Emulsifying Properties of Soy Protein Nanoparticles: In Concentration and/or Emulsification Process

Journal of Agricultural and Food Chemistry 62, 2644-2654 DOI: 10.1021/jf405348k

Citation Report

#	Article	IF	CITATIONS
1	Colloidal particles as liquid dispersion stabilizer: Pickering emulsions and materials thereof. Comptes Rendus Physique, 2014, 15, 761-774.	0.3	72
2	Phytosterol Colloidal Particles as Pickering Stabilizers for Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 5133-5141.	2.4	53
3	Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annual Review of Food Science and Technology, 2015, 6, 263-297.	5.1	524
4	Nanocomplexation of soy protein isolate with curcumin: Influence of ultrasonic treatment. Food Research International, 2015, 75, 157-165.	2.9	118
5	Salting-out and salting-in: competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties. Soft Matter, 2015, 11, 5926-5932.	1.2	73
6	Soy Protein Isolate As Fluid Loss Additive in Bentonite–Water-Based Drilling Fluids. ACS Applied Materials & Interfaces, 2015, 7, 24799-24809.	4.0	78
7	Ultrasonic treatment of \hat{l} ±-chitin regenerated from a NaOH/urea solvent with tunable capacity for stabilization of oil in water emulsion. RSC Advances, 2015, 5, 88316-88323.	1.7	9
8	Blocking and Blending: Different Assembly Models of Cyclodextrin and Sodium Caseinate at the Oil/Water Interface. Langmuir, 2015, 31, 9061-9069.	1.6	23
9	Colloids in Food: Ingredients, Structure, and Stability. Annual Review of Food Science and Technology, 2015, 6, 211-233.	5.1	174
10	Spray-drying microencapsulation of CoQ 10 in olive oil for enhanced water dispersion, stability and bioaccessibility: Influence of type of emulsifiers and/or wall materials. Food Hydrocolloids, 2016, 61, 20-30.	5.6	44
11	Improvement of physical stability of kenaf seed oil-in-water nanoemulsions by addition of β-cyclodextrin to primary emulsion containing sodium caseinate and Tween 20. Journal of Food Engineering, 2016, 183, 24-31.	2.7	41
12	Influence of nanocomplexation with curcumin on emulsifying properties and emulsion oxidative stability of soy protein isolate at pH 3.0 and 7.0. Food Hydrocolloids, 2016, 61, 102-112.	5.6	87
13	Structural and Functional Properties of Soy Protein Isolates Modified by Soy Soluble Polysaccharides. Journal of Agricultural and Food Chemistry, 2016, 64, 7275-7284.	2.4	68
15	Does the hydrophobic group on sn-2 position of phosphatidylcholine decide its emulsifying ability?. LWT - Food Science and Technology, 2016, 74, 255-262.	2.5	11
16	Optimization of a green emulsion stability by tuning homogenization rate. RSC Advances, 2016, 6, 57563-57568.	1.7	24
17	Modulation of the surface properties of protein particles by a surfactant for stabilizing foams. RSC Advances, 2016, 6, 66018-66026.	1.7	25
18	Reprint of "Soy glycinin as food-grade Pickering stabilizers: Part. III. Fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-caroteneâ€: Food Hydrocolloids, 2016, 60, 631-640.	5.6	16
19	Gel-like pea protein Pickering emulsions at pH3.0 as a potential intestine-targeted and sustained-release delivery system for β-carotene. Food Research International, 2016, 79, 64-72.	2.9	112

#	Article	IF	CITATIONS
20	Soy glycinin as food-grade Pickering stabilizers: Part. III. Fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-carotene. Food Hydrocolloids, 2016, 56, 434-444.	5.6	109
21	Surface modification of zein colloidal particles with sodium caseinate to stabilize oil-in-water pickering emulsion. Food Hydrocolloids, 2016, 56, 292-302.	5.6	199
22	Soy glycinin as food-grade Pickering stabilizers: Part. II. Improvement of emulsification and interfacial adsorption by electrostatic screening. Food Hydrocolloids, 2016, 60, 620-630.	5.6	95
23	Soy glycinin as food-grade Pickering stabilizers: Part. I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface. Food Hydrocolloids, 2016, 60, 606-619.	5.6	149
24	Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility. Critical Reviews in Food Science and Nutrition, 2017, 57, 2636-2679.	5.4	256
