Semiconductor heterojunction photocatalysts: design, o performances

Chemical Society Reviews 43, 5234 DOI: 10.1039/c4cs00126e

Citation Report

#	Article	IF	CITATIONS
2	Gold nanocage coupled single crystal TiO2 nanostructures for near-infrared water photolysis. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	12
3	Enhanced visible light photocatalytic degradation of Rhodamine B by Bi/Bi2MoO6 hollow microsphere composites. RSC Advances, 2014, , .	1.7	0
4	3D controllable preparation of composite CuO/TiO ₂ nanofibers. RSC Advances, 2014, 4, 63520-63525.	1.7	14
5	Facile synthesis of small Ag@AgCl nanoparticles via a vapor diffusion strategy and their highly efficient visible-light-driven photocatalytic performance. Catalysis Science and Technology, 2014, 4, 3615-3619.	2.1	19
6	Novel visible light-induced g-C ₃ N ₄ quantum dot/BiPO ₄ nanocrystal composite photocatalysts for efficient degradation of methyl orange. RSC Advances, 2014, 4, 35144-35148.	1.7	43
7	Facile Synthesis of Highly Efficient One-Dimensional Plasmonic Photocatalysts through Ag@Cu ₂ O Core–Shell Heteronanowires. ACS Applied Materials & Interfaces, 2014, 6, 15716-15725.	4.0	127
10	Photocatalytically Renewable Microâ€electrochemical Sensor for Realâ€Time Monitoring of Cells. Angewandte Chemie - International Edition, 2015, 54, 14402-14406.	7.2	44
11	Achieving Exceptional Photocatalytic Activity and Selectivity through a Well ontrolled Shortâ€Ordered Structure: A Case Study of Na _{<i>x</i>} TaO _{<i>y</i>} â< <i>n</i> H ₂ O. ChemCatChem, 2015, 7, 2437-2441	1.8	7
12	Efficient Visibleâ€Lightâ€Driven Zâ€Scheme Overall Water Splitting Using a MgTa ₂ O _{6â^'<i>x</i>} N _{<i>y</i>} /TaON Heterostructure Photocatalyst for H ₂ Evolution. Angewandte Chemie - International Edition, 2015, 54, 8498-8501.	7.2	252
13	An Efficient p–n Heterojunction Photocatalyst Constructed from a Coordination Polymer Nanoplate and a Partically Reduced Graphene Oxide for Visibleâ€Light Hydrogen Production. Chemistry - A European Journal, 2015, 21, 14638-14647.	1.7	24
14	Ultrathin gâ€C ₃ N ₄ Nanosheets Coupled with AglO ₃ as Highly Efficient Heterostructured Photocatalysts for Enhanced Visible‣ight Photocatalytic Activity. Chemistry - A European Journal, 2015, 21, 17739-17747.	1.7	40
15	Effect of Erbium on the Photocatalytic Activity of TiO ₂ /Ag Nanocomposites under Visible Light Irradiation. ChemPhysChem, 2015, 16, 3084-3092.	1.0	16
16	Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 4634-4639.	11.1	567
17	Charge Transfer and Photocatalytic Activity in CuO/TiO ₂ Nanoparticle Heterojunctions Synthesised through a Rapid, Oneâ€Pot, Microwave Solvothermal Route. ChemCatChem, 2015, 7, 1659-1667.	1.8	87
18	Chemicalâ€Bondâ€Mediated p–n Heterojunction Photocatalyst Constructed from Coordination Polymer Nanoparticles and a Conducting Copolymer: Visibleâ€Light Active and Highly Efficient. Chemistry - A European Journal, 2015, 21, 17430-17436.	1.7	12
19	Hybrid ZnO/TiO ₂ Loaded in Electrospun Polymeric Fibers as Photocatalyst. Journal of Chemistry, 2015, 2015, 1-10.	0.9	25
20	Enhancement of visible light photocatalytic activity of tantalum oxynitride and tantalum nitride by coupling with bismuth oxide; an example of composite photocatalysis. Materials Research Society Symposia Proceedings, 2015, 1738, 13.	0.1	3
21	Efficient Mesoporous Semiconductor Materials for Environmental Applications. Handbook of Environmental Chemistry, 2015, , 221-266.	0.2	0

#	Article	lF	CITATIONS
22	Photocatalytic water disinfection by simple and low-cost monolithic and heterojunction ceramic wafers. Photochemical and Photobiological Sciences, 2015, 14, 1190-1196.	1.6	11
23	Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO ₃ ^{2–} -Doped Bi ₂ O ₂ CO ₃ . ACS Catalysis, 2015, 5, 4094-4103.	5.5	690
24	Vacuum-assisted impregnation derived α-Bi2O3/TiO2 nanotube arrays with enhanced photoelectrochemical activity. Materials Letters, 2015, 158, 104-107.	1.3	8
25	Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Solar Energy Materials and Solar Cells, 2015, 141, 162-170.	3.0	126
26	Photocatalytic degradation of 2,4,4′-trichlorobiphenyl into long-chain alkanes using Ag nanoparticle decorated flower-like ZnO microspheres. New Journal of Chemistry, 2015, 39, 7781-7785.	1.4	4
27	Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst. Applied Surface Science, 2015, 349, 650-656.	3.1	25
28	Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Applied Surface Science, 2015, 349, 279-286.	3.1	93
29	Metal oxides as photocatalysts. Journal of Saudi Chemical Society, 2015, 19, 462-464.	2.4	432
30	Improved electrode performance in microbial fuel cells and the enhanced visible light-induced photoelectrochemical behaviour of PtO @M-TiO2 nanocomposites. Ceramics International, 2015, 41, 9131-9139.	2.3	39
31	Origin of High Photocatalytic Efficiency in Monolayer g-C ₃ N ₄ /CdS Heterostructure: A Hybrid DFT Study. Journal of Physical Chemistry C, 2015, 119, 28417-28423.	1.5	345
32	Role of Conducting Polymers in Enhancing TiO ₂ -based Photocatalytic Dye Degradation: A Short Review. Polymer-Plastics Technology and Engineering, 2015, 54, 1850-1870.	1.9	48
33	Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.	6.9	458
34	Well–Steered Charge–Carrier Transfer in 3D Branched CuxO/ZnO@Au Heterostructures for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 26819-26827.	4.0	77
35	Three-Dimensional Porous Aerogel Constructed by g-C ₃ N ₄ and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance. ACS Applied Materials & Interfaces, 2015, 7, 25693-25701.	4.0	383
36	Ag3PO4/Ag2CO3 p–n heterojunction composites with enhanced photocatalytic activity under visible light. Chinese Journal of Catalysis, 2015, 36, 2186-2193.	6.9	34
37	Stateâ€ofâ€ŧheâ€Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Advanced Functional Materials, 2015, 25, 998-1013.	7.8	706
38	Construction of reduced graphene oxide-supported Ag–Cu ₂ O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. Journal of Materials Chemistry A, 2015, 3, 5923-5933.	5.2	89
39	ZnS–CdS/Graphene oxide heterostructures prepared by a light irradiation-assisted method for effective photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2015, 446, 150-154.	5.0	33

