Hydroxyl Radical Recycling in Isoprene Oxidation Drive Hydrogen Tunneling: The Upgraded LIM1 Mechanism

Journal of Physical Chemistry A 118, 8625-8643 DOI: 10.1021/jp5033146

Citation Report

#	Article	IF	CITATIONS
4	Wavelength-dependent isotope fractionation in visible light O ₃ photolysis and atmospheric implications. Geophysical Research Letters, 2015, 42, 8711-8718.	1.5	7
5	Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO _{<i>x</i>} . Atmospheric Chemistry and Physics, 2015, 15, 11257-11272.	1.9	75
6	The MCM v3.3.1 degradation scheme for isoprene. Atmospheric Chemistry and Physics, 2015, 15, 11433-11459.	1.9	350
7	How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?. Atmospheric Chemistry and Physics, 2015, 15, 11861-11884.	1.9	77
8	Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations. Atmospheric Chemistry and Physics, 2015, 15, 3217-3239.	1.9	14
9	Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations. Geophysical Research Letters, 2015, 42, 8231-8240.	1.5	53
10	Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH). Science, 2015, 347, 643-646.	6.0	130
11	Fast (<i>E</i>)–(<i>Z</i>) Isomerization Mechanisms of Substituted Allyloxy Radicals in Isoprene Oxidation. Journal of Physical Chemistry A, 2015, 119, 7270-7276.	1.1	9
12	A rational strategy for the realization of chain-growth supramolecular polymerization. Science, 2015, 347, 646-651.	6.0	518
13	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49, 10330-10339.	4.6	172
14	The global budgets of organic hydroperoxides for present and pre-industrial scenarios. Atmospheric Environment, 2015, 110, 65-74.	1.9	21
15	Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations. Atmospheric Measurement Techniques, 2015, 8, 1733-1756.	1.2	38
16	Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chemical Reviews, 2015, 115, 4063-4114.	23.0	164
17	Atmospheric Vinyl Alcohol to Acetaldehyde Tautomerization Revisited. Journal of Physical Chemistry Letters, 2015, 6, 4005-4011.	2.1	19
18	lsoprene NO ₃ Oxidation Products from the RO ₂ + HO ₂ Pathway. Journal of Physical Chemistry A, 2015, 119, 10158-10171.	1.1	86
19	Environmental Implications of Hydroxyl Radicals ([•] OH). Chemical Reviews, 2015, 115, 13051-13092.	23.0	998
21	Investigation of potential interferences in the detection of atmospheric RO _{<i>x</i>} radicals by laser-induced fluorescence under dark conditions. Atmospheric Measurement Techniques, 2016, 9, 1431-1447.	1.2	49
26	Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9849-9861.	1.2	48

		Report	
#	ARTICLE Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical	IF	CITATIONS
27	Hydrogen Shift Reactions. Journal of Physical Chemistry A, 2016, 120, 1Ó072-10087.	1,1	91
28	A review of stereochemical implications in the generation of secondary organic aerosol from isoprene oxidation. Environmental Sciences: Processes and Impacts, 2016, 18, 1369-1380.	1.7	14
29	Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6125-6130.	3.3	85
30	Measurements of hydroxyl and hydroperoxy radicals during CalNex‣A: Model comparisons and radical budgets. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4211-4232.	1.2	81
31	Testing Atmospheric Oxidation in an Alabama Forest. Journals of the Atmospheric Sciences, 2016, 73, 4699-4710.	0.6	54
32	Hydrogen shift reactions in four methyl-buten-ol (MBO) peroxy radicals and their impact on the atmosphere. Atmospheric Environment, 2016, 147, 79-87.	1.9	15
33	Ozone sensitivity to isoprene chemistry and emissions and anthropogenic emissions in central California. Atmospheric Environment, 2016, 145, 326-337.	1.9	20
34	The reaction of methyl peroxy and hydroxyl radicals as a major source of atmospheric methanol. Nature Communications, 2016, 7, 13213.	5.8	65
35	The Stability of αâ€Hydroperoxyalkyl Radicals. Chemistry - A European Journal, 2016, 22, 18092-18100.	1.7	24
36	Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmospheric Chemistry and Physics, 2016, 16, 10133-10158.	1.9	109
37	Global tropospheric hydroxyl distribution, budget and reactivity. Atmospheric Chemistry and Physics, 2016, 16, 12477-12493.	1.9	255
38	Why do models overestimate surface ozone in the Southeast United States?. Atmospheric Chemistry and Physics, 2016, 16, 13561-13577.	1.9	320
39	Formaldehyde production from isoprene oxidation acrossÂNO _{<i>x</i>} Âregimes. Atmospheric Chemistry and Physics, 2016, 16, 2597-2610.	1.9	124
40	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991.	1.9	173
41	The lifetime of nitrogen oxides in an isoprene-dominated forest. Atmospheric Chemistry and Physics, 2016, 16, 7623-7637.	1.9	75
42	Rapid Hydrogen Shift Scrambling in Hydroperoxy-Substituted Organic Peroxy Radicals. Journal of Physical Chemistry A, 2016, 120, 266-275.	1.1	62
43	The atmospheric oxidation of dimethyl, diethyl, and diisopropyl ethers. The role of the intramolecular hydrogen shift in peroxy radicals. Physical Chemistry Chemical Physics, 2016, 18, 7707-7714.	1.3	24
44	Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015. Photochemical and Photobiological Sciences, 2016, 15, 141-174.	1.6	48