25	Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids, 2017, 68, 219-231.	5.6	323
26	Freeze-thaw stability of pickering emulsions stabilized by soy and whey protein particles. Food Hydrocolloids, 2017, 69, 173-184.	5.6	121
27	Ca 2+ -induced soy protein nanoparticles as pickering stabilizers: Fabrication and characterization. Food Hydrocolloids, 2017, 65, 175-186.	5.6	72
28	Gelâ€ŀike emulsions prepared with zein nanoparticles produced through phase separation from acetic acid solutions. International Journal of Food Science and Technology, 2017, 52, 2670-2676.	1.3	22
29	Globular plant protein aggregates for stabilization of food foams and emulsions. Trends in Food Science and Technology, 2017, 67, 248-259.	7.8	111
30	The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze–thaw stability of the resultant Pickering emulsions. Food and Function, 2017, 8, 2974-2981.	2.1	41
31	Effect of enzymatic hydrolysis on characteristics and synergistic efficiency of pectin on emulsifying properties of egg white protein. Food Hydrocolloids, 2017, 65, 87-95.	5.6	46
32	Emulsifier functionality and process engineering: Progress and challenges. Food Hydrocolloids, 2017, 68, 69-80.	5.6	21
33	One-step ultrasound producing O/W emulsions stabilized by chitosan particles. Food Research International, 2018, 107, 717-725.	2.9	59
34	Synergistic and antagonistic effects of plant and dairy protein blends on the physicochemical stability of lycopene-loaded emulsions. Food Hydrocolloids, 2018, 81, 180-190.	5.6	33
35	Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 4449-4457.	2.4	80
36	High internal phase emulsions stabilized by starch nanocrystals. Food Hydrocolloids, 2018, 82, 230-238.	5.6	183
37	Development of a Sono-Assembled, Bifunctional Soy Peptide Nanoparticle for Cellular Delivery of Hydrophobic Active Cargoes, Journal of Agricultural and Food Chemistry, 2018, 66, 4208-4218	2.4	46

#	Article	IF	CITATIONS
39	Formation, Structure, and Functionality of Interfacial Layers in Food Emulsions. Annual Review of Food Science and Technology, 2018, 9, 551-587.	5.1	160
40	Soy as a food ingredient. , 2018, , 149-186.		20
41	Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Food Chemistry, 2018, 252, 181-188.	4.2	129
42	Characterization and interfacial rheological properties of nanoparticles prepared by heat treatment of ovalbumin-carboxymethylcellulose complexes. Food Hydrocolloids, 2018, 82, 355-362.	5.6	57
43	Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocolloids, 2018, 82, 96-105.	5.6	127
44	Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability. Food Hydrocolloids, 2018, 74, 62-71.	5.6	100
45	Freeze-thaw stability of Pickering emulsions stabilized by soy protein nanoparticles. Influence of ionic strength before or after emulsification. Food Hydrocolloids, 2018, 74, 37-45.	5.6	96
47	Effect of production parameters and stress conditions on beta-carotene-loaded lipid particles produced with palm stearin and whey protein isolate. Brazilian Journal of Food Technology, 2018, 21, .	0.8	1
48	Molecular Mechanism for Improving Emulsification Efficiency of Soy Glycinin by Glycation with Soy Soluble Polysaccharide. Journal of Agricultural and Food Chemistry, 2018, 66, 12316-12326.	2.4	56
49	Identification and quantification of proteins at adsorption layer of emulsion stabilized by pea protein isolates. Colloids and Surfaces B: Biointerfaces, 2018, 171, 1-9.	2.5	40
50	Facile continuous production of soy peptide nanogels via nanoscale flash desolvation for drug entrapment. International Journal of Pharmaceutics, 2018, 549, 13-20.	2.6	14
51	Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrasonics Sonochemistry, 2018, 49, 283-293.	3.8	145
52	Interfacial and emulsion stabilized behavior of lysozyme/xanthan gum nanoparticles. International Journal of Biological Macromolecules, 2018, 117, 280-286.	3.6	40
53	Correlating emulsion properties to microencapsulation efficacy and nutrients retention in mixed proteins system. Food Research International, 2019, 115, 44-53.	2.9	25