#	Article	IF	CITATIONS
40	Synthesis and photocatalytic property of an intercalated nanomaterial H2NiTi4O10/TiO2. Ceramics International, 2015, 41, 3839-3844.	2.3	2
41	Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance. Applied Catalysis B: Environmental, 2015, 170-171, 206-214.	10.8	325
42	Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Applied Catalysis B: Environmental, 2015, 172-173, 91-99.	10.8	57
43	Synergistic Effect of Titanate-Anatase Heterostructure and Hydrogenation-Induced Surface Disorder on Photocatalytic Water Splitting. ACS Catalysis, 2015, 5, 1708-1716.	5.5	92
44	Hollow Structured Y ₂ O ₃ :Yb/Er–Cu _{<i>x</i>} S Nanospheres with Controllable Size for Simultaneous Chemo/Photothermal Therapy and Bioimaging. Chemistry of Materials, 2015, 27, 483-496.	3.2	102
45	Facile synthesis of ZnS nanoparticles and their excellent photocatalytic performance. Ceramics International, 2015, 41, 6645-6652.	2.3	33
46	Microwave-assisted synthesis and enhanced visible-light-driven photocatalytic property of g-C3N4/Bi2S3 nanocomposite. Materials Letters, 2015, 145, 23-26.	1.3	33
47	Engineering a high energy surface of anatase TiO ₂ crystals towards enhanced performance for energy conversion and environmental applications. RSC Advances, 2015, 5, 20396-20409.	1.7	79
48	Fe2O3–AgBr nonwoven cloth with hierarchical nanostructures as efficient and easily recyclable macroscale photocatalysts. RSC Advances, 2015, 5, 10951-10959.	1.7	34
49	Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation. Materials Chemistry and Physics, 2015, 153, 274-284.	2.0	2
50	Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy and Environmental Science, 2015, 8, 731-759.	15.6	1,985
51	Electrochemically Alternating Voltage Induced Mn3O4/Graphite Powder Composite with Enhanced Electrochemical Performances for Lithium-ion Batteries. Electrochimica Acta, 2015, 155, 157-163.	2.6	36
52	Branched hierarchical photoanode of anatase TiO ₂ nanotubes on rutile TiO ₂ nanorod arrays for efficient quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 4445-4452.	5.2	64
53	Creation of Cu ₂ O@TiO ₂ Composite Photocatalysts with <i>p</i> – <i>n</i> Heterojunctions Formed on Exposed Cu ₂ O Facets, Their Energy Band Alignment Study, and Their Enhanced Photocatalytic Activity under Illumination with Visible Light. ACS Applied Materials & amp: Interfaces 2015 7 1465-1476	4.0	174
54	ZnSe·0.5N ₂ H ₄ Hybrid Nanostructures: A Promising Alternative Photocatalyst for Solar Conversion. ACS Applied Materials & amp; Interfaces, 2015, 7, 1616-1623.	4.0	77
55	Sol–gel synthesis, characterization and photocatalytic properties of SrCrO4 particles. Materials Letters, 2015, 144, 85-89	1.3	13
56	Critical influence of g-C 3 N 4 self-assembly coating on the photocatalytic activity and stability of Ag/AgCl microspheres under visible light. Applied Catalysis B: Environmental, 2015, 168-169, 472-482.	10.8	111
57	Synthesis of vis/NIR-driven hybrid photocatalysts by electrostatic assembly of NaYF4:Yb, Tm nanocrystals on g-C3N4 nanosheets. Materials Letters, 2015, 146, 87-90.	1.3	28

#	Article	IF	CITATIONS
58	Nanosize α-Bi ₂ 0 ₃ decorated Bi ₂ MoO ₆ via an alkali etching process for enhanced photocatalytic performance. RSC Advances, 2015, 5, 12346-12353.	1.7	48
59	Electrospun Cr-doped Bi ₄ Ti ₃ O ₁₂ /Bi ₂ Ti ₂ O ₇ heterostructure fibers with enhanced visible-light photocatalytic properties. Journal of Materials Chemistry A. 2015. 3. 6586-6591.	5.2	67
60	Dramatic enhancement of visible light photocatalysis due to strong interaction between TiO2 and end-group functionalized P3HT. Applied Catalysis B: Environmental, 2015, 174-175, 193-202.	10.8	18
61	Loading cobalt phosphate on TaON surface as efficient noble-metal-free co-catalyst for enhanced photocatalytic water oxidation performance. Materials Letters, 2015, 148, 155-158.	1.3	14
62	Reductive photocatalysis and smart inks. Chemical Society Reviews, 2015, 44, 2849-2864.	18.7	32
63	Robust Wide Visible-Light-Responsive Photoactivity for H ₂ Production over a Polymer/Polymer Heterojunction Photocatalyst: The Significance of Sacrificial Reagent. ACS Sustainable Chemistry and Engineering, 2015, 3, 1501-1509.	3.2	119
64	Controlling Core/Shell Formation of Nanocubic <i>p</i> -Cu ₂ 0/ <i>n</i> -ZnO Toward Enhanced Photocatalytic Performance. Langmuir, 2015, 31, 10922-10930.	1.6	75
65	Y ₂ O ₃ :Yb,Er@mSiO ₂ –Cu _x S double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging. Nanoscale, 2015, 7, 12180-12191.	2.8	55
67	Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. Journal of Hazardous Materials, 2015, 299, 132-140.	6.5	130
68	Preparation of Ni@C–Cd _{0.8} Zn _{0.2} S nanocomposites with highly efficient and stable photocatalytic hydrogen production activity. Physical Chemistry Chemical Physics, 2015, 17, 10944-10952.	1.3	18
69	AgCl-loaded mesoporous anatase TiO2 with large specific surface area for enhancing photocatalysis. Applied Surface Science, 2015, 351, 416-424.	3.1	49
70	Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2015, 650, 520-527.	2.8	60
71	MoS2-hybridized TiO2 nanosheets with exposed {001} facets to enhance the visible-light photocatalytic activity. Materials Letters, 2015, 160, 286-290.	1.3	21
72	Synergistic integration of thermocatalysis and photocatalysis on black defective (BiO) ₂ CO ₃ microspheres. Journal of Materials Chemistry A, 2015, 3, 18466-18474.	5.2	67
73	Novel visible light-induced g-C3N4–Sb2S3/Sb4O5Cl2 composite photocatalysts for efficient degradation of methyl orange. Catalysis Communications, 2015, 70, 17-20.	1.6	45
74	Novel AgBr/Ag ₃ PO ₄ Decorated Ceria Nanoflake Composites for Enhanced Photocatalytic Activity toward Dyes and Bacteria under Visible Light. Industrial & Engineering Chemistry Research, 2015, 54, 8031-8042.	1.8	62
75	One-step synthesis of Bi2WO6/Bi2O3 loaded reduced graphene oxide multicomponent composite with enhanced visible-light photocatalytic activity. RSC Advances, 2015, 5, 68646-68654.	1.7	31
76	NiO–TiO2 p–n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy, 2015, 16, 207-217.	8.2	136

