Metabolic Reprogramming Is Required for Antibody Pro Anergic but Exaggerated in Chronically BAFF-Exposed I

Journal of Immunology 192, 3626-3636 DOI: 10.4049/jimmunol.1302062

Citation Report

CITA	TION	DEDC	דתר

#	Article	IF	CITATIONS
1	The Intercellular Metabolic Interplay between Tumor and Immune Cells. Frontiers in Immunology, 2014, 5, 358.	2.2	77
2	Powering the Immune System: Mitochondria in Immune Function and Deficiency. Journal of Immunology Research, 2014, 2014, 1-8.	0.9	68
3	Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis. Cell Death and Disease, 2014, 5, e1470-e1470.	2.7	59
4	Metabolic regulation of natural killer cells. Biochemical Society Transactions, 2015, 43, 758-762.	1.6	29
5	Higher levels of reactive oxygen species are associated with anergy in chronic lymphocytic leukemia. Haematologica, 2015, 100, e265-e268.	1.7	9
6	Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. Journal of Clinical Investigation, 2015, 125, 194-207.	3.9	562
7	B Cell–Intrinsic CD84 and Ly108 Maintain Germinal Center B Cell Tolerance. Journal of Immunology, 2015, 194, 4130-4143.	0.4	53
8	Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation. Frontiers in Immunology, 2015, 6, 14.	2.2	42
9	Asymmetric PI3K Signaling Driving Developmental and Regenerative Cell Fate Bifurcation. Cell Reports, 2015, 13, 2203-2218.	2.9	111
10	Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B1. Cell Reports, 2015, 13, 122-131.	2.9	96
11	Reprint of: B Cells in Chronic Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, S11-S18.	2.0	4
12	Targeting T cell metabolism for therapy. Trends in Immunology, 2015, 36, 71-80.	2.9	204
13	The RNA-binding protein HuR is essential for the B cell antibody response. Nature Immunology, 2015, 16, 415-425.	7.0	125
14	T-cell metabolism in autoimmune disease. Arthritis Research and Therapy, 2015, 17, 29.	1.6	118
15	E3ÂUbiquitin Ligase VHL Regulates Hypoxia-Inducible Factor-1α to Maintain Regulatory T Cell Stability and Suppressive Capacity. Immunity, 2015, 42, 1062-1074.	6.6	175
16	Novel Therapeutic Targets of Tumor Metabolism. Cancer Journal (Sudbury, Mass), 2015, 21, 62-69.	1.0	36
17	Distinct and synergistic roles of Fcl ³ RIIB deficiency and 129 strain-derived SLAM family proteins in the development of spontaneous germinal centers and autoimmunity. Journal of Autoimmunity, 2015, 63, 31-46.	3.0	21
18	Glucose, glycolysis and lymphocyte responses. Molecular Immunology, 2015, 68, 513-519.	1.0	141

	CITATION	Report	
#	Article	IF	CITATIONS
19	Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity, 2015, 43, 435-449.	6.6	480
20	Causes of upregulation of glycolysis in lymphocytes upon stimulation. A comparison with other cell types. Biochimie, 2015, 118, 185-194.	1.3	15
21	B Cells in Chronic Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, 16-23.	2.0	86
22	Metabolic Factors that Contribute to Lupus Pathogenesis. Critical Reviews in Immunology, 2016, 36, 75-98.	1.0	29
23	Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Frontiers in Immunology, 2016, 7, 52.	2.2	364
24	Candida albicans Induces Metabolic Reprogramming in Human NK Cells and Responds to Perforin with a Zinc Depletion Response. Frontiers in Microbiology, 2016, 7, 750.	1.5	17
25	Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity, 2016, 45, 60-73.	6.6	212
26	Soluble BAFF Level Is Not Correlated to Mycobacterium avium Subspecies Paratuberculosis Antibodies and Increases After Interferon-Î ² Therapy in Multiple Sclerosis Patients. Journal of Molecular Neuroscience, 2016, 60, 91-93.	1.1	8
27	Anabolism-Associated Mitochondrial Stasis Driving Lymphocyte Differentiation over Self-Renewal. Cell Reports, 2016, 17, 3142-3152.	2.9	90
28	TRAF3 deficiency promotes metabolic reprogramming in B cells. Scientific Reports, 2016, 6, 35349.	1.6	41
29	The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nature Cell Biology, 2016, 18, 645-656.	4.6	176
30	AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival. Cell Metabolism, 2016, 23, 649-662.	7.2	195
31	Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nature Immunology, 2016, 17, 1459-1466.	7.0	402
32	Suppression by TFR cells leads to durable and selective inhibition of B cell effector function. Nature Immunology, 2016, 17, 1436-1446.	7.0	189
33	Immune Cell Metabolism in Systemic Lupus Erythematosus. Current Rheumatology Reports, 2016, 18, 66.	2.1	30
34	The PI3K pathway in B cell metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 359-378.	2.3	106
35	Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host and Microbe, 2016, 20, 202-214.	5.1	601
36	Serum BAFF levels, Methypredsinolone therapy, Epstein-Barr Virus and Mycobacterium avium subsp. paratuberculosis infection in Multiple Sclerosis patients. Scientific Reports, 2016, 6, 29268.	1.6	18

