Genome-wide trans-ancestry meta-analysis provides in of type 2 diabetes susceptibility

Nature Genetics 46, 234-244 DOI: 10.1038/ng.2897

Citation Report

#	Article	IF	CITATIONS
1	Evaluation of Common Type 2 Diabetes Risk Variants in a South Asian Population of Sri Lankan Descent. PLoS ONE, 2014, 9, e98608.	1.1	8
2	The ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney disease. Human Molecular Genetics, 2014, 23, 6441-6447.	1.4	34
3	Variants associated with type 2 diabetes identified by the transethnic meta-analysis study: assessment in American Indians and evidence for a new signal in LPP. Diabetologia, 2014, 57, 2334-2338.	2.9	9
4	Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies. PLoS Genetics, 2014, 10, e1004722.	1.5	475
5	Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes. PLoS Genetics, 2014, 10, e1004517.	1.5	191
6	Identification of a Novel Gene for Diabetic Traits in Rats, Mice, and Humans. Genetics, 2014, 198, 17-29.	1.2	44
7	Science and Medicine. Yearbook of Paediatric Endocrinology, 2014, , 199-212.	0.0	0
9	Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Medicine, 2014, 6, 91.	3.6	167
10	Fine Mapping of Type 2 Diabetes Susceptibility Loci. Current Diabetes Reports, 2014, 14, 549.	1.7	22
11	Association of a Low-Frequency Variant in <i>HNF1A</i> With Type 2 Diabetes in a Latino Population. JAMA - Journal of the American Medical Association, 2014, 311, 2305.	3.8	230
12	ABCC8 genetic variants and risk of diabetes mellitus. Gene, 2014, 545, 198-204.	1.0	34
13	Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Glycaemic Traits. Current Diabetes Reports, 2014, 14, 551.	1.7	38
14	Does genetic heterogeneity account for the divergent risk of type 2 diabetes in South Asian and white European populations?. Diabetologia, 2014, 57, 2270-2281.	2.9	29
15	A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Human Genetics, 2014, 133, 1487-1495.	1.8	49
16	Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25. Nature Communications, 2014, 5, 5260.	5.8	123
17	Overlap of Genetic Susceptibility to Type 1 Diabetes, Type 2 Diabetes, and Latent Autoimmune Diabetes in Adults. Current Diabetes Reports, 2014, 14, 550.	1.7	40
18	The pancreatic Î ² cell: recent insights from human genetics. Trends in Endocrinology and Metabolism, 2014, 25, 425-434.	3.1	29
19	Genetic architecture of type 2 diabetes. Biochemical and Biophysical Research Communications, 2014, 452, 213-220.	1.0	48

#	Article	IF	CITATIONS
20	<i>Dorothy Hodgkin Lecture 2014</i> Understanding genes identified by genomeâ€wide association studies for Type 2 diabetes. Diabetic Medicine, 2014, 31, 1480-1487.	1.2	29
21	Dissecting complex traits using the Drosophila Synthetic Population Resource. Trends in Genetics, 2014, 30, 488-495.	2.9	82
22	Sex differences in disease genetics: evidence, evolution, and detection. Trends in Genetics, 2014, 30, 453-463.	2.9	98
23	Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia, 2014, 57, 1528-1541.	2.9	162
24	Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Research and Therapy, 2014, 16, S4.	1.6	62
25	Fine Mapping Type 2 Diabetes Susceptibility Loci. Frontiers in Diabetes, 2014, , 14-28.	0.4	1
26	Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). International Journal of Molecular Medicine, 2015, 36, 607-626.	1.8	18
27	Genetic variation in insulinâ€induced kinase signaling. Molecular Systems Biology, 2015, 11, 820.	3.2	14
28	Candidate gene analysis supports a role for polymorphisms at TCF7L2 as risk factors for type 2 diabetes in Sudan. Journal of Diabetes and Metabolic Disorders, 2015, 15, 4.	0.8	10
29	CDKN2A-rs10811661 polymorphism, waist-hip ratio, systolic blood pressure, and dyslipidemia are the independent risk factors for prediabetes in a Vietnamese population. BMC Genetics, 2015, 16, 107.	2.7	8
30	Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics and Chromatin, 2015, 8, 57.	1.8	277
31	Characterizing the genetic risk for Type 2 diabetes in a Malaysian multiâ€ethnic cohort. Diabetic Medicine, 2015, 32, 1377-1384.	1.2	7
32	Genetics of Type 2 Diabetes and Clinical Utility. Genes, 2015, 6, 372-384.	1.0	34
33	Connecting SNPs in Diabetes: A Spatial Analysis of Meta-GWAS Loci. Frontiers in Endocrinology, 2015, 6, 102.	1.5	18
34	Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genetics, 2015, 11, e1005694.	1.5	178
35	Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation. PLoS ONE, 2015, 10, e0129421.	1.1	23
36	The Relationship between Native American Ancestry, Body Mass Index and Diabetes Risk among Mexican-Americans. PLoS ONE, 2015, 10, e0141260.	1.1	24
37	Genome-Wide Association Study of Staphylococcus aureus Carriage in a Community-Based Sample of Mexican-Americans in Starr County, Texas. PLoS ONE, 2015, 10, e0142130.	1.1	17

#	ARTICLE Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing.	IF	CITATIONS
38	Computational and Mathematical Methods in Medicine, 2015, 2015, 1-10.	0.7	5
39	Association Analysis of Genetic Variants with Type 2 Diabetes in a Mongolian Population in China. Journal of Diabetes Research, 2015, 2015, 1-7.	1.0	27
40	Genetic Studies on Diabetic Microvascular Complications: Focusing on Genome-Wide Association Studies. Endocrinology and Metabolism, 2015, 30, 147.	1.3	18
41	Acquired immunodeficiencies and tuberculosis: focus on <scp>HIV</scp> / <scp>AIDS</scp> and diabetes mellitus. Immunological Reviews, 2015, 264, 121-137.	2.8	87
42	Sex hormone-binding globulin associations with circulating lipids and metabolites and the risk for type 2 diabetes: observational and causal effect estimates. International Journal of Epidemiology, 2015, 44, 623-637.	0.9	83
43	Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nature Genetics, 2015, 47, 839-846.	9.4	128
44	Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes. BMC Medical Genetics, 2015, 16, 17.	2.1	8
45	Q&A: insulin secretion and type 2 diabetes: why do β-cells fail?. BMC Biology, 2015, 13, 33.	1.7	102
46	Genetic Determinants for Gestational Diabetes Mellitus and Related Metabolic Traits in Mexican Women. PLoS ONE, 2015, 10, e0126408.	1.1	53
47	Association Between <i>KCNQ1</i> Genetic Variants and Type 2 Diabetes in the Uyghur Population. Genetic Testing and Molecular Biomarkers, 2015, 19, 698-702.	0.3	3
48	Strategies for fine-mapping complex traits. Human Molecular Genetics, 2015, 24, R111-R119.	1.4	191
49	Implication of epigenetics in pancreas development and disease. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 883-898.	2.2	29
50	Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Obesity-Related Traits. Current Diabetes Reports, 2015, 15, 83.	1.7	47
51	Diabetes Pathology and Risk of Primary Open-Angle Glaucoma: Evaluating Causal Mechanisms by Using Genetic Information. American Journal of Epidemiology, 2016, 183, kwv204.	1.6	34
52	Gambling with Flu: "All in―to Maximize Reward. Cell Host and Microbe, 2015, 18, 643-645.	5.1	0
53	GWAS as a Driver of Gene Discovery in Cardiometabolic Diseases. Trends in Endocrinology and Metabolism, 2015, 26, 722-732.	3.1	29
54	Polymorphism in microRNA-binding site in HNF1B influences the susceptibility of type 2 diabetes mellitus: a population based case–control study. BMC Medical Genetics, 2015, 16, 75.	2.1	24
55	Metabolic factors and genetic risk mediate familial type 2 diabetes risk in the Framingham Heart Study. Diabetologia, 2015, 58, 988-996.	2.9	12

#	Article	IF	CITATIONS
56	Rare and Common Genetic Events in Type 2 Diabetes: What Should Biologists Know?. Cell Metabolism, 2015, 21, 357-368.	7.2	128
57	Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nature Communications, 2015, 6, 5897.	5.8	173
58	A systems view of epigenetic networks regulating pancreas development and βâ€cell function. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 1-11.	6.6	19
59	Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabetic Medicine, 2015, 32, 843-852.	1.2	136
60	A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1. Diabetologia, 2015, 58, 745-748.	2.9	16
61	The rs340874 PROX1 type 2 diabetes mellitus risk variant is associated with visceral fat accumulation and alterations in postprandial glucose and lipid metabolism. Genes and Nutrition, 2015, 10, 4.	1.2	39
62	Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient. Experimental Gerontology, 2015, 69, 70-78.	1.2	30
63	Role of Established Type 2 Diabetes–Susceptibility Genetic Variants in a High Prevalence American Indian Population. Diabetes, 2015, 64, 2646-2657.	0.3	34
64	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	1.4	50
65	Recent advances in understanding the genetic architecture of type 2 diabetes. Human Molecular Genetics, 2015, 24, R85-R92.	1.4	107
66	Leveraging Functional-Annotation Data in Trans-ethnic Fine-Mapping Studies. American Journal of Human Genetics, 2015, 97, 260-271.	2.6	186
67	Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 2015, 47, 979-986.	9.4	1,965
68	An ImmunoChip study of multiple sclerosis risk in African Americans. Brain, 2015, 138, 1518-1530.	3.7	60
69	Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876.	1.5	95
70	Advances in Exercise, Fitness, and Performance Genomics in 2014. Medicine and Science in Sports and Exercise, 2015, 47, 1105-1112.	0.2	38
71	Genetics of Type 2 Diabetes—Pitfalls and Possibilities. Genes, 2015, 6, 87-123.	1.0	337
72	Metabolomics – the complementary field in systems biology: a review on obesity and type 2 diabetes. Molecular BioSystems, 2015, 11, 1742-1774.	2.9	103
73	Origin of Typical Disease Sequelae. , 2015, , 173-235.		0

#	Article	IF	CITATION
75	An epigenetic map of age-associated autosomal loci in northern European families at high risk for the metabolic syndrome. Clinical Epigenetics, 2015, 7, 12.	1.8	28
76	Association of Postoperative Hyperglycemia With Outcomes Among Patients With Complex Ventral Hernia Repair. JAMA Surgery, 2015, 150, 433.	2.2	27
77	Omics: Potential Role in Early-Phase Drug Development. , 2015, , 189-222.		0
78	Identifying functional noncoding variants from genome-wide association studies for cardiovascular disease and related traits. Current Opinion in Lipidology, 2015, 26, 120-126.	1.2	7
79	Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends in Genetics, 2015, 31, 290-299.	2.9	45
81	The genetics of diabetic complications. Nature Reviews Nephrology, 2015, 11, 277-287.	4.1	124
82	IGF2BP2/IMP2-Deficient Mice Resist Obesity through Enhanced Translation of Ucp1 mRNA and Other mRNAs Encoding Mitochondrial Proteins. Cell Metabolism, 2015, 21, 609-621.	7.2	148
83	Genomic medicine at the heart of diabetes management. Diabetologia, 2015, 58, 1725-1729.	2.9	17
84	Human pancreas development. Development (Cambridge), 2015, 142, 3126-3137.	1.2	236
85	Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nature Genetics, 2015, 47, 1385-1392.	9.4	431
86	Association of type 2 diabetes GWAS loci and the risk of Parkinson's and Alzheimer's diseases. Parkinsonism and Related Disorders, 2015, 21, 1435-1440.	1.1	21
87	Novel Risk Factors for Type 2 Diabetes in African-Americans. Current Diabetes Reports, 2015, 15, 103.	1.7	17
88	Genetics, genomics and personalized medicine in Type 2 diabetes: a perspective on the Arab region. Personalized Medicine, 2015, 12, 417-431.	0.8	5
89	Type 2 Diabetes–Associated K+ Channel TALK-1 Modulates β-Cell Electrical Excitability, Second-Phase Insulin Secretion, and Glucose Homeostasis. Diabetes, 2015, 64, 3818-3828.	0.3	54
90	Genetic variants of <i><scp>PLA</scp>2G6</i> are associated with Type 2 diabetes mellitus and triglyceride levels in a Chinese population. Diabetic Medicine, 2015, 32, 280-286.	1.2	13
91	The use of genetic information in the prediction of Type 2 diabetes. Personalized Medicine, 2015, 12, 483-496.	0.8	4
92	Genetics of Type 2 Diabetes. , 2015, , 1-21.		0
93	At the centre of things. Nature Reviews Endocrinology, 2015, 11, 636-638.	4.3	12

#	Article	IF	CITATIONS
94	A Review of Emerging Technologies for the Management of Diabetes Mellitus. IEEE Transactions on Biomedical Engineering, 2015, 62, 2735-2749.	2.5	86
95	Transcriptional Regulation of the Pancreatic Islet: Implications for Islet Function. Current Diabetes Reports, 2015, 15, 66.	1.7	11
96	Genetics of Type 2 Diabetes in African Americans. Current Diabetes Reports, 2015, 15, 74.	1.7	18
97	Paternal allelic mutation at the <i>Kcnq1</i> locus reduces pancreatic β-cell mass by epigenetic modification of <i>Cdkn1c</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8332-8337.	3.3	49
98	Common Variants Associated with Type 2 Diabetes in a Black South African Population of Setswana Descent: African Populations Diverge. OMICS A Journal of Integrative Biology, 2015, 19, 617-626.	1.0	9
99	Jmjd3-Mediated H3K27me3 Dynamics Orchestrate Brown Fat Development and Regulate White Fat Plasticity. Developmental Cell, 2015, 35, 568-583.	3.1	73
100	The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nature Communications, 2015, 6, 10047.	5.8	75
101	Allelic Expression Imbalance: Tipping the Scales to Elucidate the Function of Type 2 Diabetes–Associated Loci: Figure 1. Diabetes, 2015, 64, 1102-1104.	0.3	3
102	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	9.4	365
104	An epidemiological perspective of personalized medicine: the <scp>E</scp> stonian experience. Journal of Internal Medicine, 2015, 277, 188-200.	2.7	22
105	Gene-exercise interactions in the development of cardiometabolic diseases. The Journal of Physical Fitness and Sports Medicine, 2016, 5, 25-36.	0.2	4
106	Role of mitochondrial DNA variation in the pathogenesis of diabetes mellitus. Frontiers in Bioscience - Landmark, 2016, 21, 1151-1167.	3.0	20
107	Pancreatic Cancer Genetics. International Journal of Biological Sciences, 2016, 12, 314-325.	2.6	90
108	Genetic Variants and Risk of Diabetes. , 2016, , 255-261.		0
109	The Importance of Context: Uncovering Species- and Tissue-Specific Effects of Genetic Risk Variants for Type 2 Diabetes. Frontiers in Endocrinology, 2016, 7, 112.	1.5	3
110	The Decay of Disease Association with Declining Linkage Disequilibrium: A Fine Mapping Theorem. Frontiers in Genetics, 2016, 7, 217.	1.1	1
111	Chromatin Remodeling and Epigenetic Reprogramming in Chronic Disease and CancerÂin the Liver and Pancreas. , 2016, , 365-385.		2
112	Validation of Type 2 Diabetes Risk Variants Identified by Genome-Wide Association Studies in Northern Han Chinese. International Journal of Environmental Research and Public Health, 2016, 13, 863.	1.2	32