#	Article	IF	CITATIONS
77	Optimizing the photocatalysis in ferromagnetic Bi ₆ Fe _{1.9} Co _{0.1} Ti ₃ O ₁₈ nanocrystal by morphology control. RSC Advances, 2015, 5, 54165-54170.	1.7	13
78	2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities. Physica B: Condensed Matter, 2015, 474, 81-89.	1.3	27
79	Realizing nanosized interfacial contact via constructing BiVO4/Bi4V2O11 element-copied heterojunction nanofibres for superior photocatalytic properties. Applied Catalysis B: Environmental, 2015, 179, 54-60.	10.8	84
80	Biomimetic synthesis of C ₃ N ₄ /TiO ₂ /Ag nanosheet composites with high visible-light photocatalytic performance. RSC Advances, 2015, 5, 56913-56921.	1.7	28
81	Visible light assisted photocatalytic hydrogen generation by Ta ₂ O ₅ /Bi ₂ O ₃ , TaON/Bi ₂ O ₃ , and Ta ₃ N ₅ /Bi ₂ O ₃ composites. RSC Advances, 2015, 5, 54998-55005.	1.7	47
82	Engineering the electronic bandgaps and band edge positions in carbon-substituted 2D boron nitride: a first-principles investigation. Physical Chemistry Chemical Physics, 2015, 17, 13547-13552.	1.3	35
83	Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration. Applied Surface Science, 2015, 358, 356-362.	3.1	101
84	Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications. Journal of Materials Chemistry A, 2015, 3, 18345-18359.	5.2	200
85	In Situ Co-Crystallization for Fabrication of g-C ₃ N ₄ /Bi ₅ O ₇ I Heterojunction for Enhanced Visible-Light Photocatalysis. Journal of Physical Chemistry C, 2015, 119, 17156-17165.	1.5	165
86	The synergistic effect between effective mass and built-in electric field for the transfer of carriers in nonlinear optical materials. Physical Chemistry Chemical Physics, 2015, 17, 17710-17717.	1.3	17
87	A BiOBr/Co–Ni layered double hydroxide nanocomposite with excellent adsorption and photocatalytic properties. RSC Advances, 2015, 5, 54613-54621.	1.7	28
88	Facile synthesis of Ag@CeO2 core–shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance. Journal of Hazardous Materials, 2015, 300, 93-103.	6.5	81
89	Environmental Photochemistry Part III. Handbook of Environmental Chemistry, 2015, , .	0.2	2
90	Basics of Photocatalysis. , 2015, , 1-23.		9
91	Multifunctional Metal–Organic Frameworks for Photocatalysis. Small, 2015, 11, 3097-3112.	5.2	538
92	Ternary mesoporous WO ₃ /Mn ₃ O ₄ /N-doped graphene nanocomposite for enhanced photocatalysis under visible light irradiation. Catalysis Science and Technology, 2015, 5, 3375-3382.	2.1	28
93	Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chemical Society Reviews, 2015, 44, 2893-2939.	18.7	955
94	Effects of common metal cations on Ag3PO4-photocatalytic water decontamination. Journal of Environmental Chemical Engineering, 2015, 3, 1215-1222.	3.3	7

#	Article	IF	CITATIONS
95	In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Applied Surface Science, 2015, 346, 278-283.	3.1	197
96	Titania–clay heterostructures with solar photocatalytic applications. Applied Catalysis B: Environmental, 2015, 176-177, 278-287.	10.8	78
97	What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag ₃ PO ₄ /g-C ₃ N ₄ , band–band transfer or a direct Z-scheme?. Physical Chemistry Chemical Physics, 2015, 17, 11577-11585.	1.3	155
98	Preparation of β-Bi2O3/g-C3N4 nanosheet p–n junction for enhanced photocatalytic ability under visible light illumination. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	30
99	Effects of non-metal dopants and defects on electronic properties of barium titanate as photocatalyst. International Journal of Hydrogen Energy, 2015, 40, 4766-4776.	3.8	16
100	B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale, 2015, 7, 8955-8961.	2.8	80
101	Enhanced photocatalytic degradation activity for tetracycline under visible light irradiation of Ag/Bi3.84W0.16O6.24nanooctahedrons. CrystEngComm, 2015, 17, 2421-2428.	1.3	21
102	Facile hydrothermal-carbonization approach to carbon-modified BiVO4 composites with enhanced photocatalytic activity. Materials Science in Semiconductor Processing, 2015, 35, 90-95.	1.9	19
103	Direct Synthesis of Porous Nanorodâ€Type Graphitic Carbon Nitride/CuO Composite from Cu–Melamine Supramolecular Framework towards Enhanced Photocatalytic Performance. Chemistry - an Asian Journal, 2015, 10, 1276-1280.	1.7	131
104	Hollow Mesoporous SiO ₂ –BiOBr Nanophotocatalyst: Synthesis, Characterization and Application in Photodegradation of Organic Dyes under Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 2015, 3, 1101-1110.	3.2	54
105	One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis. Journal of Solid State Chemistry, 2015, 228, 60-64.	1.4	140
106	Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 2015, 347, 747-754.	3.1	34
107	On the origin of the photocatalytic activity improvement of BIVO4 through rare earth tridoping. Applied Catalysis A: General, 2015, 501, 56-62.	2.2	31
108	Enhanced visible-light photocatalytic performance of BiOBr/UiO-66(Zr) composite for dye degradation with the assistance of UiO-66. RSC Advances, 2015, 5, 39592-39600.	1.7	102
109	N-type hedgehog-like CuBi ₂ O ₄ hierarchical microspheres: room temperature synthesis and their photoelectrochemical properties. CrystEngComm, 2015, 17, 4019-4025.	1.3	39
110	Enhanced visible light photocatalytic activity of alkaline earth metal ions-doped CdSe/rGO photocatalysts synthesized by hydrothermal method. Applied Catalysis B: Environmental, 2015, 172-173, 174-184.	10.8	123
111	One-step synthesis of nanostructured Bi–Bi ₂ O ₂ CO ₃ –ZnO composites with enhanced photocatalytic performance. CrystEngComm, 2015, 17, 3809-3819.	1.3	20
112	Enhanced Photoreduction CO ₂ Activity over Direct Z-Scheme α-Fe ₂ O ₃ /Cu ₂ O Heterostructures under Visible Light Irradiation. ACS Applied Materials & amp; Interfaces, 2015, 7, 8631-8639.	4.0	334

