Nickel–Iron Oxyhydroxide Oxygen-Evolution Electro Incidental Iron Incorporation

Journal of the American Chemical Society 136, 6744-6753 DOI: 10.1021/ja502379c

Citation Report

#	Article	IF	CITATIONS
20	Solution-Deposited F:SnO ₂ /TiO ₂ as a Base-Stable Protective Layer and Antireflective Coating for Microtextured Buried-Junction H ₂ -evolving Si Photocathodes. ACS Applied Materials & Interfaces, 2014, 6, 22830-22837.	4.0	84
21	Enhanced oxygen evolution activity by NiO _x and Ni(OH) ₂ nanoparticles. Faraday Discussions, 2014, 176, 363-379.	1.6	183
22	Mosaic Texture and Double <i>c</i> -Axis Periodicity of β-NiOOH: Insights from First-Principles and Genetic Algorithm Calculations. Journal of Physical Chemistry Letters, 2014, 5, 3981-3985.	2.1	65
23	Engineered Electronic States of Transition Metal Doped TiO ₂ Nanocrystals for Low Overpotential Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29499-29506.	1.5	109
24	Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses. ChemElectroChem, 2014, 1, 2075-2081.	1.7	301
25	NiCo 2 O 4 /C prepared by one-step intermittent microwave heating method for oxygen evolution reaction in splitter. Journal of Alloys and Compounds, 2014, 617, 115-119.	2.8	24
26	Highly Active Mixed-Metal Nanosheet Water Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids. Journal of the American Chemical Society, 2014, 136, 13118-13121.	6.6	278
27	Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co ₃ O ₄ for enhanced oxygen evolution. Chemical Communications, 2014, 50, 10122.	2.2	150
28	Electrodeposition of Ni-doped FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2014, 2, 14957.	5.2	88
29	Pt-Mn 3 O 4 /C as efficient electrocatalyst for oxygen evolution reaction in water electrolysis. Electrochimica Acta, 2014, 146, 119-124.	2.6	35
30	An Approach to Understanding the Electrocatalytic Activity Enhancement by Superexchange Interaction toward OER in Alkaline Media of Ni–Fe LDH. Journal of Physical Chemistry C, 2014, 118, 22432-22438.	1.5	185
31	Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes. Journal of Physical Chemistry Letters, 2014, 5, 3456-3461.	2.1	93
32	Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges. ACS Catalysis, 2014, 4, 3701-3714.	5.5	451
33	Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345, 1593-1596.	6.0	2,260
34	Infrared-driven unimolecular reaction of CH ₃ CHOO Criegee intermediates to OH radical products. Science, 2014, 345, 1596-1598.	6.0	125
35	Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale, 2014, 6, 11789-11794.	2.8	169
36	Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution. Nano Letters, 2014, 14, 5853-5857.	4.5	69
37	Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO ₂ /Ni Coatings. Journal of Physical Chemistry C. 2014, 118, 19618-19624.	1.5	129

#	Article	IF	CITATIONS
38	Nonstoichiometric Perovskite CaMnO _{3â^´l´} for Oxygen Electrocatalysis with High Activity. Inorganic Chemistry, 2014, 53, 9106-9114.	1.9	202
39	Porous Nickel–Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Science, 2015, 2, 1500199.	5.6	241
40	Creating Highly Active Atomic Layer Deposited NiO Electrocatalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2015, 5, 1500412.	10.2	217
41	Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Tiâ€Stabilized MnO ₂ . Advanced Energy Materials, 2015, 5, 1500991.	10.2	177
42	NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 9351-9355.	7.2	1,242
44	Molecular Mixedâ€Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts. Chemistry - A European Journal, 2015, 21, 13420-13430.	1.7	20
45	Spatially Confined Hybridization of Nanometerâ€Sized NiFe Hydroxides into Nitrogenâ€Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Advanced Materials, 2015, 27, 4516-4522.	11.1	612
46	On the Role of Metals in Nitrogenâ€Doped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 10102-10120.	7.2	583
47	Multi-Phased Electrode Materials for the Electroevolution of Oxygen. Solid State Phenomena, 2015, 228, 23-31.	0.3	1
48	Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films. Science Advances, 2015, 1, e1400215.	4.7	48
49	Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn ₂ O ₄ Nanodots Supported on Graphene. Inorganic Chemistry, 2015, 54, 5467-5474.	1.9	117
50	Ni ₂ P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni ₂ P nanoparticles. Energy and Environmental Science, 2015, 8, 2347-2351.	15.6	1,487
51	Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics. Energy and Environmental Science, 2015, 8, 2685-2697.	15.6	180
52	Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni–Co Double Hydroxides Nanocages. Advanced Energy Materials, 2015, 5, 1401880.	10.2	307
53	Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 7071-7074.	6.6	299
54	Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.	6.9	458
55	In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. Journal of the American Chemical Society, 2015, 137, 15112-15121.	6.6	459
56	A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry A, 2015, 3, 6921-6928.	5.2	291

#	Article	IF	CITATIONS
57	Nanoarray based "superaerophobic―surfaces for gas evolution reaction electrodes. Materials Horizons, 2015, 2, 294-298.	6.4	146
58	A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water. ACS Nano, 2015, 9, 1977-1984.	7.3	635
59	Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Letters, 2015, 15, 1421-1427.	4.5	933
60	Stable Solar-Driven Water Oxidation to O ₂ (g) by Ni-Oxide-Coated Silicon Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 592-598.	2.1	144
61	Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chemical Communications, 2015, 51, 5261-5263.	2.2	138
62	Development of optically transparent water oxidation catalysts using manganese pyrophosphate compounds. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 139-145.	1.7	2
63	Improving Oxygen Electrochemistry through Nanoscopic Confinement. ChemCatChem, 2015, 7, 738-742.	1.8	106
64	Preciousâ€Metalâ€Free Co–Fe–O/rGO Synergetic Electrocatalysts for Oxygen Evolution Reaction by a Facile Hydrothermal Route. ChemSusChem, 2015, 8, 659-664.	3.6	71
65	Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society, 2015, 137, 1305-1313.	6.6	2,018
66	Fast and Simple Preparation of Ironâ€Based Thin Films as Highly Efficient Waterâ€Oxidation Catalysts in Neutral Aqueous Solution. Angewandte Chemie - International Edition, 2015, 54, 4870-4875.	7.2	256
67	Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society, 2015, 137, 3638-3648.	6.6	1,587
68	Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2015, 3, 8171-8177.	5.2	408
69	Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation. Journal of the American Chemical Society, 2015, 137, 4119-4125.	6.6	1,004
70	Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3612-3617.	3.3	180
71	Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 2427-2433.	2.1	59
72	Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts. Journal of Materials Chemistry A, 2015, 3, 16183-16189.	5.2	54
73	Amorphous Nickel Hydroxide Nanosheets with Ultrahigh Activity and Super-Long-Term Cycle Stability as Advanced Water Oxidation Catalysts. Crystal Growth and Design, 2015, 15, 4475-4483.	1.4	51
74	Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrO _{<i>xx/i></i>} · <i>n</i> H ₂ O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society, 2015, 137, 8749-8757.	6.6	41

#	Article	IF	Citations
75	Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 16348-16353.	5.2	209
76	The Influence of Structure and Processing on the Behavior of TiO ₂ Protective Layers for Stabilization of n-Si/TiO ₂ /Ni Photoanodes for Water Oxidation. ACS Applied Materials & amp; Interfaces, 2015, 7, 15189-15199.	4.0	114
77	p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation. Journal of the American Chemical Society, 2015, 137, 9595-9603.	6.6	122
78	Nickel-rich layered LiNi _{1â^'x} M _x O ₂ (M = Mn, Fe, and Co) electrocatalysts with high oxygen evolution reaction activity. Journal of Materials Chemistry A, 2015, 3, 16604-16612.	5.2	44
79	Role of Catalyst Preparation on the Electrocatalytic Activity of Ni _{1–<i>x</i>} Fe _{<i>x</i>} OOH for the Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 18303-18316.	1.5	114
80	An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. Journal of the American Chemical Society, 2015, 137, 9927-9936.	6.6	247
81	Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts. ACS Applied Materials & Interfaces, 2015, 7, 16632-16644.	4.0	35
82	A First-Principles Study of Oxygen Formation Over NiFe-Layered Double Hydroxides Surface. Catalysis Letters, 2015, 145, 1541-1548.	1.4	61
83	Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis. ACS Catalysis, 2015, 5, 4479-4484.	5.5	219
84	Structural Characteristics and Eutaxy in the Photo-Deposited Amorphous Iron Oxide Oxygen Evolution Catalyst. Chemistry of Materials, 2015, 27, 3462-3470.	3.2	28
85	A high surface area flower-like Ni–Fe layered double hydroxide for electrocatalytic water oxidation reaction. Dalton Transactions, 2015, 44, 11592-11600.	1.6	90
86	Tantalum Nitride Nanorod Arrays: Introducing Ni–Fe Layered Double Hydroxides as a Cocatalyst Strongly Stabilizing Photoanodes in Water Splitting. Chemistry of Materials, 2015, 27, 2360-2366.	3.2	158
87	Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, 2015, 5, 1402307.	10.2	85
88	Surface Oxidation of Stainless Steel: Oxygen Evolution Electrocatalysts with High Catalytic Activity. ACS Catalysis, 2015, 5, 2671-2680.	5.5	153
90	Layered transition metal oxyhydroxides as tri-functional electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11920-11929.	5.2	80
91	Alkaline Electrolyte and Fe Impurity Effects on the Performance and Active-Phase Structure of NiOOH Thin Films for OER Catalysis Applications. Journal of Physical Chemistry C, 2015, 119, 11475-11481.	1.5	110
92	Trinary Layered Double Hydroxides as Highâ€Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials, 2015, 5, 1500245.	10.2	328
93	Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting. ACS Nano, 2015, 9, 5180-5188.	7.3	446

#	Article	IF	CITATIONS
94	Surface Modification of CoO _{<i>x</i>} Loaded BiVO ₄ Photoanodes with Ultrathin <i>p</i> -Type NiO Layers for Improved Solar Water Oxidation. Journal of the American Chemical Society, 2015, 137, 5053-5060.	6.6	542
95	Effects of Fe Electrolyte Impurities on Ni(OH) ₂ /NiOOH Structure and Oxygen Evolution Activity. Journal of Physical Chemistry C, 2015, 119, 7243-7254.	1.5	806
96	Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews, 2015, 115, 11941-11966.	23.0	719
97	Pulse-Electrodeposited Ni–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings. ACS Catalysis, 2015, 5, 6680-6689.	5.5	265
98	Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society, 2015, 137, 14887-14904.	6.6	359
99	Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations. Journal of the American Chemical Society, 2015, 137, 13980-13988.	6.6	84
101	Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chemical Reviews, 2015, 115, 12839-12887.	23.0	481
102	Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts. Chemistry of Materials, 2015, 27, 7218-7235.	3.2	131
103	Catalytic Oxygen Evolution by Cobalt Oxido Thin Films. Topics in Current Chemistry, 2015, 371, 173-213.	4.0	46
104	A Ni(OH) ₂ -modified Ti-doped α-Fe ₂ O ₃ photoanode for improved photoelectrochemical oxidation of urea: the role of Ni(OH) ₂ as a cocatalyst. Physical Chemistry Chemical Physics, 2015, 17, 23924-23930.	1.3	59
105	Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chemical Science, 2015, 6, 6624-6631.	3.7	378
106	<i>In Situ</i> X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH) _{<i>x</i>} Electrocatalyst on Carbon Paper for Water Oxidation. Journal of Physical Chemistry C, 2015, 119, 19573-19583.	1.5	146
107	A Fe-doped Ni ₃ S ₂ particle film as a high-efficiency robust oxygen evolution electrode with very high current density. Journal of Materials Chemistry A, 2015, 3, 23207-23212.	5.2	308
108	Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2015, 6, 4178-4183.	2.1	89
109	Structural and Electronic Features of β-Ni(OH) ₂ and β-NiOOH from First Principles. Journal of Physical Chemistry C, 2015, 119, 24315-24322.	1.5	145
110	Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Research, 2015, 8, 3815-3822.	5.8	94
111	Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chemical Communications, 2015, 51, 15880-15893.	2.2	361
112	Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chemistry of Materials, 2015, 27, 7549-7558.	3.2	944

#	Article	IF	CITATIONS
113	Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nature Communications, 2015, 6, 8106.	5.8	377
114	Pt/Ni(OH) ₂ –NiOOH/Pd multi-walled hollow nanorod arrays as superior electrocatalysts for formic acid electrooxidation. Chemical Science, 2015, 6, 6991-6998.	3.7	55
115	Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (Oxy)Hydroxide Catalysts. Journal of Physical Chemistry C, 2015, 119, 19022-19029.	1.5	282
116	Facet-dependent activity and stability of Co ₃ O ₄ nanocrystals towards the oxygen evolution reaction. Physical Chemistry Chemical Physics, 2015, 17, 29387-29393.	1.3	190
117	Advanced and In Situ Analytical Methods for Solar Fuel Materials. Topics in Current Chemistry, 2015, 371, 253-324.	4.0	4
118	Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase. ACS Applied Materials & Interfaces, 2015, 7, 19755-19763.	4.0	49
119	Effect of Rh oxide as a cocatalyst over Bi 0.5 Y 0.5 VO 4 on photocatalytic overall water splitting. Applied Surface Science, 2015, 355, 1069-1074.	3.1	22
120	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	23.0	770
121	Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media. Journal of Physical Chemistry Letters, 2015, 6, 3737-3742.	2.1	417
122	Manganese oxides supported on hydrogenated TiO ₂ nanowire array catalysts for the electrochemical oxygen evolution reaction in water electrolysis. Journal of Materials Chemistry A, 2015, 3, 21308-21313.	5.2	44
123	Metallic Iron–Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Journal of the American Chemical Society, 2015, 137, 11900-11903.	6.6	609
124	CoTiO _x Catalysts for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2015, 162, H841-H846.	1.3	14
125	Nickel–iron foam as a three-dimensional robust oxygen evolution electrode with high activity. International Journal of Hydrogen Energy, 2015, 40, 13258-13263.	3.8	48
126	An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution. ACS Applied Materials & Interfaces, 2015, 7, 21852-21859.	4.0	161
127	Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe ⁴⁺ by Mössbauer Spectroscopy. Journal of the American Chemical Society, 2015, 137, 15090-15093.	6.6	684
128	Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution. Chemistry of Materials, 2015, 27, 8011-8020.	3.2	395
129	Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 24540-24546.	5.2	124
130	Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2015, 278, 445-451.	4.0	494

#	Article	IF	CITATIONS
131	Synergism between polyurethane and polydopamine in the synthesis of Ni–Fe alloy monoliths. Chemical Communications, 2015, 51, 1922-1925.	2.2	29
132	Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction. Chemical Communications, 2015, 51, 1120-1123.	2.2	195
133	Water Oxidation at Electrodes Modified with Earthâ€Abundant Transitionâ€Metal Catalysts. ChemElectroChem, 2015, 2, 37-50.	1.7	213
134	Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angewandte Chemie, 2015, 127, 2375-2380.	1.6	27
135	A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 2015, 8, 23-39.	5.8	1,201
136	Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science and Technology, 2015, 5, 1360-1384.	2.1	824
137	Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angewandte Chemie - International Edition, 2015, 54, 2345-2350.	7.2	119
138	Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19386-19392.	4.0	284
139	Graphitic Mesoporous Carbon Loaded with Iron–Nickel Hydroxide for Superior Oxygen Evolution Reactivity. ChemSusChem, 2016, 9, 1835-1842.	3.6	32
140	Advances in Hybrid Electrocatalysts for Oxygen Evolution Reactions: Rational Integration of NiFe Layered Double Hydroxides and Nanocarbon. Particle and Particle Systems Characterization, 2016, 33, 473-486.	1.2	106
141	The Origin of Catalytic Activity of Nickel Phosphate for Oxygen Evolution in Alkaline Solution and its Further Enhancement by Iron Substitution. ChemElectroChem, 2016, 3, 615-621.	1.7	81
142	Further Investigation of a Nickelâ€Based Homogeneous Water Oxidation Catalyst with Two <i>cis</i> Labile Sites. ChemSusChem, 2016, 9, 485-491.	3.6	65
143	Design Criteria, Operating Conditions, and Nickel–Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis. ChemSusChem, 2016, 9, 962-972.	3.6	467
144	Recent Advances in the Synthesis of Layered, Doubleâ€Hydroxideâ€Based Materials and Their Applications in Hydrogen and Oxygen Evolution. Energy Technology, 2016, 4, 354-368.	1.8	84
145	FeOOH/Co/FeOOH Hybrid Nanotube Arrays as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie, 2016, 128, 3758-3762.	1.6	128
146	FeOOH/Co/FeOOH Hybrid Nanotube Arrays as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 3694-3698.	7.2	611
147	Enhanced Charge Separation through ALDâ€Modified Fe ₂ O ₃ /Fe ₂ TiO ₅ Nanorod Heterojunction for Photoelectrochemical Water Oxidation. Small, 2016, 12, 3415-3422.	5.2	124
148	Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH) ₂ and Carbon Nanotubes. Advanced Energy Materials, 2016, 6, 1600516.	10.2	68

#	Article	IF	CITATIONS
149	Effect of the Synthesis Route and Fe Presence on the Redox Activity of Ni in Layered Double Hydroxides. ChemElectroChem, 2016, 3, 1320-1328.	1.7	14
150	Quick Determination of Electroactive Surface Area of Some Oxide Electrode Materials. Electroanalysis, 2016, 28, 2394-2399.	1.5	57
151	Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2016, 138, 9128-9136.	6.6	341
152	The goldilocks electrolyte: examining the performance of iron/nickel oxide thin films as catalysts for electrochemical water splitting in various aqueous NaOH solutions. Journal of Materials Chemistry A, 2016, 4, 11397-11407.	5.2	47
153	Abnormal Cathodic Photocurrent Generated on an nâ€Type FeOOH Nanorodâ€Array Photoelectrode. Chemistry - A European Journal, 2016, 22, 4802-4808.	1.7	6
154	MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 35390-35397.	4.0	151
155	Hydrogen Diffusivity and Electrolyte Permeability of the Zirfon PERL Separator for Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2016, 163, F1480-F1488.	1.3	100
156	Hydrotalcite-like Ni(OH) ₂ Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 33601-33607.	4.0	204
157	One-Step Synthesis of a Self-Supported Copper Phosphide Nanobush for Overall Water Splitting. ACS Omega, 2016, 1, 1367-1373.	1.6	113
158	Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Scientific Reports, 2016, 6, 23398.	1.6	62
159	Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations. Journal of the Electrochemical Society, 2016, 163, F3125-F3131.	1.3	97
160	Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Accounts of Chemical Research, 2016, 49, 733-740.	7.6	281
161	Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts. Journal of the American Chemical Society, 2016, 138, 5603-5614.	6.6	888
162	Bulky crystalline BiVO ₄ thin films for efficient solar water splitting. Journal of Materials Chemistry A, 2016, 4, 9858-9864.	5.2	40
163	Surface-Oxidized Dicobalt Phosphide Nanoneedles as a Nonprecious, Durable, and Efficient OER Catalyst. ACS Energy Letters, 2016, 1, 169-174.	8.8	251
164	Transparent Nanoparticulate FeOOH Improves the Performance of a WO ₃ Photoanode in a Tandem Water-Splitting Device. Journal of Physical Chemistry C, 2016, 120, 10941-10950.	1.5	52
165	Three-dimensional flexible electrode derived from low-cost nickel–phytate with improved electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 9486-9495.	5.2	28
166	Synthetic advancements and catalytic applications of nickel nitride. Catalysis Science and Technology, 2016, 6, 4059-4076.	2.1	45

# 167	ARTICLE A Place in the Sun for Artificial Photosynthesis?. ACS Energy Letters, 2016, 1, 121-135.	IF 8.8	CITATIONS
168	Enhanced photoelectrochemical water splitting via SILAR-deposited Ti-doped hematite thin films with an FeOOH overlayer. Journal of Materials Chemistry A, 2016, 4, 6495-6504.	5.2	36
169	Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation. Nanoscale, 2016, 8, 9695-9703.	2.8	80
170	Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media. ChemElectroChem, 2016, 3, 66-73.	1.7	44
171	Engineering Band Edge Positions of Nickel Oxyhydroxide through Facet Selection. Journal of Physical Chemistry C, 2016, 120, 8104-8108.	1.5	34
172	High catalytic activity of oxygen-induced (200) surface of Ta2O5 nanolayer towards durable oxygen evolution reaction. Nano Energy, 2016, 25, 60-67.	8.2	36
173	Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene. Nanoscale, 2016, 8, 10425-10432.	2.8	134
174	Iron and nickel co-doped cobalt hydroxide nanosheets with enhanced activity for oxygen evolution reaction. RSC Advances, 2016, 6, 42255-42262.	1.7	37
175	Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis. Nanoscale, 2016, 8, 10731-10738.	2.8	78
176	Ultra-durable two-electrode Zn–air secondary batteries based on bifunctional titania nanocatalysts: a Co ²⁺ dopant boosts the electrochemical activity. Journal of Materials Chemistry A, 2016, 4, 7841-7847.	5.2	30
177	Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 208, 17-24.	2.6	86
178	General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. ACS Applied Materials & amp; Interfaces, 2016, 8, 12798-12803.	4.0	256
179	Photoelectrochemical Solar Fuel Production. , 2016, , .		87
180	The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. , 2016, , 41-104.		81
181	Advanced Photoelectrochemical Characterization: Principles and Applications of Dual-Working-Electrode Photoelectrochemistry. , 2016, , 323-351.		2
182	Oxygen evolution catalytic behaviour of Ni doped Mn ₃ O ₄ in alkaline medium. RSC Advances, 2016, 6, 48995-49002.	1.7	57
183	In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Research, 2016, 9, 1856-1865.	5.8	78
184	An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy and Environmental Science, 2016, 9, 2020-2024.	15.6	221

#	Article	IF	CITATIONS
185	Ultrafine NiO Nanosheets Stabilized by TiO ₂ from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society, 2016, 138, 6517-6524.	6.6	597
186	Coaxial ultrathin Co1â°'yFeyOx nanosheet coating on carbon nanotubes for water oxidation with excellent activity. RSC Advances, 2016, 6, 80613-80620.	1.7	15
187	Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis. Journal of the Electrochemical Society, 2016, 163, F3197-F3208.	1.3	232
188	In Situ Rapid Formation of a Nickel–Iron-Based Electrocatalyst for Water Oxidation. ACS Catalysis, 2016, 6, 6987-6992.	5.5	103
189	Co 4 S 3 /Ni x S 6 (7 ≥ x ≥ 6)/NiOOH in-situ encapsulated carbon-based hybrid as a high-efficient oxygen electrode catalyst in alkaline media. Electrochimica Acta, 2016, 213, 163-173.	2.6	31
190	Synthesis and characterization of Ni-P-Ag composite coating as efficient electrocatalyst for alkaline hydrogen evolution reaction. Electrochimica Acta, 2016, 219, 377-385.	2.6	29
191	Fe ₃ O ₄ @NiFe _{<i>x</i>} O _{<i>y</i>} Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 29461-29469.	4.0	34
192	Nanostructured Bifunctional Redox Electrocatalysts. Small, 2016, 12, 5656-5675.	5.2	174
193	Toward a nanosized iron based water-oxidizing catalyst. International Journal of Hydrogen Energy, 2016, 41, 22635-22642.	3.8	10
194	Photoelectrochemical Investigation of the Mechanism of Enhancement of Water Oxidation at the Hematite Nanorod Array Modified with "NiBi― Journal of Physical Chemistry C, 2016, 120, 22766-22776.	1.5	10
195	Carbon-Coated Nickel Phosphide Nanosheets as Efficient Dual-Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 27850-27858.	4.0	113
196	Iron-Doped Nickel Phosphate as Synergistic Electrocatalyst for Water Oxidation. Chemistry of Materials, 2016, 28, 5659-5666.	3.2	262
197	Solarâ€Driven H ₂ O ₂ Generation From H ₂ O and O ₂ Using Earthâ€Abundant Mixedâ€Metal Oxide@Carbon Nitride Photocatalysts. ChemSusChem, 2016, 9, 2470-2479.	3.6	75
198	Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano Research, 2016, 9, 3152-3161.	5.8	30
199	Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co ₃ O ₄ Nanosheets as a Highly Selective Anode Catalyst. ACS Central Science, 2016, 2, 538-544.	5.3	120
200	Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting. Angewandte Chemie - International Edition, 2016, 55, 10854-10858.	7.2	200
201	Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting. Angewandte Chemie, 2016, 128, 11012-11016.	1.6	32
202	Electronic Structure of the (Undoped and Fe-Doped) NiOOH O ₂ Evolution Electrocatalyst. Journal of Physical Chemistry C, 2016, 120, 18999-19010.	1.5	52

#	Article	IF	CITATIONS
203	A Cobaltâ€Based Film for Highly Efficient Electrocatalytic Water Oxidation in Neutral Aqueous Solution. ChemCatChem, 2016, 8, 2757-2760.	1.8	13
204	On How Experimental Conditions Affect the Electrochemical Response of Disordered Nickel Oxyhydroxide Films. Chemistry of Materials, 2016, 28, 5635-5642.	3.2	22
205	Designing efficient doped NiOOH catalysts for water splitting with first principles calculations. ChemistrySelect, 2016, 1, 911-916.	0.7	26
206	Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catalysis Science and Technology, 2016, 6, 6836-6844.	2.1	11
207	Competent overall water-splitting electrocatalysts derived from ZIF-67 grown on carbon cloth. RSC Advances, 2016, 6, 73336-73342.	1.7	55
208	Two-step synthesis of binary Ni–Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13499-13508.	5.2	250
209	Ternary FeNiS2 ultrathin nanosheets as an electrocatalyst for both oxygen evolution and reduction reactions. Nano Energy, 2016, 27, 526-534.	8.2	166
210	Transitionâ€Metal (Co, Ni, and Fe)â€Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials, 2016, 28, 9266-9291.	11.1	1,392
211	One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation. ACS Energy Letters, 2016, 1, 624-632.	8.8	122
212	Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeOx shell. Chemical Communications, 2016, 52, 11803-11806.	2.2	40
213	Iron–Nickel Nitride Nanostructures in Situ Grown on Surface-Redox-Etching Nickel Foam: Efficient and Ultrasustainable Electrocatalysts for Overall Water Splitting. Chemistry of Materials, 2016, 28, 6934-6941.	3.2	453
214	Porous FeNi oxide nanosheets as advanced electrochemical catalysts for sustained water oxidation. Journal of Materials Chemistry A, 2016, 4, 14939-14943.	5.2	63
215	Electroactivity of Ni–Fe cathodes in alkaline water electrolysis and effect of corrosion. Corrosion Science, 2016, 112, 255-263.	3.0	21
216	NiFe Layeredâ€Doubleâ€Hydroxideâ€Derived NiOâ€NiFe ₂ O ₄ /Reduced Graphene Oxide Architectures for Enhanced Electrocatalysis of Alkaline Water Splitting. ChemElectroChem, 2016, 3, 1927-1936.	1.7	64
217	Rate Law Analysis of Water Oxidation and Hole Scavenging on a BiVO ₄ Photoanode. ACS Energy Letters, 2016, 1, 618-623.	8.8	76
218	X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co ₄ O ₄ : Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 11017-11030.	6.6	94
219	Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 33697-33703.	4.0	175
220	Tandem Core–Shell Si–Ta ₃ N ₅ Photoanodes for Photoelectrochemical Water Splitting. Nano Letters, 2016, 16, 7565-7572.	4.5	99

#	Article	IF	CITATIONS
221	Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid. Scientific Reports, 2016, 5, 18505.	1.6	6
222	Role of Fe in the oxidation of methanol electrocatalyzed by Ni based layered double hydroxides: X-ray spectroscopic and electrochemical studies. RSC Advances, 2016, 6, 110976-110985.	1.7	24
223	Fe2O3 hollow nanorods/CNT composites as an efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2016, 222, 1316-1325.	2.6	82
224	Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. ACS Nano, 2016, 10, 8738-8745.	7.3	376
225	Solar-Driven Reduction of 1 atm of CO ₂ to Formate at 10% Energy-Conversion Efficiency by Use of a TiO ₂ -Protected III–V Tandem Photoanode in Conjunction with a Bipolar Membrane and a Pd/C Cathode. ACS Energy Letters, 2016, 1, 764-770.	8.8	173
226	Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chemical Communications, 2016, 52, 12614-12617.	2.2	251
227	An efficient and inexpensive water-oxidizing manganese-based oxide electrode. Dalton Transactions, 2016, 45, 16948-16954.	1.6	13
228	Ternary Metal Phosphide with Triple‣ayered Structure as a Lowâ€Cost and Efficient Electrocatalyst for Bifunctional Water Splitting. Advanced Functional Materials, 2016, 26, 7644-7651.	7.8	389
229	Disclosing the High Activity of Ceramic Metallics in the Oxygen Evolution Reaction: Nickel Materials as a Case Study. ChemSusChem, 2016, 9, 2928-2932.	3.6	25
230	Highly Ordered Mesoporous Bimetallic Phosphides as Efficient Oxygen Evolution Electrocatalysts. ACS Energy Letters, 2016, 1, 792-796.	8.8	139
231	A Gibeon meteorite yields a high-performance water oxidation electrocatalyst. Energy and Environmental Science, 2016, 9, 3448-3455.	15.6	35
232	In Situ Coupling of Strung Co ₄ N and Intertwined N–C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn–Air Batteries. Journal of the American Chemical Society, 2016, 138, 10226-10231.	6.6	839
233	Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential. RSC Advances, 2016, 6, 74536-74544.	1.7	28
234	Electrocatalytic Performance and Stability of Nanostructured Fe–Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper. Journal of Physical Chemistry C, 2016, 120, 16537-16544.	1.5	53
235	Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 9978-9985.	6.6	345
236	Electroâ€Oxidation of Ni42 Steel: A Highly Active Bifunctional Electrocatalyst. Advanced Functional Materials, 2016, 26, 6402-6417.	7.8	90
237	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie - International Edition, 2016, 55, 9913-9917.	7.2	435
238	NiFeâ€Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Nonâ€Acidic Electrolytes. Advanced Energy Materials, 2016, 6, 1600621.	10.2	765

	CITATION	CITATION REPORT	
#	Article	IF	Citations
239	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie, 2016, 128, 10067-10071.	1.6	94
240	Benchmarking Density Functional Theory Based Methods To Model NiOOH Material Properties: Hubbard and van der Waals Corrections vs Hybrid Functionals. Journal of Chemical Theory and Computation, 2016, 12, 3807-3812.	2.3	47
241	Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems. Physical Chemistry Chemical Physics, 2016, 18, 22364-22372.	1.3	20
242	Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications, 2016, 7, 11981.	5.8	808
243	Gold-supported cerium-doped NiOx catalysts for water oxidation. Nature Energy, 2016, 1, .	19.8	458
244	Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society, 2016, 138, 16095-16104.	6.6	48
245	Performance Limits of Photoelectrochemical CO ₂ Reduction Based on Known Electrocatalysts and the Case for Two-Electron Reduction Products. Chemistry of Materials, 2016, 28, 8844-8850.	3.2	30
246	Low Overpotential Water Splitting Using Cobalt–Cobalt Phosphide Nanoparticles Supported on Nickel Foam. ACS Energy Letters, 2016, 1, 1192-1198.	8.8	143
247	ACS Energy Letters: Elevating Solar Fuels and Electrocatalysis Research. ACS Energy Letters, 2016, 1, 920-921.	8.8	7
248	Enhanced Water Oxidation Catalysis of Nickel Oxyhydroxide through the Addition of Vacancies. Journal of Physical Chemistry C, 2016, 120, 25405-25410.	1.5	43
249	A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nature Communications, 2016, 7, 12324.	5.8	807
250	Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template. ACS Applied Materials & Interfaces, 2016, 8, 32376-32384.	4.0	12
251	Synergistic Electrochemical CO ₂ Reduction and Water Oxidation with a Bipolar Membrane. ACS Energy Letters, 2016, 1, 1143-1148.	8.8	134
252	Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis, 2016, 6, 8069-8097.	5.5	1,936
253	Detection of Intermediate Species in Oxygen Evolution on Hematite Electrodes Using Spectroelectrochemical Measurements. Journal of Physical Chemistry C, 2016, 120, 24827-24834.	1.5	48
254	Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale, 2016, 8, 19129-19138.	2.8	140
255	Synthesis of Cobalt Sulfide/Sulfur Doped Carbon Nanocomposites with Efficient Catalytic Activity in the Oxygen Evolution Reaction. Chemistry - A European Journal, 2016, 22, 18259-18264.	1.7	43
256	Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews, 2016, 116, 14120-14136.	23.0	1,259

#	Article	IF	CITATIONS
257	A Frontâ€Illuminated Nanostructured Transparent BiVO ₄ Photoanode for >2% Efficient Water Splitting. Advanced Energy Materials, 2016, 6, 1501645.	10.2	313
258	Amorphous Cobalt Boride (Co ₂ B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313.	10.2	686
259	The Role of Anions in Metal Chalcogenide Oxygen Evolution Catalysis: Electrodeposited Thin Films of Nickel Sulfide as "Pre-catalysts― ACS Energy Letters, 2016, 1, 195-201.	8.8	328
260	Converting CoMoO ₄ into CoO/MoO _{<i>x</i>} for Overall Water Splitting by Hydrogenation. ACS Sustainable Chemistry and Engineering, 2016, 4, 3743-3749.	3.2	134
261	Three fundamental questions on one of our best water oxidation catalysts: a critical perspective. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	25
262	Ni-based heterogeneous catalyst from a designed molecular precursor for the efficient electrochemical water oxidation. Chemical Communications, 2016, 52, 9255-9258.	2.2	21
263	Efficient and Stable Evolution of Oxygen Using Pulse-Electrodeposited Ir/Ni Oxide Catalyst in Fe-Spiked KOH Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 15985-15990.	4.0	46
264	Production of Ni(OH) ₂ nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	5.2	71
265	Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts. Journal of the American Chemical Society, 2016, 138, 8946-8957.	6.6	376
266	Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A, 2016, 4, 11973-12000.	5.2	823
267	Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Applied Materials & Interfaces, 2016, 8, 16736-16743.	4.0	198
268	Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2016, 8, 16727-16735.	4.0	35
269	Mn-doping and NiFe layered double hydroxide coating: Effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. Journal of Catalysis, 2016, 340, 261-269.	3.1	107
270	Metal–organic framework-derived hybrid of Fe ₃ C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. Catalysis Science and Technology, 2016, 6, 6365-6371.	2.1	63
271	A novel Ni-Schiff base complex derived electrocatalyst for oxygen evolution reaction. Journal of Solid State Electrochemistry, 2016, 20, 2737-2747.	1.2	8
272	Bifunctional Porous NiFe/NiCo ₂ O ₄ /Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. Advanced Functional Materials, 2016, 26, 3515-3523.	7.8	545
273	Graphitic Nanoshell/Mesoporous Carbon Nanohybrids as Highly Efficient and Stable Bifunctional Oxygen Electrocatalysts for Rechargeable Aqueous Na–Air Batteries. Advanced Energy Materials, 2016, 6, 1501794.	10.2	120
274	A Nickelâ€Based Integrated Electrode from an Autologous Growth Strategy for Highly Efficient Water Oxidation. Advanced Energy Materials, 2016, 6, 1502489.	10.2	138

#	Article	IF	CITATIONS
275	Backâ€Illuminated Siâ€Based Photoanode with Nickel Cobalt Oxide Catalytic Protection Layer. ChemElectroChem, 2016, 3, 1546-1552.	1.7	22
276	Temperature Dependence of Electrocatalytic and Photocatalytic Oxygen Evolution Reaction Rates Using NiFe Oxide. ACS Catalysis, 2016, 6, 1713-1722.	5.5	145
277	A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Research, 2016, 9, 713-725.	5.8	171
278	Vapor-Phase Atomic Layer Deposition of Nickel Sulfide and Its Application for Efficient Oxygen-Evolution Electrocatalysis. Chemistry of Materials, 2016, 28, 1155-1164.	3.2	144
279	First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition. Journal of Materials Chemistry A, 2016, 4, 6724-6741.	5.2	80
280	Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting. Energy and Environmental Science, 2016, 9, 1210-1214.	15.6	291
281	Tuning Composition and Activity of Cobalt Titanium Oxide Catalysts for the Oxygen Evolution Reaction. Electrochimica Acta, 2016, 193, 240-245.	2.6	26
282	Ordered Mesoporous Nickel Sphere Arrays for Highly Efficient Electrocatalytic Water Oxidation. ACS Catalysis, 2016, 6, 1446-1450.	5.5	105
283	Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film. ACS Applied Materials & Interfaces, 2016, 8, 4718-4723.	4.0	239
284	Iron triad (Fe, co, Ni) trinary phosphide nanosheet arrays as high-performance bifunctional electrodes for full water splitting in basic and neutral conditions. RSC Advances, 2016, 6, 9647-9655.	1.7	64
285	The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chemical Science, 2016, 7, 2639-2645.	3.7	494
286	Facile Synthesis of Nickel–Iron/Nanocarbon Hybrids as Advanced Electrocatalysts for Efficient Water Splitting. ACS Catalysis, 2016, 6, 580-588.	5.5	354
287	Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO ₄ . Energy and Environmental Science, 2016, 9, 565-580.	15.6	61
288	Voltammetric Study and Electrodeposition of Ni(II)/Fe(II) in the Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Dicyanamide. Journal of the Electrochemical Society, 2016, 163, D9-D16.	1.3	27
289	Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy and Environmental Science, 2016, 9, 1734-1743.	15.6	446
290	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	6.0	1,948
291	Alkoxide-intercalated NiFe-layered double hydroxides magnetic nanosheets as efficient water oxidation electrocatalysts. Inorganic Chemistry Frontiers, 2016, 3, 478-487.	3.0	58
292	Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts. Nanoscale, 2016, 8, 5015-5023.	2.8	60

#	Article	IF	CITATIONS
293	Iron vs Aluminum Based Layered Double Hydroxides as Water Splitting Catalysts. Electrochimica Acta, 2016, 188, 653-660.	2.6	49
294	Guest–host modulation of multi-metallic (oxy)hydroxides for superb water oxidation. Journal of Materials Chemistry A, 2016, 4, 3210-3216.	5.2	62
295	Accounting for the Dynamic Oxidative Behavior of Nickel Anodes. Journal of the American Chemical Society, 2016, 138, 1561-1567.	6.6	91
296	Precious-metal-free Co–Fe–O _x coupled nitrogen-enriched porous carbon nanosheets derived from Schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 6505-6512.	5.2	89
297	Effects of Intentionally Incorporated Metal Cations on the Oxygen Evolution Electrocatalytic Activity of Nickel (Oxy)hydroxide in Alkaline Media. ACS Catalysis, 2016, 6, 2416-2423.	5.5	199
298	Highly-active oxygen evolution electrocatalyzed by a Fe-doped NiSe nanoflake array electrode. Chemical Communications, 2016, 52, 4529-4532.	2.2	116
299	Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1246-1250.	15.6	839
300	Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology, 2016, 27, 12LT01.	1.3	86
301	Stainless steel as an efficient electrocatalyst for water oxidation in alkaline solution. International Journal of Hydrogen Energy, 2016, 41, 5230-5233.	3.8	75
302	Effect of doping β-NiOOH with Co on the catalytic oxidation of water: DFT+U calculations. Physical Chemistry Chemical Physics, 2016, 18, 7490-7501.	1.3	32
303	High Activity Oxygen Evolution Reaction Catalysts from Additive-Controlled Electrodeposited Ni and NiFe Films. ACS Catalysis, 2016, 6, 1159-1164.	5.5	146
304	Surface Interrogation Scanning Electrochemical Microscopy of Ni _{1–<i>x</i>} Fe _{<i>x</i>} OOH (0 < <i>x</i> < 0.27) Oxygen Evolving Catalyst: Kinetics of the "fast―Iron Sites. Journal of the American Chemical Society, 2016, 138, 313-318.	6.6	280
305	Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 2247-2253.	1.5	336
306	When Layered Nickel–Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 945-951.	4.0	97
307	Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2016, 6, 155-161.	5.5	413
308	In-grown structure of NiFe mixed metal oxides and CNT hybrid catalysts for oxygen evolution reaction. Chemical Communications, 2016, 52, 1439-1442.	2.2	74
309	Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1771-1782.	15.6	632
310	Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation. Catalysis Today, 2016, 262, 11-23.	2.2	87

#	Article	IF	CITATIONS
311	Transition metal based layered double hydroxides tailored for energy conversion and storage. Materials Today, 2016, 19, 213-226.	8.3	464
312	Solar Energy for Fuels. Topics in Current Chemistry, 2016, , .	4.0	7
313	Improving the stability and selectivity for the oxygen-evolution reaction on semiconducting WO ₃ photoelectrodes with a solid-state FeOOH catalyst. Journal of Materials Chemistry A, 2016, 4, 2960-2968.	5.2	55
314	Dimensionally stable Ni Fe@Co/Ti nanoporous electrodes by reactive deposition for water electrolysis. International Journal of Hydrogen Energy, 2017, 42, 7143-7150.	3.8	5
315	Highly Active Threeâ€Dimensional NiFe/Cu ₂ O Nanowires/Cu Foam Electrode for Water Oxidation. ChemSusChem, 2017, 10, 1475-1481.	3.6	53
316	In situ electrochemical formation of core–shell nickel–iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. Journal of Materials Chemistry A, 2017, 5, 4335-4342.	5.2	166
317	Direct growth of ternary Ni–Fe–P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 2496-2503.	5.2	172
318	Ultrafast Electrodeposition of Niâ^'Fe Hydroxide Nanosheets on Nickel Foam as Oxygen Evolution Anode for Energy‧aving Electrolysis of Na ₂ CO ₃ /NaHCO ₃ . ChemElectroChem, 2017, 4, 1044-1050.	1.7	31
319	Mixedâ€Metal Tungsten Oxide Photoanode Materials Made by Pulsed‣aser in Liquids Synthesis. ChemPhysChem, 2017, 18, 1091-1100.	1.0	14
320	Petal-like hierarchical array of ultrathin Ni(OH) ₂ nanosheets decorated with Ni(OH) ₂ nanoburls: a highly efficient OER electrocatalyst. Catalysis Science and Technology, 2017, 7, 882-893.	2.1	123
321	Intralayered Ostwald Ripening to Ultrathin Nanomesh Catalyst with Robust Oxygenâ€Evolving Performance. Advanced Materials, 2017, 29, 1604765.	11.1	283
322	A Thin NiFe Hydroxide Film Formed by Stepwise Electrodeposition Strategy with Significantly Improved Catalytic Water Oxidation Efficiency. Advanced Energy Materials, 2017, 7, 1602547.	10.2	183
323	Facile synthesis of pyrite-type binary nickel iron diselenides as efficient electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2017, 401, 17-24.	3.1	63
324	Hemin-mediated construction of iridium oxide with superior stability for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2959-2971.	5.2	15
325	Mesoporous Ni–Fe oxide multi-composite hollow nanocages for efficient electrocatalytic water oxidation reactions. Journal of Materials Chemistry A, 2017, 5, 4320-4324.	5.2	108
326	Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1486-1491.	3.3	488
327	Nickel enhanced the catalytic activities of amorphous copper for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 4331-4334.	5.2	37
328	Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1, .	13.8	2,578

#	Article	IF	CITATIONS
329	Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. Journal of the American Chemical Society, 2017, 139, 2070-2082.	6.6	518
330	Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries. Nano Research, 2017, 10, 4436-4447.	5.8	98
331	Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337-365.	18.7	4,505
332	Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry. Energy and Environmental Science, 2017, 10, 570-579.	15.6	91
333	NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Green Energy and Environment, 2017, 2, 119-123.	4.7	15
334	Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochimica Acta, 2017, 230, 22-28.	2.6	39
335	Transient Behavior of Ni@NiO _{<i>x</i>} Functionalized SrTiO ₃ in Overall Water Splitting. ACS Catalysis, 2017, 7, 1610-1614.	5.5	88
336	Electrodeposition-Solvothermal Access to Ternary Mixed Metal Ni-Co-Fe Sulfides for Highly Efficient Electrocatalytic Water Oxidation in Alkaline Media. Electrochimica Acta, 2017, 230, 151-159.	2.6	54
337	X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiO _{<i>x</i>} , NiO _{<i>x</i>} , OH) _{(OH)_{<i>y</i>}, and CoNiO_{<i>x</i>}(OH)_{<i>y</i>}: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121,}	1.5	202
338	6455-6463. Silicone Nanofilament-Supported Mixed Nickel-Metal Oxides for Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2017, 164, F203-F208.	1.3	7
339	Fe-Treated Heteroatom (S/N/B/P)-Doped Graphene Electrocatalysts for Water Oxidation. ACS Catalysis, 2017, 7, 2381-2391.	5.5	99
340	An efficient ternary CoP _{2x} Se _{2(1â^'x)} nanowire array for overall water splitting. Nanoscale, 2017, 9, 3995-4001.	2.8	72
341	A comparison of the chemical, optical and electrocatalytic properties of water-oxidation catalysts for use in integrated solar-fuel generators. Energy and Environmental Science, 2017, 10, 987-1002.	15.6	50
342	Photocurrent of BiVO ₄ is limited by surface recombination, not surface catalysis. Chemical Science, 2017, 8, 3712-3719.	3.7	409
343	Oneâ€Step In Situ Growth of Iron–Nickel Sulfide Nanosheets on FeNi Alloy Foils: Highâ€Performance and Selfâ€Supported Electrodes for Water Oxidation. Small, 2017, 13, 1604161.	5.2	177
344	Preparation and phase transition of FeOOH nanorods: strain effects on catalytic water oxidation. Nanoscale, 2017, 9, 4751-4758.	2.8	50
345	Ultrathin Ironâ€Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Advanced Materials, 2017, 29, 1606793.	11.1	1,144
346	A self-assembled Ni(cyclam)-BTC network on ITO for an oxygen evolution catalyst in alkaline solution. Chemical Communications, 2017, 53, 3454-3457.	2.2	11

#	Article	IF	CITATIONS
347	Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017, 46, 1933-1954.	18.7	427
348	Hexagonal Arrays of Cylindrical Nickel Microstructures for Improved Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 7036-7043.	4.0	21
349	Ni ^{II} Coordination to an Alâ€Based Metal–Organic Framework Made from 2â€Aminoterephthalate for Photocatalytic Overall Water Splitting. Angewandte Chemie, 2017, 129, 3082-3086.	1.6	37
350	Ni ^{II} Coordination to an Alâ€Based Metal–Organic Framework Made from 2â€Aminoterephthalate for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 3036-3040.	7.2	175
351	Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743.	1.8	245
352	Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting. Science China Materials, 2017, 60, 193-207.	3.5	57
353	The secret behind the success of doping nickel oxyhydroxide with iron. Physical Chemistry Chemical Physics, 2017, 19, 7491-7497.	1.3	51
354	Iron–doped NiCoO 2 nanoplates as efficient electrocatalysts for oxygen evolution reaction. Applied Surface Science, 2017, 407, 177-184.	3.1	40
355	Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials. Energy Technology, 2017, 5, 775-795.	1.8	108
356	Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3050-3055.	3.3	175
357	FeCoNi Alloy as Noble Metalâ€Free Electrocatalyst for Oxygen Evolution Reaction (OER). ChemistrySelect, 2017, 2, 1630-1636.	0.7	66
358	Multilayer Ni/Fe thin films as oxygen evolution catalysts for solar fuel production. Journal Physics D: Applied Physics, 2017, 50, 104003.	1.3	15
359	Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies. Physical Chemistry Chemical Physics, 2017, 19, 8681-8693.	1.3	80
360	Electrochemical Hydrogen Evolution at Ordered Mo ₇ Ni ₇ . ACS Catalysis, 2017, 7, 3375-3383.	5.5	62
361	Standardized Benchmarking of Water Splitting Catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES) Setup. ACS Catalysis, 2017, 7, 3768-3778.	5.5	73
362	Highly active Ni–Fe double hydroxides as anode catalysts for electrooxidation of urea. New Journal of Chemistry, 2017, 41, 4190-4196.	1.4	79
363	Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability. Advanced Materials, 2017, 29, 1607017.	11.1	583
364	Improved Electrochemical Phase Diagrams from Theory and Experiment: The Ni–Water System and Its Complex Compounds. Journal of Physical Chemistry C, 2017, 121, 9782-9789.	1.5	163

