A Review of Ionic Polymeric Soft Actuators and Sensors

Soft Robotics 1, 38-52 DOI: 10.1089/soro.2013.0006

Citation Report

#	Article	IF	CITATIONS
1	Selfâ€Recovering Tough Gel Electrolyte with Adjustable Supercapacitor Performance. Advanced Materials, 2014, 26, 4370-4375.	21.0	172
2	Lifetime measurements of ionic electroactive polymer actuators. Journal of Intelligent Material Systems and Structures, 2014, 25, 2267-2275.	2.5	12
3	Development, analysis, and comparison of electromechanical properties of Bucky paper IPMC actuator. , 2014, , .		0
4	Electro-mechanical actuator with muscle memory. Journal of Materials Chemistry C, 2014, 2, 8029-8034.	5.5	43
5	A tentacle-like doubule section curvature tunable actuator with light guiding/drug delivery ability for biomecial applications. , 2015, , .		1
6	Ionic Polymer-Metal Composites (IPMCs) as Impact Sensors. , 2015, , .		1
7	Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery. Smart Materials and Structures, 2015, 24, 095010.	3.5	9
8	Polyoxometalate – conductive polymer composites for energy conversion, energy storage and nanostructured sensors. Dalton Transactions, 2015, 44, 7092-7104.	3.3	202
9	Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators. Journal of Polymer Engineering, 2015, 35, 611-626.	1.4	12
10	Soft Material Characterization for Robotic Applications. Soft Robotics, 2015, 2, 80-87.	8.0	160
11	Micromanipulation tool replaceable soft actuator with gripping force enhancing and output motion converting mechanisms. , 2015, , .		6
12	Electrochemical/Mechanical Coupling in Ion-Conducting Soft Matter. Journal of Physical Chemistry Letters, 2015, 6, 4547-4552.	4.6	32
13	Printed unmanned aerial vehicles using paper-based electroactive polymer actuators and organic ion gel transistors. Microsystems and Nanoengineering, 2016, 2, 16032.	7.0	22
14	Direct Patterning of Ionic Polymers with E-Beam Lithography. MRS Advances, 2016, 1, 45-50.	0.9	2
15	Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. Journal of Materials Science, 2016, 51, 10663-10689.	3.7	109
16	Holeâ€Programmed Superfast Multistep Folding of Hydrogel Bilayers. Advanced Functional Materials, 2016, 26, 7733-7739.	14.9	77
17	Arch-Shaped Ionic Polymer–Metal Composite Actuator Integratable With Micromachined Functional Tools for Micromanipulation. IEEE Sensors Journal, 2016, 16, 7109-7115.	4.7	6
18	Electroactive polymers for sensing. Interface Focus, 2016, 6, 20160026.	3.0	158

	CHATION R	EPORT	
#	Article	IF	CITATIONS
19	Soft robot review. International Journal of Control, Automation and Systems, 2017, 15, 3-15.	2.7	418
20	Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes. Advanced Materials, 2017, 29, 1606109.	21.0	108
21	Wet-Spun Biofiber for Torsional Artificial Muscles. Soft Robotics, 2017, 4, 421-430.	8.0	12
22	Stimuliâ€Responsive Polymers for Actuation. ChemPhysChem, 2017, 18, 1451-1465.	2.1	55
23	Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. Chemical Reviews, 2017, 117, 11239-11268.	47.7	418
24	BlowFab. , 2017, , .		24
25	Electroactive polymer actuated gripper enhanced with iron oxide nanoparticles and water supply mechanism for millimeter-sized fish roe manipulation. , 2017, , .		2
27	A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control. International Journal of Smart and Nano Materials, 2017, 8, 144-213.	4.2	58
28	Tunable actuation behavior of ionic polymer metal composite utilizing carboxylated carbon nanotube-doped Nafion matrix. RSC Advances, 2018, 8, 3090-3094.	3.6	20
29	A moisture and electric coupling stimulated ionic polymer-metal composite actuator with controllable deformation behavior. Smart Materials and Structures, 2018, 27, 02LT01.	3.5	8
30	A three-electrode structured ionic polymer carbon-composite actuator with improved electromechanical performance. Smart Materials and Structures, 2018, 27, 085017.	3.5	7
31	Spring-like electroactive actuators based on paper/ionogel/metal nanocomposites. Smart Materials and Structures, 2018, 27, 065004.	3.5	11
32	Enhancement of Biodegradable Poly(Ethylene Oxide) Ionic–Polymer Metallic Composite Actuators with Nanocrystalline Cellulose Fillers. Actuators, 2018, 7, 72.	2.3	16
33	Influence of solvent on linear polypyrrole–polyethylene oxide actuators. Journal of Applied Polymer Science, 2018, 135, 46831.	2.6	9
34	Supersonic cluster beam fabrication of metal–ionogel nanocomposites for soft robotics. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	16
36	Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis. Soft Robotics, 2018, 5, 229-241.	8.0	138
37	Effect of CaCl ₂ and glycerol on response performance of biological gel electric actuator. Materials Research Express, 2018, 5, 065702.	1.6	3
38	Biomimetic Beetle-Inspired Flapping Air Vehicle Actuated by Ionic Polymer-Metal Composite Actuator. Applied Bionics and Biomechanics, 2018, 2018, 1-7.	1.1	14

