A CRISPR view of development

Genes and Development 28, 1859-1872 DOI: 10.1101/gad.248252.114

Citation Report

#	Article	IF	CITATIONS
1	Regulation of Sufu activity by p66β and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes and Development, 2014, 28, 2547-2563.	5.9	42
2	Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches. BMC Genetics, 2014, 15, S17.	2.7	24
3	Exploiting <scp>SNP</scp> s for biallelic <scp>CRISPR</scp> mutations in the outcrossing woody perennial <i>Populus</i> reveals 4 oumarate:CoA ligase specificity and redundancy. New Phytologist, 2015, 208, 298-301.	7.3	293
4	Connecting genotypes, phenotypes and fitness: harnessing the power of <scp>CRISPR</scp> /Cas9 genome editing. Molecular Ecology, 2015, 24, 3810-3822.	3.9	49
5	A time of change: Dynamics of chromatin and transcriptional regulation during nuclear programming in early <i>Drosophila</i> development. Molecular Reproduction and Development, 2015, 82, 735-746.	2.0	6
6	Generation of artificial <i>drooping leaf</i> mutants by CRISPR-Cas9 technology in rice. Genes and Genetic Systems, 2015, 90, 231-235.	0.7	24
7	CRISPR as9 Genome Editing in <i>Drosophila</i> . Current Protocols in Molecular Biology, 2015, 111, 31.2.1-31.2.20.	2.9	159
8	Generation of <i>α</i> â€1,3â€Galactosyltransferaseâ€Deficient Porcine Embryonic Fibroblasts by <scp>CRISPR</scp> /Cas9â€Mediated Knockâ€in of a Small Mutated Sequence and a Targeted Toxinâ€Based Selection System. Reproduction in Domestic Animals, 2015, 50, 872-880.	1.4	14
9	From Gene Targeting to Genome Editing: Transgenic animals applications and beyond. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1323-1348.	0.8	37
10	Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research. International Journal of Molecular Sciences, 2015, 16, 23143-23164.	4.1	11
11	Isolation of Specific Genomic Regions and Identification of Their Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using the CRISPR System and TAL Proteins. International Journal of Molecular Sciences, 2015, 16, 21802-21812.	4.1	14
12	Direct Injection of CRISPR/Cas9-Related mRNA into Cytoplasm of Parthenogenetically Activated Porcine Oocytes Causes Frequent Mosaicism for Indel Mutations. International Journal of Molecular Sciences, 2015, 16, 17838-17856.	4.1	55
13	Cellular Mechanisms of Drosophila Heart Morphogenesis. Journal of Cardiovascular Development and Disease, 2015, 2, 2-16.	1.6	36
14	Advances in imaging ultrastructure yield new insights into presynaptic biology. Frontiers in Cellular Neuroscience, 2015, 9, 196.	3.7	7
15	Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Frontiers in Plant Science, 2015, 6, 375.	3.6	87
16	Cellular and Molecular Mechanisms of Palatogenesis. Current Topics in Developmental Biology, 2015, 115, 59-84.	2.2	90
17	Engineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion. Frontiers in Bioengineering and Biotechnology, 2015, 3, 17.	4.1	54
18	Computational approaches for understanding the diagnosis and treatment of Parkinson's disease. IET Systems Biology, 2015, 9, 226-233.	1.5	15