54	Improving freeze-thaw stability of soy nanoparticle-stabilized emulsions through increasing particle size and surface hydrophobicity. Food Hydrocolloids, 2019, 87, 404-412.	5.6	50
55	Physicochemical properties and interfacial dilatational rheological behavior at air-water interface of high intensity ultrasound modified ovalbumin: Effect of ionic strength. Food Hydrocolloids, 2019, 97, 105210.	5.6	34
56	Food-Grade Gelatin Nanoparticles: Preparation, Characterization, and Preliminary Application for Stabilizing Pickering Emulsions. Foods, 2019, 8, 479.	1.9	42
57	Tuning the stability and microstructure of fine Pickering emulsions stabilized by cellulose nanocrystals. Industrial Crops and Products, 2019, 141, 111733.	2.5	42

#	Article	IF	CITATIONS
58	Discussion on the application principle of tuina manipulations for lumbar intervertebral disc herniation in Chinese literatures in recent 30 years. Journal of Acupuncture and Tuina Science, 2019, 17, 270-277.	0.1	1
59	Paleoproterozoic Granitoids on Liaodong Peninsula, North China Craton. Acta Geologica Sinica, 2019, 93, 1377-1396.	0.8	2
60	Structure and dilatational rheological behavior of heat-treated lotus (Nelumbo nucifera Gaertn.) seed protein. LWT - Food Science and Technology, 2019, 116, 108579.	2.5	11
61	Facile immobilization of lipase based on Pickering emulsion via a synergistic stabilization by palygorskite–enzyme. Clay Minerals, 2019, 54, 293-298.	0.2	1
62	Fabrication and Mechanism Study of the Fast Spontaneous Emulsification of Crude Oil with Anionic/Cationic Surfactants as an Enhanced Oil Recovery (EOR) Method for Low-Permeability Reservoirs. Energy & Fuels, 2019, 33, 8279-8288.	2.5	35
63	Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rheological Properties and 3D Printing Performance. Food and Bioprocess Technology, 2019, 12, 1967-1979.	2.6	64
64	Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments. Food Hydrocolloids, 2019, 93, 167-175.	5.6	78
65	Nanostructures of soy proteins for encapsulation of food bioactive ingredients. , 2019, , 247-285.		0
66	Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. Ultrasonics Sonochemistry, 2019, 58, 104627.	3.8	78
67	Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocolloids, 2019, 96, 209-223.	5.6	140
68	High Homogenization Speeds for Preparing Unstable Myofibrillar Protein–Olive Oil Emulsions. Journal of Food Science, 2019, 84, 1113-1121.	1.5	9
69	Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion. Food Research International, 2019, 121, 247-256.	2.9	122
70	Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6497-6511.	3.2	97
71	Novel nanoparticles from insoluble soybean polysaccharides of Okara as unique Pickering stabilizers for oil-in-water emulsions. Food Hydrocolloids, 2019, 94, 255-267.	5.6	101
72	Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: challenges and development strategies. Chemical Engineering Journal, 2019, 368, 88-114.	6.6	68
73	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Clycol Alginate, Part 1: Fabrication and Characterization. Journal of Agricultural and Food Chemistry, 2019, 67, 1197-1208.	2.4	58
74	Food-grade Pickering stabilizers obtained from a protein-rich lupin cultivar (AluProt-CGNA®): Chemical characterization and emulsifying properties. Food Hydrocolloids, 2019, 87, 847-857.	5.6	39
75	Influence of temperature and ionic conditions on the rheology and droplets characteristics of winged bean protein stabilized oil-in-water emulsion. Journal of Food Measurement and Characterization, 2019, 13, 97-106.	1.6	6

#	Article	IF	CITATIONS
76	Development and characterization of pickering emulsion stabilized by zein/corn fiber gum (CFG) complex colloidal particles. Food Hydrocolloids, 2019, 91, 204-213.	5.6	113
77	Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a) Tj ETQq1 1 0.784	314 rgBT	/Qyerlock 1
78	Characterization of physicochemical properties of casein mixture preparation extracted from organic milk for use as an emulsifier in organic processed foods. Journal of the Science of Food and Agriculture, 2019, 99, 2375-2383.	1.7	7