#	Article	IF	Citations
39	Ionic Gels and Their Applications in Stretchable Electronics. Macromolecular Rapid Communications, 2018, 39, e1800246.	3.9	112
40	Electroresponsive Ionic Liquid Crystal Elastomers. Macromolecular Rapid Communications, 2019, 40, e1900299.	3.9	45
41	Review of Soft Actuator Materials. International Journal of Precision Engineering and Manufacturing, 2019, 20, 2221-2241.	2.2	122
43	A novel crenellated ionic polymer-metal composite (IPMC) actuator with enhanced electromechanical performances. Smart Materials and Structures, 2019, 28, 115011.	3.5	18
44	Design and Kinematics Analysis of Modular Soft Robot with Two-stage Driven Mechanism. , 2019, , .		0
45	3D Printable Linear Soft Vacuum Actuators: Their Modeling, Performance Quantification and Application in Soft Robotic Systems. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2118-2129.	5.8	70
46	Feasibility Studies on Nafion Membrane Actuated Micropump Integrated With Hollow Microneedles for Insulin Delivery Device. Journal of Microelectromechanical Systems, 2019, 28, 987-996.	2.5	17
47	Durable liquid-crystalline vitrimer actuators. Chemical Science, 2019, 10, 3025-3030.	7.4	82
48	Controllable and durable ionic electroactive polymer actuator based on nanoporous carbon nanotube film electrode. Smart Materials and Structures, 2019, 28, 085032.	3.5	15
49	Robotic Artificial Muscles: Current Progress and Future Perspectives. IEEE Transactions on Robotics, 2019, 35, 761-781.	10.3	225
50	Recent trends in mechanical micropumps and their applications: A review. Mechatronics, 2019, 60, 34-55.	3.3	130
52	Study on Time-Dependent Bending Response of IPMC Actuator. Engineering Materials, 2019, , 75-138.	0.6	1
53	Emerging Material Technologies for Haptics. Advanced Materials Technologies, 2019, 4, 1900042.	5.8	91
54	Soft Robotic Grippers Based on Particle Transmission. IEEE/ASME Transactions on Mechatronics, 2019, 24, 969-978.	5.8	42
55	3Dâ€Architected Soft Machines with Topologically Encoded Motion. Advanced Functional Materials, 2019, 29, 1808713.	14.9	42
56	Soft Radio-Frequency Identification Sensors: Wireless Long-Range Strain Sensors Using Radio-Frequency Identification. Soft Robotics, 2019, 6, 82-94.	8.0	17
57	Advances in Polymeric Materials for Electromechanical Devices. Macromolecular Rapid Communications, 2019, 40, e1800521.	3.9	47
58	Design and Manufacturing of Tendon-Driven Soft Foam Robots. Robotica, 2020, 38, 88-105.	1.9	22