#	Article	IF	CITATIONS
113	CERAMIC: Case-Control Association Testing in Samples with Related Individuals, Based on Retrospective Mixed Model Analysis with Adjustment for Covariates. PLoS Genetics, 2016, 12, e1006329.	1.5	17
114	Comparative Transcriptomic and Epigenomic Analyses Reveal New Regulators of Murine Brown Adipogenesis. PLoS Genetics, 2016, 12, e1006474.	1.5	44
115	Factors Motivating Individuals to Consider Genetic Testing for Type 2 Diabetes Risk Prediction. PLoS ONE, 2016, 11, e0147071.	1.1	7
116	Association between DNA Methylation in Whole Blood and Measures of Glucose Metabolism: KORA F4 Study. PLoS ONE, 2016, 11, e0152314.	1.1	81
117	Genome-Wide Interaction with Insulin Secretion Loci Reveals Novel Loci for Type 2 Diabetes in African Americans. PLoS ONE, 2016, 11, e0159977.	1.1	7
118	Genetic markers of inflammation may not contribute to metabolic traits in Mexican children. PeerJ, 2016, 4, e2090.	0.9	10
119	A Novel Random Effect Model for GWAS Meta-Analysis and Its Application to Trans-Ethnic Meta-Analysis. Biometrics, 2016, 72, 945-954.	0.8	17
120	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
121	Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nature Genetics, 2016, 48, 940-946.	9.4	283
122	Type 2 diabetes: genetic data sharing to advance complex disease research. Nature Reviews Genetics, 2016, 17, 535-549.	7.7	128
123	Diabetic Phenotypes and Late-Life Dementia Risk. Alzheimer Disease and Associated Disorders, 2016, 30, 15-20.	0.6	27
124	Binomial Mixture Model Based Association Testing to Account for Genetic Heterogeneity for GWAS. Genetic Epidemiology, 2016, 40, 202-209.	0.6	1
125	Evaluation of a Twoâ€&tage Approach in Transâ€Ethnic Metaâ€Analysis in Genomeâ€Wide Association Studies. Genetic Epidemiology, 2016, 40, 284-292.	0.6	8
126	Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits. Scientific Reports, 2016, 6, .	1.6	25
127	The Role of Host Genetics (and Genomics) in Tuberculosis. Microbiology Spectrum, 2016, 4, .	1.2	31
128	"Non-modifiable―Risk Factors for Periodontitis and Diabetes. Current Oral Health Reports, 2016, 3, 270-281.	0.5	26
129	Interaction between FTO gene variants and lifestyle factors on metabolic traits in an Asian Indian population. Nutrition and Metabolism, 2016, 13, 39.	1.3	42
130	Significant impact of miRNA–target gene networks on genetics of human complex traits. Scientific Reports, 2016, 6, 22223.	1.6	44

#	Article	IF	CITATIONS
131	Interactome-transcriptome analysis discovers signatures complementary to GWAS Loci of Type 2 Diabetes. Scientific Reports, 2016, 6, 35228.	1.6	20
132	Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Scientific Reports, 2016, 6, 39565.	1.6	15
134	Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut Microbiome. Cell Systems, 2016, 3, 572-584.e3.	2.9	261
136	Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocrine Reviews, 2016, 37, 190-222.	8.9	100
137	Genome-Wide Studies of Type 2 Diabetes and Lipid Traits in Hispanics. Current Diabetes Reports, 2016, 16, 41.	1.7	10
138	Central and peripheral pathogenetic forms of type 2 diabetes: a proof-of-concept study. Endocrine Connections, 2016, 5, 55-64.	0.8	3
139	Transcriptomics in type 2 diabetes: Bridging the gap between genotype and phenotype. Genomics Data, 2016, 8, 25-36.	1.3	37
140	Discovery of rare variants for complex phenotypes. Human Genetics, 2016, 135, 625-634.	1.8	40
141	Genetic determinants ofÂpolycystic ovary syndrome: progress and future directions. Fertility and Sterility, 2016, 106, 25-32.	0.5	103
142	Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility. European Journal of Human Genetics, 2016, 24, 1175-1180.	1.4	69
143	Mapping adipose and muscle tissue expression quantitative trait loci in African Americans to identify genes for type 2 diabetes and obesity. Human Genetics, 2016, 135, 869-880.	1.8	44
144	Genetics of Type 2 Diabetes: the Power of Isolated Populations. Current Diabetes Reports, 2016, 16, 65.	1.7	25
145	From Association to Function: KCNJ11 and ABCC8. , 2016, , 363-377.		0
146	Polygenetic components for schizophrenia, bipolar disorder and rheumatoid arthritis predict risk of schizophrenia. Schizophrenia Research, 2016, 175, 226-229.	1.1	17
147	Genetics of Type 2 Diabetes. Endocrine Development, 2016, 31, 203-220.	1.3	59
149	Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nature Reviews Endocrinology, 2016, 12, 394-406.	4.3	112
150	Genome-Wide Association Studies of Type 2 Diabetes. , 2016, , 13-61.		8
151	Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease. Molecular Endocrinology, 2016, 30, 575-586.	3.7	5

#	Article	IF	CITATIONS
152	Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank. Diabetologia, 2016, 59, 1446-1457.	2.9	41
153	A common variation of the PTEN gene is associated with peripheral insulin resistance. Diabetes and Metabolism, 2016, 42, 280-284.	1.4	15
154	Cardiovascular Risk Factors and Ischemic Heart Disease. Circulation: Cardiovascular Genetics, 2016, 9, 279-286.	5.1	5
155	Improved Performance of Dynamic Measures of Insulin Response Over Surrogate Indices to Identify Genetic Contributors of Type 2 Diabetes: The GUARDIAN Consortium. Diabetes, 2016, 65, 2072-2080.	0.3	4
156	Whole-Genome Sequencing of a Healthy Aging Cohort. Cell, 2016, 165, 1002-1011.	13.5	190
157	Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host and Microbe, 2016, 19, 731-743.	5.1	831
158	Catechol-O-methyltransferase association with hemoglobin A1c. Metabolism: Clinical and Experimental, 2016, 65, 961-967.	1.5	14
159	Pharmacogenetic aspects of the treatment of Type 2 diabetes with the incretin effect enhancers. Pharmacogenomics, 2016, 17, 795-804.	0.6	8
160	The Influence of Family History Risk Levels of Diabetes on Disease Prevalence in a High-Risk Diabetic Chinese Population. Diabetes Technology and Therapeutics, 2016, 18, 494-498.	2.4	3
161	Combination therapeutics in complex diseases. Journal of Cellular and Molecular Medicine, 2016, 20, 2231-2240.	1.6	76
162	Rare intronic variants of TCF7L2 arising by selective sweeps in an indigenous population from Mexico. BMC Genetics, 2016, 17, 68.	2.7	3
163	Soluble CD93 Is Involved in Metabolic Dysregulation but Does Not Influence Carotid Intima-Media Thickness. Diabetes, 2016, 65, 2888-2899.	0.3	14
164	Genetic variation near <scp><i>IRS</i></scp> <i>1</i> is associated with adiposity and a favorable metabolic profile in <scp>U</scp> . <scp>S.</scp> Hispanics/ <scp>L</scp> atinos. Obesity, 2016, 24, 2407-2413.	1.5	5
165	Genome-wide associations for birth weight and correlations with adult disease. Nature, 2016, 538, 248-252.	13.7	406
166	Causal inference challenges in social epidemiology: Bias, specificity, and imagination. Social Science and Medicine, 2016, 166, 258-265.	1.8	20
167	Admixture in Latin America. Current Opinion in Genetics and Development, 2016, 41, 106-114.	1.5	78
168	Predictive utility of a genetic risk score of common variants associated with type 2 diabetes in a black South African population. Diabetes Research and Clinical Practice, 2016, 122, 1-8.	1.1	17
169	Exposing the exposures responsible for type 2 diabetes and obesity. Science, 2016, 354, 69-73.	6.0	201

#	Article	IF	CITATIONS
170	Genetic Overlap Between Depression and Cardiometabolic Disorders. , 2016, , 235-255.		0
171	Can genetic evidence help us to understand the fetal origins of type 2 diabetes?. Diabetologia, 2016, 59, 1850-1854.	2.9	10
172	Serum gamma-glutamyl transferase and risk of type 2 diabetes in the general Korean population: a Mendelian randomization study. Human Molecular Genetics, 2016, 25, 3877-3886.	1.4	26
173	Genetic markers of type 2 diabetes: Progress in genomeâ€wide association studies and clinical application for risk prediction. Journal of Diabetes, 2016, 8, 24-35.	0.8	64
174	Genetics of cardiovascular and renal complications in diabetes. Journal of Diabetes Investigation, 2016, 7, 139-154.	1.1	43
175	The Genetic Architecture of Diabetes in Pregnancy: Implications for Clinical Practice. American Journal of Perinatology, 2016, 33, 1319-1326.	0.6	20
176	The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia, 2016, 59, 2360-2368.	2.9	68
177	A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nature Communications, 2016, 7, 13357.	5.8	74
178	Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects and tissue-specific enrichment of eQTLs. Scientific Reports, 2016, 6, 19429.	1.6	63
179	Type 2 Diabetes Genes Gleaned by Making a β-Cell Screen Routine. Diabetes, 2016, 65, 3541-3543.	0.3	Ο
180	A new structural approach to genomic discovery of disease: example of adult-onset diabetes. Biological Cybernetics, 2016, 110, 383-391.	0.6	1
181	Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations. Diabetes, 2016, 65, 3794-3804.	0.3	22
182	The Role of TCF7L2 rs7903146 in Diabetes After Kidney Transplant. Transplantation, 2016, 100, 1750-1758.	0.5	12
183	Two-stage association study to identify the genetic susceptibility of a novel common variant of rs2075290 in ZPR1 to type 2 diabetes. Scientific Reports, 2016, 6, 29586.	1.6	42
184	Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. Journal of Lipid Research, 2016, 57, 2200-2207.	2.0	40
185	The Application of Genomics in Diabetes: Barriers to Discovery and Implementation. Diabetes Care, 2016, 39, 1858-1869.	4.3	25
186	High-throughput allele-specific expression across 250 environmental conditions. Genome Research, 2016, 26, 1627-1638.	2.4	138
187	Epigenetic and Transcriptional Alterations in Human Adipose Tissue of Polycystic Ovary Syndrome. Scientific Reports, 2016, 6, 22883.	1.6	93

#	Article	IF	Citations
188	Trans-ethnic study design approaches for fine-mapping. European Journal of Human Genetics, 2016, 24, 1330-1336.	1.4	75
189	Heritability and Genome-Wide Association Analyses of Sleep Duration in Children: The EAGLE Consortium. Sleep, 2016, 39, 1859-1869.	0.6	34
190	Genome engineering tools for building cellular models of disease. FEBS Journal, 2016, 283, 3222-3231.	2.2	23
191	Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model. Islets, 2016, 8, 83-95.	0.9	21
192	Genetic susceptibility to diabetes and long-term improvement of insulin resistance and β cell function during weight loss: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. American Journal of Clinical Nutrition, 2016, 104, 198-204.	2.2	30
193	Genome-wide association study of colorectal cancer in Hispanics. Carcinogenesis, 2016, 37, 547-556.	1.3	34
194	ls Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?. Current Diabetes Reports, 2016, 16, 70.	1.7	13
195	Role of Conventional Childhood Risk Factors Versus Genetic Risk in the Development of Type 2 Diabetes and Impaired Fasting Glucose in Adulthood: The Cardiovascular Risk in Young Finns Study. Diabetes Care, 2016, 39, 1393-1399.	4.3	17
196	Explaining the disease phenotype of intergenic SNP through predicted long range regulation. Nucleic Acids Research, 2016, 44, 8641-8654.	6.5	40
197	Histamine in diabetes: Is it time to reconsider?. Pharmacological Research, 2016, 111, 316-324.	3.1	20
198	Low birthweight and risk of type 2 diabetes: a Mendelian randomisation study. Diabetologia, 2016, 59, 1920-1927.	2.9	76
199	Transcriptome-Wide Analysis Reveals Modulation of Human Macrophage Inflammatory Phenotype Through Alternative Splicing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1434-1447.	1.1	35
200	The power of numbers. Diabetologia, 2016, 59, 1400-1402.	2.9	1
201	Identification of genetic interaction networks via an evolutionary algorithm evolved Bayesian network. BioData Mining, 2016, 9, 18.	2.2	8
202	Transcription Factor 7-Like 2 (TCF7L2). , 2016, , 297-316.		1
203	SLC30A8: A Complex Road from Association to Function. , 2016, , 379-401.		1
204	Type 2 Diabetes Prediction. , 2016, , 425-440.		0
205	Epilogue: What the Future Holds: Genomic Medicine at the Heart of Diabetes Management. , 2016, , 561-570.		0

#	Article	IF	CITATIONS
206	Fine-Mapping of Type 2 Diabetes Loci. , 2016, , 127-151.		0
207	Transferability Across Ethnic Groups. , 2016, , 183-206.		3
208	Identifying genetic loci affecting antidepressant drug response in depression using drug–gene interaction models. Pharmacogenomics, 2016, 17, 1029-1040.	0.6	4
209	Cohort profile: the German Diabetes Study (GDS). Cardiovascular Diabetology, 2016, 15, 59.	2.7	97
210	Genetics of Insulin Resistance and the Metabolic Syndrome. Current Cardiology Reports, 2016, 18, 75.	1.3	195
211	Trans-ethnic Meta-analysis and Functional Annotation Illuminates theÂGenetic Architecture of Fasting Glucose and Insulin. American Journal of Human Genetics, 2016, 99, 56-75.	2.6	55
212	Novel phenotypes of prediabetes?. Diabetologia, 2016, 59, 1806-1818.	2.9	43
213	Genetic factors in cerebral small vessel disease and their impact on stroke and dementia. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 158-171.	2.4	81
214	Mendelian Randomization for the Identification of Causal Pathways in Atherosclerotic Vascular Disease. Cardiovascular Drugs and Therapy, 2016, 30, 41-49.	1.3	10
215	Genetic risk of type 2 diabetes in populations of the African continent: A systematic review and meta-analyses. Diabetes Research and Clinical Practice, 2016, 114, 136-150.	1.1	22
216	Genetics of Type 2 Diabetes. , 2016, , 141-157.		0
217	Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nature Communications, 2016, 7, 10531.	5.8	149
218	Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nature Genetics, 2016, 48, 519-527.	9.4	117
219	Polygenic risk for type 2 diabetes mellitus among individuals with psychosis and their relatives. Journal of Psychiatric Research, 2016, 77, 52-58.	1.5	22
220	Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively. Diabetologia, 2016, 59, 1214-1221.	2.9	65
221	Exploring the Major Sources and Extent of Heterogeneity in a Genomeâ€Wide Association Metaâ€Analysis. Annals of Human Genetics, 2016, 80, 113-122.	0.3	9
222	Haplotype synthesis analysis reveals functional variants underlying known genome-wide associated susceptibility loci. Bioinformatics, 2016, 32, 2136-2142.	1.8	2
223	Type 2 Diabetes Genetic Predisposition, Obesity, and All-Cause Mortality Risk in the U.S.: A Multiethnic Analysis. Diabetes Care, 2016, 39, 539-546.	4.3	38