79	Impact of heating treatments on physical stability and lipid-protein co-oxidation in oil-in-water emulsion prepared with soy protein isolates. Food Hydrocolloids, 2020, 100, 105167.	5.6	65
80	Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network. Food Chemistry, 2020, 305, 125476.	4.2	131
81	Improving the Solubility of Myofibrillar Proteins (MPs) by Mixing with Sodium Alginate: Effects of pH, Mixing Ratios and Preheating of MPs. Food Biophysics, 2020, 15, 113-121.	1.4	15
82	Corn protein hydrolysate as a new structural modifier for soybean protein isolate based O/W emulsions. LWT - Food Science and Technology, 2020, 118, 108763.	2.5	15
83	Ultrasonic modification of pectin for enhanced 2â€furfurylthiol encapsulation: process optimization and mechanisms. Journal of the Science of Food and Agriculture, 2020, 100, 110-118.	1.7	14
84	Utilization of β-lactoglobulin- (â^')-Epigallocatechin- 3-gallate(EGCG) composite colloidal nanoparticles as stabilizers for lutein pickering emulsion. Food Hydrocolloids, 2020, 98, 105293.	5.6	49
85	Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control, 2020, 107, 106771.	2.8	129
86	Effects of (+)-catechin on a rice bran protein oil-in-water emulsion: Droplet size, zeta-potential, emulsifying properties, and rheological behavior. Food Hydrocolloids, 2020, 98, 105306.	5.6	202
87	Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion: Effect of polysaccharides concentration on the storage stability and interfacial rheological properties. Food Hydrocolloids, 2020, 101, 105490.	5.6	92
88	Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents. Food Hydrocolloids, 2020, 101, 105466.	5.6	68
89	Relationship between the emulsifying properties and formation time of rice bran protein fibrils. LWT - Food Science and Technology, 2020, 122, 108985.	2.5	47
90	Fabrication egg white gel hydrolysates-stabilized oil-in-water emulsion and characterization of its stability and digestibility. Food Hydrocolloids, 2020, 102, 105621.	5.6	30
91	Pea protein microgel particles as Pickering stabilisers of oil-in-water emulsions: Responsiveness to pH and ionic strength. Food Hydrocolloids, 2020, 102, 105583.	5.6	112
92	Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110646.	2.5	12
93	Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science and Technology, 2020, 105, 363-377.	7.8	189

#	Article	IF	CITATIONS
94	Plant proteins at low concentrations as natural emulsifiers for an effective orange essential oil microencapsulation by spray drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125470.	2.3	37
95	Metal–Phenolic Network Covering on Zein Nanoparticles as a Regulator on the Oil/Water Interface. Journal of Agricultural and Food Chemistry, 2020, 68, 8471-8482.	2.4	27
96	Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: influence of the nanoparticles concentration. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111294.	2.5	83
97	Effect of preparation procedure on properties of egg white protein and the fibrous microparticle stabilized complex emulsions. Journal of Food Science and Technology, 2021, 58, 3798-3806.	1.4	0
98	The role of conformational state of pH-shifted β-conglycinin on the oil/water interfacial properties and emulsifying capacities. Food Hydrocolloids, 2020, 108, 105990.	5.6	68
99	Nutrition value and viscosity of polymeric enteral nutrition products based on purple sweet potato flour with variation of maltodextrin levels. Jurnal Gizi Indonesia (the Indonesian Journal of) Tj ETQq1 1 0.784314	rg ₿∏ ¢Over	lo e k 10 Tf 50
100	Characteristics of alkali-extracted peanut polysaccharide-protein complexes and their ability as Pickering emulsifiers. International Journal of Biological Macromolecules, 2020, 162, 1178-1186.	3.6	17
101	Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends in Food Science and Technology, 2020, 98, 117-128.	7.8	73
102	Globular proteins as soft particles for stabilizing emulsions: Concepts and strategies. Food Hydrocolloids, 2020, 103, 105664.	5.6	110