#	Article	IF	CITATIONS
365	Photoelectrochemical Oxygen Evolution Reaction Activity of Amorphous Co–La Double Hydroxide-BiVO ₄ Fabricated by Pulse Plating Electrodeposition. ACS Energy Letters, 2017, 2, 1062-1069.	8.8	51
366	Facile and Scalable Synthesis of Robust Ni(OH) ₂ Nanoplate Arrays on NiAl Foil as Hierarchical Active Scaffold for Highly Efficient Overall Water Splitting. Advanced Science, 2017, 4, 1700084.	5.6	85
367	Cobalt-Borate Nanoarray: An Efficient and Durable Electrocatalyst for Water Oxidation under Benign Conditions. ACS Applied Materials & Interfaces, 2017, 9, 15383-15387.	4.0	30
368	In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction. Inorganic Chemistry Frontiers, 2017, 4, 1173-1181.	3.0	57
369	Anionic Regulated NiFe (Oxy)Sulfide Electrocatalysts for Water Oxidation. Small, 2017, 13, 1700610.	5.2	150
370	Influence on the Electrocatalytic Water Oxidation of M2+/M3+ Cation Arrangement in NiFe LDH: Experimental and Theoretical DFT Evidences. Electrocatalysis, 2017, 8, 383-391.	1.5	15
371	Highly active catalyst derived from a 3D foam of Fe(PO ₃) ₂ /Ni ₂ P for extremely efficient water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5607-5611.	3.3	302
372	Niâ€Fe Nitride Nanoplates on Nitrogenâ€Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Znâ€Air Battery. Small, 2017, 13, 1700099.	5.2	151
373	Electronic structure of Î ² -NiOOH with hydrogen vacancies and implications for energy conversion applications. MRS Communications, 2017, 7, 206-213.	0.8	4
374	Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides. Catalysis Letters, 2017, 147, 1533-1539.	1.4	43
375	Evaluation of electrodeposited α-Mn 2 O 3 as a catalyst for the oxygen evolution reaction. Catalysis Today, 2017, 290, 2-9.	2.2	65
376	Hydrothermal Synthesis of Monolithic Co ₃ Se ₄ Nanowire Electrodes for Oxygen Evolution and Overall Water Splitting with High Efficiency and Extraordinary Catalytic Stability. Advanced Energy Materials, 2017, 7, 1602579.	10.2	267
377	On the Electrolytic Stability of Iron-Nickel Oxides. CheM, 2017, 2, 590-597.	5.8	104
378	Self-Assembled Molecular Hybrids of CoS-DNA for Enhanced Water Oxidation with Low Cobalt Content. Inorganic Chemistry, 2017, 56, 6734-6745.	1.9	93
379	Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni ²⁺ and Its Combination with Photoelectrode. ACS Omega, 2017, 2, 432-442.	1.6	13
380	Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys. Angewandte Chemie - International Edition, 2017, 56, 6589-6593.	7.2	72
381	Oxygen evolution reaction over Fe site of BaZr x Fe 1-x O 3-δ perovskite oxides. Electrochimica Acta, 2017, 241, 433-439.	2.6	67
382	Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys. Angewandte Chemie, 2017, 129, 6689-6693.	1.6	5

#	Article	IF	CITATIONS
383	Partial-sacrificial-template Synthesis of Fe/Ni Phosphides on Ni Foam: a Strongly Stabilized and Efficient Catalyst for Electrochemical Water Splitting. Electrochimica Acta, 2017, 242, 260-267.	2.6	61
384	Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chemical Science, 2017, 8, 4779-4794.	3.7	172
385	Ultrafine Metal Nanoparticles/Nâ€Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binderâ€Free Water Splitting Catalysts. Advanced Energy Materials, 2017, 7, 1700220.	10.2	156
386	Highly Sensitive Nonenzymatic Glucose Sensor Based on 3D Ultrathin NiFe Layered Double Hydroxide Nanosheets. Electroanalysis, 2017, 29, 1755-1761.	1.5	63
387	In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry A, 2017, 5, 11009-11015.	5.2	85
388	Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chemical Communications, 2017, 53, 5710-5713.	2.2	138
389	NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting. Advanced Energy Materials, 2017, 7, 1601805.	10.2	109
390	Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis. Applied Catalysis B: Environmental, 2017, 204, 486-496.	10.8	148
391	One-step electroreductively deposited iron-cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting. Nano Energy, 2017, 38, 576-584.	8.2	65
392	Efficient Overall Waterâ€Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres. Angewandte Chemie, 2017, 129, 588-592.	1.6	63
393	Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catalysis, 2017, 7, 365-379.	5.5	154
394	Efficient Overall Waterâ€Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres. Angewandte Chemie - International Edition, 2017, 56, 573-577.	7.2	209
395	Binderless, Free-Standing Porous Interconnects of Ni–Fe Alloy Decorated Reduced Graphene Oxide for Oxygen Evolution Reaction. Langmuir, 2017, 33, 2-10.	1.6	30
396	Understanding Structure-Dependent Catalytic Performance of Nickel Selenides for Electrochemical Water Oxidation. ACS Catalysis, 2017, 7, 310-315.	5.5	155
397	Layered Fe-Substituted LiNiO ₂ Electrocatalysts for High-Efficiency Oxygen Evolution Reaction. ACS Energy Letters, 2017, 2, 1654-1660.	8.8	46
398	In situ surface engineering of nickel inverse opal for enhanced overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2017, 5, 14873-14880.	5.2	31
399	Hierarchically structured, oxygen deficient, tungsten oxide morphologies for enhanced photoelectrochemical charge transfer and stability. Journal of Materials Chemistry A, 2017, 5, 14898-14905.	5.2	33
400	Exfoliation of layered double hydroxide solids into functional nanosheets. Applied Clay Science, 2017, 144, 60-78.	2.6	87

#	Article	IF	CITATIONS
401	Freeâ€Standing Holey Ni(OH) ₂ Nanosheets with Enhanced Activity for Water Oxidation. Small, 2017, 13, 1700334.	5.2	97
402	In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 18-27.	0.8	53
403	Influence of Electrolyte Cations on Ni(Fe)OOH Catalyzed Oxygen Evolution Reaction. Chemistry of Materials, 2017, 29, 4761-4767.	3.2	105
404	Colloidal synthesis of iridium-iron nanoparticles for electrocatalytic oxygen evolution. Sustainable Energy and Fuels, 2017, 1, 1199-1203.	2.5	19
405	Monolithic Photoassisted Water Splitting Device Using Anodized Niâ€Fe Oxygen Evolution Catalytic Substrate. Advanced Energy Materials, 2017, 7, 1700659.	10.2	35
406	A Cost-Efficient Bifunctional Ultrathin Nanosheets Array for Electrochemical Overall Water Splitting. Small, 2017, 13, 1700355.	5.2	72
407	Earth-abundant amorphous catalysts for electrolysis of water. Chinese Journal of Catalysis, 2017, 38, 991-1005.	6.9	66
408	Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy, 2017, 39, 77-85.	8.2	216
409	Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media. Advanced Materials, 2017, 29, 1606570.	11.1	441
410	Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Research, 2017, 10, 2988-2997.	5.8	38
411	Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy, 2017, 39, 30-43.	8.2	236
412	Postâ€5ynthetic Immobilization of Ni Ions in a Porousâ€Organic Polymerâ€Graphene Composite for Nonâ€Noble Metal Electrocatalytic Water Oxidation. ChemCatChem, 2017, 9, 2946-2951.	1.8	16
413	Highly Stable Threeâ€Dimensional Porous Nickelâ€Iron Nitride Nanosheets for Full Water Splitting at High Current Densities. Chemistry - A European Journal, 2017, 23, 10187-10194.	1.7	61
414	Highly stable three-dimensional nickel–iron oxyhydroxide catalysts for oxygen evolution reaction at high current densities. Electrochimica Acta, 2017, 245, 770-779.	2.6	37
415	Hierarchical Fe-doped NiO x nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy, 2017, 38, 167-174.	8.2	160
416	Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiO core-shell heterostructured nanoparticulate film. Nano Energy, 2017, 38, 175-184.	8.2	71
417	Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Journal of the American Chemical Society, 2017, 139, 8320-8328.	6.6	745
418	Pulsed laser-deposited n-Si/NiO _x photoanodes for stable and efficient photoelectrochemical water splitting. Catalysis Science and Technology, 2017, 7, 2632-2638.	2.1	24

#	Article	IF	CITATIONS
419	Bimetallic Ni–Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2017, 5, 13648-13658.	5.2	191
420	Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts. Angewandte Chemie, 2017, 129, 8778-8782.	1.6	54
421	Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 8652-8656.	7.2	115
422	An alkaline electro-activated Fe–Ni phosphide nanoparticle-stack array for high-performance oxygen evolution under alkaline and neutral conditions. Journal of Materials Chemistry A, 2017, 5, 13329-13335.	5.2	135
423	Laccase-Catalyzed Bioelectrochemical Oxidation of Water Assisted with Visible Light. ACS Catalysis, 2017, 7, 4881-4889.	5.5	20
424	Adjusting the electronic structure by Ni incorporation: a generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. Journal of Materials Chemistry A, 2017, 5, 13336-13340.	5.2	49
425	Facile fabrication of robust 3D Fe–NiSe nanowires supported on nickel foam as a highly efficient, durable oxygen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 14639-14645.	5.2	74
426	Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. ACS Applied Materials & Interfaces, 2017, 9, 14013-14022.	4.0	59
427	Study of the Oxygen Evolution Reaction Catalytic Behavior of Co _{<i>x</i>} Ni _{1–<i>x</i>} Fe ₂ O ₄ in Alkaline Medium. ACS Applied Materials & Interfaces, 2017, 9, 13132-13141.	4.0	112
428	In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation. Science China Materials, 2017, 60, 324-334.	3.5	107
429	The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy, 2017, 35, 350-357.	8.2	237
430	Manganese–Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts. Journal of the American Chemical Society, 2017, 139, 5579-5587.	6.6	47
431	Atomic-scale topochemical preparation of crystalline Fe ³⁺ -doped β-Ni(OH) ₂ for an ultrahigh-rate oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 7753-7758.	5.2	80
432	Ni Nanoparticles Decorated NiFe Layered Double Hydroxide as Bifunctional Electrochemical Catalyst. Journal of the Electrochemical Society, 2017, 164, H307-H310.	1.3	62
433	Orthorhombic α-NiOOH Nanosheet Arrays: Phase Conversion and Efficient Bifunctional Electrocatalysts for Full Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 3808-3818.	3.2	92
434	Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions. Scientific Reports, 2017, 7, 45384.	1.6	48
435	A general approach to synthesise ultrathin NiM (M = Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7769-7775.	5.2	94
436	In situ characterization of cofacial Co(IV) centers in Co ₄ O ₄ cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3855-3860.	3.3	93

#	Article	IF	CITATIONS
437	Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction. ACS Catalysis, 2017, 7, 3277-3283.	5.5	35
438	Microwave-assisted synthesis of a nanoamorphous (Ni _{0.8} ,Fe _{0.2}) oxide oxygen-evolving electrocatalyst containing only "fast―sites. Journal of Materials Chemistry A, 2017, 5, 11661-11670.	5.2	36
439	A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation. Journal of Power Sources, 2017, 349, 68-74.	4.0	45
440	Hierarchically Structured 3D Integrated Electrodes by Galvanic Replacement Reaction for Highly Efficient Water Splitting. Advanced Energy Materials, 2017, 7, 1700107.	10.2	116
441	Three dimensionally ordered mesoporous hydroxylated Ni _x Co _{3â^'x} O ₄ spinels for the oxygen evolution reaction: on the hydroxyl-induced surface restructuring effect. Journal of Materials Chemistry A, 2017, 5, 7173-7183.	5.2	52
442	Investigating the behavior of various cocatalysts on LaTaON ₂ photoanode for visible light water splitting. Physical Chemistry Chemical Physics, 2017, 19, 656-662.	1.3	33
443	Photodeposited ruthenium dioxide films for oxygen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 1575-1580.	5.2	24
444	An Operando Investigation of (Ni–Fe–Co–Ce)O _{<i>x</i>} System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 1248-1258.	5.5	156
445	Recent developments in electrochemical water oxidation. Current Opinion in Electrochemistry, 2017, 1, 40-45.	2.5	50
446	Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chemistry of Materials, 2017, 29, 950-957.	3.2	173
447	A facile and efficient strategy to gram-scale preparation of composition-controllable Ni-Fe LDHs nanosheets for superior OER catalysis. Electrochimica Acta, 2017, 225, 303-309.	2.6	46
448	Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells. Journal of Materials Chemistry A, 2017, 5, 1996-2003.	5.2	20
449	Developments of Metal Phosphides as Efficient OER Precatalysts. Journal of Physical Chemistry Letters, 2017, 8, 144-152.	2.1	290
450	Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides. Sustainable Energy and Fuels, 2017, 1, 207-216.	2.5	38
451	Vertically Aligned Porous Nickel(II) Hydroxide Nanosheets Supported on Carbon Paper with Longâ€Term Oxygen Evolution Performance. Chemistry - an Asian Journal, 2017, 12, 543-551.	1.7	118
452	Highly efficient Fe x Ni 1â^' x O y /CP electrode prepared via simple soaking and heating treatments for electrocatalytic water oxidation. Journal of Energy Chemistry, 2017, 26, 428-432.	7.1	15
453	Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalystÂregeneration. Nature Energy, 2017, 2, .	19.8	298
454	Enhancing Oxygen Evolution Reaction at High Current Densities on Amorphousâ€Like Ni–Fe–S Ultrathin Nanosheets via Oxygen Incorporation and Electrochemical Tuning. Advanced Science, 2017, 4, 1600343.	5.6	121

ARTICLE IF CITATIONS Materials for solar fuels and chemicals. Nature Materials, 2017, 16, 70-81. 13.3 1,163 455 Amorphous Ni_{0.75}Fe_{0.25}(OH)₂â€Decorated Layered Double Perovskite Pr_{0.5}Ba_{0.5}CoO_{3â€<i>ĵ`</i>} for Highly Efficient and Stable 1.7 Water Oxidation. ChemElectroChem, 2017, 4, 550-556. Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials 457 5.2 140 Chemistry A, 2017, 5, 2021-2028. Reduced Graphene Oxide Supported Nickel–Manganese–Cobalt Spinel Ternary Oxide Nanocomposites and Their Chemically Converted Sulfide Nanocomposites as Efficient Electrocatalysts for Alkaline Water Splitting. ACS Catalysis, 2017, 7, 819-832. 458 101 Vertically Aligned FeOOH/NiFe Layered Double Hydroxides Electrode for Highly Efficient Oxygen 459 4.0 174 Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2017, 9, 464-471. Improving the catalytic performance of nickel-iron oxide to oxygen evolution reaction by refining its particles with the assistance of ionic liquid. Ionics, 2017, 23, 789-794. 460 1.2 Electro-oxidation of a cobalt based steel in LiOH: a non-noble metal based electro-catalyst suitable 461 2.8 23 for durable water-splitting in an acidic milieu. Nanoscale, 2017, 9, 17829-17838. Amorphous NiFe(oxy)hydroxide nanosheet integrated partially exfoliated graphite foil for high 462 5.2 efficiency oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24208-24216. High-efficient electrocatalysts by unconventional acid-etching for overall water splitting. Journal of 463 5.2 26 Materials Chemistry A, 2017, 5, 24153-24158. 3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution. Science Bulletin, 2017, 4.3 464 62, 1373-1379. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. 465 7.193 Journal of Energy Chemistry, 2017, 26, 1094-1106. Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles. Nano 466 4.5 164 Letters, 2017, 17, 6735-6741 Fabrication of Nanoporous Nickel–Iron Hydroxylphosphate Composite as Bifunctional and Reversible Catalyst for Highly Efficient Intermittent Water Splitting. ACS Applied Materials & amp; Interfaces, 2017, 467 4.0 76 9, 35837-35846. Microwave-Assisted Synthesis of a Stainless Steel Mesh-Supported Co₃O₄ Microrod Array As a Highly Efficient Catalyst for Electrochemical Water Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11069-11079. 3.2 Iron hydroxyphosphate and Sn-incorporated iron hydroxyphosphate: efficient and stable 469 2.1 34 electrocatalysts for oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 5092-5104. Recovered spinel MnCo₂O₄from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Transactions, 2017, 46, 14382-14392. Chemical Insights from Theoretical Electronic States in Nickel Hydroxide and Monolayer Surface 471 1.55 Model. Journal of Physical Chemistry C, 2017, 121, 24603-24611. Surface and Interface Engineering for Photoelectrochemical Water Oxidation. Joule, 2017, 1, 290-305. 11.7 156

#	Article	IF	CITATIONS
473	CoSe _x nanocrystalline-dotted CoCo layered double hydroxide nanosheets: a synergetic engineering process for enhanced electrocatalytic water oxidation. Nanoscale, 2017, 9, 16256-16263.	2.8	38
474	Potentiostatic phase formation of β-CoOOH on pulsed laser deposited biphasic cobalt oxide thin film for enhanced oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 23053-23066.	5.2	50
475	Overall Water Splitting with Room-Temperature Synthesized NiFe Oxyfluoride Nanoporous Films. ACS Catalysis, 2017, 7, 8406-8412.	5.5	91
476	Mechanistic understanding on oxygen evolution reaction on γ-FeOOH (010) under alkaline condition based on DFT computational study. Chinese Journal of Catalysis, 2017, 38, 1621-1628.	6.9	17
477	Self-Supported Hierarchical FeCoNi-LTH/NiCo ₂ O ₄ /CC Electrodes with Enhanced Bifunctional Performance for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 36917-36926.	4.0	76
478	Chemical-state evolution of Ni in Mn Ni/polypyrrole nanocomposites under bifunctional air electrode conditions, investigated by quasi-in situ multi-scale soft X-ray absorption spectroscopy. Materials Today Energy, 2017, 6, 154-163.	2.5	6
479	Morphology Dynamics of Single-Layered Ni(OH) ₂ /NiOOH Nanosheets and Subsequent Fe Incorporation Studied by <i>in Situ</i> Electrochemical Atomic Force Microscopy. Nano Letters, 2017, 17, 6922-6926.	4.5	121
480	Charge Transfer in Ultrafine LDH Nanosheets/Graphene Interface with Superior Capacitive Energy Storage Performance. ACS Applied Materials & amp; Interfaces, 2017, 9, 37645-37654.	4.0	134
481	Ionic Processes in Water Electrolysis: The Role of Ion-Selective Membranes. ACS Energy Letters, 2017, 2, 2625-2634.	8.8	68
482	Benzoate Anions-Intercalated Layered Nickel Hydroxide Nanobelts Array: An Earth-Abundant Electrocatalyst with Greatly Enhanced Oxygen Evolution Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9625-9629.	3.2	36
483	Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution. Nano Letters, 2017, 17, 6040-6046.	4.5	135
484	High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr Removal. ACS Sustainable Chemistry and Engineering, 2017, 5, 10072-10083.	3.2	80
485	Vapor-fed solar hydrogen production exceeding 15% efficiency using earth abundant catalysts and anion exchange membrane. Sustainable Energy and Fuels, 2017, 1, 2061-2065.	2.5	37
486	Dealloying-directed synthesis of efficient mesoporous CoFe-based catalysts towards the oxygen evolution reaction and overall water splitting. Nanoscale, 2017, 9, 16467-16475.	2.8	67
487	Photo-Induced Performance Enhancement of Tantalum Nitride for Solar Water Oxidation. Joule, 2017, 1, 831-842.	11.7	46
488	Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 8033-8041.	5.5	56
489	Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 9.54%-efficient unassisted solar water splitting. Nano Energy, 2017, 42, 1-7.	8.2	43
490	The promoting effect of tetravalent cerium on the oxygen evolution activity of copper oxide catalysts. Physical Chemistry Chemical Physics, 2017, 19, 31545-31552.	1.3	44

#	Article	IF	CITATIONS
491	Origin of Photoelectrochemical Generation of Dihydrogen by a Dye-Sensitized Photocathode without an Intentionally Introduced Catalyst. Journal of Physical Chemistry C, 2017, 121, 25836-25846.	1.5	16
492	Hexagonal Sphericon Hematite with High Performance for Water Oxidation. Advanced Materials, 2017, 29, 1703792.	11.1	46
493	Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. Journal of Physical Chemistry C, 2017, 121, 25421-25429.	1.5	25
494	Highly Efficient and Stable Waterâ€Oxidation Electrocatalysis with a Very Low Overpotential using FeNiP Substitutionalâ€Solidâ€Solution Nanoplate Arrays. Advanced Materials, 2017, 29, 1704075.	11.1	163
495	From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity. ACS Catalysis, 2017, 7, 8558-8571.	5.5	50
496	Characterization of Electrocatalytic Water Splitting and CO ₂ Reduction Reactions Using In Situ/Operando Raman Spectroscopy. ACS Catalysis, 2017, 7, 7873-7889.	5.5	196
497	Highly Active Fe Sites in Ultrathin Pyrrhotite Fe ₇ S ₈ Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution. ACS Central Science, 2017, 3, 1221-1227.	5.3	136
498	Rapid Quantification of Film Thickness and Metal Loading for Electrocatalytic Metal Oxide Films. Chemistry of Materials, 2017, 29, 7272-7277.	3.2	11
499	Coupling Ag-doping and rich oxygen vacancies in mesoporous NiCoO nanorods supported on nickel foam for highly efficient oxygen evolution. Inorganic Chemistry Frontiers, 2017, 4, 1783-1790.	3.0	34
500	Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism. Materials Today Energy, 2017, 6, 1-26.	2.5	301
501	One-Step Growth of Iron–Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 28627-28634.	4.0	116
502	In situ decoration of stainless steel nanoparticles for synergistic enhancement of α-Ni(OH)2 oxygen evolution reaction catalysis. Materials Chemistry Frontiers, 2017, 1, 2376-2382.	3.2	19
503	Rational Design of Cobalt–Iron Selenides for Highly Efficient Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 33833-33840.	4.0	140
504	Controlled Synthesis of 3D Flowerâ€like Ni ₂ P Composed of Mesoporous Nanoplates for Overall Water Splitting. Chemistry - an Asian Journal, 2017, 12, 2956-2961.	1.7	30
505	Enhanced Oxygen Evolution during Water Electrolysis at De-Alloyed Nickel Thin Film Electrodes. Journal of the Electrochemical Society, 2017, 164, F1196-F1203.	1.3	7
506	Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation. Electrochimica Acta, 2017, 253, 498-505.	2.6	40
508	An advanced flower-like Co-Ni/PI-CNT film electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 729, 19-26.	2.8	5
509	PVP-assisted synthesis of porous CoO prisms with enhanced electrocatalytic oxygen evolution properties. Journal of Energy Chemistry, 2017, 26, 1210-1216.	7.1	26

#	Article	IF	CITATIONS
510	Atomicâ€Level Coupled Interfaces and Lattice Distortion on CuS/NiS ₂ Nanocrystals Boost Oxygen Catalysis for Flexible Znâ€Air Batteries. Advanced Functional Materials, 2017, 27, 1703779.	7.8	200
511	Urea-glass preparation of titanium niobium nitrides and subsequent oxidation to photoactive titanium niobium oxynitrides. Dalton Transactions, 2017, 46, 12081-12087.	1.6	7
512	Phosphorus and Fluorine Coâ€Doping Induced Enhancement of Oxygen Evolution Reaction in Bimetallic Nitride Nanorods Arrays: Ionic Liquidâ€Driven and Mechanism Clarification. Chemistry - A European Journal, 2017, 23, 16862-16870.	1.7	41
513	Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chemical Communications, 2017, 53, 10906-10909.	2.2	328
514	FeNi ₂ Se ₄ –Reduced Graphene Oxide Nanocomposite: Enhancing Bifunctional Electrocatalytic Activity for Oxygen Evolution and Reduction through Synergistic Effects. Advanced Sustainable Systems, 2017, 1, 1700086.	2.7	35
515	<i>In Situ</i> Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup. Analytical Chemistry, 2017, 89, 10679-10686.	3.2	57
516	Oxygen evolution on Fe-doped NiO electrocatalysts deposited via microplasma. Nanoscale, 2017, 9, 15070-15082.	2.8	60
517	Ultrafast and large scale preparation of superior catalyst for oxygen evolution reaction. Journal of Power Sources, 2017, 365, 320-326.	4.0	41
518	Electrocatalytic water oxidation at amorphous trimetallic oxides based on FeCoNiO _x . RSC Advances, 2017, 7, 43083-43089.	1.7	30
519	Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 2017, 7, 7196-7225.	5.5	857
520	Anomalous in situ Activation of Carbon-Supported Ni2P Nanoparticles for Oxygen Evolving Electrocatalysis in Alkaline Media. Scientific Reports, 2017, 7, 8236.	1.6	21
521	Autologous growth of nickel oxyhydroxides with in situ electrochemical iron doping for efficient oxygen evolution reactions. Materials Chemistry Frontiers, 2017, 1, 2541-2546.	3.2	24
522	A Highly Versatile and Adaptable Artificial Leaf with Floatability and Planar Compact Design Applicable in Various Natural Environments. Advanced Materials, 2017, 29, 1702431.	11.1	13
523	Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalysts. ACS Catalysis, 2017, 7, 5399-5409.	5.5	120
524	NiFe Layered Double Hydroxide Nanoparticles on Co,N odoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2017, 7, 1700467.	10.2	422
525	Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 5871-5879.	5.5	437
526	Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering. Energy and Environmental Science, 2017, 10, 2124-2136.	15.6	185
527	Supercritical fluid processing for the synthesis of NiS ₂ nanostructures as efficient electrocatalysts for electrochemical oxygen evolution reactions. Catalysis Science and Technology, 2017, 7, 3591-3597.	2.1	44

#	Article	IF	CITATIONS
528	Surface configuration and wettability of nickel(oxy)hydroxides: a first-principles investigation. Physical Chemistry Chemical Physics, 2017, 19, 22659-22669.	1.3	31
529	Electrochemical synthesis of Au-Ni(OH) 2 -nanocomposite on glassy carbon electrode as highly active bifunctional electrocatalyst for oxygen evolution and oxygen reduction reactions. Electrochemistry Communications, 2017, 82, 61-65.	2.3	18
530	Monodispersed Mesoporous Silica Spheres Supported Co ₃ O ₄ as Robust Catalyst for Oxygen Evolution Reaction. ChemCatChem, 2017, 9, 4238-4243.	1.8	15
531	A NiFe-Based Hierarchically Structured 3D Electrode by Hydrothermal Deposition for Highly Efficient Water Oxidation. Electrochimica Acta, 2017, 247, 835-842.	2.6	12
532	From a Molecular 2Feâ€2Se Precursor to a Highly Efficient Iron Diselenide Electrocatalyst for Overall Water Splitting. Angewandte Chemie, 2017, 129, 10642-10646.	1.6	31
533	From a Molecular 2Feâ€2Se Precursor to a Highly Efficient Iron Diselenide Electrocatalyst for Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 10506-10510.	7.2	167
534	Promotional Effect of Fe Impurities in Graphene Precursors on the Activity of MnO _X /Graphene Electrocatalysts for the Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2017, 4, 2835-2841.	1.7	17
535	Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 9, 12231-12247.	2.8	403
536	Synthesis and oxygen evolution reaction (OER) catalytic performance of Ni _{2â^'x} Ru _x P nanocrystals: enhancing activity by dilution of the noble metal. Journal of Materials Chemistry A, 2017, 5, 17609-17618.	5.2	59
537	Interfaceâ€Engineered Ni(OH) ₂ /βâ€like FeOOH Electrocatalysts for Highly Efficient and Stable Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2017, 12, 2720-2726.	1.7	43
538	Interface Control of Photoelectrochemical Water Oxidation Performance with Ni _{1–<i>x</i>} Fe _{<i>x</i>} O _{<i>y</i>} Modified Hematite Photoanodes. Chemistry of Materials, 2017, 29, 6674-6683.	3.2	61
539	Tri-metallic phytate in situ electrodeposited on 3D Ni foam as a highly efficient electrocatalyst for enhanced overall water splitting. Journal of Materials Chemistry A, 2017, 5, 18786-18792.	5.2	24
540	Post-Synthetic Immobilization of Ni Ions in Porous-Organic Polymer-Graphene Composite for the Non-Noble Metal Electrocatalytic Water Oxidation. ChemCatChem, 2017, 9, 2894-2894.	1.8	0
541	Electrochemical study of the promoting effect of Fe on oxygen evolution at thin â€ [~] NiFe–Bi' films and the inhibiting effect of Al in borate electrolyte. Catalysis Science and Technology, 2017, 7, 3876-3891.	2.1	17
542	Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite. ACS Central Science, 2017, 3, 1015-1025.	5.3	61
543	Room-Temperature Synthesis FeNiCo Layered Double Hydroxide as an Excellent Electrochemical Water Oxidation Catalyst. Journal of the Electrochemical Society, 2017, 164, H755-H759.	1.3	26
544	A self-generated and degradation-resistive cratered stainless steel electrocatalyst for efficient water oxidation in a neutral electrolyte. Journal of Materials Chemistry A, 2017, 5, 19210-19219.	5.2	23
545	Understanding the Oxygen Evolution Reaction on a Twoâ€Dimensional NiO ₂ Catalyst. ChemElectroChem, 2017, 4, 2764-2770.	1.7	29

#	Article	IF	CITATIONS
546	An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting. Nano Letters, 2017, 17, 5416-5422.	4.5	46
547	Amorphous Bimetallic Oxide–Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Materials, 2017, 29, 1701410.	11.1	243
548	Stabilizing Silicon Photocathodes by Solution-Deposited Ni–Fe Layered Double Hydroxide for Efficient Hydrogen Evolution in Alkaline Media. ACS Energy Letters, 2017, 2, 1939-1946.	8.8	61
549	Three-dimensional printed cellular stainless steel as a high-activity catalytic electrode for oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 18176-18182.	5.2	68
550	Biosensing of Cholesterol and Glucose Facilitated by Cationic Polymer Overlayers on Ni(OH) ₂ /NiOOH at Physiological pH. Journal of the Electrochemical Society, 2017, 164, H561-H571.	1.3	8
551	Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. Journal of the American Chemical Society, 2017, 139, 11361-11364.	6.6	532
552	Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nature Communications, 2017, 8, 2022.	5.8	147
553	Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nature Communications, 2017, 8, 15341.	5.8	1,042
554	Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 25378-25384.	5.2	100
555	Hierarchical Mesoporous NiO/MnO ₂ @PANI Core–Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. ACS Applied Materials & Interfaces, 2017, 9, 42676-42687.	4.0	100
556	Interface Engineering of Ni ₃ N@Fe ₃ N Heterostructure Supported on Carbon Fiber for Enhanced Water Oxidation. Industrial & Engineering Chemistry Research, 2017, 56, 14245-14251.	1.8	35
557	A facile and scalable complexation-precipitation method of iron doped nickel hydroxide nanosheets as a superior oxygen evolution catalyst. International Journal of Hydrogen Energy, 2017, 42, 26575-26585.	3.8	30
558	Crystal lattice distortion in ultrathin Co(OH) ₂ nanosheets inducing elongated Co–O _{OH} bonds for highly efficient oxygen evolution reaction. Green Chemistry, 2017, 19, 5809-5817.	4.6	43
559	Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356, 165-172.	3.1	140
560	Synergistic Activity of Co and Fe in Amorphous Co <i>x</i> –Fe–B Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 40333-40343.	4.0	145
561	"Cuju―Structured Iron Diselenide-Derived Oxide: A Highly Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 40351-40359.	4.0	61
562	Tuning Mixed Nickel Iron Phosphosulfide Nanosheet Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Catalysis, 2017, 7, 8549-8557.	5.5	268
563	Atomically dispersed hybrid nickel-iridium sites for photoelectrocatalysis. Nature Communications, 2017, 8, 1341.	5.8	37

#	Article	IF	CITATIONS
564	NiFeCr Hydroxide Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 41239-41245.	4.0	96
565	Surface Restructuring of Nickel Sulfide Generates Optimally Coordinated Active Sites for Oxygen Reduction Catalysis. Joule, 2017, 1, 600-612.	11.7	89
566	Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels. ChemSusChem, 2017, 10, 4277-4305.	3.6	75
567	Fixierung von NiFeâ€Hydrotalkitâ€Pulverkatalysatoren für die postelektrolytische strukturelle Charakterisierung von Elektrokatalysatoren für die Sauerstoffevolution. Angewandte Chemie, 2017, 129, 11411-11416.	1.6	15
568	Powder Catalyst Fixation for Postâ€Electrolysis Structural Characterization of NiFe Layered Double Hydroxide Based Oxygen Evolution Reaction Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 11258-11262.	7.2	130
569	Sugar Blowingâ€Induced Porous Cobalt Phosphide/Nitrogenâ€Doped Carbon Nanostructures with Enhanced Electrochemical Oxidation Performance toward Water and Other Small Molecules. Small, 2017, 13, 1700796.	5.2	65
570	Dual Mechanisms: Hydrogen Transfer during Water Oxidation Catalysis of Pure and Fe-Doped Nickel Oxyhydroxide. Journal of Physical Chemistry C, 2017, 121, 16819-16824.	1.5	18
571	Hollow nanocubes composed of well-dispersed mixed metal-rich phosphides in N-doped carbon as highly efficient and durable electrocatalysts for the oxygen evolution reaction at high current densities. Journal of Materials Chemistry A, 2017, 5, 19656-19663.	5.2	93
572	Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Applied Catalysis B: Environmental, 2017, 218, 470-479.	10.8	122
573	Electrodeposition of Cobalt Nickel Hydroxide Composite as a High-Efficiency Catalyst for Hydrogen Evolution Reactions. Journal of the Electrochemical Society, 2017, 164, H587-H592.	1.3	27
574	Bifunctional Iron–Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting. Electrochimica Acta, 2017, 247, 666-673.	2.6	92
575	Controlling the amount of co-catalyst as a critical factor in determining the efficiency of photoelectrodes: The case of nickel (II) hydroxide on vanadate photoanodes. Applied Catalysis B: Environmental, 2017, 217, 437-447.	10.8	24
576	Oxygen evolution catalysis in alkaline conditions over hard templated nickel-cobalt based spinel oxides. International Journal of Hydrogen Energy, 2017, 42, 27910-27918.	3.8	36
577	A facile conversion of a Ni/Fe coordination polymer to a robust electrocatalyst for the oxygen evolution reaction. RSC Advances, 2017, 7, 32819-32825.	1.7	21
578	A Density Functional + <i>U</i> Assessment of Oxygen Evolution Reaction Mechanisms on β-NiOOH. ACS Catalysis, 2017, 7, 5329-5339.	5.5	110
579	Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2017, 9, 21225-21233.	4.0	96
580	A highly active and stable La0.5Sr0.5Ni0.4Fe0.6O3-ĺ perovskite electrocatalyst for oxygen evolution reaction in alkaline media. Electrochimica Acta, 2017, 246, 997-1003.	2.6	41
581	Electrolytic CO ₂ Reduction in Tandem with Oxidative Organic Chemistry. ACS Central Science, 2017, 3, 778-783.	5.3	93

#	Article	IF	Citations
582	Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation. Nature Communications, 2017, 8, 15968.	5.8	177
583	Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction. Nano Research, 2017, 10, 3629-3637.	5.8	42
584	Identifying the Active Sites on Nâ€doped Graphene toward Oxygen Evolution Reaction. ChemCatChem, 2017, 9, 846-852.	1.8	45
585	Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem, 2017, 10, 156-165.	3.6	117
586	Metallic NiPS ₃ @NiOOH Core–Shell Heterostructures as Highly Efficient and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 229-237.	5.5	233
587	Electrocatalytic Oxygen Evolution Reaction in Acidic Environments – Reaction Mechanisms and Catalysts. Advanced Energy Materials, 2017, 7, 1601275.	10.2	847
588	Simple Aqueous Preparation of High Activity and Stability NiFe Hydrous Oxide Catalysts for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 1106-1112.	3.2	24
589	Bifunctional Ni1â^'xFex layered double hydroxides/Ni foam electrodes for high-efficient overall water splitting: A study on compositional tuning and valence state evolution. International Journal of Hydrogen Energy, 2017, 42, 5560-5568.	3.8	55
590	Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chemistry of Materials, 2017, 29, 120-140.	3.2	473
591	Superior Electrochemical Oxygen Evolution Enabled by Threeâ€Đimensional Layered Double Hydroxide Nanosheet Superstructures. ChemCatChem, 2017, 9, 84-88.	1.8	40
592	CoO functionalized IrO2-Sb2O5-SnO2 anode with an enhanced activity and stability for electrocatalytic oxygen evolution. Journal of Alloys and Compounds, 2017, 696, 257-265.	2.8	24
593	Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFeâ€based Electrode for Water Oxidation. ChemSusChem, 2017, 10, 394-400.	3.6	63
594	Effect of Chromium Doping on Electrochemical Water Oxidation Activity by Co _{3–<i>x</i>} Cr _{<i>x</i>} O ₄ Spinel Catalysts. ACS Catalysis, 2017, 7, 443-451.	5.5	92
595	Self-supported ternary Ni-Fe-P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts. Electrochimica Acta, 2017, 258, 423-432.	2.6	90
596	Hybrid Organic–Inorganic Transitionâ€Metal Phosphonates as Precursors for Water Oxidation Electrocatalysts. Advanced Functional Materials, 2017, 27, 1703158.	7.8	55
597	Quartz Crystal Microbalance Electronic Interfacing Systems: A Review. Sensors, 2017, 17, 2799.	2.1	126
598	Facile Synthesis of Ni-Co LDH Nanocages with Improved Electrocatalytic Activity for Water Oxidation Reaction. International Journal of Electrochemical Science, 2017, 12, 10003-10014.	0.5	23
599	Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions. Small, 2018, 14, e1703749.	5.2	60

#	Article	IF	Citations
600	Fe3O4@NiSx/rGO composites with amounts of heterointerfaces and enhanced electrocatalytic properties for oxygen evolution. Applied Surface Science, 2018, 442, 256-263.	3.1	51
601	Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy and Environmental Science, 2018, 11, 744-771.	15.6	1,055
602	Tracking precursor degradation during the photo-induced formation of amorphous metal oxide films. Journal of Materials Chemistry A, 2018, 6, 4544-4549.	5.2	6
603	Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 9407-9414.	4.0	38
604	Challenges and Prospects in Solar Water Splitting and CO ₂ Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis, 2018, 8, 3602-3635.	5.5	365
605	In Situ Synthesis of Core–Shell-Ni ₃ Fe(OH) ₉ /Ni ₃ Fe Hybrid Nanostructures as Highly Active and Stable Bifunctional Catalysts for Water Electrolysis. ACS Applied Energy Materials, 2018, 1, 986-992.	2.5	15
606	pH-Dependent Catalytic Reaction Pathway for Water Splitting at the BiVO ₄ –Water Interface from the Band Alignment. ACS Energy Letters, 2018, 3, 829-834.	8.8	41
607	NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 10115-10122.	4.0	68
608	Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 3876-3879.	6.6	817
609	A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy and Environmental Science, 2018, 11, 1287-1298.	15.6	205
610	The role of Cr doping in Ni Fe oxide/(oxy)hydroxide electrocatalysts for oxygen evolution. Electrochimica Acta, 2018, 265, 10-18.	2.6	79
611	Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 2702-2706.	1.6	50
612	Performance and failure modes of Si anodes patterned with thin-film Ni catalyst islands for water oxidation. Sustainable Energy and Fuels, 2018, 2, 983-998.	2.5	24
613	In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Science Advances, 2018, 4, eaap7970.	4.7	176
614	Earthâ€Abundant Silicon for Facilitating Water Oxidation over Ironâ€Based Perovskite Electrocatalyst. Advanced Materials Interfaces, 2018, 5, 1701693.	1.9	53
615	pH-Dependent Surface Chemistry from First Principles: Application to the BiVO ₄ (010)–Water Interface. ACS Applied Materials & Interfaces, 2018, 10, 10011-10021.	4.0	46
616	Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Applied Catalysis B: Environmental, 2018, 227, 340-348.	10.8	110
617	Room temperature-formed iron-doped nickel hydroxide on nickel foam as a 3D electrode for low polarized and high-current-density oxygen evolution. Chemical Communications, 2018, 54, 3262-3265.	2.2	43

#	Article	IF	CITATIONS
618	Oxygen Evolution Catalysis with Mössbauerite—A Trivalent Ironâ€Only Layered Double Hydroxide. Chemistry - A European Journal, 2018, 24, 9004-9008.	1.7	15
619	Low-Symmetry Mesoporous Titanium Dioxide (<i>lsm</i> -TiO ₂) Electrocatalyst for Efficient and Durable Oxygen Evolution in Aqueous Alkali. Journal of the Electrochemical Society, 2018, 165, H300-H309.	1.3	17
620	Freestanding Nonâ€Precious Metal Electrocatalysts for Oxygen Evolution and Reduction Reactions. ChemElectroChem, 2018, 5, 1786-1804.	1.7	32
621	A Cu ₂ Se–Cu ₂ O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 4979-4982.	2.2	42
622	Highly dispersed and disordered nickel–iron layered hydroxides and sulphides: robust and high-activity water oxidation catalysts. Sustainable Energy and Fuels, 2018, 2, 1561-1573.	2.5	29
623	Boosting the oxygen evolution reaction in non-precious catalysts by structural and electronicÂengineering. Journal of Materials Chemistry A, 2018, 6, 10253-10263.	5.2	54
624	Hierarchically Structured FeNiO _{<i>x</i>} H _{<i>y</i>} Electrocatalyst Formed by Inâ€Situ Transformation of Metal Phosphate for Efficient Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 1761-1767.	3.6	20
625	Water Oxidation Catalysis for NiOOH by a Metropolis Monte Carlo Algorithm. Journal of Chemical Theory and Computation, 2018, 14, 2380-2385.	2.3	11
626	An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2018, 165, F392-F400.	1.3	14
627	Layered Bimetallic Iron–Nickel Alkoxide Microspheres as High-Performance Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2018, 6, 6117-6125.	3.2	67
628	Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH)2 nanostructures. Journal of Alloys and Compounds, 2018, 750, 687-695.	2.8	30
629	Tuning the morphology and Fe/Ni ratio of a bimetallic Fe-Ni-S film supported on nickel foam for optimized electrolytic water splitting. Journal of Colloid and Interface Science, 2018, 523, 121-132.	5.0	48
630	Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 8430-8440.	5.2	65
631	Transitionâ€Metalâ€Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small, 2018, 14, e1704179.	5.2	182
632	Electrolysis of Natural Waters Contaminated with Transitionâ€Metal Ions: Identification of A Metastable FePbâ€Based Oxygenâ€Evolution Catalyst Operating in Weakly Acidic Solutions. ChemPlusChem, 2018, 83, 704-710.	1.3	9
633	A combination–decomposition method to synthesize two-dimensional metal sulfide–amine hybrid nanosheets: a highly efficient Fe-based water oxidation electrocatalyst. Chemical Communications, 2018, 54, 4617-4620.	2.2	11
634	Iron and cobalt hydroxides: Describing the oxygen evolution reaction activity trend with the amount of electrocatalyst. Electrochimica Acta, 2018, 274, 224-232.	2.6	6
635	Amorphous Ni(Fe)O H -coated nanocone arrays self-supported on stainless steel mesh as a promising oxygen-evolving anode for large scale water splitting. Journal of Power Sources, 2018, 389, 160-168.	4.0	20

#	Article	IF	CITATIONS
636	Nickel-iron catalysts for electrochemical water oxidation – redox synergism investigated by <i>in situ</i> X-ray spectroscopy with millisecond time resolution. Sustainable Energy and Fuels, 2018, 2, 1986-1994.	2.5	64
637	Self-Supported Stainless Steel Nanocone Array Coated with a Layer of Ni–Fe Oxides/(Oxy)hydroxides as a Highly Active and Robust Electrode for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 8786-8796.	4.0	64
638	Radially Aligned Hierarchical Nickel/Nickel–Iron (Oxy)hydroxide Nanotubes for Efficient Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 8585-8593.	4.0	69
639	Surface Sensitive Nickel Electrodeposition in Deep Eutectic Solvent. ACS Applied Energy Materials, 2018, 1, 1016-1028.	2.5	38
640	Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 1210-1217.	2.5	84
641	Blending Fe 3 O 4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochimica Acta, 2018, 264, 225-232.	2.6	42
642	Self-Assembly of Ni–Fe Layered Double Hydroxide on Fe Foam as 3D Integrated Electrocatalysts for Oxygen Evolution: Dependence of the Catalytic Performance on Anions under in Situ Condition. ACS Sustainable Chemistry and Engineering, 2018, 6, 2893-2897.	3.2	44
643	From the inside-out: leached metal impurities in multiwall carbon nanotubes for purification or electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 4686-4694.	5.2	23
644	A novel strategy for preparing layered double hydroxide/exfoliated carbon nanostructures composites as superior electrochemical catalysts with respect to oxygen evolution and methanol oxidation. Journal of Alloys and Compounds, 2018, 744, 347-356.	2.8	13
645	In Situ Synthesis of Efficient Water Oxidation Catalysts in Laser-Induced Graphene. ACS Energy Letters, 2018, 3, 677-683.	8.8	91
646	A wafer-scale 1 nm Ni(OH) ₂ nanosheet with superior electrocatalytic activity for the oxygen evolution reaction. Nanoscale, 2018, 10, 5054-5059.	2.8	31
647	Controlled hydrothermal synthesis of graphene supported NiCo2O4 coral-like nanostructures: An efficient electrocatalyst for overall water splitting. Applied Surface Science, 2018, 449, 203-212.	3.1	37
648	Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nature Communications, 2018, 9, 381.	5.8	322
649	A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorganic Chemistry Frontiers, 2018, 5, 521-534.	3.0	123
650	Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702774.	10.2	615
651	Silver/Nickel Oxide (Ag/NiO) Nanocomposites Produced Via a Citrate Sol-Gel Route as Electrocatalyst for the Oxygen Evolution Reaction (OER) in Alkaline Medium. Electrocatalysis, 2018, 9, 279-286.	1.5	30
652	Liquid Exfoliated Co(OH) ₂ Nanosheets as Lowâ€Cost, Yet Highâ€Performance, Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702965.	10.2	92
653	Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703189.	10.2	509

#	Article	IF	CITATIONS
654	High-Performance Silicon Photoanode Enhanced by Gold Nanoparticles for Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 6262-6268.	4.0	26
655	Construction of orderly hierarchical FeOOH/NiFe layered double hydroxides supported on cobaltous carbonate hydroxide nanowire arrays for a highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 3397-3401.	5.2	67
656	Steel: The Resurrection of a Forgotten Water-Splitting Catalyst. ACS Energy Letters, 2018, 3, 574-591.	8.8	122
657	Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis. Journal of Materials Chemistry A, 2018, 6, 4346-4353.	5.2	181
658	Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. CheM, 2018, 4, 285-297.	5.8	624
659	A facile co-precipitation synthesis of robust FeCo phosphate electrocatalysts for efficient oxygen evolution. Electrochimica Acta, 2018, 264, 244-250.	2.6	36
660	Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 2672-2676.	7.2	474
661	Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials, 2018, 8, 1703341.	10.2	505
662	Facile Templateless Fabrication of a Cobalt Oxyhydroxide Nanosheet Film with Nanoscale Porosity as an Efficient Electrocatalyst for Water Oxidation. ChemPhotoChem, 2018, 2, 332-339.	1.5	4
663	Co ₃ O ₄ and Fe _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanoparticles/Films Synthesized in a Vapor-Fed Flame Aerosol Reactor for Oxygen Evolution. ACS Applied Energy Materials, 2018, 1, 655-665.	2.5	20
664	Manipulating the Architecture of Atomically Thin Transition Metal (Hydr)oxides for Enhanced Oxygen Evolution Catalysis. ACS Nano, 2018, 12, 1878-1886.	7.3	57
665	Iron-Doped NiCoP Porous Nanosheet Arrays as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 571-579.	2.5	99
666	Mo- and Fe-Modified Ni(OH) ₂ /NiOOH Nanosheets as Highly Active and Stable Electrocatalysts for Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 2359-2363.	5.5	290
667	Electrocatalytic Water Oxidation by Single Site and Small Nuclearity Clusters of Cobalt. Journal of the Electrochemical Society, 2018, 165, H3028-H3033.	1.3	13
668	Scalable one-step electrochemical deposition of nanoporous amorphous S-doped NiFe ₂ O ₄ /Ni ₃ Fe composite films as highly efficient electrocatalysts for oxygen evolution with ultrahigh stability. Journal of Materials Chemistry A, 2018, 6, 1551-1560.	5.2	96
669	Interface engineered <i>in situ</i> anchoring of Co ₉ S ₈ nanoparticles into a multiple doped carbon matrix: highly efficient zinc–air batteries. Nanoscale, 2018, 10, 2649-2657.	2.8	66
670	Enhanced Catalysis of the Electrochemical Oxygen Evolution Reaction by Iron(III) Ions Adsorbed on Amorphous Cobalt Oxide. ACS Catalysis, 2018, 8, 807-814.	5.5	163
671	Integration of FeOOH and Zeolitic Imidazolate Frameworkâ€Derived Nanoporous Carbon as an Efficient Electrocatalyst for Water Oxidation. Advanced Energy Materials, 2018, 8, 1702598.	10.2	79

