MOF positioning technology and device fabrication

Chemical Society Reviews 43, 5513-5560 DOI: 10.1039/c4cs00089g

Citation Report

#	Article	IF	CITATIONS
1	Fluorescence Detection of Anilines and Photocatalytic Degradation of Rhodamine B by a Multifunctional Metal–Organic Framework. European Journal of Inorganic Chemistry, 2014, 2014, 6239-6245.	1.0	46
2	Ligand design for long-range magnetic order in metal–organic frameworks. Chemical Communications, 2014, 50, 13990-13993.	2.2	52
3	Solvothermal Growth and Photophysical Characterization of a Ruthenium(II) Tris(2,2′-Bipyridine)-Doped Zirconium UiO-67 Metal Organic Framework Thin Film. Journal of Physical Chemistry C, 2014, 118, 14200-14210.	1.5	59
4	MOF positioning technology and device fabrication. Chemical Society Reviews, 2014, 43, 5513-5560.	18.7	600
5	Characterization of Mixing Performance in a Microreactor and its Application to the Synthesis of Porous Coordination Polymer Particles. Journal of the Society of Powder Technology, Japan, 2015, 52, 382-389.	0.0	1
6	Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage. Scientific Reports, 2015, 5, 13310.	1.6	34
7	Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications. Advanced Materials, 2015, 27, 5432-5441.	11.1	470
8	Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns. Advanced Materials, 2015, 27, 7293-7298.	11.1	97
10	Engineering Zeoliticâ€Imidazolate Framework (ZIF) Thin Film Devices for Selective Detection of Volatile Organic Compounds. Advanced Functional Materials, 2015, 25, 4470-4479.	7.8	140
11	The Tunable Whiteâ€Light and Multicolor Emission in An Electrodeposited Thin Film of Mixed Lanthanide Coordination Polymers. Advanced Optical Materials, 2015, 3, 1545-1550.	3.6	29
12	Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015, 6, 7240.	5.8	1,077
13	Hollow tubular porous covalent organic framework (COF) nanostructures. Chemical Communications, 2015, 51, 11717-11720.	2.2	89
14	Metal organic frameworks for photo-catalytic water splitting. Energy and Environmental Science, 2015, 8, 1923-1937.	15.6	277
15	The structure of a coordination polymer constructed of manganese(II) biphenyl-4, 4′-dicarboxylate. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2015, 70, 897-902.	0.3	0
16	4-(4-Carboxyphenoxy)phthalate-based coordination polymers and their application in sensing nitrobenzene. Dalton Transactions, 2015, 44, 1655-1663.	1.6	43
17	Synthesis and energy applications of metal organic frameworks. Journal of Porous Materials, 2015, 22, 413-424.	1.3	17
18	Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap. Chemistry of Materials, 2015, 27, 1801-1807.	3.2	159
19	Room temperature synthesis of ZIF-8 membranes from seeds anchored in gelatin films for gas separation. CrystEngComm, 2015, 17, 1576-1582.	1.3	18

#	Article	IF	CITATIONS
20	Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds. Progress in Polymer Science, 2015, 45, 102-118.	11.8	99
21	Dualâ€Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing. Advanced Materials, 2015, 27, 1420-1425.	11.1	604
22	Metal–organic frameworks for luminescence thermometry. Chemical Communications, 2015, 51, 7420-7431.	2.2	354
24	Manganese- and Cobalt-Based Coordination Networks as Promising Heterogeneous Catalysts for Olefin Epoxidation Reactions. Inorganic Chemistry, 2015, 54, 2603-2615.	1.9	33
25	Micromechanical Behavior of Polycrystalline Metal–Organic Framework Thin Films Synthesized by Electrochemical Reaction. Crystal Growth and Design, 2015, 15, 1991-1999.	1.4	26
26	Tubular porous coordination polymer for the selective sensing of Cu2+ ions and cyclohexane in mixed suspensions of metal ions via fluorescence quenching. RSC Advances, 2015, 5, 65110-65113.	1.7	14
27	Metal–Organic Frameworks as Platforms for the Controlled Nanostructuring of Single-Molecule Magnets. Journal of the American Chemical Society, 2015, 137, 9254-9257.	6.6	135
28	A luminescent Terbium-Succinate MOF thin film fabricated by electrodeposition for sensing of Cu2+ in aqueous environment. Sensors and Actuators B: Chemical, 2015, 220, 779-787.	4.0	82
29	Fundamentals of MOF Thin Film Growth via Liquid-Phase Epitaxy: Investigating the Initiation of Deposition and the Influence of Temperature. Langmuir, 2015, 31, 6114-6121.	1.6	52
30	Inorganic nanocarriers for platinum drug delivery. Materials Today, 2015, 18, 554-564.	8.3	122
31	CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers. Scientific Reports, 2015, 5, 10674.	1.6	34
32	Aminopyridine derivatives controlled the assembly and various properties of Cu–BTC metal–organic frameworks. Dalton Transactions, 2015, 44, 14008-14018.	1.6	18
33	Sequence Programmable Peptoid Polymers for Diverse Materials Applications. Advanced Materials, 2015, 27, 5665-5691.	11.1	199
34	Three new luminescent Cd(<scp>ii</scp>)-MOFs by regulating the tetracarboxylate and auxiliary co-ligands, displaying high sensitivity for Fe ³⁺ in aqueous solution. Dalton Transactions, 2015, 44, 10385-10391.	1.6	132
35	HKUST-1 Thin Film Layer-by-Layer Liquid Phase Epitaxial Growth: Film Properties and Stability Dependence on Layer Number. Crystal Growth and Design, 2015, 15, 2948-2957.	1.4	35
36	Electric Transport Properties of Surface-Anchored Metal–Organic Frameworks and the Effect of Ferrocene Loading. ACS Applied Materials & Interfaces, 2015, 7, 9824-9830.	4.0	83
37	Sustainable synthesis of a catalytic active one-dimensional lanthanide–organic coordination polymer. Chemical Communications, 2015, 51, 10807-10810.	2.2	31
38	Positioning of the HKUST-1 metal–organic framework (Cu ₃ (BTC) ₂) through conversion from insoluble Cu-based precursors. Inorganic Chemistry Frontiers, 2015, 2, 434-441.	3.0	54

		CITATION RE	PORT	
#	Article		IF	CITATIONS
39	Absorbate-Induced Piezochromism in a Porous Molecular Crystal. Nano Letters, 2015, 1	5, 2149-2154.	4.5	36
40	Chemical principles underpinning the performance of the metal–organic framework H Chemical Science, 2015, 6, 3674-3683.	KUST-1.	3.7	144
41	Metal organic frameworks for sensing applications. TrAC - Trends in Analytical Chemistry 39-53.	ı, 2015, 73,	5.8	446
42	Superprotonic Conductivity of a UiOâ€66 Framework Functionalized with Sulfonic Acid Facile Postsynthetic Oxidation. Angewandte Chemie - International Edition, 2015, 54, 5		7.2	426
43	Surface-mounted metal-organic frameworks for applications in sensing and separation. and Mesoporous Materials, 2015, 216, 200-215.	Microporous	2.2	126
44	Electrochromic switching of monolithic Prussian blue thin film devices. Optics Express, 2 13725.	2015, 23,	1.7	19
45	Efficient multicolor and white light emission from Zr-based MOF composites: spectral ar properties. Journal of Materials Chemistry C, 2015, 3, 11300-11310.	ıd dynamic	2.7	44
46	Hydrolytic Transformation of Microporous Metal–Organic Frameworks to Hierarchical Mesoporous MOFs. Angewandte Chemie - International Edition, 2015, 54, 13273-13278		7.2	186
47	Ammonia Adsorption and Co-adsorption with Water in HKUST-1: Spectroscopic Evidenc Cooperative Interactions. Journal of Physical Chemistry C, 2015, 119, 24781-24788.	e for	1.5	39
48	Selective growth of MFU-4l single crystals on microstructured plasma polymer coatings. Communications, 2015, 51, 12494-12496.	Chemical	2.2	6
49	Metal–organic framework deposition on dealloyed substrates. Journal of Materials Ch 3, 19747-19753.	emistry A, 2015,	5.2	13
50	Monolithic, Crystalline MOF Coating: An Excellent Patterning and Photoresist Material. ChemNanoMat, 2015, 1, 338-345.		1.5	33
51	Optical study and ruthenizer (II) N3 dye-sensitized solar cell application of ZnO nanorod synthesized by combine two-step process. Optics and Spectroscopy (English Translation	-arrays 1 of Optika I) Tj ETQq0 0 (0 n g£ 2T /O∨	renkock 10 Tf
52	Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on S Journal of Physical Chemistry C, 2015, 119, 23544-23551.	Surfaces.	1.5	49
53	pH-Dependent supramolecular self-assemblies of copper(<scp>ii</scp>) (fluorene-9,9-di acid complexes. CrystEngComm, 2015, 17, 8216-8220.	yl)dipropanoic	1.3	3
54	1D photonic defect structures based on colloidal porous frameworks: Reverse pore engi vapor sorption. Microporous and Mesoporous Materials, 2015, 216, 216-224.	neering and	2.2	13
55	Hierarchical structuring of metal–organic framework thin-films on quartz crystal micro (QCM) substrates for selective adsorption applications. Journal of Materials Chemistry A 23385-23394.		5.2	56
56	Potential Tuning of Nanoarchitectures Based on Phthalocyanine Nanopillars: Construction Effective Photocurrent Generation Systems. ACS Applied Materials & District Structures, 20		4.0	4

#	Article	IF	CITATIONS
57	Structural and luminescence modulation in 8-hydroxyquinolinate-based coordination polymers by varying the dicarboxylic acid. Dalton Transactions, 2015, 44, 17774-17783.	1.6	12
58	Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation. Chemistry of Materials, 2015, 27, 7903-7909.	3.2	121
59	Encapsulating Pyrene in a Metal–Organic Zeolite for Optical Sensing of Molecular Oxygen. Chemistry of Materials, 2015, 27, 8255-8260.	3.2	97
60	Metal–Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26608-26613.	4.0	75
61	ZnO as an Efficient Nucleating Agent for Rapid, Room Temperature Synthesis and Patterning of Zn-Based Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 690-699.	3.2	60
62	Polymer hybrid thin films based on rare earth ion-functionalized MOF: photoluminescence tuning and sensing as a thermometer. Dalton Transactions, 2015, 44, 1875-1881.	1.6	63
63	Rapid mechanochemical synthesis of two new Cd(<scp>ii</scp>)-based metal–organic frameworks with high removal efficiency of Congo red. CrystEngComm, 2015, 17, 686-692.	1.3	136
64	Functionalization of robust Zr(<scp>iv</scp>)-based metal–organic framework films via a postsynthetic ligand exchange. Chemical Communications, 2015, 51, 66-69.	2.2	107
65	Reductive coordination replication of V2O5 sacrificial macrostructures into vanadium-based porous coordination polymers. CrystEngComm, 2015, 17, 323-330.	1.3	25
66	Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm, 2015, 17, 229-246.	1.3	237
67	Self-Assembly of Discrete Metallocycles versus Coordination Polymers Based on Cu(I) and Ag(I) Ions and Flexible Ligands: Structural Diversification and Luminescent Properties. Polymers, 2016, 8, 46.	2.0	16
68	Catalytic Applications of Metal-Organic Frameworks. , 0, , .		4
69	Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal–Organic Polyhedra. Journal of the American Chemical Society, 2016, 138, 9646-9654.	6.6	61
70	Void Engineering in Metal–Organic Frameworks via Synergistic Etching and Surface Functionalization. Advanced Functional Materials, 2016, 26, 5827-5834.	7.8	302
71	Minimization of Surface Energies and Ripening Outcompete Template Effects in the Surface Growth of Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 8488-8492.	1.6	1
72	Minimization of Surface Energies and Ripening Outcompete Template Effects in the Surface Growth of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 8348-8352.	7.2	12
73	A Luminescent Metal–Organic Framework Thermometer with Intrinsic Dual Emission from Organic Lumophores. Chemistry - A European Journal, 2016, 22, 4460-4468.	1.7	66
74	Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release. Advanced Materials, 2016, 28, 1839-1844.	11.1	107