#	Article	IF	CITATIONS
224	Unravelling the human genome–phenome relationship using phenome-wide association studies. Nature Reviews Genetics, 2016, 17, 129-145.	7.7	222
225	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081.	1.4	21
226	metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics, 2016, 32, 1981-1989.	1.8	138
227	Recent progress in genetic and epigenetic research on type 2 diabetes. Experimental and Molecular Medicine, 2016, 48, e220-e220.	3.2	140
228	Assessment of established HDL-C loci for association with HDL-C levels and type 2 diabetes in Pima Indians. Diabetologia, 2016, 59, 481-491.	2.9	16
229	10-year trajectory of \hat{l}^2 -cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes and Endocrinology,the, 2016, 4, 27-34.	5.5	145
230	A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration. Human Molecular Genetics, 2016, 25, 358-370.	1.4	73
231	Evaluation of transethnic fine mapping with population-specific and cosmopolitan imputation reference panels in diverse Asian populations. European Journal of Human Genetics, 2016, 24, 592-599.	1.4	4
232	Applications of Genetics in Endocrinology. , 2016, , 41-68.e8.		1
233	The autoimmune risk gene ZMIZ1 is a vitamin D responsive marker of a molecular phenotype of multiple sclerosis. Journal of Autoimmunity, 2017, 78, 57-69.	3.0	31
234	The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. Journal of Lipid Research, 2017, 58, 481-493.	2.0	147
235	Case–control association mapping by proxy using family history of disease. Nature Genetics, 2017, 49, 325-331.	9.4	192
236	The genetic overlap between mood disorders and cardiometabolic diseases: a systematic review of genome wide and candidate gene studies. Translational Psychiatry, 2017, 7, e1007-e1007.	2.4	259
237	Periodontitis and Systemic Disease: Association or Causality?. Current Oral Health Reports, 2017, 4, 1-7.	0.5	94
238	A genome-wide interaction analysis of tricyclic/tetracyclic antidepressants and RR and QT intervals: a pharmacogenomics study from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Journal of Medical Genetics, 2017, 54, 313-323.	1.5	9
239	Genomics of Islet (Dys)function and Type 2 Diabetes. Trends in Genetics, 2017, 33, 244-255.	2.9	55
240	Role of DNA Methylation in Type 2 Diabetes Etiology: Using Genotype as a Causal Anchor. Diabetes, 2017, 66, 1713-1722.	0.3	32
241	A Whole-Genome RNA Interference Screen Reveals a Role forSpry2in Insulin Transcription and the Unfolded Protein Response. Diabetes, 2017, 66, 1703-1712.	0.3	15

#	Article	IF	CITATIONS
242	Sexual dimorphisms in genetic loci linked to body fat distribution. Bioscience Reports, 2017, 37, .	1.1	58
243	Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. American Journal of Human Genetics, 2017, 100, 428-443.	2.6	141
244	Genetics of Type 2 Diabetes in U.S. Hispanic/Latino Individuals: Results From the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes, 2017, 66, 1419-1425.	0.3	60
245	Susceptibility to type 2 diabetes may be modulated by haplotypes in G6PC2, a target of positive selection. BMC Evolutionary Biology, 2017, 17, 43.	3.2	14
247	A Mendelian randomization study of the effect of calcium on coronary artery disease, myocardial infarction and their risk factors. Scientific Reports, 2017, 7, 42691.	1.6	26
248	Trans-ethnic fine-mapping of genetic loci for body mass index in the diverse ancestral populations of the Population Architecture using Genomics and Epidemiology (PAGE) Study reveals evidence for multiple signals at established loci. Human Genetics, 2017, 136, 771-800.	1.8	31
249	Effect of handgrip on coronary artery disease and myocardial infarction: a Mendelian randomization study. Scientific Reports, 2017, 7, 954.	1.6	42
250	Using genetics to inform new therapeutics for diabetes. Expert Review of Endocrinology and Metabolism, 2017, 12, 159-169.	1.2	0
251	Genelmp: Fast Imputation to Large Reference Panels Using Genotype Likelihoods from Ultralow Coverage Sequencing. Genetics, 2017, 206, 91-104.	1.2	38
252	Polygenic scores via penalized regression on summary statistics. Genetic Epidemiology, 2017, 41, 469-480.	0.6	297
253	A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes, 2017, 66, 2296-2309.	0.3	102
254	Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nature Communications, 2017, 8, 14946.	5.8	114
255	High-Resolution Genetic Maps Identify Multiple Type 2 Diabetes Loci at Regulatory Hotspots in African Americans and Europeans. American Journal of Human Genetics, 2017, 100, 803-816.	2.6	17
256	Genomeâ€wide metaâ€analysis identifies a novel susceptibility signal at <i>CACNA2D3</i> for nicotine dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 557-567.	1.1	15
257	Human genetics as a model for target validation: finding new therapies for diabetes. Diabetologia, 2017, 60, 960-970.	2.9	19
258	GENOME-WIDE INTERACTION WITH SELECTED TYPE 2 DIABETES LOCI REVEALS NOVEL LOCI FOR TYPE 2 DIABETES IN AFRICAN AMERICANS. , 2017, 22, 242-253.		5
259	Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nature Genetics, 2017, 49, 125-130.	9.4	116
260	The biomarker and causal roles of homoarginine in the development of cardiometabolic diseases: an observational and Mendelian randomization analysis. Scientific Reports, 2017, 7, 1130.	1.6	18

#	Article	IF	CITATIONS
261	Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes: systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct. American Journal of Clinical Nutrition, 2017, 106, 263-275.	2.2	46
262	Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nature Communications, 2017, 8, 15724.	5.8	106
263	Checks and Balancesâ€"The Limits of \hat{I}^2 -Cell Endurance to ER Stress. Diabetes, 2017, 66, 1467-1469.	0.3	1
264	Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nature Communications, 2017, 8, 15539.	5.8	230
265	Insulin Resistance and Mitochondrial Dysfunction. Advances in Experimental Medicine and Biology, 2017, 982, 465-520.	0.8	110
266	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.	0.3	615
267	Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nature Cell Biology, 2017, 19, 808-819.	4.6	81
268	Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Human Molecular Genetics, 2017, 26, 1770-1784.	1.4	135
269	Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): potential genomic intersection of iron and glucose regulation?. Human Molecular Genetics, 2017, 26, 1966-1978.	1.4	31
270	ADP-ribosylation factor-like GTPase 15 enhances insulin-induced AKT phosphorylation in the IR/IRS1/AKT pathway by interacting with ASAP2 and regulating PDPK1 activity. Biochemical and Biophysical Research Communications, 2017, 486, 865-871.	1.0	20
271	Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. American Journal of Human Genetics, 2017, 100, 635-649.	2.6	1,120
272	Genetic effects influencing risk for major depressive disorder in China and Europe. Translational Psychiatry, 2017, 7, e1074-e1074.	2.4	64
273	Genome-Wide Association Study Meta-Analysis of Long-Term Average Blood Pressure in East Asians. Circulation: Cardiovascular Genetics, 2017, 10, e001527.	5.1	26
274	Genetic determinants of adiponectin regulation revealed by pregnancy. Obesity, 2017, 25, 935-944.	1.5	10
275	How Can Genetic Studies Help Us to Understand Links Between Birth Weight and Type 2 Diabetes?. Current Diabetes Reports, 2017, 17, 22.	1.7	28
276	Type 2 Diabetes Genetic Variants and Risk of Diabetic Retinopathy. Ophthalmology, 2017, 124, 336-342.	2.5	21
277	Young, healthy South Asians have enhanced lipogenic sensitivity to dietary sugar. Clinical Endocrinology, 2017, 86, 361-366.	1.2	0
278	Gene expression signature: a powerful approach for drug discovery in diabetes. Journal of Endocrinology, 2017, 232, R131-R139.	1.2	9

ARTICLE IF CITATIONS Advancing stroke genomic research in the age of Trans-Omics big data science: Emerging priorities and 279 0.3 15 opportunities. Journal of the Neurological Sciences, 2017, 382, 18-28. A Loss-of-Function Splice Acceptor Variant in <i>IGF2</i> Is Protective for Type 2 Diabetes. Diabetes, 0.3 2017, 66, 2903-2914. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Human Molecular Genetics, 2017, 26, 281 1.4 211 4067-4085. Linking Alzheimer's disease and type 2 diabetes: Novel shared susceptibility genes detected by cFDR 0.3 approach. Journal of the Neurological Sciences, 2017, 380, 262-272. TALK-1 channels control l² cell endoplasmic reticulum Ca ²⁺ homeostasis. Science 283 1.6 27 Signaling, 2017, 10, . Alpha TC1 and Beta-TC-6 genomic profiling uncovers both shared and distinct transcriptional 284 1.6 regulatory features with their primary islet counterparts. Scientific Reports, 2017, 7, 11959. Epidemiology in Germanyâ€"general development and personal experience. European Journal of 285 2.5 3 Epidemiology, 2017, 32, 635-656. Improving power of association tests using multiple sets of imputed genotypes from distributed reference panels. Genetic Epidemiology, 2017, 41, 744-755. 286 0.6 Association of Genetic Variants Related to Serum Calcium Levels With Coronary Artery Disease and 287 3.8 165 Myocardial Infarction. JAMA - Journal of the American Medical Association, 2017, 318, 371. Mechanisms of Type 2 Diabetes Risk Loci. Current Diabetes Reports, 2017, 17, 72. 1.7 Genetic variants including markers from the exome chip and metabolite traits of type 2 diabetes. 289 1.6 12 Scientific Reports, 2017, 7, 6037. Serum resistin positively correlates with serum lipids, but not with insulin resistance, in first-degree 290 0.4 relatives of type-2 diabétes patients. Medicine (United States), 2017, 96, e6622. Effect of sequence variants on variance in glucose levels predicts type 2 diabetes risk and accounts 291 9.4 20 for heritability. Nature Genetics, 2017, 49, 1398-1402. Progress in Defining the Genetic Basis of Diabetic Complications. Current Diabetes Reports, 2017, 17, 80. 1.7 Machine Learning–Based Gene Prioritization Identifies Novel Candidate Risk Genes for Inflammatory 293 0.9 49 Bowel Disease. Inflammatory Bowel Diseases, 2017, 23, 1516-1523. Genome-Wide Gene–Potassium Interaction Analyses on Blood Pressure. Circulation: Cardiovascular 294 5.1 Genetics, 2017, 10, . Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. 295 1.6 11 Scientific Reports, 2017, 7, 16397. A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction. Current 19

CITATION REPORT

Diabetes Reports, 2017, 17, 135.

#	Article	IF	Citations
297	Give GWAS a Chance. Diabetes, 2017, 66, 2741-2742.	0.3	8
298	A Type 2 Diabetes–Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the <i>ADCY5</i> Locus. Diabetes, 2017, 66, 2521-2530.	0.3	54
299	10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics, 2017, 101, 5-22.	2.6	2,793
300	Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Medicine, 2017, 15, 88.	2.3	67
301	Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits. Genome Medicine, 2017, 9, 29.	3.6	52
302	PROX1 gene CC genotype as a major determinant of early onset of type 2 diabetes in slavic study participants from Action in Diabetes and Vascular Disease. Journal of Hypertension, 2017, 35, S24-S32.	0.3	28
303	Improved methods for multi-trait fine mapping of pleiotropic risk loci. Bioinformatics, 2017, 33, 248-255.	1.8	119
304	Joint association analysis of a binary and a quantitative trait in family samples. European Journal of Human Genetics, 2017, 25, 130-136.	1.4	4
305	Exome-chip association analysis reveals an Asian-specific missense variant in PAX4 associated with type 2 diabetes in Chinese individuals. Diabetologia, 2017, 60, 107-115.	2.9	19
306	Investigating shared aetiology between type 2 diabetes and major depressive disorder in a population based cohort. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 227-234.	1.1	27
307	Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genetics in Medicine, 2017, 19, 322-329.	1.1	127
308	Systolic Blood Pressure and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes, 2017, 66, 543-550.	0.3	45
309	Polymorphisms in PDLIM5 gene are associated with alcohol dependence, type 2 diabetes, and hypertension. Journal of Psychiatric Research, 2017, 84, 27-34.	1.5	11
310	Clinical worthlessness of genetic prediction of common forms of diabetes mellitus and related chronic complications. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 99-114.	1.1	10
311	Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nature Microbiology, 2017, 2, 16221.	5.9	138
312	Epigenetic control of \hat{I}^2 -cell function and failure. Diabetes Research and Clinical Practice, 2017, 123, 24-36.	1.1	28
313	The Genetic Landscape of Renal Complications in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2017, 28, 557-574.	3.0	101
314	CapNet. , 2017, , .		4

ARTICLE IF CITATIONS # Detecting Long-Term Balancing Selection Using Allele Frequency Correlation. Molecular Biology and 315 3.5 117 Evolution, 2017, 34, 2996-3005. Regulatory and evolutionary signatures of sex-biased genes on both the X chromosome and the autosomes. Biology of Sex Differences, 2017, 8, 35. 1.8 The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic 317 1,932 6.5 Acids Research, 2017, 45, D896-D901. Statistical methods to detect pleiotropy in human complex traits. Open Biology, 2017, 7, 170125. 318 The Role of Host Genetics (and Genomics) in Tuberculosis., 2017, , 411-452. 319 0 The Genetic Basis of Type 2 Diabetes in Hispanics and Latin Americans: Challenges and Opportunities. Frontiers in Public Health, 2017, 5, 329. 1.3 Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Human Molecular Genetics, 2017, 26, 3639-3650. 321 1.4 170 Genetic Risk Score of Nine Type 2 Diabetes Risk Variants that Interact with Erythrocyte Phospholipid 323 1.7 Alpha-Linolenic Acid for Type 2 Diabetes in Chinese Hans: A Case-Control Study. Nutrients, 2017, 9, 376. Association of common polymorphisms with gestational diabetes mellitus in Japanese women: A 324 0.7 21 case-control study. Endocrine Journal, 2017, 64, 463-475. Mouse Models of Human GWAS Hits for Obesity and Diabetes in the Post Genomic Era: Time for 1.5 Reevaluation. Frontiers in Endocrinology, 2017, 8, 11. High Liver Enzyme Concentrations are Associated with Higher Glycemia, but not with Glycemic 326 1.5 13 Variability, in Individuals without Diabetes Mellitus. Frontiers in Endocrinology, 2017, 8, 236. Pancreatic Islet Protein Complexes and Their Dysregulation in Type 2 Diabetes. Frontiers in Genetics, 1.1 2017, 8, 43. LMNA Sequences of 60,706 Unrelated Individuals Reveal 132 Novel Missense Variants in A-Type Lamins 328 1.1 17 and Suggest a Link between Variant p.G602S and Type 2 Diabetes. Frontiers in Genetics, 2017, 8, 79. A novel TCF7L2 type 2 diabetes SNP identified from fine mapping in African American women. PLoS ONE, 2017, 12, e0172577. 329 1.1 Utilization of genetic data can improve the prediction of type 2 diabetes incidence in a Swedish 330 1.1 3 cohort. PLoS ÖNE, 2017, 12, e0180180. Trans-ethnic predicted expression genome-wide association analysis identifies a gene for estrogen 14 receptor-negative breast cancer. PLoS Genetics, 2017, 13, e1006727. Diverse type 2 diabetes genetic risk factors functionally converge in a phenotype-focused gene 332 1.515 network. PLoS Computational Biology, 2017, 13, e1005816. Shared genetic regulatory networks for cardiovascular disease and type 2 diabetes in multiple 1.5 populations of diverse ethnicities in the United States. PLoS Genetics, 2017, 13, e1007040.

