A Resilient, Untethered Soft Robot

Soft Robotics 1, 213-223

DOI: 10.1089/soro.2014.0008

Citation Report

#	Article	IF	CITATIONS
1	Soft pneumatic actuators for legged locomotion. , 2014, , .		22
2	An untethered jumping soft robot. , 2014, , .		124
3	Biorobotics: Using robots to emulate and investigate agile locomotion. Science, 2014, 346, 196-203.	6.0	367
4	Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes. Scientific Reports, 2015, 5, 10768.	1.6	109
5	Slithering towards autonomy: a self-contained soft robotic snake platform with integrated curvature sensing. Bioinspiration and Biomimetics, 2015, 10, 055001.	1.5	59
6	Design Methodologies for Soft-Material Robots Through Additive Manufacturing, From Prototyping to Locomotion. , 2015, , .		5
7	Bioinspired design and fabrication principles of reliable fluidic soft actuation modules. , 2015, , .		13
8	Poroelastic Foams for Simple Fabrication of Complex Soft Robots. Advanced Materials, 2015, 27, 6334-6340.	11.1	109
9	Elastomeric Actuators on Airfoils for Aerodynamic Control of Lift and Drag. Advanced Engineering Materials, 2015, 17, 951-960.	1.6	7
10	Qualitative control of soft robotic peristaltic sorting tables. , 2015, , .		2
11	Design, fabrication and control of soft robots. Nature, 2015, 521, 467-475.	13.7	3,902
12	Shape changing and self-reconfiguring robots. Industrial Robot, 2015, 42, 290-295.	1.2	6
13	Monolithic fabrication of sensors and actuators in a soft robotic gripper. , 2015, , .		75
14	A novel soft manipulator based on beehive structure. , 2015, , .		1
15	Concepts and simulations of a soft robot mimicking human tongue. , 2015, , .		2
16	Biological Soft Robotics. Annual Review of Biomedical Engineering, 2015, 17, 243-265.	5.7	87
17	Biologically inspired vine-like and tendril-like robots. , 2015, , .		17
18	A soft pneumatic actuator that can sense grasp and touch. , 2015, , .		66

#	Article	IF	CITATIONS
19	3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration and Biomimetics, 2015, 10, 055003.	1.5	225
20	A Recipe for Soft Fluidic Elastomer Robots. Soft Robotics, 2015, 2, 7-25.	4.6	538
21	Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. , 2015, , .		140
22	A precise embedded curvature sensor module for soft-bodied robots. Sensors and Actuators A: Physical, 2015, 236, 349-356.	2.0	96
23	Soft robotics for engineers. HKIE Transactions, 2015, 22, 88-97.	1.9	36
24	A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349, 161-165.	6.0	802
25	Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349, 165-168.	6.0	1,167
26	Mathematical model of inchworm locomotion. International Journal of Non-Linear Mechanics, 2015, 76, 56-63.	1.4	39
27	Scalable manufacturing of high force wearable soft actuators. Extreme Mechanics Letters, 2015, 3, 89-104.	2.0	91
28	Mechanical Programming of Soft Actuators by Varying Fiber Angle. Soft Robotics, 2015, 2, 26-32.	4.6	382
29	Dynamic Walking with a Soft Limb Robot. Lecture Notes in Computer Science, 2015, , 13-25.	1.0	3
30	Mechanochemically Active Soft Robots. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22431-22435.	4.0	102
31	Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger. , 2015, , .		29
32	Novelty Search for Soft Robotic Space Exploration. , 2015, , .		25
33	Amplifying the response of soft actuators by harnessing snap-through instabilities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10863-10868.	3.3	181
34	Dynamics of Elastic Beams with Embedded Fluid-Filled Parallel-Channel Networks. Soft Robotics, 2015, 2, 42-47.	4.6	32
35	An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion. Soft Robotics, 2015, 2, 33-41.	4.6	87
36	3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Printing and Additive Manufacturing, 2015, 2, 106-116.	1.4	129

#	Article	IF	Citations
37	Using robots to investigate the evolution of adaptive behavior. Current Opinion in Behavioral Sciences, 2015, 6, 168-173.	2.0	5
38	Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mechanics Letters, 2015, 5, 47-53.	2.0	126
39	A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility. Micromachines, 2016, 7, 201.	1.4	10
40	Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids. , 2016, , .		115
41	SoRo-Track: A two-axis soft robotic platform for solar tracking and building-integrated photovoltaic applications. , 2016, , .		9
42	Inflated Soft Actuators with Reversible Stable Deformations. Advanced Materials, 2016, 28, 3690-3696.	11.1	84
43	Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example. Soft Robotics, 2016, 3, 198-204.	4.6	70
44	Kinematics and Statics for Soft Continuum Manipulators With Heterogeneous Soft Materials. , 2016, , .		4
45	Framework for online simulation of soft robots with optimization-based inverse model., 2016,,.		24
46	Evolving soft robots to execute multiple tasks with Combined-CPPN-NEAT. , 2016, , .		5
47	Discrete Cosserat approach for soft robot dynamics: A new piece-wise constant strain model with torsion and shears. , $2016, , .$		56
48	Soft damper for quick stabilization of soft robotic actuator. , 2016, , .		8
49	Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, $2016, 1, .$	9.9	987
50	Embedded infrared imaging to measure the deformation of a soft robotic actuator. , 2016, , .		3
51	Soft Robots and Kangaroo Tails: Modulating Compliance in Continuum Structures Through Mechanical Layer Jamming. Soft Robotics, 2016, 3, 54-63.	4.6	71
52	Dielectric elastomer actuators for facial expression. Proceedings of SPIE, 2016, , .	0.8	1
53	Development of soft robots using dielectric elastomer actuators. , 2016, , .		0
54	Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement. Soft Robotics, 2016, 3, 109-119.	4.6	170

#	Article	IF	Citations
55	Mechanical stiffness augmentation of a 3D printed soft prosthetic finger., 2016,,.		14
56	Soft Robotic Blocks: Introducing SoBL, a Fast-Build Modularized Design Block. IEEE Robotics and Automation Magazine, 2016, 23, 30-41.	2.2	69
57	Prosthetic Jamming Terminal Device: A Case Study of Untethered Soft Robotics. Soft Robotics, 2016, 3, 205-212.	4.6	45
58	Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9722-9727.	3.3	254
59	An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536, 451-455.	13.7	1,557
60	A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires. Bioinspiration and Biomimetics, $2016, 11, 056012$.	1.5	64
61	Emergence of microfluidic wearable technologies. Lab on A Chip, 2016, 16, 4082-4090.	3.1	89
62	A compliant modular robotic hand with fabric force sensor for multiple versatile grasping modes. , 2016, , .		14
63	3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers. Soft Robotics, 2016, 3, 120-133.	4.6	135
64	Rotary Actuators Based on Pneumatically Driven Elastomeric Structures. Advanced Materials, 2016, 28, 7533-7538.	11.1	49
65	Modelling the nonlinear response of fibre-reinforced bending fluidic actuators. Smart Materials and Structures, 2016, 25, 105020.	1.8	40
66	Controlling and Simulating Soft Robotic Systems: Insights from a Thermodynamic Perspective. Soft Robotics, 2016, 3, 170-176.	4.6	28
67	Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices. Scientific Reports, 2016, 6, 34224.	1.6	146
68	A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Scientific Reports, 2016, 6, 24462.	1.6	98
69	Design Principles for Improved Fatigue Life of High-Strain Pneumatic Artificial Muscles. Soft Robotics, 2016, 3, 177-185.	4.6	21
70	Sculpting Soft Machines. Soft Robotics, 2016, 3, 101-108.	4.6	26
71	Axial creeping flow in the gap between a rigid cylinder and a concentric elastic tube. Journal of Fluid Mechanics, 2016, 806, 580-602.	1.4	22
72	Rod-based Fabrication of Customizable Soft Robotic Pneumatic Gripper Devices for Delicate Tissue Manipulation. Journal of Visualized Experiments, 2016, , .	0.2	6

#	Article	IF	Citations
73	Design and Prototype of a Tunable Stiffness Arm for Safe Human-Robot Interaction. , 2016, , .		18
74	Modeling and Validation of a Novel Bending Actuator for Soft Robotics Applications. Soft Robotics, 2016, 3, 71-81.	4.6	63
75	Versatile and Dexterous Soft Robotic Leg System for Untethered Operations. Soft Robotics, 2016, 3, 64-70.	4.6	17
76	Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. International Journal of Robotics Research, 2016, 35, 1000-1019.	5.8	161
77	A composite soft bending actuation module with integrated curvature sensing. , 2016, , .		44
78	Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method. Advanced Engineering Materials, 2016, 18, 978-988.	1.6	192
79	<i>Softworms</i> : the design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspiration and Biomimetics, 2016, 11, 025001.	1.5	182
80	Three-Dimensional Kinematic Modeling of Helix-Forming Lamina-Emergent Soft Smart Actuators Based on Electroactive Polymers. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, , 1-12.	5.9	8
81	A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator. IEEE Robotics and Automation Letters, 2016, 1, 624-631.	3.3	198
82	A Soft Mechatronic Microstage Mechanism Based on Electroactive Polymer Actuators. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1467-1478.	3.7	24
83	Artificial muscles for jaw movements. Extreme Mechanics Letters, 2016, 6, 88-95.	2.0	44
84	Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E950-7.	3.3	129
85	Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. International Journal of Robotics Research, 2016, 35, 840-869.	5.8	255
86	Rehabilitative Soft Exoskeleton for Rodents. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 107-118.	2.7	12
87	A survey on dielectric elastomer actuators for soft robots. Bioinspiration and Biomimetics, 2017, 12, 011003.	1.5	323
88	Soft robot review. International Journal of Control, Automation and Systems, 2017, 15, 3-15.	1.6	418
89	Toward Modular Soft Robotics: Proprioceptive Curvature Sensing and Sliding-Mode Control of Soft Bidirectional Bending Modules. Soft Robotics, 2017, 4, 117-125.	4.6	98
90	Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bulletin, 2017, 42, 138-142.	1.7	76

#	ARTICLE	IF	CITATIONS
91	Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Advanced Materials, 2017, 29, 1606000.	11.1	480
92	Leveraging Internal Viscous Flow to Extend the Capabilities of Beam-Shaped Soft Robotic Actuators. Soft Robotics, 2017, 4, 126-134.	4.6	23
93	Development of a soft untethered robot using artificial muscle actuators. Proceedings of SPIE, 2017, , .	0.8	10
94	Entirely soft dielectric elastomer robots. Proceedings of SPIE, 2017, , .	0.8	10
95	On the development of rod-based models for pneumatically actuated soft robot arms: A five-parameter constitutive relation. International Journal of Solids and Structures, 2017, 120, 226-235.	1.3	35
96	Fundamentals of soft robot locomotion. Journal of the Royal Society Interface, 2017, 14, 20170101.	1.5	207
97	Conduction Electrohydrodynamics with Mobile Electrodes: A Novel Actuation System for Untethered Robots. Advanced Science, 2017, 4, 1600495.	5 . 6	23
98	Arthrobots. Soft Robotics, 2017, 4, 183-190.	4.6	65
99	Soft Robotics: Review of Fluidâ€Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Humanâ€Robot Interaction. Advanced Engineering Materials, 2017, 19, 1700016.	1.6	707
100	Fast-moving soft electronic fish. Science Advances, 2017, 3, e1602045.	4.7	621
101	Soft Actuators for Smallâ€Scale Robotics. Advanced Materials, 2017, 29, 1603483.	11.1	973
102	A novel slithering locomotion mechanism for a snake-like soft robot. Journal of the Mechanics and Physics of Solids, 2017, 99, 304-320.	2.3	30
103	Automatic design of fiber-reinforced soft actuators for trajectory matching. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 51-56.	3.3	367
104	Topology optimization of hyperelastic structures using a level set method. Journal of Computational Physics, 2017, 351, 437-454.	1.9	29
105	Elastic Inflatable Actuators for Soft Robotic Applications. Advanced Materials, 2017, 29, 1604977.	11.1	300
106	A Biologically Inspired, Functionally Graded End Effector for Soft Robotics Applications. Soft Robotics, 2017, 4, 317-323.	4.6	41
107	Energy efficiency of mobile soft robots. Soft Matter, 2017, 13, 8223-8233.	1.2	36
108	Harnessing Dielectric Breakdown of Dielectric Elastomer to Achieve Large Actuation. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	14

