Using the regression estimator with Landsat data to est net proportion deforestation in Gabon

Remote Sensing of Environment 151, 138-148 DOI: 10.1016/j.rse.2013.09.015

Citation Report

#	Article	IF	CITATIONS
2	Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation. Forest Ecology and Management, 2014, 331, 12-18.	3.2	36
3	Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data. Remote Sensing of Environment, 2014, 151, 149-156.	11.0	27
4	Sampling strategies for estimating forest cover from remote sensing-based two-stage inventories. Forest Ecosystems, 2015, 2, .	3.1	7
5	Designâ€based strategies for sampling spatial units from regular grids with applications to forest surveys, land use, and land cover estimation. Environmetrics, 2015, 26, 216-228.	1.4	26
6	Remote Sensing Based Two-Stage Sampling for Accuracy Assessment and Area Estimation of Land Cover Changes. Remote Sensing, 2015, 7, 11992-12008.	4.0	15
7	A Bayesian Approach to Combine Landsat and ALOS PALSAR Time Series for Near Real-Time Deforestation Detection. Remote Sensing, 2015, 7, 4973-4996.	4.0	60
8	A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sensing, 2016, 8, 70.	4.0	459
9	Methods for evaluating the utilities of local and global maps for increasing the precision of estimates of subtropical forest area. Canadian Journal of Forest Research, 2016, 46, 924-932.	1.7	29
10	From one- to two-phase sampling to reduce costs of remote sensing-based estimation of land-cover and land-use proportions and their changes. Remote Sensing of Environment, 2016, 184, 410-417.	11.0	20
11	Across the grain: Multi-scale map comparison and land change assessment. Ecological Indicators, 2016, 71, 660-668.	6.3	2
12	Earth science data records of global forest cover and change: Assessment of accuracy in 1990, 2000, and 2005 epochs. Remote Sensing of Environment, 2016, 184, 73-85.	11.0	48
13	Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation. Forest Ecosystems, 2016, 3, .	3.1	105
14	The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass. Annals of Forest Science, 2016, 73, 839-847.	2.0	12
15	Intact ecosystems provide best defence against climate change. Nature Climate Change, 2016, 6, 122-124.	18.8	126
16	Combining satellite data for better tropical forest monitoring. Nature Climate Change, 2016, 6, 120-122.	18.8	112
17	Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision. Remote Sensing of Environment, 2016, 175, 282-300.	11.0	77
18	Suitability of Global Forest Change data to report forest cover estimates at national level in Gabon. Remote Sensing of Environment, 2016, 173, 326-338.	11.0	53
19	Forest structure determines the abundance and distribution of large lianas in Gabon. Global Ecology and Biogeography, 2017, 26, 472-485.	5.8	22

CITATION REPORT

#	Article	IF	CITATIONS
20	Forest cover mapping in post-Soviet Central Asia using multi-resolution remote sensing imagery. Scientific Reports, 2017, 7, 1375.	3.3	39
21	Reducing Carbon Emissions from Forest Conversion for Oil Palm Agriculture in Gabon. Conservation Letters, 2017, 10, 297-307.	5.7	26
22	An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon. Environmental Research Letters, 2017, 12, 014005.	5.2	29
23	Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover. Remote Sensing of Environment, 2018, 212, 47-59.	11.0	33
24	Spatially-balanced sampling versus unbalanced stratified sampling for assessing forest change: evidences in favour of spatial balance. Environmental and Ecological Statistics, 2018, 25, 111-123.	3.5	11
25	Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment, 2018, 204, 147-161.	11.0	165
26	Accuracy and Area Estimation. , 2018, , 128-135.		0
27	Estimation of Forest Area and Canopy Cover Based on Visual Interpretation of Satellite Images in Ethiopia. Land, 2018, 7, 92.	2.9	14
28	Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts. Remote Sensing, 2018, 10, 777.	4.0	43
29	The Use of Calibration Weighting for Variance Estimation Under Systematic Sampling: Applications to Forest Cover Assessment. Journal of Agricultural, Biological, and Environmental Statistics, 2018, 23, 358-373.	1.4	6
30	Use of the SAR Shadowing Effect for Deforestation Detection with Sentinel-1 Time Series. Remote Sensing, 2018, 10, 1250.	4.0	76
31	Landscapeâ€level validation of allometric relationships for carbon stock estimation reveals bias driven by soil type. Ecological Applications, 2019, 29, e01987.	3.8	6
32	Deriving a Forest Cover Map in Kyrgyzstan Using a Hybrid Fusion Strategy. Remote Sensing, 2019, 11, 2325.	4.0	5
33	Use of RNA and DNA to Identify Mechanisms of Bacterial Community Homogenization. Frontiers in Microbiology, 2019, 10, 2066.	3.5	18
34	Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal. Remote Sensing, 2019, 11, 77.	4.0	115
35	Estimates and determinants of stocks of deep soil carbon in Gabon, Central Africa. Geoderma, 2019, 341, 236-248.	5.1	29
36	The NDVI-CV Method for Mapping Evergreen Trees in Complex Urban Areas Using Reconstructed Landsat 8 Time-Series Data. Forests, 2019, 10, 139.	2.1	21
37	Near real-time monitoring of tropical forest disturbance: New algorithms and assessment framework. Remote Sensing of Environment, 2019, 224, 202-218.	11.0	67