#	Article	IF	CITATIONS
75	Postsynthetic Inner-Surface Functionalization of the Highly Stable Zirconium-Based Metal–Organic Framework DUT-67. Inorganic Chemistry, 2016, 55, 7206-7213.	1.9	68
76	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie - International Edition, 2016, 55, 3419-3423.	7.2	201
77	Direct Fabrication of Freeâ€Standing MOF Superstructures with Desired Shapes by Microâ€Confined Interfacial Synthesis. Angewandte Chemie - International Edition, 2016, 55, 7116-7120.	7.2	41
78	Lanthanide–Organic Frameworks Constructed from an Unsymmetrical Tricarboxylate for Selective Gas Adsorption and Smallâ€Molecule Sensing. European Journal of Inorganic Chemistry, 2016, 2016, 503-508.	1.0	13
79	SURMOFs: Liquid-Phase Epitaxy of Metal-Organic Frameworks on Surfaces. , 2016, , 523-550.		1
80	Confinement Effects of Metal–Organic Framework on the Formation of Charge-Transfer Tetrathiafulvalene Dimers. Inorganic Chemistry, 2016, 55, 12758-12765.	1.9	25
81	Mit variablem Abstand gestapelte lineare Ketten magnetischer Ionen: ferromagnetische Ordnung mit einer Curie‶emperatur von über 20â€K. Angewandte Chemie, 2016, 128, 12874-12879.	1.6	0
82	Facile stabilization of cyclodextrin metal–organic frameworks under aqueous conditions via the incorporation of C ₆₀ in their matrices. Chemical Communications, 2016, 52, 5973-5976.	2.2	81
83	Chiral chemistry of metal–camphorate frameworks. Chemical Society Reviews, 2016, 45, 3122-3144.	18.7	229
84	In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers. Journal of Chromatography A, 2016, 1453, 1-9.	1.8	24
85	Nanoimprinted, Submicrometric, MOFâ€Based 2D Photonic Structures: Toward Easy Selective Vapors Sensing by a Smartphone Camera. Advanced Functional Materials, 2016, 26, 81-90.	7.8	85
86	One-Step Asymmetric Growth of Continuous Metal–Organic Framework Thin Films on Two-Dimensional Colloidal Crystal Arrays: A Facile Approach toward Multifunctional Superstructures. Crystal Growth and Design, 2016, 16, 2700-2707.	1.4	14
87	Improving the stability of solar cells using metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 7930-7935.	5.2	18
88	Imparting Functionality to MOF Nanoparticles by External Surface Selective Covalent Attachment of Polymers. Chemistry of Materials, 2016, 28, 3318-3326.	3.2	218
89	Metal–organic framework coated paper substrates for paper spray mass spectrometry. Analytical Methods, 2016, 8, 8004-8014.	1.3	34
90	Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20â€K. Angewandte Chemie - International Edition, 2016, 55, 12683-12687.	7.2	14
91	Electrochemically Active Coordination Polymers: A Review. Theoretical and Experimental Chemistry, 2016, 52, 197-211.	0.2	7
92	Tuning the luminescence performance of metal–organic frameworks based on d ¹⁰ metal ions: from an inherent versatile behaviour to their response to external stimuli. CrystEngComm, 2016, 18. 8556-8573	1.3	76

#	ARTICLE	IF	CITATIONS
93	A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries. New Journal of Chemistry, 2016, 40, 9746-9752.	1.4	104
94	MOF-199: A simple strategy for improvement of crystallinity and photovoltaic property. Journal of Crystal Growth, 2016, 455, 60-65.	0.7	10
95	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on T‧haped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	1.7	43
96	Lanthanides in Luminescent Thermometry. Fundamental Theories of Physics, 2016, 49, 339-427.	0.1	304
97	Lanthanide Metal-Organic Frameworks for Luminescent Applications. Fundamental Theories of Physics, 2016, 50, 243-268.	0.1	24
98	Novel nanoporous carbon derived from metal–organic frameworks with tunable electromagnetic wave absorption capabilities. Inorganic Chemistry Frontiers, 2016, 3, 1516-1526.	3.0	110
99	Conversion of Cu ₂ O nanowires into Cu ₂ O/HKUST-1 core/sheath nanostructures and hierarchical HKUST-1 nanotubes. RSC Advances, 2016, 6, 91440-91444.	1.7	13
100	Vaporâ€Phase Deposition and Modification of Metal–Organic Frameworks: Stateâ€ofâ€theâ€Art and Future Directions. Chemistry - A European Journal, 2016, 22, 14452-14460.	1.7	81
101	Photoluminescent Metal–Organic Frameworks for Gas Sensing. Advanced Science, 2016, 3, 1500434.	5.6	271
102	Chirality-Discriminated Conductivity of Metal–Amino Acid Biocoordination Polymer Nanowires. ACS Nano, 2016, 10, 8564-8570.	7.3	38
103	RGO/Co 3 O 4 Composites Prepared Using GO-MOFs as Precursor for Advanced Lithium-ion Batteries and Supercapacitors Electrodes. Electrochimica Acta, 2016, 215, 410-419.	2.6	109
104	Site-selective growth of metal–organic frameworks using an interfacial growth approach combined with VUV photolithography. RSC Advances, 2016, 6, 77297-77300.	1.7	9
105	Metal–organic framework photophysics: Optoelectronic devices, photoswitches, sensors, and photocatalysts. MRS Bulletin, 2016, 41, 890-896.	1.7	57
106	Innovation in Layer-by-Layer Assembly. Chemical Reviews, 2016, 116, 14828-14867.	23.0	678
107	Biomimetic approaches with smart interfaces for bone regeneration. Journal of Biomedical Science, 2016, 23, 77.	2.6	27
108	Ferroelectricity in Metal–Organic Frameworks: Characterization and Mechanisms. European Journal of Inorganic Chemistry, 2016, 2016, 4332-4344.	1.0	82
109	Polymer–Metal Organic Framework Composite Films as Affinity Layer for Capacitive Sensor Devices. ACS Sensors, 2016, 1, 1188-1192.	4.0	42
110	Controlling the Growth of Metal-Organic Frameworks Using Different Gravitational Forces. European Journal of Inorganic Chemistry, 2016, 2016, 4499-4504.	1.0	12

#	Article	IF	CITATIONS
111	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie - International Edition, 2016, 55, 8228-8234.	7.2	184
112	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
113	Metal Oxide Assisted Preparation of Core–Shell Beads with Dense Metal–Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants. Chemistry - A European Journal, 2016, 22, 11770-11777.	1.7	24
114	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie, 2016, 128, 8368-8374.	1.6	28
115	Rigidifying Effect of Metal–Organic Frameworks: Protect the Conformation, Packing Mode, and Blue Fluorescence of a Soft Piezofluorochromic Compound under Pressures up to 8 MPa. Inorganic Chemistry, 2016, 55, 7311-7313.	1.9	37
116	Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method. ACS Applied Materials & Interfaces, 2016, 8, 20459-20464.	4.0	170
117	Direct in Situ Conversion of Metals into Metal–Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates. ACS Applied Materials & Interfaces, 2016, 8, 32414-32420.	4.0	71
118	Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Scientific Reports, 2016, 6, 27813.	1.6	132
119	Coordination Chemistry and Structural Dynamics of a Long and Flexible Piperazine-Derived Ligand. Inorganic Chemistry, 2016, 55, 6692-6702.	1.9	18
120	Metal–Organic Coordination Network Thin Film by Surface-Induced Assembly. Langmuir, 2016, 32, 6648-6655.	1.6	24
121	Elaboration of metal organic framework hybrid materials with hierarchical porosity by electrochemical deposition–dissolution. CrystEngComm, 2016, 18, 5095-5100.	1.3	17
122	Metal–organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives. Journal of Materials Chemistry A, 2016, 4, 12356-12369.	5.2	210
123	Emerging applications of metal–organic frameworks. CrystEngComm, 2016, 18, 6532-6542.	1.3	125
124	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie, 2016, 128, 3480-3484.	1.6	22
125	Direct Fabrication of Free‣tanding MOF Superstructures with Desired Shapes by Micro onfined Interfacial Synthesis. Angewandte Chemie, 2016, 128, 7232-7236.	1.6	10
126	Film Quality and Electronic Properties of a Surfaceâ€Anchored Metalâ€Organic Framework Revealed by using a Multiâ€ŧechnique Approach. ChemElectroChem, 2016, 3, 713-718.	1.7	22
127	Second harmonic generation microscopy reveals hidden polar organization in fluoride doped MIL-53(Fe). Dalton Transactions, 2016, 45, 4401-4406.	1.6	19
128	Giant flexibility of crystallized organic–inorganic porous solids: facts, reasons, effects and applications. New Journal of Chemistry, 2016, 40, 3950-3967.	1.4	16

#	Article	IF	CITATIONS
129	Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis. CrystEngComm, 2016, 18, 4018-4022.	1.3	26
130	Growth and characterization of zeolitic imidazolate framework-8 nanocrystalline layers on microstructured surfaces for liquid crystal alignment. RSC Advances, 2016, 6, 7488-7494.	1.7	4
131	Structural transformations and solid-state reactivity involving nano lead(II) coordination polymers via thermal, mechanochemical and photochemical approaches. Coordination Chemistry Reviews, 2016, 310, 116-130.	9.5	47
132	Cooperative effects of lanthanides when associated with palladium in novel, 3D Pd/Ln coordination polymers. Sustainable applications as water-stable, heterogeneous catalysts in carbon–carbon cross-coupling reactions. Applied Catalysis A: General, 2016, 511, 1-10.	2.2	34
133	Chemical vapour deposition of zeolitic imidazolate framework thinÂfilms. Nature Materials, 2016, 15, 304-310.	13.3	528
134	Freestanding MOF Microsheets with Defined Size and Geometry Using Superhydrophobic–Superhydrophilic Arrays. Advanced Materials Interfaces, 2016, 3, 1500392.	1.9	32
135	Sensing-functional luminescent metal–organic frameworks. CrystEngComm, 2016, 18, 3746-3759.	1.3	160
136	Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research, 2016, 49, 483-493.	7.6	1,403
137	Synthesis of Nanoscale Coordination Polymers in Femtoliter Reactors on Surfaces. ACS Nano, 2016, 10, 3206-3213.	7.3	25
138	Functionalized metal-organic-framework CMPO@MIL-101(Cr) as a stable and selective rare earth adsorbent. Journal of Materials Science, 2016, 51, 5019-5026.	1.7	20
139	Supersonic cold spraying for zeolitic metal–organic framework films. Chemical Engineering Journal, 2016, 295, 49-56.	6.6	36
140	Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives. Chemical Communications, 2016, 52, 8957-8971.	2.2	290
141	Highly efficient simultaneous ultrasonic-assisted adsorption of methylene blue and rhodamine B onto metal organic framework MIL-68(Al): central composite design optimization. RSC Advances, 2016, 6, 27416-27425.	1.7	132
142	Exploration of MOF nanoparticle sizes using various physical characterization methods – is what you measure what you get?. CrystEngComm, 2016, 18, 4359-4368.	1.3	100
143	Encapsulation of metal layers within metal–organic frameworks as hybrid thin films for selective catalysis. Nano Research, 2016, 9, 158-164.	5.8	40
144	Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO ₂ . Green Chemistry, 2016, 18, 2479-2487.	4.6	174
145	On controlling the anodic electrochemical film deposition of HKUST-1 metal–organic frameworks. Microporous and Mesoporous Materials, 2016, 224, 302-310.	2.2	52
146	Nucleotide/Tb 3+ coordination polymer nanoparticles as luminescent sensor and scavenger for nitrite ion. Analytica Chimica Acta, 2016, 902, 168-173.	2.6	30