#	ARTICLE	IF	Citations
109	New soft robots really suck: Vacuum-powered systems empower diverse capabilities. Science Robotics, $2017, 2, .$	9.9	253
110	Soft material for soft actuators. Nature Communications, 2017, 8, 596.	5.8	584
111	Lowâ€Cost, Facile, and Scalable Manufacturing of Capacitive Sensors for Soft Systems. Advanced Materials Technologies, 2017, 2, 1700072.	3.0	75
112	3D printed soft actuators for a legged robot capable of navigating unstructured terrain. , 2017, , .		123
113	A high speed soft robot based on dielectric elastomer actuators. , 2017, , .		80
114	Temporal and spatial programming in soft composite hydrogel objects. Journal of Materials Chemistry B, 2017, 5, 7491-7495.	2.9	4
115	Toward Effective Soft Robot Control via Reinforcement Learning. Lecture Notes in Computer Science, 2017, , 173-184.	1.0	29
116	A Locomotion Robot Driven by Soft Dielectric Elastomer Resonator. Lecture Notes in Computer Science, 2017, , 120-126.	1.0	2
117	Soft-, shape changing materials toward physicochemically powered actuators. Korean Journal of Chemical Engineering, 2017, 34, 2355-2365.	1.2	5
118	Self-healing soft pneumatic robots. Science Robotics, 2017, 2, .	9.9	359
119	Software toolkit for modeling, simulation, and control of soft robots. Advanced Robotics, 2017, 31, 1208-1224.	1.1	144
120	A Lobster-Inspired Hybrid Actuator With Rigid and Soft Components. , 2017, , .		1
121	Design and Computational Modeling of a Modular, Compliant Robotic Assembly for Human Lumbar Unit and Spinal Cord Assistance. Scientific Reports, 2017, 7, 14391.	1.6	32
122	Electromechanical Control and Stability Analysis of a Soft Swim-Bladder Robot Driven by Dielectric Elastomer. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	16
123	Modeling and experiments of a soft robotic gripper in amphibious environments. International Journal of Advanced Robotic Systems, 2017, 14, 172988141770714.	1.3	87
125	Kinematic Analysis of a Continuum Parallel Robot. Mechanisms and Machine Science, 2017, , 173-180.	0.3	3
126	Soft Robotics: Trends, Applications and Challenges. Biosystems and Biorobotics, 2017, , .	0.2	22
127	Directly Fabricating Soft Robotic Actuators With an Open-Source 3-D Printer. IEEE Robotics and Automation Letters, 2017, 2, 277-281.	3.3	54

#	Article	IF	Citations
128	Soft Robotics Technology and a Soft Table for Industrial Applications. Advances in Intelligent Systems and Computing, 2017, , 397-409.	0.5	1
130	Soft snake robots: Mechanical design and geometric gait implementation. , 2017, , .		36
131	Active suction cup actuated by ElectroHydroDynamics phenomenon. , 2017, , .		15
132	Soft foam robot with caterpillar-inspired gait regimes for terrestrial locomotion. , 2017, , .		13
133	Regulating surface traction of a soft robot through electrostatic adhesion control., 2017,,.		14
134	A bidirectional soft pneumatic fabric-based actuator for grasping applications. , 2017, , .		25
135	3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication. , 2017, , .		25
136	Fabrication, modeling, and control of plush robots. , 2017, , .		24
137	Differential pressure control of 3D printed soft fluidic actuators., 2017,,.		51
138	A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control. International Journal of Smart and Nano Materials, 2017, 8, 144-213.	2.0	58
139	A 3D printed monolithic soft gripper with adjustable stiffness. , 2017, , .		31
140	Self-Healing and Damage Resilience for Soft Robotics: A Review. Frontiers in Robotics and Al, 2017, 4, .	2.0	83
141	Asymmetric stable deformations in inflated dielectric elastomer actuators. , 2017, , .		6
143	Soft Robotics. Angewandte Chemie - International Edition, 2018, 57, 4258-4273.	7.2	534
144	A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance. Smart Materials and Structures, 2018, 27, 045017.	1.8	22
145	Functional properties of silicone/ethanol soft-actuator composites. Materials and Design, 2018, 145, 232-242.	3.3	40
146	3D printing for soft robotics – a review. Science and Technology of Advanced Materials, 2018, 19, 243-262.	2.8	284
147	Mechanically Versatile Soft Machines through Laminar Jamming. Advanced Functional Materials, 2018, 28, 1707136.	7.8	159

#	Article	IF	Citations
148	Soft Somatosensitive Actuators via Embedded 3D Printing. Advanced Materials, 2018, 30, e1706383.	11.1	398
149	A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sensors and Actuators A: Physical, 2018, 273, 285-292.	2.0	109
150	A Soft Three-Axis Load Cell Using Liquid-Filled Three-Dimensional Microchannels in a Highly Deformable Elastomer. IEEE Robotics and Automation Letters, 2018, 3, 881-887.	3.3	21
151	Design of Materials and Mechanisms for Responsive Robots. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 359-384.	7.5	17
152	HCI meets Material Science. , 2018, , .		67
153	Crumpling and Unfolding of Montmorillonite Hybrid Nanocoatings as Stretchable Flameâ€Retardant Skin. Small, 2018, 14, e1800596.	5.2	36
154	Modeling and understanding locomotion of pneumatic soft robots. Soft Materials, 2018, 16, 151-159.	0.8	11
155	Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots. Advanced Materials, 2018, 30, e1706695.	11.1	301
156	Interaction Between Inertia, Viscosity, and Elasticity in Soft Robotic Actuator With Fluidic Network. IEEE Transactions on Robotics, 2018, 34, 81-90.	7.3	19
157	Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Science Advances, 2018, 4, eaao3865.	4.7	360
158	Untethered soft robotics. Nature Electronics, 2018, 1, 102-112.	13.1	704
159	Cutting the cord. Nature Electronics, 2018, 1, 89-89.	13.1	1
160	Ultrastretchable Strain Sensors Using Carbon Blackâ€Filled Elastomer Composites and Comparison of Capacitive Versus Resistive Sensors. Advanced Materials Technologies, 2018, 3, 1700284.	3.0	219
161	A Soft Parallel Kinematic Mechanism. Soft Robotics, 2018, 5, 36-53.	4.6	22
162	A Soft Robotic Gripper With Gecko-Inspired Adhesive. IEEE Robotics and Automation Letters, 2018, 3, 903-910.	3.3	246
163	Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Science Robotics, 2018, 3, .	9.9	336
164	Rejuvenation of soft material-actuator. MRS Communications, 2018, 8, 556-561.	0.8	17
165	A soft, bistable valve for autonomous control of soft actuators. Science Robotics, 2018, 3, .	9.9	316

#	ARTICLE	IF	CITATIONS
166	Softâ∈Robotik. Angewandte Chemie, 2018, 130, 4336-4353.	1.6	20
167	Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mechanics Letters, 2018, 21, 9-16.	2.0	160
168	A Pneumatic Artificial Muscle Manufactured Out of Self-Healing Polymers That Can Repair Macroscopic Damages. IEEE Robotics and Automation Letters, 2018, 3, 16-21.	3.3	39
169	Artificial Heliotropism and Nyctinasty Based on Optomechanical Feedback and No Electronics. Soft Robotics, 2018, 5, 93-98.	4.6	13
170	Swimming without a spine: computational modeling and analysis of the swimming hydrodynamics of the Spanish Dancer. Bioinspiration and Biomimetics, 2018, 13, 015001.	1.5	14
171	Advances in dielectric elastomer actuation technology. Science China Technological Sciences, 2018, 61, 1512-1527.	2.0	46
172	Towards a Soft Fingertip with Integrated Sensing and Actuation. , $2018, \ldots$		27
173	Kinematic Analysis of Novel Soft Robotic Arm Based on Virtual Work Principle. , 2018, , .		8
174	Design. Fabrication, and Evaluation of Tendon-Driven Multi-Fingered Foam Hands., 2018,,.		20
175	EuMoBot: replicating euglenoid movement in a soft robot. Journal of the Royal Society Interface, 2018, 15, 20180301.	1.5	21
176	Control of Tendon-Driven Soft Foam Robot Hands. , 2018, , .		25
177	Mass Manufacturing of Self-Actuating Robots: Integrating Sensors and Actuators Using Flexible Electronics. , 2018, , .		4
178	Rate-independent soft crawlers. Quarterly Journal of Mechanics and Applied Mathematics, 2018, , .	0.5	1
179	Force Generation by Parallel Combinations of Fiber-Reinforced Fluid-Driven Actuators. IEEE Robotics and Automation Letters, 2018, 3, 3999-4006.	3.3	17
180	Dynamic Modeling of Soft Manipulators Actuated by Twisted-and-Coiled Actuators. , 2018, , .		2
181	Design of a Multi-Stage Stiffness Enhancing Unit for a Soft Robotic Finger and its Robust Motion Control. , 2018, , .		3
182	Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion. Nanoscale, 2018, 10, 21555-21574.	2.8	111
183	Design and Fabrication of a Variable Stiffness Soft Pneumatic Humanoid Finger Actuator. , 2018, , .		6

#	Article	IF	CITATIONS
184	Design and Manufacturing of Motor-Tendon Actuator for a Soft Starfish-Like Robot., 2018,,.		3
185	Tri-Iron Tetra-Oxide and Silicone Composite Beam Actuator. , 2018, , .		0
186	A Spatial Grammar Method for the Computational Design Synthesis of Virtual Soft Robots. , 2018, , .		1
187	Soft Robots Manufacturing: A Review. Frontiers in Robotics and AI, 2018, 5, 84.	2.0	201
188	A Flytrap-inspired Soft Manipulator Driven by Single Airbag., 2018,,.		0
189	Liquid Metal-Microelectronics Integration for a Sensorized Soft Robot Skin. , 2018, , .		20
190	Soft LEGO: Bottom-Up Design Platform for Soft Robotics. , 2018, , .		9
191	A New Manufacturing Process for Soft Robots and Soft/Rigid Hybrid Robots. , 2018, , .		16
192	Design for Control of a Soft Bidirectional Bending Actuator. , 2018, , .		10
193	A flex-rigid soft robot for flipping locomotion. , 2018, , .		0
194	Chasing biomimetic locomotion speeds: Creating untethered soft robots with shape memory alloy actuators. Science Robotics, 2018, 3, .	9.9	125
195	Softâ€Matter Engineering for Soft Robotics. Advanced Materials Technologies, 2019, 4, 1800477.	3.0	201
196	Force Modulation and Adaptability of 3Dâ€Bioprinted Biological Actuators Based on Skeletal Muscle Tissue. Advanced Materials Technologies, 2019, 4, 1800631.	3.0	47
197	Localized online learning-based control of a soft redundant manipulator under variable loading. Advanced Robotics, 2018, 32, 1168-1183.	1.1	20
198	A soft artificial muscle driven robot with reinforcement learning. Scientific Reports, 2018, 8, 14518.	1.6	35
199	A Structural Optimisation Method for a Soft Pneumatic Actuator. Robotics, 2018, 7, 24.	2.1	65
200	Shape-Changing Materials Using Variable Stiffness and Distributed Control. Soft Robotics, 2018, 5, 737-747.	4.6	9
201	Reverse pneumatic artificial muscles (rPAMs): Modeling, integration, and control. PLoS ONE, 2018, 13, e0204637.	1.1	30

#	Article	IF	Citations
202	Systematic engineering design helps creating new soft machines. Robotics and Biomimetics, 2018, 5, 5.	1.7	17
203	A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles. , 2018, , .		45
204	OmniSkins: Robotic skins that turn inanimate objects into multifunctional robots. Science Robotics, $2018, 3, .$	9.9	97
205	One Soft Robot: A Complementary Design & Control Strategy for a Pneumatically Powered Soft Robot. , 2018, , .		3
206	3D Printed Helical Soft Pneumatic Actuators. , 2018, , .		17
207	Pneumatically Actuated Soft Robotic Arm for Adaptable Grasping. Acta Mechanica Solida Sinica, 2018, 31, 608-622.	1.0	30
208	Soft simple Compact Valve Inducing Self-excited Vibration Aimed for Mobile Robots Unnecessary for Electricity. , $2018, , .$		8
209	Dielectric Elastomer Actuators with Carbon Nanotube Electrodes Painted with a Soft Brush. Actuators, 2018, 7, 51.	1.2	46
210	Kinematics and Force Analysis of Flexible Screw Mechanism for a Worm Robot. Journal of Mechanisms and Robotics, $2018,10,$	1.5	5
211	Toward a Common Framework for the Design of Soft Robotic Manipulators with Fluidic Actuation. Soft Robotics, 2018, 5, 622-649.	4.6	30
212	Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. Advanced Materials, 2018, 30, e1801103.	11.1	133
213	Design of Multifunctional Soft Doming Actuator for Soft Machines. Advanced Materials Technologies, 2018, 3, 1800069.	3.0	14
214	Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Science Robotics, 2018, 3, .	9.9	176
215	Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mechanics Letters, 2018, 22, 51-59.	2.0	247
216	Soft Robotics in Medical Applications. Journal of Medical Robotics Research, 2018, 03, 1841006.	1.0	17
217	Artificial muscle driven soft hydraulic robot: electromechanical actuation and simplified modeling. Smart Materials and Structures, 2018, 27, 095016.	1.8	24
218	Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators. Soft Robotics, 2018, 5, 466-474.	4.6	222
219	Switchable Adhesion Actuator for Amphibious Climbing Soft Robot. Soft Robotics, 2018, 5, 592-600.	4.6	112