103	Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin. Food Research International, 2020, 132, 109032.	2.9	76
104	Extrinsic factors influencing nano-/micro-particle formation in pure soy glycinin solution via heating. Food Hydrocolloids, 2020, 103, 105649.	5.6	8
105	Influence of thermal treatment on oil-water interfacial properties and emulsion stabilization prepared by sono-assembled soy peptide nanoparticles. Food Hydrocolloids, 2020, 103, 105646.	5.6	29
106	Effect of CMC degree of substitution and gliadin/CMC ratio on surface rheology and foaming behavior of gliadin/CMC nanoparticles. Food Hydrocolloids, 2020, 107, 105955.	5.6	41
107	Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science and Technology, 2020, 100, 320-332.	7.8	172
108	Tuning complexation of carboxymethyl cellulose/ cationic chitosan to stabilize Pickering emulsion for curcumin encapsulation. Food Hydrocolloids, 2021, 110, 106135.	5.6	68
109	Application of LF-NMR to the characterization of camellia oil-loaded pickering emulsion fabricated by soy protein isolate. Food Hydrocolloids, 2021, 112, 106329.	5.6	38
110	Combinational effects of acid and salt addition on colloidal, interfacial, and emulsifying properties of purified soybean oil bodies. Food Hydrocolloids, 2021, 111, 106213.	5.6	16
111	Laccase cross-linking of sonicated α-Lactalbumin improves physical and oxidative stability of CLA oil in water emulsion. Ultrasonics Sonochemistry, 2021, 71, 105365	3.8	13

#	Article	IF	CITATIONS
112	Rice peptide nanoparticle as a bifunctional food-grade Pickering stabilizer prepared by ultrasonication: Structural characteristics, antioxidant activity, and emulsifying properties. Food Chemistry, 2021, 343, 128545.	4.2	27
113	Effect of cold and hot enzyme deactivation on the structural and functional properties of rice dreg protein hydrolysates. Food Chemistry, 2021, 345, 128784.	4.2	35
114	Emulsifying and emulsion stabilizing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocolloids, 2021, 113, 106519.	5.6	43
115	Formation and emulsification properties of selfâ€assembled potato protein microgel particles under different pH conditions. International Journal of Food Science and Technology, 2021, 56, 2864-2875.	1.3	9
116	Effect of polysaccharides on the functional properties of egg white protein: A review. Journal of Food Science, 2021, 86, 656-666.	1.5	35
117	Effect of temperature, pH, and ionic strength on the structure and physical stability of double emulsions prepared with starch. LWT - Food Science and Technology, 2021, 141, 111086.	2.5	8
118	The physicochemical properties and stability of flaxseed oil emulsions: effects of emulsification methods and the ratio of soybean protein isolate to soy lecithin. Journal of the Science of Food and Agriculture, 2021, 101, 6407-6416.	1.7	7
119	Tannic acid enhanced the physical and oxidative stability of chitin particles stabilized oil in water emulsion. Food Chemistry, 2021, 346, 128762.	4.2	55
120	Effects of pH on ultrasonic-modified soybean lipophilic protein nanoemulsions with encapsulated vitamin E. LWT - Food Science and Technology, 2021, 144, 111240.	2.5	18
121	Effect of drying methods on the solubility and amphiphilicity of room temperature soluble gelatin extracted by microwave-rapid freezing-thawing coupling. Food Chemistry, 2021, 351, 129226.	4.2	19
122	Interfacial properties of poppy seed protein (Papaver somniferum L.) as an alternative protein source at oil/water interface: influence of pH on stability, morphology and rheology. European Food Research and Technology, 2021, 247, 2545-2556.	1.6	2
123	Electrolysis soy protein isolate-based oleogels prepared with an emulsion-templated approach. International Journal of Food Engineering, 2021, 17, 583-594.	0.7	5
124	Production of Sacha Inchi oil emulsions by highâ€shear and highâ€intensity ultrasound emulsification: Physical properties and stability. Journal of Food Processing and Preservation, 2021, 45, e15865.	0.9	1
