environmental Studies, 2017, , 19-51.	0.1	0
341	The terms "project―and "plan―in the Natura 2000 appropriate assessment. Nature Conservation, 0, 23, 31-56.	0.0	3
342	Big Business Bias? European Policy at the Expense of Small and Alternative Ventures. Contributions To Management Science, 2018, , 371-392.	0.4	0
345	Scaling Sensitivity of Drivers. , 2019, , 39-50.		O
346	Population dynamics and habitat use by Northern Lapwing <i>Vanellus vanellus</i> in agricultural landscape of Dravsko and Ptujsko polje (NE Slovenia). Acrocephalus, 2019, 40, 3-22.	0.5	1
348	Incorporating Landscape Character in Cork Oak Forest Expansion in Sardinia: Constraint or Opportunity?. Forests, 2020, 11, 593.	0.9	O
349	Effect of cover crops in olive groves on Cicadomorpha communities. Spanish Journal of Agricultural Research, 2020, 18, e0303.	0.3	2
350	New Trends and Drivers for Agricultural Land Use in Germany. Human-environment Interactions, 2021, , 39-61.	1.2	9
351	Optimising flower fields as an effective farmland ecoâ€scheme also during nonâ€breeding. Journal of Applied Ecology, 0, , .	1.9	2
352	Agriculture in the European Union: Seven More Years of Environmental Austerity?. , 2020, , 201-210.		О
354	Designing Multifunctional and Resilient Agricultural Landscapes: Lessons from Long-Term Monitoring of Biodiversity and Land Use. , 2020, , 203-224.		1
355	Where Are the Solutions to the Pesticide Problem?., 2020,, 223-295.		О

#	Article	IF	CITATIONS
356	Effects of Agricultural Use on Endangered Plant Taxa in Spain. Agriculture (Switzerland), 2021, 11, 1097.	1.4	2
358	Barriers and methodology in transitioning to sustainability: Analysing web news comments concerning animal-based diets. Journal of Cleaner Production, 2022, 330, 129857.	4.6	5
359	Conflicts between agriculture and biodiversity conservation in Europe: Looking to the future by learning from the past. Advances in Ecological Research, 2021, 65, 3-56.	1.4	9
360	Pollen Source Richness May Be a Poor Predictor of Bumblebee (Bombus terrestris) Colony Growth. Frontiers in Insect Science, 2021, 1, .	0.9	1
361	Conservation biology research priorities for 2050: A Central-Eastern European perspective. Biological Conservation, 2021, 264, 109396.	1.9	8
362	Economic and not ecological variables shape the sparing–sharing tradeâ€off in a mixed cropping landscape. Journal of Applied Ecology, 2022, 59, 779-790.	1.9	7
363	Spatial Coordination Incentives for landscape-scale environmental management: A systematic review. Land Use Policy, 2022, 114, 105936.	2.5	32
364	Drivers of change in mountain and upland bird populations in Europe. lbis, 2022, 164, 635-648.	1.0	9
365	The Decline of Common Birds Exemplified by the Western Jackdaw Warns on Strong Environmental Degradation. Conservation, 2022, 2, 80-96.	0.8	3
366	Soil Protection Policies in the European Union. , 2022, , 335-350.		2
367	Pathways towards evidence-based decision-making for improving New Zealand farm sustainability. Environmental Challenges, 2022, 6, 100440.	2.0	1
368	The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. IScience, 2022, 25, 103821.	1.9	26
369	Ecological wisdom for natural resources management and sustainability., 2022,, 219-241.		2
370	Response of endangered bird species to land-use changes in an agricultural landscape in Germany. Regional Environmental Change, 2022, 22, 1 .	1.4	8
371	Detection of grassland mowing frequency using time series of vegetation indices from Sentinel-2 imagery. GIScience and Remote Sensing, 2022, 59, 481-500.	2.4	12
372	Between perfect habitat and ecological trap: even wildflower strips mulched annually increase pollinating insect numbers in intensively used agricultural landscapes. Journal of Insect Conservation, 2022, 26, 425-434.	0.8	8
373	Subsidized Common Agricultural Policy grazing jeopardizes the protection of biodiversity and Natura 2000 targeted species. Animal Conservation, 2022, 25, 597-607.	1.5	13