#	Article	IF	CITATIONS
672	Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. Journal of Catalysis, 2018, 358, 100-107.	3.1	194
673	Electrolysis of Gaseous CO ₂ to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Letters, 2018, 3, 149-154.	8.8	265
674	Tuning Redox Transitions via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis. Joule, 2018, 2, 225-244.	11.7	283
675	Suppressing Ion Transfer Enables Versatile Measurements of Electrochemical Surface Area for Intrinsic Activity Comparisons. Journal of the American Chemical Society, 2018, 140, 2397-2400.	6.6	138
676	Reduced Graphene Oxideâ€Wrapped Co _{9–} <i>_x</i> Fe <i>_x</i> S ₈ /Co,Feâ€N Composite as Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Small, 2018, 14, 1703748.	5.2	117
677	Enhancing Full Water-Splitting Performance of Transition Metal Bifunctional Electrocatalysts in Alkaline Solutions by Tailoring CeO ₂ –Transition Metal Oxides–Ni Nanointerfaces. ACS Energy Letters, 2018, 3, 290-296.	8.8	152
678	CoFe -CoFe2O4/N-doped carbon nanocomposite derived from in situ pyrolysis of a single source precursor as a superior bifunctional electrocatalyst for water splitting. Electrochimica Acta, 2018, 262, 18-26.	2.6	28
679	Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. Journal of Catalysis, 2018, 358, 243-252.	3.1	192
680	Enhancement Effect of Borate Doping on the Oxygen Evolution Activity of α-Nickel Hydroxide. ACS Applied Nano Materials, 2018, 1, 751-758.	2.4	39
681	Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 5382-5390.	5.5	311
682	Electrochemical Water Splitting by Pseudoâ€spinel, Disordered and Layered Lithium Nickel Oxides: Correlation between Structural Motifs and Catalytic Properties. ChemCatChem, 2018, 10, 2551-2557.	1.8	7
683	Facile Synthesis of FeOOH Quantum Dots Modified ZnO Nanorods Films via a Metal-Solating Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 7789-7798.	3.2	31
684	Intensification of anodic charge transfer by contaminant degradation for efficient H ₂ production. Journal of Materials Chemistry A, 2018, 6, 10297-10303.	5.2	28
685	A Stable and Electrocatalytic Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. Topics in Catalysis, 2018, 61, 591-600.	1.3	10
686	Spatially-controlled NiCo ₂ O ₄ @MnO ₂ core–shell nanoarray with hollow NiCo ₂ O ₄ cores and MnO ₂ flake shells: an efficient catalyst for oxygen evolution reaction. Nanotechnology, 2018, 29, 285401.	1.3	16
687	Electrocatalytic oxygen evolution with pure and substituted M6(SR)12 (M = Pd, Fe, Rh) complexes. Computational Materials Science, 2018, 150, 283-290.	1.4	5
688	Activation/deactivation behavior of nano-NiOx based anodes towards the OER: Influence of temperature. Electrochimica Acta, 2018, 276, 176-183.	2.6	30
689	Facile Dispersion of Nanosized NiFeP for Highly Effective Catalysis of Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 7206-7211.	3.2	46

#	Article	IF	CITATIONS
690	Novel NiFe/NiFe-LDH composites as competitive catalysts for clean energy purposes. Applied Surface Science, 2018, 447, 107-116.	3.1	29
691	α- and γ-FeOOH: Stability, Reversibility, and Nature of the Active Phase under Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 1716-1725.	2.5	26
692	Insights into the Active Electrocatalytic Areas of Layered Double Hydroxide and Amorphous Nickel–Iron Oxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 1415-1423.	2.5	23
693	Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7062-7069.	5.2	98
694	Catalyst Deposition on Photoanodes: The Roles of Intrinsic Catalytic Activity, Catalyst Electrical Conductivity, and Semiconductor Morphology. ACS Energy Letters, 2018, 3, 961-969.	8.8	47
695	Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Applied Catalysis B: Environmental, 2018, 233, 130-135.	10.8	103
696	Rapid Synthesis and Correlative Measurements of Electrocatalytic Nickel/Iron Oxide Nanoparticles. Scientific Reports, 2018, 8, 4584.	1.6	16
697	Graphdiyne: a superior carbon additive to boost the activity of water oxidation catalysts. Nanoscale Horizons, 2018, 3, 317-326.	4.1	116
698	Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 7299-7306.	3.8	76
699	Triple Ni-Co-Mo metal sulfides with one-dimensional and hierarchical nanostructures towards highly efficient hydrogen evolution reaction. Journal of Catalysis, 2018, 361, 204-213.	3.1	115
700	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
701	In situ growth of iron-nickel nitrides on carbon nanotubes with enhanced stability and activity for oxygen evolution reaction. Electrochimica Acta, 2018, 267, 8-14.	2.6	45
702	Steel-based electrocatalysts for efficient and durable oxygen evolution in acidic media. Catalysis Science and Technology, 2018, 8, 2104-2116.	2.1	35
703	Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Applied Catalysis B: Environmental, 2018, 237, 1101-1109.	10.8	130
704	Chemically Deposited Cobaltâ€Based Oxygenâ€Evolution Electrocatalysts on DOPAâ€Đisplaying Viruses. ChemCatChem, 2018, 10, 165-169.	1.8	4
705	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	10.2	429
706	Co(OH) ₂ hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Materials Research, 2018, 33, 568-580.	1.2	22
707	Cobaltâ^'Iron Pyrophosphate Porous Nanosheets as Highly Active Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2018, 5, 36-43.	1.7	36

#	Article	IF	CITATIONS
708	Transition metal doping effects in Co-phosphate catalysts for water splitting studied with XAS. Journal of Electron Spectroscopy and Related Phenomena, 2018, 224, 3-7.	0.8	14
709	An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Storage Materials, 2018, 11, 282-293.	9.5	82
710	Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts. Journal of Electronic Materials, 2018, 47, 932-937.	1.0	6
711	Electrochemical water oxidation: The next five years. Current Opinion in Electrochemistry, 2018, 7, 31-35.	2.5	41
712	Eutecticâ€Derived Mesoporous Niâ€Feâ€O Nanowire Network Catalyzing Oxygen Evolution and Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1701347.	10.2	281
713	Chemical transformation of iron alkoxide nanosheets to FeOOH nanoparticles for highly active and stable oxygen evolution electrocatalysts. Journal of Industrial and Engineering Chemistry, 2018, 58, 100-104.	2.9	42
714	Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie - International Edition, 2018, 57, 172-176.	7.2	507
715	A Highly Efficient Oxygen Evolution Catalyst Consisting of Interconnected Nickel–Iron‣ayered Double Hydroxide and Carbon Nanodomains. Advanced Materials, 2018, 30, 1705106.	11.1	209
716	Synergistic Effect of Inactive Iron Oxide Core on Active Nickel Phosphide Shell for Significant Enhancement in Oxygen Evolution Reaction Activity. ACS Energy Letters, 2018, 3, 141-148.	8.8	74
717	Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie, 2018, 130, 178-182.	1.6	72
718	A Permselective CeO _{<i>x</i>} Coating To Improve the Stability of Oxygen Evolution Electrocatalysts. Angewandte Chemie, 2018, 130, 1632-1636.	1.6	28
719	A Permselective CeO _{<i>x</i>} Coating To Improve the Stability of Oxygen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 1616-1620.	7.2	121
720	Mixed NiO/NiCo ₂ O ₄ Nanocrystals Grown from the Skeleton of a 3D Porous Nickel Network as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 417-426.	4.0	83
721	Reversible Structural Evolution of NiCoO _{<i>x</i>} H _{<i>y</i>} during the Oxygen Evolution Reaction and Identification of the Catalytically Active Phase. ACS Catalysis, 2018, 8, 1238-1247.	5.5	153
722	Amorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen Evolution. ACS Catalysis, 2018, 8, 644-650.	5.5	220
723	Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode. ACS Catalysis, 2018, 8, 526-530.	5.5	116
724	Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. Chemical Communications, 2018, 54, 463-466.	2.2	107
725	Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Research, 2018, 11, 3959-3971.	5.8	88

#	Article	IF	CITATIONS
726	Scalable Fabrication of Highly Active and Durable Membrane Electrodes toward Water Oxidation. Small, 2018, 14, 1702109.	5.2	20
727	Facile synthesis of CuFe2O4 crystals efficient for water oxidation and H2O2 reduction. Journal of Alloys and Compounds, 2018, 735, 654-659.	2.8	31
728	From Enzymes to Functional Materials—Towards Activation of Small Molecules. Chemistry - A European Journal, 2018, 24, 1471-1493.	1.7	55
729	Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research, 2018, 11, 1358-1368.	5.8	134
730	Rapid synthesis of Co ₃ O ₄ nanosheet arrays on Ni foam by <i>in situ</i> electrochemical oxidization of air-plasma engraved Co(OH) ₂ for efficient oxygen evolution. Chemical Communications, 2018, 54, 12698-12701.	2.2	31
731	Ultra-fast pyrolysis of ferrocene to form Fe/C heterostructures as robust oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 21577-21584.	5.2	50
732	<i>In situ</i> synthesis of nitrogen doped carbon with embedded Co@Co ₃ O ₄ nanoparticles as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Chemical Communications, 2018, 54, 12746-12749.	2.2	25
733	<i>Operando</i> X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni _{1â^'x} Fe _x O _y nanoparticles. Journal of Materials Chemistry A, 2018, 6, 24534-24549.	5.2	45
734	Chapter 3. Understanding the Effects of Composition and Structure on the Oxygen Evolution Reaction (OER) Occurring on NiFeOx Catalysts. RSC Energy and Environment Series, 2018, , 79-116.	0.2	3
735	Identification of Stabilizing High-Valent Active Sites by Operando High-Energy Resolution Fluorescence-Detected X-ray Absorption Spectroscopy for High-Efficiency Water Oxidation. Journal of the American Chemical Society, 2018, 140, 17263-17270.	6.6	92
736	Study on the Stability of Co _x M _{3-x} O ₄ (M = Ni, Mn and Ce) Nanowire Array Electrodes for Electrochemical Oxygen Evolution at Large Current Densities. Journal of the Electrochemical Society, 2018, 165, A3496-A3503.	1.3	10
737	Facile Preparation of Amorphous Fe–Co–Ni Hydroxide Arrays: A Highly Efficient Integrated Electrode for Water Oxidation. Inorganic Chemistry, 2018, 57, 15610-15617.	1.9	21
738	Heterogeneous Molten Salt Design Strategy toward Coupling Cobalt–Cobalt Oxide and Carbon for Efficient Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1800762.	10.2	51
739	Influence of Electrolytic Conditions on the Preparation of NiOOH by Catalytic Electrolysis Method. International Journal of Electrochemical Science, 2018, 13, 2718-2730.	0.5	3
740	Porous CoO-CeO2 heterostructures as highly active and stable electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2018, 43, 22529-22537.	3.8	35
741	Understanding Synergism of Cobalt Metal and Copper Oxide toward Highly Efficient Electrocatalytic Oxygen Evolution. ACS Catalysis, 2018, 8, 12030-12040.	5.5	60
742	Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting. ACS Applied Materials & Interfaces, 2018, 10, 42453-42468.	4.0	107
743	A New Class of Zn ₁ <i>_{â€x}</i> Fe <i>_x</i> –Oxyselenide and Zn _{1â€} <i>_x</i> Fe <i>_x</i> –LDH Nanostructured Material with Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities for Overall Water Splitting, Small, 2018, 14, e1803638.	5.2	56

#	Article	IF	CITATIONS
744	Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nature Catalysis, 2018, 1, 820-829.	16.1	344
745	Electrochemical Corrosion Engineering for Ni–Fe Oxides with Superior Activity toward Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 42217-42224.	4.0	38
746	Ir-Ni Bimetallic OER Catalysts Prepared by Controlled Ni Electrodeposition on Irpoly and Ir(111). Surfaces, 2018, 1, 165-186.	1.0	17
747	Oxygen Evolution Reaction Catalyzed by Cost-Effective Metal Oxides. , 2018, , 785-795.		1
748	Amorphous Iron and Cobalt Based Phosphate Nanosheets Supported on Nickel Foam as Superior Catalysts for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 6764-6768.	2.5	18
749	Effects of Metal Combinations on the Electrocatalytic Properties of Transition-Metal-Based Layered Double Hydroxides for Water Oxidation: A Perspective with Insights. ACS Omega, 2018, 3, 16529-16541.	1.6	42
750	Nanotube Array-Like WO ₃ Photoanode with Dual-Layer Oxygen-Evolution Cocatalysts for Photoelectrocatalytic Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 6871-6880.	2.5	60
751	Supported metal oxide nanoparticle electrocatalysts: How immobilization affects catalytic performance. Applied Catalysis A: General, 2018, 568, 11-15.	2.2	7
752	In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER. ACS Applied Materials & Interfaces, 2018, 10, 35025-35038.	4.0	185
753	Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: Origin of the ultra-high activity for oxygen evolution. Journal of Power Sources, 2018, 403, 90-96.	4.0	87
754	NiFe Oxide Nanocatalysts Grown on Carbonized Algal Cells for Enhanced Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2018, 165, J3157-J3165.	1.3	2
755	Enhanced Oxygen Evolution Reaction for Single Atomic Co Catalyst via Support Modification: A Density Functional Theory Design Predication. Inorganic Chemistry, 2018, 57, 13020-13026.	1.9	25
756	Electrocatalytic Properties of (100)-, (110)-, and (111)-Oriented NiO Thin Films toward the Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 22252-22263.	1.5	33
757	Suppressing buoyant force: New avenue for long-term durability of oxygen evolution catalysts. Nano Energy, 2018, 54, 184-191.	8.2	33
758	Ce-Directed Double-Layered Nanosheet Architecture of NiFe-Based Hydroxide as Highly Efficient Water Oxidation Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 15411-15418.	3.2	32
759	A Perspective on Low-Temperature Water Electrolysis – Challenges in Alkaline and Acidic Technology. International Journal of Electrochemical Science, 2018, 13, 1173-1226.	0.5	197
760	Cobalt-Iron Oxide Nanoarrays Supported on Carbon Fiber Paper with High Stability for Electrochemical Oxygen Evolution at Large Current Densities. ACS Applied Materials & Interfaces, 2018, 10, 39809-39818.	4.0	60
761	3D Core–Shell NiFeCr Catalyst on a Cu Nanoarray for Water Oxidation: Synergy between Structural and Electronic Modulation. ACS Energy Letters, 2018, 3, 2865-2874.	8.8	85

#	Article	IF	CITATIONS
762	Catalyst or Precatalyst? The Effect of Oxidation on Transition Metal Carbide, Pnictide, and Chalcogenide Oxygen Evolution Catalysts. ACS Energy Letters, 2018, 3, 2956-2966.	8.8	309
763	Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2884-2890.	8.8	74
764	Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catalysis, 2018, 8, 11342-11351.	5.5	414
765	Intercalation of Li ⁺ into a Co-Containing Steel-Ceramic Composite: Substantial Oxygen Evolution at Almost Zero Overpotential. ACS Catalysis, 2018, 8, 10914-10925.	5.5	17
766	Ï€â€Conjugated Molecule Boosts Metal–Organic Frameworks as Efficient Oxygen Evolution Reaction Catalysts. Small, 2018, 14, e1803576.	5.2	94
767	Atomistic Investigation of Doping Effects on Electrocatalytic Properties of Cobalt Oxides for Water Oxidation. Advanced Science, 2018, 5, 1801632.	5.6	17
768	Nickel–Carbon–Zirconium Material Derived from Nickel-Oxide Clusters Installed in a Metal–Organic Framework Scaffold by Atomic Layer Deposition. Langmuir, 2018, 34, 14143-14150.	1.6	16
769	Stabilization of Cobalt-Polyoxometalate over Poly(ionic liquid) Composites for Efficient Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 38872-38879.	4.0	32
770	High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting. Journal of Materials Chemistry A, 2018, 6, 18948-18959.	5.2	58
771	Nickelâ€Based Bicarbonates as Bifunctional Catalysts for Oxygen Evolution and Reduction Reaction in Alkaline Media. Chemistry - A European Journal, 2018, 24, 17665-17671.	1.7	15
772	Thermodynamic Evaluation of Trace-Amount Transition-Metal-Ion Doping in NiOOH Films. Journal of the Electrochemical Society, 2018, 165, F907-F913.	1.3	7
773	Mechanistic Study of the Synergy between Iron and Transition Metals for the Catalysis of the Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 3790-3795.	3.6	32
774	Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting. Journal of Power Sources, 2018, 401, 312-321.	4.0	41
775	Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation. Surface and Coatings Technology, 2018, 354, 306-312.	2.2	26
776	CeO _{<i>x</i>} -Decorated NiFe-Layered Double Hydroxide for Efficient Alkaline Hydrogen Evolution by Oxygen Vacancy Engineering. ACS Applied Materials & Interfaces, 2018, 10, 35145-35153.	4.0	156
777	Recent progress in iron oxide based photoanodes for solar water splitting. Journal Physics D: Applied Physics, 2018, 51, 473002.	1.3	44
778	Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Frontiers of Chemical Science and Engineering, 2018, 12, 838-854.	2.3	40
779	Hierarchical coral-like FeNi(OH) /Ni via mild corrosion of nickel as an integrated electrode for efficient overall water splitting. Chinese Journal of Catalysis, 2018, 39, 1736-1745.	6.9	34

#	Article	IF	CITATIONS
780	<i>Anthocephalus cadamba</i> shaped FeNi encapsulated carbon nanostructures for metal–air batteries as a resilient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 20411-20420.	5.2	67
781	An Intriguing Peaâ€Like Nanostructure of Cobalt Phosphide on Molybdenum Carbide Incorporated Nitrogenâ€Doped Carbon Nanosheets for Efficient Electrochemical Water Splitting. ChemSusChem, 2018, 11, 3956-3964.	3.6	55
782	Layered Double Hydroxideâ€Based Catalysts: Recent Advances in Preparation, Structure, and Applications. Advanced Functional Materials, 2018, 28, 1802943.	7.8	317
783	Alkaline Water Electrolysis by NiZn-Double Hydroxide-Derived Porous Nickel Selenide-Nitrogen-Doped Graphene Composite. ACS Applied Energy Materials, 0, , .	2.5	8
784	Template Electro-Etching-Mediated FeOOH Nanotubes as Highly Efficient Photoactive Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 0, , .	2.5	5
785	Charge State Manipulation of Cobalt Selenide Catalyst for Overall Seawater Electrolysis. Advanced Energy Materials, 2018, 8, 1801926.	10.2	264
786	Bifunctional CoNi/CoFe ₂ O ₄ /Ni foam electrodes for efficient overall water splitting at a high current density. Journal of Materials Chemistry A, 2018, 6, 19221-19230.	5.2	140
787	Earthâ€Abundant Transitionâ€Metalâ€Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen. Chemistry - A European Journal, 2018, 24, 18334-18355.	1.7	203
788	In Situ Vertical Growth of Fe–Ni Layered Double-Hydroxide Arrays on Fe–Ni Alloy Foil: Interfacial Layer Enhanced Electrocatalyst with Small Overpotential for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2357-2365.	8.8	150
789	Operando Xâ€Ray Absorption Spectroscopy Shows Iron Oxidation Is Concurrent with Oxygen Evolution in Cobalt–Iron (Oxy)hydroxide Electrocatalysts. Angewandte Chemie, 2018, 130, 13022-13026.	1.6	28
790	A facile, one-step electroless deposition of NiFeOOH nanosheets onto photoanodes for highly durable and efficient solar water oxidation. Journal of Materials Chemistry A, 2018, 6, 20678-20685.	5.2	31
791	Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst. Angewandte Chemie, 2018, 130, 13668-13671.	1.6	2
792	Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst. Angewandte Chemie - International Edition, 2018, 57, 13480-13483.	7.2	31
793	Three-Dimensional Hierarchical Multimetal-LDH Nanoflakes and Their Derived Spinel Oxides for Efficient Oxygen Evolution. ACS Applied Energy Materials, 2018, 1, 4998-5007.	2.5	11
794	Selective Reduction–Oxidation Strategy to the Conductivity-Enhancing Ag-Decorated Co-Based 2D Hydroxides as Efficient Electrocatalyst in Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 13420-13426.	3.2	27
795	Iron-based heterogeneous catalysts for oxygen evolution reaction; change in perspective from activity promoter to active catalyst. Journal of Power Sources, 2018, 395, 106-127.	4.0	68
796	<i>In situ</i> growth of well-ordered NiFe-MOF-74 on Ni foam by Fe ²⁺ induction as an efficient and stable electrocatalyst for water oxidation. Chemical Communications, 2018, 54, 7046-7049.	2.2	176
797	Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 12140-12145.	3.8	26

#	Article	IF	CITATIONS
798	Improving the Wettability of Thin-Film Rotating Disk Electrodes for Reliable Activity Evaluation of Oxygen Electrocatalysts by Triggering Oxygen Reduction at the Catalyst-Electrolyte-Bubble Triple Phase Boundaries. Journal of the Electrochemical Society, 2018, 165, F436-F440.	1.3	9
799	Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5872-5877.	3.3	380
800	Electrochemical trapping of metastable Mn ³⁺ ions for activation of MnO ₂ oxygen evolution catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5261-E5268.	3.3	173
801	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
802	Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society, 2018, 140, 7748-7759.	6.6	1,157
803	Borate-ion intercalated Ni Fe layered double hydroxide to simultaneously boost mass transport and charge transfer for catalysis of water oxidation. Journal of Colloid and Interface Science, 2018, 528, 36-44.	5.0	50
804	Direct Electrolytic Splitting of Seawater: Activity, Selectivity, Degradation, and Recovery Studied from the Molecular Catalyst Structure to the Electrolyzer Cell Level. Advanced Energy Materials, 2018, 8, 1800338.	10.2	185
805	Ultrathin Amorphous Iron–Nickel Boride Nanosheets for Highly Efficient Electrocatalytic Oxygen Production. Chemistry - A European Journal, 2018, 24, 18502-18511.	1.7	82
806	Engineering a stereo-film of FeNi ₃ nanosheet-covered FeOOH arrays for efficient oxygen evolution. Nanoscale, 2018, 10, 10971-10978.	2.8	40
807	Metal–Organic Framework Hybridâ€Assisted Formation of Co ₃ O ₄ /Coâ€Fe Oxide Doubleâ€6helled Nanoboxes for Enhanced Oxygen Evolution. Advanced Materials, 2018, 30, e1801211.	11.1	374
808	Electronâ€Blocking and Oxygen Evolution Catalyst Layers by Plasmaâ€Enhanced Atomic Layer Deposition of Nickel Oxide. Advanced Materials Interfaces, 2018, 5, 1701531.	1.9	18
809	An alkaline water electrolyzer with nickel electrodes enables efficient high current densityÂoperation. International Journal of Hydrogen Energy, 2018, 43, 11932-11938.	3.8	66
810	Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe–OOH Catalysts. ACS Energy Letters, 2018, 3, 1515-1520.	8.8	249
811	Water splitting by electrolysis at high current densities under 1.6 volts. Energy and Environmental Science, 2018, 11, 2858-2864.	15.6	438
812	Tuning Electronic Push/Pull of Ni-Based Hydroxides To Enhance Hydrogen and Oxygen Evolution Reactions for Water Splitting. ACS Catalysis, 2018, 8, 5621-5629.	5.5	146
813	Uniquely integrated Fe-doped Ni(OH) ₂ nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale, 2018, 10, 10620-10628.	2.8	142
814	Oxygen Evolution Reaction on Niâ€based Twoâ€dimensional (2D) Titanate Nanosheets: Investigation on Effect of Fe Coâ€doping and Fe Incorporation from Electrolyte on the Activity. ChemistrySelect, 2018, 3, 5130-5137.	0.7	9
815	Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 24499-24507.	4.0	25

#	Article	IF	CITATIONS
816	New Iron obalt Oxide Catalysts Promoting BiVO ₄ Films for Photoelectrochemical Water Splitting. Advanced Functional Materials, 2018, 28, 1802685.	7.8	248
817	Elucidating the performance and unexpected stability of partially coated water-splitting silicon photoanodes. Energy and Environmental Science, 2018, 11, 2590-2599.	15.6	50
818	An ultrathin nickel-based film electrodeposited from a Ni-Tris molecular precursor for highly efficient electrocatalytic water oxidation. Electrochimica Acta, 2018, 283, 104-110.	2.6	12
819	Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 24715-24724.	4.0	60
820	High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nature Communications, 2018, 9, 2551.	5.8	812
821	A Highly Effective, Stable Oxygen Evolution Catalyst Derived from Transition Metal Selenides and Phosphides. Particle and Particle Systems Characterization, 2018, 35, 1800135.	1.2	28
822	Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions. Energy and Environmental Science, 2018, 11, 2476-2485.	15.6	83
823	Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001). Physical Chemistry Chemical Physics, 2018, 20, 19525-19531.	1.3	33
824	Laser processed Ni-Fe alloys as electrocatalyst toward oxygen evolution reaction. Materials Research Express, 2018, 5, 066527.	0.8	9
825	Tin Oxide as a Protective Heterojunction with Silicon for Efficient Photoelectrochemical Water Oxidation in Strongly Acidic or Alkaline Electrolytes. Advanced Energy Materials, 2018, 8, 1801155.	10.2	34
826	Influence of Temperature and Electrolyte Concentration on the Structure and Catalytic Oxygen Evolution Activity of Nickel–Iron Layered Double Hydroxide. Chemistry - A European Journal, 2018, 24, 13773-13777.	1.7	57
827	High resolution, binder-free investigation of the intrinsic activity of immobilized NiFe LDH nanoparticles on etched carbon nanoelectrodes. Nano Research, 2018, 11, 6034-6044.	5.8	7
828	Extracting Knowledge from Data through Catalysis Informatics. ACS Catalysis, 2018, 8, 7403-7429.	5.5	179
829	Improving Electrocatalysts for Oxygen Evolution Using Ni _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ /Ni Hybrid Nanostructures Formed by Solvothermal Synthesis. ACS Energy Letters, 2018, 3, 1698-1707.	8.8	132
830	Binary Ni ₂ FeO _x anchored on modified graphite for efficient and durable oxygen evolution electrocatalysis. Sustainable Energy and Fuels, 2018, 2, 2160-2164.	2.5	4
831	Catalysts from earth abundant materials in a scalable, stand-alone photovoltaic-electrochemical module for solar water splitting. Journal of Materials Chemistry A, 2018, 6, 15968-15976.	5.2	19
832	Activity enhancement <i>via</i> borate incorporation into a NiFe (oxy)hydroxide catalyst for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 16959-16964.	5.2	21
833	Selfâ€Assemble and In Situ Formation of Ni _{1â^'} <i>_x</i> Fe <i>_x</i> PS ₃ Nanomosaicâ€Decorated MXene Hybrids for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1801127.	10.2	204

ARTICLE IF CITATIONS Synthesis of a Highly Efficient Oxygenâ€Evolution Electrocatalyst by Incorporation of Iron into 834 3.6 41 Nanoscale Cobalt Bórides. ChemŚusChem, 2018, 11, 3150-3156. Carbon-Supported Iron Phosphides: Highest Intrinsic Oxygen Evolution Activity of the Iron Triad. ACS 2.5 9 Applied Energy Materials, 2018, 1, 3593-3597. Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency 836 Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis, 2018, 8, 5.576 8273-8289. In-situ ammonia-modulated silver oxide as efficient oxygen evolution catalyst in neutral organic carboxylate buffer. International Journal of Hydrogen Énergy, 2018, 43, 14379-14387. Host-Guest Engineering of Layered Double Hydroxides towards Efficient Oxygen Evolution Reaction: 838 1.6 21 Recent Advances and Perspectives. Catalysts, 2018, 8, 214. Effects of the Aqueous Environment on the Stability and Chemistry of Î²-NiOOH Surfaces. Chemistry of Materials, 2018, 30, 5205-5219. 3.2 Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen 840 2.2 73 evolution reaction (OER). Chemical Communications, 2018, 54, 8630-8633. Iron Is the Active Site in Nickel/Iron Water Oxidation Electrocatalysts. Molecules, 2018, 23, 903. 1.7 841 66 Robust bifunctional oxygen electrocatalyst with a "rigid and flexible―structure for air-cathodes. 842 3.8 83 NPG Asia Materials, 2018, 10, 618-629. Nickel oxide–polypyrrole nanocomposite electrode materials for electrocatalytic water oxidation. 843 2.1 Catalysis Science and Technology, 2018, 8, 4030-4043. Coupling confinement activating cobalt oxide ultra-small clusters for high-turnover oxygen 844 5.2 25 evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 15684-15689. Role of cobalt–iron (oxy)hydroxide (CoFeO_x) as oxygen evolution catalyst on hematite 845 15.6 120 photoanodes. Energy and Environmental Science, 2018, 11, 2972-2984. Nonâ€Noble Metal Oxides and their Application as Bifunctional Catalyst in Reversible Fuel Cells and 846 1.8 35 Rechargeable Air Batteries. ChemCatChem, 2018, 10, 4162-4171. Monolithic nanoporous Ni Fe alloy by dealloying laser processed Ni Fe Al as electrocatalyst toward oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 15234-15244. 847 3.8 <i>In situ</i> formation of Ni₃8<₄ nanorod arrays as versatile electrocatalysts for electrochemical oxidation reactions in hybrid water electrolysis. Journal of 848 5.284 Materials Chemistry A, 2018, 6, 15653-15658. Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in 849 54 Amorphous Cobalt Oxide Catalysts. Journal of the Américan Chemical Society, 2018, 140, 10710-10720. Oxygen evolution catalytic performance of quantum dot nickel-iron double hydroxide/reduced 850 1.316 graphene oxide composites. Materials Letters, 2018, 231, 24-27. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide 8.2 with MXene. Nano Energy, 2018, 44, 181-190.

#	Article	IF	CITATIONS
852	Oxygen Evolution Activity and Chemical Stability of Ni and Fe Based Perovskites in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, F827-F835.	1.3	15
853	A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy and Environmental Science, 2018, 11, 1723-1729.	15.6	298
854	A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy and Environmental Science, 2018, 11, 1898-1910.	15.6	192
855	Conversion of Iron Ore into an Active Catalyst for the Oxygen Evolution Reaction. Advanced Sustainable Systems, 2018, 2, 1800019.	2.7	11
856	In Silico Discovery of New Dopants for Fe-Doped Ni Oxyhydroxide (Ni _{1–<i>x</i>} Fe _{<i>x</i>} OOH) Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 6745-6748.	6.6	274
857	NiFeâ€Based Metal–Organic Framework Nanosheets Directly Supported on Nickel Foam Acting as Robust Electrodes for Electrochemical Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1800584.	10.2	442
858	Hierarchical Design of NiOOH@Amorphous Ni–P Bilayer on a 3D Mesh Substrate for High-Efficiency Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 30273-30282.	4.0	27
859	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie, 2018, 130, 13347-13350.	1.6	69
860	Nickel Molybdenum Nitride Nanorods Grown on Ni Foam as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 30400-30408.	4.0	97
861	Study of the Active Sites in Porous Nickel Oxide Nanosheets by Manganese Modulation for Enhanced Oxygen Evolution Catalysis. ACS Energy Letters, 2018, 3, 2150-2158.	8.8	131
862	Roles of soluble species in the alkaline oxygen evolution reaction on a nickel anode. Chemical Communications, 2018, 54, 10116-10119.	2.2	26
863	An Integrating Photoanode of WO ₃ /Fe ₂ O ₃ Heterojunction Decorated with NiFe-LDH to Improve PEC Water Splitting Efficiency. ACS Sustainable Chemistry and Engineering, 2018, 6, 12906-12913.	3.2	96
864	Operando Xâ€Ray Absorption Spectroscopy Shows Iron Oxidation Is Concurrent with Oxygen Evolution in Cobalt–Iron (Oxy)hydroxide Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 12840-12844.	7.2	131
865	Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 11286-11292.	6.6	328
866	Hydrogen transfer through different crystal phases of nickel oxy/hydroxide. Physical Chemistry Chemical Physics, 2018, 20, 25169-25178.	1.3	10
867	A Review of Preciousâ€Metalâ€Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Znâ^'Air Batteries. Advanced Functional Materials, 2018, 28, 1803329.	7.8	524
868	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie - International Edition, 2018, 57, 13163-13166.	7.2	312
869	Ironâ€Incorporated αâ€Ni(OH) ₂ Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation. Chemistry - A European Journal, 2018, 24, 18408-18412.	1.7	114

#	Article	IF	CITATIONS
870	Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1â^'xFexO4±δ Ruddlesden-Popper oxides. Nature Communications, 2018, 9, 3150.	5.8	161
871	Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 16810-16817.	5.2	61
872	Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy, 2018, 52, 360-368.	8.2	135
873	Freeâ€Sustaining Threeâ€Dimensional S235 Steelâ€Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution. ChemSusChem, 2018, 11, 3661-3671.	3.6	24
874	Ultrafast Electron Trapping and Defect-Mediated Recombination in NiO Probed by Femtosecond Extreme Ultraviolet Reflection–Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 5047-5054.	2.1	40
875	Optimization of the Activity of Ni-Based Nanostructures for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 4554-4563.	2.5	21
876	Comparison Study toward the Influence of the Second Metals Doping on the Oxygen Evolution Activity of Cobalt Nitrides. ACS Sustainable Chemistry and Engineering, 2018, 6, 11457-11465.	3.2	51
877	Coupling of Nickel Boride and Ni(OH) ₂ Nanosheets with Hierarchical Interconnected Conductive Porous Structure Synergizes the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 4555-4561.	1.8	23
878	Sub-3†nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation. Nano Energy, 2018, 53, 74-82.	8.2	94
879	Effect of Saturating the Electrolyte with Oxygen on the Activity for the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 9359-9363.	5.5	51
880	Molten salt-assisted <i>a</i> -axis-oriented growth of Ta ₃ N ₅ nanorod arrays with enhanced charge transport for efficient photoelectrochemical water oxidation. CrystEngComm, 2018, 20, 5364-5369.	1.3	16
881	NiFeOx as a Bifunctional Electrocatalyst for Oxygen Reduction (OR) and Evolution (OE) Reaction in Alkaline Media. Catalysts, 2018, 8, 328.	1.6	25
882	Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale, 2018, 10, 11241-11280.	2.8	258
883	Insight into water oxidation activity enhancement of Ni-based electrocatalysts interacting with modified carbon supports. Electrochimica Acta, 2018, 281, 684-691.	2.6	8
884	Plasmonâ€Promoted Electrochemical Oxygen Evolution Catalysis from Gold Decorated MnO ₂ Nanosheets under Green Light. Advanced Functional Materials, 2018, 28, 1801573.	7.8	70
885	NiPS ₃ Nanosheet–Graphene Composites as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 5297-5305.	7.3	104
886	Self-Supported FeNi-P Nanosheets with Thin Amorphous Layers for Efficient Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 9640-9648.	3.2	71
887	Direct Synthesis and Anion Exchange of Noncarbonate-Intercalated NiFe-Layered Double Hydroxides and the Influence on Electrocatalysis. Chemistry of Materials, 2018, 30, 4321-4330.	3.2	123

#	Article	IF	CITATIONS
888	Surface engineering by a novel electrochemical activation method for the synthesis of Co3+ enriched Co(OH)2/CoOOH heterostructure for water oxidation. Journal of Power Sources, 2018, 396, 395-403.	4.0	54
889	Degree of Geometric Tilting Determines the Activity of FeO ₆ Octahedra for Water Oxidation. Chemistry of Materials, 2018, 30, 4313-4320.	3.2	54
890	Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry. Sustainable Energy and Fuels, 2018, 2, 1995-2005.	2.5	15
891	Nanostructured FeNi ₃ Incorporated with Carbon Doped with Multiple Nonmetal Elements for the Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 2703-2709.	3.6	75
892	Pearson's principle-inspired strategy for the synthesis of amorphous transition metal hydroxide hollow nanocubes for electrocatalytic oxygen evolution. Materials Chemistry Frontiers, 2018, 2, 1523-1528.	3.2	33
893	AÂsurface-modified antiperovskite asÂan electrocatalyst for water oxidation. Nature Communications, 2018, 9, 2326.	5.8	87
894	Microporous 2D NiCoFe phosphate nanosheets supported on Ni foam for efficient overall water splitting in alkaline media. Nanoscale, 2018, 10, 12975-12980.	2.8	94
895	Defectâ€Enhanced Charge Separation and Transfer within Protection Layer/Semiconductor Structure of Photoanodes. Advanced Materials, 2018, 30, e1801773.	11.1	81
896	Low onset potential on single crystal Ta3N5 polyhedron array photoanode with preferential exposure of {001} facets. Applied Catalysis B: Environmental, 2018, 237, 665-672.	10.8	31
897	Three-dimensional NiCu layered double hydroxide nanosheets array on carbon cloth for enhanced oxygen evolution. Electrochimica Acta, 2018, 282, 735-742.	2.6	57
898	Organic chemistry at anodes and photoanodes. Sustainable Energy and Fuels, 2018, 2, 1905-1927.	2.5	76
899	Boosting water oxidation electrocatalysts with surface engineered amorphous cobalt hydroxide nanoflakes. Nanoscale, 2018, 10, 12991-12996.	2.8	55
900	Inâ€situâ€Methoden zur Charakterisierung elektrochemischer NiFeâ€Sauerstoffentwicklungskatalysatoren. Angewandte Chemie, 2019, 131, 1264-1277.	1.6	21
901	Transformation of waste tin-plated steel to iron nanosheets and their application in generation of oxygen. International Journal of Environmental Science and Technology, 2019, 16, 3669-3678.	1.8	8
902	Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials, 2019, 2, 3-12.	2.5	39
903	Application of In Situ Techniques for the Characterization of NiFeâ€Based Oxygen Evolution Reaction (OER) Electrocatalysts. Angewandte Chemie - International Edition, 2019, 58, 1252-1265.	7.2	443
904	Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation. Journal of Energy Chemistry, 2019, 32, 93-104.	7.1	70
905	Fe-doped Co3O4@C nanoparticles derived from layered double hydroxide used as efficient electrocatalyst for oxygen evolution reaction. Journal of Energy Chemistry, 2019, 32, 63-70.	7.1	47

#	Article	IF	CITATIONS
906	Recent Progress on Nickelâ€Based Oxide/(Oxy)Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 703-713.	1.7	170
907	Fe-doping effect on CoTe catalyst with greatly boosted intrinsic activity for electrochemical oxygen evolution reaction. Electrochimica Acta, 2019, 321, 134656.	2.6	44
908	Print-Light-Synthesis of Ni and NiFe-Nanoscale Catalysts for Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 6322-6331.	2.5	15
909	Electrosynthesis, activation, and applications of nickel-iron oxyhydroxide in (photo-)electrochemical water splitting at near neutral condition. Electrochimica Acta, 2019, 321, 134667.	2.6	9
910	Novel one-step synthesis of core@shell iron–nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis. Journal of Power Sources, 2019, 438, 226988.	4.0	40
911	Iron tungsten mixed composite as a robust oxygen evolution electrocatalyst. Chemical Communications, 2019, 55, 10944-10947.	2.2	28
912	Identical Location STEM analysis on La _{1â^'x} Sr _x CoO ₃ Oxygen-Evolution Catalysts. Microscopy and Microanalysis, 2019, 25, 2052-2053.	0.2	1
913	Evidence of Variations in Atomic Distribution in Disordered Mixed Metal Hydroxides. MRS Advances, 2019, 4, 1843-1850.	0.5	4
914	Electrochemical oxidation of H2S on polycrystalline Ni electrodes. Journal of Applied Electrochemistry, 2019, 49, 929-936.	1.5	11
915	Synthesis and Characterization of Fe3+ and CeO2 Co-decorated NiOOH Electrocatalysts Supported by Nickel Foam for the Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2019, 14, 6532-6545.	0.5	13
916	Scaledâ€Up Synthesis of Amorphous NiFeMo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis. Angewandte Chemie - International Edition, 2019, 58, 15772-15777.	7.2	426
917	Oxygen Vacancy and Chemical Ordering Control Oxygen Evolution Activity of Sr _{2–<i>x</i>} Ca _{<i>x</i>} Fe ₂ O _{6â[~]Î′} Perovskites. ACS Applied Energy Materials, 2019, 2, 6140-6145.	2.5	18
918	A Cobalt–Iron Double-Atom Catalyst for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 14190-14199.	6.6	401
919	Enhanced Photoelectrochemical Performance of WO ₃ â€Based Composite Photoanode Coupled with Carbon Quantum Dots and NiFe Layered Double Hydroxide. ChemSusChem, 2019, 12, 4685-4692.	3.6	27
920	Fe ²⁺ â€Doped Layered Double (Ni, Fe) Hydroxides as Efficient Electrocatalysts for Water Splitting and Selfâ€Powered Electrochemical Systems. Small, 2019, 15, e1902551.	5.2	114
921	Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 33012-33021.	4.0	70
922	Hybrid Ni(OH) ₂ /FeOOH@NiFe Nanosheet Catalysts toward Highly Efficient Oxygen Evolution Reaction with Ultralong Stability over 1000 Hours. ACS Sustainable Chemistry and Engineering, 2019, 7, 14601-14610.	3.2	39
923	Scaledâ€Up Synthesis of Amorphous NiFeMo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis. Angewandte Chemie, 2019, 131, 15919-15924.	1.6	62

#	Article	IF	CITATIONS
924	Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. ACS Applied Materials & Interfaces, 2019, 11, 33835-33843.	4.0	67
925	Facile Protocol for Alkaline Electrolyte Purification and Its Influence on a Ni–Co Oxide Catalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 8165-8170.	5.5	59
926	Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Applied Catalysis B: Environmental, 2019, 258, 118023.	10.8	114
927	Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111). Nano Research, 2019, 12, 2364-2372.	5.8	4
928	Hydrogen Bubble Templating of Fractal Ni Catalysts for Water Oxidation in Alkaline Media. ACS Applied Energy Materials, 2019, 2, 5734-5743.	2.5	20
929	An iron incorporation-induced nickel hydroxide multiphase with a 2D/3D hierarchical sheet-on-sheet structure for electrocatalytic water oxidation. Chemical Communications, 2019, 55, 10138-10141.	2.2	15
930	Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. Journal of Colloid and Interface Science, 2019, 555, 541-547.	5.0	88
931	Ni ³⁺ -Induced Hole States Enhance the Oxygen Evolution Reaction Activity of Ni _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Electrocatalysts. Chemistry of Materials, 2019, 31, 7618-7625.	3.2	76
932	Autogenous Growth of Hierarchical NiFe(OH) <i>_x</i> /FeS Nanosheetâ€Onâ€Microsheet Arrays for Synergistically Enhanced Highâ€Output Water Oxidation. Advanced Functional Materials, 2019, 29, 1902180.	7.8	179
933	Efficient and Highly Transparent Ultraâ€Thin Nickelâ€Iron Oxyâ€hydroxide Catalyst for Oxygen Evolution Prepared by Successive Ionic Layer Adsorption and Reaction. ChemPhotoChem, 2019, 3, 1050-1054.	1.5	6
934	Highly Active Ternary Nickel–Iron oxide as Bifunctional Catalyst for Electrochemical Water Splitting. ChemistrySelect, 2019, 4, 7791-7796.	0.7	53
935	P-Doped Iron–Nickel Sulfide Nanosheet Arrays for Highly Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 27667-27676.	4.0	155
936	Initiating an efficient electrocatalyst for water splitting via valence configuration of cobalt-iron oxide. Applied Catalysis B: Environmental, 2019, 258, 117968.	10.8	70
937	Stainless Steel as A Bi-Functional Electrocatalyst—A Top-Down Approach. Materials, 2019, 12, 2128.	1.3	21
938	Expansion of the urea electrocatalytic oxidation window by adsorbed nickel ions. Journal of Applied Electrochemistry, 2019, 49, 883-893.	1.5	12
939	Influence of the Interlayer Space on the Water Oxidation Performance in a Family of Surfactant-Intercalated NiFe-Layered Double Hydroxides. Chemistry of Materials, 2019, 31, 6798-6807.	3.2	71
940	Expediting in-Situ Electrochemical Activation of Two-Dimensional Metal–Organic Frameworks for Enhanced OER Intrinsic Activity by Iron Incorporation. ACS Catalysis, 2019, 9, 7356-7364.	5.5	215
941	Effects of Metal Electrode Support on the Catalytic Activity of Fe(oxy)hydroxide for the Oxygen Evolution Reaction in Alkaline Media. ChemPhysChem, 2019, 20, 3089-3095.	1.0	39

#	Article	IF	CITATIONS
942	Investigation of the electrocatalytic performance for oxygen evolution reaction of Fe-doped lanthanum nickelate deposited on pyrolytic graphite sheets. International Journal of Hydrogen Energy, 2019, 44, 21659-21672.	3.8	13
943	Self-gating in semiconductor electrocatalysis. Nature Materials, 2019, 18, 1098-1104.	13.3	167
944	Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorganic Chemistry Frontiers, 2019, 6, 2582-2618.	3.0	51
945	Three-dimensional interconnected core–shell networks with Ni(Fe)OOH and M–N–C active species together as high-efficiency oxygen catalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 19045-19059.	5.2	70
946	High-Efficiency Electrocatalytic Water Oxidation on Trimetal-Based Fe–Co–Cr Oxide. ACS Applied Energy Materials, 2019, 2, 5584-5590.	2.5	7
947	An earth-abundant, amorphous cobalt-iron-borate (Co-Fe-Bi) prepared on Ni foam as highly efficient and durable electrocatalysts for oxygen evolution. Applied Surface Science, 2019, 495, 143462.	3.1	12
948	Insight into the Degradation Mechanisms of Atomic Layer Deposited TiO2 as Photoanode Protective Layer. ACS Applied Materials & Interfaces, 2019, 11, 29725-29735.	4.0	29
949	Self-Growing NiFe-Based Hybrid Nanosheet Arrays on Ni Nanowires for Overall Water Splitting. ACS Applied Energy Materials, 2019, 2, 5465-5471.	2.5	22
950	Synthesis of MnNiO3/Mn3O4 nanocomposites for the water electrolysis process. Journal of Sol-Gel Science and Technology, 2019, 92, 1-11.	1.1	3
951	NiCoFe oxide amorphous nanohetrostructres for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 22991-23001.	3.8	39
952	A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from a phosphonate-based-MOF as an efficient electrocatalyst for water oxidation. Catalysis Science and Technology, 2019, 9, 4718-4724.	2.1	22
953	One-step solid-phase boronation to fabricate self-supported porous FeNiB/FeNi foam for efficient electrocatalytic oxygen evolution and overall water splitting. Journal of Materials Chemistry A, 2019, 7, 19554-19564.	5.2	68
954	Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc–air battery electrodes. Journal of Materials Chemistry A, 2019, 7, 19355-19363.	5.2	53
955	Iron and Nickel Mixed Oxides Derived From NillFell-PBA for Oxygen Evolution Electrocatalysis. Frontiers in Chemistry, 2019, 7, 539.	1.8	22
956	[MoS ₄] ^{2–} -Intercalated NiCo-Layered Double Hydroxide Nanospikes: An Efficiently Synergized Material for Urine To Direct H ₂ Generation. ACS Applied Materials & Interfaces, 2019, 11, 25917-25927.	4.0	23
957	Flower-like NiFe Oxide Nanosheets on Ni Foam as Efficient Bifunctional Electrocatalysts for the Overall Water Splitting. International Journal of Electrochemical Science, 2019, , 4878-4890.	0.5	5
958	Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations. Angewandte Chemie, 2019, 131, 13133-13137.	1.6	25
959	Bifunctional iron nickel phosphide nanocatalysts supported on porous carbon for highly efficient overall water splitting. Sustainable Materials and Technologies, 2019, 22, e00117.	1.7	21

		LFORT	
#	Article	IF	Citations
960	Amorphous NiFe-based nanocubes as efficient photo-Fenton catalyst for fast degradation of methylene blue. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 202-211.	2.7	8
961	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano, 2019, 13, 7975-7984.	7.3	171
962	Cobalt iron phosphide nanoparticles embedded within a carbon matrix as highly efficient electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2019, 55, 9212-9215.	2.2	23
963	Integrating Hydrogen Production with Aqueous Selective Semiâ€Đehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie, 2019, 131, 12142-12145.	1.6	138
964	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie - International Edition, 2019, 58, 12014-12017.	7.2	189
965	Harnessing Native Iron Ore as an Efficient Electrocatalyst for Overall Water Splitting. ChemElectroChem, 2019, 6, 3667-3673.	1.7	13
966	αâ€Ni(OH) ₂ Originated from Electroâ€Oxidation of NiSe ₂ Supported by Carbon Nanoarray on Carbon Cloth for Efficient Water Oxidation. Small, 2019, 15, e1902222.	5.2	18
967	Hydrothermally synthesized Iron Phosphate Hydroxide thin film electrocatalyst for electrochemical water splitting. Electrochimica Acta, 2019, 319, 118-128.	2.6	19
968	Ir–O–V Catalytic Group in Ir-Doped NiV(OH) ₂ for Overall Water Splitting. ACS Energy Letters, 2019, 4, 1823-1829.	8.8	147
969	Design of Multiâ€Metallicâ€Based Electrocatalysts for Enhanced Water Oxidation. ChemPhysChem, 2019, 20, 2936-2945.	1.0	48
970	A review of transition metalâ€based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society, 2019, 66, 829-865.	0.8	82
971	A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy, 2019, 63, 103880.	8.2	275
972	An Fe-doped NiTe bulk crystal as a robust catalyst for the electrochemical oxygen evolution reaction. Chemical Communications, 2019, 55, 9347-9350.	2.2	61
973	Ni–Fe Phosphate/Ni Foam Electrode: Facile Hydrothermal Synthesis and Ultralong Oxygen Evolution Reaction Durability. ACS Sustainable Chemistry and Engineering, 2019, 7, 18332-18340.	3.2	40
974	Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials, 2019, 31, e1902069.	11.1	215
975	Adjustable Ternary FeCoNi Nanohybrids for Enhanced Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 15361-15366.	1.7	7
976	Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega, 2019, 4, 17209-17222.	1.6	26
977	Electrosynthesis of Hydrogen Peroxide by Phase-Transfer Catalysis. Joule, 2019, 3, 2942-2954.	11.7	89