#	Article	IF	CITATIONS
220	Continuum-Based Geometry/Analysis Approach for Flexible and Soft Robotic Systems. Soft Robotics, 2018, 5, 613-621.	4.6	20
221	Low-inertia vacuum-powered soft pneumatic actuator coil characterization and design methodology. , 2018, , .		10
222	Increasing the Dimensionality of Soft Microstructures through Injectionâ€Induced Selfâ€Folding. Advanced Materials, 2018, 30, e1802739.	11.1	69
223	Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators. Frontiers in Robotics and Al, 2018, 5, 2.	2.0	53
224	Stretchable Seal. ACS Applied Materials & Interfaces, 2018, 10, 27333-27343.	4.0	40
225	An addressable pneumatic regulator for distributed control of soft robots. , 2018, , .		34
226	Design and Development of a Topology-Optimized Three-Dimensional Printed Soft Gripper. Soft Robotics, 2018, 5, 650-661.	4.6	45
227	Voltage-Induced Wrinkle Performance in a Hydrogel by Dielectric Elastomer Actuation. Polymers, 2018, 10, 697.	2.0	8
228	Capability by Stacking: The Current Design Heuristic for Soft Robots. Biomimetics, 2018, 3, 16.	1.5	15
229	Acoustic actuators based on the resonance of an acoustic-film system applied to the actuation of soft robots. Journal of Sound and Vibration, 2018, 432, 310-326.	2.1	1
230	Multi-directional crawling robot with soft actuators and electroadhesive grippers. , 2018, , .		18
231	Direct 3D printing of silicone elastomer soft robots and their performance comparison with molded counterparts., 2018,,.		68
232	Underwater soft jet propulsion based on a hoberman mechanism., 2018,,.		2
233	Learning nonlinear dynamic models of soft robots for model predictive control with neural networks. , 2018, , .		76
234	All-soft material system for strong soft actuators. , 2018, , .		15
235	Locomotion analysis and optimization of actinomorphic robots with soft arms actuated by shape memory alloy wires. International Journal of Advanced Robotic Systems, 2018, 15, 172988141878794.	1.3	12
236	Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics, 2018, 3, 15.	1.5	164
237	A soft active origami robot. Extreme Mechanics Letters, 2018, 24, 30-37.	2.0	38

#	Article	IF	Citations
238	An Overview of Novel Actuators for Soft Robotics. Actuators, 2018, 7, 48.	1.2	140
239	Modeling thermal recovery of the Mullins effect. Mechanics of Materials, 2018, 126, 88-98.	1.7	24
240	Coiled Conductive Polymer Fiber Used in Soft Manipulator as Sensor. IEEE Sensors Journal, 2018, 18, 6123-6129.	2.4	17
241	A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules. Soft Robotics, 2018, 5, 304-317.	4.6	39
242	Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots. Soft Robotics, 2018, 5, 567-575.	4.6	64
243	Inchworm-Inspired Locomotion in Untethered Soft Robots. , 2019, , .		19
244	Design of Embedded Structure Variable Stiffness Pneumatic Actuator. Lecture Notes in Computer Science, 2019, , 234-239.	1.0	0
245	Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nature Communications, 2019, 10, 3464.	5 . 8	71
246	Miniature Pneumatic Actuators for Soft Robots by Highâ€Resolution Multimaterial 3D Printing. Advanced Materials Technologies, 2019, 4, 1900427.	3.0	91
247	Tendon-Driven Functionally Gradient Soft Robotic Gripper 3D Printed with Intermixed Extrudate of Hard and Soft Thermoplastics. 3D Printing and Additive Manufacturing, 2019, 6, 191-203.	1.4	29
248	Soft robots locomotion and manipulation control using FEM simulation and quadratic programming, , 2019, , .		25
249	A Soft Pneumatic Inchworm Double balloon (SPID) for colonoscopy. Scientific Reports, 2019, 9, 11109.	1.6	58
250	Joint Design and Fabrication for Multi-Material Soft/Hybrid Robots. , 2019, , .		4
251	A Vacuum-Powered Soft Linear Actuator Strengthened by Granular Jamming. Lecture Notes in Computer Science, 2019, , 531-543.	1.0	1
252	Toward Shape Optimization of Soft Robots., 2019,,.		13
253	Cutting the Cord: Soft Haptic Devices without a Pressure Source. , 2019, , .		1
254	A dynamic self-regulation actuator combined double network gel with gradient structure driven by chemical oscillating reaction. RSC Advances, 2019, 9, 13168-13172.	1.7	9
255	Transparent Soft Robots for Effective Camouflage. Advanced Functional Materials, 2019, 29, 1901908.	7.8	70

#	Article	IF	CITATIONS
256	Multi-DoF Force Characterization of Soft Actuators. IEEE Robotics and Automation Letters, 2019, 4, 3679-3686.	3.3	13
257	Directly 3D-printed monolithic soft robotic gripper with liquid metal microchannels for tactile sensing. Flexible and Printed Electronics, 2019, 4, 035001.	1.5	19
258	Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nature Energy, 2019, 4, 671-682.	19.8	63
259	Soft Robots for Extreme Environments: Removing Electronic Control. , 2019, , .		31
260	Soft kink valves. Journal of the Mechanics and Physics of Solids, 2019, 131, 230-239.	2.3	27
261	Bio-inspired untethered fully soft robots in liquid actuated by induced energy gradients. National Science Review, 2019, 6, 970-981.	4.6	22
262	Electroresponsive Ionic Liquid Crystal Elastomers. Macromolecular Rapid Communications, 2019, 40, e1900299.	2.0	45
263	FludoJelly: Experimental Study on Jellyfish-Like Soft Robot Enabled by Soft Pneumatic Composite (SPC). Robotics, 2019, 8, 56.	2.1	50
264	RUBIC: An Untethered Soft Robot With Discrete Path Following. Frontiers in Robotics and AI, 2019, 6, 52.	2.0	13
265	Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics. Soft Robotics, 2019, 6, 657-663.	4.6	35
266	Evaluation of 3D Printed Soft Robots in Radiation Environments and Comparison With Molded Counterparts. Frontiers in Robotics and Al, 2019, 6, 40.	2.0	27
267	An Optimum Design Method of Pneu-Net Actuators for Trajectory Matching Utilizing a Bending Model and GA. Mathematical Problems in Engineering, 2019, 2019, 1-12.	0.6	15
268	Review of Soft Actuator Materials. International Journal of Precision Engineering and Manufacturing, 2019, 20, 2221-2241.	1.1	122
269	Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Science Advances, 2019, 5, eaax5746.	4.7	312
270	Soft mobile robot inspired by animal-like running motion. Scientific Reports, 2019, 9, 14700.	1.6	29
271	A Periodic Deformation Mechanism of a Soft Actuator for Crawling and Grasping. Advanced Materials Technologies, 2019, 4, 1900653.	3.0	27
272	Untethered Soft Actuators by Liquid–Vapor Phase Transition: Remote and Programmable Actuation. Advanced Intelligent Systems, 2019, 1, 1900109.	3.3	42
273	Remotely Lightâ€Powered Soft Fluidic Actuators Based on Plasmonicâ€Driven Phase Transitions in Elastic Constraint. Advanced Materials, 2019, 31, e1905671.	11.1	26

#	Article	IF	Citations
274	Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials, 2019, 11 , .	3.8	202
275	Soft and Fast Hopping–Running Robot with Speed of Six Times Its Body Length Per Second. Soft Robotics, 2019, 6, 713-721.	4.6	38
276	Towards an ontology for soft robots: what is soft?. Bioinspiration and Biomimetics, 2019, 14, 063001.	1.5	19
277	Antagonistic Pneumatic Actuators with Variable Stiffness for Soft Robotic Applications. , 2019, , .		11
278	Recycling-Oriented Design in Soft Robotics. Actuators, 2019, 8, 62.	1.2	7
279	Untethered soft robotic matter with passive control of shape morphing and propulsion. Science Robotics, 2019, 4, .	9.9	268
280	Towards more Energy Efficient Pneumatic Soft Actuators using a Port-Hamiltonian Approach. , 2019, , .		8
281	A Wireless Compact Control Unit (WiCCU) for Untethered Pneumatic Soft Robots. , 2019, , .		2
282	Buckling Elements for Elastomer Deformation. , 2019, , .		2
283	A soft matter computer for soft robots. Science Robotics, 2019, 4, .	9.9	59
284	Development of Fast Prototyping Pneumatic Actuated Grippers. International Journal of Precision		
	Engineering and Manufacturing, 2019, 20, 2183-2192.	1.1	5
285	Engineering and Manufacturing, 2019, 20, 2183-2192. Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065.	1.1	34
285 286	Engineering and Manufacturing, 2019, 20, 2183-2192.		
	Engineering and Manufacturing, 2019, 20, 2183-2192. Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065. Expanding Foam as the Material for Fabrication, Prototyping and Experimental Assessment of Low-Cost	1.3	34
286	Engineering and Manufacturing, 2019, 20, 2183-2192. Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065. Expanding Foam as the Material for Fabrication, Prototyping and Experimental Assessment of Low-Cost Soft Robots With Embedded Sensing. IEEE Robotics and Automation Letters, 2019, 4, 761-768. Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und	3.3	21
286 287	Engineering and Manufacturing, 2019, 20, 2183-2192. Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065. Expanding Foam as the Material for Fabrication, Prototyping and Experimental Assessment of Low-Cost Soft Robots With Embedded Sensing. IEEE Robotics and Automation Letters, 2019, 4, 761-768. Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324. Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic	1.3 3.3 1.6	34 21 5
286 287 288	Engineering and Manufacturing, 2019, 20, 2183-2192. Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065. Expanding Foam as the Material for Fabrication, Prototyping and Experimental Assessment of Low-Cost Soft Robots With Embedded Sensing. IEEE Robotics and Automation Letters, 2019, 4, 761-768. Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324. Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	1.3 3.3 1.6	34 21 5 120

#	Article	IF	CITATIONS
292	A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3D Printed Origami Skeletons. , 2019, , .		19
293	Study on nonlinear crawling locomotion of modular differential drive soft robot. Nonlinear Dynamics, 2019, 97, 1107-1123.	2.7	25
294	Dynamic Morphological Computation Through Damping Design of Soft Continuum Robots. Frontiers in Robotics and Al, 2019, 6, 23.	2.0	14
295	A Magnetically Coupled Dielectric Elastomer Pump for Soft Robotics. Advanced Materials Technologies, 2019, 4, 1900128.	3.0	85
296	Model-Based Control of Soft Actuators Using Learned Non-linear Discrete-Time Models. Frontiers in Robotics and Al, 2019, 6, 22.	2.0	43
297	On-Board Pneumatic Pressure Generation Methods for Soft Robotics Applications. Actuators, 2019, 8, 2.	1.2	26
298	Liquid Metal–Elastomer Soft Composites with Independently Controllable and Highly Tunable Droplet Size and Volume Loading. ACS Applied Materials & Size and Volume Loading.	4.0	119
299	FifoBots: Foldable Soft Robots for Flipping Locomotion. Soft Robotics, 2019, 6, 532-559.	4.6	12
300	Elementary Slender Soft Robots Inspired by Skeleton Joint System of Animals. Soft Robotics, 2019, 6, 377-388.	4.6	10
301	A Versatile Soft Crawling Robot with Rapid Locomotion. Soft Robotics, 2019, 6, 455-467.	4.6	97
302	Morphing Robots Using Robotic Skins That Sculpt Clay. IEEE Robotics and Automation Letters, 2019, 4, 2204-2211.	3.3	27
303	Using Soft Robotic Technology to Fabricate a Proofâ€ofâ€Concept Transcatheter Tricuspid Valve Replacement (TTVR) Device. Advanced Materials Technologies, 2019, 4, 1800610.	3.0	7
304	Design and Actuation of a Fabric-Based Worm-Like Robot. Biomimetics, 2019, 4, 13.	1.5	18
305	Elastomeric Prepregs for Soft Robotics Applications. Advanced Engineering Materials, 2019, 21, 1801200.	1.6	5
306	A Simple Tripod Mobile Robot Using Soft Membrane Vibration Actuators. IEEE Robotics and Automation Letters, 2019, 4, 2289-2295.	3.3	14
307	Modified commercial UV curable elastomers for passive 4D printing. International Journal of Smart and Nano Materials, 2019, 10, 225-236.	2.0	28
308	Folded-Tube Soft Pneumatic Actuators for Bending. Soft Robotics, 2019, 6, 174-183.	4.6	28
309	High Operation Stability of Ultraflexible Organic Solar Cells with Ultravioletâ€Filtering Substrates. Advanced Materials, 2019, 31, e1808033.	11.1	44

#	Article	IF	Citations
310	Digital logic for soft devices. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7750-7759.	3.3	170
311	Soft Electrically Actuated Quadruped (SEAQ)—Integrating a Flex Circuit Board and Elastomeric Limbs for Versatile Mobility. IEEE Robotics and Automation Letters, 2019, 4, 2415-2422.	3.3	29
312	Vacuumâ€Powered Soft Pneumatic Twisting Actuators to Empower New Capabilities for Soft Robots. Advanced Materials Technologies, 2019, 4, 1800429.	3.0	72
313	Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame. Sensors and Actuators A: Physical, 2019, 292, 112-120.	2.0	51
314	An analytical model for the design of Peano-HASEL actuators with drastically improved performance. Extreme Mechanics Letters, 2019, 29, 100449.	2.0	61
315	A soft crawling robot driven by single twisted and coiled actuator. Sensors and Actuators A: Physical, 2019, 291, 80-86.	2.0	58
316	A Spatial Grammar Method for the Computational Design Synthesis of Virtual Soft Locomotion Robots. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	1.7	15
317	Pneumatic Soft Arm Based on Spiral Balloon Weaving and Shape Memory Polymer Backbone. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	1.7	5
318	Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 2019, 1, 593-611.	2.0	776
319	JelloCube: A Continuously Jumping Robot With Soft Body. IEEE/ASME Transactions on Mechatronics, 2019, 24, 447-458.	3.7	24
320	A Novel Sequential Activation Method for the Locomotion of Quadrupedal Soft Robots. , 2019, , .		1
321	Actor-Critic Learning Hierarchical Sliding Mode Control for a Class of Underactuated Systems. , 2019, , .		4
322	Design, Fabrication and Morphing Mechanism of Soft Fins and Arms of a Squid-like Aquatic-aerial Vehicle with Morphology Tradeoff. , 2019, , .		5
323	Soft Polymer-Electrolyte-Fuel-Cell Tube Realizing Air-Hose-Free Thin McKibben Muscles. , 2019, , .		7
324	A Fabrication Device Producing Twisted and Coiled Polymer Actuators for Use in Soft Robots. , 2019, , .		2
325	Design and Implementation of Bio-inspired Snake Bone-armed Robot for Agricultural Irrigation Application. IFAC-PapersOnLine, 2019, 52, 98-101.	0.5	3
326	3D-Printing and Machine Learning Control of Soft Ionic Polymer-Metal Composite Actuators. Scientific Reports, 2019, 9, 17482.	1.6	46
327	Legoons: Inflatable Construction Kit for Children. , 2019, , .		4