	Сіт	ATION REPORT	
# 334	ARTICLE Difficulty in determining the association of a single nucleotide polymorphism in the ZNF512B gene with the risk and prognosis of amyotrophic lateral sclerosis. Clinical Neurology, 2017, 57, 417-424.	lF 0.0	CITATIONS
335	Genome-wide meta-analysis in Japanese populations identifies novel variants at the TMC6–TMC8 an SIX3–SIX2 loci associated with HbA1c. Scientific Reports, 2017, 7, 16147.	d 1.6	28
336	Genetics and Diabetes. , 2017, , 659-675.		1
337	Maternal diabetes and incidence of childhood cancer – a nationwide cohort study and exploratory genetic analysis. Clinical Epidemiology, 2017, Volume 9, 633-642.	1.5	12
338	Population differentiation in allele frequencies of obesity-associated SNPs. BMC Genomics, 2017, 18, 861.	1.2	40
339	High-resolution metabolomics determines the mode of onset of type 2 diabetes in a 3-year prospective cohort study. International Journal of Molecular Medicine, 2017, 41, 1069-1077.	1.8	6
340	Epigenetic marks of <i>in utero</i> exposure to gestational diabetes and childhood adiposity outcomes: the <scp>EPOCH</scp> Âstudy. Diabetic Medicine, 2018, 35, 612-620.	1.2	43
341	Progress in defining the genetic contribution to type 2 diabetes susceptibility. Current Opinion in Genetics and Development, 2018, 50, 41-51.	1.5	25
342	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	9.4	1,332
343	Childhood BMI and Adult Type 2 Diabetes, Coronary Artery Diseases, Chronic Kidney Disease, and Cardiometabolic Traits: A Mendelian Randomization Analysis. Diabetes Care, 2018, 41, 1089-1096.	4.3	95
344	Arsenic exposure, diabetes-related genes and diabetes prevalence in a general population from Spain. Environmental Pollution, 2018, 235, 948-955.	3.7	52
345	Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	2
346	Pharmacogenomics and big genomic data: from lab to clinic and back again. Human Molecular Genetics, 2018, 27, R72-R78.	1.4	28
347	A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression. American Journal of Human Genetic 2018, 102, 620-635.	s, 2.6	47
348	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	9.4	356
349	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte siz and body composition. Nature Genetics, 2018, 50, 572-580.	e 9.4	143
350	A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure. Cell Reports, 2018, 23, 327-336.	2.9	76
351	Cohort Profile: The Singapore Multi-Ethnic Cohort (MEC) study. International Journal of Epidemiology, 2018, 47, 699-699j.	0.9	67

#	Article	IF	CITATIONS
352	AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism. Journal of Genetics and Genomics, 2018, 45, 111-120.	1.7	15
353	TALK-1 reduces delta-cell endoplasmic reticulum and cytoplasmic calcium levels limiting somatostatin secretion. Molecular Metabolism, 2018, 9, 84-97.	3.0	21
354	Predictive performance of a genetic risk score using 11 susceptibility alleles for the incidence of Type 2 diabetes in a general Japanese population: a nested case–control study. Diabetic Medicine, 2018, 35, 602-611.	1.2	14
355	A systematic analysis highlights multiple long non-coding RNAs associated with cardiometabolic disorders. Journal of Human Genetics, 2018, 63, 431-446.	1.1	17
356	A Single Bout of Electroacupuncture Remodels Epigenetic and Transcriptional Changes in Adipose Tissue in Polycystic Ovary Syndrome. Scientific Reports, 2018, 8, 1878.	1.6	40
357	The Interaction of Genetic Predisposition and Socioeconomic Position With Type 2 Diabetes Mellitus: Cross-Sectional and Longitudinal Analyses From the Lifelines Cohort and Biobank Study. Psychosomatic Medicine, 2018, 80, 252-262.	1.3	6
358	From Genotype to Phenotype. Circulation Genomic and Precision Medicine, 2018, 11, .	1.6	16
359	Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation, 2018, 137, e67-e492.	1.6	5,228
360	Linking Metabolic Disease With the PGC-1α Gly482Ser Polymorphism. Endocrinology, 2018, 159, 853-865.	1.4	24
361	Physiologic Interpretation of GWAS Signals for Type 2 Diabetes. Methods in Molecular Biology, 2018, 1706, 323-351.	0.4	2
362	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	5.8	188
363	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	5.8	59
364	Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes. Nature Communications, 2018, 9, 321.	5.8	85
365	<i>TCF7L2</i> Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care, 2018, 41, 554-561.	4.3	35
366	Inferring Causal Relationships Between Risk Factors and Outcomes from Genome-Wide Association Study Data. Annual Review of Genomics and Human Genetics, 2018, 19, 303-327.	2.5	163
367	Diet/lifestyle and risk of diabetes and glycemic traits: a Mendelian randomization study. Lipids in Health and Disease, 2018, 17, 18.	1.2	11
368	A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes, 2018, 67, 1414-1427.	0.3	136
369	Genetic Drivers of Pancreatic Islet Function. Genetics, 2018, 209, 335-356.	1.2	54

#	Article	IF	CITATIONS
370	Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: A randomized, cross-over study. Clinical Nutrition, 2018, 37, 1133-1140.	2.3	83
371	Pharmacogenetics of oral antidiabetes drugs: evidence for diverse signals at the IRS1 locus. Pharmacogenomics Journal, 2018, 18, 431-435.	0.9	9
372	Cohort Profile: The Oxford Biobank. International Journal of Epidemiology, 2018, 47, 21-21g.	0.9	39
373	Improved detection of genetic loci in estimated glomerular filtration rate and type 2 diabetes using a pleiotropic cFDR method. Molecular Genetics and Genomics, 2018, 293, 225-235.	1.0	14
374	Genome-Wide Meta-Analysis Unravels Interactions between Magnesium Homeostasis and Metabolic Phenotypes. Journal of the American Society of Nephrology: JASN, 2018, 29, 335-348.	3.0	34
375	Interaction of Dietary and Genetic Factors Influencing Body Iron Status and Risk of Type 2 Diabetes Within the EPIC-InterAct Study. Diabetes Care, 2018, 41, 277-285.	4.3	15
376	Increasing prevalence of type 2 diabetes mellitus and impact of ethnicity in north Sudan. Diabetes Research and Clinical Practice, 2018, 136, 93-99.	1.1	27
377	Genetic prediction of type 2 diabetes using deep neural network. Clinical Genetics, 2018, 93, 822-829.	1.0	15
378	Diabetes area patent participation analysis – part II: years 2011-2016. Expert Opinion on Therapeutic Patents, 2018, 28, 111-122.	2.4	7
379	Genetic Approaches to the Study of Gene Variants and Their Impact on the Pathophysiology of Type 2 Diabetes. Biochemical Genetics, 2018, 56, 22-55.	0.8	20
380	Nutrient Sensing, Signaling and Ageing: The Role of IGF-1 and mTOR in Ageing and Age-Related Disease. Sub-Cellular Biochemistry, 2018, 90, 49-97.	1.0	45
381	3 .Neuropathologie und molekulare Mechanismen. , 2018, , 35-122.		1
382	Integration of genetics and miRNA–target gene network identified disease biology implicated in tissue specificity. Nucleic Acids Research, 2018, 46, 11898-11909.	6.5	39
383	A hPSC-based platform to discover gene-environment interactions that impact human β-cell and dopamine neuron survival. Nature Communications, 2018, 9, 4815.	5.8	29
384	Evidence for genetic contribution to the increased risk of type 2 diabetes in schizophrenia. Translational Psychiatry, 2018, 8, 252.	2.4	73
385	Genetics of Obesity in Diverse Populations. Current Diabetes Reports, 2018, 18, 145.	1.7	27
386	The rs4430796 SNP of the HNF1β gene associates with type 2 diabetes in older adults. Revista Da Associação Médica Brasileira, 2018, 64, 586-589.	0.3	3
387	Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genetics, 2018, 14, e1007799.	1.5	38

#	Article	IF	CITATIONS
388	Public resources aid diabetes gene discovery. Nature Genetics, 2018, 50, 1499-1500.	9.4	2
389	Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocrine Reviews, 2018, 39, 629-663.	8.9	154
390	Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China. International Journal of Molecular Sciences, 2018, 19, 1011.	1.8	12
391	Complex patterns of direct and indirect association between the transcription Factor-7 like 2 gene, body mass index and type 2 diabetes diagnosis in adulthood in the Hispanic Community Health Study/Study of Latinos. BMC Obesity, 2018, 5, 26.	3.1	6
392	Druggability of Coronary Artery Disease Risk Loci. Circulation Genomic and Precision Medicine, 2018, 11, e001977.	1.6	18
393	Performance of epistasis detection methods in semi-simulated GWAS. BMC Bioinformatics, 2018, 19, 231.	1.2	16
394	Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism, 2018, 20, 28-50.	2.2	140
395	Additional common variants associated with type 2 diabetes and coronary artery disease detected using a pleiotropic cFDR method. Journal of Diabetes and Its Complications, 2018, 32, 1105-1112.	1.2	5
396	Genome-wide DNA methylation analysis of human peripheral blood reveals susceptibility loci of diabetes-related hearing loss. Journal of Human Genetics, 2018, 63, 1241-1250.	1.1	5
397	Wholeâ€Exome Sequencing Study of Extreme Phenotypes of NAFLD. Hepatology Communications, 2018, 2, 1021-1029.	2.0	8
398	Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method. Bone, 2018, 117, 6-14.	1.4	19
399	Pathophysiology of Type 2 Diabetes in Koreans. Endocrinology and Metabolism, 2018, 33, 9.	1.3	10
400	A robust method to estimate regional polygenic correlation under misspecified linkage disequilibrium structure. Genetic Epidemiology, 2018, 42, 636-647.	0.6	3
401	Genotype Imputation from Large Reference Panels. Annual Review of Genomics and Human Genetics, 2018, 19, 73-96.	2.5	158
402	Rare-Variant Studies to Complement Genome-Wide Association Studies. Annual Review of Genomics and Human Genetics, 2018, 19, 97-112.	2.5	34
403	Analysis of type 2 diabetes and obesity genetic variants in Mexican Pima Indians: Marked allelic differentiation among Amerindians at <i>HLA</i> . Annals of Human Genetics, 2018, 82, 287-299.	0.3	10
404	The personal and clinical utility of polygenic risk scores. Nature Reviews Genetics, 2018, 19, 581-590.	7.7	1,102
405	GLIS1–3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cellular and Molecular Life Sciences, 2018, 75, 3473-3494.	2.4	66

		LPORT	
# 406	ARTICLE Health in medicine: The lost graal. Journal of Psychosomatic Research, 2018, 111, 22-26.	IF 1.2	Citations 3
407	Method to estimate the approximate samples size that yield a certain number of significant GWAS signals in polygenic traits. Genetic Epidemiology, 2018, 42, 488-496.	0.6	2
408	Leveraging epigenomics and contactomics data to investigate SNP pairs in GWAS. Human Genetics, 2018, 137, 413-425.	1.8	8
409	Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. ELife, 2018, 7, .	2.8	103
410	Nonsynonymous Variants in <i>PAX4</i> and <i>GLP1R</i> Are Associated With Type 2 Diabetes in an East Asian Population. Diabetes, 2018, 67, 1892-1902.	0.3	36
411	Genetic variants of gestational diabetes mellitus: a study of 112 SNPs among 8722 women in two independent populations. Diabetologia, 2018, 61, 1758-1768.	2.9	77
412	Identification of novel high-impact recessively inherited type 2 diabetes risk variants in the Greenlandic population. Diabetologia, 2018, 61, 2005-2015.	2.9	14
413	Identification of four genes as novel susceptibility loci for earlyâ€onset type 2 diabetes mellitus, metabolic syndrome, or hyperuricemia. Biomedical Reports, 2018, 9, 21-36.	0.9	6
414	Wnt/β-Catenin Signaling and Obesity. Frontiers in Physiology, 2018, 9, 792.	1.3	96
415	Association of Native American ancestry and common variants in ACE, ADIPOR2, MTNR1B, GCK, TCF7L2 and FTO genes with glycemic traits in Colombian population. Gene, 2018, 677, 198-210.	1.0	12
416	Genetic interaction effects reveal lipid-metabolic and inflammatory pathways underlying common metabolic disease risks. BMC Medical Genomics, 2018, 11, 54.	0.7	13
417	PARP-1 Inhibition Rescues Short Lifespan in Hyperglycemic C. Elegans And Improves GLP-1 Secretion in Human Cells. , 2018, 9, 17.		12
418	Using whole genome scores to compare three clinical phenotyping methods in complex diseases. Scientific Reports, 2018, 8, 11360.	1.6	9
419	Genes regulated by SATB2 during neurodevelopment contribute to schizophrenia and educational attainment. PLoS Genetics, 2018, 14, e1007515.	1.5	29
420	Sarcopoterium spinosum extract improved insulin sensitivity in mice models of glucose intolerance and diabetes. PLoS ONE, 2018, 13, e0196736.	1.1	14
421	A Study on the Association Between Polymorphisms in the Cytochrome P450 Family 17 Subfamily A Member 1 Gene Region and Type 2 Diabetes Mellitus in Han Chinese. Frontiers in Endocrinology, 2018, 9, 323.	1.5	7
422	Determining Genetic Causal Variants Through Multivariate Regression Using Mixture Model Penalty. Frontiers in Genetics, 2018, 9, 77.	1.1	2
423	DNA methylation landscapes in the pathogenesis of type 2 diabetes mellitus. Nutrition and Metabolism, 2018, 15, 47.	1.3	33

ARTICLE IF CITATIONS # Genetic variation of SORBS1 gene is associated with glucose homeostasis and age at onset of diabetes: 424 1.6 29 A SAPPHIRe Cohort Study. Scientific Reports, 2018, 8, 10574. CXCL13 polymorphism is associated with essential hypertension in Tatars from Russia. Molecular 425 1.0 Biology Reports, 2018, 45, 1557-1564. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. 426 1.5 30 PLoS Genetics, 2018, 14, e1007275. An Exome-wide Association Study for Type 2 Diabetes–Attributed End-Stage Kidney Disease in African 427 Americans. Kidney International Ŕeports, 2018, 3, 867-878. Admixture mapping and fine-mapping of birth weight loci in the Black Women's Health Study. Human 428 1.8 6 Genetics, 2018, 137, 535-542. Genetics of Diabetes and Diabetic Complications. Endocrinology, 2018, , 1-60. 0.1 430 Type 2 Diabetes Mellitus in Youth., 2018, , 737-753. 1 Transethnic differences in GWAS signals: A simulation study. Annals of Human Genetics, 2018, 82, 0.3 21 280-286. Pilot genome-wide association study identifying novel risk loci for type 2 diabetes in a Maya 432 1.0 15 population. Gene, 2018, 677, 324-331. Confirmation of GLRA3 as a susceptibility locus for albuminuria in Finnish patients with type 1 1.6 diabetes. Scientific Reports, 2018, 8, 12408. Circulating vitamin E levels and Alzheimer's disease: a Mendelian randomization study. Neurobiology 434 1.5 53 of Aging, 2018, 72, 189.e1-189.e9. Glucose and Insulin-Related Traits, Type 2 Diabetes and Risk of Schizophrenia: A Mendelian 34 Randomization Study. EBioMedicine, 2018, 34, 182-188. Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function. 436 5.8 85 Nature Communications, 2018, 9, 2976. Admixture mapping and fine-mapping of type 2 diabetes susceptibility loci in African American women. Journal of Human Genetics, 2018, 63, 1109-1117. 1.1 Cohort Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS). International 438 0.9 59 Journal of Epidemiology, 2018, 47, 380-381j. Genomic insights into the causes of type 2 diabetes. Lancet, The, 2018, 391, 2463-2474. Genetically driven adiposity traits increase the risk of coronary artery disease independent of blood 440 1.4 8 pressure, dyslipidaemia, glycaemic traits. European Journal of Human Genetics, 2018, 26, 1547-1553. Human Genetics of Obesity and Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 441 58 1.6 2018, 11, e002090.