#	Article	IF	CITATIONS
37	An Optimized Protocol to Analyze Glycolysis and Mitochondrial Respiration in Lymphocytes. Journal of Visualized Experiments, 2016, , .	0.2	31
38	Location, Location, Location: Localized Memory Cells Take Residence in the Allergic Lung. Immunity, 2016, 44, 13-15.	6.6	4
39	Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function. Immunity, 2016, 44, 88-102.	6.6	69
40	Metabolic stress is a barrier to Epstein–Barr virus-mediated B-cell immortalization. Proceedings of the United States of America, 2016, 113, E782-90.	3.3	94
41	Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10.	1.6	332
42	AIF Is "Always In Fashion―for T Cells. Immunity, 2016, 44, 11-13.	6.6	7
43	Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1 α -dependent. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1564-1569.	3.3	177
44	Gsk3 is a metabolic checkpoint regulator in B cells. Nature Immunology, 2017, 18, 303-312.	7.0	222
45	Glycolysis regulates LPS-induced cytokine production in M2 polarized human macrophages. Immunology Letters, 2017, 183, 17-23.	1.1	30
46	Metabolic Regulation of the Immune Humoral Response. Immunity, 2017, 46, 743-755.	6.6	201
47	CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell Host Dependency Factors. Cell Host and Microbe, 2017, 21, 580-591.e7.	5.1	113
48	Fuelling the mechanisms of asthma: Increased fatty acid oxidation in inflammatory immune cells may represent a novel therapeutic target. Clinical and Experimental Allergy, 2017, 47, 1170-1184.	1.4	28
49	Vitamin D endocrinology on the cross-road between immunity and metabolism. Molecular and Cellular Endocrinology, 2017, 453, 52-67.	1.6	82
50	Metabolic Instruction of Immunity. Cell, 2017, 169, 570-586.	13.5	871
51	Homocysteine Activates B Cells via Regulating PKM2-Dependent Metabolic Reprogramming. Journal of Immunology, 2017, 198, 170-183.	0.4	55
52	A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell Death and Differentiation, 2017, 24, 1239-1252.	5.0	52
53	Starving for survival—how catabolic metabolism fuels immune function. Current Opinion in Immunology, 2017, 46, 8-13.	2.4	13
54	Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 313-320.	3.5	58

		CITATION REPOR	Т
#	Article	IF	Citation
55	Immunometabolism in systemic lupus erythematosus. Nature Reviews Rheumatology, 2017	7, 13, 280-290. 3.5	190
56	Regulation of humoral immunity by gut microbial products. Gut Microbes, 2017, 8, 392-39	9. 4.3	60
57	Hypoxia and B cells. Experimental Cell Research, 2017, 356, 197-203.	1.2	36
58	Metabolic regulation of inflammation. Nature Reviews Rheumatology, 2017, 13, 267-279.	3.5	211
60	Guidelines for the use of flow cytometry and cell sorting in immunological studies ^{*<!--<br-->European Journal of Immunology, 2017, 47, 1584-1797.}	sup>. 1.6	505
61	Lactic Acid: No Longer an Inert and End-Product of Glycolysis. Physiology, 2017, 32, 453-46	.3. 1.6	170
62	Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation Communications, 2017, 8, 891.	ı. Nature 5.8	34
63	B-cell Receptor Signaling Regulates Metabolism in Chronic Lymphocytic Leukemia. Molecul Research, 2017, 15, 1692-1703.	ar Cancer 1.5	38
64	Metabolism in Immune Cell Differentiation and Function. Advances in Experimental Medicir Biology, 2017, 1011, 1-85.	ie and 0.8	14
65	Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental Medicine a 2017, 1011, 163-196.	nd Biology, 0.8	23
67	Metabolic abnormalities and oxidative stress in lupus. Current Opinion in Rheumatology, 20 442-449.)17, 29, 2.0	67
68	Metabolic control of type 2 immunity. European Journal of Immunology, 2017, 47, 1266-12	.75. 1.6	21
69	Metabolic changes during B cell differentiation for the production of intestinal IgA antibody Cellular and Molecular Life Sciences, 2017, 74, 1503-1509.	<i>ו</i> . 2.4	34
70	Mitochondrial function, ornamentation, and immunocompetence. Biological Reviews, 2017 1459-1474.	, 92, 4.7	93
71	Comparison of the effect of the aerobic glycolysis inhibitor dichloroacetate and of the Kreb inhibitor LW6 on cellular and humoral alloimmunity. Biomedical Reports, 2017, 7, 439-444.	s cycle 0.9	10
73	Metabolic Regulation of Immunity. , 2017, , 318-326.		1
74	MYC in Regulating Immunity: Metabolism and Beyond. Genes, 2017, 8, 88.	1.0	67
75	Reprint of Milk fever in dairy cows is preceded by activation of innate immunity and alterati carbohydrate metabolism prior to disease occurrence. Research in Veterinary Science, 2018	ons in 8, 116, 72-82.	2

#	Article	IF	CITATIONS
76	Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression. Nature Communications, 2018, 9, 1514.	5.8	44
77	Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency. Npj Microgravity, 2018, 4, 4.	1.9	15
78	B-Cell Metabolic Remodeling and Cancer. Trends in Cancer, 2018, 4, 138-150.	3.8	50
79	Asymmetric PI3K Activity in Lymphocytes Organized by a PI3K-Mediated Polarity Pathway. Cell Reports, 2018, 22, 860-868.	2.9	31
80	Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nature Communications, 2018, 9, 251.	5.8	188
81	Let-7 Suppresses B Cell Activation through Restricting the Availability of Necessary Nutrients. Cell Metabolism, 2018, 27, 393-403.e4.	7.2	87
82	EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. Journal of Immunology, 2018, 200, 1039-1052.	0.4	99
83	Milk fever in dairy cows is preceded by activation of innate immunity and alterations in carbohydrate metabolism prior to disease occurrence. Research in Veterinary Science, 2018, 117, 167-177.	0.9	13
84	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental Medicine, 2018, 215, 399-413.	4.2	97
85	Chemical metabolomics for investigating the protective effectiveness ofAcanthopanax senticosusHarms leaf against acute promyelocytic leukemia. RSC Advances, 2018, 8, 11983-11990.	1.7	8
86	Senescent B cells in aging and age-related diseases: Their role in the regulation of antibody responses. Experimental Gerontology, 2018, 107, 55-58.	1.2	56
87	Metabolic Links between Plasma Cell Survival, Secretion, and Stress. Trends in Immunology, 2018, 39, 19-27.	2.9	83
88	Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion, 2018, 41, 58-65.	1.6	52
89	Lactate and Immunosuppression in Sepsis. Shock, 2018, 49, 120-125.	1.0	112
90	CD24 Expression and B Cell Maturation Shows a Novel Link With Energy Metabolism: Potential Implications for Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Frontiers in Immunology, 2018, 9, 2421.	2.2	36
91	Cross-talk between signal transduction and metabolism in B cells. Immunology Letters, 2018, 201, 1-13.	1.1	33
92	Biological Activity of the Carrier as a Factor in Immunogen Design for Haptens. Molecules, 2018, 23, 2977.	1.7	11
93	Control of the Germinal Center by Follicular Regulatory T Cells During Infection. Frontiers in Immunology, 2018, 9, 2704.	2.2	35