#	Article	IF	CITATIONS
328	Programmable Design of Soft Actuators and Robots., 2019,,.		3
329	An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Science Robotics, 2019, 4, .	9.9	295
330	Design, Modeling, and Control of Biomimetic Fish Robot: A Review. Journal of Bionic Engineering, 2019, 16, 967-993.	2.7	70
331	Single chamber multiple degree-of-freedom soft pneumatic actuator enabled by adjustable stiffness layers. Smart Materials and Structures, 2019, 28, 035012.	1.8	22
332	A Lightâ€Powered Ultralight Tensegrity Robot with High Deformability and Load Capacity. Advanced Materials, 2019, 31, e1806849.	11.1	133
333	A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Soft Robotics, 2019, 6, 790-811.	4.6	151
334	Application-Driven Design of Soft, 3-D Printed, Pneumatic Actuators With Bellows. IEEE/ASME Transactions on Mechatronics, 2019, 24, 78-87.	3.7	106
335	Agile and Resilient Insect-Scale Robot. Soft Robotics, 2019, 6, 133-141.	4.6	93
336	Soft Radio-Frequency Identification Sensors: Wireless Long-Range Strain Sensors Using Radio-Frequency Identification. Soft Robotics, 2019, 6, 82-94.	4.6	17
337	Design and Modelling of Flex-Rigid Soft Robot for Flipping Locomotion. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 379-388.	2.0	8
338	Approaching robotics and autonomous systems as an integrated materials, energy, and control problem. , 2019, , xix-xlvi.		2
339	A general soft robot module driven by twisted and coiled actuators. Smart Materials and Structures, 2019, 28, 035019.	1.8	42
340	Fastâ€Response, Stiffnessâ€Tunable Soft Actuator by Hybrid Multimaterial 3D Printing. Advanced Functional Materials, 2019, 29, 1806698.	7.8	292
341	Evolving embodied intelligence from materials to machines. Nature Machine Intelligence, 2019, 1, 12-19.	8.3	91
342	Fluid-driven intrinsically soft robots. , 2019, , 61-84.		8
343	Ultrastrong and Highâ€6troke Wireless Soft Actuators through Liquid–Gas Phase Change. Advanced Materials Technologies, 2019, 4, 1800381.	3.0	36
344	Dielectric Elastomer Spring-Roll Bending Actuators: Applications in Soft Robotics and Design. Soft Robotics, 2019, 6, 69-81.	4.6	71
345	Embedded piezoresistive pressure sensitive pillars from piezoresistive carbon black composites towards a soft large-strain compressive load sensor. Sensors and Actuators A: Physical, 2019, 285, 645-651.	2.0	20

#	Article	IF	CITATIONS
346	Soft material actuation by atomization. Smart Materials and Structures, 2019, 28, 025030.	1.8	8
347	Bioinspired Design of Vascular Artificial Muscle. Advanced Materials Technologies, 2019, 4, 1800244.	3.0	86
348	Design and Implementation of a Soft Robotic Arm Driven by SMA Coils. IEEE Transactions on Industrial Electronics, 2019, 66, 6108-6116.	5.2	95
349	Design and Manufacturing of Tendon-Driven Soft Foam Robots. Robotica, 2020, 38, 88-105.	1.3	22
350	Harnessing Viscous Flow to Simplify the Actuation of Fluidic Soft Robots. Soft Robotics, 2020, 7, 1-9.	4.6	65
351	A survey on what Australians with upper limb difference want in a prosthesis: justification for using soft robotics and additive manufacturing for customized prosthetic hands. Disability and Rehabilitation: Assistive Technology, 2020, 15, 342-349.	1.3	20
352	A Novel Tendon-Driven Soft Actuator with Self-Pumping Property. Soft Robotics, 2020, 7, 130-139.	4.6	29
353	An elastica robot: Tip-control in tendon-actuated elastic arms. Extreme Mechanics Letters, 2020, 34, 100584.	2.0	1
354	CARE: Cooperative Autonomy for Resilience and Efficiency of robot teams for complete coverage of unknown environments under robot failures. Autonomous Robots, 2020, 44, 647-671.	3.2	29
355	All-Soft Skin-Like Structures for Robotic Locomotion and Transportation. Soft Robotics, 2020, 7, 309-320.	4.6	20
356	Electrohydraulic Actuator for a Soft Gripper. Soft Robotics, 2020, 7, 68-75.	4.6	68
357	Design and Control of Foam Hands for Dexterous Manipulation. International Journal of Humanoid Robotics, 2020, 17, 1950033.	0.6	12
358	A Machine-Learning-Based Approach to Solve Both Contact Location and Force in Soft Material Tactile Sensors. Soft Robotics, 2020, 7, 409-420.	4.6	61
359	Poisson Induced Bending Actuator for Soft Robotic Systems. Soft Robotics, 2020, 7, 155-167.	4.6	15
360	Automated Fabrication of Elastomeric Prepregs for Soft Robotics Applications. Advanced Engineering Materials, 2020, 22, 1900854.	1.6	1
361	Single-Input Control of Multiple Fluid-Driven Elastic Actuators via Interaction Between Bistability and Viscosity. Soft Robotics, 2020, 7, 259-265.	4.6	26
362	Highâ€Strain Peanoâ€HASEL Actuators. Advanced Functional Materials, 2020, 30, 1908821.	7.8	50
363	Heterogeneous Conductanceâ€Based Locally Shapeâ€Morphable Soft Electrothermal Actuator. Advanced Materials Technologies, 2020, 5, 1900997.	3.0	24

#	Article	IF	CITATIONS
364	Chamber layout design optimization of soft pneumatic robots. Smart Materials and Structures, 2020, 29, 025017.	1.8	12
365	Soft Crawling Robots: Design, Actuation, and Locomotion. Advanced Materials Technologies, 2020, 5, 1900837.	3.0	136
366	Fault Tolerant Control in Shape-Changing Internal Robots. , 2020, , .		2
367	An obstacle-interaction planning method for navigation of actuated vine robots. , 2020, , .		19
368	Fiber pattern optimization for soft robotic pad. Extreme Mechanics Letters, 2020, 41, 101055.	2.0	7
369	Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields. Extreme Mechanics Letters, 2020, 41, 101023.	2.0	31
370	Bionic intelligent soft actuators: high-strength gradient intelligent hydrogels with diverse controllable deformations and movements. Journal of Materials Chemistry B, 2020, 8, 9362-9373.	2.9	17
371	Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers. Soft Robotics, 2021, 8, 673-686.	4.6	19
372	Reinforced Gels and Elastomers for Biomedical and Soft Robotics Applications. ACS Applied Polymer Materials, 2020, 2, 1073-1091.	2.0	67
373	Modal-Based Kinematics and Contact Detection of Soft Robots. Soft Robotics, 2021, 8, 298-309.	4.6	47
374	Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Basic Execution Unit. Journal of Robotics, 2020, 2020, 1-13.	0.6	2
375	Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature, 2020, 587, 219-224.	13.7	279
376	Characterization and Modeling of Layer Jamming for Designing Engineering Materials with Programmable Elastic-Plastic Behavior. Experimental Mechanics, 2020, 60, 1187-1203.	1.1	6
377	Limpet II: A Modular, Untethered Soft Robot. Soft Robotics, 2021, 8, 319-339.	4.6	30
378	A Soft Pneumatic Crawling Robot with Unbalanced Inflation. , 2020, , .		1
379	3D Printed Soft Pneumatic Bending Sensing Chambers for Bilateral and Remote Control of Soft Robotic Systems. , 2020, , .		4
380	A shape memory alloy–actuated soft crawling robot based on adaptive differential friction and enhanced antagonistic configuration. Journal of Intelligent Material Systems and Structures, 2020, 31, 1920-1934.	1.4	21
381	An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth Inverse Kinematics. Soft Robotics, 2021, 8, 371-386.	4.6	71

#	Article	IF	Citations
382	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
383	Electroadhesive sphere-flat contact problem: A comparison between DMT and full iterative finite element solutions. Tribology International, 2020, 152, 106542.	3.0	4
384	3D/4D-printed bending-type soft pneumatic actuators: fabrication, modelling, and control. Virtual and Physical Prototyping, 2020, 15, 373-402.	5.3	103
385	Design and analysis of a cable-driven rigid–flexible coupling parallel mechanism with variable stiffness. Mechanism and Machine Theory, 2020, 153, 104030.	2.7	11
386	3D Shrinking for Rapid Fabrication of Origami-Inspired Semi-Soft Pneumatic Actuators. IEEE Access, 2020, 8, 191330-191340.	2.6	9
387	Model Reference Predictive Adaptive Control for Large-Scale Soft Robots. Frontiers in Robotics and Al, 2020, 7, 558027.	2.0	14
388	Design and application of PneuNets bending actuator. Aircraft Engineering and Aerospace Technology, 2020, 92, 1539-1546.	0.7	5
389	SoRX: A Soft Pneumatic Hexapedal Robot to Traverse Rough, Steep, and Unstable Terrain. , 2020, , .		11
390	Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2020, 2, 2000128.	3.3	244
391	An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots. Soft Robotics, 2021, 8, 485-505.	4.6	27
392	Magnetorheological Fluidâ€Based Flow Control for Soft Robots. Advanced Intelligent Systems, 2020, 2, 2000139.	3.3	20
393	An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Science Robotics, 2020, 5, .	9.9	88
394	MagWorm: A Biomimetic Magnet Embedded Worm-Like Soft Robot. Soft Robotics, 2021, 8, 507-518.	4.6	58
395	Analytical Modeling and Design of Generalized Pneu-Net Soft Actuators with Three-Dimensional Deformations. Soft Robotics, 2021, 8, 462-477.	4.6	41
396	Multimodal Soft Robot for Complex Environments Using Bionic Omnidirectional Bending Actuator. IEEE Access, 2020, 8, 193827-193844.	2.6	22
397	Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces. Science Robotics, 2020, 5, .	9.9	108
398	Motion Planning and Iterative Learning Control of a Modular Soft Robotic Snake. Frontiers in Robotics and AI, 2020, 7, 599242.	2.0	18
399	Passive, Reflex Response Units for Reactive Soft Robotic Systems. IEEE Robotics and Automation Letters, 2020, 5, 4014-4020.	3.3	5

#	Article	IF	CITATIONS
400	Towards Untethered Soft Pneumatic Exosuits Using Low-Volume Inflatable Actuator Composites and a Portable Pneumatic Source. IEEE Robotics and Automation Letters, 2020, 5, 4062-4069.	3.3	17
401	3D Printing of Viscoelastic Suspensions via Digital Light Synthesis for Tough Nanoparticle–Elastomer Composites. Advanced Materials, 2020, 32, e2001646.	11.1	31
402	Design, fabrication, modeling and control of a fabric-based spherical robotic arm. Mechatronics, 2020, 68, 102369.	2.0	24
403	Soft Pneumatic Gripper With a Tendon-Driven Soft Origami Pump. Frontiers in Bioengineering and Biotechnology, 2020, 8, 461.	2.0	48
404	Position and Force Control of a Soft Pneumatic Actuator. Soft Robotics, 2020, 7, 550-563.	4.6	27
405	Additive Manufacturing for Soft Robotics: Design and Fabrication of Airtight, Monolithic Bending PneuNets with Embedded Air Connectors. Micromachines, 2020, 11, 485.	1.4	34
406	Inflatable soft jumper inspired by shell snapping. Science Robotics, 2020, 5, .	9.9	128
407	Soft Thermal Actuators with Embedded Liquid Metal Microdroplets for Improved Heat Management. , 2020, , .		3
408	Mechanically Programmable, Degradable & Ingestible Soft Actuators., 2020,,.		10
409	Classification of components of affective touch using rapidly-manufacturable soft sensor skins. , 2020, , .		2
410	Structural and Mechanical Characteristics of a Capsule-Type Soft Pneumatic Actuator with Large Thrust Force and High-Contraction Ratio. Mathematical Problems in Engineering, 2020, 2020, 1-13.	0.6	2
411	A Soft Ionic Sensor for Simultaneous Pressure and Strain Measurements. , 2020, , .		2
412	Characterization of a Soft Gripper with Detachable Fingers through Rapid Evaporation., 2020,,.		1
413	A Gait Pattern Generator for Closed-Loop Position Control of a Soft Walking Robot. Frontiers in Robotics and Al, 2020, 7, 87.	2.0	4
414	Soft Non-Volatile Memory for Non-Electronic Information Storage in Soft Robots. , 2020, , .		12
415	A Layered Manufacturing Approach for Soft and Soft-Rigid Hybrid Robots. Soft Robotics, 2020, 7, 218-232.	4. 6	20
416	Kinematic Modelling and Experimental Validation of a Foldable Pneumatic Soft Manipulator. Applied Sciences (Switzerland), 2020, 10, 1447.	1.3	5
417	Self-Excited Vibration Valve That Induces Traveling Waves in Pneumatic Soft Mobile Robots. IEEE Robotics and Automation Letters, 2020, 5, 4133-4139.	3.3	12

