Exome sequencing identifies somatic gain-of-function I gliomas

Nature Genetics 46, 726-730 DOI: 10.1038/ng.2995

Citation Report

#	Article	IF	CITATIONS
1	Management of diffuse intrinsic pontine glioma in children: current and future strategies for improving prognosis. CNS Oncology, 2014, 3, 421-431.	3.0	21
2	Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma. Acta Neuropathologica Communications, 2014, 2, 134.	5.2	27
3	Smaller protein, larger therapeutic potential: PPM1D as a new therapeutic target in brainstem glioma. Pharmacogenomics, 2014, 15, 1639-1641.	1.3	4
4	Inhibition of C-terminal truncated PPM1D enhances the effect of doxorubicin on cell viability in human colorectal carcinoma cell line. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5593-5596.	2.2	10
5	Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. New England Journal of Medicine, 2014, 371, 2477-2487.	27.0	2,669
6	A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathologica, 2014, 128, 743-753.	7.7	114
7	Our panel of experts highlight the most important research articles across the spectrum of topics relevant to the field of CNS oncology. CNS Oncology, 2014, 3, 317-319.	3.0	0
8	PM-12 * Pax3 EXPRESSION ENHANCES PDGF-B-INDUCED BRAINSTEM GLIOMAGENESIS AND CHARACTERIZES A SUBSET OF BRAINSTEM GLIOMA. Neuro-Oncology, 2014, 16, v171-v171.	1.2	0
9	The catalytic role of the M2 metal ion in PP2Cα. Scientific Reports, 2015, 5, 8560.	3.3	17
10	Comparative transcriptomics reveals similarities and differences between astrocytoma grades. BMC Cancer, 2015, 15, 952.	2.6	38
11	Identification of <i>para</i> â€ S ubstituted Benzoic Acid Derivatives as Potent Inhibitors of the Protein Phosphatase Slingshot. ChemMedChem, 2015, 10, 1980-1987.	3.2	9
12	Oncogenes and tumor suppressor genes: comparative genomics and network perspectives. BMC Genomics, 2015, 16, S8.	2.8	41
13	The historical change of brainstem glioma diagnosis and treatment: from imaging to molecular pathology and then molecular imaging. Chinese Neurosurgical Journal, 2015, 1, .	0.9	4
14	Pathology, Molecular Genetics, and Epigenetics of Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2015, 5, 147.	2.8	91
15	WIP1 Phosphatase as a Potential Therapeutic Target in Neuroblastoma. PLoS ONE, 2015, 10, e0115635.	2.5	57
16	Next-Generation Sequencing-Based Panel Testing for Myeloid Neoplasms. Current Hematologic Malignancy Reports, 2015, 10, 104-111.	2.3	35
17	Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncology, The, 2015, 16, e293-e302.	10.7	72
18	Cancer genomics: why rare is valuable. Journal of Molecular Medicine, 2015, 93, 369-381.	3.9	8

# 19	ARTICLE Inhibition of wildâ€ŧype p53â€induced phosphatase 1 promotes liver regeneration in mice by direct activation of mammalian target of rapamycin. Hepatology, 2015, 61, 2030-2041.	IF 7.3	CITATIONS 28
20	Genetic investigations on intracranial aneurysm: Update and perspectives. Journal of Neuroradiology, 2015, 42, 67-71.	1.1	25
21	Approaches Toward Improving the Prognosis of Pediatric Patients With Glioma: Pursuing Mutant Drug Targets With Emerging Small Molecules. Seminars in Pediatric Neurology, 2015, 22, 28-34.	2.0	11
22	Progress in the application of molecular biomarkers in gliomas. Biochemical and Biophysical Research Communications, 2015, 465, 1-4.	2.1	50
23	The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults. Human Pathology, 2015, 46, 1626-1632.	2.0	88
24	Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients. British Journal of Cancer, 2015, 112, 1114-1120.	6.4	46
25	Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape. Cancer Genetics, 2015, 208, 367-373.	0.4	35
26	The genomic landscape of papillary thyroid carcinoma. Nature Reviews Endocrinology, 2015, 11, 133-134.	9.6	12
27	Wip1 phosphatase in breast cancer. Oncogene, 2015, 34, 4429-4438.	5.9	40
28	Diffuse Intrinsic Pontine Glioma: A Therapeutic Challenge. , 0, , .		0
29	HG-76SPATIAL AND TEMPORAL HOMOGENEITY OF DRIVER MUTATIONS IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii66.1-iii66.	1.2	0
30	High-Grade Glioma of the Ventrolateral Medulla in an Adult: Case Presentation and Discussion of Surgical Considerations. Case Reports in Neurological Medicine, 2016, 2016, 1-9.	0.4	1
31	Brainstem Glioma in Adults. Frontiers in Oncology, 2016, 6, 180.	2.8	42
32	Genetic mutations in high grade gliomas of the adult spinal cord. Brain Tumor Pathology, 2016, 33, 267-269.	1.7	26
33	Diffuse Midline Gliomas with Histone <scp>H3â€K27M</scp> Mutation: A Series of 47 Cases Assessing the Spectrum of Morphologic Variation and Associated Genetic Alterations. Brain Pathology, 2016, 26, 569-580.	4.1	334
34	Posterior Fossa Tumors. Journal of Pediatric Neuroradiology, 2016, 05, 089-110.	0.1	2
35	RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis. Oncology Reports, 2016, 36, 173-180.	2.6	16
36	Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nature Communications, 2016, 7, 11185.	12.8	197