125	Self-Assembled Pea Protein Isolate Nanoparticles with Various Sizes: Explore the Formation Mechanism. Journal of Agricultural and Food Chemistry, 2021, 69, 9905-9914.	2.4	29
126	The emulsifying stability of soy hull polysaccharides with different molecular weight obtained from membrane-separation technology. International Journal of Food Engineering, 2021, 17, 693-701.	0.7	3
127	Pickering Emulsion Stabilized by Metal-Phenolic Architectures: A Straightforward In Situ Assembly Strategy. Journal of Agricultural and Food Chemistry, 2021, 69, 11709-11719.	2.4	7
128	Ovalbumin/carboxymethylcellulose colloids: Particle compactness and interfacial stability. Food Chemistry, 2022, 372, 131223.	4.2	16
129	Effects of protein concentration, pH, and NaCl concentration on the physicochemical, interfacial, and emulsifying properties of β-conglycinin. Food Hydrocolloids, 2021, 118, 106784.	5.6	34

#	Article	IF	CITATIONS
130	Acid/ethanol induced pectin gelling and its application in emulsion gel. Food Hydrocolloids, 2021, 118, 106774.	5.6	27
131	Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocolloids, 2021, 119, 106839.	5.6	132
132	Dynamic gastric stability and in vitro lipid digestion of soybean protein isolate and three storage protein-stabilized emulsions: Effects of ultrasonic treatment. Food Research International, 2021, 149, 110666.	2.9	23
133	The effect of salt ion on the freeze-thaw stability and digestibility of the lipophilic protein-hydroxypropyl methylcellulose emulsion. LWT - Food Science and Technology, 2021, 151, 112202.	2.5	12
134	Adsorption kinetics and dilatational rheological properties of recombinant Pea Albumin-2 at the oil-water interface. Food Hydrocolloids, 2021, 120, 106866.	5.6	15
135	Fabrication and characterization of myofibrillar microgel particles as novel Pickering stabilizers: Effect of particle size and wettability on emulsifying capacity. LWT - Food Science and Technology, 2021, 151, 112002.	2.5	26
136	Development of rheologically stable high internal phase emulsions by gelatin/chitooligosaccharide mixtures and food application. Food Hydrocolloids, 2021, 121, 107050.	5.6	77
137	Reinforced pickering emulsions stabilized by desalted duck egg white nanogels with Ca2+ as binding agents. Food Hydrocolloids, 2021, 121, 106974.	5.6	12
138	Molecular structural modification of egg white protein by pH-shifting for improving emulsifying capacity and stability. Food Hydrocolloids, 2021, 121, 107071.	5.6	45
139	A numerical analysis to evaluate the emulsifying activity of pasteurized egg yolk. Food Hydrocolloids, 2022, 123, 107087.	5.6	4
140	Preparation and Characterization of Emulsions Stabilized with Defatted Sesame Meal. Food Science and Technology Research, 2020, 26, 655-663.	0.3	3
141	Comparison of Physicochemical Characteristics and Amino Acid Composition of Water-Soluble Tempe Flour and Commercial SoybeanProtein Isolate. Jurnal Pangan, 2020, 29, 45-54.	0.1	1
142	Preparation and stability characterization of soybean protein isolate/sodium alginate complexes-based nanoemulsions using high-pressure homogenization. LWT - Food Science and Technology, 2022, 154, 112607.	2.5	23
143	Protease-induced soy protein isolate (SPI) characteristics and structure evolution on the oil–water interface of emulsion. Journal of Food Engineering, 2022, 317, 110849.	2.7	9
144	Development and characterization of a novel naturally occurring pentacyclic triterpene self-stabilized pickering emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127908.	2.3	9
145	Self-assembling peptides: Molecule-nanostructure-function and application on food industry. Trends in Food Science and Technology, 2022, 120, 212-222.	7.8	12
146	Insight into the oil polarity impact on interfacial properties of myofibrillar protein. Food Hydrocolloids, 2022, 128, 107563.	5.6	38
147	Structural and interfacial characteristics of ultrasonicated lipophilic-protein-stabilized high internal phase Pickering emulsions. LWT - Food Science and Technology, 2022, 158, 113160.	2.5	13