#	Article	IF	Citations
418	Laser Pouch Motors: Selective and Wireless Activation of Soft Actuators by Laser-Powered Liquid-to-Gas Phase Change. IEEE Robotics and Automation Letters, 2020, 5, 4180-4187.	3.3	19
419	An untethered isoperimetric soft robot. Science Robotics, 2020, 5, .	9.9	72
420	Soft actuators using liquid crystal elastomers with encapsulated liquid metal joule heaters. Multifunctional Materials, 2020, 3, 025003.	2.4	52
421	Additive Manufacturing for Self-Healing Soft Robots. Soft Robotics, 2020, 7, 711-723.	4.6	54
422	Design and Modeling of a High Force Soft Actuator for Assisted Elbow Flexion. IEEE Robotics and Automation Letters, 2020, 5, 3731-3736.	3.3	24
423	Design, Fabrication, and Locomotion Analysis of an Untethered Miniature Soft Quadruped, SQuad. IEEE Robotics and Automation Letters, 2020, 5, 3854-3860.	3.3	13
424	Dynamics of electrohydraulic soft actuators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16207-16213.	3.3	42
425	Leveraging Monostable and Bistable Preâ€Curved Bilayer Actuators for Highâ€Performance Multitask Soft Robots. Advanced Materials Technologies, 2020, 5, 2000370.	3.0	47
426	Finite Element Modeling in the Design Process of 3D Printed Pneumatic Soft Actuators and Sensors. Robotics, 2020, 9, 52.	2.1	52
427	Large, Fast, and Bidirectional Bending of Slideâ€Ring Polymer Materials. Advanced Intelligent Systems, 2020, 2, 1900155.	3.3	6
428	Electrically Controlled Soft Actuators with Multiple and Reprogrammable Actuation Modes. Advanced Intelligent Systems, 2020, 2, 1900177.	3.3	26
429	Modular Soft Robotics: Modular Units, Connection Mechanisms, and Applications. Advanced Intelligent Systems, 2020, 2, 1900166.	3.3	47
430	Geometric Gait Design for a Starfishâ€Inspired Robot Using a Planar Discrete Elastic Rod Model. Advanced Intelligent Systems, 2020, 2, 1900186.	3.3	10
431	Experimental Investigation into the Dynamics of a Radially Contracting Actuator with Embedded Sensing Capability. Soft Robotics, 2020, 7, 478-490.	4.6	13
432	Tunable, Flexible, and Resilient Robots Driven by an Electrostatic Actuator. Advanced Intelligent Systems, 2020, 2, 1900162.	3.3	20
433	Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators. Actuators, 2020, 9, 3.	1.2	183
434	Self-Regulating Plant Robots: Bioinspired Heliotropism and Nyctinasty. Soft Robotics, 2020, 7, 444-450.	4.6	15
435	Soft Rod-Climbing Robot Inspired by Winding Locomotion of Snake. Soft Robotics, 2020, 7, 500-511.	4.6	110

#	Article	IF	Citations
436	Chopstick Robot Driven by X-shaped Soft Actuator. Actuators, 2020, 9, 32.	1.2	3
437	Pneumatically Actuated Self-Healing Bionic Crawling Soft Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 445-454.	2.0	22
438	A fluidic demultiplexer for controlling large arrays of soft actuators. Soft Matter, 2020, 16, 5871-5877.	1.2	25
439	Low-Voltage-Driven Large-Amplitude Soft Actuators Based on Phase Transition. Soft Robotics, 2020, 7, 688-699.	4.6	21
440	Computational modeling of swimming in marine invertebrates with implications for soft swimming robots. Bioinspiration and Biomimetics, 2020, 15, 046010.	1.5	4
441	On the use of textile materials in robotics. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502091072.	0.5	7
442	A Crawling Soft Robot Driven by Pneumatic Foldable Actuators Based on Miura-Ori. Actuators, 2020, 9, 26.	1.2	37
443	Soluble Polymer Pneumatic Networks and a Single-Pour System for Improved Accessibility and Durability of Soft Robotic Actuators. Soft Robotics, 2021, 8, 144-151.	4.6	9
444	Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-charged Pneumatic Soft Actuators with Highly Flexible Trunk. Soft Robotics, 2021, 8, 97-108.	4.6	15
445	Adaptive neuro-fuzzy modeling of a soft finger-like actuator for cyber-physical industrial systems. Journal of Supercomputing, 2021, 77, 2624-2644.	2.4	4
446	A Single-Chamber Pneumatic Soft Bending Actuator With Increased Stroke-Range by Local Electric Guidance. IEEE Transactions on Industrial Electronics, 2021, 68, 8455-8463.	5.2	10
447	Pneumatic Supply System Parameter Optimization for Soft Actuators. Soft Robotics, 2021, 8, 152-163.	4.6	31
448	A Quadruped Soft Robot for Climbing Parallel Rods. Robotica, 2021, 39, 686-698.	1.3	13
449	Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications. Bio-Design and Manufacturing, 2021, 4, 123-145.	3.9	40
450	Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. Advanced Materials, 2021, 33, e2002397.	11.1	131
451	HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities. Advanced Materials, 2021, 33, e2003375.	11.1	97
452	Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 2021, 33, e2003139.	11.1	209
453	Rapid Fabrication Method for Soft Devices Using Offâ€theâ€Shelf Conductive and Dielectric Acrylic Elastomers. Advanced Intelligent Systems, 2021, 3, 2000173.	3.3	6

#	Article	IF	Citations
454	Additive manufacturing aimed to soft robots fabrication: A review. Extreme Mechanics Letters, 2021, 42, 101079.	2.0	81
455	Synergizing microfluidics with soft robotics: A perspective on miniaturization and future directions. Biomicrofluidics, 2021, 15, 011302.	1.2	22
456	Novel Compliant Control of a Pneumatic Artificial Muscle Driven by Hydrogen Pressure Under a Varying Environment. IEEE Transactions on Industrial Electronics, 2022, 69, 7120-7129.	5.2	17
457	An Untethered Soft Robot Based on Liquid Crystal Elastomers. Soft Robotics, 2022, 9, 154-162.	4.6	28
458	2D-Material-integrated hydrogels as multifunctional protective skins for soft robots. Materials Horizons, 2021, 8, 2065-2078.	6.4	31
459	Soft Robots for Ocean Exploration and Offshore Operations: A Perspective. Soft Robotics, 2021, 8, 625-639.	4.6	66
460	Micro Elastic Pouch Motors: Elastically Deformable and Miniaturized Soft Actuators Using Liquid-to-Gas Phase Change. IEEE Robotics and Automation Letters, 2021, 6, 5373-5380.	3.3	11
461	Origami Pump Actuator Based Pneumatic Quadruped Robot (OPARO). IEEE Access, 2021, 9, 41010-41018.	2.6	15
462	Soft Robots., 2021,, 1-15.		12
463	A programmable powerful and ultra-fast water-driven soft actuator inspired by the mutable collagenous tissue of the sea cucumber. Journal of Materials Chemistry A, 2021, 9, 15937-15947.	5.2	8
464	A review on soft materials utilized for the manufacturing of soft robots. Materials Today: Proceedings, 2021, 46, 11177-11181.	0.9	13
465	Biohybrid robotics: From the nanoscale to the macroscale. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1703.	3.3	21
466	Modelling of a soft multi-chambered climbing robot and experiments. Smart Materials and Structures, 2021, 30, 035009.	1.8	5
467	Soft pumps for soft robots. Science Robotics, 2021, 6, .	9.9	8
468	Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Actuator. Applied Bionics and Biomechanics, 2021, 2021, 1-13.	0.5	5
469	Iterative Learning Control of Trajectory Generation for the Soft Actuator. The Journal of Korea Robotics Society, 2021, 16, 35-40.	0.2	3
470	Making bioinspired 3D-printed autonomic perspiring hydrogel actuators. Nature Protocols, 2021, 16, 2068-2087.	5 . 5	18
471	A Review of 3Dâ€Printable Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities. Advanced Intelligent Systems, 2021, 3, 2000223.	3.3	75

#	Article	IF	CITATIONS
472	Electronics-free pneumatic circuits for controlling soft-legged robots. Science Robotics, 2021, 6, .	9.9	177
473	Synthesis of magneto-responsive microswimmers for biomedical applications. AIP Advances, 2021, 11, .	0.6	4
474	A reconfigurable soft wall-climbing robot actuated by electromagnet. International Journal of Advanced Robotic Systems, 2021, 18, 172988142199228.	1.3	8
475	Liquid Metalâ€Enabled Soft Logic Devices. Advanced Intelligent Systems, 2021, 3, 2000246.	3.3	15
476	Fully flexible liquid-to-gas phase change actuators with integrated liquid metal heaters. Japanese Journal of Applied Physics, 2021, 60, SCCL11.	0.8	6
477	Shape Memory Alloy (SMA) Actuator With Embedded Liquid Metal Curvature Sensor for Closed-Loop Control. Frontiers in Robotics and Al, 2021, 8, 599650.	2.0	10
478	Fully 3D-Printed Hydrogel Actuator for Jellyfish Soft Robots. ECS Journal of Solid State Science and Technology, 2021, 10, 037002.	0.9	30
479	Scaling Up Soft Robotics: A Meter-Scale, Modular, and Reconfigurable Soft Robotic System. Soft Robotics, 2022, 9, 324-336.	4.6	23
480	Legged-wheeled small robot capable of terrain-adaptive locomotion via a soft actuator. Engineering Research Express, 2021, 3, 015032.	0.8	0
481	Microengineered Materials with Selfâ€Healing Features for Soft Robotics. Advanced Intelligent Systems, 2021, 3, 2100005.	3.3	14
482	A Rhythmic Activation Mechanism for Soft Multi-legged Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 101, 1.	2.0	4
483	Exploiting Mechanical Instabilities in Soft Robotics: Control, Sensing, and Actuation. Advanced Materials, 2021, 33, e2006939.	11.1	93
484	Design of an Electro-Stimulated Hydrogel Actuator System with Fast Flexible Folding Deformation under a Low Electric Field. ACS Applied Materials & Interfaces, 2021, 13, 15633-15646.	4.0	43
485	Muscle-fiber array inspired, multiple-mode, pneumatic artificial muscles through planar design and one-step rolling fabrication. National Science Review, 2021, 8, nwab048.	4.6	22
486	Motion and shape control of soft robots and materials. Nonlinear Dynamics, 2021, 104, 165-189.	2.7	17
487	Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel–Montmorillonite-Based Translucent Matrix. Soft Robotics, 2022, 9, 98-118.	4.6	9
488	Soft Grippers for Automatic Crop Harvesting: A Review. Sensors, 2021, 21, 2689.	2.1	82
489	An untethered soft robotic gripper with high payload-to-weight ratio. Mechanism and Machine Theory, 2021, 158, 104226.	2.7	31

#	Article	IF	CITATIONS
490	Design of a novel simulated "soft―mechanical grasper. Mechanism and Machine Theory, 2021, 158, 104240.	2.7	12
491	SomBot: A Bio-inspired Dynamic Somersaulting Soft Robot. IEEE Robotics and Automation Letters, 2021, 6, 1654-1661.	3.3	4
492	Remote control of a soft walking robot. , 2021, , .		0
493	Toward Industrial Silicone 3D Printing of Soft Robots. , 2021, , .		6
494	Printed silicone pneumatic actuators for soft robotics. Additive Manufacturing, 2021, 40, 101860.	1.7	29
495	Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function. Advanced Materials Technologies, 2021, 6, 2001218.	3.0	57
496	Biohybrid soft robots with self-stimulating skeletons. Science Robotics, 2021, 6, .	9.9	58
497	Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing. IEEE Robotics and Automation Letters, 2021, 6, 951-957.	3.3	11
498	Ionic Elastomers for Electric Actuators and Sensors. Engineering, 2021, 7, 581-602.	3.2	44
499	Miniaturized Untethered Soft Robots Using Hydrogel-based Soft Voxel Actuators., 2021,,.		3
500	Highâ€Displacement, Fiberâ€Reinforced Shape Memory Alloy Soft Actuator with Integrated Sensors and Its Equivalent Network Model. Advanced Intelligent Systems, 2021, 3, 2000221.	3.3	19
501	Increasing the Payload and Terrain Adaptivity of an Untethered Crawling Robot Via Soft-Rigid Coupled Linear Actuators. IEEE Robotics and Automation Letters, 2021, 6, 2405-2412.	3.3	18
502	A large-scale, light-weight, and soft braided robot manipulator with rapid expansion capabilities. , 2021, , .		1
503	Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Science Robotics, 2021, 6, .	9.9	70
504	Multimaterial Pneumatic Soft Actuators and Robots through a Planar Laser Cutting and Stacking Approach. Advanced Intelligent Systems, 2021, 3, 2000257.	3.3	10
505	Improving the robustness of a service robot for continuous indoor monitoring: An incremental approach. International Journal of Advanced Robotic Systems, 2021, 18, 172988142110121.	1.3	1
506	Dual Network Sponge for Compressible Lithiumâ€lon Batteries. Small, 2021, 17, e2100911.	5.2	3
507	Re-foldable origami-inspired bidirectional twisting of artificial muscles reproduces biological motion. Cell Reports Physical Science, 2021, 2, 100407.	2.8	17