		_	
CIT	TION	Repo	DT
ULLE		I KEPU	

#	Article	IF	CITATIONS
45	Reply to "Comment on â€~When Rate Constants Are Not Enough'― Journal of Physical Chemistry A, 201 120, 313-317.	¹⁶ ,1.1	5
46	Theoretically derived mechanisms of HPALD photolysis in isoprene oxidation. Physical Chemistry Chemical Physics, 2017, 19, 9096-9106.	1.3	21
47	Recent Advances in the Chemistry of OH and HO2 Radicals in the Atmosphere: Field and Laboratory Measurements. , 2017, , 493-579.		5
48	Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals. Journal of Physical Chemistry A, 2017, 121, 3247-3253.	1.1	27
49	Isoprene Peroxy Radical Dynamics. Journal of the American Chemical Society, 2017, 139, 5367-5377.	6.6	114
50	Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields. Environmental Science & amp; Technology, 2017, 51, 4978-4987.	4.6	53
51	OH production from the photolysis of isoprene-derived peroxy radicals: cross-sections, quantum yields and atmospheric implications. Physical Chemistry Chemical Physics, 2017, 19, 2332-2345.	1.3	16
52	Highly Oxygenated Molecules from Atmospheric Autoxidation of Hydrocarbons: A Prominent Challenge for Chemical Kinetics Studies. International Journal of Chemical Kinetics, 2017, 49, 821-831.	1.0	43
53	Barrierless Reactions with Loose Transition States Govern the Yields and Lifetimes of Organic Nitrates Derived from Isoprene. Journal of Physical Chemistry A, 2017, 121, 8306-8321.	1.1	19
54	Infrared and density functional theory studies of isoprene-water complexes in noble gas matrices. Journal of Molecular Spectroscopy, 2017, 341, 27-34.	0.4	3
55	Sources and Long-Term Trends of Ozone Precursors to Asian Pollution. , 2017, , 167-189.		5
56	Atmospheric Oxidation of Furan and Methyl-Substituted Furans Initiated by Hydroxyl Radicals. Journal of Physical Chemistry A, 2017, 121, 9306-9319.	1.1	33
57	Formation of Highly Oxidized Radicals and Multifunctional Products from the Atmospheric Oxidation of Alkylbenzenes. Environmental Science & amp; Technology, 2017, 51, 8442-8449.	4.6	99
58	Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX. Atmospheric Environment, 2017, 164, 325-336.	1.9	33
59	Model simulation of NO 3 , N 2 O 5 and ClNO 2 at a rural site in Beijing during CAREBeijing-2006. Atmospheric Research, 2017, 196, 97-107.	1.8	35
60	Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO ₂ and RO ₂ radicals. Atmospheric Chemistry and Physics, 2017, 17, 663-690.	1.9	239
61	Investigation of the <i>l²</i> -pinene photooxidation by OH in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2017, 17, 6631-6650.	1.9	27
62	Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data. Atmospheric Chemistry and Physics, 2017, 17, 8725-8738.	1.9	72