#	Article	IF	CITATIONS
148	High internal phase emulsions stabilized solely by sonicated quinoa protein isolate at various pH values and concentrations. Food Chemistry, 2022, 378, 132011.	4.2	39
149	Sensory and Biological Potential of Encapsulated Common Bean Protein Hydrolysates Incorporated in a Greek-Style Yogurt Matrix. Polymers, 2022, 14, 854.	2.0	9
150	Extraction and Characterization of Starch from Cassava Peels. Starch/Staerke, 2023, 75, .	1.1	3
151	Distinctive rheological properties of Pickering emulsions: from their origin to the applications. Korea Australia Rheology Journal, 2022, 34, 91-103.	0.7	11
152	Formation of soybean protein isolate-hawthorn flavonoids non-covalent complexes: Linking the physicochemical properties and emulsifying properties. Ultrasonics Sonochemistry, 2022, 84, 105961.	3.8	20
153	N-trimethyl chitosan coated targeting nanoparticles improve the oral bioavailability and antioxidant activity of vitexin. Carbohydrate Polymers, 2022, 286, 119273.	5.1	22
154	Effects of high-energy emulsification methods and environmental stresses on emulsion stability and retention of tocotrienols encapsulated in Pickering emulsions. Journal of Food Engineering, 2022, 327, 111061.	2.7	6
155	Gelatin microgel-stabilized high internal phase emulsion for easy industrialization: Preparation, interfacial behavior and physical stability. Innovative Food Science and Emerging Technologies, 2022, 78, 103011.	2.7	24
156	Heat-induced aggregation kinetics of potato protein – Investigated by chromatography, calorimetry, and light scattering. Food Chemistry, 2022, 389, 133114.	4.2	5
157	Desalted duck egg white nanogels as Pickering stabilizers for food-grade oil-in-water emulsion. Food Science and Human Wellness, 2022, 11, 1306-1314.	2.2	5
158	Pickering Emulsion Stabilized by Tea Seed Cake Protein Nanoparticles as Lutein Carrier. Foods, 2022, 11, 1712.	1.9	8
159	Combined effect of chitosan and bovine serum albumin/whey protein isolate on the characteristics and stability of shrimp oilâ€inâ€water emulsion. Journal of Food Science, 2022, 87, 2879-2893.	1.5	7
160	Fabrication of gel-like emulsions with Î ³ -zein particles using microfluidization: Structure formation and rheological properties. Food Research International, 2022, 158, 111514.	2.9	5
161	Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquid and liquid-gas interfaces. Advances in Colloid and Interface Science, 2022, 308, 102743.	7.0	14
162	Preparation and characterization of okara cellulose crystals as the emulsifier in a pickering emulsion. Journal of Food Measurement and Characterization, 2022, 16, 4433-4443.	1.6	3
163	Spirulina platensis protein isolate nanoparticle stabilized O/W Pickering emulsions: Interfacial adsorption and bulk aggregation. Food Research International, 2022, 161, 111815.	2.9	16
164	Waste Utilization: Physicochemical Characteristics, Stability and Applications of Emulsified Rana Chensinensis Ovum Oil with Waste Extracts. Food Chemistry: X, 2022, , 100436.	1.8	0
165	Tracking the driving forces for the unfolding and folding of kidney bean protein isolates: Revealing mechanisms of dynamic changes in structure and function. Food Chemistry, 2023, 402, 134230.	4.2	11

#	Article	IF	CITATIONS
166	An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocolloids, 2023, 135, 108183.	5.6	27
167	Changes in Emulsifying and Physical Properties of Shrimp Oil/Soybean Oilâ€inâ€Water Emulsion Stabilized by Fish Myofibrillar Protein during the Storage. European Journal of Lipid Science and Technology, 2022, 124, .	1.0	4
168	Molecular structural modification of β-conglycinin using pH-shifting with ultrasound to improve emulsifying properties and stability. Ultrasonics Sonochemistry, 2022, 90, 106186.	3.8	11
169	Đ'Đ»Đ _, ÑĐ¼2Đ,е Đ¿Đ¾Đ»Đ,ÑаÑĐ°Ñ€Đ,ĐƊ½Đ¾Đ3Đ¾ ĐºĐ¾Đ¼Đ¿Đ»ĐµĐºÑа Đ² ÑÑ,ĐµĐ½Đ¾Đ2Đ¾ł	〕¼ ፙ ፞፞፞፞፞፞∰	Ñ,ерÐ,а⊖
170	Functionality of Pea-Grass Carp Co-Precipitated Dual-Protein as Affected by Extraction pH. Foods, 2022, 11, 3136.	1.9	0