#	Article	IF	CITATIONS
147	Structural influencing factors on ZnII/CdII coordination polymers based on a "V―like bis-pyridyl-bis-amide derivative: Construction, fluorescent sensing and photocatalysis properties. Inorganica Chimica Acta, 2016, 440, 94-101.	1.2	13
148	Negative, anisotropic thermal expansion in monolithic thin films of crystalline metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 222, 241-246.	2.2	19
149	Metal–organic frameworks for the control and management of air quality: advances and future direction. Journal of Materials Chemistry A, 2016, 4, 345-361.	5.2	120
150	Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts. Green Chemistry, 2016, 18, 1061-1069.	4.6	188
151	Metal–organic frameworks for electrochemical applications. TrAC - Trends in Analytical Chemistry, 2016, 75, 86-96.	5.8	192
152	Structural flexibility in crystallized matter: from history to applications. Dalton Transactions, 2016, 45, 4073-4089.	1.6	54
153	Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 2016, 307, 1-31.	9.5	222
154	Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: A review. Coordination Chemistry Reviews, 2016, 307, 391-424.	9.5	193
155	Rapid Inâ€Situ Immobilization of Enzymes in Metal–Organic Framework Supports under Mild Conditions. ChemCatChem, 2017, 9, 1182-1186.	1.8	62
156	Cu ²⁺ sorption from aqueous media by a recyclable Ca ²⁺ framework. Inorganic Chemistry Frontiers, 2017, 4, 773-781.	3.0	37
157	Two 3D Cd(II) Metal–Organic Frameworks Linked by Benzothiadiazole Dicarboxylates: Fantastic S@Cd ₆ Cage, Benzothiadiazole Antidimmer, and Dual Emission. Inorganic Chemistry, 2017, 56, 1696-1705.	1.9	27
158	2D Coordination Polymer Built from Lithium Dimethylmalonate and Co ^{II} lons: The Influence of Dehydration on Spectral and Magnetic Properties. European Journal of Inorganic Chemistry, 2017, 2017, 1396-1405.	1.0	11
159	Sol–Gel Processing of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 2626-2645.	3.2	116
160	Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity. Scientific Reports, 2017, 7, 41640.	1.6	58
161	Pd(0) loaded Zn ₂ (azoBDC) ₂ (dabco) as a heterogeneous catalyst. CrystEngComm, 2017, 19, 4182-4186.	1.3	13
162	Postsynthetic N-methylation making a metal–organic framework responsive to alkylamines. Chemical Communications, 2017, 53, 1747-1750.	2.2	91
163	Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.	5.7	221
164	A facile synthesis of UiO-66 systems and their hydrothermal stability. Journal of Porous Materials, 2017, 24, 1327-1333.	1.3	40

#	Article	IF	Citations
165	Facile fabrication of Cu(II)-porphyrin MOF thin films from tetrakis(4-carboxyphenyl)porphyrin and Cu(OH)2 nanoneedle array. Applied Surface Science, 2017, 424, 145-150.	3.1	59
166	Metalâ€Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials, 2017, 27, 1606314.	7.8	483
167	Experimental and Theoretical Study of a Cadmium Coordination Polymer Based on Aminonicotinate with Second-Timescale Blue/Green Photoluminescent Emission. Inorganic Chemistry, 2017, 56, 3149-3152.	1.9	24
168	MOF immobilization on the surface of polymer-cordierite composite monoliths through in-situ crystal growth. Separation and Purification Technology, 2017, 183, 173-180.	3.9	38
169	Diffusion and photoswitching in nanoporous thin films of metal-organic frameworks. Journal Physics D: Applied Physics, 2017, 50, 193004.	1.3	33
170	Infrared laser writing of MOFs. Chemical Communications, 2017, 53, 5275-5278.	2.2	11
171	Metal–Organic Frameworks at the Biointerface: Synthetic Strategies and Applications. Accounts of Chemical Research, 2017, 50, 1423-1432.	7.6	464
172	Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis. Nanoscale, 2017, 9, 7734-7738.	2.8	15
173	Electrochemical sensing and catalysis using Cu ₃ (BTC) ₂ coating electrodes from Cu(OH) ₂ films. CrystEngComm, 2017, 19, 4194-4200.	1.3	25
174	Gas Phase Sensing of Alcohols by Metal Organic Framework–Polymer Composite Materials. ACS Applied Materials & Interfaces, 2017, 9, 24926-24935.	4.0	51
175	Photopatterning of fluorescent host–guest carriers through pore activation of metal–organic framework single crystals. Chemical Communications, 2017, 53, 7222-7225.	2.2	12
176	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	18.7	987
177	Largeâ€Area, Freestanding MOF Films of Planar, Curvilinear, or Micropatterned Topographies. Angewandte Chemie, 2017, 129, 133-138.	1.6	8
178	Largeâ€Area, Freestanding MOF Films of Planar, Curvilinear, or Micropatterned Topographies. Angewandte Chemie - International Edition, 2017, 56, 127-132.	7.2	43
179	Metalâ€Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Advanced Energy Materials, 2017, 7, 1601296.	10.2	334
180	Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via heteroepitaxial growth. Nature Materials, 2017, 16, 342-348.	13.3	298
181	Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 22597-22603.	4.0	124
182	Unravelling chromism in metal–organic frameworks. CrystEngComm, 2017, 19, 4238-4259.	1.3	66

#	Article	IF	CITATIONS
183	Cobalt oxide composites derived from zeolitic imidazolate framework for high-performance supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2017, 28, 14019-14025.	1.1	24
184	Syntheses and single crystal X-ray diffraction studies of hydroxynicotinic acid based complexes involving supramolecular interactions. Polyhedron, 2017, 133, 222-230.	1.0	2
185	Fe ₃ O ₄ @HKUST-1 and Pd/Fe ₃ O ₄ @HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 2017, 19, 4201-4210.	1.3	28
186	Solution-based sequential modification of LiCoO ₂ particle surfaces with iron(<scp>ii</scp>) oxalate nanolayers. CrystEngComm, 2017, 19, 4175-4181.	1.3	4
187	Emerging Droplet Microfluidics. Chemical Reviews, 2017, 117, 7964-8040.	23.0	1,109
188	Enhanced properties of metal–organic framework thin films fabricated via a coordination modulation-controlled layer-by-layer process. Journal of Materials Chemistry A, 2017, 5, 13665-13673.	5.2	35
189	Syntheses, X-ray Crystal Structures, Photoluminescence Properties, Antimicrobial Activities and Hirshfeld Surface of Two New Cd(II) Azide/Thiocyanate Linked Coordination Polymers. ChemistrySelect, 2017, 2, 4811-4822.	0.7	22
190	Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano, 2017, 11, 5293-5308.	7.3	988
191	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIFâ€67 Crystals. Angewandte Chemie, 2017, 129, 8555-8560.	1.6	33
192	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIFâ€67 Crystals. Angewandte Chemie - International Edition, 2017, 56, 8435-8440.	7.2	362
193	Macroscopic Simulation of Deformation in Soft Microporous Composites. Journal of Physical Chemistry Letters, 2017, 8, 1578-1584.	2.1	13
194	Decolorization of reactive red 198 using preferentially-oriented metal-organic framework thin films: A structure/property correlation. Inorganic Chemistry Communication, 2017, 79, 65-68.	1.8	3
195	Future Porous Materials. Accounts of Chemical Research, 2017, 50, 514-516.	7.6	141
196	Luminescent Metal–Organic Framework Sensor: Exceptional Cd ²⁺ Turnâ€On Detection and First In Situ Visualization of Cd ²⁺ Ion Diffusion into a Crystal. Chemistry - A European Journal, 2017, 23, 4803-4809.	1.7	32
197	Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 335, 28-43.	9.5	312
198	Synthesis of zeolitic imidazolate framework-8 particles of controlled sizes, shapes, and gate adsorption characteristics using a central collision-type microreactor. Chemical Engineering Journal, 2017, 313, 724-733.	6.6	72
199	Facile Fabrication of Multifunctional Metal–Organic Framework Hollow Tubes To Trap Pollutants. Journal of the American Chemical Society, 2017, 139, 16482-16485.	6.6	96
200	Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 2017, 8, 1138.	5.8	374

#	Article	IF	CITATIONS
201	Lysozyme-mediated fabrication of well-defined core–shell nanoparticle@metal–organic framework nanocomposites. Journal of Materials Chemistry A, 2017, 5, 20765-20770.	5.2	14
202	Characterization of mixing performance in a microreactor and its application to the synthesis of porous coordination polymer particles. Advanced Powder Technology, 2017, 28, 3104-3110.	2.0	25
203	Controllable Modular Growth of Hierarchical MOFâ€onâ€MOF Architectures. Angewandte Chemie, 2017, 129, 15864-15868.	1.6	64
204	Controllable Modular Growth of Hierarchical MOFâ€onâ€MOF Architectures. Angewandte Chemie - International Edition, 2017, 56, 15658-15662.	7.2	246
205	Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chemical Reviews, 2017, 117, 13461-13501.	23.0	238
206	Sensitive Photoacoustic IR Spectroscopy for the Characterization of Amino/Azido Mixed‣inker Metal–Organic Frameworks. ChemPhysChem, 2017, 18, 2855-2858.	1.0	3
207	Enhancement of photocatalytic performance in two zinc-based metal–organic frameworks by solvent assisted linker exchange. CrystEngComm, 2017, 19, 5749-5754.	1.3	39
208	A MoO ₃ –Metal–Organic Framework Composite as a Simultaneous Photocatalyst and Catalyst in the PODS Process of Light Oil. ACS Catalysis, 2017, 7, 6949-6956.	5.5	87
209	Structural Diversity in Zn(II) Coordination Polymers Constructed by Linear N,N′â€Đonor Linker and Different Pseudohalides: Sorption Study and Luminescent Properties. ChemistrySelect, 2017, 2, 5783-5792.	0.7	3
210	Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding. Chemical Communications, 2017, 53, 9246-9249.	2.2	93
211	A 2D Metalâ€Organic Framework Based on 9â€(Pyridinâ€4â€yl)â€9 <i>H</i> â€carbazoleâ€3,6â€dicarboxylic Acid Synthesis, Structure and Properties. Chinese Journal of Chemistry, 2017, 35, 1869-1874.	2.6	2
212	MOF derived Mesoporous Nitrogen doped Carbons with high Activity towards Oxygen Reduction. Electrochimica Acta, 2017, 251, 638-650.	2.6	42
213	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	3.2	136
214	Excitonically Coupled States in Crystalline Coordination Networks. Chemistry - A European Journal, 2017, 23, 14316-14322.	1.7	30
215	Nanostructured materials: A progressive assessment and future direction for energy device applications. Coordination Chemistry Reviews, 2017, 353, 113-141.	9.5	37
216	Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chemical Society Reviews, 2017, 46, 5730-5770.	18.7	549
217	Structural Investigation of Chemiresistive Sensing Mechanism in Redox-Active Porous Coordination Network. Inorganic Chemistry, 2017, 56, 8735-8738.	1.9	14
218	Modern progress in metal-organic frameworks and their composites for diverse applications. Microporous and Mesoporous Materials, 2017, 253, 251-265.	2.2	90