		CITATION RE	PORT	
#	Article		IF	Citations
94	Emerging areas for therapeutic discovery in SLE. Current Opinion in Immunology, 2018, 55,	1-8.	2.4	6
95	Increased Mitochondrial Biogenesis and Reactive Oxygen Species Production Accompany Pro CD4+ T Cell Activation. Journal of Immunology, 2018, 201, 3294-3306.	blonged	0.4	39
96	Increased Lactate in Gastric Cancer Tumor-Infiltrating Lymphocytes Is Related to Impaired T Function Due to miR-34a Deregulated Lactate Dehydrogenase A. Cellular Physiology and Bio 2018, 49, 828-836.	Cell chemistry,	1.1	36
97	R-Ras2 is required for germinal center formation to aid B cells during energetically demandin processes. Science Signaling, 2018, 11, .	ğ	1.6	24
98	Inflammation-induced metabolic derangements or adaptation: An immunometabolic perspec Cytokine and Growth Factor Reviews, 2018, 43, 47-53.	tive.	3.2	22
99	Immunometabolism in cancer at a glance. DMM Disease Models and Mechanisms, 2018, 11,		1.2	70
100	DUSP6 mediates T cell receptor-engaged glycolysis and restrains T _{FH} cell differ Proceedings of the National Academy of Sciences of the United States of America, 2018, 11 E8027-E8036.	entiation. 5,	3.3	32
101	Regulation of Energy Metabolism during Early B Lymphocyte Development. International Jou Molecular Sciences, 2018, 19, 2192.	rnal of	1.8	25
102	Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Frontiers in Imi 2018, 9, 1055.	nunology,	2.2	315
103	Transforming Growth Factor-β and Interleukin-10 Synergistically Regulate Humoral Immunit Modulating Metabolic Signals. Frontiers in Immunology, 2018, 9, 1364.	y via	2.2	79
104	Regulation of the Immune Response by the Inflammatory Metabolic Microenvironment in the of Allotransplantation. Frontiers in Immunology, 2018, 9, 1465.	? Context	2.2	14
105	Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? Molecular Medicine, 2018, 10, .	EMBO	3.3	164
106	Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Immunology, 2018, 19, 871-884.	Nature	7.0	166
107	B cells race the clock to get a second wind. Nature Immunology, 2018, 19, 791-793.		7.0	2
108	Regulation of Immune Cell Function by PPARs and the Connection with Metabolic and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2018, 19, 1575.		1.8	41
109	Role of Polyamines in Immune Cell Functions. Medical Sciences (Basel, Switzerland), 2018, 6	, 22.	1.3	69
110	Hypoxia, Metabolism and Immune Cell Function. Biomedicines, 2018, 6, 56.		1.4	126
111	Initial B Cell Activation Induces Metabolic Reprogramming and Mitochondrial Remodeling. IS 2018, 5, 99-109.	cience,	1.9	205

# 112	ARTICLE Protein Kinase C-Î ² Dictates B Cell Fate by Regulating Mitochondrial Remodeling, Metabolic Reprogramming, and Heme Biosynthesis. Immunity, 2018, 48, 1144-1159.e5.	IF 6.6	Citations
113	Progressive Upregulation of Oxidative Metabolism Facilitates Plasmablast Differentiation to a T-Independent Antigen. Cell Reports, 2018, 23, 3152-3159.	2.9	123
114	Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nature Communications, 2018, 9, 2341.	5.8	238
115	TAPP Adaptors Control B Cell Metabolism by Modulating the Phosphatidylinositol 3-Kinase Signaling Pathway: A Novel Regulatory Circuit Preventing Autoimmunity. Journal of Immunology, 2018, 201, 406-416.	0.4	43
116	Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell, 2019, 178, 1072-1087.e14.	13.5	119
117	Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes. Cell Metabolism, 2019, 30, 447-461.e5.	7.2	97
118	Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nature Reviews Drug Discovery, 2019, 18, 669-688.	21.5	176
119	Functionally significant metabolic differences between B and T lymphocyte lineages. Immunology, 2019, 158, 104-120.	2.0	21
120	Metabolic requirements of human pro-inflammatory B cells in aging and obesity. PLoS ONE, 2019, 14, e0219545.	1.1	51
121	B cell signaling in context. Nature Immunology, 2019, 20, 963-969.	7.0	104
122	von Hippel-Lindau Protein Maintains Metabolic Balance to Regulate the Survival of Naive B Lymphocytes. IScience, 2019, 17, 379-392.	1.9	16
123	Regulation of Adaptive Immune Cells by Sirtuins. Frontiers in Endocrinology, 2019, 10, 466.	1.5	18
124	Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sciences, 2019, 76, 3917-3937.	2.4	176
125	An early Mycâ€dependent transcriptional program orchestrates cell growth during Bâ€cell activation. EMBO Reports, 2019, 20, e47987.	2.0	44
126	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
127	Autoimmune epithelitis (Sjögren's syndrome); the impact of metabolic status of glandular epithelial cells on auto-immunogenicity. Journal of Autoimmunity, 2019, 104, 102335.	3.0	28
128	Metabolic sleuthing solves a rare immunodeficiency disease. Nature Immunology, 2019, 20, 1264-1266.	7.0	1
129	Mitochondria as central hub of the immune system. Redox Biology, 2019, 26, 101255.	3.9	187