#	Article	IF	CITATIONS
37	Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by CSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Molecular Cancer Therapeutics, 2016, 15, 379-391.	4.1	36
38	The value of research collaborations and consortia in rare cancers. Lancet Oncology, The, 2016, 17, e62-e69.	10.7	89
39	SARI , a novel target gene of glucocorticoid receptor, plays an important role in dexamethasone-mediated killing of B lymphoma cells. Cancer Letters, 2016, 373, 57-66.	7.2	19
40	Expression and gene doses changes of the p53-regulator PPM1D in meningiomas: a role in meningioma progression?. Brain Tumor Pathology, 2016, 33, 191-199.	1.7	5
41	Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro-Oncology, 2017, 19, now294.	1.2	54
42	WIP1 phosphatase as pharmacological target in cancer therapy. Journal of Molecular Medicine, 2017, 95, 589-599.	3.9	48
43	Wild-type p53-induced phosphatase 1 is a prognostic marker and therapeutic target in bladder transitional cell carcinoma. Oncology Letters, 2017, 13, 875-880.	1.8	6
44	LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity <i>in vitro</i> . Cell Cycle, 2017, 16, 213-223.	2.6	14
45	Role of wild-type p53-induced phosphatase 1 in cancer. Oncology Letters, 2017, 14, 3893-3898.	1.8	20
46	Pediatric Thalamic Gliomas: An Updated Review. Archives of Pathology and Laboratory Medicine, 2017, 141, 1316-1323.	2.5	22
47	Distinct molecular profile of diffuse cerebellar gliomas. Acta Neuropathologica, 2017, 134, 941-956.	7.7	40
48	Molecular landscape of pediatric diffuse intrinsic pontine gliomas: about 22 cases. Journal of Neuro-Oncology, 2017, 134, 465-467.	2.9	3
49	Molecular pathology of paediatric central nervous system tumours. Journal of Pathology, 2017, 241, 159-172.	4.5	51
50	Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma. Frontiers in Pharmacology, 2017, 8, 495.	3.5	48
51	Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. International Journal of Nanomedicine, 2017, Volume 12, 1385-1399.	6.7	47
52	Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathologica Communications, 2017, 5, 78.	5.2	48
53	Genetic and immune features of resectable malignant brainstem gliomas. Oncotarget, 2017, 8, 82571-82582.	1.8	12
54	Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). International Journal of Oncology, 2018, 52, 1041-1056.	3.3	4