171	Modification of functional properties of mussel actomyosin by ultrasound treatment and the appplication at O/W emulsion. LWT - Food Science and Technology, 2022, 170, 114086.	2.5	4
172	Effects of pH-shifting treatments on the emulsifying properties of rice protein isolates: Quantitative analysis of interfacial protein layer. Food Research International, 2023, 164, 112306.	2.9	4
173	Interfacial adsorption properties, rheological properties and oxidation kinetics of oleogel-in-water emulsion stabilized by hemp seed protein. Food Hydrocolloids, 2023, 137, 108402.	5.6	18
174	Facilitated formation of soy protein nanoemulsions by inhibiting protein aggregation: A strategy through the incorporation of polyols. Food Hydrocolloids, 2023, 137, 108376.	5.6	5
176	Pickering emulsions stabilized by homogenized ball-milled eggshell particles in combination with sodium alginate. International Journal of Biological Macromolecules, 2023, 229, 1044-1053.	3.6	5
177	Comparison of emulsifying properties and emulsion stabilising properties of pea protein isolate with various modification methods. International Journal of Food Science and Technology, 2023, 58, 811-823.	1.3	4
178	Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems. International Journal of Food Engineering, 2022, 18, 761-773.	0.7	1
179	Effect of salt treatment on the stabilization of Pickering emulsions prepared with rice bran protein. Food Research International, 2023, 166, 112537.	2.9	7
180	Amphiphilic O(Phe-r-Glu) oligopeptides randomly polymerized via papain exhibiting a pH-insensitive emulsification property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664, 131141.	2.3	1
181	Stability of protein particle based Pickering emulsions in various environments: Review on strategies to inhibit coalescence and oxidation. Food Chemistry: X, 2023, 18, 100651.	1.8	2
182	Ultrasound coupled with weak alkali cycling-induced exchange of free sulfhydryl-disulfide bond for remodeling interfacial flexibility of flaxseed protein isolates. Food Hydrocolloids, 2023, 140, 108597.	5.6	15
183	The role of β-subunit in emulsifying performance of β-conglycinin. Food Hydrocolloids, 2023, 141, 108694.	5.6	1
184	Effects of glycation methods on the interfacial behavior and emulsifying performance of soy protein isolate-gum Arabic conjugates. International Journal of Biological Macromolecules, 2023, 233, 123554.	3.6	15

#	Article	IF	CITATIONS
185	Reversibility of freeze-thaw/re-emulsification on Pickering emulsion stabilized with gliadin/sodium caseinate nanoparticles and konjac glucomannan. International Journal of Biological Macromolecules, 2023, 233, 123653.	3.6	2
186	Determination of the Emulsion Stabilization Mechanisms of Quaternized Glucan of Curdlan via Rheological and Interfacial Characterization. Langmuir, 2023, 39, 3029-3044.	1.6	2
187	Natural egg yolk emulsion as wall material to encapsulate DHA by two-stage homogenization: Emulsion stability, rheology analysis and powder properties. Food Research International, 2023, 167, 112658.	2.9	5
188	Interfacial, and emulsifying properties nexus of green pea protein fractions: Impact of pH and salt. Food Hydrocolloids, 2023, 140, 108652.	5.6	6
189	Effect of egg white protein-insoluble soybean fiber interactions on the formation and structural characteristics of low-oil emulsion gels. Food Hydrocolloids, 2023, 140, 108660.	5.6	6
190	Interfacial properties of protein particles at fluid/fluid interfaces and relationship with the stability of foams and emulsions. , 0, 3, .		0
191	Triple-induced gardenia fruit extract-enriched gelatin/polysaccharides microgels for O/W emulsions, and food 3D printing. Food Bioscience, 2023, 53, 102604.	2.0	5
192	Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods. Foods, 2023, 12, 1556.	1.9	2
193	Soy Protein Isolate/Genipin-Based Nanoparticles for the Stabilization of Pickering Emulsion to Design Self-Healing Guar Gum-Based Hydrogels. Biomacromolecules, 2023, 24, 2087-2099.	2.6	8
201	Utilization of by-products for preparation of Pickering particles. European Food Research and Technology, 2023, 249, 3069-3083.	1.6	1