374	The Dasgupta Review and the Problem of Anthropocentrism. Environmental and Resource Economics, 0, , 1.	1.5	2

#	Article	IF	Citations
375	Demographic variation in space and time: implications for conservation targeting. Royal Society Open Science, 2022, 9, 211671.	1.1	4
376	An Analysis of Agricultural Systems Modelling Approaches and Examples to Support Future Policy Development under Disruptive Changes in New Zealand. Applied Sciences (Switzerland), 2022, 12, 2746.	1.3	4
377	The modernization of traditional vineyards into intensive trellis systems reduces the species richness and abundance of reptiles. Spanish Journal of Agricultural Research, 2022, 20, e0302.	0.3	0
378	European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target. Sustainability, 2022, 14, 4365.	1.6	7
379	Agri-environmental payments drive the conservation and forage value of semi-natural grasslands by modifying fine-scale grazing intensity. Biological Conservation, 2022, 269, 109531.	1.9	4
380	Effects of landscape structure on abundance and family richness of hymenopteran parasitoids in the olive agroecosystem. Agriculture, Ecosystems and Environment, 2022, 332, 107914.	2.5	3
381	Societal preferences for the conservation of traditional pig breeds and their agroecosystems: Addressing preference heterogeneity and protest responses through deterministic allocation and scaleâ€extended models. Journal of Agricultural Economics, 2022, 73, 761-788.	1.6	1
382	Macroecological drivers of vascular plant species composition in semi-natural grasslands: A regional study from Lower Silesia (Poland). Science of the Total Environment, 2022, 833, 155151.	3.9	3
383	Transhumant Sheep Grazing Enhances Ecosystem Multifunctionality in Productive Mountain Grasslands: A Case Study in the Cantabrian Mountains. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	10
385	Trust Versus Content in Multi-functional Land Management: Assessing Soil Function Messaging in Agricultural Networks. Environmental Management, 2022, 69, 1167-1185.	1.2	4
387	The relevance of transition habitats for butterfly conservation. Biodiversity and Conservation, 2022, 31, 1577-1590.	1.2	8
388	The expansion of olive groves is reducing habitat suitability for the Great Bustard <i>Otis tarda</i> and the Little Bustard <i>Tetrax tetrax</i> in Southern Spain: could Important Bird Areas (IBAs) reduce this expansion?. Bird Conservation International, 2022, 32, 544-558.	0.7	3
389	International food trade benefits biodiversity and food security in low-income countries. Nature Food, 2022, 3, 349-355.	6.2	14
390	How can the European Common Agricultural Policy help halt biodiversity loss? Recommendations by over 300 experts. Conservation Letters, 2022, 15, .	2.8	40
391	Seeds harvested during mowing from semi-natural grasslands as an <i>ad hoc</i> but effective solution for grassland restoration. PeerJ, 0, 10, e13621.	0.9	1
392	Small-scale farms in the environmental sustainability of rural areas. Opinions of farmers from Poland, Romania and Lithuania., 2022, 81, 168-185.		2
393	Assessment of the Common Agricultural Policy 2014–2020 in Supporting Agroecological Transitions: A Comparative Study of 15 Cases across Europe. Sustainability, 2022, 14, 9261.	1.6	5
394	Call for integrating future patterns of biodiversity into European conservation policy. Conservation Letters, 2022, 15, .	2.8	5

#	Article	IF	Citations
395	Landscapeâ€level heterogeneity of agriâ€environment measures improves habitat suitability for farmland birds. Ecological Applications, 2023, 33, .	1.8	7
396	Farmer-led agroecology for biodiversity with climate change. Trends in Ecology and Evolution, 2022, 37, 927-930.	4.2	7
397	Pesticide impacts on avian species with special reference to farmland birds: a review. Environmental Monitoring and Assessment, 2022, 194, .	1.3	20