#	Article	IF	CITATIONS
978	Current Status of Self‣upported Catalysts for Robust and Efficient Water Splitting for Commercial Electrolyzer. ChemCatChem, 2019, 11, 5898-5912.	1.8	47
979	Ultrasmall Co@Co(OH) ₂ Nanoclusters Embedded in Nâ€Enriched Mesoporous Carbon Networks as Efficient Electrocatalysts for Water Oxidation. ChemSusChem, 2019, 12, 5117-5125.	3.6	26
980	Effect and Prevention of Trace Ag ⁺ Contamination from Ag/AgCl Reference Electrodes on CO ₂ Reduction Product Distributions at Polycrystalline Copper Electrodes. ACS Applied Energy Materials, 2019, 2, 8283-8293.	2.5	26
981	NiMoFe and NiMoFeP as Complementary Electrocatalysts for Efficient Overall Water Splitting and Their Application in PVâ€Electrolysis with STH 12.3%. Small, 2019, 15, e1905501.	5.2	55
982	Enhanced oxygen evolution reaction over glassy carbon electrode modified with NiOx and Fe3O4. Korean Journal of Chemical Engineering, 2019, 36, 1932-1939.	1.2	17
983	Stoichiometryâ€Controlled Synthesis of Nanoparticulate Mixedâ€Metal Oxyhydroxide Oxygen Evolving Catalysts by Electrochemistry in Aqueous Nanodroplets. Chemistry - A European Journal, 2020, 26, 4039-4043.	1.7	13
984	A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nature Communications, 2019, 10, 5074.	5.8	203
985	Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nature Communications, 2019, 10, 5208.	5.8	118
986	Atomic Insights of Iron Doping in Nickel Hydroxide Nanosheets for Enhanced Oxygen Catalysis to Boost Broad Temperature Workable Zincâ^'Air Batteries. ChemCatChem, 2019, 11, 6002-6007.	1.8	17
987	The complete genome sequence of the thermophilic bacterium <i>Laceyella sacchari</i> FBKL4.010 reveals the basis for tetramethylpyrazine biosynthesis in Moutaiâ€flavor Daqu. MicrobiologyOpen, 2019, 8, e922.	1.2	8
988	NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation. Small, 2019, 15, e1904579.	5.2	51
989	Novel alkaline water electrolysis with nickel-iron gas diffusion electrode for oxygen evolution. International Journal of Hydrogen Energy, 2019, 44, 29862-29875.	3.8	24
990	Electronic Structure and Crystalline Phase Dual Modulation via Anion–Cation Co-doping for Boosting Oxygen Evolution with Long-Term Stability Under Large Current Density. ACS Applied Materials & Interfaces, 2019, 11, 34819-34826.	4.0	33
991	Modulating the Electronic Structure of Porous Nanocubes Derived from Trimetallic Metal–Organic Frameworks to Boost Oxygen Evolution Reaction Performance. Chemistry - an Asian Journal, 2019, 14, 3357-3362.	1.7	7
992	Mesoporous Nanocast Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. Inorganics, 2019, 7, 98.	1.2	17
993	Structure-property relationship of graphene coupled metal (Ni, Co, Fe) (oxy)hydroxides for efficient electrochemical evolution of oxygen. Journal of Catalysis, 2019, 377, 619-628.	3.1	15
994	Degradation and regeneration mechanisms of NiO protective layers deposited by ALD on photoanodes. Journal of Materials Chemistry A, 2019, 7, 21892-21902.	5.2	12
995	Investigation of mixed-metal (oxy)fluorides as a new class of water oxidation electrocatalysts. Chemical Science, 2019, 10, 9209-9218.	3.7	47

#	Article	IF	CITATIONS
996	Probing the Role of Internalized Geometric Strain on Heterogeneous Electrocatalysis. Chemistry of Materials, 2019, 31, 7522-7530.	3.2	14
997	Effects of iron doping on the hydrogen evolution reaction performance of self-supported nickel selenides. Results in Physics, 2019, 14, 102522.	2.0	5
998	Role of Lattice Oxygen in the Oxygen Evolution Reaction on Co ₃ O ₄ : Isotope Exchange Determined Using a Small-Volume Differential Electrochemical Mass Spectrometry Cell Design. Analytical Chemistry, 2019, 91, 12653-12660.	3.2	26
999	Controllable electrodeposition of binary metal films from deep eutectic solvent as an efficient and durable catalyst for the oxygen evolution reaction. Dalton Transactions, 2019, 48, 14748-14757.	1.6	17
1000	Synergetic Effects of Dual Electrocatalysts for High-Performance Solar-Driven Water Oxidation. ACS Applied Energy Materials, 2019, 2, 7256-7262.	2.5	7
1001	Nickel–Vanadium Layered Double Hydroxide under Water-Oxidation Reaction: New Findings and Challenges. ACS Sustainable Chemistry and Engineering, 2019, 7, 17252-17262.	3.2	35
1002	Iron-induced 3D nanoporous iron-cobalt oxyhydroxide on carbon cloth as a highly efficient electrode for oxygen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1540-1547.	6.9	25
1003	Bimetallic Iron–Cobalt Catalysts and Their Applications in Energy-Related Electrochemical Reactions. Catalysts, 2019, 9, 762.	1.6	16
1004	Oxygen evolution on gold: The effects of alkali-metal cations and iron impurities from alkaline electrolytes. Journal of Catalysis, 2019, 378, 277-282.	3.1	7
1005	Structural evolution of CoMoO4 to CoOOH by ion electrochemical etching for boosting oxygen evolution reaction. Journal of Power Sources, 2019, 442, 227252.	4.0	65
1006	Hexagonal Î ² -Ni(OH)2 nanoplates with oxygen vacancies as efficient catalysts for the oxygen evolution reaction. Electrochimica Acta, 2019, 324, 134868.	2.6	37
1007	In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting. Nano Energy, 2019, 66, 104118.	8.2	215
1008	Highly Active Cobaltâ€Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 3491-3495.	7.2	67
1009	Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction. Electrochimica Acta, 2019, 300, 123-130.	2.6	60
1010	Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution. Chemical Communications, 2019, 55, 2904-2907.	2.2	110
1011	Formation of unexpectedly active Ni–Fe oxygen evolution electrocatalysts by physically mixing Ni and Fe oxyhydroxides. Chemical Communications, 2019, 55, 818-821.	2.2	57
1012	Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5069-5089.	5.2	422
1013	Direct urea fuel cells: Challenges and opportunities. Journal of Power Sources, 2019, 417, 159-175.	4.0	234

#	Article	IF	CITATIONS
1014	Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction. Journal of Solid State Chemistry, 2019, 272, 32-37.	1.4	47
1015	Electromodified NiFe Alloys as Electrocatalysts for Water Oxidation: Mechanistic Implications of Timeâ€Resolved UV/Vis Tracking of Oxidation State Changes. ChemSusChem, 2019, 12, 1966-1976.	3.6	33
1016	Metal–Organic Framework-Derived Hierarchical (Co,Ni)Se ₂ @NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 8106-8114.	4.0	214
1017	Highly active oxygen evolution reaction model electrode based on supported gas-phase NiFe clusters. Catalysis Today, 2019, 334, 59-67.	2.2	20
1018	An autodriven, solar fuel collection for a highly compact, biomimetic-modified artificial leaf without membrane. Nano Energy, 2019, 58, 484-491.	8.2	15
1019	Amorphous Nanocages of Cuâ€Niâ€Fe Hydr(oxy)oxide Prepared by Photocorrosion For Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2019, 58, 4189-4194.	7.2	179
1020	Ar Plasma-Exfoliated Ultrathin NiCo-Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 1162-1168.	2.5	65
1021	Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media. Materials, 2019, 12, 211.	1.3	7
1022	Amorphous Nanocages of Cuâ€Niâ€Fe Hydr(oxy)oxide Prepared by Photocorrosion For Highly Efficient Oxygen Evolution. Angewandte Chemie, 2019, 131, 4233-4238.	1.6	38
1023	Defect-Rich NiCeO _{<i>x</i>} Electrocatalyst with Ultrahigh Stability and Low Overpotential for Water Oxidation. ACS Catalysis, 2019, 9, 1605-1611.	5.5	113
1024	Triple hierarchy and double synergies of NiFe/Co ₉ S ₈ /carbon cloth: a new and efficient electrocatalyst for the oxygen evolution reaction. Nanoscale, 2019, 11, 3378-3385.	2.8	47
1025	Highly Active Cobaltâ€Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 3529-3533.	1.6	36
1026	Synthesis and electrochemical performance of nickel–cobalt oxide/carbon nanocomposites for use in efficient oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2019, 30, 4144-4151.	1.1	11
1027	Electrocatalytic water oxidation over AlFe ₂ B ₂ . Chemical Science, 2019, 10, 2796-2804.	3.7	52
1028	Membrane free water electrolysis under 1.23â€V with Ni3Se4/Ni anode in alkali and Pt cathode in acid. Applied Surface Science, 2019, 478, 784-792.	3.1	34
1029	Optimizing Ni–Fe Oxide Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Applied Energy Materials, 2019, 2, 1199-1209.	2.5	71
1030	Ultrafast fabrication of amorphous bimetallic hydroxide layer on nickel nanocones array for oxygen evolution electrocatalyst. International Journal of Hydrogen Energy, 2019, 44, 5899-5911.	3.8	24
1031	Synergetic catalytic behavior of AgNi-OH-Pi nanostructures on Zr:BiVO4 photoanode for improved stability and photoelectrochemical water splitting performance. Journal of Catalysis, 2019, 371, 10-19.	3.1	24

#	Article	IF	Citations
	High-Density Cobalt Nanoparticles Encapsulated with Nitrogen-Doped Carbon Nanoshells as a		
1032	Bifunctional Catalyst for Rechargeable Zinc-Air Battery. Materials, 2019, 12, 243.	1.3	10
1033	Synthesis of high crystalline nickelâ€iron hydrotalciteâ€ike compound as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Energy Research, 2019, 43, 1460-1467.	2.2	24
1034	A Ni-loaded, metal–organic framework–graphene composite as a precursor for <i>in situ</i> electrochemical deposition of a highly active and durable water oxidation nanocatalyst. Chemical Communications, 2019, 55, 31-34.	2.2	37
1035	A bio-inspired 3D quasi-fractal nanostructure for an improved oxygen evolution reaction. Chemical Communications, 2019, 55, 357-360.	2.2	5
1036	Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts. Chemical Communications, 2019, 55, 1044-1047.	2.2	102
1037	Layered and two dimensional metal oxides for electrochemical energy conversion. Energy and Environmental Science, 2019, 12, 41-58.	15.6	310
1038	Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy and Environmental Science, 2019, 12, 572-581.	15.6	453
1039	High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy and Environmental Science, 2019, 12, 684-692.	15.6	169
1040	Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 2518-2523.	5.2	78
1041	Nickel-iron selenide polyhedral nanocrystal with optimized surface morphology as a high-performance bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2019, 488, 326-334.	3.1	47
1042	Hydrothermally Synthesized Cobalt Borophosphate as an Electrocatalyst for Water Oxidation in the pH Range from 7 to 14. ChemElectroChem, 2019, 6, 3132-3138.	1.7	5
1043	A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions. International Journal of Hydrogen Energy, 2019, 44, 14842-14852.	3.8	52
1044	Structural Monitoring of NiB _i Modified BiVO ₄ Photoanodes Using in Situ Soft and Hard X-ray Absorption Spectroscopies. ACS Applied Energy Materials, 2019, 2, 4126-4134.	2.5	6
1045	Hierarchical Iron-Doped Nickel Diselenide Hollow Spheres for Efficient Oxygen Evolution Electrocatalysis. ACS Applied Energy Materials, 2019, 2, 4737-4744.	2.5	33
1046	Rational construction of cross-linked porous nickel arrays for efficient oxygen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1063-1069.	6.9	9
1047	Increased charge and mass transfer derived-sheet-like Fe0.67Ni0.33OOH-Fe2O3@NF array for robust oxygen evolution reaction. Applied Surface Science, 2019, 493, 351-358.	3.1	19
1048	Atomic-scale perturbation of oxygen octahedra via surface ion exchange in perovskite nickelates boosts water oxidation. Nature Communications, 2019, 10, 2713.	5.8	96
1049	Reliable electrochemical phase diagrams of magnetic transition metals and related compounds from high-throughput ab initio calculations. Npj Materials Degradation, 2019, 3, .	2.6	30

#	Article	IF	CITATIONS
1050	Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nature Communications, 2019, 10, 2799.	5.8	202
1051	Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations. Angewandte Chemie - International Edition, 2019, 58, 12999-13003.	7.2	182
1052	Mixed Transition Metal Oxide with Vacancy-Induced Lattice Distortion for Enhanced Catalytic Activity of Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 7099-7108.	5.5	85
1053	Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers. Royal Society Open Science, 2019, 6, 190122.	1.1	23
1054	Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 219-239.	3.3	223
1055	Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nature Energy, 2019, 4, 519-525.	19.8	413
1056	On the reconstruction of NiMo electrocatalysts by <i>operando</i> spectroscopy. Journal of Materials Chemistry A, 2019, 7, 15031-15035.	5.2	24
1057	Synthesis of Ni–Co-Fe layered double hydroxide and Fe2O3/Graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochimica Acta, 2019, 317, 83-92.	2.6	104
1058	Artificial photosynthesis systems for catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 3-59.	0.4	35
1059	An Fe-doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation. Inorganic Chemistry Frontiers, 2019, 6, 1890-1896.	3.0	61
1060	Amorphous outperforms crystalline nanomaterials: surface modifications of molecularly derived CoP electro(pre)catalysts for efficient water-splitting. Journal of Materials Chemistry A, 2019, 7, 15749-15756.	5.2	113
1061	Free-standing S, N co-doped graphene/Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2019, 317, 408-415.	2.6	19
1062	Nickelâ€Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3941-3954.	3.6	150
1063	Spark-plasma-sintered porous electrodes for efficient oxygen evolution in alkaline water electrolysis. Electrochimica Acta, 2019, 317, 128-138.	2.6	9
1064	Highly Conductive Bimetallic Ni–Fe Metal Organic Framework as a Novel Electrocatalyst for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 9743-9749.	3.2	123
1065	Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angewandte Chemie, 2019, 131, 10401-10405.	1.6	63
1066	Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angewandte Chemie - International Edition, 2019, 58, 10295-10299.	7.2	224
1067	Mesoporous spinel NiFe oxide cubes as advanced electrocatalysts for oxygen evolution. International Journal of Hydrogen Energy, 2019, 44, 16368-16377.	3.8	22

#	Article	IF	CITATIONS
1068	Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nature Communications, 2019, 10, 2149.	5.8	363
1069	Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting. Chemical Communications, 2019, 55, 6555-6558.	2.2	53
1070	First principles calculations of surface dependent electronic structures: a study on β-FeOOH and γ-FeOOH. Physical Chemistry Chemical Physics, 2019, 21, 18486-18494.	1.3	17
1071	Insight into the role of Ni–Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride. Journal of Materials Chemistry A, 2019, 7, 14001-14010.	5.2	97
1072	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	11.1	243
1073	NiO/NiS Heterostructures: An Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3587-3594.	2.5	71
1074	Expanding Multinary Selenide Based High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition: Case Study with Fe–Cu–Co Selenides. ACS Sustainable Chemistry and Engineering, 2019, 7, 9588-9600.	3.2	64
1075	Unique nanosheet–nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a high-efficiency oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 13130-13141.	5.2	67
1076	Influence of Electrochemical Aging on Bead-Blasted Nickel Electrodes for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3166-3178.	2.5	5
1077	Investigation of Fe-Based Integrated Electrodes for Water Oxidation in Neutral and Alkaline Solutions. Journal of Physical Chemistry C, 2019, 123, 12313-12320.	1.5	16
1078	Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2019, 141, 8136-8145.	6.6	220
1079	Metalâ€Organicâ€Frameworkâ€Derived Nitrogenâ€Doped Hybrid Nickelâ€Ironâ€Sulfide Architectures on Carbon Cloth as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2741-2747.	1.7	20
1080	In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 254, 292-299.	10.8	141
1081	Stepwise Electrochemical Construction of FeOOH/Ni(OH) ₂ on Ni Foam for Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 3927-3935.	2.5	87
1082	Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy and Environmental Science, 2019, 12, 2345-2374.	15.6	88
1083	Activating Three-Dimensional Networks of Fe@Ni Nanofibers via Fast Surface Modification for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 18342-18348.	4.0	29
1084	A General Method to Probe Oxygen Evolution Intermediates at Operating Conditions. Joule, 2019, 3, 1498-1509.	11.7	243
1085	<i>In situ</i> growth of layered double hydroxides on boehmite AlOOH for active and stable oxygen evolution in alkaline media. Nanoscale, 2019, 11, 10348-10357.	2.8	13

ARTICLE IF CITATIONS Fe-Doping in Double Perovskite PrBaCo2(1-x)Fe2xO6-Î': Insights into Structural and Electronic Effects 1086 25 1.6 to Enhance Oxygen Evolution Catalyst Stability. Catalysts, 2019, 9, 263. A Single-Crystal Open-Capsule Metal–Organic Framework. Journal of the American Chemical Society, 6.6 179 2019, 141, 7906-7916. (Photo) electrochemical water oxidation at anodic TiO2 nanotubes modified by electrodeposited NiFe 1088 2.6 20 oxy-hydroxides catalysts. Electrochimica Acta, 2019, 308, 91-98. Solution blow spun nickel oxide/carbon nanocomposite hollow fibres as an efficient oxygen 3.8 44 evolution reaction electrocatalyst. International Journal of Hydrogen Energy, 2019, 44, 14877-14888. Partially sulfurated ultrathin nickel-iron carbonate hydroxides nanosheet boosting the oxygen 1090 2.6 37 evolution reaction. Electrochimica Acta, 2019, 309, 57-64. Substrate participation ultrafast synthesis of amorphous NiFe nanosheets on iron foam at room temperature toward highly efficient oxygen evolution reaction. Journal of Energy Chemistry, 2019, 35, 7.1 197-203. Sea urchin-like Ni–Fe sulfide architectures as efficient electrocatalysts for the oxygen evolution 1092 5.2 109 reaction. Journal of Materials Chemistry A, 2019, 7, 12350-12357. Hierarchically Coupled Ni:FeOOH Nanosheets on 3D N-Doped Graphite Foam as Self-Supported 5.5 Electrocatalysts for Efficient and Durable Water Oxidation. ACS Catalysis, 2019, 9, 5025-5034. Homogeneously Distributed NiFe Alloy Nanoparticles on 3D Carbon Fiber Network as a Bifunctional 1094 1.7 31 Electrocatalyst for Overall Water Splitting. ChemElectroChem, 2019, 6, 2497-2502. Effects of Incorporated Iron or Cobalt on the Ethanol Oxidation Activity of Nickel (Oxy)Hydroxides in 1095 1.5 Alkaline Media. Electrocatalysis, 2019, 10, 489-498. Nanocubic bimetallic organic framework self-templated from Ni precursor as efficient electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 1096 3.8 11 11705-11716. Enhancing the Performance of Ni-Mo Alkaline Hydrogen Evolution Electrocatalysts with Carbon 1097 2.5 Supports. ACS Applied Energy Materials, 2019, 2, 2524-2533. Can Ni Complexes Behave as Molecular Water Oxidation Catalysts?. ACS Catalysis, 2019, 9, 3936-3945. 1098 5.5 64 Identifying high-efficiency oxygen evolution electrocatalysts from Co–Ni–Cu based selenides through 1099 5.2 combinatorial electrodeposition. Journal of Materials Chemistry A, 2019, 7, 9877-9889. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of 1100 3.3 524 the National Academy of Sciences of the United States of America, 2019, 116, 6624-6629. Modeling Corrosion with First-Principles Electrochemical Phase Diagrams. Annual Review of Materials Research, 2019, 49, 53-77. Ultrafine Metallic Nickel Domains and Reduced Molybdenum States Improve Oxygen Evolution 1102 5.235 Reaction of NiFeMo Electrocatalysts. Small, 2019, 15, e1804764. Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Letters, 2019, 4, 8.8 578 933-942.

# 1104	ARTICLE Active Site Identification and Evaluation Criteria of In Situ Grown CoTe and NiTe Nanoarrays for Hydrogen Evolution and Oxygen Evolution Reactions. Small Methods, 2019, 3, 1900113.	IF 4.6	Citations 78
1105	2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application. Advanced Energy Materials, 2019, 9, 1803358.	10.2	467
1106	Amorphous nickel sulfide nanosheets with embedded vanadium oxide nanocrystals on nickel foam for efficient electrochemical water oxidation. Journal of Materials Chemistry A, 2019, 7, 10534-10542.	5.2	65
1107	Nitrogen-Doped Sponge Ni Fibers as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Nano-Micro Letters, 2019, 11, 21.	14.4	70
1108	Pulsed laser deposition of nickel oxide films with improved optical properties to functionalize solar light absorbing photoanodes and very low overpotential for water oxidation catalysis. Materials Science in Semiconductor Processing, 2019, 97, 29-34.	1.9	13
1109	Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 5231-5240.	6.6	250
1110	Cobaltâ€Vanadium Hydroxide Nanoneedles with a Freeâ€Standing Structure as Highâ€Performance Oxygen Evolution Reaction Electrocatalysts. ChemElectroChem, 2019, 6, 2050-2055.	1.7	24
1111	High-performance electrolytic oxygen evolution with a seamless armor core–shell FeCoNi oxynitride. Nanoscale, 2019, 11, 7239-7246.	2.8	28
1112	Nanoporous gold supported chromium-doped NiFe oxyhydroxides as high-performance catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 9690-9697.	5.2	33
1113	2D Electron Gas and Oxygen Vacancy Induced High Oxygen Evolution Performances for Advanced Co ₃ O ₄ /CeO ₂ Nanohybrids. Advanced Materials, 2019, 31, e1900062.	11.1	242
1114	The Role of Aluminum in Promoting Ni–Fe–OOH Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3488-3499.	2.5	30
1115	Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. Science China Materials, 2019, 62, 1096-1104.	3.5	43
1116	Co-Fe/MIL-101(Cr) hybrid catalysts: Preparation and their electrocatalysis in oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 11754-11764.	3.8	16
1117	Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Research, 2019, 12, 2288-2295.	5.8	134
1118	Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon. Applied Catalysis B: Environmental, 2019, 252, 214-221.	10.8	92
1119	Plasmonic hot charge carriers activated Ni centres of metal–organic frameworks for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10601-10609.	5.2	51
1120	Deep Eutectic Solvent-Mediated Hierarchically Structured Fe-Based Organic–Inorganic Hybrid Catalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3343-3351.	2.5	23
1121	Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foam‣ike Trimetal–Organic Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electrocatalysis. Advanced Materials, 2019, 31, e1901139.	11.1	374

#	Article	IF	CITATIONS
1122	Oxygen Evolution on in Situ Selective Formation of AgO: Plane Is the Key Factor. Journal of Physical Chemistry C, 2019, 123, 10967-10973.	1.5	4
1123	Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chemical Society Reviews, 2019, 48, 2518-2534.	18.7	483
1124	Metal–organic layer derived metal hydroxide nanosheets for highly efficient oxygen evolution. Chemical Communications, 2019, 55, 5467-5470.	2.2	33
1125	A novel particle-in-nanoplate architecture of iron nickel phosphide intertwined with carbon nanotubes for efficient water oxidation and high-performance sodium-ion batteries. Journal of Alloys and Compounds, 2019, 791, 1220-1230.	2.8	20
1126	Binding Energy Optimization Strategy Inducing Enhanced Catalytic Performance on MIL-100(FeNi) To Catalyze Water Oxidation Directly. ACS Sustainable Chemistry and Engineering, 2019, 7, 7496-7501.	3.2	29
1127	Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. Journal of the American Chemical Society, 2019, 141, 7005-7013.	6.6	460
1128	Synthesis of Si–O-Bridged <i>g</i> -C ₃ N ₄ /WO ₃ 2D-Heterojunctional Nanocomposites as Efficient Photocatalysts for Aerobic Alcohol Oxidation and Mechanism Insight. ACS Sustainable Chemistry and Engineering, 2019, 7, 9916-9927.	3.2	44
1129	Boosting the oxygen evolution electrocatalysis of layered nickel hydroxidenitrate nanosheets by iron doping. International Journal of Hydrogen Energy, 2019, 44, 10627-10636.	3.8	34
1130	Edge/Defect Sites in αâ€Co 1â^' m Fe m (OH) x Nanoplates Responsible for Water Oxidation Activity. ChemSusChem, 2019, 12, 2755-2762.	3.6	5
1131	Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction. Applied Surface Science, 2019, 485, 41-47.	3.1	22
1132	Electrochemically Driven Coordination Tuning of FeOOH Integrated on Carbon Fiber Paper for Enhanced Oxygen Evolution. Small, 2019, 15, e1901015.	5.2	46
1133	Palladium nanoparticles supported by metal-organic frameworks derived FeNi3Cx nanorods as efficient oxygen reversible catalysts for rechargeable Zn-Air batteries. Electrochimica Acta, 2019, 307, 403-413.	2.6	21
1134	A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11143-11149.	5.2	59
1135	Synergistic Coupling of Anionic Ligands To Optimize the Electronic and Catalytic Properties of Metal–Organic Framework-Converted Oxygen-Evolving Catalysts. ACS Applied Energy Materials, 2019, 2, 2138-2148.	2.5	31
1136	Changes in the structure of electrodeposited manganese oxide water oxidation catalysts revealed by in-operando Raman spectroscopy. Journal of Catalysis, 2019, 371, 287-290.	3.1	8
1137	Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Advanced Functional Materials, 2019, 29, 1808367.	7.8	298
1138	Synergistic effect of charge transfer and short H-bonding on nanocatalyst surface for efficient oxygen evolution reaction. Nano Energy, 2019, 59, 443-452.	8.2	28
1139	Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 7526-7532.	5.2	72

#	Article	IF	CITATIONS
1140	A 2D NiFe Bimetallic Metal–Organic Frameworks for Efficient Oxygen Evolution Electrocatalysis. Energy and Environmental Materials, 2019, 2, 18-21.	7.3	56
1141	NiFeOx nanosheets tight-coupled with Bi2WO6 nanosheets to improve the electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2019, 478, 969-980.	3.1	17
1142	Bimetal–Organic Framework-Derived Porous Rodlike Cobalt/Nickel Nitride for All-pH Value Electrochemical Hydrogen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 8018-8024.	4.0	99
1143	Trends and Descriptors of Metal-Modified Transition Metal Carbides for Hydrogen Evolution in Alkaline Electrolyte. ACS Catalysis, 2019, 9, 2415-2422.	5.5	74
1144	Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction. Scientific Reports, 2019, 9, 1532.	1.6	112
1145	Laser structured nickel-iron electrodes for oxygen evolution in alkaline water electrolysis. International Journal of Hydrogen Energy, 2019, 44, 12671-12684.	3.8	40
1146	An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science, 2019, 5, 558-568.	5.3	263
1147	Mo-doped Ni ₂ P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2019, 7, 7636-7643.	5.2	110
1148	Facile fabrication and nanostructure control of mesoporous iridium oxide films for efficient electrocatalytic water oxidation. Energy, 2019, 173, 278-289.	4.5	12
1149	A new metal–organic open framework enabling facile synthesis of carbon encapsulated transition metal phosphide/sulfide nanoparticle electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 7168-7178.	5.2	50
1150	Ultralow Fe ^{III} Ion Doping Triggered Generation of Ni ₃ S ₂ Ultrathin Nanosheet for Enhanced Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 2011-2016.	1.8	29
1151	One-step synthesis of bimetallic Ni-Fe phosphates and their highly electrocatalytic performance for water oxidation. Materials Research Bulletin, 2019, 114, 80-84.	2.7	10
1152	Tailorable surface sulfur chemistry of mesoporous Ni ₃ S ₂ particles for efficient oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 7548-7552.	5.2	72
1153	Microwave Synthesis of Ultrathin Nickel Hydroxide Nanosheets with Iron Incorporation for Electrocatalytic Water Oxidation. ACS Applied Energy Materials, 2019, 2, 1961-1968.	2.5	24
1154	Controlling the 3-D morphology of Ni–Fe-based nanocatalysts for the oxygen evolution reaction. Nanoscale, 2019, 11, 8170-8184.	2.8	18
1155	The effect of Fe as constituent in Ni-base alloys on the oxygen evolution reaction in alkaline solutions at high current densities. International Journal of Hydrogen Energy, 2019, 44, 6392-6402.	3.8	17
1156	Cobalt/Cobalt Oxide Surface for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 6093-6105.	3.2	44
1157	Synergistic Effects of Mo 2 Câ€NC@Co x Fe y Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reaction. Energy Technology, 2019, 7, 1801121.	1.8	7

#	Article	IF	CITATIONS
1158	Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111). Journal of Chemical Physics, 2019, 150, 041731.	1.2	14
1159	Cooperative Catalytic Behavior of SnO2 and NiWO4 over BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Splitting Performance. Catalysts, 2019, 9, 879.	1.6	13
1160	Promoting Electrocatalytic Oxygen Evolution over Transition-Metal Phosphide-Based Nanocomposites via Architectural and Electronic Engineering. ACS Applied Materials & Interfaces, 2019, 11, 46825-46838.	4.0	34
1161	Vapor-fed electrolysis of water using earth-abundant catalysts in Nafion or in bipolar Nafion/poly(benzimidazolium) membranes. Sustainable Energy and Fuels, 2019, 3, 3611-3626.	2.5	14
1162	Iron carbonate hydroxide templated binary metal–organic frameworks for highly efficient electrochemical water oxidation. Chemical Communications, 2019, 55, 14773-14776.	2.2	41
1163	An amorphous FeNiO _x thin film obtained by anodic electrodeposition as an electrocatalyst toward the oxygen evolution reaction. New Journal of Chemistry, 2019, 43, 19422-19428.	1.4	9
1164	An Fe stabilized metallic phase of NiS ₂ for the highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 23217-23225.	2.8	66
1165	Surface dual-oxidation induced metallic copper doping into NiFe electrodes for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2019, 7, 22889-22897.	5.2	26
1166	The sensitivity of Cu for electrochemical carbon dioxide reduction to hydrocarbons as revealed by high throughput experiments. Journal of Materials Chemistry A, 2019, 7, 26785-26790.	5.2	10
1167	Stability profiles of transition metal oxides in the oxygen evolution reaction in alkaline medium. Journal of Materials Chemistry A, 2019, 7, 25865-25877.	5.2	40
1168	Dissolution-Induced Surface Roughening and Oxygen Evolution Electrocatalysis of Alkaline-Earth Iridates in Acid. CheM, 2019, 5, 3243-3259.	5.8	98
1169	Understanding Electrochemical Stabilities of Ni-Based Nanofilms from a Comparative Theory–Experiment Approach. Journal of Physical Chemistry C, 2019, 123, 28925-28940.	1.5	11
1170	Niâ~'Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3Dâ€Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 5633-5641.	1.7	32
1171	Coating of Ni on Fe (oxy)hydroxide: Superior Catalytic Activity for Oxygen-Involved Reaction During Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 19832-19838.	3.2	17
1172	Identifying the crystal and electronic structure evolution in tri omponent transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution. EcoMat, 2019, 1, e12005.	6.8	14
1173	Rational Design Combining Morphology and Charge-Dynamic for Hematite/Nickel–Iron Oxide Thin-Layer Photoanodes: Insights into the Role of the Absorber/Catalyst Junction. ACS Applied Materials & Interfaces, 2019, 11, 48002-48012.	4.0	3
1174	Modulated transition metal–oxygen covalency in the octahedral sites of CoFe layered double hydroxides with vanadium doping leading to highly efficient electrocatalysts. Nanoscale, 2019, 11, 23296-23303.	2.8	48
1175	Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Advances, 2019, 9, 31563-31571.	1.7	151

#	Article	IF	CITATIONS
1176	Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: a DFT study. Journal of Materials Chemistry A, 2019, 7, 23091-23097.	5.2	75
1177	Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn–air battery. Journal of Materials Chemistry A, 2019, 7, 24964-24972.	5.2	65
1178	Electrocatalytic Properties of Ni-Doped BaFe12O19 for Oxygen Evolution in Alkaline Solution. Open Chemistry, 2019, 17, 1382-1392.	1.0	5
1179	Co2P@NiCo2O4 bi-functional electrocatalyst with low overpotential for water splitting in wide range pH electrolytes. Journal of Colloid and Interface Science, 2019, 534, 55-63.	5.0	34
1180	One-pot synthesis of Fe2O3/C by urea combustion method as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 2877-2882.	3.8	13
1181	Defect-Rich 2D Material Networks for Advanced Oxygen Evolution Catalysts. ACS Energy Letters, 2019, 4, 328-336.	8.8	148
1182	Vertically Aligned Ni Nanowires as a Platform for Kinetically Limited Water-Splitting Electrocatalysis. Journal of Physical Chemistry C, 2019, 123, 1082-1093.	1.5	5
1183	Tuning the Electronic Structure of NiO via Li Doping for the Fast Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 419-428.	3.2	78
1184	Homogeneous cobalt and iron oxide hollow nanocages derived from ZIF-67 etched by Fe species for enhanced water oxidation. Electrochimica Acta, 2019, 296, 418-426.	2.6	25
1185	Nickel-iron layered double hydroxides and reduced graphene oxide composite with robust lithium ion adsorption ability for high-capacity energy storage systems. Electrochimica Acta, 2019, 296, 190-197.	2.6	42
1186	Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage. Materials Today Chemistry, 2019, 11, 16-28.	1.7	72
1187	Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catalysis, 2019, 9, 7-15.	5.5	189
1188	Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution. Materials Today Chemistry, 2019, 11, 112-118.	1.7	30
1189	Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2019, 9, 117-129.	5.5	103
1190	Nanosheets of Nickel Iron Hydroxy Carbonate Hydrate with Pronounced OER Activity under Alkaline and Near-Neutral Conditions. Inorganic Chemistry, 2019, 58, 1895-1904.	1.9	68
1191	Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam. Electrochimica Acta, 2019, 299, 567-574.	2.6	57
1192	Highâ€Temperature Oneâ€Step Synthesis of Efficient Nanostructured Bismuth Vanadate Photoanodes for Water Oxidation. Energy Technology, 2019, 7, 1801052.	1.8	23
1193	Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Research, 2019, 12, 1327-1331.	5.8	53

#	Article	IF	CITATIONS
1194	Laser-Induced Graphene Hybrid Catalysts for Rechargeable Zn-Air Batteries. ACS Applied Energy Materials, 2019, 2, 1460-1468.	2.5	55
1195	Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction. Science China Materials, 2019, 62, 681-689.	3.5	70
1196	Ironâ€Doped Nickel Molybdate with Enhanced Oxygen Evolution Kinetics. Chemistry - A European Journal, 2019, 25, 280-284.	1.7	38
1197	Monolithic NixMy (MÂ= OH, P, S, Se) nanosheets as efficient and stable electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 295, 148-156.	2.6	21
1198	Modes of Fe Incorporation in Co–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts. ChemSusChem, 2019, 12, 2015-2021.	3.6	55
1199	Application of Sm0.8Sr0.2Fe1-xCoxO3-Î′ (x = 0.2, 0.5, 0.8) Perovskite for the Oxygen Evolution Reaction Alkaline Media. Electrocatalysis, 2019, 10, 305-313.	in 1.5	10
1200	A practical-oriented NiFe-based water-oxidation catalyst enabled by ambient redox and hydrolysis co-precipitation strategy. Applied Catalysis B: Environmental, 2019, 244, 844-852.	10.8	125
1201	Pristine Transitionâ€Metalâ€Based Metalâ€Organic Frameworks for Electrocatalysis. ChemElectroChem, 2019, 6, 1273-1299.	1.7	78
1202	Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites. Journal of the American Chemical Society, 2019, 141, 693-705.	6.6	176
1203	Ultrasmall Ni/NiO Nanoclusters on Thiol-Functionalized and -Exfoliated Graphene Oxide Nanosheets for Durable Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 363-371.	2.5	74
1204	Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst. Nano Letters, 2019, 19, 530-537.	4.5	210
1205	Dual Tuning of Composition and Nanostructure of Hierarchical Hollow Nanopolyhedra Assembled by NiCo-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 312-319.	2.5	39
1206	Insights into Ni-Fe couple in perovskite electrocatalysts for highly efficient electrochemical oxygen evolution. Electrochimica Acta, 2019, 293, 240-246.	2.6	30
1207	Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation. Journal of Energy Chemistry, 2019, 34, 57-63.	7.1	78
1208	Rational Design of Transition Metalâ€Based Materials for Highly Efficient Electrocatalysis. Small Methods, 2019, 3, 1800211.	4.6	250
1209	Loading of Ag on Fe-Co-S/N-doped carbon nanocomposite to achieve improved electrocatalytic activity for oxygen evolution reaction. Journal of Alloys and Compounds, 2019, 773, 40-49.	2.8	44
1210	Template-free synthesis of three-dimensional NiFe-LDH hollow microsphere with enhanced OER performance in alkaline media. Journal of Energy Chemistry, 2019, 33, 130-137.	7.1	121
1211	Hydrogen treatment and FeOOH overlayer: Effective approaches for enhancing the photoelectrochemical water oxidation performance of bismuth vanadate thin films. Catalysis Today, 2019, 321-322, 87-93.	2.2	7

#	Article	IF	CITATIONS
1212	Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 5590-5594.	4.0	58
1213	Coupling efficient biomass upgrading with H ₂ production <i>via</i> bifunctional Cu _x S@NiCo-LDH core–shell nanoarray electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 1138-1146.	5.2	132
1214	Water Oxidation Catalysts from Waste Metal Resources: A Facile Metal-Organic Electrochemical Approach. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1097-1113.	1.4	3
1215	Prognostic role of RECK in pathological outcomeâ€dependent buccal mucosa squamous cell carcinoma. Oral Diseases, 2020, 26, 62-71.	1.5	4
1216	"Structural instability―induced high-performance NiFe layered double hydroxides as oxygen evolution reaction catalysts for pH-near-neutral borate electrolyte: The role of intercalates. Applied Catalysis B: Environmental, 2020, 263, 118343.	10.8	39
1217	Oxygen Evolution Reaction on Singleâ€Walled Carbon Nanotubes Noncovalently Functionalized with Metal Phthalocyanines. ChemElectroChem, 2020, 7, 428-436.	1.7	28
1218	OER Catalysis at Activated and Codeposited NiFe-Oxo/Hydroxide Thin Films Is Due to Postdeposition Surface-Fe and Is Not Sustainable without Fe in Solution. ACS Catalysis, 2020, 10, 20-35.	5.5	102
1219	Trimetallic Mnâ€Feâ€Ni Oxide Nanoparticles Supported on Multiâ€Walled Carbon Nanotubes as Highâ€Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media. Advanced Functional Materials, 2020, 30, 1905992.	7.8	209
1220	Transforming Niâ€Coagulated Polyferriertic Sulfate Sludge into Porous Heteroatomâ€Doped Carbonâ€Supported Transition Metal Phosphide: An Efficient Catalyst for Oxygen Evolution Reaction. Energy Technology, 2020, 8, 1900995.	1.8	7
1221	Understanding the Enhancement of the Catalytic Properties of Goethite by Transition Metal Doping: Critical Role of O* Formation Energy Relative to OH* and OOH*. ACS Applied Energy Materials, 2020, 3, 1634-1643.	2.5	17
1222	Role of Transition Metals in Layered Double Hydroxides for Differentiating the Oxygen Evolution and Nonenzymatic Glucose Sensing. ACS Applied Materials & Interfaces, 2020, 12, 6193-6204.	4.0	48
1223	Identifying the role of Ni and Fe in Ni–Fe co-doped orthorhombic CoSe2 for driving enhanced electrocatalytic activity for oxygen evolution reaction. Electrochimica Acta, 2020, 335, 135682.	2.6	39
1224	Single Nanometer-Sized NiFe-Layered Double Hydroxides as Anode Catalyst in Anion Exchange Membrane Water Electrolysis Cell with Energy Conversion Efficiency of 74.7% at 1.0 A cm ^{–2} . ACS Catalysis, 2020, 10, 1886-1893.	5.5	91
1225	Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1â ^{-*} xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Research, 2020, 13, 246-254.	5.8	28
1226	Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Applied Catalysis B: Environmental, 2020, 265, 118580.	10.8	162
1227	A coaxial three-layer (Ni, Fe)O _x H _y /Ni/Cu mesh electrode: excellent oxygen evolution reaction activity for water electrolysis. Catalysis Science and Technology, 2020, 10, 1803-1808.	2.1	9
1228	Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy and Environmental Science, 2020, 13, 86-95.	15.6	698
1229	Iron–nickel oxide: a promising strategy for water oxidation. New Journal of Chemistry, 2020, 44, 1517-1523.	1.4	8

#	Article	IF	CITATIONS
1230	Loading FeOOH on Ni(OH) ₂ hollow nanorods to obtain a three-dimensional sandwich catalyst with strong electron interactions for an efficient oxygen evolution reaction. Nanoscale, 2020, 12, 983-990.	2.8	69
1231	Room-temperature synthesis of Ni _{1â^'x} Fe _x (oxy)hydroxides: structure–activity relationship for the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 932-939.	2.5	6
1232	Galvanic displacement on electrodeposited tangled Zn nanowire sacrificial template for preparing porous and hollow Ni electrodes in ionic liquid. Journal of Molecular Liquids, 2020, 298, 112050.	2.3	8
1233	EPR Spectroscopy of Iron- and Nickel-Doped [ZnAl]-Layered Double Hydroxides: Modeling Active Sites in Heterogeneous Water Oxidation Catalysts. Journal of the American Chemical Society, 2020, 142, 1838-1845.	6.6	28
1234	A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. Journal of Power Sources, 2020, 448, 227375.	4.0	217
1235	Developments and Perspectives in 3d Transitionâ€Metalâ€Based Electrocatalysts for Neutral and Nearâ€Neutral Water Electrolysis. Advanced Energy Materials, 2020, 10, 1902666.	10.2	226
1236	Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress. Progress in Energy and Combustion Science, 2020, 77, 100805.	15.8	107
1237	Methods for Electrocatalysis. , 2020, , .		2
1238	Vertical Nickel–Iron layered double hydroxide nanosheets grown on hills-like nickel framework for efficient water oxidation and splitting. International Journal of Hydrogen Energy, 2020, 45, 3986-3994.	3.8	13
1239	<i>In situ</i> fabrication of dynamic self-optimizing Ni ₃ S ₂ nanosheets as an efficient catalyst for the oxygen evolution reaction. Dalton Transactions, 2020, 49, 70-78.	1.6	19
1240	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy and Environmental Science, 2020, 13, 229-237.	15.6	78
1241	Temperature-regulated reversible transformation of spinel-to-oxyhydroxide active species for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2020, 8, 1631-1635.	5.2	33
1242	A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 3071-3082.	5.2	48
1243	Selectively Etching Vanadium Oxide to Modulate Surface Vacancies of Unary Metal–Based Electrocatalysts for Highâ€Performance Water Oxidation. Advanced Energy Materials, 2020, 10, 1903571.	10.2	64
1244	Sulfate-Functionalized Nickel Hydroxide Nanobelts for Sustained Oxygen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 443-450.	4.0	31
1245	Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony. Small, 2020, 16, e1905779.	5.2	424
1246	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. IScience, 2020, 23, 100761.	1.9	26
1247	Strongly Cooperative Nano-CoO/Co Active Phase in Hierarchically Porous Nitrogen-Doped Carbon Microspheres for Efficient Bifunctional Oxygen Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 1328-1337.	2.5	17

#	Article	IF	CITATIONS
1248	Laser Fragmentationâ€Induced Defectâ€Rich Cobalt Oxide Nanoparticles for Electrochemical Oxygen Evolution Reaction. ChemSusChem, 2020, 13, 520-528.	3.6	55
1249	Electrochemically Aged Ni Electrodes Supporting NiFe ₂ O ₄ Nanoparticles for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 387-400.	2.5	9
1250	Oxygen Evolution on Metalâ€oxyâ€hydroxides: Beneficial Role of Mixing Fe, Co, Ni Explained via Bifunctional Edge/acceptor Route. ChemCatChem, 2020, 12, 1436-1442.	1.8	21
1251	Interlaced rosette-like MoS2/Ni3S2/NiFe-LDH grown on nickel foam: A bifunctional electrocatalyst for hydrogen production by urea-assisted electrolysis. International Journal of Hydrogen Energy, 2020, 45, 23-35.	3.8	61
1252	Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate. Chinese Chemical Letters, 2020, 31, 1535-1539.	4.8	34
1253	H2O2-sensing abilities of mixed-metal (Fe-Ni) Prussian blue analogs in a wide pH range. Inorganica Chimica Acta, 2020, 502, 119314.	1.2	9
1254	Engineering Active Fe Sites on Nickel–Iron Layered Double Hydroxide through Component Segregation for Oxygen Evolution Reaction. ChemSusChem, 2020, 13, 811-818.	3.6	62
1255	Chemically Deposited Amorphous Zn-Doped NiFeO <i>_{<i>x</i>}</i> H <i>_{<i>y</i>}</i> for Enhanced Water Oxidation. ACS Catalysis, 2020, 10, 235-244.	5.5	86
1256	Preparation of Co-Fe oxides immobilized on carbon paper using water-dispersible Prussian-blue analog nanoparticles and their oxygen evolution reaction (OER) catalytic activities. Inorganica Chimica Acta, 2020, 502, 119345.	1.2	15
1257	Enhanced stability of silicon for photoelectrochemical water oxidation through self-healing enabled by an alkaline protective electrolyte. Energy and Environmental Science, 2020, 13, 4132-4141.	15.6	14
1258	Synthesis and growth mechanism of bamboo like N-doped CNT/Graphene nanostructure incorporated with hybrid metal nanoparticles for overall water splitting. Carbon, 2020, 170, 452-463.	5.4	59
1259	One stable electrocatalyst for two evolution reactions by one-pot combustion synthesis. International Journal of Hydrogen Energy, 2020, 45, 22691-22699.	3.8	8
1260	Ni/NiO nanosheets for alkaline hydrogen evolution reaction: In situ electrochemical-Raman study. Electrochimica Acta, 2020, 361, 137040.	2.6	148
1261	Membrane Electrolyzers for Impure-Water Splitting. Joule, 2020, 4, 2549-2561.	11.7	102
1262	Is nickel phosphide an efficient catalyst for the oxygen-evolution reaction at low overpotentials?. New Journal of Chemistry, 2020, 44, 19630-19641.	1.4	22
1263	lron-regulated NiPS for enhanced oxygen evolution efficiency. Journal of Materials Chemistry A, 2020, 8, 23580-23589.	5.2	30
1264	Highly efficient and robust sulfur-doped nickel-cobalt oxide towards oxygen evolution reaction. Molecular Catalysis, 2020, 496, 111175.	1.0	2
1265	Interlayer ligand engineering of β-Ni(OH)2 for oxygen evolution reaction. Science China Chemistry, 2020, 63, 1684-1693.	4.2	15

#	Article	IF	CITATIONS
1266	Accelerating hydrogen evolution in Ru-doped FeCoP nanoarrays with lattice distortion toward highly efficient overall water splitting. Catalysis Science and Technology, 2020, 10, 8314-8324.	2.1	24
1267	Water oxidation by a nickel complex: New challenges and an alternative mechanism. International Journal of Hydrogen Energy, 2020, 45, 33563-33573.	3.8	64
1268	Boron-Doped Graphene Oxide-Supported Nickel Nitride Nanoparticles for Electrocatalytic Oxygen Evolution in Alkaline Electrolytes. ACS Applied Nano Materials, 2020, 3, 9924-9930.	2.4	21
1269	Sol-gel Synthesis of Ce0.8Sr0.2Co1-(x+y)NixFeyO3-δ (x = 0.1, 0.2, and y = 0.2, 0.5, 0.7)—a Na Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Media. Electrocatalysis, 2020, 11, 628-641.	nocompos 1.5	site-Type 0
1270	S-doped Co-Fe-Pi nanosheets as highly efficient oxygen evolution electrocatalysts in alkaline media. Electrochimica Acta, 2020, 362, 137123.	2.6	9
1271	Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis. International Journal of Hydrogen Energy, 2020, 45, 28272-28284.	3.8	70
1272	Small Polarons and Surface Defects in Metal Oxide Photocatalysts Studied Using XUV Reflection–Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 22853-22870.	1.5	24
1273	Ultrathin Nanosheet-Assembled Co–Fe Hydroxide Nanotubes: Sacrificial Template Synthesis, Topotactic Transformation, and Their Application as Electrocatalysts for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 46578-46587.	4.0	12
1274	Influence of Composition on Performance in Metallic Iron–Nickel–Cobalt Ternary Anodes for Alkaline Water Electrolysis. ACS Catalysis, 2020, 10, 12139-12147.	5.5	20
1275	Tuning Cu Overvoltage for a Copper–Telluride System in Electrocatalytic Water Reduction and Feasible Feedstock Conversion: A New Approach. Inorganic Chemistry, 2020, 59, 11129-11141.	1.9	20
1276	Unveiling the Origin of Catalytic Sites of Pt Nanoparticles Decorated on Oxygen-Deficient Vanadium-Doped Cobalt Hydroxide Nanosheet for Hybrid Sodium–Air Batteries. ACS Applied Energy Materials, 2020, 3, 7464-7473.	2.5	9
1277	Ni foam electrode solution impregnated with Ni-FeX(OH)Y catalysts for efficient oxygen evolution reaction in alkaline electrolyzers. RSC Advances, 2020, 10, 25426-25434.	1.7	4
1278	Understanding the Synergistic Effect in Oxygen Evolution Reaction Catalysis from Chemical Kinetics Point of View: An Iron Oxide/Nickel Oxide Case Study. Journal of the Electrochemical Society, 2020, 167, 116514.	1.3	11
1279	Construction of FeCo2O4@N-Doped Carbon Dots Nanoflowers as Binder Free Electrode for Reduction and Oxidation of Water. Materials, 2020, 13, 3119.	1.3	18
1280	Active Site Engineering in Porous Electrocatalysts. Advanced Materials, 2020, 32, e2002435.	11.1	304
1281	Stoichiometry-Dependent Oxygen Evolution Electrocatalysis on Open-Tubular Nitrogen-Doped Carbon Column Supported Transition Metal Oxides. ACS Applied Energy Materials, 2020, 3, 2010-2019.	2.5	6
1282	Self-crosslinkable polyaniline with coordinated stabilized CoOOH nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 529, 147173.	3.1	25
1283	Evaluation of sputtered nickel oxide, cobalt oxide and nickel–cobalt oxide on n-type silicon photoanodes for solar-driven O2(g) evolution from water. Journal of Materials Chemistry A, 2020, 8, 13955-13963.	5.2	9