#	Article	IF	CITATIONS
442	Association between IL-15 and insulin plasmatic concentrations in patients with pulmonary tuberculosis and type 2 diabetes. Tuberculosis, 2018, 111, 114-120.	0.8	6
443	Body mass index and the risk of mortality among Chinese adults with Type 2 diabetes. Diabetic Medicine, 2018, 35, 1562-1570.	1.2	10
444	Genetic Predisposition to Type 2 Diabetes and Risk of Subclinical Atherosclerosis and Cardiovascular Diseases Among 160,000 Chinese Adults. Diabetes, 2019, 68, 2155-2164.	0.3	42
445	Evolutionary history of diseaseâ€susceptibility loci identified in longitudinal exomeâ€wide association studies. Molecular Genetics & Genomic Medicine, 2019, 7, e925.	0.6	1
446	Identification of two microRNA nodes as potential cooperative modulators of liver metabolism. Hepatology Research, 2019, 49, 1451-1465.	1.8	9
447	A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications, 2019, 10, 3669.	5.8	214
448	Targeted sequencing of candidate genes of dyslipidemia in Punjabi Sikhs: Population-specific rare variants in GCKR promote ectopic fat deposition. PLoS ONE, 2019, 14, e0211661.	1.1	9
449	WITER: a powerful method for estimation of cancer-driver genes using a weighted iterative regression modelling background mutation counts. Nucleic Acids Research, 2019, 47, e96-e96.	6.5	28
450	Exploration of a diversity of computational and statistical measures of association for genome-wide genetic studies. BioData Mining, 2019, 12, 14.	2.2	3
451	ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response. Nature Communications, 2019, 10, 3195.	5.8	69
452	Association of Polymorphisms in miRNA Processing Genes With Type 2 Diabetes Mellitus and Its Vascular Complications in a Southern Chinese Population. Frontiers in Endocrinology, 2019, 10, 461.	1.5	7
453	A critical evaluation of results from genome-wide association studies of micronutrient status and their utility in the practice of precision nutrition. British Journal of Nutrition, 2019, 122, 121-130.	1.2	7
454	Genetic Determinants of Type 2 Diabetes. , 2019, , 117-125.		0
455	Lifestyle intervention modifies the effect of the MC4R genotype on changes in insulin resistance among women with prior gestational diabetes: Tianjin Gestational Diabetes Mellitus Prevention Program. American Journal of Clinical Nutrition, 2019, 110, 750-758.	2.2	9
456	Health Challenges of the Pacific Region: Insights From History, Geography, Social Determinants, Genetics, and the Microbiome. Frontiers in Immunology, 2019, 10, 2184.	2.2	31
457	Circulating vitamin E and cardiometabolic measures: a Mendelian randomization analysis. Journal of Clinical Biochemistry and Nutrition, 2019, 65, 160-169.	0.6	3
458	Towards clinical utility of polygenic risk scores. Human Molecular Genetics, 2019, 28, R133-R142.	1.4	381
459	CRISPR-Cas9-mediated knockout of SPRY2 in human hepatocytes leads to increased glucose uptake and lipid droplet accumulation. BMC Endocrine Disorders, 2019, 19, 115.	0.9	6

	CHATION RE	FORT	
#	Article	IF	CITATIONS
460	Dietary Fat and the Genetic Risk of Type 2 Diabetes. Current Diabetes Reports, 2019, 19, 109.	1.7	5
461	Nutrigenomics and personalized nutrition for the prevention of hyperglycemia and type 2 diabetes mellitus. , 2019, , 339-352.		1
462	Timing of Breakfast, Lunch, and Dinner. Effects on Obesity and Metabolic Risk. Nutrients, 2019, 11, 2624.	1.7	113
463	Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Human Molecular Genetics, 2019, 28, 4161-4172.	1.4	41
464	Estimation of DNA contamination and its sources in genotyped samples. Genetic Epidemiology, 2019, 43, 980-995.	0.6	11
465	A Proteomics-Based Approach Reveals Differential Regulation of Urine Proteins between Metabolically Healthy and Unhealthy Obese Patients. International Journal of Molecular Sciences, 2019, 20, 4905.	1.8	16
466	"Omics―and "epi-omics―underlying the β-cell adaptation to insulin resistance. Molecular Metabolism, 2019, 27, S42-S48.	3.0	19
467	Circulating Vitamin E Levels and Risk of Coronary Artery Disease and Myocardial Infarction: A Mendelian Randomization Study. Nutrients, 2019, 11, 2153.	1.7	35
468	Association of Birth Weight With Type 2 Diabetes and Glycemic Traits. JAMA Network Open, 2019, 2, e1910915.	2.8	41
469	Identification of <i>C2CD4A</i> as a human diabetes susceptibility gene with a role in β cell insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20033-20042.	3.3	38
470	Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nature Communications, 2019, 10, 343.	5.8	417
471	Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation, 2019, 139, e56-e528.	1.6	6,192
472	Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Human Molecular Genetics, 2019, 28, 858-874.	1.4	55
473	International Society of Psychiatric Genetics Ethics Committee: Issues facing us. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 543-554.	1.1	16
474	The Burmese cat as a genetic model of type 2 diabetes in humans. Animal Genetics, 2019, 50, 319-325.	0.6	13
475	Genetic and Epigenetic Fine Mapping of Complex Trait Associated Loci in the Human Liver. American Journal of Human Genetics, 2019, 105, 89-107.	2.6	35
476	Open Chromatin Profiling in Adipose Tissue Marks Genomic Regions with Functional Roles in Cardiometabolic Traits. G3: Genes, Genomes, Genetics, 2019, 9, 2521-2533.	0.8	19
477	Genomics of disease risk in globally diverse populations. Nature Reviews Genetics, 2019, 20, 520-535.	7.7	217

#	Article	IF	Citations
478	Association Between Genetic Risk and Development of Type 2 Diabetes in a General Japanese Population: The Hisayama Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3213-3222.	1.8	12
479	Assessment of Causal Direction Between Gut Microbiota–Dependent Metabolites and Cardiometabolic Health: A Bidirectional Mendelian Randomization Analysis. Diabetes, 2019, 68, 1747-1755.	0.3	114
480	An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis. Nature Communications, 2019, 10, 2581.	5.8	62
481	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	13.7	248
482	HNF1A gene p.I27L is associated with early-onset, maturity-onset diabetes of the young-like diabetes in Turkey. BMC Endocrine Disorders, 2019, 19, 51.	0.9	11
483	Overlap in the Genetic Architecture of Stroke Risk, Early Neurological Changes, and Cardiovascular Risk Factors. Stroke, 2019, 50, 1339-1345.	1.0	17
484	Shared genetic underpinnings of childhood obesity and adult cardiometabolic diseases. Human Genomics, 2019, 13, 17.	1.4	17
485	Effects of variants of 50 genes on diabetes risk among the Chinese population born in the early 1960s. Journal of Diabetes, 2019, 11, 857-868.	0.8	6
486	Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nature Communications, 2019, 10, 1260.	5.8	101
487	JAZF1, a relevant metabolic regulator in type 2 diabetes. Diabetes/Metabolism Research and Reviews, 2019, 35, e3148.	1.7	28
488	Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nature Communications, 2019, 10, 1100.	5.8	369
489	The Genetic Basis of Metabolic Disease. Cell, 2019, 177, 146-161.	13.5	104
490	Genetic variants in promoter regions associated with type 2 diabetes mellitus: A largeâ€scale metaâ€analysis and subgroup analysis. Journal of Cellular Biochemistry, 2019, 120, 13012-13025.	1.2	3
491	Methods for the Analysis and Interpretation for Rare Variants Associated with Complex Traits. Current Protocols in Human Genetics, 2019, 101, e83.	3.5	11
492	Genetic overlap between birthweight and adult cardiometabolic diseases has implications for genomic medicine. Scientific Reports, 2019, 9, 4076.	1.6	5
493	Omics: Potential Role in Early Phase Drug Development. , 2019, , 309-347.		0
494	Animal Models of Type 2 Diabetes, Obesity and Nonalcoholic Steatohepatitis– Clinical Translatability and Applicability in Preclinical Drug Development. , 2019, , 369-403.		4
495	Laser capture microdissection of human pancreatic islets reveals novel eQTLs associated with type 2 diabetes. Molecular Metabolism, 2019, 24, 98-107.	3.0	26

#	Apticie	IF	CITATIONS
π 496	The pleiotropic effect of rs7903146 on type 2 diabetes and ischemic stroke: a family-based study in a Chinese population. Journal of Thrombosis and Thrombolysis, 2019, 48, 303-314.	1.0	0
497	The Future of Genomic Studies Must Be Globally Representative: Perspectives from PAGE. Annual Review of Genomics and Human Genetics, 2019, 20, 181-200.	2.5	33
498	Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nature Genetics, 2019, 51, 636-648.	9.4	112
499	Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 2019, 51, 584-591.	9.4	1,664
500	Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data. Genome Medicine, 2019, 11, 19.	3.6	33
501	Heterogeneous impact of type 2 diabetes mellitus-related genetic variants on gestational glycemic traits: review and future research needs. Molecular Genetics and Genomics, 2019, 294, 811-847.	1.0	7
502	Dairy Product Intake and Risk of Type 2 Diabetes in EPIC-InterAct: A Mendelian Randomization Study. Diabetes Care, 2019, 42, 568-575.	4.3	29
503	Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability. PLoS Genetics, 2019, 15, e1007890.	1.5	15
504	Reply. Hepatology, 2019, 70, 451-452.	3.6	0
505	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	9.4	89
506	Concordance of chronic conditions among the household members in Shanghai: a cross-sectional study. BMJ Open, 2019, 9, e031240.	0.8	3
507	SLC22A1 And ATM Genes Polymorphisms Are Associated With The Risk Of Type 2 Diabetes Mellitus In Western Saudi Arabia: A Case-Control Study. The Application of Clinical Genetics, 2019, Volume 12, 213-219.	1.4	11
508	Childhood obesity leads to adult type 2 diabetes and coronary artery diseases. Medicine (United) Tj ETQq0 0 0 rg	gBT /Qverlo 0.4	pck_{53} 10 Tf 50
509	Epigenome-Wide Association Study of Incident Type 2 Diabetes in a British Population: EPIC-Norfolk Study. Diabetes, 2019, 68, 2315-2326.	0.3	77
510	Pancreatic Islet Transcriptional Enhancers and Diabetes. Current Diabetes Reports, 2019, 19, 145.	1.7	11
511	A novel circRNA-miRNA-mRNA network identifies circ-YOD1 as a biomarker for coronary artery disease. Scientific Reports, 2019, 9, 18314.	1.6	60
512	Genetic Risk Score in Diabetes Associated With Chronic Pancreatitis Versus Type 2 Diabetes Mellitus. Clinical and Translational Gastroenterology, 2019, 10, e00057.	1.3	35
513	DNA Methylation and Type 2 Diabetes: the Use of Mendelian Randomization to Assess Causality. Current Genetic Medicine Reports, 2019, 7, 191-207.	1.9	5

	CITATION R	EPORT	
#	Article	IF	CITATIONS
514	Requirement for translocon-associated protein (TRAP) $\hat{I}\pm$ in insulin biogenesis. Science Advances, 2019, 5, eaax0292.	4.7	21
515	Predicting Polygenic Risk of Psychiatric Disorders. Biological Psychiatry, 2019, 86, 97-109.	0.7	252
516	Genotype and Phenotype. , 2019, , 237-279.		0
517	Conducting a Reproducible Mendelian Randomization Analysis Using the R Analytic Statistical Environment. Current Protocols in Human Genetics, 2019, 101, e82.	3.5	45
518	Type 2 Diabetes and Hypertension. Circulation Research, 2019, 124, 930-937.	2.0	136
519	A panel of 32 AIMs suitable for population stratification correction and global ancestry estimation in Mexican mestizos. BMC Genetics, 2019, 20, 5.	2.7	11
520	Generalizing polygenic risk scores from Europeans to Hispanics/Latinos. Genetic Epidemiology, 2019, 43, 50-62.	0.6	89
521	Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype Is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension. Diabetes, 2019, 68, 207-219.	0.3	72
522	General Principles of Endocrine Genetics. , 2019, , 23-30.		0
523	Role of metabolic syndrome and its components as mediators of the genetic effect on type 2 diabetes: A familyâ€based study in China. Journal of Diabetes, 2019, 11, 552-562.	0.8	3
524	Sequence variants associating with urinary biomarkers. Human Molecular Genetics, 2019, 28, 1199-1211.	1.4	28
525	Modelling the endocrine pancreas in health and disease. Nature Reviews Endocrinology, 2019, 15, 155-171.	4.3	71
526	Estimating crossâ€population genetic correlations of causal effect sizes. Genetic Epidemiology, 2019, 43, 180-188.	0.6	70
527	Genome-wide association analysis of common genetic variants of resistant hypertension. Pharmacogenomics Journal, 2019, 19, 295-304.	0.9	16
528	Big data management challenges in health research—a literature review. Briefings in Bioinformatics, 2019, 20, 156-167.	3.2	56
529	Genetic and clinic predictors of new onset diabetes mellitus after transplantation. Pharmacogenomics Journal, 2019, 19, 53-64.	0.9	9
530	Two novel susceptibility loci for type 2 diabetes mellitus identified by longitudinal exome-wide association studies in a Japanese population. Genomics, 2019, 111, 34-42.	1.3	5
531	The healthy Nordic diet for blood glucose control: a systematic review and meta-analysis of randomized controlled clinical trials. Acta Diabetologica, 2020, 57, 1-12.	1.2	30