#	Article	IF	CITATIONS
19	Identifying transcriptional <i>cis</i> â€regulatory modules in animal genomes. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 59-84.	5.9	54
20	RNA aptamers as genetic control devices: The potential of riboswitches as synthetic elements for regulating gene expression. Biotechnology Journal, 2015, 10, 246-257.	3.5	91
21	Conditional immortalization of primary adipocyte precursor cells. Adipocyte, 2015, 4, 203-211.	2.8	7
22	A pre-screening FISH-based method to detect CRISPR/Cas9 off-targets in mouse embryonic stem cells. Scientific Reports, 2015, 5, 12327.	3.3	20
23	CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani. MBio, 2015, 6, e00861.	4.1	168
24	Getting Down to Specifics. Advances in Genetics, 2015, 91, 103-151.	1.8	12
25	Come together, right nowâ \in $ $ Journal of Cell Communication and Signaling, 2015, 9, 283-284.	3.4	0
26	The Renaissance of Developmental Biology. PLoS Biology, 2015, 13, e1002149.	5.6	26
28	Xenopus as a Model for GI/Pancreas Disease. Current Pathobiology Reports, 2015, 3, 137-145.	3.4	13
29	Targeted Germline Modifications in Rats Using CRISPR/Cas9 and Spermatogonial Stem Cells. Cell Reports, 2015, 10, 1828-1835.	6.4	93
30	Model Organisms in the Fight against Muscular Dystrophy: Lessons from Drosophila and Zebrafish. Molecules, 2015, 20, 6237-6253.	3.8	44
31	An Enhanced Gene Targeting Toolkit for <i>Drosophila</i> : Golic+. Genetics, 2015, 199, 683-694.	2.9	28
32	Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. Journal of Molecular Cell Biology, 2015, 7, 284-298.	3.3	116
33	Haploid Strategies for Functional Validation of Plant Genes. Trends in Biotechnology, 2015, 33, 611-620.	9.3	21
34	GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. Cellular and Molecular Life Sciences, 2015, 72, 3871-3881.	5.4	28
35	CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Molecular Neurodegeneration, 2015, 10, 35.	10.8	89
36	Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 2015, 33, 1582-1614.	11.7	1,871
37	Bacterial CRISPR: accomplishments and prospects. Current Opinion in Microbiology, 2015, 27, 121-126.	5.1	74

#	Article	IF	CITATIONS
38	Quantitative Proteomics of Kinase Inhibitor Targets and Mechanisms. ACS Chemical Biology, 2015, 10, 201-212.	3.4	27
39	Unveiling the Inner Workings of Live Bacteria Using Super-Resolution Microscopy. Analytical Chemistry, 2015, 87, 42-63.	6.5	62
40	Gene therapies in clinical trials. , 2016, , 231-256.		9
42	An Overview of CRISPR-Based Tools and Their Improvements: New Opportunities in Understanding Plant–Pathogen Interactions for Better Crop Protection. Frontiers in Plant Science, 2016, 7, 765.	3.6	49
43	<i>In vivo</i> recombination efficiency of two siteâ€specific recombination systems, VCre/VloxP and SCre/SloxP, inÂmedaka (<i>Oryzias latipes</i>). Development Growth and Differentiation, 2016, 58, 516-521.	1.5	7
44	Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system. Molecular Biology of the Cell, 2016, 27, 3385-3394.	2.1	108
45	Evolution of innate-like T cells and their selection by MHC class I-like molecules. Immunogenetics, 2016, 68, 525-536.	2.4	32
46	<scp>CRISPR</scp> /Cas9â€induced disruption of gene expression in mouse embryonic brain and single neural stem cells <i>in vivo</i> . EMBO Reports, 2016, 17, 338-348.	4.5	72
47	CRISPR/Cas9-Mediated Genome Editing and Mutagenesis of <i>EcChi4</i> in <i>Exopalaemon carinicauda</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3757-3764.	1.8	54
48	Possible interventions to modify aging. Biochemistry (Moscow), 2016, 81, 1413-1428.	1.5	33
49	Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus. Scientific Reports, 2016, 6, 30485.	3.3	30
50	CRISPR/Cas9 nuclease cleavage enables marker-free genome editing in Escherichia coli : A sequential study. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68, 31-39.	5.3	7
51	The emerging patent landscape of CRISPR–Cas gene editing technology. Nature Biotechnology, 2016, 34, 1025-1031.	17.5	79
53	Developments in the Generation of Reporter Stem Cells. , 2016, , 93-106.		0
54	Transgenic farm animals: the status of research and prospects. Russian Journal of Genetics: Applied Research, 2016, 6, 657-668.	0.4	0
55	Efficient sequenceâ€specific isolation of <scp>DNA</scp> fragments and chromatin by <i>inÂvitro</i> enCh <scp>IP</scp> technology using recombinant <scp>CRISPR</scp> ribonucleoproteins. Genes To Cells, 2016, 21, 370-377.	1.2	36
56	Speciation, Chromosomal Rearrangements and. , 2016, , 149-158.		9
57	Electric fish genomics: Progress, prospects, and new tools for neuroethology. Journal of Physiology (Paris), 2016, 110, 259-272.	2.1	10