#	Article	IF	CITATIONS
219	Reversible and Topotactic Solvent Removal in a Magnetic Ni(NCS) ₂ Coordination Polymer. Inorganic Chemistry, 2017, 56, 8007-8017.	1.9	24
220	Wellâ€Defined Cyanometallate Coordinationâ€Polymer Nanoarchitectures Realized by Wetâ€Chemical Manipulation. ChemNanoMat, 2017, 3, 780-789.	1.5	12
221	MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance. Chemical Engineering Journal, 2017, 313, 1346-1353.	6.6	107
222	A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. Journal of Membrane Science, 2017, 525, 269-276.	4.1	138
223	Novel 3-D interpenetrated metal–organometallic networks based on self-assembled Zn(<scp>ii</scp>)/Cu(<scp>ii</scp>) from 1,1′-ferrocenedicarboxylic acid and 4,4′-bipyridine. CrystEngComm, 2017, 19, 758-761.	1.3	14
224	Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules. Materials Chemistry Frontiers, 2017, 1, 1888-1894.	3.2	8
225	Kinetic Analysis of the Uptake and Release of Fluorescein by Metal-Organic Framework Nanoparticles. Materials, 2017, 10, 216.	1.3	24
226	Liposome-Coated Iron Fumarate Metal-Organic Framework Nanoparticles for Combination Therapy. Nanomaterials, 2017, 7, 351.	1.9	73
227	Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth. Beilstein Journal of Nanotechnology, 2017, 8, 2307-2314.	1.5	10
228	Versatile Surface Functionalization of Metal–Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications. Advanced Functional Materials, 2018, 28, 1705274.	7.8	90
229	Electronic metal–organic framework sensors. Inorganic Chemistry Frontiers, 2018, 5, 979-998.	3.0	120
230	Exploring the Capacity Limit: A Layered Hexacarboxylate-Based Metal–Organic Framework for Advanced Lithium Storage. Inorganic Chemistry, 2018, 57, 3126-3132.	1.9	41
231	Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. International Journal of Biological Macromolecules, 2018, 113, 464-475.	3.6	93
232	Base-Resistant Ionic Metal-Organic Framework as a Porous Ion-Exchange Sorbent. IScience, 2018, 3, 21-30.	1.9	50
233	Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chemistry of Materials, 2018, 30, 3048-3059.	3.2	85
234	Fabrication of [Cu ₂ (bdc) ₂ (bpy)] _n thin films using coordination modulation-assisted layer-by-layer growth. CrystEngComm, 2018, 20, 1546-1552.	1.3	9
235	Integration of thin film of metal-organic frameworks in metal-insulator-semiconductor capacitor structures. Microporous and Mesoporous Materials, 2018, 265, 185-188.	2.2	15
236	Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance. Journal of Colloid and Interface Science, 2018, 519, 88-96.	5.0	30

#	Article	IF	CITATIONS
237	Defect states and room temperature ferromagnetism in cerium oxide nanopowders prepared by decomposition of Ce-propionate. Materials Chemistry and Physics, 2018, 209, 121-133.	2.0	19
238	Insights into the Stability of Zeolitic Imidazolate Frameworks in Humid Acidic Environments from First-Principles Calculations. Journal of Physical Chemistry C, 2018, 122, 4339-4348.	1.5	55
239	Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO ₂ sorption. Green Chemistry, 2018, 20, 1074-1084.	4.6	129
240	Recent Advances in Microâ€/Nanostructured Metal–Organic Frameworks towards Photonic and Electronic Applications. Chemistry - A European Journal, 2018, 24, 6484-6493.	1.7	45
241	Amino-Functionalized Luminescent Metal–Organic Framework Test Paper for Rapid and Selective Sensing of SO ₂ Gas and Its Derivatives by Luminescence Turn-On Effect. Analytical Chemistry, 2018, 90, 3608-3614.	3.2	146
242	Structure and properties of dynamic metal–organic frameworks: a brief accounts of crystalline-to-crystalline and crystalline-to-amorphous transformations. CrystEngComm, 2018, 20, 1322-1345.	1.3	54
243	Surface-tension-confined assembly of a metal–organic framework in femtoliter droplet arrays. RSC Advances, 2018, 8, 3680-3686.	1.7	4
244	Shape engineering of metal–organic frameworks. Polyhedron, 2018, 145, 1-15.	1.0	172
245	Synthesis and Electric Properties of a Twoâ€Dimensional Metalâ€Organic Framework Based on Phthalocyanine. Chemistry - A European Journal, 2018, 24, 1806-1810.	1.7	105
246	Performance Comparison of Metal–Organic Framework Extrudates and Commercial Zeolite for Ethylene/Ethane Separation. Industrial & Engineering Chemistry Research, 2018, 57, 1645-1654.	1.8	45
247	Syntheses, structures, luminescence and magnetic properties of seven isomorphous metal–organic frameworks based on 2,7-bis(4-benzoic acid)- <i>N</i> -(4-benzoic acid)carbazole. New Journal of Chemistry, 2018, 42, 2830-2837.	1.4	8
248	Smart nanoporous metal–organic frameworks by embedding photochromic molecules—state of the art and future perspectives. Photochemical and Photobiological Sciences, 2018, 17, 864-873.	1.6	62
249	Homochiral metal-organic framework for HPLC separation of enantiomers. Microchemical Journal, 2018, 139, 487-491.	2.3	39
250	The impact of metal ions on photoinduced electron-transfer properties: four photochromic metal–organic frameworks based on a naphthalenediimide chromophore. CrystEngComm, 2018, 20, 2430-2439.	1.3	33
251	The Applications of Metalâ^'Organic Frameworks in Electrochemical Sensors. ChemElectroChem, 2018, 5, 6-19.	1.7	301
252	In Situ Antisolvent Approach to Hydrangeaâ€like HCo ₃ O ₄ â€NC@CoNiâ€LDH Core@Shell Superstructures for Highly Efficient Water Electrolysis. Chemistry - A European Journal, 2018, 24, 400-408.	1.7	21
253	Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme and Microbial Technology, 2018, 108, 11-20.	1.6	153
254	Effect of Linker Substituent on Layers Arrangement, Stability, and Sorption of Zn-Isophthalate/Acylhydrazone Frameworks. Crystal Growth and Design, 2018, 18, 488-497.	1.4	20

ARTICLE IF CITATIONS Ultrafast Relaxation Dynamics in Zinc Tetraphenylporphyrin Surface-Mounted Metal Organic 255 1.5 48 Framework. Journal of Physical Chemistry C, 2018, 122, 50-61. One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great 14.4 Capacity and Stable Cycling Stability. Nano-Micró Letters, 2018, 10, 19. Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal–organic frameworks grown on silk nanofibers for hazard collection in water. Journal of 257 5.2 120 Materials Chemistry A, 2018, 6, 3402-3413. Stimuliâ€Responsive Metalâ€Organic Frameworks with Photoswitchable Azobenzene Side Groups. Macromolecular Rapid Communications, 2018, 39, 1700239. Synthesis and Structural-Energy Characteristics of Fe-BDC Metal-Organic Frameworks. Protection of 259 0.3 15 Metals and Physical Chemistry of Surfaces, 2018, 54, 1004-1009. Simple fabrication of a multifunctional inorganic paper with high efficiency separations for both liquids and particles. Journal of Materials Chemistry A, 2018, 6, 21524-21531. 260 5.2 Charge-Assisted Self-Assembly of ZIF-8 and Laponite Clay toward a Functional Hydrogel 261 1.9 19 Nanocomposite. Inorganic Chemistry, 2018, 57, 14480-14483. The Positional Isomeric Effect on the Structural Diversity of Cd(II) Coordination Polymers, Using Flexible Positional Isomeric Ligands Containing Pyridyl, Triazole, and Carboxylate Fragments. 1.7 Molecules, 2018, 23, 2634. A new heterometallic Cu(II)-Cd(II) complex based on 1,3,5-benzenetricarboxylic acid. Inorganic and 263 0.9 0 Nano-Metal Chemistry, 2018, 48, 165-169. Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using 264 1.6 Electronâ€Beamâ€Induced Amorphization. Angewandte Chemie, 2018, 130, 13780-13785. Nitrogen-Doped Microporous Carbons Derived from Pyridine Ligand-Based Metal–Organic Complexes as High-Performance SO₂ Adsorption Sorbents. ACS Applied Materials & amp; Interfaces, 265 4.031 2018, 10, 37407-37416. Metalâ€Organic Frameworks/Grapheneâ€Based Materials: Preparations and Applications. Advanced 266 219 Functional Materials, 2018, 28, 1804950. High-Throughput Screening of Metal–Organic Frameworks for Macroscale Heteroepitaxial Alignment. 267 4.0 18 ACS Applied Materials & amp; Interfaces, 2018, 10, 40938-40950. Control of Water Content for Enhancing the Quality of Copper Paddle-Wheel-Based Metal–Organic Framework Thin Films Grown by Layer-by-Layer Liquid-Phase Epitaxy. Crystal Growth and Design, 2018, 1.4 16 18, 7451-7459. Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using 269 7.2 57 Electronâ€Beamâ€Induced Amorphization. Angewandte Chemie - International Edition, 2018, 57, 13592-13597. New synthetic strategies to prepare metal $\hat{a} \in \sigma$ organic frameworks. Inorganic Chemistry Frontiers, 2018, 270 3.0 235 5, 2693-2708. SURMOF Induced Morphological Crystal Engineering of Substituted Benzamides. Crystal Growth and 271 1.4 5 Design, 2018, 18, 7048-7058. Powering Up the Oxygen Reduction Reaction through the Integration of O₂-Adsorbing 272 Metal–Organic Frameworks on Nanocomposite Electrodes. ACS Applied Energy Materials, 0, , .