#	Article	IF	Citations
38	Estimation methods developing with remote sensing information for energy crop biomass: A comparative review. Biomass and Bioenergy, 2019, 122, 414-425.	5.7	52
39	Quantifying the trade-off between cost and precision in estimating area of forest loss and degradation using probability sampling in Guyana. Remote Sensing of Environment, 2019, 221, 122-135.	11.0	15
40	Rethinking zero deforestation beyond 2020 to more equitably and effectively conserve tropical forests. One Earth, 2020, 3, 714-726.	6.8	21
41	Evaluating Forest Cover and Fragmentation in Costa Rica with a Corrected Global Tree Cover Map. Remote Sensing, 2020, 12, 3226.	4.0	2
42	Remote Sensing Support for the Gain-Loss Approach for Greenhouse Gas Inventories. Remote Sensing, 2020, 12, 1891.	4.0	11
43	A Statistical Approach to Detect Land Cover Changes in Mediterranean Ecosystems Using Multi-Temporal Landsat Data: The Case Study of Pianosa Island, Italy. Forests, 2020, 11, 334.	2.1	3
44	Use of SAR and Optical Time Series for Tropical Forest Disturbance Mapping. Remote Sensing, 2020, 12, 727.	4.0	49
45	Cloud-computing and machine learning in support of country-level land cover and ecosystem extent mapping in Liberia and Gabon. PLoS ONE, 2020, 15, e0227438.	2.5	32
46	Hydro-climatology study of the Ogoou \tilde{A} © River basin using hydrological modeling and satellite altimetry. Advances in Space Research, 2021, 68, 672-690.	2.6	19
47	Model-assisted estimation of forest attributes exploiting remote sensing information to handle spatial under-coverage. Spatial Statistics, 2021, 41, 100472.	1.9	1
48	Expected carbon emissions from a rubber plantation in Central Africa. Forest Ecology and Management, 2021, 480, 118668.	3.2	3
49	Forest disturbance alerts for the Congo Basin using Sentinel-1. Environmental Research Letters, 2021, 16, 024005.	5.2	81
50	Carbon and nitrogen stocks under various land cover in Gabon. Geoderma Regional, 2021, 25, e00363.	2.1	4
51	African forest elephant movements depend on time scale and individual behavior. Scientific Reports, 2021, 11, 12634.	3.3	12
52	Development and Application of Earth Observation Based Machine Learning Methods for Characterizing Forest and Land Cover Change in Dilijan National Park of Armenia between 1991 and 2019. Remote Sensing, 2021, 13, 2942.	4.0	3
53	The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions. Remote Sensing of Environment, 2021, 264, 112533.	11.0	33
54	Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images. Ecological Indicators, 2021, 129, 107985.	6.3	70
55	Modeling and Estimating Change. Managing Forest Ecosystems, 2014, , 293-313.	0.9	8

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Do forest-management plans and FSC certification help avoid deforestation in the Congo Basin?. Ecological Economics, 2020, 175, 106660.	5.7	16
57	Using Experimental Sites in Tropical Forests to Test the Ability of Optical Remote Sensing to Detect Forest Degradation at 0.3 - 30 M Resolutions. , 2021, , .		1
58	Understanding zero deforestation and the High Carbon Stock Approach in a highly forested tropical country. Land Use Policy, 2022, 112, 105770.	5.6	5
60	REDD+ project design study for quantifying activity data for historic forest degradation in a Bangladesh forest using Landsat data. Journal of Applied Remote Sensing, 2019, 13, 1.	1.3	3
61	Estimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image. Geocarto International, 2022, 37, 1408-1425.	3.5	3
62	Forest Canopy Cover Assessment and Tree Benefits in Okomu National Park, Nigeria. Journal of Scientific Research and Reports, 0, , 113-121.	0.2	0
63	Distinct Community-Wide Responses to Forecasted Climate Change in Afrotropical Forests. Frontiers in Ecology and Evolution, 2022, 9, .	2.2	0
64	Historical trends of degradation, loss, and recovery in the tropical forest reserves of Chana. International Journal of Digital Earth, 2022, 15, 30-51.	3.9	13
65	Long Distance Seed Dispersal by Forest Elephants. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	7
68	Estimation of the total dry aboveground biomass in the tropical forests of Congo Basin using optical, LiDAR, and radar data. GIScience and Remote Sensing, 2022, 59, 431-460.	5.9	7
70	Combining post-disturbance land cover and tree canopy cover from Landsat time series data for mapping deforestation, forest degradation, and recovery across Cambodia. International Journal of Digital Earth, 2022, 15, 832-852.	3.9	9
71	Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay. Remote Sensing of Environment, 2022, 282, 113277.	11.0	8
72	Automation Mangrove Identification with Case Based Reasoning Process. Jurnal Eeccis, 2022, 16, 20-26.	0.0	0
74	Socio-Ecological Approach to a Forest-Swamp-Savannah Mosaic Landscape Using Remote Sensing and Local Knowledge: a Case Study in the Bas-Ogooué Ramsar Site, Gabon. Environmental Management, 2023, 72, 1241-1258.	2.7	0
75	The biogeography of Gabonese savannas: Evidence from termite community richness and composition. Journal of Biogeography, 2023, 50, 1505-1518.	3.0	0
76	Improved Fine-Scale Tropical Forest Cover Mapping for Southeast Asia Using Planet-NICFI and Sentinel-1 Imagery. Journal of Remote Sensing, 2023, 3, .	6.7	2
77	The political economy of net-zero transitions: Policy drivers, barriers, and justice benefits to decarbonization in eight carbon-neutral countries. Journal of Environmental Management, 2023, 347, 119154.	7.8	2
78	Deep learning and automatic reference label harvesting for Sentinel-1 SAR-based rapid tropical dry forest disturbance mapping. Remote Sensing of Environment, 2023, 298, 113799.	11.0	1

#	Article	IF	CITATIONS
79	A Near Real-Time Mapping of Tropical Forest Disturbance Using SAR and Semantic Segmentation in Google Earth Engine. Remote Sensing, 2023, 15, 5223.	4.0	1