#	Article	IF	CITATIONS
58	Biochemical Analysis of Genome Functions Using Locus-Specific Chromatin Immunoprecipitation Technologies. Gene Regulation and Systems Biology, 2016, 10s1, GRSB.S32520.	2.3	13
59	Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres. Journal of Visualized Experiments, 2016, , 53617.	0.3	17
60	Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Applied and Environmental Microbiology, 2016, 82, 5421-5427.	3.1	243
61	Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2333-2344.	4.1	112
62	Genomic and Epigenomic Alterations in Cancer. American Journal of Pathology, 2016, 186, 1724-1735.	3.8	130
63	Nucleic acids delivery methods for genome editing in zygotes and embryos: the old, the new, and the old-new. Biology Direct, 2016, 11, 16.	4.6	28
64	Modeling craniofacial and skeletal congenital birth defects to advance therapies. Human Molecular Genetics, 2016, 25, R86-R93.	2.9	7
65	The importance of evo-devo to an integrated understanding of molluscan biomineralisation. Journal of Structural Biology, 2016, 196, 67-74.	2.8	41
66	Animal Models of Glaucoma. Essentials in Ophthalmology, 2016, , 31-50.	0.1	2
67	Animal Models of Ophthalmic Diseases. Essentials in Ophthalmology, 2016, , .	0.1	5
68	Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Developmental Biology, 2016, 409, 420-428.	2.0	68
69	Modification of the PthA4 effector binding elements in Type I Cs <scp>LOB</scp> 1 promoter using Cas9/sg <scp>RNA</scp> to produce transgenic Duncan grapefruit alleviating Xccî"pthA4:dCs <scp>LOB</scp> 1.3 infection. Plant Biotechnology Journal, 2016, 14, 1291-1301.	8.3	236
70	Effective knockdown of <i>Drosophila</i> long non-coding RNAs by CRISPR interference. Nucleic Acids Research, 2016, 44, e84-e84.	14.5	54
71	Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways. Developmental Biology, 2016, 409, 489-501.	2.0	13
72	Generation of a Xenopus laevis F1 albino J strain by genome editing and oocyte host-transfer. Developmental Biology, 2017, 426, 188-193.	2.0	17
73	Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Developmental Biology, 2017, 426, 325-335.	2.0	103
74	Gene editing nuclease and its application in tilapia. Science Bulletin, 2017, 62, 165-173.	9.0	29
75	Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Scientific Reports, 2017, 7, 42661.	3.3	59