#	Article	IF	CITATIONS
113	Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D–2D heterostructures. Chemical Communications, 2015, 51, 8249-8252.	2.2	145
114	Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions. Journal of Hazardous Materials, 2015, 294, 168-176.	6.5	88
115	One-pot synthesis of a TiO ₂ –CdS nano-heterostructure assembly with enhanced photocatalytic activity. RSC Advances, 2015, 5, 34942-34948.	1.7	17
116	A general method for type I and type II g-C ₃ N ₄ /g-C ₃ N ₄ metal-free isotype heterostructures with enhanced visible light photocatalysis. New Journal of Chemistry, 2015, 39, 4737-4744.	1.4	95
117	Gold nanoparticles-sensitized wide and narrow band gap TiO ₂ for visible light applications: a comparative study. New Journal of Chemistry, 2015, 39, 4708-4715.	1.4	90
118	Modification Strategies with Inorganic Acids for Efficient Photocatalysts by Promoting the Adsorption of O ₂ . ACS Applied Materials & Interfaces, 2015, 7, 22727-22740.	4.0	68
119	Enhanced photocatalytic hydrogen production in water under visible light using noble metal-free ferrous phosphide as an active cocatalyst. Catalysis Science and Technology, 2015, 5, 4964-4967.	2.1	83
120	Preparation of TiO _x N _y /TiN composites for photocatalytic hydrogen evolution under visible light. Physical Chemistry Chemical Physics, 2015, 17, 28782-28788.	1.3	47
121	Magnetically separable Fe2O3/g-C3N4 catalyst with enhanced photocatalytic activity. RSC Advances, 2015, 5, 95727-95735.	1.7	57
122	Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation. Applied Surface Science, 2015, 358, 304-312.	3.1	134
123	Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous silica derived from MCM-48. Applied Surface Science, 2015, 356, 308-316.	3.1	38
124	Enhancing visible-light photocatalytic activity of g-C ₃ N ₄ by doping phosphorus and coupling with CeO ₂ for the degradation of methyl orange under visible light irradiation. RSC Advances, 2015, 5, 68728-68735.	1.7	83
125	Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction. Applied Surface Science, 2015, 358, 28-45.	3.1	115
126	Enhanced visible light photocatalytic H2 production activity of g-C3N4 via carbon fiber. Applied Surface Science, 2015, 358, 287-295.	3.1	95
127	Synthesis of highly permeable Fe2O3/ZnO hollow spheres for printable photocatalysis. RSC Advances, 2015, 5, 88277-88286.	1.7	28
128	Perovskite-type KTaO ₃ –reduced graphene oxide hybrid with improved visible light photocatalytic activity. RSC Advances, 2015, 5, 91315-91325.	1.7	49
129	Enhanced photocatalytic activity of g-C ₃ N ₄ –ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation. RSC Advances, 2015, 5, 91177-91189.	1.7	85
130	Surface and Interface Engineering in Photocatalysis. ChemNanoMat, 2015, 1, 223-239.	1.5	135

#	Article	IF	CITATIONS
131	Visible-light-driven Bi ₂ O ₃ /WO ₃ composites with enhanced photocatalytic activity. RSC Advances, 2015, 5, 91094-91102.	1.7	54
132	Novel In ₂ S ₃ /ZnWO ₄ heterojunction photocatalysts: facile synthesis and high-efficiency visible-light-driven photocatalytic activity. RSC Advances, 2015, 5, 89940-89950.	1.7	51
133	Electronic structure of porphyrin-based metal–organic frameworks and their suitability for solar fuel production photocatalysis. Journal of Materials Chemistry A, 2015, 3, 23458-23465.	5.2	59
134	Improved interfacial charge transfer and visible light activity of reduced graphene oxide–graphitic carbon nitride photocatalysts. RSC Advances, 2015, 5, 94029-94039.	1.7	33
135	Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation. Science Bulletin, 2015, 60, 1395-1402.	4.3	29
136	Hierarchical FeTiO ₃ –TiO ₂ hollow spheres for efficient simulated sunlight-driven water oxidation. Nanoscale, 2015, 7, 15924-15934.	2.8	50
137	AgBr nanoparticles decorated BiPO ₄ microrod: a novel p–n heterojunction with enhanced photocatalytic activities. RSC Advances, 2015, 5, 72830-72840.	1.7	21
138	Perovskite-type catalytic materials for environmental applications. Science and Technology of Advanced Materials, 2015, 16, 036002.	2.8	144
139	Morphologically controllable synthesis of core–shell structured Au@Cu ₂ O with enhanced photocatalytic activity. RSC Advances, 2015, 5, 71559-71564.	1.7	13
140	Heteroatom doped graphene in photocatalysis: A review. Applied Surface Science, 2015, 358, 2-14.	3.1	298
141	Sun-light-driven photocatalytic activity by ZnO/Ag heteronanostructures synthesized via a facile thermal decomposition approach. RSC Advances, 2015, 5, 76150-76159.	1.7	44
142	Facile synthesis of Bi nanoparticle modified TiO 2 with enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2015, 651, 114-120.	2.8	47
143	Synthesis of a Bi ₂ S ₃ /CeO ₂ nanocatalyst and its visible light-driven conversion of CO ₂ into CH ₃ OH and CH ₄ . Catalysis Science and Technology, 2015, 5, 5208-5215.	2.1	55
144	Synthesis of BiOI/Bi ₄ O ₅ I ₂ /Bi ₂ O ₂ CO ₃ p–n–p heterojunctions with superior photocatalytic activities. New Journal of Chemistry, 2015, 39, 8321-8328.	01.4	33
145	Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nature Communications, 2015, 6, 8340.	5.8	578
146	The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance. Chemical Communications, 2015, 51, 16244-16246.	2.2	82
147	Flower-like Bi ₂ S ₃ /Bi ₂ MoO ₆ heterojunction superstructures with enhanced visible-light-driven photocatalytic activity. RSC Advances, 2015, 5, 75081-75088.	1.7	78
148	Plasmon induced Au particle and surface oxidation co-decorated BiOIO ₃ heteronanostructures with highly promoted photocatalysis and photoelectrochemical properties. RSC Advances, 2015, 5, 81078-81086.	1.7	16