ARTICLE IF CITATIONS # Ampk regulates IgD expression but not energy stress with B cell activation. Scientific Reports, 2019, 9, 130 15 1.6 8176. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and 1.5 Host-Directed Therapies. Frontiers in Microbiology, 2019, 10, 962. 132 The B-Side of Cancer Immunity: The Underrated Tune. Cells, 2019, 8, 449. 1.8 117 Influence of aging on germinal centre reaction and antibody response to inactivated influenza virus antigens in mice: sex-based differences. Biogerontology, 2019, 20, 475-496. Metabolism as a key regulator in the pathogenesis of systemic lupus erythematosus. Seminars in 134 1.6 40 Arthritis and Rheumatism, 2019, 48, 1142-1145. Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation. Nature Reviews Immunology, 2019, 19, 337-348. 10.6 37 Plasma cells: You are what you eat. Immunological Reviews, 2019, 288, 161-177. 136 2.8 41 Multiple Myeloma and Fatty Acid Metabolism. JBMR Plus, 2019, 3, e10173. 1.3 28 138 Immunometabolism., 2019, , 153-163. 0 Regulation of metabolic supply and demand during B cell activation and subsequent differentiation. 2.4 24 Current Opinion in Immunology, 2019, 57, 8-14. From zero to sixty and back to zero again: the metabolic life of B cells. Current Opinion in 140 2.4 31 Immunology, 2019, 57, 1-7. Metabolic Checkpoints in Differentiation of Helper T Cells in Tissue Inflammation. Frontiers in 2.2 29 Immunology, 2018, 9, 3036. Population-Specific Metabolic Alterations in Professional Antigen-Presenting Cells Contribute to 142 1.0 14 Sepsis-Associated Immunosuppression. Shock, 2020, 53, 5-15. Physiological functions of mitochondrial Na+-Ca2+ exchanger, NCLX, in lymphocytes. Cell Calcium, 2020, 85, 102114. 143 1.1 The Systemic Metabolic Profile Early after Allogeneic Stem Cell Transplantation: Effects of Adequate 144 Energy Support Administered through Enteral Feeding Tube. Biology of Blood and Marrow 2.0 6 Transplantation, 2020, 26, 380-391. Metabolic control of B cell immune responses. Current Opinion in Immunology, 2020, 63, 21-28. 145 2.4 48 Metabolic needs of brainâ€infiltrating leukocytes and microglia in multiple sclerosis. Journal of 146 2.18 Neurochemistry, 2021, 158, 14-24. In Mixed Lymphocyte Reaction, the Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitor Roxadustat Suppresses Cellular and Humoral Alloimmunity. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 31.

#	Article	IF	CITATIONS
148	Immunometabolism in the Single-Cell Era. Cell Metabolism, 2020, 32, 710-725.	7.2	116
149	Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Frontiers in Cardiovascular Medicine, 2020, 7, 602088.	1.1	49
150	Glycometabolic rearrangements–aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. Journal of Experimental and Clinical Cancer Research, 2020, 39, 267.	3.5	39
151	Metabolic Reprogramming in Immune Response and Tissue Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1990-2001.	1.1	53
152	Disentangling inflammatory from fibrotic disease activity by fibroblast activation protein imaging. Annals of the Rheumatic Diseases, 2020, 79, 1485-1491.	0.5	111
153	Metabolite Transporters as Regulators of Immunity. Metabolites, 2020, 10, 418.	1.3	21
155	NR4A nuclear receptors restrain B cell responses to antigen when second signals are absent or limiting. Nature Immunology, 2020, 21, 1267-1279.	7.0	56
156	Nutritional Modulation of the Microbiome and Immune Response. Journal of Immunology, 2020, 205, 1479-1487.	0.4	24
157	AMPKα1 in B Cells Dampens Primary Antibody Responses yet Promotes Mitochondrial Homeostasis and Persistence of B Cell Memory. Journal of Immunology, 2020, 205, 3011-3022.	0.4	18
158	Nutrition and Diabetes in the Context of Inflammaging. Current Geriatrics Reports, 2020, 9, 251-260.	1.1	1
159	Pathogenesis of ANCA-associated vasculitis: an emerging role for immunometabolism. Rheumatology, 2020, 59, iii33-iii41.	0.9	5
160	Search for multiple myeloma risk factors using Mendelian randomization. Blood Advances, 2020, 4, 2172-2179.	2.5	27
161	Mitochondrial function in immune cells in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165845.	1.8	115
162	Dietary Fat Makes Germinal Center B Cells Happy. Cell Metabolism, 2020, 31, 890-891.	7.2	2
163	Signals 1, 2 and B cell fate or: Where, when and for how long?. Immunological Reviews, 2020, 296, 9-23.	2.8	19
164	Glucose metabolism pattern of peripheral blood immune cells in myasthenia gravis patients. Annals of Translational Medicine, 2020, 8, 577-577.	0.7	8
165	Ageâ€related factors that affect B cell responses to vaccination in mice and humans. Immunological Reviews, 2020, 296, 142-154.	2.8	29
166	Plasma cell targeting to prevent antibody-mediated rejection. American Journal of Transplantation, 2020, 20, 33-41.	2.6	16

#	Article	IF	CITATIONS
167	Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Seminars in Immunopathology, 2020, 42, 279-313.	2.8	37
168	The role of metabolic checkpoint regulators in B cell survival and transformation. Immunological Reviews, 2020, 295, 39-53.	2.8	26
169	Glucose Metabolism on Tumor Plasticity, Diagnosis, and Treatment. Frontiers in Oncology, 2020, 10, 317.	1.3	94
170	Metabolic determinants of lupus pathogenesis. Immunological Reviews, 2020, 295, 167-186.	2.8	30
171	Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Frontiers in Veterinary Science, 2020, 7, 46.	0.9	79
172	Targeting immunometabolism as an anti-inflammatory strategy. Cell Research, 2020, 30, 300-314.	5.7	285
173	Regulation of B-cell function by NF-kappaB c-Rel in health and disease. Cellular and Molecular Life Sciences, 2020, 77, 3325-3340.	2.4	17
174	Immune metabolism regulation of the germinal center response. Experimental and Molecular Medicine, 2020, 52, 348-355.	3.2	29
175	Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate. Nature Communications, 2020, 11, 3412.	5.8	47
176	Novel therapeutic opportunities afforded by plasma cell biology in transplantation. American Journal of Transplantation, 2020, 20, 1984-1991.	2.6	10
177	YY1 control of mitochondrialâ€related genes does not account for regulation of immunoglobulin class switch recombination in mice. European Journal of Immunology, 2020, 50, 822-838.	1.6	7
178	The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1486.	6.6	60
179	Glucose transporter 1 in rheumatoid arthritis and autoimmunity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1483.	6.6	26
180	Metabolic Adaptations to Infections at the Organismal Level. Trends in Immunology, 2020, 41, 113-125.	2.9	56
181	Methionine Commits Cells to Differentiate Into Plasmablasts Through Epigenetic Regulation ofBTBandCNCHomolog 2 by the MethyltransferaseEZH2. Arthritis and Rheumatology, 2020, 72, 1143-1153.	2.9	28
182	Missing-in-Metastasis/Metastasis Suppressor 1 Regulates B Cell Receptor Signaling, B Cell Metabolic Potential, and T Cell-Independent Immune Responses. Frontiers in Immunology, 2020, 11, 599.	2.2	8
183	Mitochondrial DNA mutations induce mitochondrial biogenesis and increase the tumorigenic potential of Hodgkin and Reed–Sternberg cells. Carcinogenesis, 2020, 41, 1735-1745.	1.3	10
184	Immunometabolism in the pathogenesis of systemic lupus erythematosus. Journal of Translational Autoimmunity, 2020, 3, 100046.	2.0	24