#	Article	IF	CITATIONS
273	NIR hyperspectral images for identification of gunshot residue from tagged ammunition. Analytical Methods, 2018, 10, 4711-4717.	1.3	22
274	Verbesserung der SelektivitĤund Kinetik bei der photooxidativen Zyklisierung mittels supramolekularer Kontrolle. Angewandte Chemie, 2018, 130, 13850-13854.	1.6	5
275	Enhancing Selectivity and Kinetics in Oxidative Photocyclization by Supramolecular Control. Angewandte Chemie - International Edition, 2018, 57, 13662-13665.	7.2	20
276	The effect of nitrogen and oxygen coordination: toward a stable anode for reversible lithium storage. New Journal of Chemistry, 2018, 42, 15698-15704.	1.4	6
277	Present and future of MOF research in the field of adsorption and molecular separation. Current Opinion in Chemical Engineering, 2018, 20, 132-142.	3.8	152
278	Sonochemical synthesis and properties of two new nanostructured silver(I) coordination polymers. Ultrasonics Sonochemistry, 2018, 48, 127-135.	3.8	74
279	The high performance and mechanism of metal–organic frameworks and their composites in adsorptive desulfurization. Polyhedron, 2018, 152, 202-215.	1.0	25
280	MOFâ€Đerived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small, 2018, 14, e1704435.	5.2	297
281	MOFs-derived porous nanomaterials for gas sensing. Polyhedron, 2018, 152, 155-163.	1.0	67
282	Luminescent MOF polymer mixed matrix membranes for humidity sensing in real status analysis. Journal of Materials Chemistry C, 2018, 6, 9248-9257.	2.7	25
283	Rational design of CNTs with encapsulated Co nanospheres as superior acid- and base-resistant microwave absorbers. Dalton Transactions, 2018, 47, 11554-11562.	1.6	17
284	Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors. Small, 2018, 14, e1801563.	5.2	88
285	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
286	Decorating MOF-Derived Nanoporous Co/C in Chain-Like Polypyrrole (PPy) Aerogel: A Lightweight Material with Excellent Electromagnetic Absorption. Materials, 2018, 11, 781.	1.3	34
287	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
288	A MOF-based carrier for <i>in situ</i> dopamine delivery. RSC Advances, 2018, 8, 25664-25672.	1.7	35
289	Recent progress in nanostructured magnetic framework composites (MFCs): Synthesis and applications. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 653-677.	2.7	47
290	Synthesis ofÂMIL-101@nanoporousÂgraphene composites as hydrophobic adsorbents for oil removal. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 597-608.	2.7	24

#	ARTICLE	IF	CITATIONS
291	Conversion of Copper Carbonate into a Metal–Organic Framework. Chemistry of Materials, 2018, 30, 5630-5638.	3.2	30
292	Impact of Higherâ€Order Structuralization on the Adsorptive Properties of Metal–Organic Frameworks. Chemistry - an Asian Journal, 2018, 13, 1979-1991.	1.7	6
294	Covalent Attachment of Metal-Organic Framework Thin Films on Surfaces. , 2018, , 646-671.		7
295	Luminescent Metal–Organic Framework Thin Films: From Preparation to Biomedical Sensing Applications. Crystals, 2018, 8, 338.	1.0	30
296	A photochromic zinc-based coordination polymer for a Li-ion battery anode with high capacity and stable cycling stability. Dalton Transactions, 2018, 47, 13222-13228.	1.6	24
297	Metal-Organic Frameworks for fingermark detection — A feasibility study. Forensic Science International, 2018, 291, 83-93.	1.3	11
298	Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 2018, 148, 2201-2222.	1.4	33
299	A new anionic metal-organic framework based on tetranuclear zinc clusters: Selective absorption of CO2 and luminescent response to lanthanide (III) ions. Inorganica Chimica Acta, 2018, 482, 154-159.	1.2	5
300	Synthesis of Fluidized CO 2 Sorbents Based on Diamine Coordinated to Metal–Organic Frameworks by Direct Conversion of Metal Oxides Supported on Mesoporous Silica. Chemistry - A European Journal, 2018, 24, 10612-10616.	1.7	9
301	Anticounterfeiting Quick Response Code with Emission Color of Invisible Metal–Organic Frameworks as Encoding Information. ACS Applied Materials & Interfaces, 2018, 10, 22445-22452.	4.0	147
302	Zinc oxide/nanoporous carbon hybrid materials derived from metal–organic frameworks with different dielectric and absorption performances. Inorganic Chemistry Frontiers, 2019, 6, 2521-2527.	3.0	21
303	Electrochromic thin films of Zn-based MOF-74 nanocrystals facilely grown on flexible conducting substrates at room temperature. APL Materials, 2019, 7, .	2.2	31
304	Ultrathin Films of 2D Hofmann-Type Coordination Polymers: Influence of Pillaring Linkers on Structural Flexibility and Vertical Charge Transport. Chemistry of Materials, 2019, 31, 7277-7287.	3.2	18
305	Metal–Organic Frameworks in Modern Physics: Highlights and Perspectives. Advanced Science, 2019, 6, 1900506.	5.6	71
306	Space-confined pyrolysis for fabrication of peacods-like Fe ₃ O ₄ @C-Ni nanostructures for catalysis and protein adsorption. Nanotechnology, 2019, 30, 415602.	1.3	11
307	Surfactant assisted synthesis of hierarchical porous metal-organic frameworks nanosheets. Nanotechnology, 2019, 30, 435601.	1.3	44
308	Nanoarchitectonics of Biofunctionalized Metal–Organic Frameworks with Biological Macromolecules and Living Cells. Small Methods, 2019, 3, 1900213.	4.6	76
310	MOF-based devices for detection and removal of environmental pollutants. , 2019, , 383-426.		7

#	Article	IF	CITATIONS
311	Biopolymer@Metal-Organic Framework Hybrid Materials: A Critical Survey. Progress in Materials Science, 2019, 106, 100579.	16.0	63
312	New Lanthanide Metalloligands and Their Use for the Assembly of Ln–Ag Bimetallic Coordination Frameworks: Stepwise Modular Synthesis, Structural Characterization, and Optical Properties. Crystal Growth and Design, 2019, 19, 5376-5389.	1.4	16
313	Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. Environmental Pollution, 2019, 253, 39-48.	3.7	39
314	Independent Quantification of Electron and Ion Diffusion in Metallocene-Doped Metal–Organic Frameworks Thin Films. Journal of the American Chemical Society, 2019, 141, 11947-11953.	6.6	57
315	Conformal Ultrathin Film Metal–Organic Framework Analogues: Characterization of Growth, Porosity, and Electronic Transport. Chemistry of Materials, 2019, 31, 8977-8986.	3.2	11
316	Recent Advances in Polymeric Nanocomposites of Metal-Organic Frameworks (MOFs). Polymers, 2019, 11, 1627.	2.0	22
319	A novel photochromic metal organic framework based on viologen exhibiting benzene detection and photocontrolled luminescence properties in solid state. Inorganic Chemistry Communication, 2019, 110, 107610.	1.8	21
320	Metal-organic framework structures: adsorbents for natural gas storage. Russian Chemical Reviews, 2019, 88, 925-978.	2.5	57
321	Meniscus-Guided Control of Supersaturation for the Crystallization of High Quality Metal Organic Framework Thin Films. Chemistry of Materials, 2019, 31, 7377-7385.	3.2	28
322	Introducing a Longer versus Shorter Acylhydrazone Linker to a Metal–Organic Framework: Parallel Mechanochemical Approach, Nonisoreticular Structures, and Diverse Properties. Crystal Growth and Design, 2019, 19, 7160-7169.	1.4	17
323	The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices. Journal of Materials Chemistry A, 2019, 7, 21004-21035.	5.2	94
324	Li+ intercalcation pseudocapacitance in Sn-based metal-organic framework for high capacity and ultra-stable Li ion storage. Journal of Power Sources, 2019, 440, 227162.	4.0	35
325	A concentrated array of copper porphyrin candidate qubits. Chemical Science, 2019, 10, 1702-1708.	3.7	58
326	Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces. Nature Communications, 2019, 10, 346.	5.8	93
327	Metal–organic frameworks for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 3469-3491.	5.2	259
328	Two novel multichromic coordination polymers based on a new flexible viologen ligand exhibiting photocontrolled luminescence properties and sensitive detection for ammonia. CrystEngComm, 2019, 21, 1635-1641.	1.3	36
329	Metal-organic framework-derived hollow Co3O4/carbon as efficient catalyst for peroxymonosulfate activation. Chemical Engineering Journal, 2019, 363, 234-246.	6.6	229
330	Post-synthetic diamine-functionalization of MOF-74 type frameworks for effective carbon dioxide separation. Dalton Transactions, 2019, 48, 2263-2270.	1.6	50

#	Article	IF	CITATIONS
331	Single crystals of Metal-Organic Framework Ulm-4 grown selectively on a micro-structured plasma polymer coating. Thin Solid Films, 2019, 684, 36-41.	0.8	1
332	Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization. Applied Catalysis B: Environmental, 2019, 256, 117804.	10.8	131
333	Facile and Scalable Coating of Metal–Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 22714-22721.	4.0	42
335	Magnetic phase transition and magnetic bistability in oxamato-based CollCull bimetallic MOF thin films. Polyhedron, 2019, 170, 7-11.	1.0	6
336	Metal–Organic Framework Films and Their Potential Applications in Environmental Pollution Control. Accounts of Chemical Research, 2019, 52, 1461-1470.	7.6	319
337	Rising Up: Hierarchical Metal–Organic Frameworks in Experiments and Simulations. Advanced Materials, 2019, 31, e1901744.	11.1	103
338	Photoluminescent organisms: how to make fungi glow through biointegration with lanthanide metal-organic frameworks. Scientific Reports, 2019, 9, 7302.	1.6	17
339	Selective edge etching to improve the rate capability of Prussian blue analogues for sodium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 1361-1366.	3.0	23
340	Syntheses, crystal structures, and photocatalytic properties of two zinc(II) coordination polymers based on dicarboxylates and flexible bis(benzimidazole) ligands. Polyhedron, 2019, 167, 44-50.	1.0	12
341	Immobilization of amidase into a magnetic hierarchically porous metal–organic framework for efficient biocatalysis. Chemical Communications, 2019, 55, 5697-5700.	2.2	70
342	Coordinative Binding of Polymers to Metal–Organic Framework Nanoparticles for Control of Interactions at the Biointerface. ACS Nano, 2019, 13, 3884-3895.	7.3	73
343	Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chemical Society Reviews, 2019, 48, 2566-2595.	18.7	103
344	Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5925-5930.	3.3	24
345	A novel photochromic cadmium coordination polymer based on a new viologen ligand accompanying photoswitchable luminescence properties. Inorganic Chemistry Communication, 2019, 102, 240-244.	1.8	12
346	Effect of dilute doping and non-equilibrium synthesis on the structural, luminescent and magnetic properties of nanocrystalline Zn1-xNixO (x = 0.0025 – 0.03). Materials Research Bulletin, 2019, 115, 37-48.	2.7	13
347	MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 6960-6964.	1.6	37
348	MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 6886-6890.	7.2	145
349	Flexible and Transferable ab Initio Force Field for Zeolitic Imidazolate Frameworks: ZIF-FF. Journal of Physical Chemistry A, 2019, 123, 3000-3012.	1.1	34