#	Article	IF	CITATIONS
149	A perovskite solar cell-TiO ₂ @BiVO ₄ photoelectrochemical system for direct solar water splitting. Journal of Materials Chemistry A, 2015, 3, 21630-21636.	5.2	109
150	N and Ti ³⁺ co-doped 3D anatase TiO ₂ superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity. Journal of Materials Chemistry A, 2015, 3, 22073-22080.	5.2	66
151	Growth of TiO ₂ nanorod bundles on carbon fibers as flexible and weaveable photocatalyst/photoelectrode. RSC Advances, 2015, 5, 102868-102876.	1.7	27
152	Bi ₂ O ₂ (OH)(NO ₃) as a desirable [Bi ₂ O ₂] ²⁺ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. lournal of Materials Chemistry A. 2015. 3. 24547-24556.	5.2	352
153	Fabrication of Multiple Heterojunctions with Tunable Visible-Light-Active Photocatalytic Reactivity in BiOBr–BiOI Full-Range Composites Based on Microstructure Modulation and Band Structures. ACS Applied Materials & Interfaces, 2015, 7, 482-492.	4.0	671
154	Heterostructure formation from hydrothermal annealing of preformed nanocrystals. Journal of Materials Chemistry A, 2015, 3, 2216-2225.	5.2	29
155	A novel SnS2–MgFe2O4/reduced graphene oxide flower-like photocatalyst: Solvothermal synthesis, characterization and improved visible-light photocatalytic activity. Catalysis Communications, 2015, 61, 62-66.	1.6	99
156	In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Research, 2015, 8, 1199-1209.	5.8	292
157	Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption–degradation effects. Ceramics International, 2015, 41, 4231-4237.	2.3	42
158	Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Advances, 2015, 5, 3306-3351.	1.7	673
159	Synthesis of monodisperse Bi ₂ O ₃ -modified CeO ₂ nanospheres with excellent photocatalytic activity under visible light. CrystEngComm, 2015, 17, 671-677.	1.3	40
160	The sulfur-bubble template-mediated synthesis of uniform porous g-C ₃ N ₄ with superior photocatalytic performance. Chemical Communications, 2015, 51, 425-427.	2.2	148
161	Fabrication of Semiconductor with Modified Microstructure for Efficient Photocatalytic Hydrogen Evolution Under Visible Light. , 0, , .		0
162	Advanced Nanomatericals for Solar Photocatalysis. , 0, , .		8
163	TiO2- and ZnO-Based Materials for Photocatalysis: Material Properties, Device Architecture and Emerging Concepts. , 0, , .		11
164	Novel Ag3PO4/CeO2 p-n Hierarchical Heterojunction with Enhanced Photocatalytic Performance. Materials Research, 2016, 19, 673-679.	0.6	44
165	A Visibleâ€Lightâ€Active Heterojunction with Enhanced Photocatalytic Hydrogen Generation. ChemSusChem, 2016, 9, 1869-1879.	3.6	42
166	The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices. Chemical Record, 2016, 16, 1591-1634.	2.9	58

#	Article	IF	CITATIONS
167	Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar. Applied Surface Science, 2016, 386, 285-295.	3.1	116
168	Preparation and photocatalytic activity of triangular pyramid NaNbO 3. Applied Catalysis B: Environmental, 2016, 199, 166-169.	10.8	21
169	Tubular gâ€C ₃ N ₄ Isotype Heterojunction: Enhanced Visibleâ€Light Photocatalytic Activity through Cooperative Manipulation of Oriented Electron and Hole Transfer. Small, 2016, 12, 4093-4101.	5.2	191
170	Charge Carriers Separation at the Graphene/(101) Anatase TiO ₂ Interface. Advanced Materials Interfaces, 2016, 3, 1500624.	1.9	37
171	Progress in Black Titania: A New Material for Advanced Photocatalysis. Advanced Energy Materials, 2016, 6, 1600452.	10.2	251
172	Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al 2 O 3 with enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2016, 480, 184-190.	5.0	36
173	Construction of visible light-induced renewable electrode for monitoring of living cells. Journal of Electroanalytical Chemistry, 2016, 781, 371-376.	1.9	5
174	CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	10.2	253
175	Visible-Light-Responsive Chalcogenide Photocatalyst Ba ₂ ZnSe ₃ : Crystal and Electronic Structure, Thermal, Optical, and Photocatalytic Activity. Inorganic Chemistry, 2016, 55, 12783-12790.	1.9	40
176	A qualitative analysis of heterojunction solar cells as an improvement over traditional solar cells. , 2016, , .		0
177	Solvothermal synthesis of Bi ₂ O ₃ /BiVO ₄ heterojunction with enhanced visible-light photocatalytic performances. Journal of Semiconductors, 2016, 37, 083004.	2.0	10
178	Semiautomated Support Photoelectrochemical Immunosensing Platform for Portable and High-Throughput Immunoassay Based on Au Nanocrystal Decorated Specific Crystal Facets BiVO ₄ Photoanode. Analytical Chemistry, 2016, 88, 12539-12546.	3.2	107
179	Ferrites as Photocatalysts for Water Splitting and Degradation of Contaminants. ACS Symposium Series, 2016, , 79-112.	0.5	10
181	Light Driven Nanomaterials for Removal of Agricultural Toxins. Sustainable Agriculture Reviews, 2016, , 225-242.	0.6	6
182	Effect of particle size on the photocatalytic activity of BiNbO ₄ under visible light irradiation. Journal of Physics: Conference Series, 2016, 758, 012017.	0.3	16
183	Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chinese Journal of Catalysis, 2016, 37, 2059-2068.	6.9	55
184	Enhanced visible-light-driven photocatalytic performance of mesoporous W-Ti-SBA-15 prepared through a facile hydrothermal route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 69-78.	2.3	15
185	Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO 2 /graphene composite in photo-generated cathodic protection. Applied Surface Science, 2016, 382, 128-134.	3.1	69