#	Article	IF	CITATIONS
508	Sensorized Foam Actuator with Intrinsic Proprioception and Tunable Stiffness Behavior for Soft Robots. Advanced Intelligent Systems, 2021, 3, 2100022.	3.3	4
509	Design and Control of Soft Robots Using Differentiable Simulation. Current Robotics Reports, 2021, 2, 211-221.	5.1	13
510	Continuous learning of emergent behavior in robotic matter. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
511	Spiderâ€Inspired Electrohydraulic Actuators for Fast, Softâ€Actuated Joints. Advanced Science, 2021, 8, e2100916.	5.6	46
512	Elastomeric Haptic Devices for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009364.	7.8	39
513	Temperature-Responsive Multistable Metamaterials. ACS Applied Materials & Distribution (1997) 118, 31163-31170.	4.0	33
514	A compact valveless pressure control source for soft rehabilitation glove. International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17, e2298.	1.2	6
515	Data-Driven Control of Soft Robots Using Koopman Operator Theory. IEEE Transactions on Robotics, 2021, 37, 948-961.	7.3	90
516	Soft Robotic Hands and Tactile Sensors for Underwater Robotics. Applied Mechanics, 2021, 2, 356-383.	0.7	25
517	Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Science Robotics, 2021, 6, .	9.9	66
518	Research on performance of rigid-hoop-reinforced multi-DOF soft actuator. Advances in Mechanical Engineering, 2021, 13, 168781402110267.	0.8	2
519	A Novel Spider-Inspired Rotary-Rolling Diaphragm Actuator with Linear Torque Characteristic and High Mechanical Efficiency. Soft Robotics, 2022, 9, 364-375.	4.6	7
520	Static Modeling of the Fiber-Reinforced Soft Pneumatic Actuators Including Inner Compression: Bending in Free Space, Block Force, and Deflection upon Block Force. Soft Robotics, 2022, 9, 451-472.	4.6	12
521	Carbon/Silicone Nanocomposite-Enabled Soft Pressure Sensors with a Liquid-Filled Cell Structure Design for Low Pressure Measurement. Sensors, 2021, 21, 4732.	2.1	2
522	Untethered Soft Robots for Future Planetary Explorations?. Advanced Intelligent Systems, 2023, 5, 2100106.	3.3	9
523	Reversible Underwater Adhesion for Soft Robotic Feet by Leveraging Electrochemically Tunable Liquid Metal Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 37904-37914.	4.0	24
524	A 22-DOFs Bio-inspired Soft Hand Achieving 6 Kinds of In-hand Manipulation. , 2021, , .		5
525	A review on self-healing polymers for soft robotics. Materials Today, 2021, 47, 187-205.	8.3	150

#	ARTICLE	IF	Citations
526	An Integrated Soft Jumping Robotic Module Based on Liquid Metals. Advanced Engineering Materials, 2021, 23, 2100515.	1.6	7
527	Fluid-Structure Interaction Modelling of a Soft Pneumatic Actuator. Actuators, 2021, 10, 163.	1.2	13
528	A pneumatic random-access memory for controlling soft robots. PLoS ONE, 2021, 16, e0254524.	1.1	17
529	Bioinspired, Shape-Morphing Scale Battery for Untethered Soft Robots. Soft Robotics, 2022, 9, 486-496.	4.6	18
530	Systemâ€Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems, 2021, 3, 2000284.	3.3	18
531	CMOSâ€Inspired Complementary Fluidic Circuits for Soft Robots. Advanced Science, 2021, 8, e2100924.	5.6	21
532	Active learning in robotics: A review of control principles. Mechatronics, 2021, 77, 102576.	2.0	27
533	A systematic trend analysis of 3D printing techniques used in specific soft robotic elements. Materials Today: Proceedings, 2022, 50, 1088-1099.	0.9	2
534	Paper-Based Robotics with Stackable Pneumatic Actuators. Soft Robotics, 2022, 9, 542-551.	4.6	8
535	Diaphragm-Type Pneumatic-Driven Soft Grippers for Precision Harvesting. Agronomy, 2021, 11, 1727.	1.3	11
536	Hardware Methods for Onboard Control of Fluidically Actuated Soft Robots. Frontiers in Robotics and Al, 2021, 8, 720702.	2.0	9
537	A dynamic electrically driven soft valve for control of soft hydraulic actuators. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	24
538	Characterization and Analysis of a Flexural Shape Memory Alloy Actuator. Actuators, 2021, 10, 202.	1.2	7
539	Anisotropic compliance of robot legs improves recovery from swing-phase collisions. Bioinspiration and Biomimetics, 2021, 16, 056001.	1.5	5
540	Wormâ€Inspired Soft Robots Enable Adaptable Pipeline and Tunnel Inspection. Advanced Intelligent Systems, 2022, 4, 2100128.	3.3	27
541	A Modular and Selfâ€Contained Fluidic Engine for Soft Actuators. Advanced Intelligent Systems, 2022, 4, 2100094.	3.3	8
542	Soft Pneumatic Actuators: Modeling, Control, and Application. , 2022, , 129-219.		0
543	Selfâ€Sustained Robots Based on Functionally Graded Elastomeric Actuators Carrying up to 22 Times Their Body Weight. Advanced Intelligent Systems, 2023, 5, 2100085.	3.3	7

#	Article	IF	CITATIONS
544	Thermo-Responsive Hydrogel-Based Soft Valves with Annular Actuation Calibration and Circumferential Gripping. Bioengineering, 2021, 8, 127.	1.6	3
545	Bistable Valves for MR Fluid-Based Soft Robotic Actuation Systems. IEEE Robotics and Automation Letters, 2021, 6, 8285-8292.	3.3	17
546	Flow Path Optimization for Soft Pneumatic Actuators: Towards Optimal Performance and Portability. IEEE Robotics and Automation Letters, 2021, 6, 7949-7956.	3.3	13
547	A Sub-Micron-Thick stretchable adhesive layer for the lamination of arbitrary elastomeric substrates with enhanced adhesion stability. Chemical Engineering Journal, 2022, 429, 132250.	6.6	10
548	High-Speed, Helical and Self-Coiled Dielectric Polymer Actuator. Actuators, 2021, 10, 15.	1.2	9
549	Pneumatically Actuated Soft Gripper with Bistable Structures. Soft Robotics, 2022, 9, 57-71.	4.6	55
550	Characterization of Soft Actuation Through Ultrasonic Atomization. Minerals, Metals and Materials Series, 2020, , 881-888.	0.3	1
551	An Integrated Compliant Fabric Skin Softens, Lightens, and Simplifies a Mesh Robot. Lecture Notes in Computer Science, 2017, , 315-327.	1.0	5
552	Soft Robots., 2020,, 1-14.		40
553	Surface Textures for Stretchable Capacitive Strain Sensors. Smart Materials and Structures, 2020, 29, 105037.	1.8	8
554	Analytical modeling for design and performance evaluations of a new low aspect ratio soft rotary pneumatic actuator. Smart Materials and Structures, 2020, 29, 125015.	1.8	5
555	Design and modeling of a hydraulic soft actuator with three degrees of freedom. Smart Materials and Structures, 2020, 29, 125017.	1.8	19
556	Enhanced flight performance in non-uniformly flexible wings. Journal of the Royal Society Interface, 2020, 17, 20200352.	1.5	10
557	Room Temperature Self-Healing in Soft Pneumatic Robotics: Autonomous Self-Healing in a Diels-Alder Polymer Network. IEEE Robotics and Automation Magazine, 2020, 27, 44-55.	2.2	32
558	Design and Modeling of a Continuously Tunable Stiffness Arm for Safe Physical Human–Robot Interaction. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	8
559	A New Type of Soft Pneumatic Torsional Actuator With Helical Chambers for Flexible Machines. Journal of Mechanisms and Robotics, 2021, 13, .	1.5	25
560	Actuation of soft materials through ultrasonic atomization. , 2018, , .		1
561	Design and Implementation of Bio-Inspired Soft Robotic Grippers. , 2019, , .		7

#	ARTICLE	IF	CITATIONS
562	Design and evaluation of aÂcontinuum robot with extendable balloons. Mechanical Sciences, 2018, 9, 51-60.	0.5	9
563	A Legged Soft Robot Platform for Dynamic Locomotion. , 2021, , .		2
564	Numerical Simulation of an Untethered Omni-Directional Star-Shaped Swimming Robot. , $2021, \dots$		2
565	A soft quadruped robot enabled by continuum actuators. , 2021, , .		3
566	Energyâ€Based Abstraction for Soft Robotic System Development. Advanced Intelligent Systems, 0, , 2000264.	3.3	2
567	Bioinspired Spiral Soft Pneumatic Actuator and Its Characterization. Journal of Bionic Engineering, 2021, 18, 1101-1116.	2.7	4
568	Ultrafast, miniature soft actuators. Multifunctional Materials, 2021, 4, 045001.	2.4	18
569	Injection Molding of Soft Robots. Advanced Materials Technologies, 2022, 7, 2100605.	3.0	17
570	Design, Construction and Validation of a Proof of Concept Flexible–Rigid Mechanism Emulating Human Leg Behavior. Applied Sciences (Switzerland), 2021, 11, 9351.	1.3	2
571	An untethered mechanically-intelligent inchworm robot powered by a shape memory alloy oscillator. Sensors and Actuators A: Physical, 2021, 332, 113115.	2.0	12
572	Soft Robotic Micro-Tentacle: A Case Study. SpringerBriefs in Applied Sciences and Technology, 2017, , 39-58.	0.2	0
573	Enabling Technologies. SpringerBriefs in Applied Sciences and Technology, 2017, , 11-38.	0.2	0
575	Current Progress. SpringerBriefs in Applied Sciences and Technology, 2017, , 59-78.	0.2	0
577	Design and experiment of an omnidirectional creeping soft robot driven by dielectric elastomer. , 2018, , .		0
578	Lightâ€Fueled Polymer Film Capable of Directional Crawling, Frictionâ€Controlled Climbing, and Selfâ€Sustained Motion on a Human Hair. Advanced Science, 2022, 9, e2103090.	5.6	26
579	Flexible and stable grasping by multi-jointed pneumatic actuator mimicking the human finger-impacts of structural parameters on performance. Smart Materials and Structures, 2021, 30, 125019.	1.8	5
580	Untethered, high-speed soft jumpers enabled by combustion for motions through multiphase environments. Smart Materials and Structures, 2021, 30, 015035.	1.8	14
581	Design and structure analysis of multi-legged bionic soft robot. , 2020, , .		4

#	Article	IF	CITATIONS
582	Active Disturbance Rejection Controller for a Flexible Walking Bioinspired Inchworm Mobile Robot Actuated With Shape Memory Alloy Devices. IEEE Transactions on Control Systems Technology, 2022, 30, 1790-1797.	3.2	5
583	Textiles in soft robots: Current progress and future trends. Biosensors and Bioelectronics, 2022, 196, 113690.	5.3	50
584	Thin Piezoelectric Mobile Robot Using Curved Tail Oscillation. IEEE Access, 2021, 9, 145477-145485.	2.6	6
585	Functionally Graded Thermoplastic Composites. , 2020, , .		0
587	The soft NdFeB/Ecoflex composites for soft robot with a considerable magnetostimulated shrinkability. Composites Science and Technology, 2022, 217, 109129.	3.8	12
588	Shapeâ€Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials, 2022, 34, e2105758.	11.1	19
590	Design and FEA-based Methodology for a Novel 3 Parallel Soft Muscle Actuator., 2021,,.		1
591	Characterization of Sustainable Robotic Materials and Finite Element Analysis of Soft Actuators Under Biodegradation. Frontiers in Robotics and Al, 2021, 8, 760485.	2.0	7
592	A Multi-Curvature, Variable Stiffness Soft Gripper for Enhanced Grasping Operations. Actuators, 2021, 10, 316.	1.2	12
593	Terrain Adaptability and Optimum Contact Stiffness of Vibro-bot with Arrayed Soft Legs. Soft Robotics, 2022, 9, 981-990.	4.6	6
594	Review of soft fluidic actuators: classification and materials modeling analysis. Smart Materials and Structures, 2022, 31, 013001.	1.8	31
595	Development of Topology Optimized Bending-Twisting Soft Finger. Journal of Mechanisms and Robotics, 2022, 14, .	1.5	5
596	Metarpillar: Soft robotic locomotion based on buckling-driven elastomeric metamaterials. Materials and Design, 2021, 212, 110285.	3.3	15
597	Soft Actuator with Programmable Design: Modeling, Prototyping, and Applications. Soft Robotics, 2022, 9, 907-925.	4.6	8
598	Electrochemical Dual Transducer for Fluidic Self-Sensing Actuation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3496-3503.	4.0	6
599	Experimental Study on the Closed-Loop Control of a Soft Ring-Shaped Actuator for Gastric Simulator < i />>. IEEE/ASME Transactions on Mechatronics, 2022, 27, 3548-3558.	3.7	6
600	Characterization of 3D printed pneumatic soft actuator. Sensors and Actuators A: Physical, 2022, 334, 113337.	2.0	9
601	Bending behavior of 3D printed mechanically robust tubular lattice metamaterials. Additive Manufacturing, 2022, 50, 102565.	1.7	13