		CITATION REPORT		
#	Article		IF	CITATIONS
76	Applications of the CRISPR-Cas9 system in kidney research. Kidney International, 2017	, 92, 324-335.	5.2	15
77	Crispr/Cas9 Mediated Inactivation of Argonaute 2 Reveals its Differential Involvement i Responses. Scientific Reports, 2017, 7, 1010.	n Antiviral	3.3	56
78	A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH met dCas9/sgRNA complex. Biosensors and Bioelectronics, 2017, 95, 67-71.	hod, antibody-like	10.1	132
79	Effects of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-as protein 9 system-Based Deletion of miR-451 in Mouse Embryonic Stem Cells on Their S Hematopoietic Differentiation. Tissue Engineering and Regenerative Medicine, 2017, 1	elf-Renewal and	3.7	2
80	CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the produc Chlamydomonas reinhardtii. Bioresource Technology, 2017, 245, 1527-1537.	tion of lipid in	9.6	156
81	Naming CRISPR alleles: endonuclease-mediated mutation nomenclature across species Genome, 2017, 28, 367-376.	. Mammalian	2.2	7
82	Genome-editing technologies and patent landscape overview. Pharmaceutical Patent A 115-134.	nalyst, 2017, 6,	1.1	4
83	Thymus. Molecular and Integrative Toxicology, 2017, , 1-35.		0.5	1
84	A One-Step PCR-Based Assay to Evaluate the Efficiency and Precision of Genomic DNA- Molecular Therapy - Methods and Clinical Development, 2017, 5, 43-50.	Editing Tools.	4.1	14
85	Mechanisms of retinoic acid signaling during cardiogenesis. Mechanisms of Developme 9-19.	nt, 2017, 143,	1.7	74
86	A CRISPR/Cas9-mediated mutation in chitinase changes immune response to bacteria i carinicauda. Fish and Shellfish Immunology, 2017, 71, 43-49.	n Exopalaemon	3.6	22
87	CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes throug STOP Codons. Molecular Cell, 2017, 67, 1068-1079.e4.	n Induction of	9.7	283
88	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medic 2017, , .	ine and Biology,	1.6	2
89	From Reductionism to Holism: Toward a More Complete View of Development Through Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 45-74.	ı Genome	1.6	7
90	Investigating Leber's hereditary optic neuropathy: Cell models and future perspectives. Mitochondrion, 2017, 32, 19-26.		3.4	16
91	Efficient Screening of CRISPR/Cas9-Induced Events in <i>Drosophila</i> Using a Co-CR Genes, Genomes, Genetics, 2017, 7, 87-93.	SPR Strategy. G3:	1.8	58
92	Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CR system. Developmental Biology, 2017, 426, 261-269.	ISPR/Cas9	2.0	22
93	Dynamics of CRISPR/Cas9-mediated genomic editing of the AXL locus in hepatocellular Oncology Letters, 2018, 15, 2441-2450.	carcinoma cells.	1.8	6

#	Article	IF	CITATIONS
94	Genome Editing of Wnt-1, a Gene Associated with Segmentation, via CRISPR/Cas9 in the Pine Caterpillar Moth, Dendrolimus punctatus. Frontiers in Physiology, 2016, 7, 666.	2.8	16
95	Dietary Risk Assessment of v-ATPase A dsRNAs on Monarch Butterfly Larvae. Frontiers in Plant Science, 2017, 8, 242.	3.6	46
96	New Directions for Epigenetics: Application of Engineered DNA-Binding Molecules to Locus-Specific Epigenetic Research. , 2017, , 635-652.		2
97	Use of a MCL-1 inhibitor alone to de-bulk melanoma and in combination to kill melanoma initiating cells. Oncotarget, 2017, 8, 46801-46817.	1.8	28
98	The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators. Current Drug Targets, 2017, 18, 1653-1663.	2.1	8
99	Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System. International Journal of Molecular Sciences, 2017, 18, 2610.	4.1	7
100	"Omicsâ€: A Gateway Towards Abiotic Stress Tolerance. , 2018, , 1-45.		3
101	New and emerging uses of CRISPR/Cas9 to genetically manipulate apicomplexan parasites. Parasitology, 2018, 145, 1119-1126.	1.5	32
102	A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment. , 2018, , .		8
103	Transgenic mouse lines expressing the 3x <scp>FLAG</scp> â€ <scp>dC</scp> as9 protein for enCh <scp>IP</scp> analysis. Genes To Cells, 2018, 23, 318-325.	1.2	9
104	CRISPR/Cas9-mediated deletion of EcMIH shortens metamorphosis time from mysis larva to postlarva of Exopalaemon carinicauda. Fish and Shellfish Immunology, 2018, 77, 244-251.	3.6	21
105	Zebrafish embryo: A new model for studying thyroid morphogenesis. Current Opinion in Endocrine and Metabolic Research, 2018, 2, 3-9.	1.4	1
106	Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics, 2018, 208, 1-18.	2.9	154
107	enChIP systems using different CRISPR orthologues and epitope tags. BMC Research Notes, 2018, 11, 154.	1.4	11
108	Detection of genome-edited cells by oligoribonucleotide interference-PCR. DNA Research, 2018, 25, 395-407.	3.4	8
109	Mouse Embryogenesis. Methods in Molecular Biology, 2018, , .	0.9	0
110	Genome Editing During Development Using the CRISPR-Cas Technology. Methods in Molecular Biology, 2018, 1752, 177-190.	0.9	0
111	Multiplexed CRISPR/Cas9â€mediated metabolic engineering of γâ€aminobutyric acid levels in <i>Solanum lycopersicum</i> . Plant Biotechnology Journal, 2018, 16, 415-427.	8.3	234