#	Article	IF	CITATIONS
63	Theoretical Study of Isoprene Dissociative Photoionization. Chinese Journal of Chemical Physics, 2017, 30, 43-49.	0.6	1
64	Controlled nitric oxide production via O(<sup>1</sup>D)â€ [–] +â€N ₂ O reactions for use in oxidation flow reactor studies. Atmospheric Measurement Techniques, 2017, 10, 2283-2298.	1.2	42
65	Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chemical Reviews, 2018, 118, 3337-3390.	23.0	339
66	Effects of temperature-dependent NO _{<i>x</i>} emissions on continental ozone production. Atmospheric Chemistry and Physics, 2018, 18, 2601-2614.	1.9	62
67	Perspective on Mechanism Development and Structureâ€Activity Relationships for Gasâ€Phase Atmospheric Chemistry. International Journal of Chemical Kinetics, 2018, 50, 435-469.	1.0	45
68	The photolysis of α-hydroperoxycarbonyls. Physical Chemistry Chemical Physics, 2018, 20, 6970-6979.	1.3	14
70	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	1.9	30
71	Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.	1.9	36
72	Hybridization of Nitrogen Determines Hydrogen-Bond Acceptor Strength: Gas-Phase Comparison of Redshifts and Equilibrium Constants. Journal of Physical Chemistry A, 2018, 122, 3899-3908.	1.1	8
73	Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions. Journal of Chemical Theory and Computation, 2018, 14, 30-47.	2.3	16
74	Intercomparison of OH and OH reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS). Atmospheric Environment, 2018, 174, 227-236.	1.9	22
75	Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2018, 18, 9297-9328.	1.9	48
78	Low-pressure gas chromatography with chemical ionization mass spectrometry for quantification of multifunctional organic compounds in the atmosphere. Atmospheric Measurement Techniques, 2018, 11, 6815-6832.	1.2	23
79	A comprehensive organic nitrate chemistry: insights into the lifetime of atmospheric organic nitrates. Atmospheric Chemistry and Physics, 2018, 18, 15419-15436.	1.9	57
80	Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HO _{<i>x</i>} measurements over Cyprus. Atmospheric Chemistry and Physics, 2018, 18, 10825-10847.	1.9	35
82	Evaluation of OH and HO ₂ concentrations and their budgets during photooxidation of 2-methyl-3-butene-2-ol (MBO) in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2018, 18, 11409-11422.	1.9	20
83	Primary Formation of Highly Oxidized Multifunctional Products in the OH-Initiated Oxidation of Isoprene: A Combined Theoretical and Experimental Study. Environmental Science & Technology, 2018, 52, 12255-12264.	4.6	33
84	Calculated Hydrogen Shift Rate Constants in Substituted Alkyl Peroxy Radicals. Journal of Physical Chemistry A, 2018, 122, 8665-8673.	1.1	55