#	Article	IF	CITATIONS
532	ldentifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Briefings in Bioinformatics, 2020, 21, 1016-1022.	3.2	63
533	Gut microbiota composition explains more variance in the host cardiometabolic risk than genetic ancestry. Gut Microbes, 2020, 11, 191-204.	4.3	11
534	Mediterranean Diet Adherence Modulates Anthropometric Measures by TCF7L2 Genotypes among Puerto Rican Adults. Journal of Nutrition, 2020, 150, 167-175.	1.3	12
535	Altered gene regulation as a candidate mechanism by which ciliopathy gene SDCCAG8 contributes to schizophrenia and cognitive function. Human Molecular Genetics, 2020, 29, 407-417.	1.4	8
536	Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy. Trends in Endocrinology and Metabolism, 2020, 31, 192-204.	3.1	89
537	Genetic Risk, a Healthy Lifestyle, and Type 2 Diabetes: the Dongfeng-Tongji Cohort Study. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1242-1250.	1.8	17
538	Genetics of Alzheimer's disease: where we are, and where we are going. Current Opinion in Neurobiology, 2020, 61, 40-48.	2.0	144
539	PRMT1 Is Required for the Maintenance of Mature β-Cell Identity. Diabetes, 2020, 69, 355-368.	0.3	22
540	General regression model: A "modelâ€free―association test for quantitative traits allowing to test for the underlying genetic model. Annals of Human Genetics, 2020, 84, 280-290.	0.3	0
541	A Bayesian hierarchical variable selection prior for pathwayâ€based GWAS using summary statistics. Statistics in Medicine, 2020, 39, 724-739.	0.8	3
542	Magnetic resonance imaging of obesity and metabolic disorders: Summary from the 2019 ISMRM Workshop. Magnetic Resonance in Medicine, 2020, 83, 1565-1576.	1.9	24
543	Assessment of MTNR1B Type 2 Diabetes Genetic Risk Modification by Shift Work and Morningness-Eveningness Preference in the UK Biobank. Diabetes, 2020, 69, 259-266.	0.3	11
544	Polygenic Scores in Developmental Psychology: Invite Genetics In, Leave Biodeterminism Behind. Annual Review of Developmental Psychology, 2020, 2, 389-411.	1.4	22
545	Genetics of height and risk of atrial fibrillation: A Mendelian randomization study. PLoS Medicine, 2020, 17, e1003288.	3.9	51
546	MethHaplo: combining allele-specific DNA methylation and SNPs for haplotype region identification. BMC Bioinformatics, 2020, 21, 451.	1.2	5
547	Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nature Genetics, 2020, 52, 1169-1177.	9.4	206
548	Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. , 2020, 215, 107632.		26
549	Genome plasticity and endocrine diseases. , 2020, , 211-235.		1

#	Article	IF	CITATIONS
550	Analysis of Glucocorticoid-Related Genes Reveal <i>CCHCR1</i> as a New Candidate Gene for Type 2 Diabetes. Journal of the Endocrine Society, 2020, 4, bvaa121.	0.1	8
551	Genetic Polymorphism of Head and Neck Cancers in African Populations: A Systematic Review. OTO Open, 2020, 4, 2473974X20942202.	0.6	4
552	New Insights into the Genetics of Latent Autoimmune Diabetes in Adults. Current Diabetes Reports, 2020, 20, 43.	1.7	13
553	Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. Applied System Innovation, 2020, 3, 31.	2.7	21
554	Fine-mapping genetic associations. Human Molecular Genetics, 2020, 29, R81-R88.	1.4	32
555	Gestational diabetes mellitus among Sub-Saharan African and Surinamese women in the Netherlands. Diabetes Research and Clinical Practice, 2020, 168, 108367.	1.1	3
556	Translocon-Associated Protein Complex (TRAP) is Crucial for Co-Translational Translocation of Pre-Proinsulin. Journal of Molecular Biology, 2020, 432, 166694.	2.0	22
557	Molecular insights into therapeutic promise of targeting of Wnt/β-catenin signaling pathway in obesity. Molecular Biology Reports, 2020, 47, 8091-8100.	1.0	7
558	Coffee Consumption, Genetic Polymorphisms, and the Risk of Type 2 Diabetes Mellitus: A Pooled Analysis of Four Prospective Cohort Studies. International Journal of Environmental Research and Public Health, 2020, 17, 5379.	1.2	8
559	The making of insulin in health and disease. Diabetologia, 2020, 63, 1981-1989.	2.9	48
560	Precision Health and Nursing: Seeing the Familiar in the Foreign. Canadian Journal of Nursing Research, 2020, 52, 199-208.	0.6	7
561	Mapping the genetic basis of diabetes mellitus in the Australian Burmese cat (Felis catus). Scientific Reports, 2020, 10, 19194.	1.6	12
562	Common mechanisms for type 2 diabetes and psychosis: Findings from a prospective birth cohort. Schizophrenia Research, 2020, 223, 227-235.	1.1	10
563	Genetically Determined Birthweight Associates With Atrial Fibrillation. Circulation Genomic and Precision Medicine, 2020, 13, e002553.	1.6	13
564	Shared genetic architecture and casual relationship between leptin levels and type 2 diabetes: large-scale cross-trait meta-analysis and Mendelian randomization analysis. BMJ Open Diabetes Research and Care, 2020, 8, e001140.	1.2	13
565	Exploring Diseases/Traits and Blood Proteins Causally Related to Expression of ACE2, the Putative Receptor of SARS-CoV-2: A Mendelian Randomization Analysis Highlights Tentative Relevance of Diabetes-Related Traits. Diabetes Care, 2020, 43, 1416-1426.	4.3	183
566	Genetic risk scores for coronary artery disease and its traditional risk factors: Their role in the progression of coronary artery calcification—Results of the Heinz Nixdorf Recall study. PLoS ONE, 2020, 15, e0232735.	1.1	7
567	Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood. European Journal of Epidemiology, 2020, 35, 685-697	2.5	9

#	Article	IF	CITATIONS
568	Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clinical Genetics, 2020, 98, 525-547.	1.0	33
569	Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes. Diabetes, 2020, 69, 1843-1853.	0.3	64
570	Genetics of diabetes mellitus and diabetes complications. Nature Reviews Nephrology, 2020, 16, 377-390.	4.1	657
571	Body Fat Percentage Rather than Body Mass Index Related to the High Occurrence of Type 2 Diabetes. Archives of Medical Research, 2020, 51, 564-571.	1.5	11
572	Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes. BMC Bioinformatics, 2020, 21, 178.	1.2	7
574	Glucose transporter 10 modulates adipogenesis via an ascorbic acid-mediated pathway to protect mice against diet-induced metabolic dysregulation. PLoS Genetics, 2020, 16, e1008823.	1.5	6
575	Genetics of type 2 diabetes and coronary artery disease and their associations with twelve cardiometabolic traits in the United Arab Emirates population. Gene, 2020, 750, 144722.	1.0	7
576	Fine-tuning of Genome-Wide Polygenic Risk Scores and Prediction of Gestational Diabetes in South Asian Women. Scientific Reports, 2020, 10, 8941.	1.6	25
577	Genetic variants association with cancers in African-based populations: A systematic review. Cancer Epidemiology, 2020, 67, 101739.	0.8	1
578	Cohort profile: the Singapore diabetic cohort study. BMJ Open, 2020, 10, e036443.	0.8	3
579	Towards an understanding of women's brain aging: the immunology of pregnancy and menopause. Frontiers in Neuroendocrinology, 2020, 58, 100850.	2.5	29
580	Unravelling the complex genetics of common kidney diseases: from variants to mechanisms. Nature Reviews Nephrology, 2020, 16, 628-640.	4.1	33
581	Complexities of Understanding Function from CKD-Associated DNA Variants. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1028-1040.	2.2	1
582	Study of genetic correlation between children's sleep and obesity. Journal of Human Genetics, 2020, 65, 949-959.	1.1	4
583	Ancestry-specific associations identified in genome-wide combined-phenotype study of red blood cell traits emphasize benefits of diversity in genomics. BMC Genomics, 2020, 21, 228.	1.2	19
584	Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. Advances in Experimental Medicine and Biology, 2020, 1307, 499-519.	0.8	12
585	"H―for Heterogeneity in the Algorithm for Type 2 Diabetes Management. Current Diabetes Reports, 2020, 20, 14.	1.7	6
586	Transcription Factor RREB1: from Target Genes towards Biological Functions. International Journal of Biological Sciences, 2020, 16, 1463-1473.	2.6	38

#	Article	IF	CITATIONS
587	Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals. Nature Communications, 2020, 11, 1628.	5.8	66
588	Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. International Journal of Molecular Sciences, 2020, 21, 1703.	1.8	46
589	A rare missense variant in the milk fat globule-EGF factor 8 (MFGE8) increases T2DM susceptibility and cardiovascular disease risk with population-specific effects. Acta Diabetologica, 2020, 57, 733-741.	1.2	5
590	Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nature Reviews Endocrinology, 2020, 16, 202-212.	4.3	89
591	Synthesis of benzo[<i>b</i>]xantheneâ€triones and tetrahydrochromeno[2,3â€ <i>b</i>]xanthene tetraones via threeâ€or pseudo–fiveâ€component reactions using Fe ₃ O ₄ @SiO ₂ /PEtOx as a novel, magnetically recyclable, and ecoâ€friendly nanocatalyst. Journal of Heterocyclic Chemistry, 2020, 57, 1825-1837.	1.4	11
592	Contribution of Known Genetic Risk Variants to Dyslipidemias and Type 2 Diabetes in Mexico: A Population-Based Nationwide Study. Genes, 2020, 11, 114.	1.0	7
593	The Effect Sizes of PPARÎ ³ rs1801282, FTO rs9939609, and MC4R rs2229616 Variants on Type 2 Diabetes Mellitus Risk among the Western Saudi Population: A Cross-Sectional Prospective Study. Genes, 2020, 11, 98.	1.0	17
594	From Genetic Association to Molecular Mechanisms for Islet-cell Dysfunction in Type 2 Diabetes. Journal of Molecular Biology, 2020, 432, 1551-1578.	2.0	27
595	Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation, 2020, 141, e139-e596.	1.6	5,545
596	E2f8 and Dlg2 genes have independent effects on impaired insulin secretion associated with hyperglycaemia. Diabetologia, 2020, 63, 1333-1348.	2.9	14
597	Genetic factors and risk of type 2 diabetes among women with a history of gestational diabetes: findings from two independent populations. BMJ Open Diabetes Research and Care, 2020, 8, e000850.	1.2	23
598	Pleiotropy in the Genetic Predisposition to Rheumatoid Arthritis: A Phenomeâ€Wide Association Study and Inverse Variance–Weighted Metaâ€Analysis. Arthritis and Rheumatology, 2020, 72, 1483-1492.	2.9	10
599	Improving the coverage of credible sets in Bayesian genetic fine-mapping. PLoS Computational Biology, 2020, 16, e1007829.	1.5	31
600	Insulin resistance and obesity. , 2020, , 1-70.		0
602	Genome wide association study of 40 clinical measurements in eight dog breeds. Scientific Reports, 2020, 10, 6520.	1.6	8
603	Corticotropin-Releasing Factor Family: A Stress Hormone-Receptor System's Emerging Role in Mediating Sex-Specific Signaling. Cells, 2020, 9, 839.	1.8	24
604	Trans-ancestral dissection of urate- and gout-associated major loci SLC2A9 and ABCG2 reveals primate-specific regulatory effects. Journal of Human Genetics, 2021, 66, 161-169.	1.1	6
605	Genes influenced by MEF2C contribute to neurodevelopmental disease via gene expression changes that affect multiple types of cortical excitatory neurons. Human Molecular Genetics, 2021, 30, 961-970.	1.4	17

#	Article	IF	CITATIONS
606	A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 372-387.	1.8	12
607	Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 80-90.	1.8	5
608	GWA-based pleiotropic analysis identified potential SNPs and genes related to type 2 diabetes and obesity. Journal of Human Genetics, 2021, 66, 297-306.	1.1	12
609	Prediction of complex phenotypes using the Drosophila melanogaster metabolome. Heredity, 2021, 126, 717-732.	1.2	4
610	Genetic risk score constructed from common genetic variants is associated with cardiovascular disease risk in type 2 diabetes mellitus. Journal of Gene Medicine, 2021, 23, e3305.	1.4	5
611	Fas-Associated Factor 1 Promotes Hepatic Insulin Resistance via JNK Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	1.9	2
612	Heritability and family-based GWAS analyses of the <i>N</i> -acyl ethanolamine and ceramide plasma lipidome. Human Molecular Genetics, 2021, 30, 500-513.	1.4	13
613	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	5.8	87
614	Combining twin-family designs with measured genetic variants to study the causes of epigenetic variation. , 2021, , 239-259.		0
615	What HaveWe Learned fromGWAS?., 2021, , 159-183.		0
616	Mapping the Generations: Survey of the Literature on Multigenerational Memory. Studies in the Psychosocial, 2021, , 41-80.	0.1	0
618	Heart Disease and Stroke Statistics—2021 Update. Circulation, 2021, 143, e254-e743.	1.6	3,444
619	Transethnic analysis of the human leukocyte antigen region for ulcerative colitis reveals not only shared but also ethnicity-specific disease associations. Human Molecular Genetics, 2021, 30, 356-369.	1.4	19
620	DNA methylation of blood cells is associated with prevalent type 2 diabetes in a meta-analysis of four European cohorts. Clinical Epigenetics, 2021, 13, 40.	1.8	37
621	Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion. Cell Reports, 2021, 34, 108703.	2.9	4
622	Relationship Between Glycemia and Cognitive Function, Structural Brain Outcomes, and Dementia: A Mendelian Randomization Study in the UK Biobank. Diabetes, 2021, 70, 2313-2321.	0.3	22
623	Association Between Genetic Risk for Type 2 Diabetes and Structural Brain Connectivity in Major Depressive Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 333-340.	1.1	4
624	A Genetic Risk Score Improves the Prediction of Type 2 Diabetes Mellitus in Mexican Youths but Has Lower Predictive Utility Compared With Non-Genetic Factors. Frontiers in Endocrinology, 2021, 12, 647864.	1.5	9