#	Article	IF	CITATIONS
1284	Hierarchical Highly Wrinkled Trimetallic NiFeCu Phosphide Nanosheets on Nanodendrite Ni ₃ S ₂ /Ni Foam as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 36268-36276.	4.0	44
1285	Electronic coupling strategy to boost water oxidation efficiency based on the modelling of trimetallic hydroxides Ni1-x-yFexCry(OH)2: From theory to experiment. Chemical Engineering Journal, 2020, 402, 126144.	6.6	11
1286	Atomic force microscopy: Emerging illuminated and <i>operando</i> techniques for solar fuel research. Journal of Chemical Physics, 2020, 153, 020902.	1.2	25
1287	V(III)-Doped Nickel Oxide-Based Nanocatalysts for Electrochemical Water Splitting: Influence of Phase, Composition, and Doping on the Electrocatalytic Activity. Chemistry of Materials, 2020, 32, 10394-10406.	3.2	14
1288	Nb-incorporated Fe (oxy)hydroxide derived from structural transformation for efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 24598-24607.	5.2	18
1289	Hexadecyltrimethylammonium hydroxide promotes electrocatalytic activity for the oxygen evolution reaction. Communications Chemistry, 2020, 3, .	2.0	2
1290	Recent Progress on NiFeâ€Based Electrocatalysts for the Oxygen Evolution Reaction. Small, 2020, 16, e2003916.	5.2	192
1291	Highly active hollow mesoporous NiFeCr hydroxide as an electrode material for the oxygen evolution reaction and a redox capacitor. Chemical Communications, 2020, 56, 15549-15552.	2.2	16
1292	High performance binder-free Fe–Ni hydroxides on nickel foam prepared in piranha solution for the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 6311-6320.	2.5	14
1293	Structural Evolution in Photodeposited Nickel (oxy)hydroxide Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2020, 3, 12407-12416.	2.5	5
1294	Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nature Communications, 2020, 11, 6181.	5.8	80
1295	Facile Synthesis of Hierarchical CuS and CuCo ₂ S ₄ Structures from an Ionic Liquid Precursor for Electrocatalysis Applications. ACS Applied Materials & Interfaces, 2020, 12, 52560-52570.	4.0	20
1296	Self-activated anodic nanoporous stainless steel electrocatalysts with high durability for the hydrogen evolution reaction. Electrochimica Acta, 2020, 364, 137315.	2.6	26
1297	Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?. ACS Catalysis, 2020, 10, 11177-11234.	5.5	89
1298	Fabrication of layered double hydroxide microcapsules mediated by cerium doping in metal–organic frameworks for boosting water splitting. Energy and Environmental Science, 2020, 13, 2949-2956.	15.6	126
1299	Separating bulk and surface processes in NiO _x electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2020, 4, 5024-5030.	2.5	26
1300	Improved water oxidation performance of ultra-thin planar hematite photoanode: Synergistic effect of In/Sn doping and an overlayer of metal oxyhydroxides. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112781.	2.0	2
1301	Synergizing hole accumulation and transfer on composite Ni/CoO _x for photoelectrochemical water oxidation. Chemical Communications, 2020, 56, 10179-10182.	2.2	3

#	Article	IF	CITATIONS
1302	Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: A review. Chemical Engineering Journal Advances, 2020, 1, 100008.	2.4	33
1303	Oxygen Evolution and Reduction on Fe-doped NiOOH: Influence of Solvent, Dopant Position and Reaction Mechanism. Topics in Catalysis, 2020, 63, 833-845.	1.3	19
1304	Ni11â—¡ (HPO3)8(OH)6 multifunctional materials: Electrodes for oxygen evolution reaction and potential visible-light active photocatalysts. Journal of Alloys and Compounds, 2020, 848, 156595.	2.8	10
1305	High-Valent Nickel Promoted by Atomically Embedded Copper for Efficient Water Oxidation. ACS Catalysis, 2020, 10, 9725-9734.	5.5	100
1306	Self-templating synthesis of hollow NiFe hydroxide nanospheres for efficient oxygen evolution reaction. Electrochimica Acta, 2020, 357, 136869.	2.6	7
1307	The surface structure of β-NiOOH (001) under reaction conditions and its effect on OER activity: An ab initio study. Molecular Catalysis, 2020, 493, 111082.	1.0	1
1308	High intrinsic activity of the oxygen evolution reaction in low-cost NiO nanowall electrocatalysts. Materials Advances, 2020, 1, 1971-1979.	2.6	27
1309	Evaluation of electrochemical properties of organic template assisted PdO incorporated NiO for H2/O2 evolution. Microchemical Journal, 2020, 158, 105282.	2.3	2
1310	Enhanced stability and ultrahigh activity of amorphous ripple nanostructured Ni-doped Fe oxyhydroxide electrode toward synergetic electrocatalytic water splitting. RSC Advances, 2020, 10, 26364-26373.	1.7	29
1311	Rational design of NiFe LDH@Ni ₃ N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17202-17211.	5.2	89
1312	Spectroelectrochemical Tracking of Nickel Hydroxide Reveals Its Irreversible Redox States upon Operation at High Current Density. ACS Catalysis, 2020, 10, 9451-9457.	5.5	45
1313	Investigation of the stability of NiFe-(oxy)hydroxide anodes in alkaline water electrolysis under industrially relevant conditions. Catalysis Science and Technology, 2020, 10, 5593-5601.	2.1	35
1314	<i>In situ</i> growth of Fe and Nb co-doped β-Ni(OH) ₂ nanosheet arrays on nickel foam for an efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 3465-3474.	3.0	16
1315	Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nature Communications, 2020, 11, 4066.	5.8	337
1316	Development of Ni–Fe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 24232-24247.	3.8	55
1317	Using nature's blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369, .	6.0	306
1318	Dual-modulation of phase and electronic structure in hierarchical Ni3Fe/Ni3FeN catalyst by Mo-doping to achieve efficient oxygen evolution reaction. Applied Surface Science, 2020, 529, 147172.	3.1	10
1319	Crystal phase determined Fe active sites on Fe2O3 (γ- and α-Fe2O3) yolk-shell microspheres and their phase dependent electrocatalytic oxygen evolution reaction. Applied Surface Science, 2020, 533, 147368.	3.1	26

#	Article	IF	CITATIONS
1320	Discovering Competing Electrocatalytic Mechanisms and Their Overpotentials: Automated Enumeration of Oxygen Evolution Pathways. Journal of Physical Chemistry C, 2020, 124, 24883-24898.	1.5	7
1321	High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Nature Communications, 2020, 11, 5509.	5.8	103
1322	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	18.7	448
1323	Cubic Nanostructures of Nickel–Cobalt Carbonate Hydroxide Hydrate as a High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline and Near-Neutral Media. Inorganic Chemistry, 2020, 59, 16690-16702.	1.9	24
1324	Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy, 2020, 5, 881-890.	19.8	647
1325	Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 49705-49712.	4.0	76
1326	Molten-Salt-Protected Pyrolysis for Fabricating Perovskite Nanocrystals with Promoted Water Oxidation Behavior. ACS Sustainable Chemistry and Engineering, 2020, 8, 16711-16719.	3.2	17
1327	Retention of anions in cobalt hydroxide with Ni substitution to emphasize the role of anions and cations for high current density in oxygen evolution reactions. Dalton Transactions, 2020, 49, 16962-16969.	1.6	7
1328	Charge-Carrier Dynamics at the CuWO ₄ /Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 50592-50599.	4.0	10
1329	Functionalized Co3O4 graphitic nanoparticles: A high performance electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 31380-31388.	3.8	21
1330	Understanding and Optimizing Ultraâ€Thin Coordination Polymer Derivatives with High Oxygen Evolution Performance. Advanced Energy Materials, 2020, 10, 2002228.	10.2	28
1331	Self-derivation-behaviour of substrates realizing enhanced oxygen evolution reaction. Chemical Communications, 2020, 56, 12399-12402.	2.2	12
1332	Two-Dimensional Nanomesh Arrays as Bifunctional Catalysts for N ₂ Electrolysis. ACS Catalysis, 2020, 10, 11371-11379.	5.5	55
1333	Efficient electrocatalyst of î±-Fe ₂ O ₃ nanorings for oxygen evolution reaction in acidic conditions. RSC Advances, 2020, 10, 29077-29081.	1.7	6
1334	Balancing the Activity and Selectivity of Propane Oxidative Dehydrogenation on NiOOH (001) and (010). Transactions of Tianjin University, 2020, 26, 341-351.	3.3	13
1335	Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nature Catalysis, 2020, 3, 743-753.	16.1	199
1336	Strong Catalyst–Support Interactions in Electrochemical Oxygen Evolution on Ni–Fe Layered Double Hydroxide. ACS Energy Letters, 2020, 5, 3185-3194.	8.8	44
1337	NaBH ₄ induces a high ratio of Ni ³⁺ /Ni ²⁺ boosting OER activity of the NiFe LDH electrocatalyst, RSC Advances, 2020, 10, 33475-33482.	1.7	62

#	Article	IF	CITATIONS
1338	Bulk vs Intrinsic Activity of NiFeO _{<i>x</i>} Electrocatalysts in the Oxygen Evolution Reaction: The Influence of Catalyst Loading, Morphology, and Support Material. ACS Catalysis, 2020, 10, 11768-11778.	5.5	23
1339	Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction. Science China Materials, 2020, 63, 2613-2619.	3.5	35
1340	Regulation of Morphology and Electronic Structure of NiSe ₂ by Fe for High Effective Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2020, 15, 3845-3852.	1.7	17
1341	Simultaneous Sulfite Electrolysis and Hydrogen Production Using Ni Foam-Based Three-Dimensional Electrodes. Environmental Science & Technology, 2020, 54, 12511-12520.	4.6	18
1342	Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy and Environmental Science, 2020, 13, 4225-4237.	15.6	186
1343	Coâ€Induced Electronic Optimization of Hierarchical NiFe LDH for Oxygen Evolution. Small, 2020, 16, e2002426.	5.2	263
1344	Boosted Oxygen Evolution Reactivity via Atomic Iron Doping in Cobalt Carbonate Hydroxide Hydrate. ACS Applied Materials & Interfaces, 2020, 12, 40220-40228.	4.0	42
1345	Tuning Hole Accumulation of Metal Oxides Promotes the Oxygen Evolution Rate. ACS Catalysis, 2020, 10, 10427-10435.	5.5	10
1346	Construction of a Pliable Electrode System for Effective Electrochemical Oxygen Evolution Reaction: Direct Growth of Nickel/Iron/Selenide Nanohybrids on Nickel Foil. ACS Sustainable Chemistry and Engineering, 2020, 8, 13859-13867.	3.2	12
1347	Genuine Active Species Generated from Fe ₃ N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis. Small, 2020, 16, e2003824.	5.2	31
1348	Engineering NiFe layered double hydroxide by valence control and intermediate stabilization toward the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 26130-26138.	5.2	62
1349	Stabilizing the OOH* intermediate <i>via</i> pre-adsorbed surface oxygen of a single Ru atom-bimetallic alloy for ultralow overpotential oxygen generation. Energy and Environmental Science, 2020, 13, 5152-5164.	15.6	94
1350	Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano, 2020, 14, 14323-14354.	7.3	37
1351	Activating Iron Based Materials for Overall Electrochemical Water Splitting via the Incorporation of Noble Metals. Chemistry - an Asian Journal, 2020, 15, 4339-4346.	1.7	8
1352	Complete Reconstruction of Hydrate Pre-Catalysts for Ultrastable Water Electrolysis in Industrial-Concentration Alkali Media. Cell Reports Physical Science, 2020, 1, 100241.	2.8	117
1353	A soft molecular 2Fe–2As precursor approach to the synthesis of nanostructured FeAs for efficient electrocatalytic water oxidation. Chemical Science, 2020, 11, 11834-11842.	3.7	30
1354	Amorphous Multimetal Alloy Oxygen Evolving Catalysts. , 2020, 2, 624-632.		45
1355	Ultrathin sulfate-intercalated NiFe-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution. RSC Advances, 2020, 10, 12145-12150.	1.7	23

		CITATION REPORT		
#	Article		IF	Citations
1356	The Role of Fe Species on NiOOH in Oxygen Evolution Reactions. ACS Catalysis, 2020,	10, 6254-6261.	5.5	93
1357	Iron-doped NiSe2 in-situ grown on graphene as an efficient electrocatalyst for oxygen e reaction. Journal of Electroanalytical Chemistry, 2020, 866, 114134.	volution	1.9	19
1358	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Pr Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels 6634-6695.		2.5	100
1359	In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides devolution. Nature Communications, 2020, 11, 2522.	uring oxygen	5.8	594
1360	Modern Chemical Routes for the Controlled Synthesis of Anisotropic Bimetallic Nanostr Their Application in Catalysis. Frontiers in Chemistry, 2020, 8, 357.	uctures and	1.8	34
1361	Optimizing Platinum Location on Nickel Hydroxide Nanosheets to Accelerate the Hydro Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 24683-24692.	gen Evolution	4.0	21
1362	Photoelectrochemical water splitting: a road from stable metal oxides to protected thin cells. Journal of Materials Chemistry A, 2020, 8, 10625-10669.	film solar	5.2	162
1363	Na ₄ Ni ₃ P ₄ O ₁₅ –Ni(OH) _{2<!--<br-->nanoparticles as hybrid electrocatalysts for the oxygen evolution reaction in alkaline ele Dalton Transactions, 2020, 49, 8226-8237.}		1.6	12
1364	Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped nanosphere with improved oxygen evolution reaction activity. Chemical Engineering Jou 395, 125170.		6.6	127
1365	Oxygen-evolution reaction by nickel/nickel oxide interface in the presence of ferrate(VI) Reports, 2020, 10, 8757.	. Scientific	1.6	59
1366	Tuning the oxygen evolution reaction activity of Ni- and Co-modified Fe(OH)2 electrode structure and composition control. International Journal of Hydrogen Energy, 2020, 45,		3.8	11
1367	3D freestanding flower-like nickel-cobalt layered double hydroxides enriched with oxyge as efficient electrocatalysts for water oxidation. Sustainable Materials and Technologies e00170.	n vacancies s, 2020, 25,	1.7	8
1368	Fe ₃ O ₄ /FeS ₂ heterostructures enable efficient o reaction. Journal of Materials Chemistry A, 2020, 8, 14145-14151.	xygen evolution	5.2	36
1369	Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie - International Edition 16544-16552.	, 2020, 59,	7.2	64
1370	Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Intermediate and Dioxygen Release as a Rate-Determining Step. Journal of the Americar Society, 2020, 142, 11901-11914.	Species as a Key I Chemical	6.6	452
1371	Tuning CoFe and NiFe spinel oxide compositions by a fast glycine-nitrate autocombusti evolution electrocatalysts and implications from their cyclic voltammograms on the role Materials Chemistry and Physics, 2020, 253, 123339.	on for oxygen e of Fe.	2.0	12
1372	Iron oxide promoted nickel/nickel oxide rough nanorods for efficient urea assisted wate Electrochimica Acta, 2020, 353, 136516.	r splitting.	2.6	39
1373	Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 16687.		1.6	23

	Сіт	CITATION REPORT	
#	Article	IF	CITATIONS
1374	Trimetallic conductive metal–organic frameworks as precatalysts for the oxygen evolution reaction with enhanced activity. Sustainable Energy and Fuels, 2020, 4, 4589-4597.	2.5	20
1375	Enabling Ironâ€Based Highly Effective Electrochemical Waterâ€Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalyst. Advanced Energy Materials, 2020, 10, 2001377.	10.2	96
1376	First-Principles Study on Chromium-Substituted α-Cobalt Oxyhydroxides for Efficient Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 6486-6491.	2.5	9
1377	Surfaceâ€Guided Formation of Amorphous Mixedâ€Metal Oxyhydroxides on Ultrathin MnO _{2Nanosheet Arrays for Efficient Electrocatalytic Oxygen Evolution. Advanced Energy Materials, 2020, 10, 2001059.}	ub> 10.2	87
1378	Quo vadis water oxidation?. Catalysis Today, 2020, , .	2.2	10
1379	Novel (Ni, Fe)S2/(Ni, Fe)3S4 solid solution hybrid: an efficient electrocatalyst with robust oxygen-evolving performance. Science China Chemistry, 2020, 63, 1030-1039.	4.2	22
1380	Doping of Fe on room-temperature-synthesized CoNi layered double hydroxide as an excellent bifunctional catalyst in alkaline media. Journal of the Iranian Chemical Society, 2020, 17, 2943-2956.	1.2	14
1381	Solid-acid-mediated electronic structure regulation of electrocatalysts and scaling relation breaking of oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 277, 119237.	10.8	42
1382	Core–Shell Dendritic Superstructural Catalysts by Design for Highly Efficient and Stable Electrochemical Oxygen Evolution Reaction. Advanced Materials Interfaces, 2020, 7, 2000777.	1.9	8
1383	Preparation of Sb2O3/Sb2S3/FeOOH composite photoanodes for enhanced photoelectrochemical water oxidation. Transactions of Nonferrous Metals Society of China, 2020, 30, 1625-1634.	1.7	14
1384	Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A, 2020, 8, 13415-13436.	5.2	124
1385	Functional Role of Fe, Cu-Doping in Ni-Based Perovskite Electrocatalysts for Oxygen Evolution Reaction. Nano, 2020, 15, 2050077.	0.5	5
1386	FeNi alloy nanoparticles embedded in electrospun nitrogen-doped carbon fibers for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 578, 805-813.	5.0	33
1387	Impact of Alkali Metal Cations and Iron Impurities on the Evolution of Hydrogen on Cu Electrodes in Alkaline Electrolytes. Journal of the Electrochemical Society, 2020, 167, 106505.	1.3	16
1388	Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials. Catalysts, 2020, 10, 621.	1.6	4
1389	Constructing an Adaptive Heterojunction as a Highly Active Catalyst for the Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e2001292.	11.1	122
1390	Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nature Communications, 2020, 11, 1378.	5.8	79
1391	Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nature Energy, 2020, 5, 222-230.	19.8	540

#	Article	IF	CITATIONS
1392	Aqueous electrocatalytic CO ₂ reduction using metal complexes dispersed in polymer ion gels. Chemical Communications, 2020, 56, 4440-4443.	2.2	21
1393	Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustainable Energy and Fuels, 2020, 4, 2114-2133.	2.5	367
1394	Organic template-based ZnO embedded Mn ₃ O ₄ nanoparticles: synthesis and evaluation of their electrochemical properties towards clean energy generation. RSC Advances, 2020, 10, 9854-9867.	1.7	21
1395	AktivitÃæsteigerung der Wasserstoffentwicklung von Platinelektroden in alkalischen Medien unter Verwendung von Niâ€Feâ€Clustern. Angewandte Chemie, 2020, 132, 11026-11031.	1.6	8
1396	Revealing the Impact of Electrolyte Composition for Co-Based Water Oxidation Catalysts by the Study of Reaction Kinetics Parameters. ACS Catalysis, 2020, 10, 4160-4170.	5.5	43
1397	Facile Synthesis of an Efficient Ni–Fe–Co Based Oxygen Evolution Reaction Electrocatalyst. Journal of the Electrochemical Society, 2020, 167, 046507.	1.3	26
1398	Mesoporous Iron-doped MoS ₂ /CoMo ₂ S ₄ Heterostructures through Organic–Metal Cooperative Interactions on Spherical Micelles for Electrochemical Water Splitting. ACS Nano, 2020, 14, 4141-4152.	7.3	156
1399	Mesoporous Ternary Nitrides of Earth-Abundant Metals as Oxygen Evolution Electrocatalyst. Nano-Micro Letters, 2020, 12, 79.	14.4	63
1400	Ultrathin FeP Nanosheets as an Efficient Catalyst for Electrocatalytic Water Oxidation: Promoted Intermediates Adsorption by Surface Defects. ACS Applied Energy Materials, 2020, 3, 3577-3585.	2.5	42
1401	Undoped SnO ₂ as a Support for Ni Species to Boost Oxygen Generation through Alkaline Water Electrolysis. ACS Applied Materials & Interfaces, 2020, 12, 18407-18420.	4.0	17
1402	Copper facilitated nickel oxy-hydroxide films as efficient synergistic oxygen evolution electrocatalyst. Journal of Catalysis, 2020, 384, 189-198.	3.1	5
1403	Controlled Assembly of Cu/Coâ€Oxide Beaded Nanoclusters on Thiolated Graphene Oxide Nanosheets for Highâ€Performance Oxygen Evolution Catalysts. Chemistry - A European Journal, 2020, 26, 11209-11219.	1.7	15
1404	Ternary NiFeTiOOH Catalyst for the Oxygen Evolution Reaction: Study of the Effect of the Addition of Ti at Different Loadings. ACS Catalysis, 2020, 10, 4879-4887.	5.5	21
1405	Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting. Journal of Materials Chemistry A, 2020, 8, 9021-9031.	5.2	72
1406	Establishing Performance Baselines for the Oxygen Evolution Reaction in Alkaline Electrolytes. Journal of the Electrochemical Society, 2020, 167, 044503.	1.3	28
1407	Selfâ€supported Reevesite Niâ€Fe Layered Double Hydroxide Nanosheet Arrays for Efficient Water Oxidation. ChemistrySelect, 2020, 5, 3062-3068.	0.7	10
1408	Controlled engineering of nickel carbide induced N-enriched carbon nanotubes for hydrogen and oxygen evolution reactions in wide pH range. Electrochimica Acta, 2020, 341, 136032.	2.6	45
1409	Quantitative Resolution of Complex Stoichiometric Changes during Electrochemical Cycling by Density Functional Theory-Assisted Electrochemical Quartz Crystal Microbalance. ACS Applied Energy Materials, 2020, 3, 3347-3357.	2.5	14

#	Article	IF	CITATIONS
1410	A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49, 2196-2214.	18.7	1,466
1411	Designed Formation of Doubleâ€Shelled Ni–Fe Layeredâ€Doubleâ€Hydroxide Nanocages for Efficient Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1906432.	11.1	305
1412	Enhancing the Hydrogen Evolution Reaction Activity of Platinum Electrodes in Alkaline Media Using Nickel–Iron Clusters. Angewandte Chemie - International Edition, 2020, 59, 10934-10938.	7.2	70
1413	Tuning Surface Electronic Structure of Twoâ€Dimensional Cobaltâ€Based Hydroxide Nanosheets for Highly Efficient Water Oxidation. ChemCatChem, 2020, 12, 2823-2832.	1.8	24
1414	Prussian blue analogue-derived porous bimetallic oxides Fe3O4–NiO/NF as urea oxidation electrocatalysis. Chemical Papers, 2020, 74, 4473-4480.	1.0	12
1415	Hydrogen Production from Urea Sewage on NiFe-Based Porous Electrocatalysts. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	15
1416	Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Advanced Functional Materials, 2020, 30, 2003261.	7.8	352
1417	Iron-doped cobalt phosphate 1D amorphous ultrathin nanowires as a highly efficient electrocatalyst for water oxidation. Sustainable Energy and Fuels, 2020, 4, 4704-4712.	2.5	16
1418	A new concept analogous to homogeneous catalysis to construct in-situ regenerative electrodes for long-term oxygen evolution reaction. Nano Energy, 2020, 76, 105115.	8.2	14
1419	Template-stabilized oxidic nickel oxygen evolution catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16187-16192.	3.3	41
1420	An integrated photoanode based on non-critical raw materials for robust solar water splitting. Materials Advances, 2020, 1, 1202-1211.	2.6	4
1421	Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale, 2020, 12, 13276-13296.	2.8	14
1422	Synergetic modulation of the electronic structure and hydrophilicity of nickel–iron hydroxide for efficient oxygen evolution by UV/ozone treatment. Journal of Materials Chemistry A, 2020, 8, 13437-13442.	5.2	15
1423	A hybrid of MIL-53(Fe) and conductive sulfide as a synergistic electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 14574-14582.	5.2	41
1424	Efficient Oxygen Evolution and Gas Bubble Release Achieved by a Low Gas Bubble Adhesive Iron–Nickel Vanadate Electrocatalyst. Small, 2020, 16, e2002412.	5.2	77
1425	Fe doped metal organic framework (Ni)/carbon black nanosheet as highly active electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 21431-21441.	3.8	23
1426	Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis, 2020, 10, 4019-4047.	5.5	379
1427	The role of ultra-thin MnO _x co-catalysts on the photoelectrochemical properties of BiVO ₄ photoanodes. Journal of Materials Chemistry A, 2020, 8, 5508-5516.	5.2	23

#	Article	IF	CITATIONS
1428	Single-Step Electrochemical Synthesis of Cobalt Nanoclusters Embedded on Dense Graphite Sheets for Electrocatalysis of the Oxygen Evolution Reaction. ACS Applied Nano Materials, 2020, 3, 2705-2712.	2.4	9
1429	Two-sites are better than one: revisiting the OER mechanism on CoOOH by DFT with electrode polarization. Physical Chemistry Chemical Physics, 2020, 22, 7031-7038.	1.3	45
1430	An amorphous trimetallic (Ni–Co–Fe) hydroxide-sheathed 3D bifunctional electrode for superior oxygen evolution and high-performance cable-type flexible zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 5601-5611.	5.2	57
1431	Higher-Valent Nickel Oxides with Improved Oxygen Evolution Activity and Stability in Alkaline Media Prepared by High-Temperature Treatment of Ni(OH) ₂ . ACS Catalysis, 2020, 10, 3595-3603.	5.5	70
1432	Deciphering Ironâ€Dependent Activity in Oxygen Evolution Catalyzed by Nickel–Iron Layered Double Hydroxide. Angewandte Chemie - International Edition, 2020, 59, 8072-8077.	7.2	274
1433	Hybridizing amorphous nickel cobalt phosphate and nickel phosphide as an efficient bifunctional nanocatalyst towards overall water splitting. Catalysis Today, 2020, 358, 215-220.	2.2	16
1434	The effect of Fe(III) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)2 electrode. Journal of Colloid and Interface Science, 2020, 569, 50-56.	5.0	21
1435	Deciphering Ironâ€Đependent Activity in Oxygen Evolution Catalyzed by Nickel–Iron Layered Double Hydroxide. Angewandte Chemie, 2020, 132, 8149-8154.	1.6	56
1436	Secondary Transition-Metal Dopants for Enhanced Electrochemical O2 Formation and Desorption on Fe-Doped β-NiOOH. ACS Energy Letters, 2020, 5, 962-967.	8.8	14
1437	Strongly Coupled Ni/Ni(OH) ₂ Hybrid Nanocomposites as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 4431-4439.	3.2	54
1438	Ultrafine α-CoOOH Nanorods Activated with Iron for Exceptional Oxygen Evolution Reaction. Langmuir, 2020, 36, 2223-2230.	1.6	21
1439	Review—Electronic Circuit Systems for Piezoelectric Resonance Sensors. Journal of the Electrochemical Society, 2020, 167, 037560.	1.3	16
1440	Electroless Plating of NiFeP Alloy on the Surface of Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 11479-11488.	4.0	28
1441	NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts with Fe as Electron Transfer Mediator for Enhanced Persulfate Activation. Journal of Physical Chemistry Letters, 2020, 11, 968-973.	2.1	59
1442	Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials. Journal of the American Chemical Society, 2020, 142, 3600-3612.	6.6	114
1443	Noninnocent Influence of Host β-NiOOH Redox Activity on Transition-Metal Dopants' Efficacy as Active Sites in Electrocatalytic Water Oxidation. ACS Catalysis, 2020, 10, 2720-2734.	5.5	32
1444	Oxygen Evolution Activity on NiOOH Catalysts: Four-Coordinated Ni Cation as the Active Site and the Hydroperoxide Mechanism. ACS Catalysis, 2020, 10, 2581-2590.	5.5	71
1445	A bifunctional nanoporous Ni–Co–Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Nanoscale, 2020, 12, 4426-4434.	2.8	101

#	Article	IF	CITATIONS
1446	Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Research, 2020, 13, 447-454.	5.8	77
1447	Tailored NiFe Catalyst on Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2020, 124, 2844-2850.	1.5	19
1448	Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chinese Journal of Catalysis, 2020, 41, 847-852.	6.9	53
1449	Single Step Grown NiFe Sponges as Efficient Water Splitting Electrocatalysts in Alkaline Medium. ChemistrySelect, 2020, 5, 1385-1395.	0.7	3
1450	Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020, 70, 104525.	8.2	143
1451	Non-redox doping boosts oxygen evolution electrocatalysis on hematite. Chemical Science, 2020, 11, 2464-2471.	3.7	26
1452	Interface passivation to overcome shunting in semiconductor–catalyst junctions. Chemical Communications, 2020, 56, 2570-2573.	2.2	10
1453	Optimizing the surface state of cobalt-iron bimetallic phosphide <i>via</i> regulating phosphorus vacancies. Chemical Communications, 2020, 56, 2602-2605.	2.2	29
1454	Solution-Phase Activation and Functionalization of Colloidal WS ₂ Nanosheets with Ni Single Atoms. ACS Nano, 2020, 14, 2238-2247.	7.3	46
1455	Layered transition-metal hydroxides for alkaline hydrogen evolution reaction. Chinese Journal of Catalysis, 2020, 41, 574-591.	6.9	72
1456	Recent Advances on the Use of Nickel Nano Layered Double Hydroxides as Green, and Efficient, Catalysts for Water Splitting. Catalysis Letters, 2020, 150, 1942-1956.	1.4	22
1457	Insights into Redox Reactions and Ionic Transfers in Nickel/Iron Layered Double Hydroxide in Potassium Hydroxide. Journal of Physical Chemistry C, 2020, 124, 3037-3049.	1.5	9
1458	Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coordination Chemistry Reviews, 2020, 408, 213177.	9.5	104
1459	Electronic modulation of nickel phosphide by iron doping and its assembly on a graphene framework for efficient electrocatalytic water oxidation. Journal of Alloys and Compounds, 2020, 824, 153913.	2.8	15
1460	Reversible ternary nickelâ€cobaltâ€iron catalysts for intermittent water electrolysis. EcoMat, 2020, 2, e12012.	6.8	14
1461	Alloy Foamâ€Derived Ni _{0.86} Fe _{2.14} O ₄ Hexagonal Plates as an Efficient Electrochemical Catalyst for the Oxygen Evolution Reaction. ChemistrySelect, 2020, 5, 1578-1585.	0.7	2
1462	Trace Fe Incorporation into Ni-(oxy)hydroxide Stabilizes Ni ³⁺ Sites for Anodic Oxygen Evolution: A Double Thin-Layer Study. Langmuir, 2020, 36, 5126-5133.	1.6	18
1463	Conformal SnO _x heterojunction coatings for stabilized photoelectrochemical water oxidation using arrays of silicon microcones. Journal of Materials Chemistry A, 2020, 8, 9292-9301.	5.2	12

		CITATION R	Report	
#	Article		IF	CITATIONS
1464	Few-atom cluster model systems for a hydrogen economy. Advances in Physics: X, 2020,	5, 1754132.	1.5	8
1465	Electroless Plating of Transition Metal Boride with High Boron Content as Superior HER Electrocatalyst. ChemCatChem, 2020, 12, 3068-3075.		1.8	23
1466	Unique advantages of 2D inorganic nanosheets in exploring high-performance electrocat Synthesis, application, and perspective. Coordination Chemistry Reviews, 2020, 415, 213		9.5	70
1467	A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Perform. Bifunctional Electrocatalysts towards Efficient Overall Water Splitting. ACS Applied Mate Interfaces, 2020, 12, 19447-19456.	ance rials &	4.0	103
1468	Role of Sulfur Incorporation in p-Type Nickel Oxide (p-NiO) on n-Type Silicon (n-Si) Photo for Water Oxidation Reactions. ACS Applied Energy Materials, 2020, 3, 4255-4264.	electrodes	2.5	9
1469	Interfacial coordination assembly of tannic acid with metal ions on three-dimensional nic hydroxide nanowalls for efficient water splitting. Journal of Materials Chemistry A, 2020, 15845-15852.		5.2	95
1470	Synthesis of an amorphous <i>Geobacter</i> -manganese oxide biohybrid as an efficient oxidation catalyst. Green Chemistry, 2020, 22, 5610-5618.	water	4.6	11
1471	Recent Advances in Nonâ€Noble Bifunctional Oxygen Electrocatalysts toward Largeâ€Sc Advanced Functional Materials, 2020, 30, 2000503.	ale Production.	7.8	226
1472	Ni3Fe nanoparticles enclosed by B-doped carbon for efficient bifunctional performances and hydrogen evolution reactions. Journal of Alloys and Compounds, 2020, 835, 155267	of oxygen '.	2.8	46
1473	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materia 2000478.	ls, 2020, 10,	10.2	162
1474	In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient elect for water oxidation. Chemical Engineering Journal, 2020, 395, 125180.	rocatalyst	6.6	100
1475	Effect of microstructure and internal stress on hydrogen absorption into Ni thin film elec during alkaline water electrolysis. Electrochimica Acta, 2020, 340, 135970.	trodes	2.6	11
1476	Three-Dimensional Amorphous NiCoFe Nanowire@Nanosheets Catalysts for Enhanced O Evolution Reaction. Journal of the Electrochemical Society, 2020, 167, 064514.	xygen	1.3	7
1477	Rapid microwave-assisted preparation of high-performance bifunctional Ni3Fe/Co-N-C for Zn-air battery. Chemical Engineering Journal, 2020, 395, 125151.	rechargeable	6.6	52
1478	Recent progress in self-supported two-dimensional transition metal oxides and (oxy)hydr oxygen evolution reaction catalysts. Sustainable Energy and Fuels, 2020, 4, 2625-2637.	oxides as	2.5	28
1479	In situ synthesis of Fe-doped NiC2O4 nanorods for efficient oxygen evolution activity and water splitting. Electrochimica Acta, 2020, 345, 136228.	d overall	2.6	8
1480	Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in ac Journal of Energy Chemistry, 2020, 51, 113-133.	idic media.	7.1	66
1481	Updates on the Roadmap for Photocatalysis. ACS Catalysis, 2020, 10, 5493-5501.		5.5	293

#	Article	IF	CITATIONS
1482	Enhancement of HER kinetics with RhNiFe for high-rate water electrolysis. Catalysis Science and Technology, 2020, 10, 3681-3693.	2.1	20
1483	Fe-leaching induced surface reconstruction of Ni-Fe alloy on N-doped carbon to boost oxygen evolution reaction. Chemical Engineering Journal, 2020, 394, 124977.	6.6	61
1484	Controllable structure reconstruction of nickel–iron compounds toward highly efficient oxygen evolution. Nanoscale, 2020, 12, 10751-10759.	2.8	19
1485	Hierarchically devising NiFeO H catalyst with surface Fe active sites for efficient oxygen evolution reaction. Catalysis Today, 2021, 364, 140-147.	2.2	14
1486	Binder-free quaternary Ni–Fe–W–Mo alloy as a highly efficient electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 853, 157265.	2.8	15
1487	Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction**. Angewandte Chemie, 2021, 133, 3132-3140.	1.6	34
1488	Oxygen-evolution reaction by gold and cobalt in iron and nickel free electrolyte. International Journal of Hydrogen Energy, 2021, 46, 1509-1516.	3.8	18
1489	Enhanced oxygen evolution reaction activity of flower-like FeOOH via the synergistic effect of sulfur. Chemical Engineering Journal, 2021, 420, 127587.	6.6	38
1490	NiFe hydroxide pillared by metaborate for efficient oxygen evolution reaction. Electrochimica Acta, 2021, 366, 137427.	2.6	7
1491	Carbon hybrid with 3D nano-forest architecture in-situ catalytically constructed by CoFe alloy as advanced multifunctional electrocatalysts for Zn-air batteries-driven water splitting. Journal of Energy Chemistry, 2021, 53, 422-432.	7.1	42
1492	Oxygen Vacancyâ€induced Electron Density Tuning of Fe ₃ O ₄ for Enhanced Oxygen Evolution Catalysis. Energy and Environmental Materials, 2021, 4, 392-398.	7.3	45
1493	Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. Chemical Engineering Journal, 2021, 403, 126304.	6.6	75
1494	Fast cathodic reduction electrodeposition of a binder-free cobalt-doped Ni-MOF film for directly sensing of levofloxacin. Journal of Alloys and Compounds, 2021, 851, 156823.	2.8	33
1495	Boosting the electrocatalytic performance of NiFe layered double hydroxides for the oxygen evolution reaction by exposing the highly active edge plane (012). Chemical Science, 2021, 12, 650-659.	3.7	68
1496	Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method. Journal of Colloid and Interface Science, 2021, 584, 760-769.	5.0	51
1497	Development Trends on Nickelâ€Based Electrocatalysts for Direct Hydrazine Fuel Cells. ChemCatChem, 2021, 13, 81-110.	1.8	38
1498	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
1499	Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Materials Today Physics, 2021, 16, 100292.	2.9	108

#	Article	IF	Citations
1500	Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction**. Angewandte Chemie - International Edition, 2021, 60, 3095-3103.	7.2	176
1501	Prospect of Ni-related metal oxides for high-performance supercapacitor electrodes. Journal of Materials Science, 2021, 56, 1897-1918.	1.7	11
1502	Ni(II)/Ni(III) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chemical Engineering Journal, 2021, 404, 126795.	6.6	72
1503	Identification of highly active surface iron sites on Ni(OOH) for the oxygen evolution reaction by atomic layer deposition. Journal of Catalysis, 2021, 394, 476-485.	3.1	8
1504	NiFe hydroxide nanosheet synthesized by in-situ chelation for highly efficient oxygen evolution reaction. Materials Chemistry and Physics, 2021, 258, 123918.	2.0	10
1505	"The Fe Effect― A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021, 80, 105514.	8.2	437
1506	In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution. Journal of Materials Science and Technology, 2021, 70, 197-204.	5.6	23
1507	Optical and electrochemical effects of H ₂ and O ₂ bubbles at upward-facing Si photoelectrodes. Energy and Environmental Science, 2021, 14, 414-423.	15.6	26
1508	Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen Oâ•PN3-Pincer Cobalt Complex. Inorganic Chemistry, 2021, 60, 614-622.	1.9	14
1509	Surface reconstruction of Ni doped Co–Fe Prussian blue analogues for enhanced oxygen evolution. Catalysis Science and Technology, 2021, 11, 1110-1115.	2.1	22
1510	Local probe investigation of electrocatalytic activity. Chemical Science, 2021, 12, 71-98.	3.7	13
1511	A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Research, 2021, 14, 1175-1186.	5.8	43
1512	2D MOF-derived porous NiCoSe nanosheet arrays on Ni foam for overall water splitting. CrystEngComm, 2021, 23, 69-81.	1.3	37
1513	Carbon nanotube boosting electrocatalytic oxygen evolution of NiFe-polyphenol coordination catalyst through donor-acceptor modulation. Journal of Colloid and Interface Science, 2021, 582, 396-404.	5.0	13
1514	Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano Letters, 2021, 21, 492-499.	4.5	190
1515	Recent Advances in Electrocatalysis of Oxygen Evolution Reaction using Nobleâ€Metal, Transitionâ€Metal, and Carbonâ€Based Materials. ChemElectroChem, 2021, 8, 447-483.	1.7	68
1516	Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable Zinc-air batteries. Energy Storage Materials, 2021, 35, 723-730.	9.5	89
1517	Magnetic field enhancement of electrochemical hydrogen evolution reaction probed by magneto-optics. International Journal of Hydrogen Energy, 2021, 46, 3346-3353.	3.8	18

#	ARTICLE	IF	CITATIONS
1518	Resolving Potential-Dependent Degradation of Electrodeposited Ni(OH)2 Catalysts in Alkaline Oxygen Evolution Reaction (OER): In Situ XANES Studies. Applied Catalysis B: Environmental, 2021, 284, 119729.	10.8	54
1519	Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chinese Chemical Letters, 2021, 32, 1210-1214.	4.8	18
1520	Nanostructured metallic FeNi2S4 with reconstruction to generate FeNi-based oxide as a highly-efficient oxygen evolution electrocatalyst. Nano Energy, 2021, 81, 105619.	8.2	68
1521	Spinel nano-ferrites as low-cost (photo)electrocatalysts with unique electronic properties in solar energy conversion systems. International Journal of Hydrogen Energy, 2021, 46, 3510-3529.	3.8	20
1522	Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3786-3827.	5.2	140
1523	Prussian blue analogues as platform materials for understanding and developing oxygen evolution reaction electrocatalysts. Journal of Catalysis, 2021, 393, 390-398.	3.1	19
1524	Modular Design of Highly Active Unitized Reversible Fuel Cell Electrocatalysts. ACS Energy Letters, 2021, 6, 177-183.	8.8	22
1525	Tracking the role of Fe in NiFe-layered double hydroxide for solar water oxidation and prototype demonstration towards PV assisted solar water-splitting. International Journal of Hydrogen Energy, 2021, 46, 2143-2155.	3.8	16
1526	Hierarchical porous Ni, Fe-codoped Co-hydroxide arrays derived from metal–organic-frameworks for enhanced oxygen evolution. Chemical Communications, 2021, 57, 1522-1525.	2.2	15
1527	High Density and Unit Activity Integrated in Amorphous Catalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000096.	6.9	102
1528	Topotactically constructed nickel–iron (oxy)hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. Journal of Energy Chemistry, 2021, 57, 212-218.	7.1	50
1529	Deposition of FeOOH layers onto porous PbO2 by galvanic displacement and their use as electrocatalysts for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 880, 114844.	1.9	9
1530	Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction. Journal of Materials Science and Technology, 2021, 72, 172-179.	5.6	43
1531	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	7.8	86
1532	Reconstructed Water Oxidation Electrocatalysts: The Impact of Surface Dynamics on Intrinsic Activities. Advanced Functional Materials, 2021, 31, 2008190.	7.8	161
1533	Tailoring the activity of NiFe layered double hydroxide with CeCO3OH as highly efficient water oxidation electrocatalyst. International Journal of Hydrogen Energy, 2021, 46, 2018-2025.	3.8	10
1534	Strategies to Develop Earthâ€Abundant Heterogeneous Oxygen Evolution Reaction Catalysts for pHâ€Neutral or pHâ€Nearâ€Neutral Electrolytes. Small Methods, 2021, 5, e2000719.	4.6	31
1535	Voltammetric detection of caffeine content in different tea stuffs by using Co3O4/GCE-Nafion electrode. Journal of the Iranian Chemical Society, 2021, 18, 701-708.	1.2	4

#	Article	IF	CITATIONS
1536	Mixed-metal hybrid ultramicroporous material (HUM) precursor to graphene-supported tetrataenite as a highly active and durable NPG catalyst for the OER. Dalton Transactions, 2021, 50, 5311-5317.	1.6	3
1537	Interface engineering with an AlO _x dielectric layer enabling an ultrastable Ta ₃ N ₅ photoanode for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2021, 9, 11285-11290.	5.2	17
1538	Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews, 2021, 50, 2444-2485.	18.7	102
1539	Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review. Journal of Materials Chemistry A, 2021, 9, 20131-20163.	5.2	110
1540	Thermally activated carbon–nitrogen vacancies in double-shelled NiFe Prussian blue analogue nanocages for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12734-12745.	5.2	25
1541	Analysis of Solid-State Reaction Mechanisms with Two-Dimensional Fourier Transform Infrared Correlation Spectroscopy. Inorganic Chemistry, 2021, 60, 2304-2314.	1.9	3
1542	Design of molecular water oxidation catalysts with earth-abundant metal ions. Chemical Society Reviews, 2021, 50, 6790-6831.	18.7	102
1543	Bimetallic cyclic redox couple in dimanganese copper oxide supported by nickel borate for boosted alkaline electrocatalytic oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 2517-2527.	2.5	5
1544	Alkaline Anion Exchange Membrane (AEM) Water Electrolysers—Current/Future Perspectives in Electrolysers for Hydrogen. , 2022, , 473-504.		2
1545	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	2.8	13
1546	Metal–organic framework (MOF) derived flower-shaped CoSe ₂ nanoplates as a superior bifunctional electrocatalyst for both oxygen and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 4992-5000.	2.5	22
1547	Efficient overall water splitting catalyzed by robust FeNi ₃ N nanoparticles with hollow interiors. Journal of Materials Chemistry A, 2021, 9, 7750-7758.	5.2	48
1548	Soft x-ray spectroscopies in liquids and at solid–liquid interface at BACH beamline at Elettra. Review of Scientific Instruments, 2021, 92, 015115.	0.6	3
1549	A direct Z-scheme mechanism for selective hydrogenation of aromatic nitro compounds over a hybrid photocatalyst composed of ZnIn ₂ 4 and WO ₃ nanorods. New Journal of Chemistry, 2021, 45, 3298-3310.	1.4	9
1550	Surface Reconstruction-Associated Partially Amorphized Bismuth Oxychloride for Boosted Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 5088-5098.	4.0	18
1551	Lattice Matching Growth of Conductive Hierarchical Porous MOF/LDH Heteronanotube Arrays for Highly Efficient Water Oxidation. Advanced Materials, 2021, 33, e2006351.	11.1	155
1552	Electrochemical behavior of a Ni ₃ N OER precatalyst in Fe-purified alkaline media: the impact of self-oxidation and Fe incorporation. Materials Advances, 2021, 2, 2299-2309.	2.6	28
1553	Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER. Journal of Materials Chemistry A, 2021, 9, 11255-11267.	5.2	36

#	Article	IF	CITATIONS
1554	Synthesis of flower-like nickel–iron–chromium nanostructure compound deposited stainless steel foil as an efficient binder-free electrocatalyst for water splitting. Sustainable Energy and Fuels, 2021, 5, 2649-2659.	2.5	8
1555	Low-cost and multi-level structured NiFeMn alloy@NiFeMn oxyhydroxide electrocatalysts for highly efficient overall water splitting. Inorganic Chemistry Frontiers, 2021, 8, 2713-2724.	3.0	5
1556	Pencil graphite rods decorated with nickel and nickel–iron as low-cost oxygen evolution reaction electrodes. Sustainable Energy and Fuels, 2021, 5, 3929-3938.	2.5	7
1557	Concisely Synthesized FeNiWO _{<i>x</i>} Film as a Highly Efficient and Robust Catalyst for Electrochemical Water Oxidation. ACS Applied Energy Materials, 2021, 4, 1410-1420.	2.5	23
1558	Highly robust, novel aluminum counter cation-based monophosphate tungsten bronze electro-catalysts for oxygen evolution in acidic solution. RSC Advances, 2021, 11, 10681-10687.	1.7	4
1559	Inductive effect as a universal concept to design efficient catalysts for CO ₂ electrochemical reduction: electronegativity difference makes a difference. Journal of Materials Chemistry A, 2021, 9, 4626-4647.	5.2	12
1560	High-performance NiOOH/FeOOH electrode for OER catalysis. Journal of Chemical Physics, 2021, 154, 024706.	1.2	11
1561	Synthesis of iron and vanadium coâ€doped mesoporous cobalt oxide: An efficient and robust catalysts for electrochemical water oxidation. International Journal of Energy Research, 2021, 45, 9422-9437.	2.2	12
1562	Surface self-reconstruction of nickel foam triggered by hydrothermal corrosion for boosted water oxidation. International Journal of Hydrogen Energy, 2021, 46, 1501-1508.	3.8	40
1563	Trace amounts of Ru-doped Ni–Fe oxide bone-like structures <i>via</i> single-step anodization: a flexible and bifunctional electrode for efficient overall water splitting. Journal of Materials Chemistry A, 2021, 9, 12041-12050.	5.2	30
1564	Critical practices in conducting electrochemical conversion of 5-hydroxymethylfurfural. Catalysis Science and Technology, 2021, 11, 4882-4888.	2.1	9
1565	Highly Efficient Electrocatalytic Water Splitting. , 2021, , 1335-1367.		1
1566	Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3180-3208.	5.2	224
1567	Defective two-dimensional layered heterometallic phosphonates as highly efficient oxygen evolution electrocatalysts. Inorganic Chemistry Frontiers, 2021, 8, 4448-4457.	3.0	6
1568	The electronic structure of transition metal oxides for oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 19465-19488.	5.2	90
1569	Recognition of Surface Oxygen Intermediates on NiFe Oxyhydroxide Oxygen-Evolving Catalysts by Homogeneous Oxidation Reactivity. Journal of the American Chemical Society, 2021, 143, 1493-1502.	6.6	111
1570	Local structural changes in polyamorphous (Ni,Fe)O _x electrocatalysts suggest a dual-site oxygen evolution reaction mechanism. Journal of Materials Chemistry A, 2021, 9, 13252-13262.	5.2	17
1571	Tuning the electronic structure of NiCoVO _{<i>x</i>} nanosheets through S doping for enhanced oxygen evolution. Nanoscale, 2021, 13, 17022-17027.	2.8	9