ARTICLE IF CITATIONS # Production of metal-organic framework-bearing polystyrene fibers by solution blow spinning. 350 1.9 12 Chemical Engineering Science, 2019, 203, 220-227. A Water Stable Cd^{II}â€based Metalâ€Organic Framework as a Multifunctional Sensor for Selective Detection of Cu²⁺ and Cr₂O₇^{2â€"} lons. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 484-489. Micromesoporous Nitrogen-Doped Carbon Materials Derived from Direct Carbonization of Metal–Organic Complexes for Efficient CO₂ Adsorption and Separation. Inorganic 352 1.9 6 Chemistry, 2019, 58, 5345-5355. Novel Synthesis of Cuâ€Schiff Base Complex@Metalâ€Organic Framework MILâ€101 via a Mild Method: A Comparative Study for Rapid Catalytic Effects. Chemistry Open, 2019, 8, 333-338. Flexible films enabled by coordination polymer nanoarchitectonics. Molecular Systems Design and 354 1.7 7 Engineering, 2019, 4, 531-544. Sizeâ€Control and Surface Modification of Flexible Metalâ€Organic Framework MILâ€53(Fe) by 0.7 Polyethyleneglycol for $5\hat{e}$ -Fluorouracil Anticancer Drug Delivery. ChemistrySelect, 2019, 4, 2333-2338. Zn(NCS)₂â€3â€cyanopyridine Coordination Compounds: Synthesis, Crystal Structures, and 356 0.6 4 Thermal Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 212-218. N-Doped Porous Carbon Derived by Direct Carbonization of Metal–Organic Complexes Crystal 1.4 Materials for SO₂ Adsorption. Crystal Growth and Design, 2019, 19, 1973-1984. Metal-organic frameworks tailor the properties of aluminum nanocrystals. Science Advances, 2019, 5, 358 4.7 74 eaav5340. Synthesis of coordination polymer thin films with conductance-response to mechanical stimulation. 359 2.2 Chemical Communications, 2019, 55, 2545-2548. Microâ€/Nanofluidics for Liquidâ€Mediated Patterning of Hybridâ€Scale Material Structures. Advanced 360 11.1 30 Materials, 2019, 31, e1804953. Inâ€Flow MOF Lithography. Advanced Materials Technologies, 2019, 4, 1800666. 361 3.0 Synthesis of a surface mounted metalâ€"organic framework on gold using a Auâ€"carbene self-assembled 362 3.2 8 monolayer linkage. Materials Chemistry Frontiers, 2019, 3, 636-639. Simultaneous laser-induced synthesis and micro-patterning of a metal organic framework. Chemical Communications, 2019, 55, 12773-12776. 2.2 16 A Highly Efficient White Luminescent Zinc (II) Based Metallopolymer by RGB Approach. Polymers, 2019, 2.0 364 17 11, 1712. Chemically modified electrodes with MOFs for the determination of inorganic and organic analytes <i>via </i>voltammetric techniques: a critical review. Inorganic Chemistry Frontiers, 2019, 6, 38 3440-3455. Metal-organic framework thin films from copper hydroxide nano-assemblies. Journal of Sol-Gel 366 1.1 7 Science and Technology, 2019, 89, 128-134. Trimorphism of Zn(NCS)₂(4-dimethylaminopyridine)₂: Crystal Structures, Thermodynamic Relations, and Comparison with the Co(ll) Polymorphs. Crystal Growth and Design, 1.4

CITATION REPORT

2019, 19, 1134-1143.

#	Article	IF	CITATIONS
368	Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosensors and Bioelectronics, 2019, 127, 92-100.	5.3	184
369	Enzymes@ZIF-8 Nanocomposites with Protection Nanocoating: Stability and Acid-Resistant Evaluation. Polymers, 2019, 11, 27.	2.0	52
370	Covalent Construction of Sustainable Hybrid UiO-66-NH ₂ @Tb-CP Material for Selective Removal of Dyes and Detection of Metal Ions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3203-3212.	3.2	93
371	Antibodies@MOFs: An In Vitro Protective Coating for Preparation and Storage of Biopharmaceuticals. Advanced Materials, 2019, 31, e1805148.	11.1	123
372	CelloMOF: Nanocellulose Enabled 3D Printing of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1805372.	7.8	148
373	Novel Cobalt Catalysts Supported on Metal–Organic Frameworks MILâ€53(Al) for the Fischer–Tropsch Synthesis. Energy Technology, 2019, 7, 1800802.	1.8	16
374	Versatile Processing of Metal–Organic Framework–Fluoropolymer Composite Inks with Chemical Resistance and Sensor Applications. ACS Applied Materials & Interfaces, 2019, 11, 4385-4392.	4.0	29
375	The effects of NaCl on enzyme encapsulation by zeolitic imidazolate frameworks-8. Enzyme and Microbial Technology, 2019, 122, 1-6.	1.6	18
376	Fabrication of Metal–Organic Framework Thin Films Using Programmed Layerâ€byâ€Layer Assembly Techniques. Advanced Materials Technologies, 2019, 4, 1800413.	3.0	37
377	Metallopolymers for advanced sustainable applications. Chemical Society Reviews, 2019, 48, 558-636.	18.7	139
378	Reversible High-Voltage N-Redox Chemistry in Metal–Organic Frameworks for High-Rate Anion-Intercalation Batteries. ACS Applied Energy Materials, 2019, 2, 413-419.	2.5	14
379	Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection. Analytica Chimica Acta, 2019, 1047, 150-162.	2.6	83
380	Ionic liquid [Bmim][AuCl4] encapsulated in ZIF-8 as precursors to synthesize N-decorated Au catalysts for selective aerobic oxidation of alcohols. Catalysis Today, 2020, 351, 94-102.	2.2	12
381	Two silver(I) complexes based on dicarboxylate and flexible bis(benzimidazole) ligands: synthesis, crystal structures, sensing and photocatalytic properties. Transition Metal Chemistry, 2020, 45, 19-29.	0.7	10
382	Solid–solid interface growth of conductive metal–organic framework nanowire arrays and their supercapacitor application. Materials Chemistry Frontiers, 2020, 4, 243-251.	3.2	48
383	RGB emission of three charged O,N,O-chelate zinc (II) complexes in pyridine solution. Inorganic Chemistry Communication, 2020, 113, 107763.	1.8	3
384	Coordination polymers with salicylaldehyde ligands: structural diversity, selective sorption and luminescence sensing properties. CrystEngComm, 2020, 22, 304-310.	1.3	8
385	"Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods―A review. Analytica Chimica Acta, 2020, 1101, 9-22.	2.6	66

#	Article	IF	CITATIONS
386	Metal-organic framework UiO-66 membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 216-232.	2.3	67
387	Supersonic Cold Spraying for Energy and Environmental Applications: Oneâ€Step Scalable Coating Technology for Advanced Micro―and Nanotextured Materials. Advanced Materials, 2020, 32, e1905028.	11.1	67
388	Electrochemical preparation of Cu/Cu2O-Cu(BDC) metal-organic framework electrodes for photoelectrocatalytic reduction of CO2. Journal of CO2 Utilization, 2020, 42, 101299.	3.3	40
389	Metal organic framework top-down and bottom-up patterning techniques. Dalton Transactions, 2020, 49, 15139-15148.	1.6	19
390	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	23.0	185
391	Controlling the alignment of 1D nanochannel arrays in oriented metal–organic framework films for host–guest materials design. Chemical Science, 2020, 11, 8005-8012.	3.7	31
392	Growth of ZIFâ€8 MOF Films with Tunable Porosity by using Poly (1â€vinylimidazole) Brushes as 3D Primers. Chemistry - A European Journal, 2020, 26, 12388-12396.	1.7	11
393	Growth of Crystalline Bimetallic Metal–Organic Framework Films via Transmetalation. Langmuir, 2020, 36, 9900-9908.	1.6	6
394	Spin and Phonon Design in Modular Arrays of Molecular Qubits. Chemistry of Materials, 2020, 32, 10200-10206.	3.2	37
395	Porphyrin based metal–organic framework films: nucleation and growth. Journal of Materials Chemistry A, 2020, 8, 25941-25950.	5.2	24
396	Selective Positioning of Nanosized Metal–Organic Framework Particles at Patterned Substrate Surfaces. Chemistry of Materials, 2020, 32, 9954-9963.	3.2	10
397	Strontium-Based MOFs Showing Dual Emission: Luminescence Thermometers and Toluene Sensors. Inorganic Chemistry, 2020, 59, 18432-18443.	1.9	27
398	Photofunctional metal-organic framework thin films for sensing, catalysis and device fabrication. Inorganica Chimica Acta, 2020, 513, 119926.	1.2	15
399	Templateâ€Directed Growth of Hierarchical MOF Hybrid Arrays for Tactile Sensor. Advanced Functional Materials, 2020, 30, 2001296.	7.8	80
400	An Electron-Deficient Coordination Polymer Based on a Viologen Ligand Accompanying Photochromism, Vaporchromism, and Photoswitchable Luminescence Properties. Russian Journal of Inorganic Chemistry, 2020, 65, 874-879.	0.3	5
401	Iontronics Using V ₂ CT _{<i>x</i>} MXene-Derived Metal–Organic Framework Solid Electrolytes. ACS Nano, 2020, 14, 9840-9847.	7.3	27
402	Highly Efficient Permeation and Separation of Gases with Metal–Organic Frameworks Confined in Polymeric Nanochannels. ACS Applied Materials & Interfaces, 2020, 12, 49992-50001.	4.0	49
403	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	5.2	46

#	Article	IF	CITATIONS
404	Photoactive Molecules within MOFs. Structure and Bonding, 2020, , 105-153.	1.0	2
405	Fatty acids as biomimetic replication agents for luminescent metal–organic framework patterns. Chemical Communications, 2020, 56, 12733-12736.	2.2	4
406	Oxide nanomembrane induced assembly of a functional smart fiber composite with nanoporosity for an ultra-sensitive flexible glucose sensor. Journal of Materials Chemistry A, 2020, 8, 26119-26129.	5.2	28
407	Layer-by-Layer Growth Control of Metal–Organic Framework Thin Films Assembled on Polymer Films. ACS Applied Materials & Interfaces, 2020, 12, 50784-50792.	4.0	22
408	Design of a novel carbon nanotube and metal-organic framework interpenetrated structure with enhanced microwave absorption properties. Nanotechnology, 2020, 31, 394002.	1.3	22
409	Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks. , 2020, 2, 779-797.		187
410	Fabricating Bioactive 3D Metal–Organic Framework Devices. Advanced Sustainable Systems, 2020, 4, 2000059.	2.7	12
411	Ternary ZIF-8-derived dual-metal CoCu nanoparticles in porous carbon polyhedra as efficient catalysts for methanol oxidation. Journal of Materials Chemistry A, 2020, 8, 12285-12290.	5.2	16
412	Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate. Scientific Reports, 2020, 10, 8843.	1.6	14
413	Immobilization of carbonic anhydrase for facilitated CO2 capture and separation. Chinese Journal of Chemical Engineering, 2020, 28, 2817-2831.	1.7	17
414	Label-free electrochemical immunosensor with palladium nanoparticles functionalized MoS2/NiCo heterostructures for sensitive procalcitonin detection. Sensors and Actuators B: Chemical, 2020, 312, 127980.	4.0	35
415	Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chemical Society Reviews, 2020, 49, 5601-5638.	18.7	122
416	Chiral and SHG-Active Metal–Organic Frameworks Formed in Solution and on Surfaces: Uniformity, Morphology Control, Oriented Growth, and Postassembly Functionalization. Journal of the American Chemical Society, 2020, 142, 14210-14221.	6.6	34
417	Ultrasensitive Detection of Electrolyte Leakage from Lithium-Ion Batteries by Ionically Conductive Metal-Organic Frameworks. Matter, 2020, 3, 904-919.	5.0	42
418	Metal Organic Framework — Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Frontiers in Chemistry, 2020, 8, 534.	1.8	54
419	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
420	Multiscale Design of Flexible Metal–Organic Frameworks. Trends in Chemistry, 2020, 2, 199-213.	4.4	43
421	Easy Processing of Metal–Organic Frameworks into Pellets and Membranes. Applied Sciences (Switzerland), 2020, 10, 798.	1.3	6