# 185	ARTICLE Immunometabolism: From basic mechanisms to translation. Immunological Reviews, 2020, 295, 5-14.	IF 2.8	Citations 208
186	Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells, 2020, 9, 992.	1.8	156
187	Brain control of appetite during sickness. British Journal of Pharmacology, 2021, 178, 2096-2110.	2.7	14
188	Fatty acidâ€binding protein 3 regulates differentiation of IgMâ€producing plasma cells. FEBS Journal, 2021, 288, 1130-1141.	2.2	8
189	How could we forget immunometabolism in SARS-CoV2 infection or COVID-19?. International Reviews of Immunology, 2021, 40, 72-107.	1.5	33
190	Metabolic Gatekeepers of Pathological B Cell Activation. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 323-349.	9.6	10
191	LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biology, 2021, 18, 619-632.	1.5	26
192	A single-cell map for the transcriptomic signatures of peripheral blood mononuclear cells in end-stage renal disease. Nephrology Dialysis Transplantation, 2021, 36, 599-608.	0.4	13
193	The direct and indirect regulation of follicular T helper cell differentiation in inflammation and cancer. Journal of Cellular Physiology, 2021, 236, 5466-5481.	2.0	13
194	Lipid Metabolism in Tumor-Associated B Cells. Advances in Experimental Medicine and Biology, 2021, 1316, 133-147.	0.8	3
196	Hepatitis B virus particles activate B cells through the TLR2–MyD88–mTOR axis. Cell Death and Disease, 2021, 12, 34.	2.7	13
197	Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid Availability Supports Humoral Immunity. Cell Reports, 2021, 34, 108601.	2.9	28
198	Hyperâ€netabolic B cells in the spleens of old mice make antibodies with autoimmune specificities. Immunity and Ageing, 2021, 18, 9.	1.8	16
199	Adaptive immunity at the crossroads of autophagy and metabolism. Cellular and Molecular Immunology, 2021, 18, 1096-1105.	4.8	26
200	Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages. ELife, 2021, 10, .	2.8	12
201	Hypoxia/HIF Modulates Immune Responses. Biomedicines, 2021, 9, 260.	1.4	40
202	Effects of cellular senescence on metabolic pathways in non-immune and immune cells. Mechanisms of Ageing and Development, 2021, 194, 111428.	2.2	14
203	The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Letters, 2021, 500, 75-86.	3.2	79

#	Article	IF	CITATIONS
204	Single-Cell RNA Sequencing Analysis of the Immunometabolic Rewiring and Immunopathogenesis of Coronavirus Disease 2019. Frontiers in Immunology, 2021, 12, 651656.	2.2	23
205	Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 673916.	2.2	39
206	Targeting immune cell metabolism in kidney diseases. Nature Reviews Nephrology, 2021, 17, 465-480.	4.1	31
207	Transcriptional and Metabolic Control of Memory B Cells and Plasma Cells. Annual Review of Immunology, 2021, 39, 345-368.	9.5	38
209	The prognostic and immunological effects of ZBTB7C across cancers: friend or foe?. Aging, 2021, 13, 12849-12864.	1.4	4
211	Epigenetic gene regulation in plasma cells. Immunological Reviews, 2021, 303, 8-22.	2.8	10
212	BAFF promotes heightened BCR responsiveness and manifestations of chronic GVHD after allogeneic stem cell transplantation. Blood, 2021, 137, 2544-2557.	0.6	23
213	Rapamycin Modulates the Proinflammatory Memory-Like Response of Microglia Induced by BAFF. Frontiers in Immunology, 2021, 12, 639049.	2.2	9
214	B Cell Orchestration of Anti-tumor Immune Responses: A Matter of Cell Localization and Communication. Frontiers in Cell and Developmental Biology, 2021, 9, 678127.	1.8	63
215	Metabolic determinants of B-cell selection. Biochemical Society Transactions, 2021, 49, 1467-1478.	1.6	0
216	Reduced Energy Metabolism Impairs T Cell-Dependent B Cell Responses in Patients With Advanced HBV-Related Cirrhosis. Frontiers in Immunology, 2021, 12, 660312.	2.2	5
217	New conditions of HPLC analysis for separation and quantification of simple organic acids of tricarboxylic acid cycle in psoriasis. Acta Chromatographica, 2021, 33, 322-332.	0.7	1
218	Pleiotropic effects of PPAR-α – from benchside to bedside. Medical Immunology (Russia), 2021, 23, 439-454.	0.1	2
219	The emerging field of regulatory B cell immunometabolism. Cell Metabolism, 2021, 33, 1088-1097.	7.2	26
220	B Cell Metabolism and Autophagy in Autoimmunity. Frontiers in Immunology, 2021, 12, 681105.	2.2	36
221	Pyruvate Kinase, Inflammation and Periodontal Disease. Pathogens, 2021, 10, 784.	1.2	5
222	Metformin Enhances B Cell Function and Antibody Responses of Elderly Individuals With Type-2 Diabetes Mellitus. Frontiers in Aging, 2021, 2, .	1.2	14
223	Immunometabolism and potential targets in severe COVID-19 peripheral immune responses. Asian Journal of Pharmaceutical Sciences, 2021, 16, 665-667.	4.3	3