ARTICLE IF CITATIONS Argonaute Proteins. Methods in Molecular Biology, 2018, , . 0.9 2 112 Genomic Tagging of AGO1 Using CRISPR/Cas9-Mediated Homologous Recombination. Methods in Molecular Biology, 2018, 1680, 217-235. A novel model to characterize structure and function of BRCA1. Cell Biology International, 2018, 42, 3.0 114 4 34-44. A Review of Genetic Advances Related to Sex Control andÂManipulation in Tilapia. Journal of the World 2.4 34 Aquaculture Society, 2018, 49, 277-291. Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting 116 2.1 31 genome editing efficiency in porcine oocytes. Theriogenology, 2018, 108, 29-38. A refined two-step oligoribonucleotide interference-PCR method for precise discrimination of 3.3 nucleotide differences. Scientific Reports, 2018, 8, 17195. Application and optimization of CRISPR–Cas9-mediated genome engineering in axolotl (Ambystoma) Tj ETQq0 0 0 grgBT /Oygrlock 10 118 Theoretical Models of Neural Development. IScience, 2018, 8, 183-199. 119 4.1 CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica 120 103 4.1 napus L. International Journal of Molecular Sciences, 2018, 19, 2716. How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in FO Xenopus Through the Host-Transfer Technique. Methods in Molecular Biology, 2018, 1865, 105-117. In vivo genome editing targeted towards the female reproductive system. Archives of Pharmacal 122 7 6.3 Research, 2018, 41, 898-910. CRISPR/Cas9 as the Key to Unlocking the Secrets of Butterfly Wing Pattern Development and Its 2.7 24 Evolution. Advances in Insect Physiology, 2018, 54, 85-115. Application of TAL Proteins and the CRISPR System to Purification of Specific Genomic Regions for 124 0 Locus-specific Identification of Chromatin-associated Molecules., 0, , 195-208. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones. International Journal of Molecular Sciences, 2018, 4.1 19, 1075. An enChIP system for the analysis of bacterial genome functions. BMC Research Notes, 2018, 11, 387. 126 1.4 8 The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the 99 Future. Frontiers in Endocrinology, 2018, 9, 51. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and 128 2.9 36 Related Species. MSphere, 2018, 3, .

