Design of Lipid Nanocapsule Delivery Vehicles for Mult Trimers in HIV Vaccination

Bioconjugate Chemistry 25, 1470-1478 DOI: 10.1021/bc5002246

Citation Report

#	Article	IF	CITATIONS
1	Design of Lipid Nanocapsule Delivery Vehicles for Multivalent Display of Recombinant Env Trimers in HIV Vaccination. Bioconjugate Chemistry, 2014, 25, 1470-1478.	1.8	38
2	High-Density Array of Well-Ordered HIV-1 Spikes on Synthetic Liposomal Nanoparticles Efficiently Activate B Cells. Cell Reports, 2016, 15, 1986-1999.	2.9	127
3	HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Review of Vaccines, 2016, 15, 349-365.	2.0	44
4	Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Review of Vaccines, 2016, 15, 719-729.	2.0	30
5	Nativeâ€like Env trimers as a platform for <scp>HIV</scp> â€1 vaccine design. Immunological Reviews, 2017, 275, 161-182.	2.8	221
6	Vaccine nanoparticles for protection against HIV infection. Nanomedicine, 2017, 12, 673-682.	1.7	22
7	Particle-based delivery of the HIV envelope protein. Current Opinion in HIV and AIDS, 2017, 12, 265-271.	1.5	16
8	Covalent Linkage of HIV-1 Trimers to Synthetic Liposomes Elicits Improved B Cell and Antibody Responses. Journal of Virology, 2017, 91, .	1.5	71
9	Modulating the immune system through nanotechnology. Seminars in Immunology, 2017, 34, 78-102.	2.7	90
10	Nanoparticle vaccines against viral infections. Archives of Virology, 2018, 163, 2313-2325.	0.9	36
11	Bionanotechnology for vaccine design. Current Opinion in Biotechnology, 2018, 52, 80-88.	3.3	23
12	Quantitation and Stability of Protein Conjugation on Liposomes for Controlled Density of Surface Epitopes. Bioconjugate Chemistry, 2018, 29, 1251-1260.	1.8	20
13	Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes. Scientific Reports, 2018, 8, 16527.	1.6	69
14	Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Frontiers in Immunology, 2018, 9, 345.	2.2	57
15	Bilayer polymeric nanocapsules: A formulation approach for a thermostable and adjuvanted E. coli antigen vaccine. Journal of Controlled Release, 2018, 286, 20-32.	4.8	30
16	Adjuvant and Antigen Systems for Malaria Transmissionâ€Blocking Vaccines. Advanced Biology, 2018, 2, 1800011.	3.0	7
17	Nanoparticle Vaccines for Inducing HIV-1 Neutralizing Antibodies. Vaccines, 2019, 7, 76.	2.1	40
18	Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics, 2019, 11, 534	2.0	74

CITATION REPORT

#	Article	IF	CITATIONS
19	Unidirectional Presentation of Membrane Proteins in Nanoparticle‣upported Liposomes. Angewandte Chemie, 2019, 131, 9971-9975.	1.6	0
20	Unidirectional Presentation of Membrane Proteins in Nanoparticleâ€6upported Liposomes. Angewandte Chemie - International Edition, 2019, 58, 9866-9870.	7.2	9
21	Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Review of Vaccines, 2019, 18, 1127-1143.	2.0	23
22	Nano-multilamellar lipid vesicles (NMVs) enhance protective antibody responses against Shiga toxin (Stx2a) produced by enterohemorrhagic Escherichia coli strains (EHEC). Brazilian Journal of Microbiology, 2019, 50, 67-77.	0.8	13
23	Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for induction of potent antibody and polyfunctional T cell responses. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 414-425.	1.7	17
24	Designing Multivalent Ligands to Control Biological Interactions: From Vaccines and Cellular Effectors to Targeted Drug Delivery. Chemistry - an Asian Journal, 2019, 14, 244-255.	1.7	33
25	Presentation of HIV-1 Envelope Trimers on the Surface of Silica Nanoparticles. Journal of Pharmaceutical Sciences, 2020, 109, 911-921.	1.6	19
26	Critical design criteria for engineering a nanoparticulate HIV-1 vaccine. Journal of Controlled Release, 2020, 317, 322-335.	4.8	19
27	Conjugation of Native-Like HIV-1 Envelope Trimers onto Liposomes Using EDC/Sulfo-NHS Chemistry: Requirements and Limitations. Pharmaceutics, 2020, 12, 979.	2.0	12
28	Crosslinked polymer nanocapsules for therapeutic, diagnostic, and theranostic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1653.	3.3	17
29	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	1.5	29
30	Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nature Nanotechnology, 2021, 16, 1-14.	15.6	150
31	Liposome engraftment and antigen combination potentiate the immune response towards conserved epitopes of the malaria vaccine candidate MSP2. Vaccine, 2021, 39, 1746-1757.	1.7	1
32	HIV envelope antigen valency on peptide nanofibers modulates antibody magnitude and binding breadth. Scientific Reports, 2021, 11, 14494.	1.6	6
33	PLAN B for immunotherapy: Promoting and leveraging anti-tumor B cell immunity. Journal of Controlled Release, 2021, 339, 156-163.	4.8	12
34	Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. Chemical Biology, 2017, , 300-357.	0.1	4
35	DNAâ€Directed Patterning for Versatile Validation and Characterization of a Lipidâ€Based Nanoparticle Model of SARS oVâ€2. Advanced Science, 2021, 8, e2101166.	5.6	4
36	Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharmaceutica Sinica B, 2022, 12, 2206-2223.	5.7	52

#	Article	IF	CITATIONS
37	Nano-multilamellar lipid vesicles promote the induction of SARS-CoV-2 immune responses by a protein-based vaccine formulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 45, 102595.	1.7	2
38	Vinyl Sulfone-functionalized Acetalated Dextran Microparticles as a Subunit Broadly Acting Influenza Vaccine. AAPS Journal, 2023, 25, .	2.2	4

CITATION REPORT