#	ARTICLE	IF	CITATIONS
55	The clinicopathological and prognostic significance of TP53 alteration in K27M mutated gliomas: an individual-participant data meta-analysis. Neurological Sciences, 2018, 39, 1191-1201.	1.9	7
56	Histone H3.3K27M Mobilizes Multiple Cancer/Testis (CT) Antigens in Pediatric Glioma. Molecular Cancer Research, 2018, 16, 623-633.	3.4	10
57	New Directions in the Treatment of Glioblastoma. Seminars in Neurology, 2018, 38, 050-061.	1.4	33
58	Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases. Bone, 2018, 109, 91-100.	2.9	25
59	Diffuse Intrinsic Pontine Glioma. , 0, , .		3
60	Genetic Landscape of Thyroid Cancer. , 2018, , 41-52.		0
61	High-Grade Glioma, Including Diffuse Intrinsic Pontine Glioma. , 2018, , 193-221.		0
62	Classification and Personalized Prognosis in Myeloproliferative Neoplasms. New England Journal of Medicine, 2018, 379, 1416-1430.	27.0	442
63	PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell, 2018, 23, 700-713.e6.	11.1	272
64	The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nature Communications, 2018, 9, 2087.	12.8	124
65	Wip1 knockout inhibits neurogenesis by affecting the Wnt/β-catenin signaling pathway in focal cerebral ischemia in mice. Experimental Neurology, 2018, 309, 44-53.	4.1	31
66	CDK4/6 and PDCFRA Signaling as Therapeutic Targets in Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2018, 8, 191.	2.8	18
67	<i>FGFR1</i> actionable mutations, molecular specificities, and outcome of adult midline gliomas. Neurology, 2018, 90, e2086-e2094.	1.1	47
68	Mutant allele quantification reveals a genetic basis for TP53 mutation-driven castration resistance in prostate cancer cells. Scientific Reports, 2018, 8, 12507.	3.3	5
69	A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Radiotherapy and Oncology, 2019, 130, 172-179.	0.6	42
70	Truncated PPM1D impairs stem cell response to genotoxic stress and promotes growth of APC-deficient tumors in the mouse colon. Cell Death and Disease, 2019, 10, 818.	6.3	12
71	PPM1D mutations silence NAPRT geneÂexpression and confer NAMPT inhibitor sensitivity in glioma. Nature Communications, 2019, 10, 3790.	12.8	54
72	Malignant Intramedullary Spinal Cord Tumors. , 2019, , 337-364.		1

#	Article	IF	CITATIONS
73	Signal transduction pathways and resistance to targeted therapies in glioma. Seminars in Cancer Biology, 2019, 58, 118-129.	9.6	40
74	Somatic mosaic truncating mutations of PPM1D in blood can result from expansion of a mutant clone under selective pressure of chemotherapy. PLoS ONE, 2019, 14, e0217521.	2.5	7
75	Spinal cord high-grade infiltrating gliomas in adults: clinico-pathological and molecular evaluation. Modern Pathology, 2019, 32, 1236-1243.	5.5	44
76	Inhibition of mutant PPM1D enhances DNA damage response and growth suppressive effects of ionizing radiation in diffuse intrinsic pontine glioma. Neuro-Oncology, 2019, 21, 786-799.	1.2	26
77	Batch adjustment by reference alignment (BARA): Improved prediction performance in biological test sets with batch effects. PLoS ONE, 2019, 14, e0212669.	2.5	3
78	TP53 Pathway Alterations Drive Radioresistance in Diffuse Intrinsic Pontine Gliomas (DIPG). Clinical Cancer Research, 2019, 25, 6788-6800.	7.0	66
79	CRISPR Editing of Mutant IDH1 R132H Induces a CpG Methylation-Low State in Patient-Derived Glioma Models of G-CIMP. Molecular Cancer Research, 2019, 17, 2042-2050.	3.4	15
80	Inhibition of protein phosphatase PPM1D enhances retinoic acid-induced differentiation in human embryonic carcinoma cell line. Journal of Biochemistry, 2019, 165, 471-477.	1.7	3
81	Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathologica, 2019, 137, 297-306.	7.7	109
82	ABC Transporter Inhibition Plus Dexamethasone Enhances the Efficacy of Convection Enhanced Delivery in H3.3K27M Mutant Diffuse Intrinsic Pontine Glioma. Neurosurgery, 2020, 86, 742-751.	1.1	8
83	The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a034876.	6.2	42
84	Identification of prognostic markers in diffuse midline gliomas H3K27Mâ€mutant. Brain Pathology, 2020, 30, 179-190.	4.1	22
85	Radio-Resistance and DNA Repair in Pediatric Diffuse Midline Gliomas. Cancers, 2020, 12, 2813.	3.7	19
86	Global activation of oncogenic pathways underlies therapy resistance in diffuse midline glioma. Acta Neuropathologica Communications, 2020, 8, 111.	5.2	19
87	Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers, 2020, 12, 2194.	3.7	28
88	Truncated PPM1D Prevents Apoptosis in the Murine Thymus and Promotes Ionizing Radiation-Induced Lymphoma. Cells, 2020, 9, 2068.	4.1	5
89	The integrated genomic and epigenomic landscape of brainstem glioma. Nature Communications, 2020, 11, 3077.	12.8	50
90	Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. , 2020, 215, 107622.		59