CITATION REPORT

#	Article	IF	CITATIONS
85	Probing the Migration of Free Radicals in Solid and Liquid Media via Cr(VI) Reduction by High-Energy Electron Beam Irradiation. Scientific Reports, 2018, 8, 15196.	1.6	3
86	NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmospheric Measurement Techniques, 2018, 11, 5049-5073.	1.2	37
88	Atmospheric Oxidation Mechanism of Sabinene Initiated by the Hydroxyl Radicals. Journal of Physical Chemistry A, 2018, 122, 8783-8793.	1.1	6
89	AÂsteady-state continuous flow chamber for the study of daytime and nighttime chemistry under atmospherically relevant NO levels. Atmospheric Measurement Techniques, 2018, 11, 2537-2551.	1.2	14
91	Optical property variations from a precursor (isoprene) to its atmospheric oxidation products. Atmospheric Environment, 2018, 193, 198-204.	1.9	6
92	Wintertime photochemistry in Beijing: observations of RO _{<i>x</i>} radical concentrations in the North China Plain during the BEST-ONE campaign. Atmospheric Chemistry and Physics, 2018, 18, 12391-12411.	1.9	177
94	Kinetics of the Reaction of OH with Isoprene over a Wide Range of Temperature and Pressure Including Direct Observation of Equilibrium with the OH Adducts. Journal of Physical Chemistry A, 2018, 122, 7239-7255.	1.1	16
95	Impact of Shortâ€Term Climate Variability on Volatile Organic Compounds Emissions Assessed Using OMI Satellite Formaldehyde Observations. Geophysical Research Letters, 2018, 45, 8681-8689.	1.5	24
96	Investigation of the oxidation of methyl vinyl ketone (MVK) by OH radicals in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2018, 18, 8001-8016.	1.9	22
97	Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NO _{<i>x</i>} conditions. Atmospheric Chemistry and Physics, 2019, 19, 7255-7278.	1.9	46
98	Estimation of rate coefficients and branching ratios for reactions of organic peroxy radicals for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2019, 19, 7691-7717.	1.9	70
99	Theoretical investigation on the reaction mechanism and kinetics of a Criegee intermediate with ethylene and acetylene. Physical Chemistry Chemical Physics, 2019, 21, 16583-16590.	1.3	9
102	Direct retrieval of isoprene from satellite-based infrared measurements. Nature Communications, 2019, 10, 3811.	5.8	42
103	A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol. Atmospheric Chemistry and Physics, 2019, 19, 9613-9640.	1.9	117
105	The CRI v2.2 reduced degradation scheme for isoprene. Atmospheric Environment, 2019, 212, 172-182.	1.9	29
106	Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTEÂv1.1) – Part 1: Chemical mechanism. Geoscientific Model Development, 2019, 12, 2307-2356.	1.3	28
107	Experimental budgets of OH, HO ₂ , and RO ₂ radicals and implications for ozone formation in the Pearl River Delta in China 2014. Atmospheric Chemistry and Physics, 2019, 19, 7129-7150.	1.9	92
108	The community atmospheric chemistry box model CAABA/MECCA-4.0. Geoscientific Model Development, 2019, 12, 1365-1385.	1.3	54

#	Article	IF	CITATIONS
109	Adaptive Dimensional Decoupling for Compression of Quantum Nuclear Wave Functions and Efficient Potential Energy Surface Representations through Tensor Network Decomposition. Journal of Chemical Theory and Computation, 2019, 15, 2780-2796.	2.3	10
110	Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation. Atmospheric Chemistry and Physics, 2019, 19, 3493-3513.	1.9	145
111	First oxidation products from the reaction of hydroxyl radicals with isoprene for pristine environmental conditions. Communications Chemistry, 2019, 2, .	2.0	43
112	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509.	23.0	460
113	Investigation of the <i>α</i> -pinene photooxidation by OH in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2019, 19, 11635-11649.	1.9	17
115	Computational study on the mechanism and kinetics for the reaction between HO ₂ and <i>n</i> -propyl peroxy radical. RSC Advances, 2019, 9, 40437-40444.	1.7	5
116	Intramolecular Hydrogen Shift Chemistry of Hydroperoxy-Substituted Peroxy Radicals. Journal of Physical Chemistry A, 2019, 123, 590-600.	1.1	31
117	Multigenerational Theoretical Study of Isoprene Peroxy Radical 1–5-Hydrogen Shift Reactions that Regenerate HOx Radicals and Produce Highly Oxidized Molecules. Journal of Physical Chemistry A, 2019, 123, 906-919.	1.1	10
118	The Importance of Peroxy Radical Hydrogen-Shift Reactions in Atmospheric Isoprene Oxidation. Journal of Physical Chemistry A, 2019, 123, 920-932.	1.1	66
120	Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature, 2020, 585, 225-233.	13.7	53
121	Atmospheric Autoxidation of Amines. Environmental Science & amp; Technology, 2020, 54, 11087-11099.	4.6	33
122	A computational investigation on the HO2 and isopropyl peroxy radical reaction: Mechanism and kinetics. Chemical Physics Letters, 2020, 749, 137442.	1.2	4
123	Investigation of the Dynamism of Nanosized SOA Particle Formation in Indoor Air by a Scanning Mobility Particle Sizer and Proton-Transfer-Reaction Mass Spectrometry. Molecules, 2020, 25, 2202.	1.7	4
124	Impacts of precursors on peroxyacetyl nitrate (PAN) and relative formation of PAN to ozone in a southwestern megacity of China. Atmospheric Environment, 2020, 231, 117542.	1.9	19
126	On the Theoretical Determination of Photolysis Properties for Atmospheric Volatile Organic Compounds. Journal of Physical Chemistry Letters, 2020, 11, 5418-5425.	2.1	25
128	Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2020, 20, 3333-3355.	1.9	44
129	Double Bonds Are Key to Fast Unimolecular Reactivity in First-Generation Monoterpene Hydroxy Peroxy Radicals. Journal of Physical Chemistry A, 2020, 124, 2885-2896.	1.1	37
130	Implementation of a chemical background method for atmospheric OH measurements by laser-induced fluorescence: characterisation and observations from the UK and China. Atmospheric Measurement Techniques, 2020, 13, 3119-3146.	1.2	18