<u></u>		D
(пт	ON	Report
		KLI OKI

#	Article	IF	CITATIONS
1572	Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal–Oxygen Covalency Enables Efficient Oxygen Evolution. Energy and Environmental Materials, 2022, 5, 231-237.	7.3	28
1573	Role of Synergistic Effect in Oxygen Evolution Reaction over Layered Double Hydroxide. Acta Chimica Sinica, 2021, 79, 216.	0.5	0
1574	Mass transport-enhanced electrodeposition of Ni–S–P–O films on nickel foam for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 7736-7749.	5.2	49
1575	Electrochemical stability of stainless-steel-made anode for alkaline water electrolysis: Surface catalyst nanostructures and oxygen evolution overpotentials under applying potential cycle loading. Electrochemistry Communications, 2021, 122, 106902.	2.3	39
1576	Shape-selective rhodium nano-huddles on DNA for high efficiency hydrogen evolution reaction in acidic medium. Journal of Materials Chemistry C, 2021, 9, 1709-1720.	2.7	15
1577	Understanding polyoxometalates as water oxidation catalysts through iron <i>vs.</i> cobalt reactivity. Chemical Science, 2021, 12, 8755-8766.	3.7	23
1578	Nickel-Iron Layered Double Hydroxide for Highly Efficient Oxygen Evolution Reaction. E3S Web of Conferences, 2021, 290, 01036.	0.2	0
1579	Decoupled electrochemical water-splitting systems: a review and perspective. Energy and Environmental Science, 2021, 14, 4740-4759.	15.6	172
1580	Design of pre-catalysts for heterogeneous CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2021, 9, 19508-19533.	5.2	24
1581	Durability of anion exchange membrane water electrolyzers. Energy and Environmental Science, 2021, 14, 3393-3419.	15.6	213
1582	Dynamically Stable Active Sites from Surface Evolution of Perovskite Materials during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 2741-2750.	6.6	156
1583	Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	6
1584	Improved water oxidation with metal oxide catalysts via a regenerable and redox-inactive ZnOxHy overlayer. Chemical Communications, 2021, 57, 10230-10233.	2.2	1
1585	Supercapacitors based on two-dimensional transition metal dichalcogenides and their hybrids. , 2021, , 159-191.		3
1586	Electro-catalysts for oxygen electrodes in seawater electrolyzers (OER) and reversible electrolyzers (OER/ORR). , 2021, , 83-103.		2
1587	Understanding the Structural Evolution of a Nickel Chalcogenide Electrocatalyst Surface for Water Oxidation. Energy & amp; Fuels, 2021, 35, 4387-4403.	2.5	33
1588	Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2009779.	7.8	195
1589	Tailoring Electronegativity of Bimetallic Ni/Fe Metal–Organic Framework Nanosheets for Electrocatalytic Water Oxidation. ACS Applied Nano Materials, 2021, 4, 1967-1975.	2.4	30

#	Article	IF	CITATIONS
1590	Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement. Nano Research, 2021, 14, 3329-3336.	5.8	14
1591	Oxygen Evolution Catalysts at Transition Metal Oxide Photoanodes: Their Differing Roles for Solar Water Splitting. Advanced Energy Materials, 2021, 11, 2003111.	10.2	51
1592	Enhanced oxygen and hydrogen evolution reaction by zinc doping in cobalt–nickel sulfide heteronanorods. Electrochemical Science Advances, 0, , e202000038.	1.2	2
1594	Unveiling the In Situ Dissolution and Polymerization of Mo in Ni ₄ Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 7051-7055.	7.2	228
1595	Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides. Nature Communications, 2021, 12, 824.	5.8	63
1596	Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catalysis, 2021, 11, 3094-3114.	5.5	115
1597	Efficient Oxygen Evolution Electrocatalysis on CaFe ₂ O ₄ and Its Reaction Mechanism. ACS Applied Energy Materials, 2021, 4, 3057-3066.	2.5	22
1598	Faceted Colloidal Metallic Ni ₃ N Nanocrystals: Size-Controlled Solution-Phase Synthesis and Electrochemical Overall Water Splitting. ACS Applied Energy Materials, 2021, 4, 2165-2173.	2.5	28
1599	A Programmable and Automated Platform for Integrated Synthesis and Evaluation of Water Electrolysis Catalysts. Advanced Materials Technologies, 2021, 6, 2001036.	3.0	3
1600	Metal–Organic Polymer-Derived Interconnected Fe–Ni Alloy by Carbon Nanotubes as an Advanced Design of Urea Oxidation Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 8461-8473.	4.0	62
1601	Optimization of Niâ^'Coâ^'Feâ€Based Catalysts for Oxygen Evolution Reaction by Surface and Relaxation Phenomena Analysis. ChemSusChem, 2021, 14, 1737-1746.	3.6	17
1602	Host Modification of Layered Double Hydroxide Electrocatalyst to Boost the Thermodynamic and Kinetic Activity of Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009743.	7.8	71
1603	Pushâ€Pull Electronic Effects in Surfaceâ€Active Sites Enhance Electrocatalytic Oxygen Evolution on Transition Metal Oxides. ChemSusChem, 2021, 14, 1595-1601.	3.6	10
1604	Anionic sulfur-modified FeNi-LDH at various Fe/Ni molar ratios for high-performance OER electrocatalysis. Materials Letters, 2021, 285, 129132.	1.3	16
1605	Unveiling the In Situ Dissolution and Polymerization of Mo in Ni 4 Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 7127-7131.	1.6	12
1606	Recent progress in in situ/operando analysis tools for oxygen electrocatalysis. Journal Physics D: Applied Physics, 2021, 54, 173001.	1.3	11
1607	Electrochemically Controlled Synthesis of Ultrathin Nickel Hydroxide Nanosheets for Electrocatalytic Oxygen Evolution. Inorganic Chemistry, 2021, 60, 3365-3374.	1.9	24
1608	Promotion of Electrochemical Water Oxidation Activity of Au Supported Cobalt Oxide upon Addition of Cr: Insights using <i>inâ€situ</i> Raman Spectroscopy. ChemCatChem, 2021, 13, 2053-2063.	1.8	9

#	Article	IF	CITATIONS
1609	Recent Advances in Bimetallic Transition Metal Nitrides for Hydrogen Evolution Reaction. Ceramist, 2021, 24, 54-66.	0.0	0
1610	Co ₁ Al ₂ (OH) _{<i>m</i>} Layered Double Hydroxide/Graphitic Carbon Nitride Composite Nanostructure: An Efficient Water Oxidation Reaction Electrocatalyst in an Alkaline Electrolyte. Energy & Fuels, 2021, 35, 5206-5216.	2.5	4
1611	Surface oxidized iron-nickel nanorods anchoring on graphene architectures for oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 3579-3583.	4.8	16
1612	Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress. Advanced Energy and Sustainability Research, 2021, 2, 2000090.	2.8	29
1613	Evaluating the effect of membrane-ionomer combinations and supporting electrolytes on the performance of cobalt nanoparticle anodes in anion exchange membrane electrolyzers. Journal of Power Sources, 2021, 488, 229433.	4.0	20
1614	Functionalization of <scp> Mn ₂ O ₃ </scp> / <scp>PdO</scp> / <scp>ZnO</scp> electrocatalyst using organic template with accentuated electrochemical potential toward water splitting. International Journal of Energy Research, 2022, 46, 452-463.	2.2	11
1615	Dendrimer-Ni-Based Material: Toward an Efficient Ni–Fe Layered Double Hydroxide for Oxygen-Evolution Reaction. Inorganic Chemistry, 2021, 60, 6073-6085.	1.9	23
1616	Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 12145-12157.	3.8	22
1617	Efficient Oxygen Evolution Electrocatalyst by Incorporation of Nickel into Nanoscale Dicobalt Boride. ChemCatChem, 2021, 13, 1772-1780.	1.8	8
1618	Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4, 212-222.	16.1	266
1619	Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. JPhys Energy, 2021, 3, 034013.	2.3	70
1620	NiCu mixed metal oxide catalyst for alkaline hydrogen evolution in anion exchange membrane water electrolysis. Electrochimica Acta, 2021, 371, 137837.	2.6	60
1621	A Bidirectional Nanomodification Approach for Synthesizing Hierarchically Architected Mixed Oxide Electrodes for Oxygen Evolution. Small, 2021, 17, e2007287.	5.2	3
1622	Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions. Catalysts, 2021, 11, 429.	1.6	25
1622 1623		1.6 1.8	25
	11, 429. Photoelectrochemical performance of titanium dioxide/Prussian blue analogue synthesized by impregnation conversion method as photoanode. Inorganic Chemistry Communication, 2021, 125,		
1623	 11, 429. Photoelectrochemical performance of titanium dioxide/Prussian blue analogue synthesized by impregnation conversion method as photoanode. Inorganic Chemistry Communication, 2021, 125, 108349. Tuning Ni–MoO₂ Catalyst–lonomer and Electrolyte Interaction for Water Electrolyzers 	1.8	1

#	Article	IF	CITATIONS
1627	Design of a Multilayered Oxygenâ€Evolution Electrode with High Catalytic Activity and Corrosion Resistance for Saline Water Splitting. Advanced Functional Materials, 2021, 31, 2101820.	7.8	103
1628	Redox-Mediated Water Splitting for Decoupled H ₂ Production. , 2021, 3, 641-651.		57
1629	Trimetallic Spinel NiCo _{2â^'<i>x</i>} Fe _{<i>x</i>} O ₄ Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie, 2021, 133, 11947-11952.	1.6	33
1630	Design and fabrication of Pt-free FeNi2S4/rGO hybrid composite thin films counter electrode for high-performance dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 11910-11920.	1.1	4
1631	A Co3O4/CuO composite nanowire array as low-cost and efficient bifunctional electrocatalyst for water splitting. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	9
1632	Fe(Co)OOH Dynamically Stable Interface Based on Self-Sacrificial Reconstruction for Long-Term Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 17450-17458.	4.0	32
1633	Rational introduction of borate and phosphate ions on NiCo2O4 surface for high-efficiency overall water splitting. Journal of Power Sources, 2021, 490, 229541.	4.0	23
1634	β-like FeOOH Nanoswords Activated by Ni Foam and Encapsulated by rGO toward High Current Densities, Durability, and Efficient Oxygen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 18772-18783.	4.0	15
1635	Oxygen-Evolution Reaction by a Palladium Foil in the Presence of Iron. Inorganic Chemistry, 2021, 60, 5682-5693.	1.9	26
1636	Understanding the Role of Vanadium Vacancies in BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. Chemistry of Materials, 2021, 33, 3553-3565.	3.2	54
1637	Constructing Ultrathin W-Doped NiFe Nanosheets via Facile Electrosynthesis as Bifunctional Electrocatalysts for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 20070-20080.	4.0	54
1638	Carbon Nitrideâ€Based Photoanode with Enhanced Photostability and Water Oxidation Kinetics. Advanced Functional Materials, 2021, 31, 2101724.	7.8	29
1639	Structural and Electronic Engineering of Ir-Doped Ni-(Oxy)hydroxide Nanosheets for Enhanced Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 5386-5395.	5.5	75
1640	Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate. Advanced Energy Materials, 2021, 11, 2003545.	10.2	21
1641	Trimetallic Spinel NiCo _{2â^'<i>x</i>} Fe _{<i>x</i>} O ₄ Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 11841-11846.	7.2	247
1642	Regenerable Catalyst for Highly Alkaline Water Oxidation. ACS Energy Letters, 2021, 6, 1677-1683.	8.8	15
1643	Synthesis of Ag–Ni–Fe–P Multielemental Nanoparticles as Bifunctional Oxygen Reduction/Evolution Reaction Electrocatalysts. ACS Nano, 2021, 15, 7131-7138.	7.3	45
1644	Amorphous Bimetallic Phosphate–Carbon Precatalyst with Deep Self-Reconstruction toward Efficient Oxygen Evolution Reaction and Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5345-5355.	3.2	22

щ	Article	IF	Citations
#	Molecular Understanding of the Impact of Saline Contaminants and Alkaline pH on NiFe Layered	IF	CHATIONS
1645	Double Hydroxide Oxygen Evolution Catalysts. ACS Catalysis, 2021, 11, 6800-6809.	5.5	50
1646	Morphological and compositional modification of \hat{I}^2 -Ni(OH)2 nanoplates by ferrihydrite for enhanced oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 17720-17730.	3.8	12
1647	Solvent Mediated Fabrication of Ditched Hollow Indium Sulfide (In ₂ S ₃) Spheres for Overall Electrocatalytic Water Splitting. Journal of the Electrochemical Society, 2021, 168, 066510.	1.3	7
1648	Transition Metal-Based 2D Layered Double Hydroxide Nanosheets: Design Strategies and Applications in Oxygen Evolution Reaction. Nanomaterials, 2021, 11, 1388.	1.9	24
1649	Evidence of Marsâ€Vanâ€Krevelen Mechanism in the Electrochemical Oxygen Evolution on Niâ€Based Catalysts. Angewandte Chemie, 2021, 133, 15108-15115.	1.6	9
1650	Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (I±-Fe2O3) nanorods. Journal of Physics and Chemistry of Solids, 2021, 152, 109929.	1.9	12
1651	Improved oxygen evolution reaction performance with addition of Fe to form FeyCux-yCo3-xO4 and FeyNix-yCo3-xO4 (xÂ=Â0.5, 1 and yÂ=Â0.1, 0.15) spinel oxides. Electrochimica Acta, 2021, 378, 138116.	2.6	7
1652	Ligand and Anion Coâ€Leaching Induced Complete Reconstruction of Polyoxomolybdateâ€Organic Complex Oxygenâ€Evolving Preâ€Catalysts. Advanced Functional Materials, 2021, 31, 2101792.	7.8	35
1653	Spinel type Fe3O4 polyhedron supported on nickel foam as an electrocatalyst for water oxidation reaction. Journal of Alloys and Compounds, 2021, 863, 158742.	2.8	17
1654	Structural changes of a NiFe-based metal-organic framework during the oxygen-evolution reaction under alkaline conditions. International Journal of Hydrogen Energy, 2021, 46, 19245-19253.	3.8	44
1655	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie, 2021, 133, 14567-14578.	1.6	30
1656	Ni III â€rich NiFeBa as an Efficient Catalyst for Water Oxidation. ChemSusChem, 2021, 14, 2516-2520.	3.6	2
1657	An Electrochemical Impedance Study of Alkaline Water Splitting Using Fe Doped NiO Nanosheets. Physchem, 2021, 1, 69-81.	0.5	6
1658	Bifunctional electrocatalysts for water splitting from a bimetallic (V doped-NixFey) Metal–Organic framework MOF@Graphene oxide composite. International Journal of Hydrogen Energy, 2022, 47, 42122-42135.	3.8	33
1659	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie - International Edition, 2021, 60, 14446-14457.	7.2	170
1660	Evidence of Marsâ€Vanâ€Krevelen Mechanism in the Electrochemical Oxygen Evolution on Niâ€Based Catalysts. Angewandte Chemie - International Edition, 2021, 60, 14981-14988.	7.2	67
1661	Elucidating the Role of Hydroxide Electrolyte on Anion-Exchange-Membrane Water Electrolyzer Performance. Journal of the Electrochemical Society, 2021, 168, 054522.	1.3	54
1662	Inâ€Situ Generated Trimetallic Molybdate Nanoflowers on Ni Foam Assisted with Microwave for Highly Enhanced Oxygen Evolution Reaction. Chemistry - A European Journal, 2021, 27, 9044-9053.	1.7	9

#	Article	IF	CITATIONS
1663	Solution-Processed Ni-Based Nanocomposite Electrocatalysts: An Approach to Highly Efficient Electrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 5255-5264.	2.5	16
1664	Electronically coupled layered double hydroxide/ <scp>MXene</scp> quantum dot metallic hybrids for highâ€performance flexible zinc–air batteries. InformaÄnÃ-Materiály, 2021, 3, 1134-1144.	8.5	73
1665	Nickel–iron hydroxide oxygen evolution electrocatalysts prepared by a simple chemical bath deposition method. International Journal of Hydrogen Energy, 2021, 46, 20313-20324.	3.8	14
1666	Doubleâ€Exchangeâ€Induced in situ Conductivity in Nickelâ€Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 16448-16456.	7.2	63
1667	Insight into the amorphous nickel-iron (oxy)hydroxide catalyst for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 591, 307-313.	5.0	34
1668	Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews, 2021, 121, 7568-7637.	23.0	100
1669	Highly Active Nickel–Iron Nanoparticles With and Without Ceria for the Oxygen Evolution Reaction. Electrocatalysis, 2021, 12, 605-618.	1.5	11
1670	Subâ€2Ânm Ultrathin and Robust 2D FeNi Layered Double Hydroxide Nanosheets Packed with 1D FeNiâ€MOFs for Enhanced Oxygen Evolution Electrocatalysis. Advanced Functional Materials, 2021, 31, 2103318.	7.8	99
1671	Self-Optimized Metal–Organic Framework Electrocatalysts with Structural Stability and High Current Tolerance for Water Oxidation. ACS Catalysis, 2021, 11, 7132-7143.	5.5	77
1672	Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12, 3634.	5.8	186
1673	Amorphous Ni _{1–<i>x</i>} Fe _{<i>x</i>} Oxyhydroxide Nanosheets with Integrated Bulk and Surface Iron for a High and Stable Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 6833-6841.	2.5	10
1674	Layerâ€by‣ayer Assemblyâ€Based Electrocatalytic Fibril Electrodes Enabling Extremely Low Overpotentials and Stable Operation at 1ÃAÂcm ^{â~2} in Waterâ€6plitting Reaction. Advanced Functional Materials, 2021, 31, 2102530.	7.8	15
1675	Sub-Nanometer Pt Clusters on Defective NiFe LDH Nanosheets as Trifunctional Electrocatalysts for Water Splitting and Rechargeable Hybrid Sodium–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26891-26903.	4.0	31
1676	Facing Seawater Splitting Challenges by Regeneration with Ni <i>â^'</i> Mo <i>â^'</i> Fe Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. ChemSusChem, 2021, 14, 2872-2881.	3.6	45
1677	Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials, 2021, 33, e2007100.	11.1	781
1678	Mixed-Cation Perovskite La _{0.6} Ca _{0.4} Fe _{0.7} Ni _{0.3} O _{2.9} as a Stable and Efficient Catalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 8338-8348.	5.5	24
1679	Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Materials Today Energy, 2021, 20, 100659.	2.5	31
1680	Approaches to achieve surface sensitivity in the in situ XAS of electrocatalysts. Current Opinion in Electrochemistry, 2021, 27, 100681.	2.5	17

#	Article	IF	CITATIONS
1681	Development of Bimetallic PdNi Electrocatalysts toward Mitigation of Catalyst Poisoning in Direct Borohydride Fuel Cells. ACS Catalysis, 2021, 11, 8417-8430.	5.5	28
1682	Doubleâ€Exchangeâ€Induced in situ Conductivity in Nickelâ€Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angewandte Chemie, 2021, 133, 16584-16592.	1.6	3
1683	Nitrogen and Oxygen Functionalization of Multiâ€Walled Carbon Nanotubes for Tuning the Bifunctional Oxygen Reduction/Oxygen Evolution Performance of Supported FeCo Oxide Nanoparticles. ChemElectroChem, 2021, 8, 2803-2816.	1.7	13
1684	Promoting Oxygen Evolution by Deep Reconstruction via Dynamic Migration of Fluorine Anions. ACS Applied Materials & amp; Interfaces, 2021, 13, 34438-34446.	4.0	24
1685	Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications, 2021, 12, 4218.	5.8	38
1686	Highly Efficient Oxygen Evolution Reaction Enabled by Phosphorus Doping of the Fe Electronic Structure in Iron–Nickel Selenide Nanosheets. Advanced Science, 2021, 8, e2101775.	5.6	109
1687	Principles of Water Electrolysis and Recent Progress in Cobaltâ€, Nickelâ€, and Ironâ€Based Oxides for the Oxygen Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	18
1688	Design Principles of NiFe-Layered Double Hydroxide Anode Catalysts for Anion Exchange Membrane Water Electrolyzers. ACS Applied Materials & Interfaces, 2021, 13, 37179-37186.	4.0	36
1689	Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small, 2021, 17, e2100629.	5.2	10
1690	Nickel foam as conductive substrate enhanced low-crystallinity two-dimensional iron hydrogen phosphate for oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 870, 159472.	2.8	15
1691	Electronic interaction boosted electrocatalysis of iridium nanoparticles on nitrogen-doped graphene for efficient overall water splitting in acidic and alkaline media. Chemical Engineering Journal, 2021, 415, 129034.	6.6	42
1692	The Effect of Interlayer Anion Grafting on Water Oxidation Electrocatalysis: A Comparative Study of Ni―and Coâ€Based Bruciteâ€Type Layered Hydroxides, Layered Double Hydroxides and Hydroxynitrate Salts. Chemistry - A European Journal, 2021, 27, 16930-16937.	1.7	12
1693	Principles of Water Electrolysis and Recent Progress in Cobaltâ€, Nickelâ€, and Ironâ€Based Oxides for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	286
1694	Cobalt Telluride: A Highly Efficient Trifunctional Electrocatalyst for Water Splitting and Oxygen Reduction. ACS Applied Energy Materials, 2021, 4, 8158-8174.	2.5	36
1695	Unveiling Role of Sulfate Ion in Nickelâ€Iron (oxy)Hydroxide with Enhanced Oxygenâ€Evolving Performance. Advanced Functional Materials, 2021, 31, 2102772.	7.8	158
1696	Fabrication of Three-Dimensional Porous Materials with NiO Nanowalls for Electrocatalytic Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 8059-8065.	2.4	5
1697	Bridging NiCo layered double hydroxides and Ni3S2 for bifunctional electrocatalysts: The role of vertical graphene. Chemical Engineering Journal, 2021, 415, 129048.	6.6	39
1698	Interfacing or Doping? Role of Ce in Highly Promoted Water Oxidation of NiFe‣ayered Double Hydroxide. Advanced Energy Materials, 2021, 11, 2101281.	10.2	120

#	Article	IF	CITATIONS
1699	FeOOH-containing hydrated layered iron vanadate electrocatalyst for superior oxygen evolution reaction and efficient water splitting. Chemical Engineering Journal, 2021, 416, 129165.	6.6	53
1700	Oxygen Electrocatalysis on Mixed-Metal Oxides/Oxyhydroxides: From Fundamentals to Membrane Electrolyzer Technology. Accounts of Materials Research, 2021, 2, 548-558.	5.9	41
1701	Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors. ACS Sustainable Chemistry and Engineering, 2021, 9, 9465-9473.	3.2	16
1702	Rational construction of vertical few layer graphene/NiO core-shell nanoflake arrays for efficient oxygen evolution reaction. Materials Research Bulletin, 2021, 139, 111260.	2.7	11
1703	Characteristics of the voltammetric behavior of the hydroxide ion oxidation at disordered mesoporous titanium dioxide electrocatalyst. Journal of Saudi Chemical Society, 2021, 25, 101274.	2.4	6
1704	A Highlyâ€Efficient Oxygen Evolution Electrocatalyst Derived from a Metalâ€Organic Framework and Ketjenblack Carbon Material. ChemPlusChem, 2021, 86, 1106-1115.	1.3	10
1705	An advanced NiFe-LDH nanoclusters arrays for high-efficient full water splitting. Journal of Materials Science, 2021, 56, 19466-19475.	1.7	4
1706	Direct One-Step Growth of Bimetallic Ni2Mo3N on Ni Foam as an Efficient Oxygen Evolution Electrocatalyst. Materials, 2021, 14, 4768.	1.3	11
1707	Fabrication of tinâ€doped hematite modified with <scp>NiFeâ€LDH</scp> nanoflakes for highly efficient solar water splitting. International Journal of Energy Research, 2021, 45, 19869-19882.	2.2	3
1708	Switching the O–O bond-formation mechanism by controlling water activity. CheM, 2021, 7, 1981-1982.	5.8	6
1709	Nickel sulphide flakes improved cone-shaped graphite electrode for high-performance OER activity. Bulletin of Materials Science, 2021, 44, 1.	0.8	4
1710	Costâ€Efficient Photovoltaicâ€Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron–Molybdenum Oxides for Potential Largeâ€Scale Hydrogen Production. Small, 2021, 17, e2102222.	5.2	16
1711	Selective Se doping of NiFe2O4 on an active NiOOH scaffold for efficient and robust water oxidation. Chinese Journal of Catalysis, 2021, 42, 1395-1403.	6.9	51
1712	High surface area NiCoP nanostructure as efficient water splitting electrocatalyst for the oxygen evolution reaction. Materials Research Bulletin, 2021, 140, 111312.	2.7	16
1713	Probing metal-organic frameworks during water oxidation electrocatalysis. Matter, 2021, 4, 2593-2595.	5.0	1
1714	Recent advances of layered double hydroxides–based bifunctional electrocatalysts for ORR and OER. Materials Today Chemistry, 2021, 21, 100488.	1.7	15
1715	Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes. Chinese Journal of Catalysis, 2021, 42, 1387-1394.	6.9	8
1716	Activating Metal Oxides Nanocatalysts for Electrocatalytic Water Oxidation by Quenching-Induced Near-Surface Metal Atom Functionality. Journal of the American Chemical Society, 2021, 143, 14169-14177.	6.6	101

#	Article	IF	CITATIONS
1717	Vertically FeNi layered double hydroxide/TiO2 composite for synergistically enhanced photoelectrochemical water splitting. Electrochimica Acta, 2021, 387, 138533.	2.6	8
1718	Host, Suppressor, and Promoter—The Roles of Ni and Fe on Oxygen Evolution Reaction Activity and Stability of NiFe Alloy Thin Films in Alkaline Media. ACS Catalysis, 2021, 11, 10537-10552.	5.5	98
1719	Oxygen Evolution Reaction on the Fe ₃ O ₄ (001) Surface: Theoretical Insights into the Role of Terminal and Bridging Oxygen Atoms. Journal of Physical Chemistry C, 2021, 125, 18752-18761.	1.5	8
1720	Facet Engineering in Ultrathin Two-Dimensional NiFe Metal–Organic Frameworks by Coordination Modulation for Enhanced Electrocatalytic Water Oxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 10892-10901.	3.2	34
1721	A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation. Chinese Chemical Letters, 2022, 33, 562-566.	4.8	16
1722	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> â€Nitroethenes. Angewandte Chemie, 2021, 133, 22181-22187.	1.6	13
1723	Dischargeable nickel matrix charges iron species for oxygen evolution electrocatalysis. Electrochimica Acta, 2021, 386, 138401.	2.6	10
1724	Nanoporous Amorphous Fe78Si9B13 Alloys for Hydrogen Evolution in Alkaline Media. Journal of Non-Crystalline Solids, 2021, 566, 120831.	1.5	9
1725	Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. CheM, 2021, 7, 2101-2117.	5.8	42
1726	Low-crystalline transition metal oxide/hydroxide on MWCNT by Fenton-reaction-inspired green synthesis for lithium ion battery and OER electrocatalysis. Electrochimica Acta, 2021, 387, 138559.	2.6	19
1727	Sequenced Successive Ionic Layer Adsorption and Reaction for Rational Design of Ni(OH)2/FeOOH Heterostructures with Tailored Catalytic Properties. ACS Applied Energy Materials, 2021, 4, 8252-8261.	2.5	6
1728	Postsynthetic treatment of nickel–iron layered double hydroxides for the optimum catalysis of the oxygen evolution reaction. Npj 2D Materials and Applications, 2021, 5, .	3.9	12
1729	The impact of ultrasonic parameters on the exfoliation of NiFe LDH nanosheets as electrocatalysts for the oxygen evolution reaction in alkaline media. Ultrasonics Sonochemistry, 2021, 76, 105664.	3.8	32
1730	Coupled Effects of Temperature, Pressure, and pH on Water Oxidation Thermodynamics and Kinetics. ACS Catalysis, 2021, 11, 11305-11319.	5.5	9
1731	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> â€Nitroethenes. Angewandte Chemie - International Edition, 2021, 60, 22010-22016.	7.2	34
1732	Metamorphosis of Heterostructured Surfaceâ€Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities. Advanced Materials, 2021, 33, e2103218.	11.1	43
1733	Enhanced oxygen evolution reaction performance of synergistic effect of TiO2/Ti3C2/FeNi LDH. Ceramics International, 2021, 47, 25755-25762.	2.3	10
1734	Structure–property correlations for analysis of heterogeneous electrocatalysts. Chemical Physics Reviews, 2021, 2, .	2.6	8

#	Article	IF	CITATIONS
1735	Atomic Cationâ€Vacancy Engineering of NiFe‣ayered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 24817-24824.	1.6	39
1736	Ultrafast Two-Step Synthesis of S-Doped Fe/Ni (Oxy)Hydroxide/Ni Nanocone Arrays on Carbon Cloth and Stainless-Steel Substrates for Water-Splitting Applications. ACS Applied Energy Materials, 2021, 4, 10627-10638.	2.5	15
1737	Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer. Chemical Engineering Journal, 2022, 430, 132623.	6.6	58
1738	Phosphorized CoNi ₂ S ₄ Yolk‣hell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angewandte Chemie, 2021, 133, 23067-23073.	1.6	14
1739	In situ hierarchical encapsulation of bimetallic selenides into honeycomb-like nitrogen doped porous carbon nanosheets for highly sensitive and selective guanosine detection. Journal of Colloid and Interface Science, 2021, 598, 181-192.	5.0	13
1740	Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting. Analytical and Bioanalytical Chemistry, 2021, 413, 6201-6212.	1.9	16
1741	Ni _{0.67} Fe _{0.33} Hydroxide Incorporated with Oxalate for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 42870-42879.	4.0	30
1742	Carbon-coated MoSe2/Mo2CTx (MXene) heterostructure for efficient hydrogen evolution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115239.	1.7	10
1743	Molten salt-assisted shape modification of CaFe2O4 nanorods for highly efficient photocatalytic degradation of methylene blue. Optical Materials, 2021, 119, 111295.	1.7	16
1744	NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catalysis, 2021, 11, 12485-12509.	5.5	204
1745	Deprotonation and cation adsorption on the NiOOH/water interface: A grand-canonical first-principles investigation. Electrochimica Acta, 2021, 398, 139253.	2.6	3
1746	Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution. Journal of Materials Science and Technology, 2022, 106, 19-27.	5.6	10
1747	Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. ACS Catalysis, 2021, 11, 12324-12335.	5.5	18
1748	Selenization triggers deep reconstruction to produce ultrathin Î ³ -NiOOH toward the efficient water oxidation. Journal of Energy Chemistry, 2021, 63, 651-658.	7.1	13
1749	Understanding the Electronic Structure Evolution of Epitaxial LaNi _{1–<i>x</i>} Fe _{<i>x</i>} O ₃ Thin Films for Water Oxidation. Nano Letters, 2021, 21, 8324-8331.	4.5	31
1750	Optimization of a Hierarchical Porous-Structured Reactor to Mitigate Mass Transport Limitations for Efficient Electrocatalytic Ammonia Oxidation through a Three-Electron-Transfer Pathway. Environmental Science & Technology, 2021, 55, 12596-12606.	4.6	24
1751	General and scalable preparation of Prussian blue analogues on arbitrary conductive substrates and their derived metal phosphides as highly efficient and ultra-long-life bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2021, 420, 129972.	6.6	17
1752	Novel monoclinic ABO4 oxide with single-crystal structure as next generation electrocatalyst for oxygen evolution reaction. Chemical Engineering Journal, 2021, 420, 130492.	6.6	12

#	Article	IF	Citations
1753	Insight into Fe Activating One-Dimensional α-Ni(OH) ₂ Nanobelts for Efficient Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2021, 125, 20301-20308.	1.5	17
1754	Facile Co 3 O 4 nanoparticles deposited on polyvinylpyrrolidine for efficient water oxidation in alkaline media. Journal of the Chinese Chemical Society, 0, , .	0.8	0
1755	Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting. Nanotechnology, 2022, 33, 075204.	1.3	9
1756	Instant formation of excellent oxygen evolution catalyst film via controlled spray pyrolysis for electrocatalytic and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 66, 657-665.	7.1	4
1757	Iron-doped NiS2 microcrystals with exposed {0 0 1} facets for electrocatalytic water oxidation. Journal of Colloid and Interface Science, 2022, 608, 599-604.	5.0	15
1758	NCoCu Carbon Dots Intertwined NiCo Double Hydroxide Nanorod Array for Efficient Electrocatalytic Hydrogen Evolution. ChemCatChem, 2021, 13, 4714-4723.	1.8	0
1759	Mechanism of Nickel–Iron Water Oxidation Electrocatalysts. Energy & Fuels, 2021, 35, 19164-19169.	2.5	18
1760	Boosting Activity and Durability of an Electrodeposited Ni(OH) ₂ Catalyst Using Carbon Nanotube-Grafted Substrates for the Alkaline Oxygen Evolution Reaction. ACS Applied Nano Materials, 2021, 4, 10267-10274.	2.4	7
1761	Earth-Abundant Fe and Ni Dually Doped Co ₂ P for Superior Oxygen Evolution Reactivity and as a Bifunctional Electrocatalyst toward Renewable Energy-Powered Overall Alkaline Water Splitting. ACS Applied Energy Materials, 2021, 4, 9969-9981.	2.5	18
1762	Atomic Cationâ€Vacancy Engineering of NiFeâ€Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 24612-24619.	7.2	259
1763	Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212.	23.0	262
1764	Comprehensive Structural Descriptor for Electrocatalytic Oxygen Evolution Activities of Iron Oxides. ChemElectroChem, 2021, 8, 4466-4471.	1.7	6
1765	Amorphous Highâ€Entropy Hydroxides of Tunable Wide Solar Absorption for Solar Water Evaporation. Particle and Particle Systems Characterization, 2021, 38, 2100094.	1.2	3
1766	Synergistic Effects of Co and Fe on the OER activity of LaCoxFe1â^'xO3. Chemistry - A European Journal, 2021, 27, 17145-17158.	1.7	14
1767	Phosphorized CoNi ₂ S ₄ Yolkâ€Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 22885-22891.	7.2	191
1768	The Roles of Composition and Mesostructure of Cobaltâ€Based Spinel Catalysts in Oxygen Evolution Reactions. Chemistry - A European Journal, 2021, 27, 17038-17048.	1.7	13
1769	Cu2Se nanowires shelled with NiFe layered double hydroxide nanosheets for overall water-splitting. Journal of Colloid and Interface Science, 2021, 599, 370-380.	5.0	57
1770	Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II). Environmental Pollution, 2021, 287, 117303.	3.7	49

# 1771	ARTICLE Corrosion of monometallic iron- and nickel-based electrocatalysts for the alkaline oxygen evolution reaction: A review. Journal of Power Sources, 2021, 510, 230387.	IF 4.0	Citations 21
1772	Transition-metal alloy electrocatalysts with active sites modulated by metal-carbide heterophases for efficient oxygen evolution. Nano Energy, 2021, 88, 106216.	8.2	38
1773	Design of bimetallic nickel-iron quantum dots with tunable compositions for enhanced electrochemical water splitting. Electrochimica Acta, 2021, 392, 139016.	2.6	8
1774	Self-supporting NiFe LDH-MoS integrated electrode for highly efficient water splitting at the industrial electrolysis conditions. Chinese Journal of Catalysis, 2021, 42, 1732-1741.	6.9	50
1775	Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 297, 120462.	10.8	95
1776	Dual active site tandem catalysis of metal hydroxyl oxides and single atoms for boosting oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 297, 120451.	10.8	44
1777	In-situ growth of CoFeS2 on metal-organic frameworks-derived Co-NC polyhedron enables high-performance oxygen electrocatalysis for rechargeable zinc-air batteries. Journal of Power Sources, 2021, 512, 230430.	4.0	25
1778	Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution. Chemical Engineering Journal, 2021, 423, 130204.	6.6	50
1779	Anion-cation-dual doped tremella-like nickel phosphides for electrocatalytic water oxidation. Chemical Engineering Journal, 2021, 426, 130718.	6.6	46
1780	Cobalt doped iron phosphate thin film: An effective catalyst for electrochemical water splitting. Journal of Alloys and Compounds, 2021, 885, 160914.	2.8	27
1781	Fully exposed edge/corner active sites in Fe substituted-Ni(OH)2 tube-in-tube arrays for efficient electrocatalytic oxygen evolution. Applied Catalysis B: Environmental, 2021, 298, 120558.	10.8	26
1782	Stable and active NiFeW layered double hydroxide for enhanced electrocatalytic oxygen evolution reaction. Chemical Engineering Journal, 2021, 426, 130768.	6.6	42
1783	Hierarchical porous nickel supported NiFeOxHy nanosheets for efficient and robust oxygen evolution electrocatalyst under industrial condition. Applied Catalysis B: Environmental, 2021, 299, 120668.	10.8	62
1784	Facile coordination driven synthesis of metal-organic gels toward efficiently electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2021, 299, 120641.	10.8	39
1785	Incorporation of Fe in mixed CoCu-alkoxide hollow sphere for enhancing the electrochemical water oxidation performance. Materials Today Chemistry, 2021, 22, 100586.	1.7	8
1786	Constructing accelerated charge transfer channels along V-Co-Fe via introduction of V into CoFe-layered double hydroxides for overall water splitting. Applied Catalysis B: Environmental, 2021, 298, 120587.	10.8	52
1787	High-valence Ni and Fe sites on sulfated NiFe-LDH nanosheets to enhance O-O coupling for water oxidation. Chemical Engineering Journal, 2021, 426, 130873.	6.6	70
1788	Highly efficient and stable bifunctional electrocatalysts with decoupled active sites for hydrogen evolution and oxygen reduction reactions. Applied Catalysis B: Environmental, 2021, 298, 120530.	10.8	29

#	Article	IF	CITATIONS
1789	Unexpected increasing Co valence state of an exsolved catalyst by Mo doping for enhanced oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 130681.	6.6	11
1790	In-situ synthesis of microflower composed of N-doped carbon films and Mo2C coupled with Ni or FeNi alloy for water splitting. Chemical Engineering Journal, 2022, 427, 131712.	6.6	18
1791	Ultrafast, scalable and green synthesis of amorphous iron-nickel based durable water oxidation electrode with very high intrinsic activity via potential pulses. Chemical Engineering Journal, 2022, 428, 130688.	6.6	2
1792	Electronic wastes: A near inexhaustible and an unimaginably wealthy resource for water splitting electrocatalysts. Journal of Hazardous Materials, 2022, 421, 126687.	6.5	18
1793	Boosting oxygen evolution activity of nickel iron hydroxide by iron hydroxide colloidal particles. Journal of Colloid and Interface Science, 2022, 606, 518-525.	5.0	12
1794	Investigations of the stability of etched or platinized p-InP(100) photocathodes for solar-driven hydrogen evolution in acidic or alkaline aqueous electrolytes. Energy and Environmental Science, 2021, 14, 6007-6020.	15.6	33
1795	Solid-state redox couple mediated water splitting. Dalton Transactions, 2021, 50, 2722-2725.	1.6	5
1796	Oxygen evolution reaction (OER) at nanostructured metal oxide electrocatalysts in water electrolyzers. , 2021, , 61-81.		2
1797	Strain Controlling Catalytic Efficiency of Water Oxidation for Ni1â^'xFexOOH Alloy. Molecular Modeling and Simulation, 2021, , 1-23.	0.2	1
1798	Nano-Confined Hybridization and Electrocatalytic Application Based on 3D Mesoporous Graphene Framework. Springer Theses, 2021, , 89-118.	0.0	0
1799	Ethylene glycol-mediated one-pot synthesis of Fe incorporated α-Ni(OH) ₂ nanosheets with enhanced intrinsic electrocatalytic activity and long-term stability for alkaline water oxidation. Dalton Transactions, 2021, 50, 7305-7313.	1.6	11
1800	Nb-Doped nickel nitride-derived catalysts for electrochemical water splitting. Catalysis Science and Technology, 2021, 11, 6455-6461.	2.1	6
1801	A self-supported FeNi layered double hydroxide anode with high activity and long-term stability for efficient oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 3205-3212.	2.5	3
1802	Ni on graphene oxide: a highly active and stable alkaline oxygen evolution catalyst. Catalysis Science and Technology, 2021, 11, 4026-4033.	2.1	9
1803	Tipâ€Enhanced Electric Field: A New Mechanism Promoting Mass Transfer in Oxygen Evolution Reactions. Advanced Materials, 2021, 33, e2007377.	11.1	179
1804	Electrochemically Activated NiFeO _{<i>x</i>} H _{<i>y</i>} for Enhanced Oxygen Evolution. ACS Applied Energy Materials, 2021, 4, 595-601.	2.5	10
1805	Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities. ACS Nano, 2021, 15, 3468-3480.	7.3	54
1806	A New High Entropy Glycerate for High Performance Oxygen Evolution Reaction. Advanced Science, 2021, 8, 2002446.	5.6	95

#	Article	IF	CITATIONS
1807	Water oxidation kinetics of nanoporous BiVO ₄ photoanodes functionalised with nickel/iron oxyhydroxide electrocatalysts. Chemical Science, 2021, 12, 7442-7452.	3.7	32
1808	Nickel Iron Diselenide for Highly Efficient and Selective Electrocatalytic Conversion of Methanol to Formate. Small, 2021, 17, e2006623.	5.2	29
1809	Challenge in metal-air batteries: From the design to the performance of metal oxide-based electrocatalysts. , 2021, , 187-212.		0
1810	Hierarchically porous FeNi ₃ @FeNi layered double hydroxide nanostructures: one-step fast electrodeposition and highly efficient electrocatalytic performances for overall water splitting. Dalton Transactions, 2021, 50, 6306-6314.	1.6	29
1811	Simultaneous phase transformation and doping <i>via</i> a unique photochemical–electrochemical strategy to achieve a highly active Fe-doped Ni oxyhydroxide oxygen evolution catalyst. Journal of Materials Chemistry A, 2021, 9, 4213-4220.	5.2	26
1812	Electrodeposited Trimetallic NiFeW Hydroxide Electrocatalysts for Efficient Water Oxidation. ChemSusChem, 2021, 14, 1324-1335.	3.6	31
1813	System Chemistry in Catalysis: Facing the Next Challenges in Production of Energy Vectors and Environmental Remediation. Catalysts, 2021, 11, 64.	1.6	5
1814	Recent Advanced Study of Novel Electrode Materials. Advances in Analytical Chemistry, 2021, 11, 200-216.	0.1	1
1815	Tuning the selectivity of biomass oxidation over oxygen evolution on NiO–OH electrodes. Green Chemistry, 2021, 23, 8061-8068.	4.6	20
1816	Active Phase on SrCo _{1–<i>x</i>} Fe _{<i>x</i>} O _{3â~î^} (0 ≤i>x ≤0 Perovskite for Water Oxidation: Reconstructed Surface versus Remaining Bulk. Jacs Au, 2021, 1, 108-115.	.5) 3.6	47
1817	Enabling and Inducing Oxygen Vacancies in Cobalt Iron Layer Double Hydroxide via Selenization as Precatalysts for Electrocatalytic Hydrogen and Oxygen Evolution Reactions. Inorganic Chemistry, 2021, 60, 2023-2036.	1.9	91
1818	Recent Advances in Nonâ€Precious Metalâ€Based Electrodes for Alkaline Water Electrolysis. ChemNanoMat, 2020, 6, 336-355.	1.5	92
1819	The Effect of Iron Impurities on Transition Metal Catalysts for the Oxygen Evolution Reaction in Alkaline Environment: Activity Mediators or Active Sites?. Catalysis Letters, 2021, 151, 1843-1856.	1.4	46
1820	Common Pitfalls of Reporting Electrocatalysts for Water Splitting. Chemical Research in Chinese Universities, 2020, 36, 360-365.	1.3	12
1821	Efficient optimization of nickel-cerium interface by constructing ethylene glycol ligand environment for fast water oxidation reaction kinetics. Science China Materials, 2020, 63, 1731-1740.	3.5	5
1822	Controlled synthesis and fine-tuned interface of NiS nanoparticles/Bi2WO6 nanosheets heterogeneous as electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 526, 146718.	3.1	16
1823	Iron doped Ni3S2 nanorods directly grown on FeNi3 foam as an efficient bifunctional catalyst for overall water splitting. Chemical Engineering Journal, 2020, 396, 125315.	6.6	97
1824	The electrochemical overall water splitting promoted by MoS2 in coupled nickel–iron (oxy)hydride/molybdenum sulfide/graphene composite. Chemical Engineering Journal, 2020, 397, 125454.	6.6	32

ARTICLE IF CITATIONS Low loading platinum dispersed on Ni/C nanoparticles as high active catalysts for urea 1825 2.6 12 electrooxidation reaction. Electrochimica Acta, 2020, 355, 136752. Nanoporous NiFeMoP alloy as a bifunctional catalyst for overall water splitting. International 3.8 30 Journal of Hydrogen Energy, 2020, 45, 16447-16457. Active nickel derived from coordination complex with weak inter/intra-molecular interactions for 1827 7 3.1efficient hydrogen evolution via a tandem mechanism. Journal of Catalysis, 2020, 389, 29-37. Self-assembled 3D hierarchical MnCO3/NiFe layered double hydroxides as a superior electrocatalysts 5.0 for the oxygen evolution reactions. Journal of Colloid and Intérface Science, 2020, 566, 224-233. Photochemically deposited Ir-doped NiCo oxyhydroxide nanosheets provide highly efficient and stable 1829 8.2 30 electrocatalysts for the oxygen evolution reaction. Nano Energy, 2020, 75, 104885. Transformation of stainless steel 316 into a bifunctional water splitting electrocatalyst tolerant to polarity switching. Sustainable Materials and Technologies, 2020, 25, e00177. 1.7 Hybrid Catalytic-Protective Structure of CuInS₂ and B-N Doped Carbon as a Highly 1831 Efficient and Ultra-Stable Electrocatalyst for Oxygen Evolution Reaction. Journal of Physical 1.510 Chemistry C, 2021, 125, 546-557. Gd-Doped Ni-Oxychloride Nanoclusters: New Nanoscale Electrocatalysts for High-Performance Water Oxidation through Surface and Structural Modification. ACS Applied Materials & amp; Interfaces, 2021, 4.0 13, 468-479 Chapter 11. Prototyping Development of Integrated Solar-driven Water-splitting Cells. RSC Energy and Environment Series, 2018, , 387-453. 1833 0.2 2 Electro-deposition of nickel–iron nanoparticles on flower-like MnCo₂O₄ 1834 nanowires as an efficient bifunctional electrocatalyst for overall water splitting. CrystEngComm, 1.3 2020, 22, 1425-1435. Electrosynthesis of CuO nanocrystal array as a highly efficient and stable electrocatalyst for oxygen 1835 3 0.6 evolution reaction. Chinese Journal of Chemical Physics, 2018, 31, 806-812. One-step synthesis of carbon nanospheres with an encapsulated iron-nickel nanoalloy and its 1.3 potential use as an electrocatalyst. Nanotechnology, 2021, 32, 095706. Hybrid photoanodes for visible light-driven water oxidation: the beneficial and detrimental effects of 1837 2.3 9 nickel oxide cocatalyst. JPhys Energy, 2020, 2, 044001. Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 713-721. Inexpensive and Efficient Alkaline Water Electrolyzer with Robust Steel-Based Electrodes. Journal of 1839 20 1.3 the Electrochemical Society, 2020, 167, 114513. Reviewâ€"A Review on Electrodes Used in Electroorganic Synthesis and the Significance of Coupled 1840 Electrocatalytic Reactions. Journal of the Electrochemical Society, 2020, 167, 125503. Sputtered Nickel Oxide Thin Films on n-Si(100)/SiO2 Surfaces for Photo-Electrochemical Oxygen 1841 Evolution Reaction (OER): Impact of Deposition Temperature on OER Performance and on Composition 1.313 before and after OER. Journal of the Electrochemical Society, 2020, 167, 136514. Three-Dimensional NiFe Layered Double Hydroxide Nanowire/Nanoporous Ni/Nickel Foam for Efficient 1842 1.3 Oxygen Evolution. Journal of the Electrochemical Society, 2020, 167, 146513.