#	ARTICLE	IF	CITATIONS
186	Photocatalytic Degradation of Indigo Carmine Dye Using Hydrothermally Synthesized Anatase TiO ₂ Nanotubes under Ultraviolet Light Emitting Diode Irradiation. Materials Science Forum, 2016, 855, 45-57.	0.3	4
187	Interfacial effects of the Cu 2 O nano-dots decorated Co 3 O 4 nanorods array and its photocatalytic activity for cleaving organic molecules. Applied Surface Science, 2016, 382, 249-259.	3.1	25
188	The coating of conducting copolymer on coordination polymer nanorod: A visible light active p-n heterojunction photocatalyst for H2 production. Solid State Sciences, 2016, 56, 45-53.	1.5	2
189	Bottlenecks limiting efficiency of photocatalytic water reduction by mixed Cd-Zn sulfides/Pt-TiO 2 composites. Applied Catalysis B: Environmental, 2016, 198, 16-24.	10.8	13
190	Preparation of Yb3+/Er3+ co-doped BiOCl sheets as efficient visible-light-driven photocatalysts. Materials Letters, 2016, 179, 154-157.	1.3	23
191	Synthesis and characterization of visible light responsive Bi3NbO7 porous nanosheets photocatalyst. Applied Catalysis B: Environmental, 2016, 196, 127-134.	10.8	43
192	Graphitic Carbon Nitride (g-C ₃ N ₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?. Chemical Reviews, 2016, 116, 7159-7329.	23.0	5,505
193	Direct photocatalytic hydrogen evolution from water splitting using nanostructures of hydrate organic small molecule as photocatalysts. Journal of Materials Chemistry A, 2016, 4, 6577-6584.	5.2	16
194	In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance. Journal of Hazardous Materials, 2016, 313, 219-228.	6.5	135
195	Effective Charge Carrier Utilization in Photocatalytic Conversions. Accounts of Chemical Research, 2016, 49, 911-921.	7.6	266
196	Single Precursor Mediated-Synthesis of Bi Semimetal Deposited N-Doped (BiO) ₂ CO ₃ Superstructures for Highly Promoted Photocatalysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 2969-2979.	3.2	64
197	Carbon quantum dot decorated hollow In ₂ S ₃ microspheres with efficient visible-light-driven photocatalytic activities. RSC Advances, 2016, 6, 40137-40146.	1.7	15
198	Defective, Porous TiO ₂ Nanosheets with Pt Decoration as an Efficient Photocatalyst for Ethylene Oxidation Synthesized by a C ₃ N ₄ Templating Method. ACS Applied Materials & Interfaces, 2016, 8, 10104-10108.	4.0	72
199	Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Applied Catalysis B: Environmental, 2016, 193, 16-21.	10.8	247
200	Construction of α–β Phase Junction on Bi ₄ V ₂ O ₁₁ via Electrospinning Retardation Effect and Its Promoted Photocatalytic Performance. Inorganic Chemistry, 2016, 55, 4782-4789.	1.9	41
201	Electrophoretic Deposition of Carbon Nitride Layers for Photoelectrochemical Applications. ACS Applied Materials & Interfaces, 2016, 8, 13058-13063.	4.0	74
202	Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Materials Horizons, 2016, 3, 270-282.	6.4	95
203	Synthesis of BiOBr/WO ₃ p–n heterojunctions with enhanced visible light photocatalytic activity. CrystEngComm, 2016, 18, 3856-3865.	1.3	104

#	Article	IF	CITATIONS
204	Enhanced photocatalytic activity over a novel CuWO ₄ /Cu _{1â^'<i>x</i>} Zn _{<i>x</i>} WO ₄ /ZnWO _{4material with sandwiched heterojunction. Journal of Materials Research, 2016, 31, 1616-1621.})>hy⊉rid	7
205	Efficient and stable Nb 2 O 5 modified g-C 3 N 4 photocatalyst for removal of antibiotic pollutant. Chemical Engineering Journal, 2016, 299, 74-84.	6.6	308
206	Fabrication of novel p–n heterojunction BiOI/La ₂ Ti ₂ O ₇ composite photocatalysts for enhanced photocatalytic performance under visible light irradiation. Dalton Transactions, 2016, 45, 7986-7997.	1.6	88
207	Strongly-coupled silver chloride–tungsten oxide hybrid nanocomposite with excellent antibacterial effect. Advanced Powder Technology, 2016, 27, 1295-1300.	2.0	4
208	Fabrication of p-type BiOCl/n-type La ₂ Ti ₂ O ₇ facet-coupling heterostructure with enhanced photocatalytic performance. RSC Advances, 2016, 6, 48599-48609.	1.7	31
209	Tuning and thermal exfoliation graphene-like carbon nitride nanosheets for superior photocatalytic activity. Ceramics International, 2016, 42, 18521-18528.	2.3	82
210	Preparation of anatase TiO ₂ nanotube arrays dominated by highly reactive facets via anodization for high photocatalytic performances. New Journal of Chemistry, 2016, 40, 8737-8744.	1.4	24
211	Sono-dispersion of CuS-CdS over TiO 2 in one-pot hydrothermal reactor as visible-light-driven nanostructured photocatalyst. Journal of Molecular Catalysis A, 2016, 424, 283-296.	4.8	66
212	Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catalysis, 2016, 6, 7935-7947.	5.5	445
213	Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy, 2016, 30, 59-68.	8.2	92
214	Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources. Green Chemistry, 2016, 18, 5736-5750.	4.6	158
215	One-step hydrothermal synthesis of novel Ag3VO4/Ag4V2O7 composites for enhancing visible-light photocatalytic performance. RSC Advances, 2016, 6, 95156-95164.	1.7	13
216	Self-assembling solid-state hydrogen source for drylands photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 15920-15928.	5.2	12
217	Fabrication of FeWO ₄ @ZnWO ₄ /ZnO Heterojunction Photocatalyst: Synergistic Effect of ZnWO ₄ /ZnO and FeWO ₄ @ZnWO ₄ /ZnO Heterojunction Structure on the Enhancement of Visible-Light Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2016, 4, 6288-6298.	3.2	94
218	The Fabrication and Photocatalysis of Gold Nanoparticles/Porous GaN Composite. ChemistrySelect, 2016, 1, 3159-3162.	0.7	8
219	The flux growth of single-crystalline CoTiO ₃ polyhedral particles and improved visible-light photocatalytic activity of heterostructured CoTiO ₃ /g-C ₃ N ₄ composites. Dalton Transactions, 2016, 45, 17748-17758.	1.6	65
220	Photonic contacting of gas–liquid phases in a falling film microreactor for continuous-flow photochemical catalysis with visible light. Reaction Chemistry and Engineering, 2016, 1, 636-648.	1.9	36
221	Sulfur-doping synchronously ameliorating band energy structure and charge separation achieving decent visible-light photocatalysis of Bi ₂ O ₂ CO ₃ . RSC Advances, 2016, 6, 94361-94364.	1.7	20