#	Article	IF	CITATIONS
224	Dietary carbohydrate, particularly glucose, drives B cell lymphopoiesis and function. IScience, 2021, 24, 102835.	1.9	13
225	Role of psoriatic keratinocytes in the metabolic reprogramming of dermal mesenchymal stem cells. International Journal of Dermatology, 2022, 61, 337-345.	0.5	2
226	Therapeutic perspectives on the metabolism of lymphocytes in patients with rheumatoid arthritis and systemic lupus erythematosus. Expert Review of Clinical Immunology, 2021, 17, 1121-1130.	1.3	3
227	Cyanobacteria Microcystis aeruginosa Contributes to the Severity of Fish Diseases: A Study on Spring Viraemia of Carp. Toxins, 2021, 13, 601.	1.5	3
228	BAFF signaling in B cell metabolism. Current Opinion in Immunology, 2021, 71, 69-74.	2.4	11
229	Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. Journal of Hepatology, 2021, 75, 1271-1283.	1.8	162
230	Alterations in mitochondrial morphology as a key driver of immunity and host defence. EMBO Reports, 2021, 22, e53086.	2.0	34
231	The Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocytes. International Journal of Molecular Sciences, 2021, 22, 8460.	1.8	19
232	İneklerde Postpartum Dönemdeki Hastalıklarda Sitokin Düzeyleri. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 0, , .	0.1	0
233	2-Deoxy-D-glucose Alleviates Collagen-Induced Arthritis of Rats and Is Accompanied by Metabolic Regulation of the Spleen and Liver. Frontiers in Immunology, 2021, 12, 713799.	2.2	7
234	Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Frontiers in Immunology, 2021, 12, 735463.	2.2	16
235	SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism. Signal Transduction and Targeted Therapy, 2021, 6, 345.	7.1	30
236	Regulation of humoral immune response by HIF-1α-dependent metabolic reprogramming of the germinal center reaction. Cellular Immunology, 2021, 367, 104409.	1.4	12
237	Metabolomics Analysis of Splenic CD19+ B Cells in Mice Chronically Infected With Echinococcus granulosus sensu lato Protoscoleces. Frontiers in Veterinary Science, 2021, 8, 718743.	0.9	2
238	Overexpression of transcription factor BLIMP1/prdm1 leads to growth inhibition and enhanced secretory capacity in Chinese hamster ovary cells. Metabolic Engineering, 2021, 67, 237-249.	3.6	13
239	Sepsis expands a CD39+ plasmablast population that promotes immunosuppression via adenosine-mediated inhibition of macrophage antimicrobial activity. Immunity, 2021, 54, 2024-2041.e8.	6.6	38
240	Metabolic reprogramming and immunity in cancer. , 2022, , 137-196.		1
241	Innate and adaptive immunity in cancer 2022 19-61		0 -

#	Article	IF	CITATIONS
242	High-Resolution Multicolor Imaging of Mitochondria in Lymphocytes. Methods in Molecular Biology, 2021, 2304, 131-145.	0.4	0
243	A Brake for B Cell Proliferation. BioEssays, 2017, 39, 1700079.	1.2	12
244	B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer: Opportunities for Precision Medicine?. Advances in Experimental Medicine and Biology, 2020, 1273, 175-195.	0.8	2
247	Serine/threonine phosphatase PP2A is essential for optimal B cell function. JCI Insight, 2020, 5, .	2.3	9
248	Pathogenic, glycolytic PD-1+ B cells accumulate in the hypoxic RA joint. JCI Insight, 2020, 5, .	2.3	44
249	Mitochondrial fidelity and metabolic agility control immune cell fate and function. Journal of Clinical Investigation, 2018, 128, 3651-3661.	3.9	32
250	Transplantation tolerance modifies donor-specific B cell fate to suppress de novo alloreactive B cells. Journal of Clinical Investigation, 2020, 130, 3453-3466.	3.9	15
251	Metabolic regulation of immune responses: therapeutic opportunities. Journal of Clinical Investigation, 2016, 126, 2031-2039.	3.9	78
252	Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis. PLoS ONE, 2017, 12, e0170975.	1.1	61
253	HIV and the Antiviral Role of Mushroom Nutraceuticals. Advances in Image and Video Processing, 2020, 8, .	0.1	3
254	Nfe2l1-silenced insulinoma cells acquire aggressiveness and chemoresistance. Endocrine-Related Cancer, 2018, 25, 185-200.	1.6	13
255	Immunometabolic cross-talk in the inflamed heart. Cell Stress, 2019, 3, 240-266.	1.4	19
256	B Cell–Specific Biomarkers for Optimal Antibody Responses to Influenza Vaccination and Molecular Pathways That Reduce B Cell Function with Aging. Critical Reviews in Immunology, 2016, 36, 523-537.	1.0	5
257	Age-related changes in B cell metabolism. Aging, 2019, 11, 4367-4381.	1.4	27
258	Race-related differences in antibody responses to the inactivated influenza vaccine are linked to distinct pre-vaccination gene expression profiles in blood. Oncotarget, 2016, 7, 62898-62911.	0.8	56
259	Modulation of Immuno-biome during Radio-sensitization of Tumors by Glycolytic Inhibitors. Current Medicinal Chemistry, 2020, 27, 4002-4015.	1.2	7
260	Immunoglobulin expression in the endoplasmic reticulum shapes the metabolic fitness of B lymphocytes. Life Science Alliance, 2020, 3, e202000700.	1.3	8
261	LP-BM5 Retrovirus–Expanded Monocytic Myeloid-Derived Suppressor Cells Alter B Cell Phenotype and Function. ImmunoHorizons, 2018, 2, 87-106.	0.8	6

