DNA nanoparticle-mediated thymulin gene therapy preexperimental allergic asthma

Journal of Controlled Release 180, 125-133 DOI: 10.1016/j.jconrel.2014.02.010

Citation Report

#	Article	IF	CITATIONS
1	Effects of bone marrow mononuclear cells from healthy or ovalbumin-induced lung inflammation donors on recipient allergic asthma mice. Stem Cell Research and Therapy, 2014, 5, 108.	2.4	23
2	Single Tyrosine Mutation in AAV8 Vector Capsid Enhances Gene Lung Delivery and Does Not Alter Lung Morphofunction in Mice. Cellular Physiology and Biochemistry, 2014, 34, 681-690.	1.1	11
3	Modulation of inflammatory response in mice with severe autoimmune disease by thymic peptide thymulin and an inhibitor of NF-kappaB signalling. International Immunopharmacology, 2015, 25, 260-266.	1.7	11
4	Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier. Pulmonary Pharmacology and Therapeutics, 2015, 34, 8-24.	1.1	43
5	Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy. Nanomedicine, 2015, 10, 2229-2247.	1.7	85
6	Barriers to inhaled gene therapy of obstructive lung diseases: A review. Journal of Controlled Release, 2016, 240, 465-488.	4.8	87
7	Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution <i>in vivo</i> . Nanomedicine, 2016, 11, 1337-1343.	1.7	107
8	Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung. Cellular Physiology and Biochemistry, 2016, 39, 544-553.	1.1	10
9	InÂvivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Ä^erenkov imaging. Biomaterials, 2016, 98, 53-63.	5.7	36
10	Non-viral gene therapy: Gains and challenges of non-invasive administration methods. Journal of Controlled Release, 2016, 240, 165-190.	4.8	179
11	Bone Marrow, Adipose, and Lung Tissue-Derived Murine Mesenchymal Stromal Cells Release Different Mediators and Differentially Affect Airway and Lung Parenchyma in Experimental Asthma. Stem Cells Translational Medicine, 2017, 6, 1557-1567.	1.6	74
12	A new adenovector system for implementing thymulin gene therapy for inflammatory disorders. Molecular Immunology, 2017, 87, 180-187.	1.0	1
13	New perspectives in nanotherapeutics for chronic respiratory diseases. Biophysical Reviews, 2017, 9, 793-803.	1.5	54
14	Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research and Therapy, 2017, 8, 151.	2.4	110
15	PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. Journal of Controlled Release, 2018, 285, 35-45.	4.8	150
16	Nanotechnology approaches to pulmonary drug delivery. , 2018, , 221-253.		14
17	Nanoformulated ABT-199 to effectively target Bcl-2 at mitochondrial membrane alleviates airway inflammation by inducing apoptosis. Biomaterials, 2019, 192, 429-439.	5.7	26
18	Interface-Enrichment-Induced Instability and Drug-Loading-Enhanced Stability in Inhalable Delivery of Supramolecular Filaments. ACS Nano, 2019, 13, 12957-12968.	7.3	21

CITATION REPORT

#	Article	IF	CITATIONS
19	Nanoparticle-Based Drug Delivery for Chronic Obstructive Pulmonary Disorder and Asthma. , 2019, , 59-73.		10
20	Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction and Targeted Therapy, 2019, 4, 33.	7.1	343
21	Extracellular matrix components remodeling and lung function parameters in experimental emphysema and allergic asthma: Differences among the mouse strains. Drug Discovery Today: Disease Models, 2019, 29-30, 27-34.	1.2	0
22	Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1586.	3.3	60
23	Thymus-Pineal Gland Axis: Revisiting Its Role in Human Life and Ageing. International Journal of Molecular Sciences, 2020, 21, 8806.	1.8	15
24	Effects of a novel roflumilast and formoterol fumarate dry powder inhaler formulation in experimental allergic asthma. International Journal of Pharmaceutics, 2020, 588, 119771.	2.6	9
25	Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. Science Advances, 2020, 6, eaay7973.	4.7	31
26	Application of novel nanotechnologies in asthma. Annals of Translational Medicine, 2020, 8, 159-159.	0.7	4
27	A New Gorilla Adenoviral Vector with Natural Lung Tropism Avoids Liver Toxicity and Is Amenable to Capsid Engineering and Vector Retargeting. Journal of Virology, 2020, 94, .	1.5	8
28	Airway epithelial-targeted nanoparticles for asthma therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L500-L509.	1.3	23
29	Drug Delivery in Respiratory Diseases: Current Opportunities, Molecular and Cellular Mechanism, and Future Challenges. , 2021, , 847-902.		0
30	Are controlled release scientists doing enough for our environment?. Journal of Controlled Release, 2021, 332, 620-622.	4.8	3
31	A Twoâ€Pronged Pulmonary Gene Delivery Strategy: A Surfaceâ€Modified Fullerene Nanoparticle and a Hypotonic Vehicle. Angewandte Chemie - International Edition, 2021, 60, 15225-15229.	7.2	17
32	A Twoâ€Pronged Pulmonary Gene Delivery Strategy: A Surfaceâ€Modified Fullerene Nanoparticle and a Hypotonic Vehicle. Angewandte Chemie, 2021, 133, 15353-15357.	1.6	0
33	Co-Injection of Sulfotyrosine Facilitates Retinal Uptake of Hyaluronic Acid Nanospheres Following Intravitreal Injection. Pharmaceutics, 2021, 13, 1510.	2.0	2
34	Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chemico-Biological Interactions, 2021, 348, 109637.	1.7	14
35	Thymus Gland: A Double Edge Sword for Coronaviruses. Vaccines, 2021, 9, 1119.	2.1	5
36	Bridging micro/nano-platform and airway allergy intervention. Journal of Controlled Release, 2022, 341, 364-382.	4.8	7

#	Article	IF	Citations
37	Concepts of advanced therapeutic delivery systems for the management of remodeling and inflammation in airway diseases. Future Medicinal Chemistry, 2022, 14, 271-288.	1.1	8
38	Novel Insights into the Therapeutic Potential of Lung-Targeted Gene Transfer in the Most Common Respiratory Diseases. Cells, 2022, 11, 984.	1.8	10
40	Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma. Life, 2022, 12, 596.	1.1	10
41	Leadingâ€Edge Pulmonary Gene Therapy Approached by Barrierâ€Permeable Delivery System: A Concise Review on Peptide System. Advanced NanoBiomed Research, 0, , 2200113.	1.7	1
42	Tackling the cytokine storm using advanced drug delivery in allergic airway disease. Journal of Drug Delivery Science and Technology, 2023, 82, 104366.	1.4	1
43	Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. Journal of Drug Delivery Science and Technology, 2023, 81, 104261.	1.4	9
44	Gene therapy for alpha-1 antitrypsin deficiency: an update. Expert Opinion on Biological Therapy, 2023, 23, 283-291.	1.4	5
45	Advanced nanomedicine-based therapeutics for targeting airway inflammatory diseases. , 2023, , 29-55.		0
46	Exploring state-of-the-art advances in targeted nanomedicines for managing acute and chronic inflammatory lung diseases. Nanomedicine, 2022, 17, 2245-2264.	1.7	0

CITATION REPORT