#	Article	IF	CITATIONS
131	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	1.3	189
132	No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014. Environmental Science & Technology, 2020, 54, 5973-5979.	4.6	67
133	Can Isoprene Oxidation Explain High Concentrations of Atmospheric Formic and Acetic Acid over Forests?. ACS Earth and Space Chemistry, 2020, 4, 730-740.	1.2	22
134	Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US. Atmospheric Chemistry and Physics, 2020, 20, 3739-3776.	1.9	47
135	Hydroxyl, hydroperoxyl free radicals determination methods in atmosphere and troposphere. Journal of Environmental Sciences, 2021, 99, 324-335.	3.2	15
136	Changes to simulated global atmospheric composition resulting from recent revisions to isoprene oxidation chemistry. Atmospheric Environment, 2021, 244, 117914.	1.9	13
137	Unimolecular Reactions Following Indoor and Outdoor Limonene Ozonolysis. Journal of Physical Chemistry A, 2021, 125, 669-680.	1.1	26
138	Low-NO atmospheric oxidation pathways in a polluted megacity. Atmospheric Chemistry and Physics, 2021, 21, 1613-1625.	1.9	24
139	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	1.9	64
140	Atmospheric Chemistry of Allylic Radicals from Isoprene: A Successive Cyclization-Driven Autoxidation Mechanism. Environmental Science & Technology, 2021, 55, 4399-4409.	4.6	20
141	Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument. Atmospheric Measurement Techniques, 2021, 14, 1851-1877.	1.2	8
142	Nonadiabatic Kinetics in the Intermediate Coupling Regime: Comparing Molecular Dynamics to an Energy-Grained Master Equation. Journal of Physical Chemistry A, 2021, 125, 3473-3488.	1.1	5
143	Rapid production of highly oxidized molecules in isoprene aerosol via peroxy and alkoxy radical isomerization pathways in low and high NOx environments: Combined laboratory, computational and field studies. Science of the Total Environment, 2021, 775, 145592.	3.9	11
145	Measurements of Total OH Reactivity During CalNex‣A. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032988.	1.2	5
146	Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical. Atmospheric Chemistry and Physics, 2021, 21, 10799-10824.	1.9	19
147	Watching a hydroperoxyalkyl radical (•QOOH) dissociate. Science, 2021, 373, 679-682.	6.0	31
148	Improvements to the representation of BVOC chemistry–climate interactions in UKCA (v11.5) with the CRI-StratÂ2 mechanism: incorporation and evaluation. Geoscientific Model Development, 2021, 14, 5239-5268.	1.3	12
150	Theoretical and experimental study of peroxy and alkoxy radicals in the NO ₃ -initiated oxidation of isoprene. Physical Chemistry Chemical Physics, 2021, 23, 5496-5515.	1.3	22