129	Evolution, kidney development, and chronic kidney disease. Seminars in Cell and Developmental Biology, 2019, 91, 119-131.	5.0	34
-----	---	-----	----

#	Article	IF	CITATIONS
130	Time origin and structural analysis of the induced CRISPR/cas9 megabase-sized deletions and duplications involving the Cntn6 gene in mice. Scientific Reports, 2019, 9, 14161.	3.3	7
131	Scientific Emergence and Instantiation Part II: Assembling Synthetic Biology 2006–2015. Journal of Business and Technical Communication, 2019, 33, 268-291.	2.0	0
132	Genome Editing: Current State of Research and Application to Animal Husbandry. Applied Biochemistry and Microbiology, 2019, 55, 711-721.	0.9	1
133	Genetic Modification of Brain Organoids. Frontiers in Cellular Neuroscience, 2019, 13, 558.	3.7	32
134	CRISPR-Cas9 induces point mutation in the mucormycosis fungus Rhizopus delemar. Fungal Genetics and Biology, 2019, 124, 1-7.	2.1	28
135	Mosaicism in CRISPR/Cas9-mediated genome editing. Developmental Biology, 2019, 445, 156-162.	2.0	169
136	Nuevos modelos transgénicos para el estudio de la enfermedad de Parkinson basados en sistemas de edición con nucleasas. NeurologÃa, 2020, 35, 486-499.	0.7	2
137	New transgenic models of Parkinson's disease using genome editing technology. NeurologÃa (English) Tj ETQq1 I	l 0.78431 0.4	4 ₁ gBT /Over
138	Efficiency of Chitosan-Coated PLGA Nanocarriers for Cellular Delivery of siRNA and CRISPR/Cas9 Complex. Journal of Pharmaceutical Innovation, 2022, 17, 180-193.	2.4	6
139	Identification of ACTB Gene as a Potential Safe Harbor Locus in Pig Genome. Molecular Biotechnology, 2020, 62, 589-597.	2.4	4
140	Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Frontiers in Molecular Neuroscience, 2020, 13, 575575.	2.9	32
141	Bombyx mori kynurenine 3â€monooxygenase gene editing and insect molecular breeding using the clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 system. Biotechnology Progress, 2020, 36, e3054.	2.6	6
142	Molecular tools for engineering resistance in hosts against plant viruses. , 2020, , 637-647.		0
143	Sequential i-GONAD: An Improved In Vivo Technique for CRISPR/Cas9-Based Genetic Manipulations in Mice. Cells, 2020, 9, 546.	4.1	13
144	CRISPR-Cas9 system for fungi genome engineering toward industrial applications. , 2020, , 69-81.		5
145	Modification of i-GONAD Suitable for Production of Genome-Edited C57BL/6 Inbred Mouse Strain. Cells, 2020, 9, 957.	4.1	10
146	<scp>CRISPRâ€Cas9</scp> mediated engineering of <i>Bacillus licheniformis</i> for industrial production of (<scp>2R</scp> , <scp>3S</scp>)â€butanediol. Biotechnology Progress, 2021, 37, e3072.	2.6	9
147	MSCV-based retroviral plasmids expressing 3xFLAG-Sp-dCas9 for enChIP analysis. Biology Methods and Protocols, 2021, 6, bpab013.	2.2	0