#	Article	IF	CITATIONS
91	Targeting Mutant PPM1D Sensitizes Diffuse Intrinsic Pontine Glioma Cells to the PARP Inhibitor Olaparib. Molecular Cancer Research, 2020, 18, 968-980.	3.4	18
92	Phosphatase magnesium-dependent 1 $\hat{\Gamma}$ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochemical Pharmacology, 2021, 184, 114362.	4.4	4
93	Malignant Progression of an IDH Mutant Brainstem Glioma in Adult. NMC Case Report Journal, 2021, 8, 301-307.	0.5	3
94	Molecular Stratification of Adult and Pediatric High Grade Gliomas. Molecular Pathology Library, 2021, , 123-151.	0.1	0
95	From Clonal Hematopoiesis to Therapy-Related Myeloid Neoplasms: The Silent Way of Cancer Progression. Biology, 2021, 10, 128.	2.8	5
96	Combined identification of ARID1A, CSMD1, and SENP3 as effective prognostic biomarkers for hepatocellular carcinoma. Aging, 2021, 13, 4696-4712.	3.1	8
97	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
99	A novel assay for screening WIP1 phosphatase substrates in nuclear extracts. FEBS Journal, 2021, 288, 6035-6051.	4.7	1
100	Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nature Communications, 2021, 12, 3622.	12.8	15
101	Current knowledge on the immune microenvironment and emerging immunotherapies in diffuse midline glioma. EBioMedicine, 2021, 69, 103453.	6.1	37
103	The inhibition of WIP1 phosphatase accelerates the depletion of primordial follicles. Reproductive BioMedicine Online, 2021, 43, 161-171.	2.4	4
104	Diffuse midline gliomas, H3 K27M-mutant are associated with less peritumoral edema and contrast enhancement in comparison to glioblastomas, H3 K27M-wildtype of midline structures. PLoS ONE, 2021, 16, e0249647.	2.5	14
105	Emerging Advances in Combinatorial Treatments of Epigenetically Altered Pediatric High-Grade H3K27M Gliomas. Frontiers in Genetics, 2021, 12, 742561.	2.3	15
106	Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends in Cell Biology, 2021, 31, 814-828.	7.9	17
107	Role of FUT8 expression in clinicopathology and patient survival for various malignant tumor types: a systematic review and meta-analysis. Aging, 2021, 13, 2212-2230.	3.1	5
108	Kindlin-2 interacts with β-catenin and YB-1 to enhance <i>EGFR</i> transcription during glioma progression. Oncotarget, 2016, 7, 74872-74885.	1.8	27
109	Patient-derived DIPG cells preserve stem-like characteristics and generate orthotopic tumors. Oncotarget, 2017, 8, 76644-76655.	1.8	27
110	Cooperation of Nutlin-3a and a Wip1 inhibitor to induce p53 activity. Oncotarget, 2016, 7, 31623-31638.	1.8	33