#	Article	IF	CITATIONS
422	Facile synthesis of substrate supported ultrathin two-dimensional cobalt-based metal organic frameworks nanoflakes. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105910.	3.8	10
423	Two sulfone-functionalized Zn(II)-coordination polymers as luminescent sensors for sensitive and rapid detection of nitrofurans antibiotics. Journal of Solid State Chemistry, 2020, 286, 121318.	1.4	15
424	Rational combination of azo moiety and pyridine radical for the construction of photochromic metal-organic frameworks. Journal of Solid State Chemistry, 2020, 287, 121374.	1.4	1
425	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
426	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	18.7	327
427	Stimulus-responsive adsorbent materials for CO ₂ capture and separation. Journal of Materials Chemistry A, 2020, 8, 10519-10533.	5.2	39
428	Environment-Stable CoxNiy Encapsulation in Stacked Porous Carbon Nanosheets for Enhanced Microwave Absorption. Nano-Micro Letters, 2020, 12, 102.	14.4	218
429	Metal–Organic Complexes@Melamine Foam Template Strategy to Prepare Three-Dimensional Porous Carbon with Hollow Spheres Structures for Efficient Organic Vapor and Small Molecule Gas Adsorption. Inorganic Chemistry, 2020, 59, 5983-5992.	1.9	7
430	Microplasma electrochemistry (MIPEC) strategy for accelerating the synthesis of metal organic frameworks at room temperature. Chinese Chemical Letters, 2021, 32, 497-500.	4.8	10
431	A smartphone-integrated multicolor fluorescence probe of bacterial spore biomarker: The combination of natural clay material and metal-organic frameworks. Journal of Hazardous Materials, 2021, 402, 123776.	6.5	40
432	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
433	Photoswitchable Metal–Organic Framework Thin Films: From Spectroscopy to Remote-Controllable Membrane Separation and Switchable Conduction. Langmuir, 2021, 37, 2-15.	1.6	29
434	Centimeter-Scale Pillared-Layer Metal–Organic Framework Thin Films Mediated by Hydroxy Double Salt Intermediates for CO ₂ Sensor Applications. ACS Applied Materials & Interfaces, 2021, 13, 2062-2071.	4.0	24
435	Specific fluorescence sensing of hydrogen sulphide by an azide functionalized Zr(IV) MOF with DUT-52 topology. Microporous and Mesoporous Materials, 2021, 311, 110725.	2.2	22
436	Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nature Materials, 2021, 20, 93-99.	13.3	112
437	Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coordination Chemistry Reviews, 2021, 426, 213544.	9.5	243
438	Chemiresistive Sensor Based on Redox-Active Porous Coordination Networks. Springer Theses, 2021, , 43-60.	0.0	0
440	Pillararenes: fascinating planar chiral macrocyclic arenes. Chemical Communications, 2021, 57, 9029-9039.	2.2	61

	CITATION REL	ORI	
#	Article	IF	CITATIONS
441	Metal–organic frameworks for chemical sensing devices. Materials Horizons, 2021, 8, 2387-2419.	6.4	139
442	A novel signal amplified electrochemiluminescence biosensor based on MIL-53(Al)@CdS QDs and SiO2@AuNPs for trichlorfon detection. Analyst, The, 2021, 146, 1295-1302.	1.7	11
443	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
444	Rapid spatially-resolved post-synthetic patterning of metal–organic framework films. Chemical Communications, 2021, 57, 4706-4709.	2.2	7
445	Hybridization of MOFs and ionic POFs: a new strategy for the construction of bifunctional catalysts for CO ₂ cycloaddition. Green Chemistry, 2021, 23, 1766-1771.	4.6	26
446	Growth of robust metal–organic framework films by spontaneous oxidation of a metal substrate for NO ₂ sensing. Materials Chemistry Frontiers, 2021, 5, 6476-6484.	3.2	13
447	Electron Beam Patterning of Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 754-760.	3.2	17
448	Unravelling thermal stress due to thermal expansion mismatch in metal–organic frameworks for methane storage. Journal of Materials Chemistry A, 2021, 9, 4898-4906.	5.2	11
449	Anisotropy in metal–organic framework thin films. Inorganic Chemistry Frontiers, 2021, 8, 3581-3586.	3.0	20
450	Lipases Immobilized onto Nanomaterials as Biocatalysts in Biodiesel Production: Scientific Context, Challenges, and Opportunities. Revista Virtual De Quimica, 2021, 13, 875-891.	0.1	29
451	Organic guest molecule induced ultrafast breathing of an epitaxially grown metal–organic framework on a self-assembled monolayer. Chemical Communications, 2021, 57, 10158-10161.	2.2	0
452	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	23.0	442
453	New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu2+ Cation. Polymers, 2021, 13, 829.	2.0	9
454	Performance Fabrics Obtained by <i>In Situ</i> Growth of Metal–Organic Frameworks in Electrospun Fibers. ACS Applied Materials & Interfaces, 2021, 13, 12491-12500.	4.0	31
455	Achieving Multifunctional Detection of Th ⁴⁺ and UO ₂ ²⁺ in the Post‧ynthetically Modified Metal–Organic Framework and Application of Functional MOF Membrane. Advanced Materials Technologies, 2021, 6, 2001184.	3.0	10
456	Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Research, 2021, 14, 2981-3009.	5.8	26
457	Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application. Advanced Energy Materials, 2022, 12, 2100321.	10.2	41
458	Highâ€Quality Thin Films of UiOâ€66â€NH ₂ by Coordination Modulated Layerâ€byâ€Layer Liquid Ph Epitaxy. Chemistry - A European Journal, 2021, 27, 8509-8516.	ase 1.7	12

#	Article	IF	CITATIONS
459	Surface-Mounted Metal–Organic Frameworks: Past, Present, and Future Perspectives. Langmuir, 2021, 37, 6847-6863.	1.6	32
460	A Highly Sensitive and Flexible Metal–Organic Framework Polymer-Based H ₂ S Gas Sensor. ACS Omega, 2021, 6, 17690-17697.	1.6	46
461	Review of recent progress in the supersonic cold-spraying technique with solid particles and liquid suspensions. Experiments in Fluids, 2021, 62, 1.	1.1	8
462	Photon-assisted nanostructures of self-assembled soft materials. Nano Today, 2021, 38, 101199.	6.2	3
463	Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon, 2021, 177, 97-106.	5.4	120
464	Facile Multistep Synthesis of ZnO-Coated β-NaYF ₄ :Yb/Tm Upconversion Nanoparticles as an Antimicrobial Photodynamic Therapy for Persistent <i>Staphylococcus aureus</i> Small Colony Variants. ACS Applied Bio Materials, 2021, 4, 6125-6136.	2.3	8
465	Triboelectric Nanogeneratorâ€Based Sensor Systems for Chemical or Biological Detection. Advanced Materials, 2021, 33, e2008276.	11.1	108
466	Insights in the Ionic Conduction inside Nanoporous Metal-Organic Frameworks by Using an Appropriate Equivalent Circuit. Materials, 2021, 14, 4352.	1.3	2
467	Metal-organic frameworks for diagnosis and therapy of infectious diseases. Critical Reviews in Microbiology, 2022, 48, 161-196.	2.7	17
468	Benign Synthesis and Modification of a Zn–Azolate Metal–Organic Framework for Enhanced Ammonia Uptake and Catalytic Hydrolysis of an Organophosphorus Chemical. , 2021, 3, 1363-1368.		13
469	Single-step Synthesis and Characterization of Zr-MOF onto Wool Fabric: Preparation of Antibacterial Wound Dressing with High Absorption Capacity. Fibers and Polymers, 2022, 23, 404-412.	1.1	23
470	Defect Engineering in Metal‒Organic Frameworks as Futuristic Options for Purification of Pollutants in an Aqueous Environment. Frontiers in Chemistry, 2021, 9, 673738.	1.8	19
471	A series of new sulfone-functionalized coordination polymers: Fascinating architectures and efficient fluorescent sensing of nitrofuran antibiotics. Journal of Solid State Chemistry, 2021, 301, 122251.	1.4	4
472	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
473	Metal–Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS Nano, 2021, 15, 17426-17438.	7.3	37
474	Conductivity measurement of ionic liquids confined in the nanopores of metal–organic frameworks: a case study for [BMIM][TFSI] in HKUST-1. Ionics, 2022, 28, 487-494.	1.2	9
475	Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coordination Chemistry Reviews, 2021, 445, 214073.	9.5	19
476	Materials and Methods of Biosensor Interfaces With Stability. Frontiers in Materials, 2021, 7, .	1.2	61

#	Article	IF	CITATIONS
477	Coordination Polymers and Polymer Nanofibers for Effective Adsorptive Desulfurization. , 2021, , 730-783.		0
478	Single-Ion Magnet and Photoluminescence Properties of Lanthanide(III) Coordination Polymers Based on Pyrimidine-4,6-Dicarboxylate. Magnetochemistry, 2021, 7, 8.	1.0	8
479	Continuous-flow synthesis of MIL-53(Cr) with a polar linker: probing the nanoscale piezoelectric effect. Journal of Materials Chemistry C, 2021, 9, 7568-7574.	2.7	11
480	Towards correlating dimensionality and topology in luminescent MOFs based on terephthalato and bispyridyl-like ligands. Dalton Transactions, 2021, 50, 9269-9282.	1.6	5
481	Copper(<scp>i</scp>)–iodide cluster structures as functional and processable platform materials. Chemical Society Reviews, 2021, 50, 4606-4628.	18.7	116
482	Mehr als nur ein Netzwerk: Strukturierung retikuläer Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
483	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
484	Perspective of Nanomaterials in the Performance of Solar Cells. , 2020, , 25-54.		4
485	Regioselective Functionalization of the Mesoporous Metal–Organic Framework, NU-1000, with Photo-Active Tris-(2,2′-bipyridine)ruthenium(II). ACS Omega, 2020, 5, 30299-30305.	1.6	17
486	Layer-by-layer Growth. Monographs in Supramolecular Chemistry, 2016, , 303-339.	0.2	1
488	Metal-Organic Framework (MOF)-Based Drug Delivery. Current Medicinal Chemistry, 2020, 27, 5949-5969.	1.2	152
489	Titanium-Modified MIL-101(Cr) Derived Titanium-Chromium-Oxide as Highly Efficient Oxidative Desulfurization Catalyst. Catalysts, 2020, 10, 1091.	1.6	8
490	P7.6 - Surface-Anchored Metal-Organic Frameworks – SURMOFs: A New Material Platform for Sensors. , 2015, , .		1
491	Nanoparticles sandwiched in hollow amorphous metal–organic frameworks with enhanced diffusion for highly selective benzene oxidation. Materials Advances, 2022, 3, 437-442.	2.6	5
492	Self-assembly and supramolecular isomerism in 1D metal–organometallic networks based on transition-metal assemblies from 1,1′-ferrocene-dicarboxylic acid and ancillary nitrogen heterocycle ligands. CrystEngComm, 2021, 23, 8198-8208.	1.3	3
493	3D MOF Nanoarchitecture Membrane via Ultrafast Laser Nanoforging. Small Methods, 2021, 5, e2100758.	4.6	8
494	Recent advances of metal–organic frameworks in corrosion protection: From synthesis to applications. Chemical Engineering Journal, 2022, 430, 132823.	6.6	61
495	Semiâ€Automatic Deposition of Oriented Cu(OH) ₂ Nanobelts for the Heteroepitaxial Growth of Metal–Organic Framework Films. Advanced Materials Interfaces, 2021, 8, 2101039.	1.9	8