#	Article	IF	CITATIONS
59	Soft parallel manipulator fabricated by additive manufacturing. Sensors and Actuators B: Chemical, 2020, 305, 127355.	7.8	10
60	A Bioinspired Soft Swallowing Robot Based on Compliant Guiding Structure. Soft Robotics, 2020, 7, 491-499.	8.0	28
61	Design and modeling of a high-load soft robotic gripper inspired by biological winding. Bioinspiration and Biomimetics, 2020, 15, 026006.	2.9	15
62	Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots. ACS Nano, 2020, 14, 14929-14938.	14.6	64
63	Modeling and Optimization of Electrostatic Film Actuators Based on the Method of Moments. Soft Robotics, 2021, 8, 651-661.	8.0	5
64	Electroactive polymer-based inner vessel-wall pressure transducer capable of integration with a PTA balloon catheter for examining blood vessel health. Materials Science and Engineering C, 2020, 114, 111047.	7.3	2
65	Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Materials in Medicine, 2020, 1, 92-124.	6.7	85
66	CTF-based soft touch actuator for playing electronic piano. Nature Communications, 2020, 11, 5358.	12.8	54
67	Magnetorheological Fluidâ€Based Flow Control for Soft Robots. Advanced Intelligent Systems, 2020, 2, 2000139.	6.1	20
68	Concentration Gradientâ€Based Soft Robotics: Hydrogels Out of Water. Advanced Functional Materials, 2020, 30, 2004417.	14.9	35
69	Liquid crystal elastomer actuator with serpentine locomotion. Chemical Communications, 2020, 56, 7597-7600.	4.1	34
70	Validation of a model for an ionic electro-active polymer in the static case. Smart Materials and Structures, 2020, 29, 085019.	3.5	3
71	Electrothermal Actuators with Ultrafast Response Speed and Large Deformation. Advanced Intelligent Systems, 2020, 2, 2000036.	6.1	20
72	On Structural Theories for Ionic Polymer Metal Composites: Balancing Between Accuracy and Simplicity. Journal of Elasticity, 2020, 141, 227-272.	1.9	14
73	Hybrid manufacturing strategies for tissue engineering scaffolds using methacrylate functionalised poly(glycerol sebacate). Journal of Biomaterials Applications, 2020, 34, 1114-1130.	2.4	12
74	Basic design of a biomimetic underwater soft robot with switchable swimming modes and programmable artificial muscles. Smart Materials and Structures, 2020, 29, 035038.	3.5	25
75	A New Approach to Improve IPMC Performance for Sensing Dynamic Deflection: Sensor Biasing. IEEE Sensors Journal, 2020, 20, 8614-8622.	4.7	11
76	Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. , 2021, , .		13

# 77	ARTICLE Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 2021, 33, e2003139.	IF 21.0	CITATIONS 209
78	Emerging Applications. , 2021, , 179-229.		1
79	Effects of Fiber Stiffening to a Soft Actuator with PEDOT/PSS Electrode Films on Actuation Cycling Stability. Journal of Oleo Science, 2021, 70, 861-866.	1.4	0
80	Electromechanical Evaluation of Ionomeric Polymer-Metal Composites Using Video Analysis. Materials Research, 2021, 24, .	1.3	9
81	Gel-Electrolyte-Coated Carbon Nanotube Yarns for Self-Powered and Knittable Piezoionic Sensors. ACS Applied Electronic Materials, 2021, 3, 944-954.	4.3	16
82	Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Actuator. Applied Bionics and Biomechanics, 2021, 2021, 1-13.	1.1	5
83	A Review of 3Dâ€Printable Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities. Advanced Intelligent Systems, 2021, 3, 2000223.	6.1	75
84	Bioâ€Inspired Soft Grippers Based on Impactive Gripping. Advanced Science, 2021, 8, 2002017.	11.2	68
85	Intelligent Soft Surgical Robots for Nextâ€Generation Minimally Invasive Surgery. Advanced Intelligent Systems, 2021, 3, 2100011.	6.1	55
86	Flexo-Ionic Effect of Ionic Liquid Crystal Elastomers. Molecules, 2021, 26, 4234.	3.8	9
87	Simulations of 3D-Printable biomimetic artificial muscles based on microfluidic microcapacitors for exoskeletal actuation and stealthy underwater propulsion. Sensors and Actuators A: Physical, 2021, 325, 112700.	4.1	10
88	A hyperelastic porous media framework for ionic polymer-metal composite actuators and sensors: thermodynamically consistent formulation and nondimensionalization of the field equations. Smart Materials and Structures, 2021, 30, 095024.	3.5	12
89	Thermal degradation behavior of ionic liquid/ fluorinated polymer composites: Effect of polymer type and ionic liquid anion and cation. Polymer, 2021, 229, 123995.	3.8	7
90	Electromechanical response of lamellar forming ionic diblock copolymer thin films. Chemical Physics Letters, 2021, 778, 138817.	2.6	0
91	Recent progress in preparation process of ionic polymer-metal composites. Results in Physics, 2021, 29, 104800.	4.1	20
92	Effects of metal-polymer complexation on structure and transport properties of metal-substituted polyelectrolyte membranes. Journal of Colloid and Interface Science, 2021, 602, 654-668.	9.4	11
93	An investigation of multimodal sensing capabilities of ionic polymer-metal composites. Smart Materials and Structures, 2020, 29, 045031.	3.5	4
94	Challenges and Perspectives in Control of Ionic Polymer-Metal Composite (IPMC) Actuators: A Survey. IEEE Access, 2020, 8, 121059-121073.	4.2	15