#	Article	IF	CITATIONS
222	CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and Photoelectrochemical Applications. Journal of Colloid and Interface Science, 2016, 482, 221-232.	5.0	140
223	Construction and Nanoscale Detection of Interfacial Charge Transfer of Elegant Z-Scheme WO ₃ /Au/In ₂ S ₃ Nanowire Arrays. Nano Letters, 2016, 16, 5547-5552.	4.5	217
224	Mechanochemical synthesis of colloidal silver bromide particles in the NaBr–AgNO3–NaNO3 system. Colloid Journal, 2016, 78, 525-532.	0.5	2
225	Effects of the symmetry and carboxyl anchoring group of zinc phthalocyanine derivatives on g-C ₃ N ₄ for photosensitized H ₂ production. RSC Advances, 2016, 6, 77366-77374.	1.7	22
226	UV-visible and near-infrared active NaGdF ₄ :Yb:Er/Ag/TiO ₂ nanocomposite for enhanced photocatalytic applications. RSC Advances, 2016, 6, 80655-80665.	1.7	18
227	Nanowire Array Structures for Photocatalytic Energy Conversion and Utilization: A Review of Design Concepts, Assembly and Integration, and Function Enabling. Advanced Energy Materials, 2016, 6, 1600683.	10.2	89
228	Highly efficient three-dimensional flower-like AgI/Bi2O2CO3 heterojunction with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2016, 688, 225-234.	2.8	42
229	Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. Advanced Science, 2016, 3, 1500282.	5.6	60

#	Article	IF	CITATIONS
240	Flower-like MWCNTs/Bi2O2CO3 composites with enhanced photocatalytic activity under simulated solar light irradiation. Materials Letters, 2016, 185, 50-53.	1.3	14
241	Construction of AgCl/Ag/BiOCl with a concave-rhombicuboctahedron core–shell hierarchitecture and enhanced photocatalytic activity. RSC Advances, 2016, 6, 84738-84747.	1.7	15
242	Dual visible-light active components containing self-doped Bi 2 O 2 CO 3 /g-C 3 N 4 2D-2D heterojunction with enhanced visible-light-driven photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 64-72.	2.3	25
243	Onion-like carbon modified porous graphitic carbon nitride with excellent photocatalytic activities under visible light. Ceramics International, 2016, 42, 18116-18123.	2.3	41
244	Synthesis of carbon-doped BiVO ₄ @multi-walled carbon nanotubes with high visible-light absorption behavior, and evaluation of their photocatalytic properties. CrystEngComm, 2016, 18, 9007-9015.	1.3	33
245	Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface Recombination in Photocatalysts. Angewandte Chemie, 2016, 128, 13938-13942.	1.6	29
246	Facile synthesis of the magnetic BiOCl/ZnFe2O4 heterostructures with enhanced photocatalytic activity under visible-light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 135-141.	2.3	32
247	Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface Recombination in Photocatalysts. Angewandte Chemie - International Edition, 2016, 55, 13734-13738.	7.2	149
248	Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures. Optical Materials, 2016, 60, 86-93.	1.7	52
249	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, .	19.8	313
249 250	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, . Modelling a Linker Mixâ€andâ€Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2016, 55, 16012-16016.	19.8 7.2	313 61
249 250 251	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, . Modelling a Linker Mixâ€andâ€Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2016, 55, 16012-16016. Oneâ€Step Synthesis of Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /Aidon Solvent and Sulfur Source. ChemistrySelect, 2016, 1, 6136-6145.	19.8 7.2 0.7	313 61 9
249 250 251 252	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, .Modelling a Linker Mixâ€andâ€Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2016, 55, 16012-16016.Oneâ€6tep Synthesis of Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /BiOX sub>3 Heterojunction Photocatalysts by Using Aqueous Thiourea Solution as Both Solvent and Sulfur Source. ChemistrySelect, 2016, 1, 6136-6145.Forming heterojunction: an effective strategy to enhance the photocatalytic efficiency of a new metal-free organic photocatalyst for water splitting. Scientific Reports, 2016, 6, 29327.	19.8 7.2 0.7 1.6	 313 61 9 24
249 250 251 252 253	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, . Modelling a Linker Mixâ€andâ€Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2016, 55, 16012-16016. Oneâ€Etep Synthesis of Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /Co ₃ /Sub>/Sub>/Sub>/Sub>/Sub>/Sub>/Sub>/S	19.8 7.2 0.7 1.6	 313 61 9 24 40
249 250 251 252 253 253	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, .Modelling a Linker Mixâ€endâ€Match Approach for Controlling the Optical Excitation Caps and Band Alignment of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2016, 55, 16012-16016.Oneâ€Etep Synthesis of Bi ₂ S ₃ /BiOX and Bi ₂ /BiOX and Bi/BiOX and Bi ₂ S ₃ /BiOX and Bi ₂ /BiOX and Bi/BiOX and Bi ₂ /BiOX and Bi/BiOX and Bi ₂ /BiOX and Bi/BiOX and Bi/BiOX and Bi ₂ /BiOX and Bi/BiOX and BiPorting heterojunction: an effective strategy to enhance the photocatalytic efficiency of a new metal-free organic photocatalyst for water splitting. Scientific Reports, 2016, 6, 29327.Post-illumination activity of SnO2 nanoparticle-decorated Cu2O nanocubes by H2O2 production in dark from photocatalytic a€cememorya€. Scientific Reports, 2016, 6, 20878.	19.8 7.2 0.7 1.6 1.6	 313 61 9 24 40 12
249 250 251 252 253 254	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, . Modelling a Linker Mixâ€endâ€Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2016, 55, 16012-16016. Oneâ€5tep Synthesis of Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /BiOX and Bi ₂ S ₃ /Cosub>3/BiOX and Bi ₂ Co ₃ /BiOX and Bi ₂ Co ₃ /Co ₃ /Co ₃ /Co/Co ₃ /Co Oneâ€5tep Synthesis of Bi Co Sub>2/Co Sub>/Co Sub Sub>/Co Sub Sub>/Co Sub	19.8 7.2 0.7 1.6 1.6 1.6 3.1	 313 61 9 24 40 12 172
249 250 251 252 253 254 255	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, . Modelling a Linker Mixã€endã€Match Approach for Controlling the Optical Excitation Caps and Band Alignment of Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2016, 55, 16012-16016. Oneã€Etep Synthesis of Bi ₂ S ₃ /BiOX and Bi ₂ (sub>2S ₃ /BiOX and Bi ₂ S ₃ /BiOX and Bi ₂ /BiOX sub>2/BiOX and Bi Forming heterojunction: an effective strategy to enhance the photocatalytic efficiency of a new metal-free organic photocatalyst for water splitting. Scientific Reports, 2016, 6, 29327. Post-illumination activity of SnO2 nanoparticle-decorated Cu2O nanocubes by H2O2 production in dark from photocatalytic "memoryâ€+ Scientific Reports, 2016, 6, 20878. Modelling a Linker Mixã€endã€Match Approach for Controlling the Optical Excitation Caps and Band Alignment of Zeolitic Imidazolate Frameworks. Angewandte Chemie, 2016, 128, 16246-16250. Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCI nanosheets. Journal of Catalysis, 2016, 344, 401-410. Metal-Particle-Decorated ZnO Nanocrystals: Photocatalysis and Charge Dynamics. ACS Applied Materials & amp; Interfaces, 2016, 8,	 19.8 7.2 0.7 1.6 1.6 3.1 4.0 	 313 61 9 24 40 12 172 111