#	Article	IF	CITATIONS
111	Diffuse Intrinsic Pontine Glioma: New Pathophysiological Insights and Emerging Therapeutic Targets. Current Neuropharmacology, 2017, 15, 88-97.	2.9	88
112	Genomic alterations underlying spinal metastases in pediatric H3K27M-mutant pineal parenchymal tumor of intermediate differentiation: case report. Journal of Neurosurgery: Pediatrics, 2020, 25, 121-130.	1.3	13
113	Protein Phosphatase Magnesium-Dependent 1δ (PPM1D) Expression as a Prognostic Marker in Adult Supratentorial Diffuse Astrocytic and Oligodendroglial Tumors. Journal of Pathology and Translational Medicine, 2018, 52, 71-78.	1.1	2
114	Genomic and Transcriptomic Analysis of Relapsed and Refractory Childhood Solid Tumors Reveals a Diverse Molecular Landscape and Mechanisms of Immune Evasion. Cancer Research, 2021, 81, 5818-5832.	0.9	10
115	Thalamic Gliomas. , 2018, , 1-17.		0
116	Thalamic Gliomas. , 2020, , 1877-1890.		0
118	TP53 wild-type/PPM1D mutant diffuse intrinsic pontine gliomas are sensitive to a MDM2 antagonist. Acta Neuropathologica Communications, 2021, 9, 178.	5.2	8
119	PPM1D Is a Therapeutic Target in Childhood Neural Tumors. Cancers, 2021, 13, 6042.	3.7	5
120	Therapeutic Targets in Diffuse Midline Gliomas—An Emerging Landscape. Cancers, 2021, 13, 6251.	3.7	12
121	Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. Neuro-Oncology, 2022, 24, 1352-1363.	1.2	29
122	PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nature Communications, 2022, 13, 604.	12.8	22
123	Innovating Strategies and Tailored Approaches in Neuro-Oncology. Cancers, 2022, 14, 1124.	3.7	3
124	Molecular landscape of IDHâ€wildâ€ŧype, H3â€wildâ€ŧype glioblastomas of adolescents and young adults. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	0
125	Adult diffuse intrinsic pontine glioma: clinical, radiological, pathological, molecular features, and treatments of 96 patients. Journal of Neurosurgery, 2022, 137, 1628-1638.	1.6	4
126	Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. International Journal of Molecular Sciences, 2022, 23, 5005.	4.1	38
127	AURKA and PLK1 inhibition selectively and synergistically block cell cycle progression in diffuse midline glioma. IScience, 2022, 25, 104398.	4.1	10
128	Functionalized Macrophage Exosomes with Panobinostat and PPM1Dâ€siRNA for Diffuse Intrinsic Pontine Gliomas Therapy. Advanced Science, 2022, 9, e2200353.	11.2	29
129	Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma. Acta Neuropathologica Communications, 2014, 2, 134.	5.2	0

#	Article	IF	CITATIONS
130	PPM1D in Solid and Hematologic Malignancies: Friend <i>and</i> Foe?. Molecular Cancer Research, 2022, 20, 1365-1378.	3.4	6
131	Tumor-Associated Microenvironment of Adult Gliomas: A Review. Frontiers in Oncology, 0, 12, .	2.8	7
132	Development of Antibody-like Proteins Targeting the Oncogenic Ser/Thr Protein Phosphatase PPM1D. Processes, 2022, 10, 1501.	2.8	0
134	Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genomics, 2022, 2, 100179.	6.5	74
135	The Effect of Atm Loss on Radiosensitivity of a Primary Mouse Model of Pten-Deleted Brainstem Glioma. Cancers, 2022, 14, 4506.	3.7	3
136	Low WIP1 Expression Accelerates Ovarian Aging by Promoting Follicular Atresia and Primordial Follicle Activation. Cells, 2022, 11, 3920.	4.1	1
137	PPM1D suppresses p53-dependent transactivation and cell death by inhibiting the Integrated Stress Response. Nature Communications, 2022, 13, .	12.8	9
138	Towards Standardisation of a Diffuse Midline Glioma Patient-Derived Xenograft Mouse Model Based on Suspension Matrices for Preclinical Research. Biomedicines, 2023, 11, 527.	3.2	2
139	ATM inhibition enhances the efficacy of radiation across distinct molecular subgroups of pediatric high-grade glioma. Neuro-Oncology, 2023, 25, 1828-1841.	1.2	3
140	Radiotherapy and radioâ€sensitization in <scp><i>H3</i>^{K27M}</scp> â€mutated diffuse midline gliomas. CNS Neuroscience and Therapeutics, 2023, 29, 1721-1737.	3.9	0
141	Histone modification as a drug resistance driver in brain tumors â \check{z} . , 2016, 2, 216-226.		0
143	Classification of Brainstem Gliomas Based on Tumor Microenvironment Status. Cancers, 2023, 15, 4224.	3.7	1
146	Fimepinostat Impairs NF唼B and PI3K/AKT Signaling and Enhances Gemcitabine Efficacy in H3.3K27M-Diffuse Intrinsic Pontine Glioma. Cancer Research, 2024, 84, 598-615.	0.9	0
147	Tissue of origin prediction for cancer of unknown primary using a targeted methylation sequencing panel. Clinical Epigenetics, 2024, 16, .	4.1	0
148	Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas. Frontiers in Oncology, 0, 14, .	2.8	0