		CITATION REPORT		
#	Article		IF	CITATIONS
95	Engineered Living Materials-Based Sensing and Actuation. Frontiers in Sensors, 2020, 2	1,.	3.3	22
96	Acrylic Polymer Composition Suitable for Ion Delivery and Selective Detection of Proto Hydroxyl and Cu(II) Ions. Porrime, 2014, 38, 801-808.	n, and	0.2	0
97	Comparison of Production Methods in Soft Robotic. , 2015, , .			1
98	Moisture and electric coupling stimulated ionic polymer actuator with superior deform behavior. , 2018, , .	ation		0
99	Actuation Properties of Paper Actuators Fabricated Using PEDOT/PSS Electrode Films. Science, 2020, 69, 1331-1337.	Journal of Oleo	1.4	4
100	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviet 4976-5067.	ews, 2022, 122,	47.7	173
101	Ionic Polymer-Metal Composite (IPMC) Artificial Muscles in Underwater Environments: Actuation, Sensing, Controls, and Applications to Soft Robotics. , 2021, , 117-139.	Review of		6
102	A comparative review of artificial muscles for microsystem applications. Microsystems Nanoengineering, 2021, 7, 95.	and	7.0	21
103	3D printed packaging of photovoltaic cells for energy autonomous embedded sensors.	. , 2020, , .		0
104	Approximate field measures for ionic polymer-metal composite materials and a simplifi order-of-magnitude actuator model. Smart Materials and Structures, 2022, 31, 02502	ed 9.	3.5	2
105	Soft, Wearable Robotics and Haptics: Technologies, Trends, and Emerging Applications the IEEE, 2022, 110, 246-272.	s. Proceedings of	21.3	40
106	High Specific Surface Area Pd/Pt Electrode-Based Ionic Polymer–Metal Composite fo High-Performance Biomimetic Actuation. ACS Sustainable Chemistry and Engineering, 2645-2652.	r 2022, 10,	6.7	10
107	Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functior Advanced Materials, 2022, 34, e2110384.	nalities.	21.0	133
108	Platinum-coated silicotungstic acid-sulfonated polyvinyl alcohol-polyaniline based hybr polymer metal composite membrane for bending actuation applications. Scientific Rep 4467.	id ionic vorts, 2022, 12,	3.3	13
109	Effect of doping polyethylene oxide on the properties of Nafion-IPMC actuators. Funct Letters, 2022, 15, .	ional Materials	1.2	2
110	Scalable microfluidic double-helix weave architecture for wiring of microcapacitor array 3D-printable biomimetic artificial muscles. Sensors and Actuators A: Physical, 2022, 34	vs in 10, 113543.	4.1	4
111	Prolonged Working Time in Air of Ionic Polymer-Metal Composite Actuators with Polye Oxide [*] ., 2021, , .	thylene		0
112	Adjustable electro-active performances of IPMCs based on carboxylated carbon nanotu 2021, , .	ube/Nafion. ,		0