#	Αρτιςι ε	IF	CITATIONS
" 262	Antigen Complexed with a TLR9 Agonist Bolsters c-Myc and mTORC1 Activity in Germinal Center B	0.8	2
263	Alteration of cellular metabolism in cancer cells and its therapeutic prospects. Journal of Oral and Maxillofacial Pathology, 2017, 21, 244.	0.3	15
264	Sirtuins in B lymphocytes metabolism and function. World Journal of Experimental Medicine, 2019, 9, 1-13.	0.9	8
265	Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. Journal of Neuroinflammation, 2021, 18, 229.	3.1	19
266	Metabolic Profile of Adaptive Immune Cells. , 2022, , 115-132.		0
267	Role of PKM2-Mediated Immunometabolic Reprogramming on Development of Cytokine Storm. Frontiers in Immunology, 2021, 12, 748573.	2.2	20
268	Metabolic Pathways in Immune Cells Commitment and Fate. , 2022, , 53-82.		0
270	Immunometabolomics: The metabolic landscape of immune cells in tumor microenvironment. Tumor & Microenvironment, 2018, 1, 72.	0.7	Ο
274	Immunometabolic Therapeutic Targets of Graft-versus-Host Disease (GvHD). Metabolites, 2021, 11, 736.	1.3	8
275	Sirtuins as Metabolic Regulators of Immune Cells Phenotype and Function. Genes, 2021, 12, 1698.	1.0	10
276	Immunometabolism and autoimmunity. , 2022, , 31-45.		0
277	B Cell Metabolism: An Understudied Opportunity to Improve Immune Therapy in Autoimmune Type 1 Diabetes. Immunometabolism, 2020, 2, .	0.7	11
279	An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus. Rheumatology, 2022, 61, 3049-3059.	0.9	19
280	Dynamic Metabolism in Immune Response. Journal of Immunology Research and Therapy, 2016, 1, 37-48.	1.0	1
281	Metabolomics in Autoimmune Diseases: Focus on Rheumatoid Arthritis, Systemic Lupus Erythematous, and Multiple Sclerosis. Metabolites, 2021, 11, 812.	1.3	10
283	Tafazzin deficiency impairs mitochondrial metabolism and function of lipopolysaccharide activated B lymphocytes in mice. FASEB Journal, 2021, 35, e22023.	0.2	8
284	Supplying the trip to antibody production—nutrients, signaling, and the programming of cellular metabolism in the mature B lineage. Cellular and Molecular Immunology, 2022, 19, 352-369.	4.8	25
285	Reactive Oxygen Species: Do They Play a Role in Adaptive Immunity?. Frontiers in Immunology, 2021, 12, 755856.	2.2	17

#	Article	IF	CITATIONS
286	Immune Metabolism of IL-4-Activated B Cells and Th2 Cells in the Context of Allergic Diseases. Frontiers in Immunology, 2021, 12, 790658.	2.2	17
287	Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites, 2022, 12, 40.	1.3	5
288	Effects of Aging on Metabolic Characteristics of Human B Cells. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 89, S23-S28.	0.9	3
289	Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chemistry, 2022, 376, 131860.	4.2	12
290	Metabolic adaptation of lymphocytes in immunity and disease. Immunity, 2022, 55, 14-30.	6.6	91
291	Immunometabolism in the Bladder Cancer Microenvironment. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 1201-1216.	0.6	4
292	Immunometabolism in biofilm infection: lessons from cancer. Molecular Medicine, 2022, 28, 10.	1.9	18
293	Glutamine promotes the generation of B10 ⁺ cells via the mTOR/GSK3 pathway. European Journal of Immunology, 2022, 52, 418-430.	1.6	4
295	Targeting Glycolysis in Alloreactive T Cells to Prevent Acute Graft-Versus-Host Disease While Preserving Graft-Versus-Leukemia Effect. Frontiers in Immunology, 2022, 13, 751296.	2.2	6
296	NR4A nuclear receptors in T and B lymphocytes: Gatekeepers of immune tolerance*. Immunological Reviews, 2022, 307, 116-133.	2.8	7
297	Effects of production system on the gut microbiota diversity and IgA distribution of Kampong chickens, Indonesia. Biodiversitas, 2022, 23, .	0.2	0
298	New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells, 2022, 11, 768.	1.8	14
299	Association of Viral Infection With the Development and Pathogenesis of Systemic Lupus Erythematosus. Frontiers in Medicine, 2022, 9, 849120.	1.2	14
301	B Cell–Specific Deletion of <scp>CR6â€Interacting</scp> Factor 1 Drives <scp>Lupusâ€Iike</scp> Autoimmunity by Activation of Interleukinâ€17, Interleukinâ€6, and Pathogenic Follicular Helper T Cells in a Mouse Model. Arthritis and Rheumatology, 2022, 74, 1211-1222.	2.9	3
302	Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity, 2022, 55, 442-458.e8.	6.6	12
303	Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Frontiers in Immunology, 2022, 13, 860586.	2.2	14
304	PHGDH is required for germinal center formation and is a therapeutic target in MYC-driven lymphoma. Journal of Clinical Investigation, 2022, 132, .	3.9	14
305	IP3R-mediated Ca2+ signaling controls B cell proliferation through metabolic reprogramming. IScience, 2022, 25, 104209.	1.9	1

# 306	ARTICLE Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nature Communications, 2022, 13, 1789.	IF 5.8	CITATIONS
307	Impact of Lipid Metabolism on Antitumor Immune Response. Cancers, 2022, 14, 1850.	1.7	18
309	Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clinical Reviews in Allergy and Immunology, 2022, 63, 499-529.	2.9	17
310	Lipid Droplets, the Central Hub Integrating Cell Metabolism and the Immune System. Frontiers in Physiology, 2021, 12, 746749.	1.3	21
312	Human Norovirus Triggers Primary B Cell Immune Activation <i>In Vitro</i> . MBio, 2022, 13, e0017522.	1.8	9
313	Hypothesis of immune homeostasis regulator: The nervous system regulates glucose immunometabolism to control immunity. Medical Hypotheses, 2022, 163, 110841.	0.8	Ο
319	Pharmacologically Inferred Glycolysis and Glutaminolysis Requirement of B Cells in Lupus-Prone Mice. Journal of Immunology, 2022, 208, 2098-2108.	0.4	9
320	Immunometabolism shapes B cell fate and functions. Immunology, 2022, 166, 444-457.	2.0	11
321	The role of B cell metabolism in autoimmune diseases. Autoimmunity Reviews, 2022, , 103116.	2.5	4
322	Metabolic control of epigenetic rearrangements in B cell pathophysiology. Open Biology, 2022, 12, 220038.	1.5	1
323	B-Cell-Based Immunotherapy: A Promising New Alternative. Vaccines, 2022, 10, 879.	2.1	10
324	Mitochondrial respiration in B lymphocytes is essential for humoral immunity by controlling the flux of the TCA cycle. Cell Reports, 2022, 39, 110912.	2.9	20
325	Fumarate suppresses B-cell activation and function through direct inactivation of LYN. Nature Chemical Biology, 2022, 18, 954-962.	3.9	12
326	Immune cell metabolism and metabolic reprogramming. Molecular Biology Reports, 2022, 49, 9783-9795.	1.0	29
328	<scp>Abelson tyrosine kinase</scp> controls <scp>BCR</scp> signalling and Bâ€cell differentiation by promoting Bâ€cell metabolism. Immunology, 2022, 167, 181-196.	2.0	2
329	Regulation of immune cell metabolism in health and disease: Special focus on T and B cell subsets. Cell Biology International, 2022, 46, 1729-1746.	1.4	7
330	Oxidative phosphorylation regulates interleukinâ€10 production in regulatory B cells via the extracellular signalâ€related kinase pathway. Immunology, 2022, 167, 576-589.	2.0	4
332	Hypoxia and hypoxia-inducible factor signals regulate the development, metabolism, and function of B cells. Frontiers in Immunology, 0, 13, .	2.2	7