#	Article	IF	CITATIONS
148	Advances allowing feasible pyrG gene editing by a CRISPR-Cas9 system for the edible mushroom Pleurotus eryngii. Fungal Genetics and Biology, 2021, 147, 103509.	2.1	22
149	Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
150	Characterization of CRISPR/Cas9 RANKL knockout mesenchymal stem cell clones based on single-cell printing technology and Emulsion Coupling assay as a low-cellularity workflow for single-cell cloning. PLoS ONE, 2021, 16, e0238330.	2.5	5
151	Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair. MBio, 2021, 12, e0136121.	4.1	22
152	CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta, 2021, 254, 68.	3.2	28
153	Versatile CRISPR/Cas9-mediated mosaic analysis by gRNA-induced crossing-over for unmodified genomes. PLoS Biology, 2021, 19, e3001061.	5.6	15
155	Genetic Transformation in Cryptococcus Species. Journal of Fungi (Basel, Switzerland), 2021, 7, 56.	3.5	5
156	Organelle size scaling over embryonic development. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e376.	5.9	15
158	A Critical Role of the Thy28-MYH9 Axis in B Cell-Specific Expression of the Pax5 Gene in Chicken B Cells. PLoS ONE, 2015, 10, e0116579.	2.5	25
159	CRISPR/Cas9 as Tool for Functional Study of Genes Involved in Preimplantation Embryo Development. PLoS ONE, 2015, 10, e0120501.	2.5	14
160	CRISPR-Cas9 HDR system enhances AQP1 gene expression. Oncotarget, 2017, 8, 111683-111696.	1.8	10
161	Enhancement of homology-directed repair with chromatin donor templates in cells. ELife, 2020, 9, .	6.0	18
162	Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. ELife, 2020, 9, .	6.0	29
163	Transgenic farm animals: status of the current researches and the future. Ecological Genetics, 2015, 13, 58-76.	0.5	2
165	The Ethics of Therapeutic Gene Editing Research. Korean Journal of Medical Ethics, 2016, 19, 47-59.	0.2	0
166	A CRISPR View of Biological Mechanisms. Discoveries, 2016, 4, e69.	2.3	2
168	Use of Genetic Manipulation for Evaluating and Understanding Adverse Outcome Pathways. , 2018, , 199-218.		0
170	Deletion of FOXL2 by CRISPR promotes cell�cycle G0/G1 restriction in KGN cells. International Journal of Molecular Medicine, 2019, 43, 567-574.	4.0	5

#	Article	IF	CITATIONS
173	Genetically Modified Organisms (GMOs). Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-14.	0.1	0
175	Innovaciones en la terapia antimicrobiana. Nova, 2020, 18, 9-25.	0.1	Ο
177	Genetically Modified Organisms (GMOs). Encyclopedia of the UN Sustainable Development Goals, 2021, , 436-449.	0.1	0
178	Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity. Yale Journal of Biology and Medicine, 2016, 89, 457-470.	0.2	4
179	CRISPR/Cas9: A Revolutionary Tool for Recent Advances in Crop Improvement: A Review. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 200-214.	0.1	3
181	Recent Advances in the Production of Genome-Edited Rats. International Journal of Molecular Sciences, 2022, 23, 2548.	4.1	10
182	Direct Injection of Recombinant AAV-Containing Solution into the Oviductal Lumen of Pregnant Mice Caused In Situ Infection of Both Preimplantation Embryos and Oviductal Epithelium. International Journal of Molecular Sciences, 2022, 23, 4897.	4.1	3
184	A Polyketide Synthetase Gene Cluster Is Responsible for Antibacterial Activity of <i>Burkholderia contaminans</i> MS14. Phytopathology, 2023, 113, 11-20.	2.2	2
185	New Directions for Epigenetics: Application of Engineered DNA-binding Molecules to Locus-specific Epigenetic Research. , 2023, , 843-868.		0
186	Recent Advances in <i>In Vivo</i> Genome Editing Targeting Mammalian Preimplantation Embryos. , 0, , .		1
187	An enChIP system for the analysis of genome functions in budding yeast. Biology Methods and Protocols, 2022, 7, .	2.2	0
189	The science of genetically modified poultry. ChemistrySelect, 2024, 9, 825-842.	1.5	Ο
190	Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	2
191	Applications of CRISPR/Cas9 in the field of microbiology. Methods in Microbiology, 2023, , .	0.8	Ο
192	Recent Genome-Editing Approaches toward Post-Implanted Fetuses in Mice. BioTech, 2023, 12, 37.	2.6	1
193	Recent Advances in In Vivo Somatic Cell Gene Modification in Newborn Pups. International Journal of Molecular Sciences, 2023, 24, 15301.	4.1	0
194	Recent Advances in the Production of Genome-Edited Animals Using <i>i</i> -GONAD, a Novel <i>in vivo</i> Genome Editing System, and Its Possible Use for the Study of Female Reproductive Systems. OBM Genetics, 2023, 07, 1-30.	0.4	0