#	Article	IF	CITATIONS
602	A contraction length feedback method for the McKibben pneumatic artificial muscle. Sensors and Actuators A: Physical, 2022, 334, 113321.	2.0	9
603	An Untethered Brittle Star-Inspired Soft Robot for Closed-Loop Underwater Locomotion. , 2020, , .		22
604	Novel Design of a Soft Pump Driven by Super-Coiled Polymer Artificial Muscles. , 2020, , .		6
605	SoMo: Fast and Accurate Simulations of Continuum Robots in Complex Environments. , 2021, , .		13
606	SPHR: A Soft Pneumatic Hybrid Robot with extreme shape changing and lifting abilities. , 2021, , .		0
607	Pneumatic System Capable of Supplying Programmable Pressure States for Soft Robots. Soft Robotics, 2022, 9, 1001-1013.	4.6	11
608	Machine-learning-accelerated design of functional structural components in deep-sea soft robots. Extreme Mechanics Letters, 2022, 52, 101635.	2.0	9
609	Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control. Micromachines, 2022, 13, 110.	1.4	42
610	Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 2022, 5, 032001.	2.4	37
611	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	5.6	29
612	Design, Computational Modelling and Experimental Characterization of Bistable Hybrid Soft Actuators for a Controllable-Compliance Joint of an Exoskeleton Rehabilitation Robot. Actuators, 2022, 11, 32.	1.2	5
613	Development of modular multi-degree-of-freedom hybrid joints and robotic flexible legs via fluidic elastomer actuators. Smart Materials and Structures, 2022, 31, 035034.	1.8	4
614	Magnetic Soft Materials and Robots. Chemical Reviews, 2022, 122, 5317-5364.	23.0	249
615	Bio-inspired physical intelligence for soft robotics. Chinese Science Bulletin, 2022, 67, 959-975.	0.4	5
616	A Miniaturized Light-Driven Soft Crawler Based On Liquid Crystal Elastomer with High-Efficient Photothermal Thin-Film. , 2022, , .		2
617	Fluid-Driven Traveling Waves in Soft Robots. Soft Robotics, 2022, 9, 1134-1143.	4.6	4
618	MONOLITh: a soft non-pneumatic foam robot with a functional mesh skin for use in delicate environments. Advanced Robotics, 2022, 36, 359-371.	1.1	1
619	A buckling-sheet ring oscillator for electronics-free, multimodal locomotion. Science Robotics, 2022, 7, eabg5812.	9.9	25

#	Article	IF	CITATIONS
620	Soft Robotic Perspective and Concept for Planetary Small Body Exploration. Soft Robotics, 2022, 9, 889-899.	4.6	6
621	3D printed linear soft multi-mode actuators expanding robotic applications. Soft Matter, 2022, 18, 1911-1919.	1.2	1
622	Cylindrical Flexible Robot Using a Novel Twisting Mechanism. , 2022, , .		1
623	A High Performance Pneumatically Actuated Soft Gripper Based on Layer Jamming. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	11
624	A Twisted and Coiled Polymer Artificial Muscles Driven Soft Crawling Robot Based on Enhanced Antagonistic Configuration. Machines, 2022, 10, 142.	1.2	11
625	Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	64
626	Pneumatic Soft Robots: Challenges and Benefits. Actuators, 2022, 11, 92.	1.2	39
627	Power Amplification for Jumping Soft Robots Actuated by Artificial Muscles. Frontiers in Robotics and Al, 2022, 9, 844282.	2.0	3
628	Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities. Advanced Materials, 2022, 34, e2110384.	11.1	133
629	Soft Actuators Made of Discrete Grains. Advanced Materials, 2022, 34, e2109617.	11.1	9
630	Bio inspired general artificial muscle using hybrid of mixed electrolysis and fluids chemical reaction (HEFR). Scientific Reports, 2022, 12, 3627.	1.6	3
631	Simultaneous Positive and Negative Pressure Control Using Disturbance Observer Compensating Coupled Disturbance Dynamics. IEEE Robotics and Automation Letters, 2022, 7, 5763-5770.	3.3	2
632	Dynamic Finite Element Modeling and Simulation of Soft Robots. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	1.9	13
633	A Soft Self-Stable Actuator and Its Energy-Efficient Grasping. Actuators, 2022, 11, 107.	1.2	2
634	Tube-Balloon Logic for the Exploration of Fluidic Control Elements. IEEE Robotics and Automation Letters, 2022, 7, 5483-5488.	3.3	4
636	Design Consideration Investigation of Soft-Valve Pipe. Micromachines, 2022, 13, 568.	1.4	0
637	Untethered Cable-driven Soft Actuators for Quadruped Robots., 2021,,.		3
638	Hardware Programming of a Single-input Pneumatic Mechanism to Control Multiple Elastic Inflatable Actuators. , 2021, , .		0

#	Article	IF	Citations
639	Deformation control method based on reaction current for soft pneumatic actuator actuated by electrochemical reactions. , 2021 , , .		1
640	Nanotextured Soft Electrothermo-Pneumatic Actuator for Constructing Lightweight, Integrated, and Untethered Soft Robotics. Soft Robotics, 2022, 9, 960-969.	4.6	8
641	A Smart Grasping System for Handling Irregular, Naturally Varying Objects. , 2021, , .		0
642	A soft actuator with integrated pneumatic source using electrically induced liquid-to-gas conversion. , $2021, \ldots$		1
643	A Dataâ€Driven Review of Soft Robotics. Advanced Intelligent Systems, 2022, 4, .	3.3	28
644	Effect of Geometrical Parameters on PneuNet Bending Performance., 2021,,.		2
645	An Investigation on the Grasping Position Optimization-Based Control for Industrial Soft Robot Manipulator. Machines, 2021, 9, 363.	1.2	4
646	Soft Mobile Robots: a Review of Soft Robotic Locomotion Modes. Current Robotics Reports, 2021, 2, 371-397.	5.1	18
647	An Ambidextrous STarfish-Inspired Exploration and Reconnaissance Robot (The ASTER-bot). Soft Robotics, 2022, 9, 991-1000.	4.6	7
649	Fast Thermal Actuators for Soft Robotics. Soft Robotics, 2022, 9, 1031-1039.	4.6	23
650	Modeling and inverse design of bio-inspired multi-segment pneu-net soft manipulators for 3D trajectory motion. Applied Physics Reviews, 2021, 8, .	5.5	18
651	Review of multi-fin propulsion and functional materials of underwater bionic robotic fish. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 7350-7367.	1.1	7
652	Robust Design and Evaluation of a Novel Modular Origami-Enabled Mobile Robot (OSCAR). Journal of Mechanisms and Robotics, 2023, 15, .	1.5	2
653	A Brief Overview of Bioinspired Robust Hydrogel Based Shape Morphing Functional Structure for Biomedical Soft Robotics. Frontiers in Materials, 2022, 9, .	1.2	4
654	Thin, flexible, and scalable mobile robot driven by electrostatic zipping actuators., 2022,,.		0
655	Model reference adaptive control of a soft bending actuator with input constraints and parametric uncertainties. Mechatronics, 2022, 84, 102800.	2.0	6
670	Modeling the Locomotion of Articulated Soft Robots in Granular Medium. IEEE Robotics and Automation Letters, 2022, 7, 6495-6502.	3.3	6
671	A Review on Vacuum-Powered Fluidic Actuators in Soft Robotics. , 0, , .		3

#	Article	IF	CITATIONS
672	Recycling-oriented fabrication of soft robots. , 2022, , .		1
673	Module-W: Reconfigurable Modular Robots Forming Compliant Structures. , 2022, , .		2
674	Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception. Soft Robotics, 2023, 10, 119-128.	4.6	13
675	Development and Characterization of a Soft Valve for Automatic Fault Isolation in Inflatable Soft Robots. , 2022, , .		2
676	An Electromagnetic Soft Robot that Carries its Own Magnet. , 2022, , .		3
677	An Electro-pneumatic Shape Morphing Rolling Robot with Variable Locomotion Modes. , 2022, , .		1
678	Air-Releasable Soft Robots for Explosive Ordnance Disposal. , 2022, , .		1
679	A Scientometric Review of Soft Robotics: Intellectual Structures and Emerging Trends Analysis (2010–2021). Frontiers in Robotics and Al, 2022, 9, .	2.0	12
680	Dual Stiffness Tensegrity Platform for Resilient Robotics. Advanced Intelligent Systems, 2022, 4, .	3.3	4
681	Bidirectional Tether Less Soft Actuator with Expeditious Position Control Mechanism., 2021,,.		0
683	Structural analysis of bending soft pneumatic network actuators for various designs using the finite element method. World Journal of Engineering, 2022, ahead-of-print, .	1.0	1
684	Evaluation of two complementary modeling approaches for fiber-reinforced soft actuators. ROBOMECH Journal, 2022, 9, .	0.9	2
685	Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access, 2022, 10, 59442-59485.	2.6	72
686	A minimally designed soft crawling robot for robust locomotion in unstructured pipes. Bioinspiration and Biomimetics, 2022, 17, 056001.	1.5	6
687	Model-free dynamic control of robotic joints with integrated elastic ligaments. Robotics and Autonomous Systems, 2022, 155, 104150.	3.0	3
688	Twisting for soft intelligent autonomous robot in unstructured environments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	77
689	A Proprioceptive Soft Robot Module Based on Supercoiled Polymer Artificial Muscle Strings. Polymers, 2022, 14, 2265.	2.0	6
690	Liquid crystal elastomers for soft actuators. , 0, 1, .		3

#	Article	IF	CITATIONS
691	Self-healing sensorized soft robots. , 2022, 1, 100003.		11
692	A Review of Recent Advances in Electrically Driven Polymerâ€Based Flexible Actuators: Smart Materials, Structures, and Their Applications. Advanced Materials Technologies, 2022, 7, .	3.0	24
693	Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles. Frontiers of Mechanical Engineering, 2022, 17, .	2.5	2
694	Resonant Pneumatic Tactile Sensing for Soft Grippers. IEEE Robotics and Automation Letters, 2022, 7, 10105-10111.	3.3	3
695	4D-printed pneumatic soft actuators modeling, fabrication, and control., 2022,, 103-140.		0
696	A LightweightÂFlexible Semi-Cylindrical Valve for Seamless Integration in Soft Robots Based on the Giant Electrorheological Fluid. SSRN Electronic Journal, 0, , .	0.4	0
697	A Multimaterial Printed Magnetic Soft Robot with Multimodal Sensing Capability. SSRN Electronic Journal, 0, , .	0.4	0
698	Locomotion via Active Suction in a Sea Star-Inspired Soft Robot. IEEE Robotics and Automation Letters, 2022, 7, 10304-10311.	3.3	1
699	A Switchable Rigid-Continuum Robot Arm: Design and Testing. , 2022, , .		1
700	Modeling of viscoelastic dielectric elastomer actuators based on the sparse identification method. , 2022, , .		2
701	Simulation and Fabrication of Soft Robots with Embedded Skeletons. , 2022, , .		3
702	A novel soft-rigid wheeled crawling robot with high payload and passing capability. Robotica, 2022, 40, 3930-3951.	1.3	1
703	Integrated stretchable pneumatic strain gauges for electronics-free soft robots., 2022, 1, .		17
704	A Fully 3Dâ€Printed Tortoiseâ€Inspired Soft Robot with Terrainsâ€Adaptive and Amphibious Landing Capabilities. Advanced Materials Technologies, 2022, 7, .	3.0	18
705	Progress, Challenges, and Prospects of Soft Robotics for Space Applications. Advanced Intelligent Systems, 2023, 5, .	3.3	31
706	Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion. Science Advances, 2022, 8, .	4.7	60
707	A novel soft gripper with enhanced gripping adaptability based on spring-reinforced soft pneumatic actuators. Industrial Robot, 2022, ahead-of-print, .	1.2	0
708	Magnetohydrodynamic levitation for high-performance flexible pumps. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	8