#	Article	IF	CITATIONS
333	CD93 is Associated with Glioma-related Malignant Processes and Immunosuppressive Cell Infiltration as an Inspiring Biomarker of Survivance. Journal of Molecular Neuroscience, 2022, 72, 2106-2124.	1.1	4
334	Genetic evidence that uptake of the fluorescent analog 2NBDG occurs independently of known glucose transporters. PLoS ONE, 2022, 17, e0261801.	1.1	9
335	TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. Journal of Hematology and Oncology, 2022, 15, .	6.9	35
336	Redox regulation of the immune response. , 2022, 19, 1079-1101.		96
337	Tafazzin deficiency attenuates anti-cluster of differentiation 40 and interleukin-4 activation of mouse B lymphocytes. Cell and Tissue Research, 0, , .	1.5	0
338	mTORC1â€GLUT1â€mediated glucose metabolism drives hyperactivation of B cells in primary Sjogren's syndrome. Immunology, 2023, 168, 432-443.	2.0	2
339	The metabolic plasticity of B cells. Frontiers in Molecular Biosciences, 0, 9, .	1.6	8
340	BAFF antagonism via the BAFF receptor 3 binding site attenuates BAFF 60-mer-induced classical NF-κB signaling and metabolic reprogramming of B cells. Cellular Immunology, 2022, 381, 104603.	1.4	1
341	The role of mitochondria in the pathogenesis of Kawasaki disease. Frontiers in Immunology, 0, 13, .	2.2	3
342	Metabolic features of innate lymphoid cells. Journal of Experimental Medicine, 2022, 219, .	4.2	2
343	Aberrant B Cell Signaling in Autoimmune Diseases. Cells, 2022, 11, 3391.	1.8	9
344	Metabolic signatures of immune cells in chronic kidney disease. Expert Reviews in Molecular Medicine, 2022, 24, .	1.6	6
345	The oxidative phosphorylation inhibitor IM156 suppresses B-cell activation by regulating mitochondrial membrane potential and contributes to the mitigation of systemic lupus erythematosus. Kidney International, 2023, 103, 343-356.	2.6	1
346	Metabolic reprogramming of immune cells in pancreatic cancer progression. Biomedicine and Pharmacotherapy, 2023, 157, 113992.	2.5	17
347	Secreted immune metabolites that mediate immune cell communication and function. Trends in Immunology, 2022, 43, 990-1005.	2.9	6
348	Advances in Understanding of Metabolism of B-Cell Lymphoma: Implications for Therapy. Cancers, 2022, 14, 5552.	1.7	4
349	Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine and Growth Factor Reviews, 2022, 68, 81-92.	3.2	55
350	GPR55 in B cells limits atherosclerosis development and regulates plasma cell maturation. , 2022, 1, 1056-1071.		5

#	Article	IF	CITATIONS
351	Mitochondria as disease-relevant organelles in rheumatoid arthritis. Clinical and Experimental Immunology, 2023, 211, 208-223.	1.1	4
352	Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients, 2023, 15, 411.	1.7	4
353	Glucose Requirement of Antigen-Specific Autoreactive B Cells and CD4+ T Cells. Journal of Immunology, 2023, 210, 377-388.	0.4	2
354	TRAF3: A novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes. Frontiers in Oncology, 0, 13, .	1.3	2
355	The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion, 2023, 70, 59-102.	1.6	8
356	Metabolic dialogs between B cells and the tumor microenvironment: Implications for anticancer immunity. Cancer Letters, 2023, 556, 216076.	3.2	1
357	Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by Trypanosoma congolense. , 0, 3, .		0
358	Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses, 2023, 15, 525.	1.5	2
359	In good times and in bad: How plasma cells resolve stress for a life-long union with the bone marrow. Frontiers in Immunology, 0, 14, .	2.2	4
360	Regulation of the immune system by the insulin receptor in health and disease. Frontiers in Endocrinology, 0, 14, .	1.5	7
362	The BAFF-APRIL System in Cancer. Cancers, 2023, 15, 1791.	1.7	8
363	Evaluation of increased antibody titer COVID-19 after astrazeneca vaccination based on the age at UTA'45 Jakarta Vaccine Center. Asian Journal of Pharmaceutical Research and Health Care, 2023, 15, 83.	0.0	0
364	In-vitro Modulation of mTOR-HIF-1α Axis by TLR7/8 Agonist (Resiquimod) in B-Chronic Lymphocytic Leukemia. Indian Journal of Hematology and Blood Transfusion, 0, , .	0.3	0
370	The Role of Intra-Tumor Hypoxia in Cancer Cells Immune Escape Mechanism. , 2022, , 1-50.		0
373	An Integrated Methodology to Quantify the Glycolytic Stress in Plasma Cell Myeloma in Response to Cytotoxic Drugs. Methods in Molecular Biology, 2023, , 285-296.	0.4	0
374	Post-transcriptional checkpoints in autoimmunity. Nature Reviews Rheumatology, 2023, 19, 486-502.	3.5	3
389	Cellular lipids in B cell immunity, inflammation, and cancer. , 2023, , 421-438.		0
408	T Lymphocyte Metabolic Features and Techniques to Modulate Them. Biochemistry (Moscow), 2023, 88, 1857-1873.	0.7	0

#	Article	IF	CITATIONS
416	Metabolism in Hematopoiesis and Its Malignancy. Advances in Experimental Medicine and Biology, 2023, , 45-64.	0.8	0
417	Evaluation of Mitochondrial Respiratory Function in Murine Splenocytes. Methods in Molecular Biology, 2024, , 199-206.	0.4	0
418	B-Cell Metabolism. , 2024, , 487-515.		0