#	Article	IF	CITATIONS
1843	Gallium Phosphide photoanode coated with TiO ₂ and CoO _x for stable photoelectrochemical water oxidation. Optics Express, 2019, 27, A364.	1.7	18
1844	Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni–Fe–Al–Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. Journal of Materials Chemistry A, 2021, 9, 27332-27346.	5.2	33
1845	Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy and Environmental Science, 2021, 14, 6428-6440.	15.6	164
1846	Assessing nickel oxide electrocatalysts incorporating diamines and having improved oxygen evolution activity using <i>operando</i> UV/visible and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 23280-23287.	1.3	6
1847	A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nature Communications, 2021, 12, 5980.	5.8	88
1848	Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. Angewandte Chemie - International Edition, 2021, 60, 26829-26836.	7.2	210
1849	Direct Probing of the Oxygen Evolution Reaction at Single NiFe ₂ O ₄ Nanocrystal Superparticles with Tunable Structures. Journal of the American Chemical Society, 2021, 143, 16925-16929.	6.6	38
1850	Gel-like State of Nickel Hydroxide Created by Electrochemical Aging under Alkaline Conditions. ACS Applied Energy Materials, 2021, 4, 10668-10681.	2.5	1
1851	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	13.1	86
1852	Iron-doped nanoflakes of layered double hydroxide of nickel for high-performance hybrid zinc batteries. Materials Today Energy, 2021, 22, 100879.	2.5	6
1853	Engineering Ultrafine NiFe‣DH into Self‣upporting Nanosheets: Separationâ€andâ€Reunion Strategy to Expose Additional Edge Sites for Oxygen Evolution. Small, 2021, 17, e2103785.	5.2	35
1854	Amorphous FeNiNbPC nanoprous structure for efficient and stable electrochemical oxygen evolution. Journal of Colloid and Interface Science, 2022, 608, 1973-1982.	5.0	13
1855	Porous Ni(OH)2 permselective membrane to identify the mechanism of hydrogen evolution reaction in buffered solution. Electrochimica Acta, 2022, 401, 139444.	2.6	2
1856	Ni(OH)2 microspheres in situ self-grown on ultra-thin layered g-C3N4 as a heterojunction electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2021, 400, 139473.	2.6	31
1857	Recent advances in Niâ€Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. Nano Select, 2022, 3, 766-791.	1.9	16
1858	Ni-Fe layered double hydroxides for oxygen evolution Reaction: Impact of Ni/Fe ratio and crystallinity. Materials and Design, 2021, 212, 110188.	3.3	22
1859	Efficient Alkaline Water Oxidation with a Regenerable Nickel Pseudo-Complex. ACS Applied Materials & Interfaces, 2021, 13, 48661-48668.	4.0	6
1860	Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. Angewandte Chemie, 2021, 133, 27033-27040.	1.6	5

#	Article	IF	CITATIONS
1861	Revealing the Dynamics and Roles of Iron Incorporation in Nickel Hydroxide Water Oxidation Catalysts. Journal of the American Chemical Society, 2021, 143, 18519-18526.	6.6	96
1862	Solar-Driven Water Splitting at 13.8% Solar-to-Hydrogen Efficiency by an Earth-Abundant Electrolyzer. ACS Sustainable Chemistry and Engineering, 2021, 9, 14070-14078.	3.2	15
1863	Identification of the Active-Layer Structures for Acidic Oxygen Evolution from 9R-BalrO ₃ Electrocatalyst with Enhanced Iridium Mass Activity. Journal of the American Chemical Society, 2021, 143, 18001-18009.	6.6	73
1864	Constructing spin pathways in LaCoO3 by Mn substitution to promote oxygen evolution reaction. Applied Physics Letters, 2021, 119, .	1.5	12
1865	Concurrent H ₂ Generation and Formate Production Assisted by CO ₂ Absorption in One Electrolyzer. Small Methods, 2021, 5, e2100871.	4.6	9
1866	Ultrathin Cobalt Oxide Interlayer Facilitated Hole Storage for Sustained Water Oxidation over Composited Tantalum Nitride Photoanodes. ACS Catalysis, 2021, 11, 12736-12744.	5.5	35
1867	Structure-Activity Relationships in Ni-Fe Oxyhydroxide Oxygen Evolution Electrocatalysts. ECS Meeting Abstracts, 2016, , .	0.0	0
1868	Chapter 5. Evaluating Electrocatalysts for Solar Water-splitting Reactions. RSC Energy and Environment Series, 2018, , 154-181.	0.2	0
1869	Atomic-resolution STEM Analysis of Nanoparticle During Electrocatalytic Reactions. Microscopy and Microanalysis, 2020, 26, 910-911.	0.2	0
1870	In Situ Fabrication of Nickel–Iron Oxalate Catalysts for Electrochemical Water Oxidation at High Current Densities. ACS Applied Materials & Interfaces, 2021, 13, 52620-52628.	4.0	36
1871	Quasiâ€Parallel NiFe Layered Double Hydroxide Nanosheet Arrays for Largeâ€Currentâ€Density Oxygen Evolution Electrocatalysis. ChemSusChem, 2022, 15, .	3.6	16
1872	Enhancement of Catalytic Activity and Stability of La0.6Ca0.4Fe0.7Ni0.3O2.9 Perovskite with ppm Concentration of Fe in the Electrolyte for the Oxygen Evolution Reaction. Materials, 2021, 14, 6403.	1.3	0
1874	Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nature Energy, 2021, 6, 1054-1066.	19.8	159
1875	The evolution of bimetal hydroxide fragments from brucite to goethite in metal-organic frameworks for enhanced oxygen evolution reaction. Journal of Solid State Chemistry, 2020, 292, 121751.	1.4	0
1876	Grass-like Ni _{<i>x</i>} Se _{<i>y</i>} nanowire arrays shelled with NiFe LDH nanosheets as a 3D hierarchical core–shell electrocatalyst for efficient upgrading of biomass-derived 5-hydroxymethylfurfural and furfural. Catalysis Science and Technology, 2022, 12, 201-211.	2.1	24
1877	Recent advances of anion regulated NiFe-based electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2021, 5, 6298-6309.	2.5	7
1878	Earth-abundant electrocatalysts for sustainable energy conversion. , 2022, , 131-168.		0
1879	Core-shell trimetallic NiFeV disulfides and amorphous high-valance NiFe hydroxide nanosheets enhancing oxygen evolution reaction. Chemical Engineering Journal, 2022, 430, 133047.	6.6	30

#	Article	IF	CITATIONS
1880	Role of Earth-Abundant/Carbonaceous Electrocatalysts as Cocatalyst for Solar Water Splitting. , 2020, , 201-220.		0
1881	Highly Efficient Electrocatalytic Water Splitting. , 2020, , 1-33.		0
1882	Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. Jacs Au, 2021, 1, 2224-2241.	3.6	23
1883	Ce-Doped FeNi-Layered Double Hydroxide Nanosheets Grown on an Open-Framework Nickel Phosphate Nanorod Array for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 12836-12847.	2.5	13
1884	Advances and Challenges in Industrial-Scale Water Oxidation on Layered Double Hydroxides. ACS Applied Energy Materials, 2021, 4, 12032-12055.	2.5	15
1885	Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 25773-25795.	5.2	71
1886	Rapid large-scale synthesis of ultrathin NiFe-layered double hydroxide nanosheets with tunable structures as robust oxygen evolution electrocatalysts. RSC Advances, 2021, 11, 37624-37630.	1.7	7
1887	Modern applications of scanning electrochemical microscopy in the analysis of electrocatalytic surface reactions. Chinese Journal of Catalysis, 2022, 43, 59-70.	6.9	8
1888	Epitaxial oxide thin films for oxygen electrocatalysis: A tutorial review. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 010801.	0.9	12
1889	Efficient OER nanocomposite electrocatalysts based on Ni and/or Co supported on MoSe2 nanoribbons and MoS2 nanosheets. Chemical Engineering Journal Advances, 2022, 9, 100206.	2.4	16
1890	Surface‧tructured Cocatalyst Foils Unraveling a Pathway to Highâ€Performance Solar Water Splitting. Advanced Energy Materials, 2022, 12, 2102752.	10.2	11
1891	Unveiling the Impact of Fe Incorporation on Intrinsic Performance of Reconstructed Water Oxidation Electrocatalyst. ACS Energy Letters, 2021, 6, 4345-4354.	8.8	67
1892	Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts, 2021, 11, 1394.	1.6	8
1893	Aerosol-assisted chemical vapor deposition of nickel sulfide nanowires for electrochemical water oxidation. International Journal of Hydrogen Energy, 2022, 47, 42001-42012.	3.8	24
1894	New insights into cations effect in oxygen evolution reaction. Chemical Engineering Journal, 2021, 433, 133518.	6.6	0
1895	Heterointerface Engineering of Ni ₂ P–Co ₂ P Nanoframes for Efficient Water Splitting. Chemistry of Materials, 2021, 33, 9165-9173.	3.2	53
1896	Evaluating Properties of Carbon-Free Nano-NiCoFe-LDHs with Molybdate as Oxygen Evolution Catalysts and Their Applications in Rechargeable Air Electrodes. Energy & Fuels, 2021, 35, 20374-20385.	2.5	7
1897	Fluoride etched Ni-based electrodes as economic oxygen evolution electrocatalysts. International Journal of Hydrogen Energy, 2022, 47, 1613-1623.	3.8	7

#	Article	IF	CITATIONS
1898	Boosting Surface Reconstruction for the Oxygen Evolution Reaction: A Combined Effect of Heteroatom Incorporation and Anion Etching in Cobalt Silicate Precatalyst. ChemElectroChem, 2022, 9, .	1.7	4
1899	Ionomer-Free Nickel-Iron bimetallic electrodes for efficient anion exchange membrane water electrolysis. Chemical Engineering Journal, 2022, 433, 133774.	6.6	22
1900	Unveiling the boosting of metal organic cage leaching substance on the electrocatalytic oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 610, 1035-1042.	5.0	6
1901	In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Science Advances, 2021, 7, eabk0919.	4.7	87
1902	K-Edge XANES Investigation of Fe-Based Oxides by Density Functional Theory Calculations. Journal of Physical Chemistry C, 2021, 125, 26229-26239.	1.5	11
1903	Ultrathin NiFeS nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chinese Chemical Letters, 2022, 33, 3916-3920.	4.8	18
1904	Single-atom catalysis for zinc-air/O2 batteries, water electrolyzers and fuel cells applications. Energy Storage Materials, 2022, 45, 504-540.	9.5	39
1905	Green hydrogen production via electrochemical conversion of components from alkaline carbohydrate degradation. International Journal of Hydrogen Energy, 2022, 47, 3644-3654.	3.8	9
1906	Enhanced Electrocatalytic Activity by NiCu-LDH/CoS as Dual Co-Catalysts on G- ₃ N ₄ Nanosheets in NiCu-LDH@CoS/G-C ₃ N ₄ Nanostructure for Oxygen Evolution Reactions. SSRN Electronic Journal, 0, , .	0.4	0
1907	Recent advances in photo-assisted electrocatalysts for energy conversion. Journal of Materials Chemistry A, 2021, 9, 27193-27214.	5.2	19
1908	Mixed metal–antimony oxide nanocomposites: low pH water oxidation electrocatalysts with outstanding durability at ambient and elevated temperatures. Journal of Materials Chemistry A, 2021, 9, 27468-27484.	5.2	19
1909	Cobalt, iron co-incorporated Ni(OH) ₂ multiphase for superior multifunctional electrocatalytic oxidation. Chemical Communications, 2021, 57, 13752-13755.	2.2	4
1910	Metal Oxide Co-catalyst Nanolayers on Photoelectrodes. RSC Energy and Environment Series, 2022, , 135-166.	0.2	0
1911	Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. Nano-Micro Letters, 2022, 14, 43.	14.4	62
1912	NiMoFe/Cu nanowire core–shell catalysts for high-performance overall water splitting in neutral electrolytes. Chemical Communications, 2022, 58, 1569-1572.	2.2	14
1913	Unraveling the Reaction Interfaces and Intermediates of Ru-Catalyzed LiOH Decomposition in DMSO-Based Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2022, 13, 471-478.	2.1	9
1914	Carbon-based iron-cobalt phosphate FeCoP/C as an effective ORR/OER/HER trifunctional electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128118.	2.3	21
1915	Fe-doping induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation. Journal of Power Sources, 2022, 520–230882	4.0	44

#	Article	IF	CITATIONS
1916	Thermo-selenized stainless steel as an efficient oxygen evolution electrode for water splitting and CO2 electrolysis in real water matrices. Journal of Power Sources, 2022, 521, 230953.	4.0	10
1917	Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chemical Engineering Journal, 2022, 431, 134040.	6.6	90
1918	Heterostructure Ni(OH)2/ZrO2 catalyst can achieve efficient oxygen reduction reaction. Chemical Engineering Science, 2022, 250, 117398.	1.9	4
1919	Amorphous-crystalline heterostructure for simulated practical water splitting at high-current–density. Chemical Engineering Journal, 2022, 431, 134247.	6.6	29
1920	Dispersed FeO nanoparticles decorated with Co2SiO4 hollow spheres for enhanced oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 611, 235-245.	5.0	19
1921	Sulfur-doping/leaching induced structural transformation toward boosting electrocatalytic water splitting. Applied Catalysis B: Environmental, 2022, 305, 121030.	10.8	40
1922	Metal/antiperovskite metal nitride composites Ag/AgNNi3 as novel efficient electrocatalysts for hydrogen evolution reaction in alkaline media. Journal of Materials Science and Technology, 2022, 112, 222-229.	5.6	8
1923	Boosting oxygen evolution over inverse spinel Fe-Co-Mn oxide nanocubes through electronic structure engineering. Chemical Engineering Journal, 2022, 433, 134446.	6.6	16
1924	Fe-Doped (Ni,Mn)Co ₂ O ₄ Nanorod Arrays on Ni Foam as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline and Neutral Conditions with Superb Long-Term Stability. SSRN Electronic Journal, 0, , .	0.4	0
1925	Study on Mechanism of the Low-Temperature Catalytic Reaction of Holes in 2D Ultrathin Nanosheets and the Catalyst Deactivation. SSRN Electronic Journal, 0, , .	0.4	0
1926	Enhanced Electrocatalytic Activity by NiCu-LDH/CoS as Dual Co-Catalysts on G-C ₃ N ₄ Nanosheets in NiCu-LDH@CoS/G-C ₃ N ₄ Nanostructure for Oxygen Evolution Reactions. SSRN Electronic Journal, 0, , .	0.4	0
1927	Layered Double Hydroxide Catalysts Preparation, Characterization and Applications for Process Development: An Environmentally Green Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 163-193.	0.5	2
1928	Boosting the OER Performance of Nitrogen-Doped Ni Nanoclusters Confined in an Amorphous Carbon Matrix. Inorganic Chemistry, 2022, 61, 2360-2367.	1.9	11
1929	Mechanistic Aspects of Cobalt–Oxo Cubane Clusters in Oxidation Chemistry. Journal of the American Chemical Society, 2022, 144, 1475-1492.	6.6	15
1930	Overcoming Hurdles in Oxygen Evolution Catalyst Discovery via Codesign. Chemistry of Materials, 2022, 34, 899-910.	3.2	17
1931	In Situ Grown Cuboidal MnCo ₂ O ₄ /h Boron Nitride Heterojunction: A Noble Metal-Free Approach Based on Efficient Hole Extraction for Electrochemical Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 1551-1559.	2.5	9
1932	Ultra-small Ru nanoparticles embedded on Fe–Ni(OH) ₂ nanosheets for efficient water splitting at a large current density with long-term stability of 680 hours. Journal of Materials Chemistry A, 2022, 10, 4817-4824.	5.2	46
1933	Surfaceâ€Tailored Medium Entropy Alloys as Radically Low Overpotential Oxygen Evolution Electrocatalysts. Small, 2022, 18, e2105611.	5.2	36

# 1934	ARTICLE Surprisingly Low Reactivity of Layered Manganese Oxide toward Water Oxidation in Fe/Ni-Free Electrolyte under Alkaline Conditions. Inorganic Chemistry, 2022, 61, 2292-2306.	IF 1.9	CITATIONS 21
1935	Catalytic open-circuit passivation by thin metal oxide films of p-Si anodes in aqueous alkaline electrolytes. Energy and Environmental Science, 2022, 15, 334-345.	15.6	8
1936	Converting silicon nanoparticles into nickel iron silicide nanocrystals within molten salts for water oxidation electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 1350-1358.	5.2	17
1938	Crystal Structures of Ironâ€Based Oxides and Their Catalytic Efficiencies for the Oxygen Evolution Reaction: A Trend in Alkaline Media. ChemElectroChem, 2022, 9, .	1.7	3
1939	Charge transfer processes via tandem modification of efficient non-fullerene acceptors for organic solar cells. Solar Energy, 2022, 231, 503-515.	2.9	12
1940	Fe doped NiS nanosheet arrays grown on carbon fiber paper for a highly efficient electrocatalytic oxygen evolution reaction. Nanoscale Advances, 2022, 4, 1220-1226.	2.2	19
1941	Structureâ€Performance Relationship of LaFe _{1â€x} Co _x O ₃ Electrocatalysts for Oxygen Evolution, Isopropanol Oxidation, and Glycerol Oxidation. ChemElectroChem, 2022, 9, .	1.7	10
1942	Comparison of Fe-enhanced oxygen evolution electrocatalysis in amorphous and crystalline nickel oxides to evaluate the structural contribution. Energy and Environmental Science, 2022, 15, 610-620.	15.6	37
1943	Heterostructured nickel, iron sulfide@nitrogen, sulfur co-doped carbon hybrid with efficient interfacial charge redistribution as bifunctional catalyst for water electrolysis. Applied Catalysis A: General, 2022, 630, 118459.	2.2	14
1944	Recent progress in water-splitting and supercapacitor electrode materials based on MOF-derived sulfides. Journal of Materials Chemistry A, 2022, 10, 430-474.	5.2	54
1945	Incorporation of Cu/Ni in Ordered Mesoporous Coâ€Based Spinels to Facilitate Oxygen Evolution and Reduction Reactions in Alkaline Media and Aprotic Liâ 'O 2 Batteries. ChemSusChem, 2021, , .	3.6	9
1946	Fe Coordination Environment, Fe-Incorporated Ni(OH) ₂ Phase, and Metallic Core Are Key Structural Components to Active and Stable Nanoparticle Catalysts for the Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 1992-2008.	5.5	27
1947	Formation of Highly Active NiO(OH) Thin Films from Electrochemically Deposited Ni(OH) ₂ by a Simple Thermal Treatment at a Moderate Temperature: A Combined Electrochemical and Surface Science Investigation. ACS Catalysis, 2022, 12, 1508-1519.	5.5	34
1948	Deciphering the Exceptional Performance of NiFe Hydroxide for the Oxygen Evolution Reaction in an Anion Exchange Membrane Electrolyzer. ACS Applied Energy Materials, 2022, 5, 2221-2230.	2.5	22
1949	Nickel-Rich Ni ₃ N Particles Stimulated by Defective Graphitic Carbon Nitrides for the Effective Oxygen Evolution Reaction. Industrial & Engineering Chemistry Research, 2022, 61, 2081-2090.	1.8	21
1950	Fe-atom-implantation induced regional phase reconstruction for high-entropy NixSy construction with diversified crystallographic orientations towards accelerated water splitting. Journal of Power Sources, 2022, 522, 231004.	4.0	15
1951	Water dissociation on Mixed Co-Fe oxide bilayer nanoislands on Au(111). Journal of Physics Condensed Matter, 2022, , .	0.7	2
1952	Ru-Doped NiFe Layered Double Hydroxide as a Highly Active Electrocatalyst for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 024503.	1.3	15

#	Article	IF	CITATIONS
1953	NiCo2O4 nanostructures loaded onto pencil graphite rod: An advanced composite material for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 6650-6665.	3.8	30
1954	FexNi(1-x) coatings electrodeposited from choline chloride-urea mixture: Magnetic and electrocatalytic properties for water electrolysis. Materials Chemistry and Physics, 2022, 279, 125738.	2.0	7
1955	Metal substrates activate NiFe(oxy)hydroxide catalysts for efficient oxygen evolution reaction in alkaline media. Journal of Alloys and Compounds, 2022, 901, 163689.	2.8	16
1956	Zn constructs micro/nano porous structure to boost efficient oxygen evolution reaction for bulk NiFe alloy. Journal of Alloys and Compounds, 2022, 903, 164004.	2.8	7
1957	Trimetallic nanoplate arrays of Ni-Fe-Mo sulfide on FeNi3 foam: A highly efficient and bifunctional electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 2022, 902, 163670.	2.8	26
1958	Dynamic dissolution and re-adsorption of molybdate ion in iron incorporated nickel-molybdenum oxyhydroxide for promoting oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 307, 121150.	10.8	88
1959	Crystalline-amorphous interface of mesoporous Ni2PÂ@ÂFePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Applied Catalysis B: Environmental, 2022, 306, 121127.	10.8	90
1960	Oxygen Vacancies and Interface Engineering on Amorphous/Crystalline CrO _x â€Ni ₃ N Heterostructures toward Highâ€Durability and Kinetically Accelerated Water Splitting. Small, 2022, 18, e2106554.	5.2	71
1961	Ironâ€Doped Niâ^'Al Layered Double Hydroxide as an Efficient Oxygen Evolution Reaction Electrocatalyst. ChemNanoMat, 2022, 8, .	1.5	4
1962	Towards the Rational Design of Stable Electrocatalysts for Green Hydrogen Production. Catalysts, 2022, 12, 204.	1.6	1
1963	Trimetallic oxide-hydroxide porous nanosheets for efficient water oxidation. Chemical Engineering Journal, 2022, 435, 135019.	6.6	13
1964	Simultaneous integration of low-level rhenium (Re) doping and nitrogen-functionalized 3D carbon backbone into nickel-iron hydroxide (NiFeOH) to amplify alkaline water electrolysis at high current densities. Chemical Engineering Journal, 2022, 435, 135184.	6.6	13
1965	Heat–Electricity Coupling Driven Cascade Oxidation Reaction of Redox Couple and Water. Journal of Physical Chemistry Letters, 2022, 13, 49-57.	2.1	8
1966	Layered double (Ni, Fe) hydroxide grown on nickel foam and modified by nickel carbonyl powder and carbon black as an efficient electrode for water splitting. International Journal of Hydrogen Energy, 2022, 47, 19609-19618.	3.8	14
1967	Simultaneous Integration of Low-Level Rhenium (Re) Doping and Nitrogen-Functionalized 3d Carbon Backbone into Nickel-Iron Hydroxide (Nifeoh) to Amplify Alkaline Water Electrolysis at High Current Densities. SSRN Electronic Journal, 0, , .	0.4	0
1968	Janus Hollow Nanofiber with Bi-Functional Oxygen Electrocatalyst for Rechargeable Zn-Air Battery. SSRN Electronic Journal, 0, , .	0.4	0
1969	Metal-OrganicÂFrameworks-Derived Nickel-Iron Oxyhydroxide with Highly Active Edge Sites ForÂElectrochemical Oxygen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
1970	Enhanced oxygen evolution performance by the partial phase transformation of cobalt/nickel carbonate hydroxide nanosheet arrays in an Fe-containing alkaline electrolyte. Inorganic Chemistry Frontiers, 0, , .	3.0	11

#	Article	IF	CITATIONS
1971	Dynamic coordination transformation of active sites in single-atom MoS ₂ catalysts for boosted oxygen evolution catalysis. Energy and Environmental Science, 2022, 15, 2071-2083.	15.6	33
1972	Influence of Fe-clustering on the water oxidation performance of two-dimensional layered double hydroxides. Dalton Transactions, 2022, 51, 4675-4684.	1.6	7
1973	Ultra-small-sized multi-element metal oxide nanofibers: an efficient electrocatalyst for hydrogen evolution. Nanoscale Advances, 2022, 4, 1758-1769.	2.2	3
1974	Preparation of layered double hydroxide films using an electrodeposition and subsequent crystal growth method. Clay Minerals, 2021, 56, 284-291.	0.2	1
1975	Boosting the Electrocatalytic Activity of Nickel-Iron Layered Double Hydroxide for the Oxygen Evolution Reaction byTerephthalic Acid. Catalysts, 2022, 12, 258.	1.6	7
1976	Nickel-Based Electrocatalysts for Water Electrolysis. Energies, 2022, 15, 1609.	1.6	21
1977	Finding the True Catalyst for Water Oxidation at Low Overpotential in the Presence of a Metal Complex. Inorganic Chemistry, 2022, 61, 3801-3810.	1.9	18
1978	A Dual Functional Polymer Interlayer Enables Nearâ€Infrared Absorbing Organic Photoanodes for Solar Water Oxidation. Advanced Energy Materials, 2022, 12, .	10.2	10
1979	High-Valence Transition Metal Modified FeNiV Oxides Anchored on Carbon Fiber Cloth for Efficient Oxygen Evolution Catalysis. Advanced Fiber Materials, 2022, 4, 774-785.	7.9	24
1980	Strategies To Construct <i>n</i> -Type Si-Based Heterojunctions for Photoelectrochemical Water Oxidation. , 2022, 4, 779-804.		10
1981	What is Next in Anionâ€Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future. ChemSusChem, 2022, 15, .	3.6	77
1982	A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nature Communications, 2022, 13, 1304.	5.8	111
1983	Engineering the Electronic Structures of Metal–Organic Framework Nanosheets via Synergistic Doping of Metal lons and Counteranions for Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 15133-15140.	4.0	23
1984	Catalysis of the Water Oxidation Reaction in the Presence of Iron and a Copper Foil. Inorganic Chemistry, 2022, 61, 5653-5664.	1.9	9
1985	Janus Hollow Nanofiber with Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Battery. Small, 2022, 18, e2200578.	5.2	48
1986	Facile in-situ electrochemical fabrication of highly efficient nickel hydroxide-iron hydroxide/graphene hybrid for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 12547-12558.	3.8	12
1987	Intrinsic defects of nonprecious metal electrocatalysts for energy conversion: Synthesis, advanced characterization, and fundamentals. ChemPhysMater, 2022, 1, 155-182.	1.4	6
1988	Synthesis of hierarchical transition metal oxyhydroxides in aqueous solution at ambient temperature and their application as OER electrocatalysts. Journal of Energy Chemistry, 2022, 71, 89-97.	7.1	18

# 1989	ARTICLE Self-healing oxygen evolution catalysts. Nature Communications, 2022, 13, 1243.	IF 5.8	Citations
1990	Co _{<i>x</i>} (VO) _{<i>y</i>} O _{<i>z</i>} Nanocrystal-Integrated Covalent Organic Polymers as a Highly Active and Durable Catalyst for Electrochemical Water Oxidation: An Untold Role of the VO ²⁺ /VO ₂ ⁺ Redox Couple. ACS Applied Energy Materials. 2022. 5, 2805-2816.	2.5	10
1991	Mesoporous Single Crystals with Feâ€Rich Skin for Ultralow Overpotential in Oxygen Evolution Catalysis. Advanced Materials, 2022, 34, e2200088.	11.1	33
1992	From Nickel Foam to Highly Active NiFeâ€based Oxygen Evolution Catalysts. ChemElectroChem, 2022, 9, .	1.7	3
1993	Effect of Plating Variables on Oxygen Evolution Reaction of Ni–Zn–Fe Electrodes for Alkaline Water Electrolysis. Catalysts, 2022, 12, 346.	1.6	2
1994	Three-Dimensional Flower-Like Bimetallic Nickel–Iron Selenide for Efficient Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2022, 126, 5131-5137.	1.5	13
1995	Nanostructuring Matters: Stabilization of Electrocatalytic Oxygen Evolution Reaction Activity of ZnCo ₂ O ₄ by Zinc Leaching. ACS Applied Materials & Interfaces, 2022, 14, 15165-15175.	4.0	22
1997	To Err is Human; To Reproduce Takes Time. ACS Catalysis, 2022, 12, 3644-3650.	5.5	16
1998	Metal–Organic-Framework-Based Photo-electrochemical Cells for Solar Fuel Generation. Journal of Physical Chemistry C, 2022, 126, 5079-5091.	1.5	11
1999	Sâ€Doping Triggers Redox Reactivities of Both Iron and Lattice Oxygen in FeOOH for Low ost and Highâ€Performance Water Oxidation. Advanced Functional Materials, 2022, 32, .	7.8	79
2000	The nature of synergistic effects in transition metal oxides/in-situ intermediate-hydroxides for enhanced oxygen evolution reaction. Current Opinion in Electrochemistry, 2022, 34, 100987.	2.5	7
2001	Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis. Green Energy and Environment, 2023, 8, 1644-1653.	4.7	9
2002	Combinatorial Synthesis and Screening of a Ternary NiFeCoO _{<i>x</i>} Library for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 4017-4024.	2.5	5
2003	Oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters as an efficient electrocatalyst for water oxidation. Journal of Energy Chemistry, 2022, 71, 167-173.	7.1	42
2004	Ni–Fe Cathode Catalyst in Zero-Gap Alkaline Water Electrolysis. Electrocatalysis, 2022, 13, 447-456.	1.5	3
2005	Active Microstructure Transformation and Enhanced Stability of Iron Foam Derived from Industrial Water Oxidation. ACS Applied Materials & amp; Interfaces, 2022, 14, 17229-17239.	4.0	0
2006	Operando Highâ€Valence Crâ€Modified NiFe Hydroxides for Water Oxidation. Small, 2022, 18, e2200303.	5.2	44
2007	Elucidating electrocatalytic mechanism for large-scale cycloalkanol oxidation integrated with hydrogen evolution. Chemical Engineering Journal, 2022, 442, 136264.	6.6	16

#	Article	IF	CITATIONS
2008	Regulating the transformation behavior of nickel iron metal–organic frameworks through a dual-ligand strategy for enhanced oxygen evolution reaction performance. Applied Surface Science, 2022, 592, 153252.	3.1	18
2009	Electrodeposition of Mo-doped NiFex nanospheres on 3D graphene fibers for efficient overall alkaline water splitting. International Journal of Hydrogen Energy, 2022, 47, 13850-13861.	3.8	9
2010	Pre-intercalation of phosphate into Ni(OH)2/NiOOH for efficient and stable electrocatalytic oxygen evolution reaction. Journal of Catalysis, 2022, 410, 22-30.	3.1	26
2011	High throughput preparation of Ni–Mo alloy thin films as efficient bifunctional electrocatalysts for water splitting. International Journal of Hydrogen Energy, 2022, 47, 15764-15774.	3.8	25
2012	Effect of different alkali metal cations on the oxygen evolution activity and battery capacity of nickel electrodes in concentrated hydroxide electrolytes. Electrochimica Acta, 2022, 415, 140255.	2.6	6
2013	Modulating electronic structure of Ni2P pre-catalyst by doping trace iron for enhanced oxygen evolution reaction in alkaline. Journal of Alloys and Compounds, 2022, 908, 164603.	2.8	12
2014	La-doped NiFe-LDH coupled with hierarchical vertically aligned MXene frameworks for efficient overall water splitting. Journal of Energy Chemistry, 2022, 70, 472-479.	7.1	90
2015	A promising Ni-Fe double hydroxide fiber electrode for application of flexible woven-supercapacitor and wastewater decolorization. Journal of Alloys and Compounds, 2022, 908, 164616.	2.8	3
2016	3D core-shell structured NiFe layered double hydroxide with NiCo2O4 as an efficient electrocatalysts for oxygen evolution reaction. Journal of Physics and Chemistry of Solids, 2022, 166, 110730.	1.9	5
2017	Evaluation of iron-based alloy nanocatalysts for the electrooxidation of ethylene glycol in membraneless fuel cells. Fuel, 2022, 321, 124059.	3.4	7
2018	Rapid screening of NixFe1â^'x/Fe2O3/Ni(OH)2 complexes with excellent oxygen evolution reaction activity and durability by a two-step electrodeposition method. Applied Surface Science, 2022, 592, 153251.	3.1	9
2019	Ni3S2-embedded NiFe LDH porous nanosheets with abundant heterointerfaces for high-current water electrolysis. Chemical Engineering Journal, 2022, 442, 136105.	6.6	44
2020	A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Applied Catalysis B: Environmental, 2022, 311, 121357.	10.8	75
2021	Insights into Electrocatalytic Oxygen Evolution over Hierarchical FeCo ₂ S ₄ Nanospheres. ACS Sustainable Chemistry and Engineering, 2022, 10, 431-440.	3.2	10
2022	Realizing High and Stable Electrocatalytic Oxygen Evolution for Ironâ€Based Perovskites by Coâ€Dopingâ€Induced Structural and Electronic Modulation. Advanced Functional Materials, 2022, 32, .	7.8	28
2023	From Theory to Experiment: Cascading of Thermocatalysis and Electrolysis in Oxygen Evolution Reactions. ACS Energy Letters, 2022, 7, 343-348.	8.8	21
2024	Sodium Cobalticarborane: A Promising Precatalyst for Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61, 464-473.	1.9	3
2025	Effects of Metallic Impurities in Alkaline Electrolytes on Electro-Oxidation of Water and Alcohol Molecules. Journal of the Electrochemical Society, 2021, 168, 124516.	1.3	4

#	Article	IF	CITATIONS
2026	Structure and Oxygen Evolution Activity of Î ² -NiOOH: Where Are the Protons?. ACS Catalysis, 2022, 12, 295-304.	5.5	28
2027	W Doping in Ni ₁₂ P ₅ as a Platform to Enhance Overall Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 581-589.	4.0	29
2028	Fe-doped and sulfur-enriched Ni3S2 nanowires with enhanced reaction kinetics for boosting water oxidation. Green Chemical Engineering, 2022, 3, 367-373.	3.3	14
2029	Lattice site–dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Science Advances, 2021, 7, eabk1788.	4.7	41
2030	Emerging Surface, Bulk, and Interface Engineering Strategies on BiVO ₄ for Photoelectrochemical Water Splitting. Small, 2022, 18, e2105084.	5.2	78
2031	Highâ€performance Teâ€doped <scp> Co ₃ O ₄ </scp> nanocatalysts for oxygen evolution reaction. International Journal of Energy Research, 2022, 46, 5963-5972.	2.2	10
2032	Three-Dimensional Unified Electrode Design Using a NiFeOOH Catalyst for Superior Performance and Durable Anion-Exchange Membrane Water Electrolyzers. ACS Catalysis, 2022, 12, 135-145.	5.5	38
2033	Structure and Catalysis of NiOOH: Recent Advances on Atomic Simulation. Journal of Physical Chemistry C, 2021, 125, 27033-27045.	1.5	23
2034	Amorphous FeOOH nanoparticles decorated on defect-rich porous Ni MOF nanosheet based hierarchical architectures toward superior OER performance. New Journal of Chemistry, 2022, 46, 9650-9657.	1.4	8
2035	Enhanced electrocatalytic activity by NiCu-LDH/CoS as dual co-catalysts on g-C3N4 nanosheets in NiCu-LDH@CoS/g-C3N4 nanostructure for oxygen evolution reactions. Applied Surface Science, 2022, 593, 153453.	3.1	16
2036	State of the Active Site in La _{1–<i>x</i>} Sr _{<i>x</i>} CoO _{3â~î^} Under Oxygen Evolution Reaction Investigated by Total-Reflection Fluorescence X-Ray Absorption Spectroscopy. ACS Applied Energy Materials, 2022, 5, 4108-4116.	2.5	4
2037	Metal-organic aerogel derived hierarchical porous metal-carbon nanocomposites as efficient bifunctional electrocatalysts for overall water splitting. Journal of Colloid and Interface Science, 2022, 621, 398-405.	5.0	6
2038	Spectroelectrochemical Analysis of the Water Oxidation Mechanism on Doped Nickel Oxides. Journal of the American Chemical Society, 2022, 144, 7622-7633.	6.6	66
2039	Anion-Exchange Membrane Water Electrolyzers. Chemical Reviews, 2022, 122, 11830-11895.	23.0	177
2040	High-entropy FeCoNiMn (oxy)hydroxide as high-performance electrocatalyst for OER and boosting clean carrier production under quasi-industrial condition. Journal of Cleaner Production, 2022, 356, 131680.	4.6	22
2041	Multijunction Photoanode of Mo:BiVO ₄ Layered with TiO ₂ Inverse Opal and NiB _i Oxygen Evolution Catalyst to Trap Light and Enhance Water Splitting. Journal of Physical Chemistry C, 2022, 126, 6960-6972.	1.5	4
2042	Controlled Atmosphere Corrosion Engineering toward Inhomogeneous NiFe-LDH for Energetic Oxygen Evolution. ACS Nano, 2022, 16, 7794-7803.	7.3	51
2043	Nanostructured Metallic Glass in a Highly Upgraded Energy State Contributing to Efficient Catalytic Performance. Advanced Materials, 2022, 34, e2200850.	11.1	34

# 2044	ARTICLE Self-supported electrode Fe35Co20Ni20Mo20Si5 alloy ribbon: Electronic structure modulating oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 911, 164993.	IF 2.8	Citations 3
2046	Reinforced Layered Double Hydroxide Oxygenâ€Evolution Electrocatalysts: A Polyoxometallic Acid Wetâ€Etching Approach and Synergistic Mechanism. Advanced Materials, 2022, 34, e2110696.	11.1	57
2047	Why Did Nature Choose Manganese over Cobalt to Make Oxygen Photosynthetically on the Earth?. Journal of Physical Chemistry B, 2022, 126, 3257-3268.	1.2	7
2048	Ultrafast Carbothermal Shock Constructing Ni ₃ Fe _{1–<i>x</i>} Cr _{<i>x</i>} Intermetallic Integrated Electrodes for Efficient and Durable Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2022, 14, 19524-19533.	4.0	10
2050	Hybrid-metal hydroxyl fluoride nanosheet arrays as a bifunctional electrocatalyst for efficient overall water splitting. Journal of Materials Chemistry A, 2022, 10, 11774-11783.	5.2	11
2051	<i>In situ</i> Raman spectroscopy reveals the structure evolution and lattice oxygen reaction pathway induced by the crystalline–amorphous heterojunction for water oxidation. Chemical Science, 2022, 13, 5639-5649.	3.7	14
2052	Introducing oxygen vacancies to NiFe LDH through electrochemical reduction to promote the oxygen evolution reaction. Dalton Transactions, 2022, 51, 13970-13977.	1.6	13
2053	Electrocatalytic OER Performance of Nickel-Iron Hydroxide Hollow Nanotubes. Material Sciences, 2022, 12, 396-408.	0.0	0
2054	Electrochemically Robust Ferberite (FeWO ₄) Nanostructure as an Anode Material for Alkaline Water- and Alcohol-Oxidation Reaction. ACS Applied Energy Materials, 2022, 5, 5652-5665.	2.5	12
2055	Self-supporting and hierarchically porous NixFe—S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1120-1131.	2.4	7
2056	Activated Ni–OH Bonds in a Catalyst Facilitates the Nucleophile Oxidation Reaction. Advanced Materials, 2022, 34, e2105320.	11.1	47
2057	One-Step Synthesis of Highly Active NiFe Electrocatalysts for the Oxygen Evolution Reaction. Langmuir, 2022, 38, 5525-5531.	1.6	8
2058	The potential of MXene materials as a component in the catalyst layer for the Oxygen Evolution Reaction. Current Opinion in Electrochemistry, 2022, 34, 101021.	2.5	5
2059	In situ confined vertical growth of Co2.5Ni0.5Si2O5(OH)4 nanoarrays on rGO for an efficient oxygen evolution reaction. Nano Materials Science, 2023, 5, 351-360.	3.9	7
2060	Direct and indirect role of Fe doping in NiOOH monolayer for water oxidation catalysis**. ChemPhysChem, 2022, 23, .	1.0	3
2061	Comprehension of the Route for the Synthesis of Co/Fe LDHs via the Method of Coprecipitation with Varying pH. Nanomaterials, 2022, 12, 1570.	1.9	4
2062	Modeling Operando Electrochemical CO ₂ Reduction. Chemical Reviews, 2022, 122, 11085-11130.	23.0	66
2063	MoSe2 regulates Ce-doped NiFe layered double hydroxide for efficient oxygen evolution reaction: The increase of active sites. International Journal of Hydrogen Energy, 2022, 47, 18688-18699.	3.8	11

#	Article	IF	CITATIONS
2064	Ionomer Optimization for Hydroxide-Exchange-Membrane Water Electrolyzers Operated with Distilled Water: A Modeling Study. Journal of the Electrochemical Society, 2022, 169, 054506.	1.3	5
2065	Constructing nickel–iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202812119.	3.3	21
2066	Dynamic active sites in NiFe oxyhydroxide upon Au nanoparticles decoration for highly efficient electrochemical water oxidation. Nano Energy, 2022, 98, 107328.	8.2	20
2067	Constructing hierarchical structure electrocatalyst for efficient hydrogen evolution and selective oxidation of benzylamine. Journal of Alloys and Compounds, 2022, 912, 165259.	2.8	8
2068	Activation of Water Splitting Alloy Electrodes by Anodizing. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 593-598.	0.1	0
2069	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
2070	Submerged-Plant-Inspired Five-Level-Synergetic hierarchical Single-Fe-Atom-Doped Micro-Electrodes for High-Performance multifunctional electrocatalysis. Chemical Engineering Journal, 2022, 446, 136804.	6.6	3
2071	Triggering Lattice Oxygen Activation of Singleâ€Atomic Mo Sites Anchored on Ni–Fe Oxyhydroxides Nanoarrays for Electrochemical Water Oxidation. Advanced Materials, 2022, 34, e2202523.	11.1	103
2072	Tailoring the oxide surface composition of stainless steel for improved OER performance in alkaline water electrolysis. Electrochimica Acta, 2022, 424, 140561.	2.6	16
2073	Heterojunction between bimetallic metal-organic framework and TiO2: Band-structure engineering for effective photoelectrochemical water splitting. Nano Research, 2022, 15, 8502-8509.	5.8	15
2074	Highly exposed NiFeOx nanoclusters supported on boron doped carbon nanotubes for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2023, 34, 107524.	4.8	5
2075	Three-Dimensional Coral-Like NiFe-Layered Double Hydroxides on Biomass-Derived Nitrogen-Doped Carbonized Wood as a Sensitive Probe for Nonenzymatic Urea Determination. ACS Sustainable Chemistry and Engineering, 2022, 10, 6952-6962.	3.2	7
2076	Effect of phosphoric acid purity on the electrochemically active surface area of Pt-based electrodes. Journal of Electroanalytical Chemistry, 2022, 918, 116450.	1.9	3
2077	Anodic deposition of highly efficient nickel iron oxide electrocatalysts for water oxidation and role of anions in catalyst deposition. Electrochimica Acta, 2022, 424, 140607.	2.6	2
2078	First-row transition metal-based materials derived from bimetallic metal–organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy and Environmental Science, 2022, 15, 3119-3151.	15.6	125
2079	Nanostructured Intermetallic Nickel Silicide (Pre)Catalyst for Anodic Oxygen Evolution Reaction and Selective Dehydrogenation of Primary Amines. Advanced Energy Materials, 2022, 12, .	10.2	42
2080	Water Oxidation in the Presence of a Nickel Coordination Compound: Decomposition Products, Fe Impurity in the Electrolyte, and a Candidate as a Catalyst. Journal of Physical Chemistry C, 2022, 126, 9753-9761.	1.5	10
2081	Normalization of the EOR catalytic efficiency measurements based on RRDE study for simply fabricated cost-effective Co/graphite electrode for DAEFCs. Journal of Electroanalytical Chemistry, 2022, 918, 116488.	1.9	1

<u> </u>			<u> </u>	
(15	ГАТ	ON	REPC	TDT
			NLFC	ואנ

#	Article	IF	CITATIONS
2082	Hierarchically hollow interconnected rings of nickel substituted cobalt carbonate hydroxide hydrate as promising oxygen evolution electrocatalyst. International Journal of Hydrogen Energy, 2022, 47, 22430-22441.	3.8	8
2083	Precious-metal-free catalyst could afford cost-effective green hydrogen. CheM, 2022, 8, 1539-1540.	5.8	4
2084	Fabrication of Cocatalyst NiO-Modified BiVO4 Composites for Enhanced Photoelectrochemical Performances. Frontiers in Chemistry, 2022, 10, .	1.8	2
2085	Durability of the FeNi ₃ @Ni Material Designed for Water Electrolysis Enhanced by High Frequency Alternating Magnetic Field. ACS Applied Energy Materials, 2022, 5, 7034-7048.	2.5	5
2086	Challenges in determining the electrochemically active surface area of Ni-oxides in the oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 918, 116479.	1.9	14
2087	Rapid "self-healing―behavior induced by chloride anions to renew the Fe–Ni(oxy)hydroxide surface for long-term alkaline seawater electrolysis. Inorganic Chemistry Frontiers, 2022, 9, 4216-4224.	3.0	8
2089	Size Effects of Electrocatalysts: More Than a Variation of Surface Area. ACS Nano, 2022, 16, 8531-8539.	7.3	42
2090	Activation Energy Assessing Potential-Dependent Activities and Site Reconstruction for Oxygen Evolution. ACS Energy Letters, 2022, 7, 2236-2243.	8.8	14
2091	Ternary NiCoFe nanosheets for oxygen evolution in anion exchange membrane water electrolysis. International Journal of Hydrogen Energy, 2022, 47, 23483-23497.	3.8	13
2092	Metalâ€Organic Frameworksâ€Derived Nickel–Iron Oxyhydroxide with Highly Active Edge Sites for Electrochemical Oxygen Evolution. Small Structures, 2022, 3, .	6.9	3
2093	Surface Design Strategy of Catalysts for Water Electrolysis. Small, 2022, 18, .	5.2	138
2095	Surface Activation and Niâ€S Stabilization in NiO/NiS ₂ for Efficient Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	105
2096	Surface Activation and Niâ€5 Stabilization in NiO/NiS ₂ for Efficient Oxygen Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	1
2097	Effect of Experimental Parameters on the Electrocatalytic Performance in Rotating Disc Electrode Measurements: Case Study of Oxygen Evolution on Niâ°'Coâ€Oxide in Alkaline Media. ChemElectroChem, 2022, 9, .	1.7	4
2098	Purification of Residual Ni and Co Hydroxides from Feâ€Free Alkaline Electrolyte for Electrocatalysis Studies. ChemElectroChem, 2022, 9, .	1.7	9
2099	Single Entity Electrochemistry and Its Application to Nanomaterial Synthesis. Israel Journal of Chemistry, 2023, 63, .	1.0	0
2100	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets Grow on Porous Mo ₂ N for an Efficient Oxygen Evolution Reaction. Energy & Fuels, 2022, 36, 11467-11476.	2.5	4
2101	Highly Durable and Efficient Ni-FeO <i>_x</i> /FeNi ₃ Electrocatalysts Synthesized by a Facile <i>In Situ</i> Combustion-Based Method for Overall Water Splitting with Large Current Densities. ACS Applied Materials & Interfaces, 2022, 14, 27842-27853.	4.0	34

#	Article	IF	CITATIONS
2102	Reactive Sputtered Ir _{1â^'y} Ni _y O _x Electrocatalysts For The Oxygen Evolution Reaction in Alkaline Media. Journal of the Electrochemical Society, 2022, 169, 076501.	1.3	1
2103	Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes. Nature Communications, 2022, 13, .	5.8	48
2104	Low dimensional transition metal oxide towards advanced electrochromic devices. Nano Energy, 2022, 100, 107479.	8.2	24
2105	Catalytic and pseudocapacitive energy storage performance of metal (Co, Ni, Cu and Mn) ferrite nanostructures and nanocomposites. Progress in Materials Science, 2022, 130, 100995.	16.0	25
2106	Deep reconstruction of transition metal molybdate@hydroxide heterostructure triggered by anion-exchange reaction as high efficiency water oxidation electrocatalyst. Chemical Engineering Journal, 2022, 447, 137540.	6.6	25
2107	Operando deciphering the activity origins for potential-induced reconstructed oxygen-evolving catalysts. Applied Catalysis B: Environmental, 2022, 316, 121602.	10.8	10
2108	Room temperature, fast fabrication of square meter-sized oxygen evolution electrode toward industrial alkaline electrolyzer. Applied Catalysis B: Environmental, 2022, 316, 121605.	10.8	17
2109	An In-Situ Raman Spectroscopic Study of the Effect of Electrolytic Fe on Ni Electrocatalysts Towards the Oxygen Evolution Reaction (Oer). SSRN Electronic Journal, 0, , .	0.4	0
2110	Non-noble electrocatalysts discovered by scaling relations of Gibbs-free energies of key oxygen adsorbates in water oxidation. Journal of Materials Chemistry A, O, , .	5.2	4
2111	High performance transition metal-based electrocatalysts for green hydrogen production. Chemical Communications, 2022, 58, 7874-7889.	2.2	14
2112	Synthesis of NiFeOx nanocatalysts from metal–organic precursors for the oxygen evolution reaction. Dalton Transactions, 2022, 51, 11457-11466.	1.6	3
2113	Hierarchical NiFeV hydroxide nanotubes: synthesis, topotactic transformation and electrocatalysis towards the oxygen evolution reaction. Dalton Transactions, 2022, 51, 11098-11107.	1.6	3
2114	A Heterostructured FeNi Hydroxide for Effective Electrocatalytic Oxygen Evolution. Chemical Science, 0, , .	3.7	2
2115	High Current Density Oxygen Evolution in Carbonate Buffered Solution Achieved by Active Site Densification and Electrolyte Engineering. SSRN Electronic Journal, 0, , .	0.4	0
2116	A carbonization/interfacial assembly-driven electroplating approach for water-splitting textile electrodes with remarkably low overpotentials and high operational stability. Energy and Environmental Science, 2022, 15, 3815-3829.	15.6	23
2117	Ambient Fast Synthesis of Superaerophobic/Superhydrophilic Electrode for Superior Electrocatalytic Water Oxidation. Energy and Environmental Materials, 2023, 6, .	7.3	4
2118	Surface modulated Fe doping of <scp>βâ€Ni</scp> (<scp>OH</scp>) ₂ nanosheets for highly promoted oxygen evolution electrocatalysis. EcoMat, 2022, 4, .	6.8	19
2119	NiFe Layered Double Hydroxide Electrocatalysts for an Efficient Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 8592-8600.	2.5	23