#	Article	IF	CITATIONS
625	Bifunctional protein PCBD2 operates as a coâ€factor for hepatocyte nuclear factor 1β and modulates gene transcription. FASEB Journal, 2021, 35, e21366.	0.2	1
626	Evolutionary forces in diabetes and hypertension pathogenesis in Africans. Human Molecular Genetics, 2021, 30, R110-R118.	1.4	6
627	APOA1 (-75 G>A and 83 C>T) and APOB (2488 C>T) polymorphisms and its association with Myocardial Infarction, lipids and apolipoproteins in patients with Type 2 Diabetes Mellitus. Archives of Medical Science, 2021, , .	0.4	0
628	Associations and limited shared genetic aetiology between bipolar disorder and cardiometabolic traits in the UK Biobank. Psychological Medicine, 2022, 52, 4039-4048.	2.7	10
629	TYK2 Promoter Variant Is Associated with Impaired Insulin Secretion and Lower Insulin Resistance in Japanese Type 2 Diabetes Patients. Genes, 2021, 12, 400.	1.0	6
630	Enhancer-Gene Interaction Analyses Identified the Epidermal Growth Factor Receptor as a Susceptibility Gene for Type 2 Diabetes Mellitus. Diabetes and Metabolism Journal, 2021, 45, 241-250.	1.8	5
631	Powerful p-value combination methods to detect incomplete association. Scientific Reports, 2021, 11, 6980.	1.6	35
632	Association of Common Genetic Risk Variants With Gestational Diabetes Mellitus and Their Role in GDM Prediction. Frontiers in Endocrinology, 2021, 12, 628582.	1.5	42
633	Genetic architecture of type 2 diabetes and its shared genetic component with low birth weight in African Americans. Current Opinion in Clinical Nutrition and Metabolic Care, 2021, 24, 326-332.	1.3	2
634	Identification of novel functional CpC-SNPs associated with Type 2 diabetes and birth weight. Aging, 2021, 13, 10619-10658.	1.4	5
635	A unified framework for cross-population trait prediction by leveraging the genetic correlation of polygenic traits. American Journal of Human Genetics, 2021, 108, 632-655.	2.6	73
636	Allele-specific variation at <i>APOE</i> increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer's disease and myocardial infarction. Human Molecular Genetics, 2021, 30, 1443-1456.	1.4	20
638	Deficient endoplasmic reticulum transloconâ€essociated protein complex limits the biosynthesis of proinsulin and insulin. FASEB Journal, 2021, 35, e21515.	0.2	11
639	Progress in Defining the Genetic Contribution to Type 2 Diabetes in Individuals of East Asian Ancestry. Current Diabetes Reports, 2021, 21, 17.	1.7	5
640	Assessment of genetic risk of type 2 diabetes among Pakistanis based on GWAS-implicated loci. Gene, 2021, 783, 145563.	1.0	7
641	Human Pluripotent Stem Cells Go Diabetic: A Glimpse on Monogenic Variants. Frontiers in Endocrinology, 2021, 12, 648284.	1.5	2
642	Impact of serum calcium levels on total body bone mineral density: A mendelian randomization study in five age strata. Clinical Nutrition, 2021, 40, 2726-2733.	2.3	16
643	Pharmacogenetic association of diabetes-associated genetic risk score with rapid progression of coronary artery calcification following treatment with HMC-CoA-reductase inhibitors —results of the Heinz Nixdorf Recall Study. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1713-1725.	1.4	4

#	Article	IF	CITATIONS
644	Genetics of Body Fat Distribution: Comparative Analyses in Populations with European, Asian and African Ancestries. Genes, 2021, 12, 841.	1.0	21
646	Association of HLA-B Gene Polymorphisms with Type 2 Diabetes in Pashtun Ethnic Population of Khyber Pakhtunkhwa, Pakistan. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	4
647	A genome-wide association study identifies 5 loci associated with frozen shoulder and implicates diabetes as a causal risk factor. PLoS Genetics, 2021, 17, e1009577.	1.5	23
648	ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs. Cellular and Molecular Life Sciences, 2021, 78, 5427-5445.	2.4	18
649	A Preliminary Study Showing the Impact of Genetic and Dietary Factors on GC–MS-Based Plasma Metabolome of Patients with and without PROX1-Genetic Predisposition to T2DM up to 5 Years Prior to Prediabetes Appearance. Current Issues in Molecular Biology, 2021, 43, 513-528.	1.0	5
650	Gaining insight into metabolic diseases from human genetic discoveries. Trends in Genetics, 2021, 37, 1081-1094.	2.9	11
652	DR15-DQ6 remains dominantly protective against type 1 diabetes throughout the first five decades of life. Diabetologia, 2021, 64, 2258-2265.	2.9	8
654	Retinol-binding protein 4 in obesity and metabolic dysfunctions. Molecular and Cellular Endocrinology, 2021, 531, 111312.	1.6	37
655	A novel 2Âbp deletion variant in Ovine-DRB1 gene is associated with increased Visna/maedi susceptibility in Turkish sheep. Scientific Reports, 2021, 11, 14435.	1.6	4
656	DeepGP: An Integrated Deep Learning Method for Endocrine Disease Gene Prediction Using Omics Data. Frontiers in Cell and Developmental Biology, 2021, 9, 700061.	1.8	1
657	The Role of Electronic Health Records in Advancing Genomic Medicine. Annual Review of Genomics and Human Genetics, 2021, 22, 219-238.	2.5	11
658	JAZF1 heterozygous knockout mice show altered adipose development and metabolism. Cell and Bioscience, 2021, 11, 161.	2.1	6
659	TCF19 Impacts a Network of Inflammatory and DNA Damage Response Genes in the Pancreatic β-Cell. Metabolites, 2021, 11, 513.	1.3	6
661	Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. Journal of Clinical Medicine, 2021, 10, 3760.	1.0	19
662	Identifying causal variants by fine mapping across multiple studies. PLoS Genetics, 2021, 17, e1009733.	1.5	34
663	Anticipation of Precision Diabetes and Promise of Integrative Multi-Omics. Endocrinology and Metabolism Clinics of North America, 2021, 50, 559-574.	1.2	2
664	Chemo-Preventive Action of Resveratrol: Suppression of p53—A Molecular Targeting Approach. Molecules, 2021, 26, 5325.	1.7	18
665	Relationship between glucose homeostasis and obesity in early life—a study of Italian children and adolescents. Human Molecular Genetics, 2022, 31, 816-826.	1.4	10

\sim			-	
	ITAT	ION	REDC) R T
<u> </u>	/		ILLI C	

#	ARTICLE	IF	CITATIONS
667	Inhibition of NLRC5 regulates cytokine expression in CD4+ T helper lymphocytes and prolongs murine islet and skin allograft survival. Molecular Immunology, 2021, 137, 67-74.	1.0	1
668	The importance of increasing population diversity in genetic studies of type 2 diabetes and related glycaemic traits. Diabetologia, 2021, 64, 2653-2664.	2.9	10
669	A role for zinc transporter gene SLC39A12 in the nervous system and beyond. Gene, 2021, 799, 145824.	1.0	7
670	Differential and spatial expression meta-analysis of genes identified in genome-wide association studies of depression. Translational Psychiatry, 2021, 11, 8.	2.4	22
671	Systematic analysis of binding of transcription factors to noncoding variants. Nature, 2021, 591, 147-151.	13.7	89
672	Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nature Genetics, 2021, 53, 195-204.	9.4	125
673	Human Pluripotent Stem Cells: A Unique Tool for Toxicity Testing in Pancreatic Progenitor and Endocrine Cells. Frontiers in Endocrinology, 2020, 11, 604998.	1.5	2
674	Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. Journal of Clinical Investigation, 2021, 131, .	3.9	39
675	Accurate Diagnosis of Small Ruminant Lentivirus Infection Is Needed for Selection of Resistant Sheep through TMEM154 E35K Genotyping. Pathogens, 2021, 10, 83.	1.2	11
676	Gene-Environment Interaction and Individual Susceptibility to Metabolic Disorders. , 2020, , 81-94.		1
677	Bioinformatics, Genomics and Diabetes. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-18.	0.2	1
678	Genome-Wide Association Study for Type 2 Diabetes. , 2019, , 49-86.		2
679	Beta-Cell Fragility As a Common Underlying Risk Factor in Type 1 and Type 2 Diabetes. Trends in Molecular Medicine, 2017, 23, 181-194.	3.5	53
680	Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program. Stem Cell Research, 2020, 46, 101803.	0.3	10
681	Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nature Genetics, 2017, 49, 1450-1457.	9.4	218
682	Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nature Communications, 2020, 11, 4912.	5.8	89
719	Calcium release channel RyR2 regulates insulin release and glucose homeostasis. Journal of Clinical Investigation, 2015, 125, 1968-1978.	3.9	178
720	Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology. F1000Research, 2016, 5, 1711.	0.8	10

#	Article	IF	CITATIONS
721	Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci. PLoS Genetics, 2015, 11, e1005535.	1.5	67
722	Identifying Loci Contributing to Natural Variation in Xenobiotic Resistance in Drosophila. PLoS Genetics, 2015, 11, e1005663.	1.5	46
723	A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations. PLoS Genetics, 2016, 12, e1006122.	1.5	34
724	Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genetics, 2017, 13, e1006719.	1.5	98
725	LabWAS: Novel findings and study design recommendations from a meta-analysis of clinical labs in two independent biobanks. PLoS Genetics, 2020, 16, e1009077.	1.5	14
726	First Genome-Wide Association Study in an Australian Aboriginal Population Provides Insights into Genetic Risk Factors for Body Mass Index and Type 2 Diabetes. PLoS ONE, 2015, 10, e0119333.	1.1	35
727	The Type 2 Diabetes Risk Allele of TMEM154-rs6813195 Associates with Decreased Beta Cell Function in a Study of 6,486 Danes. PLoS ONE, 2015, 10, e0120890.	1.1	27
728	Replication Study in a Japanese Population to Evaluate the Association between 10 SNP Loci, Identified in European Genome-Wide Association Studies, and Type 2 Diabetes. PLoS ONE, 2015, 10, e0126363.	1.1	14
729	Comparative Analyses of QTLs Influencing Obesity and Metabolic Phenotypes in Pigs and Humans. PLoS ONE, 2015, 10, e0137356.	1.1	21
730	Exome-Wide Association Analysis of Coronary Artery Disease in the Kingdom of Saudi Arabia Population. PLoS ONE, 2016, 11, e0146502.	1.1	7
731	Association between the rs7903146 Polymorphism in the TCF7L2 Gene and Parameters Derived with Continuous Glucose Monitoring in Individuals without Diabetes. PLoS ONE, 2016, 11, e0149992.	1.1	16
732	Replication Study in a Japanese Population of Six Susceptibility Loci for Type 2 Diabetes Originally Identified by a Transethnic Meta-Analysis of Genome-Wide Association Studies. PLoS ONE, 2016, 11, e0154093.	1.1	10
733	Type 2 Diabetes Risk Allele Loci in the Qatari Population. PLoS ONE, 2016, 11, e0156834.	1.1	30
734	Replication and Relevance of Multiple Susceptibility Loci Discovered from Genome Wide Association Studies for Type 2 Diabetes in an Indian Population. PLoS ONE, 2016, 11, e0157364.	1.1	25
735	Body Mass Index-Related Mortality in Patients with Type 2 Diabetes and Heterogeneity in Obesity Paradox Studies: A Dose-Response Meta-Analysis. PLoS ONE, 2017, 12, e0168247.	1.1	65
736	Genome-wide study of resistant hypertension identified from electronic health records. PLoS ONE, 2017, 12, e0171745.	1.1	36
737	Common and rare exonic MUC5B variants associated with type 2 diabetes in Han Chinese. PLoS ONE, 2017, 12, e0173784.	1.1	10
738	Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells. PLoS ONE, 2017, 12, e0175069.	1.1	17

#	Article	IF	CITATIONS
739	Aging and stress induced l̂² cell senescence and its implication in diabetes development. Aging, 2019, 11, 9947-9959.	1.4	33
740	Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget, 2016, 7, 57011-57020.	0.8	41
741	Genetic factors associated with risk of metabolic syndrome and hepatocellular carcinoma. Oncotarget, 2017, 8, 35403-35411.	0.8	18
742	Identification of five genetic variants as novel determinants of type 2 diabetes mellitus in Japanese by exome-wide association studies. Oncotarget, 2017, 8, 80492-80505.	0.8	3
743	Genetics of Type 2 Diabetes: It Matters From Which Parent We Inherit the Risk. Review of Diabetic Studies, 2015, 12, 233-242.	0.5	28
744	Complex Genetics of Type 2 Diabetes and Effect Size: What have We Learned from Isolated Populations?. Review of Diabetic Studies, 2015, 12, 299-319.	0.5	19
745	Diabetes in Population Isolates: Lessons from Greenland. Review of Diabetic Studies, 2015, 12, 320-329.	0.5	11
746	Type 2 Diabetes Prevention: Implications of Hemoglobin A1c Genetics. Review of Diabetic Studies, 2015, 12, 351-362.	0.5	14
747	Genetic Aspects of Latent Autoimmune Diabetes in Adults: A Mini-Review. Current Diabetes Reviews, 2019, 15, 194-198.	0.6	11
748	Diabetes in migrants and ethnic minorities in a changing World. World Journal of Diabetes, 2016, 7, 34.	1.3	67
749	Identification and characterization of novel single nucleotide polymorphism markers for fat deposition in muscle tissue of pigs using amplified fragment length polymorphism. Asian-Australasian Journal of Animal Sciences, 2017, 30, 338-346.	2.4	2
750	Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes. Genomics and Informatics, 2016, 14, 138.	0.4	10
751	TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Reports, 2021, 37, 109807.	2.9	45
752	Insights into modifiable risk factors of cholelithiasis: AÂMendelian randomization study. Hepatology, 2022, 75, 785-796.	3.6	102
753	Identifying causality, genetic correlation, priority and pathways of large-scale complex exposures of breast and ovarian cancers. British Journal of Cancer, 2021, 125, 1570-1581.	2.9	11
754	Genome-wide gene and serum ferritin interaction in the development of type 2 diabetes in adults aged 40 years or older. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 231-240.	1.1	0
755	Mapping of Susceptibility Genes for Obesity, Type 2 Diabetes, and the Metabolic Syndrome in Human Populations. , 2015, , 181-245.		2
756	Genetic Determinants of Type 2 Diabetes in Asians. International Journal of Diabetology & Vascular Disease Research, 2015, 2015, 1-9.	0.2	11

		CITATION REPORT		
#	Article		IF	CITATIONS
759	Genomic Medicine and Ethnic Differences in Cardiovascular Disease Risk. , 2016, , 209	-235.		0
760	Elucidation of Pathogenesis and Development of Therapeutic Strategy of Type 2 Diabe the Thirty Years. The Journal of the Japanese Society of Internal Medicine, 2016, 105, 1	tes -Progress in 543-1557.	0.0	0
761	Genetics of Endocrinology. , 2016, , 49-68.			1
767	CONVERGE dataset: 12,000 whole-genome sequences representative of the Han Chine GigaScience, 2016, 5, .	ese population.	3.3	0
769	Revealing phenotype-associated functional differences by genome-wide scan of ancien blocks. PLoS ONE, 2017, 12, e0176530.	t haplotype	1.1	0
773	Big Data and Data Science Applications for Independent and Healthy Living. , 2018, , 7	7-111.		2
776	Genetics of Diabetes and Diabetic Complications. Endocrinology, 2018, , 81-139.		0.1	1
782	Diabetes and Pancreatic Cancer: A Bidirectional Relationship Perspective. , 2019, , 35-5	51.		1
794	Effects of a Lifestyle-Modification Program on Blood-Glucose Regulation and Health Pr Diabetic Patients: A Randomized Controlled Trial. Journal of Lifestyle Medicine, 2020, 1	omotion in .0, 77-91.	0.3	1
795	SATB2‣EMD2 interaction links nuclear shape plasticity to regulation of cognitionâ€ Journal, 2021, 40, e103701.	elated genes. EMBO	3.5	14
796	Current Approaches in Diabetes Mellitus Prediction: Applications of Machine Learning Biomarkers. , 2020, , 893-906.	and Emerging		0
797	Overview of Genomic Heterogeneity in Statistical Genetics. Statistics in the Health Sci 53-97.	ences, 2020, ,	0.2	0
802	The association of clinical phenotypes to known AD/FTD genetic risk loci and their inte PLoS ONE, 2020, 15, e0241552.	r-relationship.	1.1	7
804	From Genotype to Phenotype: A Primer on the Functional Follow-up of Genome-Wide A Studies in Cardiovascular Disease. Circulation Genomic and Precision Medicine, 2018,	Association 11, .	1.6	5
805	Transcription factor 7-like 2 (TCF7L2): a culprit gene in Type 2 Diabetes Mellitus. Diabe 24, 371-376.	tes Mellitus, 2021,	0.5	1
806	Bench Research Informed by GWAS Results. Cells, 2021, 10, 3184.		1.8	5
807	Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate types, regulatory elements, and SNPs for complex traits. Genome Research, 2021, 31,	causal cell 2258-2275.	2.4	31
808	Genetically Determined Inflammatory Biomarkers and the Risk of Heart Failure: A Meno Randomization Study. Frontiers in Cardiovascular Medicine, 2021, 8, 734400.	lelian	1.1	10