#	Article	IF	CITATIONS
496	Paperâ€Like Writable Nanoparticle Network Sheets for Maskâ€Less MOF Patterning. Advanced Functional Materials, 2022, 32, .	7.8	5
497	Fabrication of Metal-organic Framework (MOF) Thin Films from Copper Hydroxide Nano-assemblies. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 132-139.	0.1	0
498	One-dimensional metal hydroxide nanomaterials with macroscopically controlled orientation and aggregation: fascinating surface hydroxyl groups on anisotropic structures for functionalities. Journal of the Ceramic Society of Japan, 2020, 128, 627-634.	0.5	1
499	Coordination Polymers and Polymer Nanofibers for Effective Adsorptive Desulfurization. Advances in Chemical and Materials Engineering Book Series, 2020, , 168-234.	0.2	3
501	Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Advanced Materials Technologies, 2022, 7, .	3.0	81
502	Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering, 2022, 230, 109532.	5.9	66
503	A photoprogrammable electronic nose with switchable selectivity for VOCs using MOF films. Chemical Science, 2021, 12, 15700-15709.	3.7	28
504	Mechanical properties and nanostructure of monolithic zeolitic imidazolate frameworks: a nanoindentation, nanospectroscopy, and finite element study. Materials Today Nano, 2022, 17, 100166.	2.3	13
505	Synthesis and properties of a novel photochromic metal organic framework for rapid amine selective sensing and Cr2O72â ^{~?} detection. Journal of Solid State Chemistry, 2022, 307, 122868.	1.4	10
506	Solvent-free bottom-up patterning of zeolitic imidazolate frameworks. Nature Communications, 2022, 13, 420.	5.8	20
507	A facile method to enhance the output performance of triboelectric nanogenerators based on coordination polymers by modulating terminal coordination groups. CrystEngComm, 2021, 24, 192-198.	1.3	7
508	MOFs in photoelectrochemical water splitting: New horizons and challenges. International Journal of Hydrogen Energy, 2022, 47, 5192-5210.	3.8	14
509	A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. Electrochem, 2022, 3, 89-113.	1.7	29
510	Advanced Metal–Organic Frameworks-Based Catalysts in Electrochemical Sensors. Frontiers in Chemistry, 2022, 10, 881172.	1.8	9
511	Tailoring Selfâ€Polarization of Bimetallic Organic Frameworks with Multiple Polar Units Toward Highâ€Performance Consecutive Multiâ€Band Electromagnetic Wave Absorption at Gigahertz. Advanced Functional Materials, 2022, 32, .	7.8	135
512	Impact of Chemical Primers on the Growth, Structure, and Functional Properties of ZIF-8 Films. Journal of Physical Chemistry C, 2022, 126, 6724-6735.	1.5	3
513	Magnetically responsive chitosan-based nanoparticles for remediation of anionic dyes: Adsorption and magnetically triggered desorption. Materials Chemistry and Physics, 2022, 284, 126032.	2.0	11
514	Single-walled carbon nanotube buckypaper as support for highly permeable double layer polyamide/zeolitic imidazolate framework in nanofiltration processes. Journal of Membrane Science, 2022, 652, 120490.	4.1	9

#	Article	IF	CITATIONS
515	A metal-organic framework based on Co(II) and 3-aminoisonicotinate showing specific and reversible colourimetric response to solvent exchange with variable magnet behaviour. Materials Today Chemistry, 2022, 24, 100794.	1.7	6
517	Metal organic framework based sensors for the detection of food contaminants. TrAC - Trends in Analytical Chemistry, 2022, 154, 116642.	5.8	40
518	Recent advancement in bimetallic metal organic frameworks (M′MOFs): synthetic challenges and applications. Inorganic Chemistry Frontiers, 2022, 9, 3003-3033.	3.0	18
519	Insights into the Solid-State Synthesis of Defect-Rich Zr–UiO-66. Inorganic Chemistry, 2022, 61, 6829-6836.	1.9	3
520	Growth of Feâ€BDC Metalâ€Organic Frameworks onto Functionalized Si (111) Surfaces. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
521	Metal Ion-Directed Functional Metal–Phenolic Materials. Chemical Reviews, 2022, 122, 11432-11473.	23.0	108
522	Incorporating metal–organic frameworks into substrates for environmental applications. Chemical Engineering Journal, 2022, 446, 136866.	6.6	14
523	Electrochemically deposition of metal-organic framework onto carbon fibers for online in-tube solid-phase microextraction of non-steroidal anti-inflammatory drugs. Journal of Chromatography A, 2022, 1673, 463129.	1.8	9
524	Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydrate Polymers, 2022, 291, 119539.	5.1	29
525	METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. Journal of Structural Chemistry, 2022, 63, 671-843.	0.3	35
526	Enhanced Aggregation-Induced Emission Activity of Metal–Organic Frameworks by Using Machine Learning Technology. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	0
527	Fundamentals and Advances in Emerging Crystalline Porous Materials for Photocatalytic and Electrocatalytic Nitrogen Fixation. ACS Applied Energy Materials, 2022, 5, 9241-9265.	2.5	13
528	The Chemistry and Applications of Metal–Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules, 2022, 27, 4529.	1.7	57
529	Generation of Long-Lived Phenoxyl Radical in the Binuclear Copper(II) Pivalate Complex with 2,6-Di-tert-butyl-4-(3,5-bis(4-pyridyl)pyridyl)phenol. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 422-429.	0.3	4
530	Spray synthesis of Pd nanoparticle incorporated HKUST-1, and its catalytic activity for 4-nitrophenol reduction. Advanced Powder Technology, 2022, 33, 103701.	2.0	7
531	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	7.8	46
532	Solid-State Nuclear Magnetic Resonance Spectroscopy-Assisted Structure Determination of Coordination Polymers. Chemistry of Materials, 2022, 34, 7678-7691.	3.2	2
533	Oxalato as polyatomic coordination center and magnetic coupler in copper(II)-polypyrazole inverse polynuclear complexes and coordination polymers. Coordination Chemistry Reviews, 2022, 471, 214730.	9.5	2

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
534	Recent progress on MOF-based optical sensors for VOC sensing. Chemical Science, 2022, 13, 13978-14007.	3.7	49
535	Direct Ink 3D Printing of Porous Carbon Monoliths for Gas Separations. Molecules, 2022, 27, 5653.	1.7	12
536	Impact of humidity on HKUST-1 performance for the removal of acetaldehyde in air: an experimental study. Adsorption, 0, , .	1.4	0
537	Selfâ€supported singleâ€wall carbon nanotube buckypaper membranes applied to air and water filtration. Journal of Chemical Technology and Biotechnology, 2023, 98, 159-167.	1.6	1
538	Exploring the Intense Lanthanide Luminescence and High Thermal Stability in a New Mixed Eu ³⁺ /Tb ³⁺ Organic Framework Series for Marking in Gunshot Residues. Journal of Physical Chemistry C, 2022, 126, 16568-16577.	1.5	2
539	Directed molecular structure design of coordination polymers with different ligands for regulating output performance of triboelectric nanogenerators. RSC Advances, 2022, 12, 30051-30055.	1.7	Ο
540	A novel approach based on the ultrasonic-assisted microwave method for the efficient synthesis of Sc-MOF@SiO2 core/shell nanostructures for H2S gas adsorption: A controllable systematic study for a green future. Frontiers in Chemistry, 0, 10, .	1.8	0
541	Metal-organic framework as a heterogeneous catalyst for biodiesel production: A review. Chemical Engineering Journal Advances, 2022, 12, 100415.	2.4	31
542	Preparation of ZIF-67@DTMS NPs/Epoxy composite coating and its anti-corrosion performance for Q235 carbon steel in 3.5Âwt% NaCl solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130370.	2.3	13
543	Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coordination Chemistry Reviews, 2023, 476, 214921.	9.5	29
544	Optical and chemical control of the wettability of nanoporous photoswitchable films. Chemical Communications, 2022, 58, 13963-13966.	2.2	1
545	Identification of folic acid and sulfaquinoxaline using a heterometallic Zn–Eu MOF as a sensor. Dalton Transactions, 2023, 52, 696-702.	1.6	5
546	A Brief Review of Recent Results in Arsenic Adsorption Process from Aquatic Environments by Metal-Organic Frameworks: Classification Based on Kinetics, Isotherms and Thermodynamics Behaviors. Nanomaterials, 2023, 13, 60.	1.9	10
547	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
548	Chemical Vapor Deposition and High-Resolution Patterning of a Highly Conductive Two-Dimensional Coordination Polymer Film. Journal of the American Chemical Society, 2023, 145, 152-159.	6.6	14
549	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie, 0, , .	1.6	1
550	Advances in Nanomaterials Integration in CMOS-Based Electrochemical Sensors: A Review. IEEE Sensors Journal, 2023, 23, 4659-4671.	2.4	1
551	Applications of MOFs. Engineering Materials, 2023, , 197-305.	0.3	5

#	Article	IF	CITATIONS
552	Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coordination Chemistry Reviews, 2023, 481, 215043.	9.5	65
553	Design and synthesis of three new D-A multifunctional stimulus response compounds. Inorganica Chimica Acta, 2023, 553, 121525.	1.2	2
554	Recent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices. Journal of Energy Storage, 2023, 64, 107142.	3.9	25
555	Ultrasonic-assisted synthesis of nickel metal-organic framework for efficient urea removal and water splitting applications. Synthetic Metals, 2023, 294, 117309.	2.1	15
556	Polarization-dependent plasmonic heating in epitaxially grown multilayered metal–organic framework thin films embedded with Ag nanoparticles. Nanoscale Advances, 2023, 5, 1795-1801.	2.2	5
557	Unraveling the bond structure, porosity, and mechanical properties amorphous ZIF-4 and its topological equivalents: Large scale <i>ab initio</i> calculations. APL Materials, 2023, 11, .	2.2	3
558	Synthesis and Design of Hybrid Metalloporphyrin Polymers Based on Palladium (II) and Copper (II) Cations and Axial Complexes of Pyridyl-Substituted Sn(IV)Porphyrins with Octopamine. Polymers, 2023, 15, 1055.	2.0	1
560	A Zn-coordination polymer as a multifunctional fluorescent probe for the detection of V ₂ O ₇ ^{4â^'} , Fe ³⁺ , and <i>p</i> -nitrotoluene. Physical Chemistry Chemical Physics, 2023, 25, 10090-10096.	1.3	1
561	Nanostructure-dependent indentation fracture toughness of metal-organic framework monoliths. , 2023, 1, 100009.		2
562	Fabrication of 3D Oriented MOF Micropatterns with Anisotropic Fluorescent Properties. Advanced Materials, 2023, 35, .	11.1	6
563	Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InformaÄnÃ-Materiály, 2023, 5, .	8.5	20
564	A versatile and microporous Zn-based MOFs as a recyclable and sustainable heterogeneous catalyst for various organic transformations: A review (2015-present). Tetrahedron, 2023, 138, 133408.	1.0	11
578	Research progress of MOFs/carbon nanocomposites on promoting ORR in microbial fuel cell cathodes. Environmental Science and Pollution Research, 2023, 30, 93422-93434.	2.7	1
594	Approaches toward the synthesis and mechanical properties of porous coordination polymers. , 2024, , 11-38.		0
595	Polymorphism and orientation control of copper-dicarboxylate metal–organic framework thin films through vapour- and liquid-phase growth. CrystEngComm, 2024, 26, 1071-1076.	1.3	0
597	Metal organic framework (MOF)-anchored polymeric nanocomposite foams for electromagnetic interference shielding. , 2024, , 337-362.		0