#	Article	IF	CITATIONS
2120	Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly. Energy Technology, 2022, 10, .	1.8	11
2121	Spin-state regulating of cobalt assisted by iron doping and coordination for enhanced oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 27508-27515.	3.8	3
2122	Compositionâ€Dependent Morphology, Structure, and Catalytical Performance of Nickel–Iron Layered Double Hydroxide as Highlyâ€Efficient and Stable Anode Catalyst in Anion Exchange Membrane Water Electrolysis. Advanced Functional Materials, 2022, 32, .	7.8	34
2123	Surface Reconstruction of Water Splitting Electrocatalysts. Advanced Energy Materials, 2022, 12, .	10.2	111
2124	Anode Catalysts in Anionâ€Exchangeâ€Membrane Electrolysis without Supporting Electrolyte: Conductivity, Dynamics, and Ionomer Degradation. Advanced Materials, 2022, 34, .	11.1	42
2125	Metal Hydroxide Salt Monolayer Nanoparticles: Synthesis, Redox Characterization, and Electrochemical Catalytic Performance. , 2022, 4, 1430-1435.		8
2126	Ni-modified carbon nanotube macrofilms supporting NiFe with stable structure for efficient oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 920, 116591.	1.9	0
2127	Construction of metal (oxy) hydroxides surface on high entropy alloy as lattice-oxygen-participated electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 920, 116574.	1.9	0
2128	Accelerating Fe sites saturation coverage through Bi-metal dynamic balances on double-layer hollow MOF nanocages for oxygen evolution. Materials Today Physics, 2022, 27, 100778.	2.9	6
2129	Robust NiFe foam-supported hureaulite sheet-like microstructures as highly-effective electrocatalyst for water oxidation with ultralong durability. Journal of Alloys and Compounds, 2022, 921, 166052.	2.8	1
2130	Oxygen vacancies and surface reconstruction on NiFe LDH@Ni(OH)2 heterojunction synergistically triggering oxygen evolution and urea oxidation reaction. Journal of Alloys and Compounds, 2022, 921, 166145.	2.8	27
2131	Electrochemical trapping of meta-stable NiO consolidated ZnO/PdO by biomimetic provenance for the employment of clean energy generation. Materials Science in Semiconductor Processing, 2022, 150, 106867.	1.9	10
2132	Soft Templateâ€Based Synthesis of Mesoporous Phosphorus―and Boronâ€Codoped NiFeâ€Based Alloys for Efficient Oxygen Evolution Reaction. Small, 2022, 18, .	5.2	43
2133	Electrochemically prepared Fe: NiO thin film catalysis for oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2022, 33, 18180-18186.	1.1	2
2134	The effect of anodizing temperature on the oxygen evolution reaction activity of anodized FeNiCo alloy in alkaline electrolyte. Electrochimica Acta, 2022, 427, 140875.	2.6	3
2135	Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Advanced Materials, 2022, 34, .	11.1	109
2136	Mechanistic study on electro-oxidation of 5-hydroxymethylfurfural and water molecules via operando surface-enhanced Raman spectroscopy coupled with an Fe3+ probe. Applied Catalysis B: Environmental, 2022, 317, 121776.	10.8	11
2137	Metallic inverse opal frameworks as catalyst supports for highâ€performance water electrooxidation. ChemSusChem, 0, , .	3.6	3

#	Article	IF	CITATIONS
2138	Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. Advanced Materials, 2023, 35, .	11.1	11
2139	Enhanced degradation of carbamazepine in water over SC-modified NiFe2S4 nanocomposites by peroxymonosulfate activation. Chemical Engineering Journal, 2022, 450, 138190.	6.6	14
2140	Topologic Transition-Induced Abundant Undercoordinated Fe Active Sites in Nifeooh for Superior Oxygen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
2141	γ-FeO(OH) with multiple surface terminations: Intrinsically active for the electrocatalytic oxygen evolution reaction. Dalton Transactions, 2022, 51, 15094-15110.	1.6	9
2142	Bimetallic Ni-Mo nitride@C3N4 for highly active and stable water catalysis. Frontiers of Materials Science, 2022, 16, .	1.1	4
2143	Boosting the Oxygen Evolution Reaction by Controllably Constructing FeNi3/C Nanorods. Nanomaterials, 2022, 12, 2525.	1.9	3
2144	Electrochemically Activated Ni-Fe Oxyhydroxide for Mimic Saline Water Oxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 11232-11241.	3.2	10
2145	Electrocatalyst with Dynamic Formation of the Dual-Active Site from the Dual Pathway Observed by <i>In Situ</i> Raman Spectroscopy. ACS Catalysis, 2022, 12, 10276-10284.	5.5	40
2146	Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis. Journal of Energy Chemistry, 2022, 75, 127-134.	7.1	31
2147	Cathodic Protection System against a Reverse-Current after Shut-Down in Zero-Gap Alkaline Water Electrolysis. Jacs Au, 2022, 2, 2491-2500.	3.6	14
2148	Excess Activity Tuned by Distorted Tetrahedron in <scp>CoMoO₄</scp> for Oxygen Evolution. Energy and Environmental Materials, 2024, 7, .	7.3	12
2149	Self-template synthesis of lychee like Mn-doped Co2P yolk-shell spheres for enhanced hydrogen evolution reaction activity. International Journal of Hydrogen Energy, 2022, , .	3.8	4
2150	Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17, 102-115.	2.3	6
2151	Plasmon-enhanced electrochemical oxidation of 4-(hydroxymethyl)benzoic acid. Journal of Chemical Physics, 2022, 157, 081101.	1.2	2
2152	Effects of Electrochemical Conditioning on Nickel-Based Oxygen Evolution Electrocatalysts. ACS Catalysis, 2022, 12, 10384-10399.	5.5	38
2153	Highly Conductive and Mechanically Robust NiFe Alloy Aerogels: An Exceptionally Active and Durable Water Oxidation Catalyst. Small, 2022, 18, .	5.2	9
2154	Function of Internal and External Fe in a Ni-Based Precatalyst System Toward Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61, 12772-12780.	1.9	6
2155	Multiple carbon interface engineering to boost oxygen evolution of NiFe nanocomposite electrocatalyst. Chinese Journal of Catalysis, 2022, 43, 2354-2362.	6.9	5

#	Article	IF	CITATIONS
2156	Electron spin polarization-mediated charge separation in Pd/CoP@CoNiP superstructures toward optimized photocatalytic performance. Nano Energy, 2022, 101, 107616.	8.2	46
2157	Heterostructure engineering of the Fe-doped Ni phosphides/Ni sulfide p-p junction for high-efficiency oxygen evolution. Journal of Alloys and Compounds, 2022, 924, 166613.	2.8	8
2158	Recent advancements in bismuth vanadate photoanodes for photoelectrochemical water splitting. Materials Today Chemistry, 2022, 26, 101060.	1.7	11
2159	Synthesis, crystal structures and electrocatalytic water oxidation by Mn(II), Co(II) and Ni(II) complexes of thiophene-2-carbohydrazide. Journal of Molecular Structure, 2022, 1270, 133886.	1.8	1
2160	Multimetallic electrocatalysts of FeCoNi nanoalloy embedded in multilayered carbon nanotubes for oxygen reduction reaction and flexible Zn-air battery. Applied Surface Science, 2022, 604, 154590.	3.1	10
2161	The critical role of A, B-site cations and oxygen vacancies on the OER electrocatalytic performances of Bi0.15Sr0.85Co1â^'Fe O3â~'δ (0.2Ââ‰ÂxÂâ‰Â1) perovskites in alkaline media. Chemical Engineering Journal, 451, 138646.	2023,	16
2162	Variable nanosheets for highly efficient oxygen evolution reaction. CheM, 2022, 8, 3241-3251.	5.8	21
2163	Insight toward the role of Fe in layered Ni(OH)2 for electrochemical oxidations of water and 5-hydroxymethylfurfural. Catalysis Communications, 2022, 170, 106501.	1.6	6
2164	Ni3+-enriched nickel-based electrocatalysts for superior electrocatalytic water oxidation. Applied Surface Science, 2022, 605, 154743.	3.1	15
2165	Precipitation/dissolution equilibrium to achieve trace iron doping on the surface of Î ² -Ni(OH)2 for electrocatalytic oxygen evolution. Fuel, 2023, 332, 125780.	3.4	9
2166	Metal–organic-framework embellished through ion etching method for highly enhanced electrochemical oxygen evolution reaction catalysis. Materials Chemistry Frontiers, 2022, 6, 2750-2759.	3.2	3
2167	Benchmarking in electrocatalysis. , 2023, , 492-550.		2
2168	Homoleptic Ni(<scp>ii</scp>) dithiocarbamate complexes as pre-catalysts for the electrocatalytic oxygen evolution reaction. Dalton Transactions, 2022, 51, 13003-13014.	1.6	10
2169	Electronic structure engineering for electrochemical water oxidation. Journal of Materials Chemistry A, 2022, 10, 20218-20241.	5.2	75
2170	The role of crystal facets and disorder on photo-electrosynthesis. Nanoscale, 2022, 14, 15596-15606.	2.8	4
2171	Amorphous FeNiCu-MOFs as highly efficient electrocatalysts for the oxygen evolution reaction in an alkaline medium. Dalton Transactions, 2022, 51, 14306-14316.	1.6	11
2172	Binary Layered Double Hydroxide Electrode Array Synthesized via Metal Alloy Corrosion for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 10883-10890.	2.5	3
2173	Tailoring 3D-Printed Electrodes for Enhanced Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 42153-42170.	4.0	22

#	Article	IF	CITATIONS
2174	Highly-stable, bifunctional, binder-free & stand-alone photoelectrode (FexNi1-xO@a-CC) for natural waters splitting into hydrogen. International Journal of Hydrogen Energy, 2022, 47, 36032-36045.	3.8	9
2175	Mixed-Metal Nickel–Iron Oxide Aerogels for Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 12162-12169.	5.5	16
2176	Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation. Energy Material Advances, 2022, 2022, .	4.7	16
2177	A hierarchical nickel-iron hydroxide nanosheetÂfrom the high voltage cathodic polarization for alkaline water splitting. International Journal of Hydrogen Energy, 2022, 47, 34421-34429.	3.8	10
2178	Vertically aligned Ni/NiO nanocomposites with abundant oxygen deficient hetero-interfaces for enhanced overall water splitting. Science China Chemistry, 2022, 65, 1885-1894.	4.2	6
2179	Anodization of a NiFe Foam: An Efficient and Stable Electrode for Oxygen-Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 11098-11112.	2.5	19
2180	Anion-Tuned Layered Double Hydroxide Anodes for Anion Exchange Membrane Water Electrolyzers: From Catalyst Screening to Single-Cell Performance. ACS Energy Letters, 2022, 7, 3415-3422.	8.8	19
2181	Linking Lattice Strain and Electron Transfer Kinetics in Crystalline Layered Double Hydroxides. ACS Catalysis, 2022, 12, 12419-12431.	5.5	1
2182	Kinetics of Active Oxide Species Derived from a Metallic Nickel Surface for Efficient Electrocatalytic Water Oxidation. ACS Energy Letters, 2022, 7, 3276-3285.	8.8	6
2183	Forming O–O bonds. Joule, 2022, , .	11.7	2
2183 2184	Forming O–O bonds. Joule, 2022, , . <i>In situ</i> generation of Ni/Fe hydroxide layers by anodic etching of a Ni/Fe film for efficient oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 20490-20496.	11.7	2
	<i>In situ</i> generation of Ni/Fe hydroxide layers by anodic etching of a Ni/Fe film for efficient		
2184	<i>In situ</i> generation of Ni/Fe hydroxide layers by anodic etching of a Ni/Fe film for efficient oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 20490-20496. A dual-strategy of interface and reconstruction engineering to boost efficient alkaline water and	1.4	0
2184 2185	 <i>In situ</i> generation of Ni/Fe hydroxide layers by anodic etching of a Ni/Fe film for efficient oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 20490-20496. A dual-strategy of interface and reconstruction engineering to boost efficient alkaline water and seawater oxidation. Sustainable Energy and Fuels, 2022, 6, 5521-5530. Ni–Fe nanoframes <i>via</i> a unique structural formation induced by sonochemical etching. 	1.4 2.5	0 2
2184 2185 2186	 <i>>In situ</i> generation of Ni/Fe hydroxide layers by anodic etching of a Ni/Fe film for efficient oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 20490-20496. A dual-strategy of interface and reconstruction engineering to boost efficient alkaline water and seawater oxidation. Sustainable Energy and Fuels, 2022, 6, 5521-5530. Ni–Fe nanoframes <i>via</i> a unique structural formation induced by sonochemical etching. Chemical Communications, 0, , . Ni–Fe synergic effect in Fe–NiOH_{<i>×</i>}boosting oxygen evolution under large current density enabled by the â€∞<i>in situ</i> self-corrosion―strategy. Journal of Materials Chemistry A, 2022, 	1.4 2.5 2.2	0 2 0
2184 2185 2186 2187	 <i>> In situ </i> generation of Ni/Fe hydroxide layers by anodic etching of a Ni/Fe film for efficient oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 20490-20496. A dual-strategy of interface and reconstruction engineering to boost efficient alkaline water and seawater oxidation. Sustainable Energy and Fuels, 2022, 6, 5521-5530. Ni〓Fe nanoframes <i>>via </i>> a unique structural formation induced by sonochemical etching. Chemical Communications, 0, , . Ni〓Fe synergic effect in Fe–NiOH_{<i>×</i>}boosting oxygen evolution under large current density enabled by the "<i>in situ</i>self-corrosionâ€-strategy. Journal of Materials Chemistry A, 2022, 10, 22437-22444. Simultaneously Improved Surface and Bulk Participation of Evolved Perovskite Oxide for Boosting 	1.4 2.5 2.2 5.2	0 2 0 8
2184 2185 2186 2187 2188	 <i><i>>In situ </i>> generation of Ni/Fe hydroxide layers by anodic etching of a Ni/Fe film for efficient oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 20490-20496.</i> A dual-strategy of interface and reconstruction engineering to boost efficient alkaline water and seawater oxidation. Sustainable Energy and Fuels, 2022, 6, 5521-5530. Niâ€"Fe nanoframes <i>>via</i> a unique structural formation induced by sonochemical etching. Chemical Communications, 0, , . Niâ€"Fe synergic effect in Feâ€"NiOH_{<i>>x</i>} sub>boosting oxygen evolution under large current density enabled by the "<i>> in situ</i> Simultaneously Improved Surface and Bulk Participation of Evolved Perovskite Oxide for Boosting Oxygen Evolution Reaction Activity Using a Dynamic Cation Exchange Strategy. Small, 2022, 18, . Studies on oxygen evolution reaction performance of porous Co3O4â€"NiOâ€"B2O3 composites. Chemical	1.4 2.5 2.2 5.2 5.2	0 2 0 8 9

#	Article	IF	CITATIONS
2192	Stepwise dispersion of nickel species for efficient coupling of electrocatalytic redox reactions. Chemical Engineering Journal, 2023, 454, 140062.	6.6	3
2193	Advances in nonprecious metal catalysts for efficient water oxidation in alkaline media. Ionics, 2023, 29, 9-32.	1.2	3
2194	Durable Nickelâ€ i ron (Oxy)hydroxideÂOxygen Evolution Electrocatalysts through Surface Functionalization with Tetraphenylporphyrin. Angewandte Chemie, 0, , .	1.6	0
2195	Ferrocene Formic Acid Surface Modified Ni(OH)2 for Highly Efficient Alkaline Oxygen Evolution. Crystals, 2022, 12, 1404.	1.0	1
2196	Porosification and Fe ³⁺ Intercalation of Spent LiCoO ₂ as an Efficient Oxygen Evolution Electrocatalyst. Industrial & Engineering Chemistry Research, 2022, 61, 16453-16460.	1.8	3
2197	Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nature Communications, 2022, 13, .	5.8	101
2198	Tailoring cation vacancies in Co, Ni phosphides for efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 39731-39742.	3.8	4
2199	A Universal Saline-Alkaline Etching Procedure to Enhance the Activity of Oxygen Evolution Catalysts. ACS Energy Letters, 2022, 7, 3910-3916.	8.8	6
2200	Active Motif Change of Niâ€Fe Spinel Oxide by Ir Doping for Highly Durable and Facile Oxygen Evolution Reaction. Advanced Functional Materials, 2023, 33, .	7.8	17
2201	High-Performing Anion Exchange Membrane Water Electrolysis Using Self-Supported Metal Phosphide Anode Catalysts and an Ether-Free Aromatic Polyelectrolyte. ACS Sustainable Chemistry and Engineering, 2023, 11, 854-865.	3.2	12
2202	Water electrolysis. Nature Reviews Methods Primers, 2022, 2, .	11.8	70
2203	Rational Design and Engineering of Metal–Organic Framework-Derived Trimetallic NiCoFe-Layered Double Hydroxides as Efficient Electrocatalysts for Water Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 14693-14704.	3.2	6
2204	Durable Nickelâ€Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts through Surface Functionalization with Tetraphenylporphyrin. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
2205	Automated high-throughput activity and stability screening of electrocatalysts. Chem Catalysis, 2022, 2, 2778-2794.	2.9	11
2206	Enhancing OER Activity of Ni/Co Oxides via Fe/Mn Substitution within Tailored Mesoporous Frameworks. ACS Applied Energy Materials, 2022, 5, 13385-13397.	2.5	13
2207	Iron phthalocyanine as electron pool for boosted electrocatalytic activity of nickel oxide nanoclusters. Materials Today Sustainability, 2022, 20, 100249.	1.9	2
2208	An overview of solid-state electron paramagnetic resonance spectroscopy for artificial fuel reactions. IScience, 2022, 25, 105360.	1.9	1
2209	Dual-purpose nickel-iron layered double hydroxides by controlled lanthanide and phosphide incorporation for promoting overall water splitting efficiency. Journal of Alloys and Compounds, 2023, 933, 167743.	2.8	7

#	Article	IF	CITATIONS
2210	A dealloyed bulk FeNi pattern with exposed highly active facets for cost-effective oxygen evolution. Applied Catalysis B: Environmental, 2023, 323, 122171.	10.8	15
2211	Steam-driven crystalline-amorphous coupling design of homogenous metal hydroxides for oxygen evolution reaction. Applied Catalysis B: Environmental, 2023, 323, 122165.	10.8	4
2212	Quantum Dots, Passivation Layer and Cocatalysts for Enhanced Photoelectrochemical Hydrogen Production. ChemSusChem, 2023, 16, .	3.6	6
2213	Tuning the d-Band States of Ni-Based Serpentine Materials via Fe ³⁺ Doping for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2022, 14, 52857-52867.	4.0	11
2214	Temperature Dependence of Oxygen Evolution Reaction Activity in Alkaline Solution at Ni–Co Oxide Catalysts with Amorphous/Crystalline Surfaces. ACS Catalysis, 2022, 12, 14209-14219.	5.5	20
2215	High Current Density Oxygen Evolution in Carbonate Buffered Solution Achieved by Active Site Densification and Electrolyte Engineering. ChemSusChem, 2023, 16, .	3.6	6
2216	Effective regulation mechanisms of Fe-Ni(oxy)hydroxide: Ni-rich heteroatomic bonding (Ni-O-Fe-O-Ni) is essential. Nano Research, 2023, 16, 12026-12034.	5.8	6
2217	Tailoring electronic structure of Ni-Fe oxide by V incorporation for effective electrocatalytic water oxidation. Applied Surface Science, 2023, 611, 155732.	3.1	6
2218	Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. Chemistry - A European Journal, 2023, 29, .	1.7	4
2219	Modulation to favorable surface adsorption energy for oxygen evolution reaction intermediates over carbon-tunable alloys towards sustainable hydrogen production. Materials for Renewable and Sustainable Energy, 2022, 11, 169-213.	1.5	3
2220	Active straining engineering on self-assembled stacked Ni-based hybrid electrode for ultra-low overpotential. Journal of Energy Chemistry, 2023, 77, 217-226.	7.1	3
2221	In Situ Quantification of the Active Sites, Turnover Frequency, and Stability of Ni–Fe (Oxy)hydroxides for the Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 14280-14289.	5.5	16
2222	Nanoscale Measurements of Charge Transfer at Cocatalyst/Semiconductor Interfaces in BiVO ₄ Particle Photocatalysts. Nano Letters, 2022, 22, 9493-9499.	4.5	6
2223	Feâ€Incorporated Ni/MoO ₂ Hollow Heterostructure Nanorod Arrays for Highâ€Efficiency Overall Water Splitting in Alkaline and Seawater Media. Small, 2022, 18, .	5.2	38
2224	Highly Durable Bifunctional Gas Diffusion Electrodes Fabricated with Melilite-Type Fe/Co/Ni-Mixed Oxide Electrocatalysts. ACS Applied Energy Materials, 2022, 5, 15502-15509.	2.5	1
2225	High-performing catalysts for energy-efficient commercial alkaline water electrolysis. Sustainable Energy and Fuels, 2022, 7, 31-60.	2.5	18
2226	Tuning electrocatalytic water oxidation by MnO _{<i>x</i>} through the incorporation of abundant metal cations. Sustainable Energy and Fuels, 2022, 7, 92-105.	2.5	3
2227	Low temperature <i>in situ</i> immobilization of nanoscale fcc and hcp polymorphic nickel particles in polymer-derived Si–C–O–N(H) to promote electrocatalytic water oxidation in alkaline media. Nanoscale Advances, 2023, 5, 701-710.	2.2	4

#	Article	IF	CITATIONS
2228	Activation of stainless steel 316L anode for anion exchange membrane water electrolysis. Electrochemistry Communications, 2023, 146, 107418.	2.3	6
2229	Correlation between oxygen evolution reaction activity and surface compositional evolution in epitaxial La _{0.5} Sr _{0.5} Ni _{1â[°]<i>x</i>} Fe _{<i>x</i>} O _{3â[°]<i>î´</i>films, Nanoscale, 2023, 15, 1119-1127.}	>thin	6
2230	Topologic transition-induced abundant undercoordinated Fe active sites in NiFeOOH for superior oxygen evolution. Nano Energy, 2023, 106, 108044.	8.2	10
2231	The influence of MOF modification on oxygen evolution and reduction reaction of Fe-doped GdBaCo2O5+Î′ perovskite. Catalysis Communications, 2023, 174, 106584.	1.6	1
2232	Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes. Chinese Journal of Catalysis, 2023, 44, 127-138.	6.9	14
2233	La–Sr–Co oxide catalysts for oxygen evolution reaction in anion exchange membrane water electrolyzer: The role of electrode fabrication on performance and durability. Journal of Power Sources, 2023, 556, 232484.	4.0	9
2234	Insights into enhanced activity and durability of hierarchical Fe-doped Ni(OH)2/Ni catalysts for alkaline oxygen evolution reaction: In situ XANES studies. Applied Catalysis B: Environmental, 2023, 324, 122269.	10.8	12
2235	Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics. Applied Catalysis B: Environmental, 2023, 324, 122249.	10.8	10
2236	NiFe-mixed metal porphyrin aerogels as oxygen evolution reaction catalysts in alkaline electrolysers. Nanoscale, 2022, 14, 18033-18040.	2.8	0
2237	Improving the Oxygen Evolution Activity of Layered Doubleâ€Hydroxide via Erbiumâ€Induced Electronic Engineering. Small, 2023, 19, .	5.2	53
2238	Account of Ni/NiO Nanoparticle-Supported N-Doped Graphitic Carbon Derived from Sugarcane Waste as a Sustainable Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 14945-14956.	2.5	4
2239	Cobalt-Doped Iron Phosphate Crystal on Stainless Steel Mesh for Corrosion-Resistant Oxygen Evolution Catalyst. Catalysts, 2022, 12, 1521.	1.6	1
2240	Fundamentals and future applications of electrochemical energy conversion in space. Npj Microgravity, 2022, 8, .	1.9	4
2241	Catalyst Stability in Aqueous Electrochemistry. Chemistry of Materials, 2022, 34, 10223-10236.	3.2	8
2242	Minireview: Ni–Fe and Ni–Co Metal–Organic Frameworks for Electrocatalytic Waterâ€ S plitting Reactions. Small Structures, 2023, 4, .	6.9	17
2243	Enabling Lattice Oxygen Participation in a Triple Perovskite Oxide Electrocatalyst for the Oxygen Evolution Reaction. ACS Energy Letters, 2023, 8, 565-573.	8.8	23
2244	Nonâ€Kinetic Effects Convolute Activity and Tafel Analysis for the Alkaline Oxygen Evolution Reaction on NiFeOOH Electrocatalysts. Angewandte Chemie, 2023, 135, .	1.6	11
2245	Nonâ€Kinetic Effects Convolute Activity and Tafel Analysis for the Alkaline Oxygen Evolution Reaction on NiFeOOH Electrocatalysts. Angewandte Chemie - International Edition, 2023, 62, .	7.2	27

#	Article	IF	CITATIONS
2246	High-Performance Oxygen Evolution Reaction Electrocatalysts Discovered via High-Throughput Aerogel Synthesis. ACS Catalysis, 2023, 13, 601-611.	5.5	5
2247	Electrodeposition of nickel–iron on stainless steel as an efficient electrocatalyst coating for the oxygen evolution reaction in alkaline conditions. Journal of Applied Electrochemistry, 0, , .	1.5	2
2248	Operando identification of a side-on nickel superoxide intermediate and the mechanism of oxygen evolution on nickel oxyhydroxide. Chem Catalysis, 2023, 3, 100475.	2.9	13
2249	A Novel Electrode for Valueâ€Generating Anode Reactions in Water Electrolyzers at Industrial Current Densities. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
2250	NiFeOx and NiFeCoOx Catalysts for Anion Exchange Membrane Water Electrolysis. Electrochem, 2022, 3, 843-861.	1.7	6
2251	Defectâ€Induced Atomic Arrangement in CoFe Bimetallic Heterostructures with Boosted Oxygen Evolution Activity. Small, 2023, 19, .	5.2	11
2252	Selective Hydroxylation of Carbon Fiber Paper for Long‣asting Hydrophilicity by a Green Chemistry Process. Advanced Materials Interfaces, 2023, 10, .	1.9	3
2253	Advances in Selective Electrochemical Oxidation of 5â€Hydroxymethylfurfural to Produce Highâ€Value Chemicals. Advanced Science, 2023, 10, .	5.6	26
2254	Nanopore-rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction. Nano Research, 2023, 16, 2286-2293.	5.8	13
2255	Partially crystallized Ni–Fe oxyhydroxides promotes oxygen evolution. International Journal of Hydrogen Energy, 2023, 48, 5774-5782.	3.8	5
2256	Scalable Alkaline Zincâ€ŀron/Nickel Hybrid Flow Battery with Energy Density up to 200ÂWhÂL ^{â^'1} . Advanced Materials, 2023, 35, .	11.1	6
2257	Recent progress in noble-metal-free electrocatalysts for alkaline oxygen evolution reaction. Frontiers in Chemistry, 0, 10, .	1.8	7
2258	A Novel Electrode for Valueâ€Generating Anode Reactions in Water Electrolyzers at Industrial Current Densities. Angewandte Chemie, 2023, 135, .	1.6	4
2259	Anodization of NiFe Foam for Water-Oxidation Reaction under Neutral Conditions. ACS Applied Energy Materials, 2023, 6, 233-244.	2.5	9
2260	Electronic structure regulation of nickel-iron layered double hydroxides by tuning ternary component for overall water splitting. Materials Today Sustainability, 2023, 21, 100295.	1.9	4
2261	Engineering Active Iron Sites on Nanoporous Bimetal Phosphide/Nitride Heterostructure Array Enabling Robust Overall Water Splitting. Advanced Functional Materials, 2023, 33, .	7.8	38
2262	Immobilizing Lowâ€Cost Metal Nitrides in Electrochemically Reconstructed Platinum Group Metal (PGM)â€Free Oxyâ€(Hydroxides) Surface for Exceptional OER Kinetics in Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 2023, 13, .	10.2	15
2263	Feâ€Alloyed MoNi Nanohybrids as Oxygen Evolution Reaction/Oxygen Reduction Reaction Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. Physica Status Solidi (A) Applications and Materials Science, 0, , 2200581.	0.8	0

#	Article	IF	CITATIONS
2264	Active Surface Area and Intrinsic Catalytic Oxygen Evolution Reactivity of NiFe LDH at Reactive Electrode Potentials Using Capacitances. ACS Catalysis, 2023, 13, 1186-1196.	5.5	36
2265	Structure and Magnetism of Iron-Substituted Nickel Hydroxide Nanosheets. Magnetochemistry, 2023, 9, 25.	1.0	0
2266	Constructing LaNiO3/NiO heterostructure via selective dissolution of A-site cations from La1â^'xSrxNiO3 for promoting oxygen evolution reaction. Journal of Alloys and Compounds, 2023, 941, 168908.	2.8	6
2267	Reversible and Irreversible Cation Intercalation in NiFeO _{<i>x</i>} Oxygen Evolution Catalysts in Alkaline Media. Journal of Physical Chemistry Letters, 2023, 14, 545-551.	2.1	8
2268	Introducing Highâ€Valence Iridium Single Atoms into Bimetal Phosphides toward Highâ€Efficiency Oxygen Evolution and Overall Water Splitting. Small, 2023, 19, .	5.2	10
2269	Latticeâ€Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. Advanced Materials, 2023, 35, .	11.1	34
2270	Slow O–H Dissociation in the First-Order Oxygen Evolution Reaction Kinetics on Polycrystalline γ-FeO(OH). Journal of Physical Chemistry C, 2023, 127, 154-168.	1.5	11
2271	Role of Ir Decoration in Activating a Multiscale Fractal Surface in Porous Ni for the Oxygen Evolution Reaction. ACS Catalysis, 2023, 13, 1726-1739.	5.5	2
2272	The adjacent Fe oxidation greatly enhancing OER activity on the Ni active site: S plays the role in optimizing local coordination and electronic structure. Materials Today Chemistry, 2023, 27, 101330.	1.7	2
2273	Synthesis of hierarchical metal nanostructures with high electrocatalytic surface areas. Science Advances, 2023, 9, .	4.7	7
2274	Controllable synthetic strategy of the coordinatively unsaturated metal sites on Ni-BTC for highly efficient oxygen evolution. Catalysis Today, 2023, 423, 114000.	2.2	1
2275	Template-assisted synthesis of ultrathin graphene aerogels as bifunctional oxygen electrocatalysts for water splitting and alkaline/neutral zinc-air batteries. Chemical Engineering Journal, 2023, 458, 141492.	6.6	9
2276	Evolution of Carbonateâ€Intercalated γâ€NiOOH from a Molecularly Derived Nickel Sulfide (Pre)Catalyst for Efficient Water and Selective Organic Oxidation. Small, 2023, 19, .	5.2	13
2277	Demonstrating the source of inherent instability in NiFe LDH-based OER electrocatalysts. Journal of Materials Chemistry A, 2023, 11, 4067-4077.	5.2	34
2278	Facial synthesis of p-p heterojunction composites: Evaluation of their electrochemical properties with photovoltaics-electrolyzer water splitting using two-electrode system. International Journal of Hydrogen Energy, 2023, 48, 13814-13826.	3.8	10
2279	Engineering Multilevel Collaborative Catalytic Interfaces with Multifunctional Iron Sites Enabling High-Performance Real Seawater Splitting. ACS Nano, 2023, 17, 1681-1692.	7.3	62
2280	In Situ Surface Reconstruction of Catalysts for Enhanced Hydrogen Evolution. Catalysts, 2023, 13, 120.	1.6	3
2281	Tuning OER Electrocatalysts toward LOM Pathway through the Lens of Multi-Descriptor Feature Selection by Artificial Intelligence-Based Approach. , 2023, 5, 299-320.		10

	CITATION RE	PORT	
#	Article	IF	CITATIONS
2282	A quinary high entropy metal oxide exhibiting robust and efficient bidirectional O2 reduction and water oxidation. International Journal of Hydrogen Energy, 2023, 48, 10521-10531.	3.8	3
2283	Effects of phosphate precursors on morphology and oxygen evolution reaction activity of NiFe (oxy)hydroxide on nickel foams. Transactions of Nonferrous Metals Society of China, 2022, 32, 4050-4061.	1.7	1
2284	A self-supported bifunctional MoNi ₄ framework with iron doping for ultra-efficient water splitting. Journal of Materials Chemistry A, 2023, 11, 3408-3417.	5.2	6
2285	Controllable synthesis of MOFs-derived porous and tubular bimetallic Fe–Ni phosphides for efficient electrocatalytic water splitting. Catalysis Science and Technology, 2023, 13, 1512-1517.	2.1	8
2286	Synthesis of amorphous trimetallic PdCuNiP nanoparticles for enhanced OER. Frontiers in Chemistry, 0, 11, .	1.8	2
2287	Dumbbell Defect Containing Chromium-Rich Lithium-Vacant Layered Li _{<i>y</i>} Cr _{1–<i>x</i>} Fe _{<i>x</i>} O ₂ (<i>y</i> ≤, 0) Tj E Reaction, ACS Applied Energy Materials, 2023, 6, 1308-1320.	TQq1 2.3	1 0.7 <u>8</u> 4314 rg
2288	Amorphous NiOn coupled with trace PtOx toward superior electrocatalytic overall water splitting in alkaline seawater media. Nano Research, 2023, 16, 6517-6530.	5.8	11
2289	Heteroatom-doped transition metal hydroxides in energy storage and conversion: a review. Materials Advances, 2023, 4, 1226-1248.	2.6	7
2290	Structure, materials, and preparation of photoelectrodes. , 2023, , 83-174.		1
2291	Deep Reconstruction of Fe-NiMoO ₄ · <i>n</i> H ₂ O@NiOOH as Efficient Oxygen Evolution Electrocatalysts. Energy & Fuels, 2023, 37, 3023-3030.	2.5	7
2292	Three-Dimensional Strawlike MoSe ₂ -Ni(Fe)Se Electrocatalysts for Overall Water Splitting. Inorganic Chemistry, 2023, 62, 2894-2904.	1.9	5
2293	Growth of carbon nanotubes over carbon nanofibers catalyzed by bimetallic alloy nanoparticles as a bifunctional electrode for Zn–air batteries. RSC Advances, 2023, 13, 11591-11599.	1.7	1
2294	Dynamically activating Ni-based catalysts with self-anchored mononuclear Fe for efficient water oxidation. Journal of Materials Chemistry A, 2023, 11, 10228-10238.	5.2	5
2295	Effect of Fe on Calcined Ni(OH)2 Anode in Alkaline Water Electrolysis. Catalysts, 2023, 13, 496.	1.6	3
2296	Monolayer Iron and Iron-Rich Hydroxide Nanosheets Exfoliated from High-Quality Green Rust for Enhanced Electrocatalytic Oxygen Evolution Reaction. Chemistry of Materials, 2023, 35, 1769-1779.	3.2	1
2297	Unusual double ligand holes as catalytic active sites in LiNiO2. Nature Communications, 2023, 14, .	5.8	16
2298	Synergistic effect of trimetallic doping and π-π conjugation in NiZnCo-ZIF@HHTP for efficient oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2023, 937, 117410.	1.9	1
2299	Facile synthesis of a NiMnFeCrCu high entropy alloy for electrocatalytic oxygen evolution reactions. Materials Today Sustainability, 2023, 22, 100360.	1.9	2

#	Article	IF	CITATIONS
2300	Unraveling the π-interaction of NiFe-based metal–organic frameworks with enhanced oxygen evolution: Optimizing electronic structure and facilitating electron transfer modulation. Journal of Colloid and Interface Science, 2023, 640, 1-14.	5.0	6
2301	Critical aspects in the reliable assessment of the activity data for electrocatalytic materials. Current Opinion in Electrochemistry, 2023, 39, 101266.	2.5	3
2302	Nanostructured NiFe (oxy)hydroxide fabricated on nickel foams by laser-induced water plasma for enhanced alkaline oxygen evolution reaction. Applied Surface Science, 2023, 622, 156934.	3.1	4
2303	Stainless steel supported NiCo2O4 active layer for oxygen evolution reaction. Electrochimica Acta, 2023, 453, 142295.	2.6	3
2304	Interplay of surface and subsurface contributions in electrocatalysis. Current Opinion in Electrochemistry, 2023, 39, 101252.	2.5	2
2305	Synergetic regulation of CeO2 modification and (W2O7)2- intercalation on NiFe-LDH for high-performance large-current seawater electrooxidation. Applied Catalysis B: Environmental, 2023, 330, 122612.	10.8	18
2306	Trojan strategy assisted phase-pure Fe-NiCo2S4 for industrial anion-exchange membrane water electrolyzer. Applied Catalysis B: Environmental, 2023, 331, 122660.	10.8	9
2307	Unveiling the in-situ hydrogen intercalation in Mo2COx for promoting the alkaline hydrogen evolution reaction. Applied Catalysis B: Environmental, 2023, 332, 122739.	10.8	9
2308	One-step growth of Ni3Fe-Fe3C heterostructures well encapsulated in NCNTs as superior self-supported bifunctional electrocatalysts for overall water splitting. Journal of Alloys and Compounds, 2023, 949, 169825.	2.8	2
2309	Unveiling anion induced surface reconstruction of perovskite oxide for efficient water oxidation. Applied Catalysis B: Environmental, 2023, 330, 122661.	10.8	10
2310	Origin of Surface Reconstruction in Lattice Oxygen Oxidation Mechanism Basedâ€Transition Metal Oxides: A Spontaneous Chemical Process. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
2311	Critical parameters and essential strategies in designing photoanodes to overcome the sluggish water oxidation reaction. Journal of Environmental Chemical Engineering, 2023, 11, 109356.	3.3	5
2312	Impact of power supply fluctuation and part load operation on the efficiency of alkaline water electrolysis. Journal of Power Sources, 2023, 560, 232629.	4.0	8
2313	Getting the Basics Right: Preparing Alkaline Electrolytes for Electrochemical Applications. ACS Energy Letters, 2023, 8, 1141-1146.	8.8	21
2314	NiFe-based tungstate@layered double hydroxide heterostructure supported on graphene as efficient oxygen evolution reaction catalyst. Materials Today Chemistry, 2023, 28, 101369.	1.7	2
2315	Synergistically boosting the oxygen evolution reaction activity of NiOOH nanosheets by Fe doping. Results in Chemistry, 2023, 5, 100808.	0.9	1
2316	Energy-efficient ultrafast microwave crystalline phase evolution for designing highly efficient oxygen evolution catalysts. Applied Surface Science, 2023, 617, 156622.	3.1	3
2317	Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co ₃ O ₄ Catalyst for Water Oxidation. Journal of the American Chemical Society, 2023, 145, 3470-3477.	6.6	38

#	Article	IF	CITATIONS
2318	In Situ Detection of Iron in Oxidation States ≥ IV in Cobaltâ€Iron Oxyhydroxide Reconstructed during Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	16
2319	Activated FeS ₂ @NiS ₂ Core–Shell Structure Boosting Cascade Reaction for Superior Electrocatalytic Oxygen Evolution. Small, 2023, 19, .	5.2	11
2320	Reversible and irreversible transformations of Ni-based electrocatalysts during the oxygen evolution reaction. Current Opinion in Electrochemistry, 2023, 38, 101231.	2.5	5
2321	Simultaneous Improvement in Hole Storage and Interfacial Catalysis over Ni–Fe Oxyhydroxide-Modified Tantalum Nitride Photoanodes. ACS Catalysis, 2023, 13, 2647-2656.	5.5	5
2322	Handily etching nickel foams into catalyst–substrate fusion selfâ€stabilized electrodes toward industrialâ€level water electrolysis. , 2023, 5, .		9
2323	Roll-to-Roll Production of Electrocatalysts Achieving High-Current Alkaline Water Splitting. ACS Applied Materials & Interfaces, 0, , .	4.0	0
2324	Iron obalt erium Multimetallic Oxides Derived from Prussian Blue Precursors: Enhanced Oxygen Evolution Electrocatalysis. ChemPlusChem, 2023, 88, .	1.3	2
2325	Construction of 2D C,N-co-doped ZnO/Co ₃ O ₄ over Ni(OH) ₂ mesoporous ultrathin nanosheets on Ni foam as high-performance electrocatalysts for benzyl-alcohol oxidation and accelerating hydrogen evolution. New Journal of Chemistry, 2023, 47, 5970-5976.	1.4	0
2326	Composition-controlled chemical bath deposition of Fe-doped NiO microflowers for boosting oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 18291-18300.	3.8	7
2327	Surface synergistic effect of sub-2Ânm NiFeCr hydroxide nanodots yielding high oxygen evolution mass activities. Chemical Engineering Journal, 2023, 461, 141917.	6.6	3
2328	Assessing recent progress in MXene-based nanomaterials for oxygen evolution reactions. International Journal of Hydrogen Energy, 2024, 52, 293-301.	3.8	3
2329	Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide. Dalton Transactions, 2023, 52, 3877-3883.	1.6	3
2330	Evaluating Fe-Site and Vacancy Dependent Intrinsic Activity of NiFe Layered Double Hydroxides through Cavity Microelectrodes. Journal of Physical Chemistry Letters, 2023, 14, 2148-2154.	2.1	3
2331	Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy and Environmental Science, 2023, 16, 1384-1430.	15.6	49
2332	In Situ Fabrication of Mn-Doped NiMoO4 Rod-like Arrays as High Performance OER Electrocatalyst. Nanomaterials, 2023, 13, 827.	1.9	1
2333	Electrochemical Conditioning of Metallurgically Prepared NiFe ₃ Binary Alloy for Facile Oxygen Evolution Reaction. ChemCatChem, 2023, 15, .	1.8	2
2334	F and rare V ⁴⁺ doped cobalt hydroxide hybrid nanostructures: excellent OER activity with ultralow overpotential. Dalton Transactions, 2023, 52, 4606-4615.	1.6	3
2335	Affordable Green Hydrogen from Alkaline Water Electrolysis: Key Research Needs from an Industrial Perspective. ACS Energy Letters, 2023, 8, 1502-1509.	8.8	40

#	Article	IF	Citations
2336	Mo ₂ CT _x MXene supported nickel-iron alloy: an efficient and stable	2.0	2
2000	heterostructure to boost oxygen evolution reaction. 2D Materials, 2023, 10, 024005.		-
2337	Conducting Polymers for Water Splitting Applications. , 2022, , 1-30.		0
2338	Heterobimetallic NiFe Cooperative Molecular Water Oxidation Catalyst. Angewandte Chemie - International Edition, 2023, 62, .	7.2	20
2339	Heterobimetallic NiFe Cooperative Molecular Water Oxidation Catalyst. Angewandte Chemie, 2023, 135,	1.6	3
2340	Recent advances and future prospects on Ni3S2-Based electrocatalysts for efficient alkaline water electrolysis. Green Energy and Environment, 2024, 9, 659-683.	4.7	1
2341	Oxyanion Engineering Suppressed Iron Segregation in Nickel–Iron Catalysts Toward Stable Water Oxidation. Advanced Materials, 2023, 35, .	11.1	28
2342	Insights into the electronic structure of Fe–Ni thin-film catalysts during the oxygen evolution reaction using <i>operando</i> resonant photoelectron spectroscopy. Journal of Materials Chemistry A, 2023, 11, 8066-8080.	5.2	2
2343	Copper doping-induced high-valence nickel-iron-based electrocatalyst toward enhanced and durable oxygen evolution reaction. Chem Catalysis, 2023, 3, 100552.	2.9	4
2344	Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation. Advanced Materials, 2023, 35, .	11.1	27
2346	Impact of impurities on water electrolysis: a review. Sustainable Energy and Fuels, 2023, 7, 1565-1603.	2.5	21
2347	Insights into Active Sites and Mechanisms of Benzyl Alcohol Oxidation on Nickel–Iron Oxyhydroxide Electrodes. ACS Catalysis, 2023, 13, 4272-4282.	5.5	4
2348	Band Gap Narrowing in a High-Entropy Spinel Oxide Semiconductor for Enhanced Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2023, 145, 6753-6761.	6.6	28
2349	Origin of Surface Reconstruction in Lattice Oxygen Oxidation Mechanism Basedâ€Transition Metal Oxides: A Spontaneous Chemical Process. Angewandte Chemie, 2023, 135, .	1.6	0
2350	Hydrogenâ€Rich Pyrolysis from Niâ€Fe Heterometallic Schiff Base Centrosymmetric Cluster Facilitates NiFe Alloy for Efficient OER Electrocatalysts. Small, 2023, 19, .	5.2	9
2351	Impact of Highly Concentrated Alkaline Treatment on Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction. Advanced Sustainable Systems, 2023, 7, .	2.7	3
2352	Understanding the Role of (W, Mo, Sb) Dopants in the Catalyst Evolution and Activity Enhancement of Co ₃ O ₄ during Water Electrolysis via In Situ Spectroelectrochemical Techniques. Small, 2023, 19, .	5.2	7
2353	Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.	23.0	81
2354	Nanostructured Ternary Nickelâ€Based Mixed Anionic (Telluro)â€Selenide as a Superior Catalyst for Oxygen Evolution Reaction. Energy Technology, 2023, 11, .	1.8	0

#	Article	IF	CITATIONS
2355	One-step gas phase sulfided NiFe coating as self-supporting electrode for high efficiency oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, , .	3.8	0
2356	Ni–Fe Oxides/TiO ₂ Heterojunction Anodes for Reactive Chlorine Generation and Mediated Water Treatment. ACS Applied Materials & Interfaces, 2023, 15, 17867-17878.	4.0	1
2357	EPDM rubber-based membranes for electrochemical water splitting and carbon dioxide reduction reactions. Journal of Solid State Electrochemistry, 0, , .	1.2	0
2358	Electronic structure tuning for enhanced oxygen evolution performance of a NiMnFeCr medium entropy alloy. International Journal of Hydrogen Energy, 2023, 48, 25755-25769.	3.8	0
2359	Iron‣ocked Hydr(oxy)oxide Catalysts via Ionâ€Compensatory Reconstruction Boost Largeâ€Currentâ€Density Water Oxidation. Advanced Science, 2023, 10, .	5.6	8
2360	Nanorod Array-Based Hierarchical NiO Microspheres as a Bifunctional Electrocatalyst for a Selective and Corrosion-Resistance Seawater Photo/Electrolysis System. ACS Catalysis, 2023, 13, 5516-5528.	5.5	18
2361	Water splitting over an ultrasonically synthesized NiFe/MoO3@CFP electrocatalyst. International Journal of Hydrogen Energy, 2023, 48, 26032-26045.	3.8	5
2362	In Situ Transition of a Nickel Metal–Organic Framework on TiO2 Photoanode towards Urea Photoelectrolysis. Catalysts, 2023, 13, 727.	1.6	0
2363	Oxygen Vacancies Unfold the Catalytic Potential of NiFe-Layered Double Hydroxides by Promoting Their Electronic Transport for Oxygen Evolution Reaction. ACS Catalysis, 2023, 13, 6000-6012.	5.5	26
2364	Dual enzyme-like Co–FeSe ₂ nanoflowers with GSH degradation capability for NIR II-enhanced catalytic tumor therapy. Journal of Materials Chemistry B, 2023, 11, 4274-4286.	2.9	6
2365	Assembling Amorphous Metal–Organic Frameworks onto Heteroatomâ€Doped Carbon Spheres for Remarkable Bifunctional Oxygen Electrocatalysis. Advanced Functional Materials, 2023, 33, .	7.8	12
2366	The Readiness of Water Molecules to Split into Hydrogen + Oxygen: A Proposed New Aspect of Water Splitting. Advanced Materials, 2023, 35, .	11.1	1
2367	A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassiumâ€Intercalated γâ€NiOOH _{<i>x</i>} Enabling Highâ€Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5â€Hydroxymethylfurfural. Small, 2023, 19, .	5.2	7
2387	Recent progress in the synthesis of transition metal nitride catalysts and their applications in electrocatalysis. Nanoscale, 2023, 15, 11777-11800.	2.8	21
2390	Nickel Based Metal Oxide Electrocatalysts: From Model to Operando Conditions Studied by XPS and Vibrational Spectroscopy. , 2023, , .		0
2419	The materials experiment knowledge graph. , 2023, 2, 909-914.		3
2426	Urea electrooxidation: Research progress and application of supported nickel-based catalysts. Ionics, 2023, 29, 2969-2987.	1.2	0
2455	Precise Control of Catalyst Interface at Atomic-level. Materials Chemistry Frontiers, 0, , .	3.2	Ο

#	Article		IF	CITATIONS
2467	Recent advances in the rational design of alkaline OER catalysts: from electronic structures to industrial applications. Materials Chemistry Frontiers, 2023, 7, 5187-5214.)	3.2	4
2472	Unveiling the anode reaction environment in a CO ₂ electrolyzer to provide a gu for anode development. Journal of Materials Chemistry A, 2023, 11, 19312-19320.	deline	5.2	0
2474	Critical challenges and opportunities for the commercialization of alkaline electrolysis: high current density, stability, and safety. Materials Chemistry Frontiers, 0, , .		3.2	0
2478	Designing active oxides for a durable oxygen evolution reaction. , 2023, 2, 817-827.			6
2510	Photoelectrocatalysis., 2023,,.			0
2535	Recent progress in understanding the catalyst layer in anion exchange membrane electrolyze durability, utilization, and integration. , 0, , .	rs –		1
2642	Best Practices for Accurately Reporting Electrocatalytic Performance of Nanomaterials. Mater Horizons, 2024, , 95-117.	ials	0.3	0