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
151	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
152	HÂmigration in peroxy radicals under atmospheric conditions. Atmospheric Chemistry and Physics, 2020, 20, 7429-7458.	1.9	67
153	OH and HO ₂ radical chemistry in a midlatitude forest: measurements and model comparisons. Atmospheric Chemistry and Physics, 2020, 20, 9209-9230.	1.9	17
159	Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112). Geoscientific Model Development, 2020, 13, 5507-5548.	1.3	11
161	Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets. Atmospheric Chemistry and Physics, 2021, 21, 16067-16091.	1.9	4
162	Photooxidation of pinonaldehyde at ambient conditions investigated in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2020, 20, 13701-13719.	1.9	6
163	Chemistry of Functionalized Reactive Organic Intermediates in the Earth's Atmosphere: Impact, Challenges, and Progress. Journal of Physical Chemistry A, 2021, 125, 10264-10279.	1.1	3
164	Highly Oxygenated Organic Nitrates Formed from NO ₃ Radical-Initiated Oxidation of β-Pinene. Environmental Science & Technology, 2021, 55, 15658-15671.	4.6	17
165	Observation and simulation of HOx radicals in an urban area in Shanghai, China. Science of the Total Environment, 2022, 810, 152275.	3.9	9
166	Reconciling Observed and Predicted Tropical Rainforest OH Concentrations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
167	Seasonality of isoprene emissions and oxidation products above the remote Amazon. Environmental Science Atmospheres, 2022, 2, 230-240.	0.9	4
168	Energy-resolved and time-dependent unimolecular dissociation of hydroperoxyalkyl radicals (˙QOOH). Faraday Discussions, 0, 238, 575-588.	1.6	2
169	Direct Measurements of Isoprene Autoxidation: Pinpointing Atmospheric Oxidation in Tropical Forests. Jacs Au, 2022, 2, 809-818.	3.6	6
170	Impact of Drought on Isoprene Fluxes Assessed Using Field Data, Satellite-Based GLEAM Soil Moisture and HCHO Observations from OMI. Remote Sensing, 2022, 14, 2021.	1.8	5
173	Anthropogenic monoterpenes aggravating ozone pollution. National Science Review, 2022, 9, .	4.6	17
174	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. Geophysical Research Letters, 2022, 49, .	1.5	8
175	OH and HO ₂ radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Chemistry and Physics, 2022, 22, 7005-7028.	1.9	19
176	Improved sensitivity on detection of Cu and Cr in liquids using glow discharge technology assisted with LIBS. Plasma Science and Technology, 0, , .	0.7	1

ARTICLE

IF CITATIONS

Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large) Tj ETQq0 0 0 rgBT 1@verlock310 Tf 50 7 177

178	A Theoretical Perspective on the Actinic Photochemistry of 2-Hydroperoxypropanal. Journal of Physical Chemistry A, 2022, 126, 5420-5433.	1.1	3
179	Probing isoprene photochemistry at atmospherically relevant nitric oxide levels. CheM, 2022, 8, 3225-3240.	5.8	4
180	Radical chemistry in the Pearl River Delta: observations and modeling of OH and HO ₂ radicals in Shenzhen in 2018. Atmospheric Chemistry and Physics, 2022, 22, 12525-12542.	1.9	13
181	Cost-Effective Implementation of Multiconformer Transition State Theory for Alkoxy Radical Unimolecular Reactions. Journal of Physical Chemistry A, 2022, 126, 6483-6494.	1.1	4
182	Review of technologies and their applications for the speciated detection of RO2 radicals. Journal of Environmental Sciences, 2023, 123, 487-499.	3.2	2
183	Atmospheric degradation of two pesticides mixed with volatile organic compounds emitted by citrus trees. Ozone and secondary organic aerosol production. Atmospheric Environment, 2023, 295, 119541.	1.9	3
184	Atmospheric degradation mechanisms and kinetics for OH-initiated oxidation of <i>trans</i> -β-ocimene. Molecular Physics, 0, , .	0.8	0
185	Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chemical Reviews, 2023, 123, 1635-1679.	23.0	29
186	Strong relations of peroxyacetyl nitrate (PAN) formation to alkene and nitrous acid during various episodes. Environmental Pollution, 2023, 326, 121465.	3.7	1
187	Experimental chemical budgets of OH, HO ₂ , and RO ₂ radicals in rural air in western Germany during the JULIAC campaign 2019. Atmospheric Chemistry and Physics, 2023, 23, 2003-2033.	1.9	1
188	The reaction of organic peroxy radicals with unsaturated compounds controlled by a non-epoxide pathway under atmospheric conditions. Physical Chemistry Chemical Physics, 2023, 25, 7772-7782.	1.3	1
189	Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO ₃ oxidation. Atmospheric Chemistry and Physics, 2023, 23, 3147-3180.	1.9	1
190	Preparation of Experiments: Addition and In Situ Production of Trace Gases and Oxidants in the Gas Phase. , 2023, , 129-161.		0
191	Introduction to Atmospheric Simulation Chambers and Their Applications. , 2023, , 1-72.		0

Introduction to Atmospheric Simulation Chambers and Their Applications., 2023, , 1-72. 191