#	Article	IF	CITATIONS
113	Modeling analysis of ionic polymer-metal composites sensors with various sizes. , 2021, , .		0
114	Flexible Piezoionic Strain Sensors toward Artificial Intelligence Applications. Synlett, 2022, 33, 1486-1491.	1.8	3
115	4D-printed pneumatic soft actuators modeling, fabrication, and control. , 2022, , 103-140.		0
116	Soft Ionics: Governing Physics and State of Technologies. Frontiers in Physics, 0, 10, .	2.1	5
117	Harnessing fiber induced anisotropy in design and fabrication of soft actuator with simultaneous bending and twisting actuations. Composites Science and Technology, 2022, 230, 109724.	7.8	3
118	Pl Controller for IPMC Actuators Based on Nafion®/PT Using Machine Vision for Feedback Response at Different Relative Humidities. Materials Research, 0, 25, .	1.3	3
119	Using natural language processing to find research topics in Living Machines conferences and their intersections with Bioinspiration & Biomimetics publications. Bioinspiration and Biomimetics, 2022, 17, 065008.	2.9	1
120	Highly bendable ionic electroactive polymer actuator based on carboxylated bacterial cellulose by doping with MWCNT. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	8
121	3Dâ€Printed Poly(acrylic acid–vinylimidazole) Ionic Polymer Metal Composite Actuators. Macromolecular Materials and Engineering, 2023, 308, .	3.6	5
122	Snakelike and Continuum Robots: A Review of Reviews. , 2022, , 1-14.		0
123	A Review of Soft Actuator Motion: Actuation, Design, Manufacturing and Applications. Actuators, 2022, 11, 331.	2.3	15
124	Effect of Electrode Morphology on Performance of Ionic Actuators Based on Vat Photopolymerized Membranes. Membranes, 2022, 12, 1110.	3.0	1
125	A cellulose-based interpenetrating network hydrogel electrolyte for flexible solid-state supercapacitors. Cellulose, 2023, 30, 2399-2412.	4.9	6
126	Manufacturing thin ionic polymer metal composite for sensing at the microscale. Smart Materials and Structures, 2023, 32, 035006.	3.5	3
127	Encroachments in stimuli-responsive polymer/C60 systems. , 2023, , 131-152.		1
128	Lowâ€Voltage Driven Ionic Polymerâ€Metal Composite Actuators: Structures, Materials, and Applications. Advanced Science, 2023, 10, .	11.2	21
129	Enhanced Ionic Polymer–Metal Composites with Nanocomposite Electrodes for Restoring Eyelid Movement of Patients with Ptosis. Nanomaterials, 2023, 13, 473.	4.1	6
130	Airâ€Working Electrochemical Actuator and Ionic Sensor Based on Manganese Dioxide/Gelatinâ€Glycerol Composites. Advanced Materials Technologies, 2023, 8, .	5.8	2

#	Article	IF	CITATIONS
131	Fast Response, Highâ€Power Tunable Ultrathin Soft Actuator by Functional Piezoelectric Material Composite for Haptic Device Application. Advanced Electronic Materials, 2023, 9, .	5.1	7
132	Cutting-edge Shape Memory Polymer/Fullerene Nanocomposite: Design and Contemporary Status. Polymer-Plastics Technology and Materials, 2023, 62, 604-617.	1.3	5
133	Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network. Soft Robotics, 2023, 10, 825-837.	8.0	2
134	Direct Insertion Polymerization of Ionic Monomers: Rapid Production of Anion Exchange Membranes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
135	Direct Insertion Polymerization of Ionic Monomers: Rapid Production of Anion Exchange Membranes. Angewandte Chemie, 0, , .	2.0	2
136	A review on soft robotic technologies. AIP Conference Proceedings, 2023, , .	0.4	0
137	Highly flexible, large-deformation ionic polymer metal composites for artificial muscles: Fabrication, properties, applications, and prospects. Chemical Engineering Journal, 2023, 469, 143976.	12.7	9
138	Mechanical stimulation of cells with electroactive polymer-based soft actuators. European Physical Journal: Special Topics, 2023, 232, 2695-2708.	2.6	2
139	Output Force Density Saturation in COMSOL Simulations of Biomimetic Artificial Muscles. Applied Sciences (Switzerland), 2023, 13, 9286.	2.5	1
140	Recent Advances on Underwater Soft Robots. Advanced Intelligent Systems, 2024, 6, .	6.1	1
141	Electrochemical performance of ionic polymer metal composite under tensile loading. Smart Materials and Structures, 2023, 32, 095025.	3.5	1
142	Fingertip Wearable High-resolution Electrohydraulic Interface for Multimodal Haptics. , 2023, , .		0
143	Bioinspired Soft Robotics: State of the Art, Challenges, and Future Directions. Current Robotics Reports, 2023, 4, 65-80.	7.9	1
144	Liquid Metal Microdropletâ€Initiated Ultraâ€Fast Polymerization of a Stimuliâ€Responsive Hydrogel Composite. Advanced Functional Materials, 0, , .	14.9	0
145	Variable stiffness soft robotic gripper: design, development, and prospects. Bioinspiration and Biomimetics, 2024, 19, 011001.	2.9	1
147	Porous Poly(ionic Liquid) Membrane with Metal Nanoparticle Gradient: A Smart Actuator for Visualizing Chemical Reactions. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
148	Multimodal Soft Robotic Actuation and Locomotion. Advanced Materials, 2024, 36, .	21.0	0
149	Soil-based Sensor for Measurements of Static Magnetic Eield 2023		0

#	Article	IF	CITATIONS
150	Dynamic Adaptive Cross-linked Elastomers with Highly Robust, Recyclable, and Conductive Abilities toward Strain Sensors and Self-Sensing Actuators. ACS Sustainable Chemistry and Engineering, 2024, 12, 3111-3120.	6.7	0