#	Article	IF	CITATIONS
709	Biomimetic fiber reinforced dual-mode actuator for soft robots. Sensors and Actuators A: Physical, 2022, 344, 113761.	2.0	7
710	A fluidic relaxation oscillator for reprogrammable sequential actuation in soft robots. Matter, 2022, 5, 2898-2917.	5 . 0	24
711	Controlling Soft Fluidic Actuators Using Soft DEA-Based Valves. IEEE Robotics and Automation Letters, 2022, 7, 8837-8844.	3.3	7
712	Soft Pneumatic Actuated Morphing Quadrotor: Design and Development. , 2022, , .		0
713	A Practical Model of Hybrid Robotic Hands for Grasping Applications Based on Bioinspired Form. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, .	2.0	2
714	A high-performance dielectric elastomer actuator with programmable actuations. , 2022, , .		1
715	Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chemical Engineering Journal, 2023, 451, 138794.	6.6	15
716	A BCF Bionic Robot Fish Driven by A Dielectric Elastomer Actuator. Journal of Physics: Conference Series, 2022, 2331, 012010.	0.3	1
717	A New Fabrication Method for Soft Pneumatic Actuators based on Paraffin. , 2022, , .		1
718	Soft Robotics. Analecta Technica Szegedinensia, 2022, 16, 8-13.	0.2	1
719	Wireless Miniature Magnetic Phaseâ€Change Soft Actuators. Advanced Materials, 2022, 34, .	11.1	40
720	Soft Fluidic Actuator for Locomotion in Multi-Phase Environments. IEEE Robotics and Automation Letters, 2022, 7, 10462-10469.	3.3	4
721	Deformation-Driven Closed-Chain Soft Mobile Robot Aimed for Rolling and Climbing Locomotion. IEEE Robotics and Automation Letters, 2022, 7, 10264-10271.	3.3	2
722	Electrically actuated soft actuator integrated with an electrochemical reactor. Extreme Mechanics Letters, 2022, 56, 101891.	2.0	2
723	Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications. Soft Matter, 2022, 18, 7699-7734.	1.2	25
724	Influence of the camber trailing-edge wings on the motion performance of underwater gliders. International Journal of Naval Architecture and Ocean Engineering, 2022, 14, 100468.	1.0	2
725	Tensegristats: Lightweight Untethered Morphing Robots. IEEE Robotics and Automation Magazine, 2023, 30, 20-27.	2.2	1
726	A brief study on additively manufactured soft pneumatic actuators. AIP Conference Proceedings, 2022,	0.3	0

#	Article	IF	CITATIONS
727	Real time high voltage capacitance for rapid evaluation of dielectric elastomer actuators. Soft Matter, 2022, 18, 7123-7130.	1.2	6
728	Motorized, untethered soft robots <i>via</i> 3D printed auxetics. Soft Matter, 2022, 18, 8229-8237.	1.2	6
729	Embedded Magnetic Sensing for Feedback Control of Soft HASEL Actuators. IEEE Transactions on Robotics, 2023, 39, 808-822.	7.3	3
730	Design and Analysis of an End Effector Using the Fin Ray Structure for Integrated Limb Mechanisms. Lecture Notes in Computer Science, 2022, , 40-49.	1.0	0
731	Structural optimization of variable stiffness mechanism with particle jamming and core-frame. , 2022, , .		1
732	Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots. Micromachines, 2022, 13, 1489.	1.4	1
733	Highâ€Gain Microfluidic Amplifiers: The Bridge between Microfluidic Controllers and Fluidic Soft Actuators. Advanced Intelligent Systems, 2022, 4, .	3.3	4
734	Design, Mobility Analysis and Gait Planning of a Leech-like Soft Crawling Robot with Stretching and Bending Deformation. Journal of Bionic Engineering, 2023, 20, 69-80.	2.7	5
735	A Dynamic Pole Motion Approach for Control of Nonlinear Hybrid Soft Legs: A Preliminary Study. Machines, 2022, 10, 875.	1.2	6
736	Design and Closed‣oop Motion Planning of an Untethered Swimming Soft Robot Using 2D Discrete Elastic Rods Simulations. Advanced Intelligent Systems, 2022, 4, .	3.3	6
737	Electromagnetic actuator design for distributed stiffness. Smart Materials and Structures, 2022, 31, 115023.	1.8	2
738	A lightweight flexible semi-cylindrical valve for seamless integration in soft robots based on the giant electrorheological fluid. Sensors and Actuators A: Physical, 2022, 347, 113905.	2.0	5
739	Untethered Robotic Millipede Driven by Low-Pressure Microfluidic Actuators for Multi-Terrain Exploration. IEEE Robotics and Automation Letters, 2022, 7, 12142-12149.	3.3	8
740	Thermodynamics of Hygroresponsive Soft Engines: Cycle Analysis and Work Ratio. Physical Review Applied, 2022, 18, .	1.5	3
741	Versatile Like a Seahorse Tail: A Bioâ€Inspired Programmable Continuum Robot For Conformal Grasping. Advanced Intelligent Systems, 2022, 4, .	3.3	13
742	Powerful 2D Soft Morphing Actuator Propels Giant Manta Ray Robot. Advanced Intelligent Systems, 2022, 4, .	3.3	1
743	Origami-Inspired Soft Twisting Actuator. Soft Robotics, 2023, 10, 395-409.	4.6	16
744	The Soft Ray-Inspired Robots Actuated by Solid–Liquid Interpenetrating Silicone-Based Dielectric Elastomer Actuator. Soft Robotics, 2023, 10, 354-364.	4.6	3

#	ARTICLE	IF	CITATIONS
745	Flexural biomimetic responsive building fa \tilde{A} ade using a hybrid soft robot actuator and fabric membrane. Automation in Construction, 2023, 145, 104660.	4.8	9
746	A Soft, Fast and Versatile Electrohydraulic Gripper with Capacitive Object Size Detection. Advanced Functional Materials, 2023, 33, .	7.8	18
747	Additive Manufacturing of Soft Robots. , 2023, , 101-112.		0
748	An Overview of Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6, 1-29.	7.5	32
749	Design and Performance of a Pneumatic-Based Expanding Torsional Soft Spring Actuator. Journal of the Korean Society for Precision Engineering, 2022, 39, 811-817.	0.1	0
750	A perspective on plant robotics: from bioinspiration to hybrid systems. Bioinspiration and Biomimetics, 2023, 18, 015006.	1.5	6
751	Design of multi-stimuli responsive hybrid pneumatic – magnetic soft actuator with novel channel integration. Applied Materials Today, 2022, 29, 101681.	2.3	2
752	A magnetic soft robot with multimodal sensing capability by multimaterial direct ink writing. Additive Manufacturing, 2023, 61, 103320.	1.7	5
753	Improvement of Adaptive Motion Performance in a Flexible Actuator, Based on Electrically Induced Deformation. Actuators, 2022, 11, 338.	1.2	1
7 54	Autonomous self-healing optical sensors for damage intelligent soft-bodied systems. Science Advances, 2022, 8, .	4.7	19
755	Gecko-and-inchworm-inspired untethered soft robot for climbing on walls and ceilings. Cell Reports Physical Science, 2023, 4, 101241.	2.8	8
756	Soft robot review: Actuation and application. , 2022, , .		0
757	Mechanically Programmable Jamming Based on Articulated Mesh Structures for Variable Stiffness Robots., 2022,,.		2
758	A compliant thorax design for robustness and elastic energy exchange in flapping-wing robots. , 2022,		0
759	Electroadhesive Clutches for Programmable Shape Morphing of Soft Actuators. , 2022, , .		2
760	Design and Control of Soft Pneumatic Actuator with Embedded Flexion Sensor. , 2022, , .		0
761	SoftSAR: The New Softer Side of Socially Assistive Robots—Soft Robotics with Social Human–Robot Interaction Skills. Sensors, 2023, 23, 432.	2.1	1
762	Active-Cooling-in-the-Loop Controller Design and Implementation for an SMA-Driven Soft Robotic Tentacle. IEEE Transactions on Robotics, 2023, 39, 2325-2341.	7.3	11

#	ARTICLE	IF	CITATIONS
763	Fundamentals of burrowing in soft animals and robots. Frontiers in Robotics and Al, 0, 10, .	2.0	3
764	A 0.5-meter-scale, high-load, soft-enclosed gripper capable of grasping the human body. Science China Technological Sciences, 2023, 66, 501-511.	2.0	1
765	Highâ€Speed and Lowâ€Energy Actuation for Pneumatic Soft Robots with Internal Exhaust Air Recirculation. Advanced Intelligent Systems, 2023, 5, .	3.3	4
766	Modular Design of a Polymerâ€Bilayerâ€Based Mechanically Compliant Wormâ€Like Robot. Advanced Materials, 2023, 35, .	11.1	3
767	Inchworm-Inspired soft robot with magnetic driving based on PDMS, EGaIn and NdFeB (PEN) combination. Chemical Engineering Journal, 2023, 466, 142994.	6.6	4
768	Fiber-reinforced liquid crystalline elastomer composite actuators with multi-stimulus response properties and multi-directional morphing capabilities. Composites Part B: Engineering, 2023, 256, 110640.	5.9	2
769	Design and Implementation of a Miniature Jellyfish-Inspired Robot. IEEE Robotics and Automation Letters, 2023, 8, 3134-3141.	3.3	1
770	Modular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structures. Soft Robotics, 2023, 10, 724-736.	4.6	4
771	Bioinspired Continuum Robots with Programmable Stiffness by Harnessing Phase Change Materials. Advanced Materials Technologies, 2023, 8, .	3.0	3
772	Power Autonomy and Agility Control of an Untethered Insect-Scale Soft Robot. Soft Robotics, 2023, 10, 749-759.	4.6	0
773	Optimal Feedback Linearization Control for a Bioinspired Soft Pneumatic Contractive Actuator. , 2022, , .		0
774	Soft Scalable Crawling Robots Enabled by Programmable Origami and Electrostatic Adhesion. IEEE Robotics and Automation Letters, 2023, 8, 2365-2372.	3.3	4
775	Soft Robots for Cluttered Environments Based on Origami Anisotropic Stiffness Structure (OASS) Inspired by Desert Iguana. Advanced Intelligent Systems, 2023, 5, .	3.3	11
776	A virtuous cycle between invertebrate and robotics research: perspective on a decade of Living Machines research. Bioinspiration and Biomimetics, 2023, 18, 035005.	1.5	3
777	Electroactive Thermo-Pneumatic Soft Actuator with Self-Healing Features: A Critical Evaluation. Soft Robotics, 2023, 10, 852-859.	4.6	4
778	Soft robotics towards sustainable development goals and climate actions. Frontiers in Robotics and Al, O, 10, .	2.0	3
779	A Hierarchical Design Framework for the Design of Soft Robots. Mathematical and Computational Applications, 2023, 28, 47.	0.7	1
780	Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Science Advances, 2023, 9, .	4.7	34

#	Article	IF	CITATIONS
781	Design of topology optimized compliant legs for bio-inspired quadruped robots. Scientific Reports, $2023,13,\ldots$	1.6	16
782	Six-legged crawling soft robot: NOBIYAKA. Artificial Life and Robotics, 2023, 28, 530-539.	0.7	1
783	The Impact of Soft Robotics In Today's World: Applications, Challenges Faced, And Future Outlook. , 2022, , .		0
784	Tunable, Textile-Based Joint Impedance Module for Soft Robotic Applications. Soft Robotics, 2023, 10, 937-947.	4.6	1
785	Advances in Space Robots for Onâ€Orbit Servicing: A Comprehensive Review. Advanced Intelligent Systems, 2023, 5, .	3.3	10
786	Reconfigurable Innervation of Modular Soft Machines via Soft, Sticky, and Instant Electronic Adhesive Interlocking. Advanced Intelligent Systems, 2023, 5, .	3.3	0
790	Bending analysis of a soft pneumatic finger using finite element method. AIP Conference Proceedings, 2023, , .	0.3	0
791	A review on soft robotic technologies. AIP Conference Proceedings, 2023, , .	0.3	0
794	Sponge-Based Mobile Soft Robot with Multimodal Locomotion. Communications in Computer and Information Science, 2023, , 291-298.	0.4	0
806	Towards a Pump-Controlled, Propellant-Powered Pneumatic Source for Untethered Soft Robots: Modelling and Experiments. , 2023, , .		0
807	Design and fabrication of multi-pouch inflatable holding structure with higher payload., 2023,,.		0
808	Measuring a Soft Resistive Strain Sensor Array by Solving the Resistor Network Inverse Problem. , 2023, , .		0
809	A Sodium Azide-Powered Free-Piston Gas Compressor for Mobile Pneumatic Systems. , 2023, , .		0
814	Wirelessly-Controlled Untethered Piezoelectric Planar Soft Robot Capable of Bidirectional Crawling and Rotation., 2023,,.		1
815	Fast Untethered Soft Robotic Crawler with Elastic Instability. , 2023, , .		2
840	Study on Soft Robotic Pinniped Locomotion. , 2023, , .		1
843	Pneumatically Actuators with Electronics-Free Sensing and Control. , 2023, , .		0
849	Flexible Functional Component for Fluidic Soft Robots. Lecture Notes in Computer Science, 2023, , 288-297.	1.0	O

#	Article	IF	Citations
850	Recent advances in tailoring stimuli responsive hybrid scaffolds for cardiac tissue engineering and allied applications. Journal of Materials Chemistry B, 0 , , .	2.9	0
852	Modelling Analysis of a Soft Robotic Arm Based on Pneumatic-Network Structure. Lecture Notes in Computer Science, 2023, , 32-44.	1.0	0
855	Design and Experimental Study of An Intelligent Soft Crawling Robot for Environmental Interactions. Lecture Notes in Computer Science, 2023, , 375-386.	1.0	0
862	A review of the mechanical integrity and electrochemical performance of flexible lithium-ion batteries. Nano Research, 0, , .	5.8	0
865	Automated Gait Generation for Walking, Soft Robotic Quadrupeds., 2023,,.		0
866	Machine Learning Best Practices for Soft Robot Proprioception. , 2023, , .		0
868	A Multiple Degrees-Of-Freedom Crawling Robot Driven by A Square Planar Dielectric Elastomer. , 2023, , .		0
880	Fiber- Reinforced Membrane Modeling Based on Constant Edge-Length Constraints. , 2024, , .		0