398	Habitats, agricultural practices, and population dynamics of a threatened species: The European turtle dove in France. Biological Conservation, 2022, 274, 109730.	1.9	2
399	Developing context-specific frameworks for integrated sustainability assessment of agricultural intensity change: An application for Europe. Environmental Science and Policy, 2022, 137, 128-142.	2.4	7
400	The impact of protozoa addition on the survivability of $\langle i \rangle$ Bacillus $\langle i \rangle$ inoculants and soil microbiome dynamics. ISME Communications, 2022, 2, .	1.7	6
401	A conservation policy as a conservation threat. Animal Conservation, 0, , .	1.5	1
402	Increasing crop richness and reducing field sizes provide higher yields to pollinatorâ€dependent crops. Journal of Applied Ecology, 2023, 60, 77-90.	1.9	5
403	Farmstead modernization adversely affects farmland birds. Journal of Applied Ecology, 0, , .	1.9	1
404	Productive versus environmental objectives of agricultural policies dealing with climate change: a French case study. Frontiers in Environmental Science, $0,10,10$	1.5	1
405	Disentangling the seasonal effects of agricultural intensification on birds and bats in Mediterranean olive groves. Agriculture, Ecosystems and Environment, 2023, 343, 108280.	2.5	3
406	No detrimental effects of soil disturbance resulting from grassland restoration operations on above groundâ€dwelling invertebrate communities. Restoration Ecology, 0, , .	1.4	1
407	Reducing Phosphorus Input into the Baltic Seaâ€"An Assessment of the Updated Baltic Sea Action Plan and Its Implementation through the Common Agricultural Policy in Germany. Water (Switzerland), 2023, 15, 315.	1.2	1
408	Nest survival of threatened Eurasian Curlew (<i>Numenius arquata</i>) breeding at low densities across a humanâ€modified landscape. Ibis, 2023, 165, 753-766.	1.0	3
409	Forage nutritive value shows synergies with plant diversity in a wide range of semi-natural grassland habitats. Agriculture, Ecosystems and Environment, 2023, 347, 108369.	2.5	2
410	Side effects of European eco schemes and agri-environment-climate measures on endangered species conservation: Clues from a case study in mountain vineyard landscapes. Ecological Indicators, 2023, 148, 110155.	2.6	2
411	Institutional analysis of actors involved in the governance of innovative contracts for agri-environmental and climate schemes. Global Environmental Change, 2023, 80, 102668.	3.6	6
412	Sustainable intensification and carbon sequestration research in agricultural systems: A systematic review. Environmental Science and Policy, 2023, 143, 14-23.	2.4	4

#	Article	IF	CITATIONS
413	Public money for public goods: The role of ideas in driving agriculture policy in the EU and post-Brexit UK. Land Use Policy, 2023, 129, 106618.	2.5	3
414	Fostering the Implementation of Nature Conservation Measures in Agricultural Landscapes: The NatApp. Sustainability, 2023, 15, 3030.	1.6	3
415	Dealing with global threats to biodiversity: A pressing but realistic challenge. Frontiers in Conservation Science, 0, 4, .	0.9	1
416	Scientific modelling can be accessible, interoperable and user friendly: A case study for pasture and livestock modelling in Spain. PLoS ONE, 2023, 18, e0281348.	1.1	0
417	The importance of calibration in policy mixes: Environmental policy integration in the implementation of the European Union's Common Agricultural Policy in Germany (2014–2022). Environmental Policy and Governance, 2024, 34, 16-30.	2.1	5
418	Trees, hedges, agroforestry and microbial diversity. , 2023, , 469-479.		0
419	Nature-based solutions to wildfires in rural landscapes of Southern Europe: let's be fire-smart!. International Journal of Wildland Fire, 2023, , .	1.0	3
435	Biodiversity and bioeconomy: are these two faces of a single coin?. , 2024, , 3-23.		0
437	Roadmap for transformative agriculture: From research through policy towards a liveable future in Europe. Advances in Ecological Research, 2023, , 131-154.	1.4	О