#	Article	IF	CITATIONS
809	Investigation of the causal relationships between human IgG N-glycosylation and 12 common diseases associated with changes in the IgG N-glycome. Human Molecular Genetics, 2022, 31, 1545-1559.	1.4	11
810	The Role of TRAPÎ ³ /SSR3 in Preproinsulin Translocation Into the Endoplasmic Reticulum. Diabetes, 2022, 71, 440-452.	0.3	3
811	Phenome risk classification enables phenotypic imputation and gene discovery in developmental stuttering. American Journal of Human Genetics, 2021, 108, 2271-2283.	2.6	11
812	Expression of obesity- and type-2 diabetes-associated genes in omental adipose tissue of individuals with obesity. Gene, 2022, 815, 146181.	1.0	8
813	Association of Single Nucleotide Polymorphism and Phenotypes in Type 2 Diabetes Mellitus Using Genetic Algorithm and CatBoost. , 2020, , .		2
814	Scales for assessing the genetic risk of developing type 2 diabetes mellitus. Profilakticheskaya Meditsina, 2021, 24, 115.	0.2	3
815	Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation, 2022, 145, CIR00000000000001052.	1.6	2,561
816	A Novel Nonsense INS Mutation Causes Inefficient Preproinsulin Translocation Into the Endoplasmic Reticulum. Frontiers in Endocrinology, 2021, 12, 774634.	1.5	4
817	Admixture mapping of anthropometric traits in the Black Women's Health Study: evidence of a shared African ancestry component with birth weight and type 2 diabetes. Journal of Human Genetics, 2022, 67, 331-338.	1.1	4
818	Cisâ€regulation of antisense nonâ€coding RNA at the <i>JAZF1</i> locus in type 2 diabetes. Journal of Gene Medicine, 2022, 24, e3407.	1.4	3
819	Mendelian randomization study of obesity and type 2 diabetes in hospitalized COVID-19 patients. Metabolism: Clinical and Experimental, 2022, 129, 155156.	1.5	17
820	Interaction of obesity polygenic score with lifestyle risk factors in an electronic health record biobank. BMC Medicine, 2022, 20, 5.	2.3	17
821	Celebrities in the heart, strangers in the pancreatic beta cell: Voltageâ€gated potassium channels K _v 7.1 and K _v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiologica, 2022, 234, e13781.	1.8	6
822	Population-based genetic effects for developmental stuttering. Human Genetics and Genomics Advances, 2022, 3, 100073.	1.0	4
823	Genomic legacy of migration in endangered caribou. PLoS Genetics, 2022, 18, e1009974.	1.5	7
824	Computational Assessment of the Expression-Modulating Potential for Non-Coding Variants. Genomics, Proteomics and Bioinformatics, 2023, 21, 662-673.	3.0	3
826	Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE Study. Diabetologia, 2022, 65, 477-489.	2.9	15
827	A case report of <i>CAT</i> gene and <i>HNF1β</i> gene variations in a patient with early-onset diabetes. Open Life Sciences, 2022, 17, 344-350.	0.6	0

#	Article	IF	CITATIONS
829	Prediabetes blunts DPP4 genetic control of postprandial glycaemia and insulin secretion. Diabetologia, 2022, 65, 861-871.	2.9	3
830	Persistent organic pollutants and β-cell toxicity: a comprehensive review. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E383-E413.	1.8	25
831	C2CD4A/B variants in the predisposition of lung cancer in the Chinese Han population. Functional and Integrative Genomics, 2022, 22, 331-340.	1.4	3
832	Functional genomics elucidates regulatory mechanisms of Parkinson's disease-associated variants. BMC Medicine, 2022, 20, 68.	2.3	2
834	HNF1A Mutations and Beta Cell Dysfunction in Diabetes. International Journal of Molecular Sciences, 2022, 23, 3222.	1.8	23
836	Human pancreatic islet miRNA-mRNA networks of altered miRNAs due to glycemic status. IScience, 2022, 25, 103995.	1.9	7
837	The Association between Fasting Glucose and Sugar Sweetened Beverages Intake Is Greater in Latin Americans with a High Polygenic Risk Score for Type 2 Diabetes Mellitus. Nutrients, 2022, 14, 69.	1.7	9
838	Genomics and Functional Genomics of Alzheimer's Disease. Neurotherapeutics, 2022, 19, 152-172.	2.1	26
839	Association between RAC1 gene variation, redox homeostasis and type 2 diabetes mellitus. European Journal of Clinical Investigation, 2022, 52, e13792.	1.7	10
840	Burden of Type 2 Diabetes and Associated Cardiometabolic Traits and Their Heritability Estimates in Endogamous Ethnic Groups of India: Findings From the INDIGENIUS Consortium. Frontiers in Endocrinology, 2022, 13, 847692.	1.5	4
847	Geneâ€environment interaction in type 2 diabetes in Korean cohorts: Interaction of a type 2 diabetes polygenic risk score with triglyceride and cholesterol on fasting glucose levels. Genetic Epidemiology, 2022, 46, 285-302.	0.6	0
848	Placental multi-omics integration identifies candidate functional genes for birthweight. Nature Communications, 2022, 13, 2384.	5.8	13
849	Functional genomic analysis delineates regulatory mechanisms of GWAS-identified bipolar disorder risk variants. Genome Medicine, 2022, 14, 53.	3.6	6
850	Integrating polygenic risk scores in the prediction of type 2 diabetes risk and subtypes in British Pakistanis and Bangladeshis: A population-based cohort study. PLoS Medicine, 2022, 19, e1003981.	3.9	24
851	Mendelian Randomization Rules Out Causation Between Inflammatory Bowel Disease and Non-Alcoholic Fatty Liver Disease. Frontiers in Pharmacology, 2022, 13, .	1.6	4
853	The genetics of type 2 diabetes in youth: Where we are and the road ahead. Journal of Pediatrics, 2022, , ·	0.9	2
854	Validation of Genome-Wide Association Studies (GWAS)-Identified Type 2 Diabetes Mellitus Risk Variants in Pakistani Pashtun Population. Journal of the ASEAN Federation of Endocrine Societies, 2022, 37, .	0.1	1
855	Circulating Vitamin D Concentrations and Risk of Atrial Fibrillation: A Mendelian Randomization Study Using Non-deficient Range Summary Statistics. Frontiers in Nutrition, 0, 9, .	1.6	3

#	Article	IF	CITATIONS
856	A Novel Insight into Controversial Risk Factors of Intrahepatic Cholangiocarcinoma: A Mendelian Randomization Study. SSRN Electronic Journal, 0, , .	0.4	0
857	Arl15 upregulates the TGF $\hat{1}^2$ family signaling by promoting the assembly of the Smad-complex. ELife, 0, 11, .	2.8	7
860	Signature pattern of gene expression and signaling pathway in premature diabetic patients uncover their correlation to early age coronary heart disease. Diabetology and Metabolic Syndrome, 2022, 14, .	1.2	0
861	Examination on the risk factors of cholangiocarcinoma: A Mendelian randomization study. Frontiers in Pharmacology, 0, 13, .	1.6	5
862	Machine learning-based models for gestational diabetes mellitus prediction before 24–28Âweeks of pregnancy: A review. Artificial Intelligence in Medicine, 2022, 132, 102378.	3.8	13
863	A taxonomy of tools and approaches for distributed genomic analyses. Informatics in Medicine Unlocked, 2022, 32, 101024.	1.9	0
865	A Century-long Journey From the Discovery of Insulin to the Implantation of Stem Cell–derived Islets. Endocrine Reviews, 2023, 44, 222-253.	8.9	13
866	Metabolomics in Diabetic Retinopathy: From Potential Biomarkers to Molecular Basis of Oxidative Stress. Cells, 2022, 11, 3005.	1.8	17
867	Significance of pancreatic duodenal homeobox-1 (<i>PDX-1</i>) genetic polymorphism in insulin secretion in Japanese patients with type 2 diabetes. BMJ Open Diabetes Research and Care, 2022, 10, e002908.	1.2	1
869	Association of cannabis use disorder with cardiovascular diseases: A two-sample Mendelian randomization study. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
871	Does crime trigger genetic risk for type 2 diabetes in young adults? A G x E interaction study using national data. Social Science and Medicine, 2022, 313, 115396.	1.8	1
872	Using Data to Improve the Management of Diabetes: The Tayside Experience. Diabetes Care, 2022, 45, 2828-2837.	4.3	4
873	Genetic variants for prediction of gestational diabetes mellitus and modulation of susceptibility by a nutritional intervention based on a Mediterranean diet. Frontiers in Endocrinology, 0, 13, .	1.5	2
874	Triglyceride-glucose index and the risk of heart failure: Evidence from two large cohorts and a mendelian randomization analysis. Cardiovascular Diabetology, 2022, 21, .	2.7	26
875	COVID-19 and systemic lupus erythematosus genetics: A balance between autoimmune disease risk and protection against infection. PLoS Genetics, 2022, 18, e1010253.	1.5	12
876	An update of the consensus statement on insulin resistance in children 2010. Frontiers in Endocrinology, 0, 13, .	1.5	4
877	Gene-Editing for Production Traits in Forest Trees: Challenges to Integration and Gene Target Identification. Forests, 2022, 13, 1887.	0.9	3
878	Genetic predisposition to gestational diabetes mellitus in the Kazakh population. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2022, , 102675.	1.8	0

#	Article	IF	CITATIONS
879	Association of an intronic SNP rs9939609 in FTO gene with type 2 diabetes mellitus among Bangladeshi population: A case–control study combined with updated meta-analysis. , 2023, 35, 201133.		2
880	The genetic risk of gestational diabetes in South Asian women. ELife, 0, 11, .	2.8	7
882	Insight into genetic, biological, and environmental determinants of sexual-dimorphism in type 2 diabetes and glucose-related traits. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	0
883	Deletion of <i>Jazf1</i> gene causes early growth retardation and insulin resistance in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
886	10q26 – The enigma in age-related macular degeneration. Progress in Retinal and Eye Research, 2023, 96, 101154.	7.3	1
887	Mendelian randomization analyses in ocular disease: a powerful approach to causal inference with human genetic data. Journal of Translational Medicine, 2022, 20, .	1.8	7
888	Integrating Common Risk Factors with Polygenic Scores Improves the Prediction of Type 2 Diabetes. International Journal of Molecular Sciences, 2023, 24, 984.	1.8	4
889	Progress in genetics of type 2 diabetes and diabetic complications. Journal of Diabetes Investigation, 2023, 14, 503-515.	1.1	11
890	Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia, 2023, 66, 674-694.	2.9	5
891	Associations of genetically predicted fatty acid levels across the phenome: A mendelian randomisation study. PLoS Medicine, 2022, 19, e1004141.	3.9	12
892	A Guide for Selection of Genetic Instruments in Mendelian Randomization Studies of Type 2 Diabetes and HbA1c: Toward an Integrated Approach. Diabetes, 2023, 72, 175-183.	0.3	5
893	Comparison of Risk Allele Frequencies of Psoriasis-Associated Single-Nucleotide Polymorphisms in Different Population Groups. Annals of Dermatology, 2023, 35, 32.	0.3	0
895	Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose. Nature Communications, 2023, 14, .	5.8	1
896	Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation, 2023, 147, .	1.6	2,130
897	Patterns of risk for diabetic retinopathy in the Mumbai slums: The Aditya Jyot Diabetic Retinopathy in Urban Mumbai Slums Study (AJ-DRUMSS) Report 3. PLOS Global Public Health, 2023, 3, e0000351.	0.5	0
898	Unraveling corticotropin-releasing factor family-orchestrated signaling and function in both sexes. Vitamins and Hormones, 2023, , 27-65.	0.7	1
900	Rare and Common Variants in GALNT3 May Affect Bone Mass Independently of Phosphate Metabolism. Journal of Bone and Mineral Research, 2020, 38, 678-691.	3.1	0
901	Effects of gene-lifestyle environment interactions on type 2 diabetes mellitus development: an analysis using the Korean Genome and Epidemiology Study data. Journal of Korean Biological Nursing Science, 2023, 25, 73-85.	0.1	0

#	Article	IF	CITATIONS
903	Association of Serum Fibroblast Growth Factor 23 and FGF23 Gene Variants with Chronic Kidney Disease in Patients with Type 2 Diabetes and Essential Hypertension. Archives of Medical Research, 2023, 54, 239-246.	1.5	1
904	Investigation of risk factors associated with impaired glucose regulation: Using the momentum equation to assess the impact of risk factors on community residents. Frontiers in Endocrinology, 0, 14, .	1.5	1
905	Identification of hsa_circ_0001445 of a novel circRNA-miRNA-mRNA regulatory network as potential biomarker for coronary heart disease. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	4
906	The melatonin receptor 1B gene links circadian rhythms and type 2 diabetes mellitus: an evolutionary story. Annals of Medicine, 2023, 55, 1262-1286.	1.5	8
907	Summary statistics-based association test for identifying the pleiotropic effects with set of genetic variants. Bioinformatics, 2023, 39, .	1.8	2
909	FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity. Cell Metabolism, 2023, 35, 887-905.e11.	7.2	4
910	Common and rare variants associated with cardiometabolic traits across 98,622 whole-genome sequences in the All of Us research program. Journal of Human Genetics, 2023, 68, 565-570.	1.1	1
917	Genetic Determinants of Type 2 Diabetes. , 2023, , 143-151.		0
931	Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. International Journal of Obesity, 2023, 47, 1179-1199.	1.6	2
938	Genetic risk prediction in Hispanics/Latinos: milestones, challenges, and social-ethical considerations. Journal of Community Genetics, 0, , .	0.5	0
940	Genetics of Type 2 Diabetes. , 2024, , 1-17.		0
952	Insulin biosynthesis and release in health and disease. , 2023, , 3-24.		0
953	Genetics of Type 2 Diabetes. , 2023, , 145-161.		0

Genetics of Type 2 Diabetes. , 2023, , 145-161. 953