#	Article	IF	CITATIONS
258	Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	4
259	In situ Fabrication of α-Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity. Scientific Reports, 2016, 6, 23435.	1.6	65
260	An efficient visible-light photocatalyst made from a nonpolar layered semiconductor by grafting electron-withdrawing organic molecules to its surface. Chemical Communications, 2016, 52, 13507-13510.	2.2	32
261	A galvanic replacement reaction to synthesise metal/ZnO heterostructured films on zinc substrates for enhanced photocatalytic performance. RSC Advances, 2016, 6, 103594-103600.	1.7	8
262	Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis. Scientific Reports, 2016, 6, 20001.	1.6	39
263	A novel layered bismuth-based photocatalytic material LiBi3O4Cl2 with OH and h+ as the active species for efficient photodegradation applications. Solid State Sciences, 2016, 62, 43-49.	1.5	13
264	Spatial separation of photo-generated electron-hole pairs in BiOBr/BiOI bilayer to facilitate water splitting. Scientific Reports, 2016, 6, 32764.	1.6	53
265	Plasmonic Bi/ZnWO ₄ Microspheres with Improved Photocatalytic Activity on NO Removal under Visible Light. ACS Sustainable Chemistry and Engineering, 2016, 4, 6912-6920.	3.2	88
266	Antimony sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity. RSC Advances, 2016, 6, 105980-105987.	1.7	35
267	Direct Generation of Fine Bi ₂ WO ₆ Nanocrystals on gâ€C ₃ N ₄ Nanosheets for Enhanced Photocatalytic Activity. ChemNanoMat, 2016, 2, 732-738.	1.5	25
268	Recent developments in visible-light photocatalytic degradation of antibiotics. Chinese Journal of Catalysis, 2016, 37, 792-799.	6.9	178
269	Improving photocatalysis and magnetic recyclability in Bi 5 Fe 0.95 Co 0.05 Ti 3 O 15 via europium doping. Journal of Alloys and Compounds, 2016, 686, 306-311.	2.8	9
270	Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study. Nanoscale Research Letters, 2016, 11, 226.	3.1	22
271	Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study. Applied Catalysis B: Environmental, 2016, 199, 123-133.	10.8	214
272	Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous anatase TiO2 beads. Research on Chemical Intermediates, 2016, 42, 5479-5493.	1.3	9
273	Three dimensional Z-scheme (BiO) 2 CO 3 /MoS 2 with enhanced visible light photocatalytic NO removal. Applied Catalysis B: Environmental, 2016, 199, 87-95.	10.8	133
274	ZnS–ZnO nanocomposites: synthesis, characterization and enhanced photocatatlytic performance. Journal of Materials Science: Materials in Electronics, 2016, 27, 10282-10288.	1.1	15
275	Optical band structure and photogenerated carriers transfer dynamics in FTO/TiO 2 heterojunction photocatalysts. Applied Catalysis B: Environmental, 2016, 199, 224-229.	10.8	29

#	Article	IF	CITATIONS
276	Facile synthesis of ZnAgO nanoflakes and their improved photocatalytic activities under sun light. Journal of Materials Science: Materials in Electronics, 2016, 27, 10754-10758.	1.1	2
277	Efficient Z-scheme photocatalyst from simultaneous decoration of In ₂ S ₃ nanosheets and WO ₃ nanorods on graphene sheets. Nanotechnology, 2016, 27, 285602.	1.3	13
278	Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting. Nanotechnology, 2016, 27, 305403.	1.3	24
279	Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 2016, 221, 1029-1033.	2.3	608
280	Used oxygen-doped C ₃ N ₄ to enhance the photocatalysis performance of O-C ₃ N ₄ /Ag@AgCl composite photocatalyst. RSC Advances, 2016, 6, 52067-52075.	1.7	11
281	Synthesis of novel metal nanoparitcles/SnNb2O6 nanosheets plasmonic nanocomposite photocatalysts with enhanced visible-light photocatalytic activity and mechanism insight. Journal of Alloys and Compounds, 2016, 685, 647-655.	2.8	41
282	Rapid methyl orange degradation using porous ZnO spheres photocatalyst. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 312-317.	1.7	56
283	Enhanced visible-light photocatalytic activity of a g-C3N4/m-LaVO4 heterojunction: band offset determination. Science Bulletin, 2016, 61, 645-655.	4.3	34
284	Mixed-calcination synthesis of Bi 2 MoO 6 /g-C 3 N 4 heterojunction with enhanced visible-light-responsive photoreactivity for RhB degradation and photocurrent generation. Materials Research Bulletin, 2016, 83, 172-178.	2.7	46
285	In situ assembly of BiOI@Bi 12 O 17 Cl 2 p - n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Applied Catalysis B: Environmental, 2016, 199, 75-86.	10.8	577
286	Heterogeneous photocatalysts BiOX/NaBiO 3 (X = Cl, Br, I): Photo-generated charge carriers transfer property and enhanced photocatalytic activity. Chemical Physics, 2016, 478, 14-22.	0.9	16
287	Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today, 2016, 11, 351-372.	6.2	283
288	Facile hydrothermal synthesis of Ag@AgCl@AlOOH hollow microspheres and their characterizations. Materials Letters, 2016, 181, 204-207.	1.3	3
289	Recent advances in bismuth-containing photocatalysts with heterojunctions. Chinese Journal of Catalysis, 2016, 37, 780-791.	6.9	88
290	ZnFe ₂ O ₄ Leaves Grown on TiO ₂ Trees Enhance Photoelectrochemical Water Splitting. Small, 2016, 12, 3181-3188.	5.2	56
291	Simulated solarlight catalytic reduction of Cr(VI) on microwave–ultrasonication synthesized flower-like CuO in the presence of tartaric acid. Materials Chemistry and Physics, 2016, 171, 386-393.	2.0	29
292	Fabrication of MgFe ₂ 0 ₄ /MoS ₂ Heterostructure Nanowires for Photoelectrochemical Catalysis. Langmuir, 2016, 32, 1629-1636.	1.6	59
293	Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Research, 2016, 9, 886-898.	5.8	85

#	Article	IF	CITATIONS
294	Photocatalytic degradation of gallic acid over CuO–TiO2 composites under UV/Vis LEDs irradiation. Applied Catalysis A: General, 2016, 521, 140-148.	2.2	73
295	Synthesis of the visible-light-driven Ag ₃ VO ₄ /Ag ₃ PO ₄ /Ag photocatalysts with enhanced photocatalytic activity. RSC Advances, 2016, 6, 14909-14915.	1.7	32
296	Charge Separation in TiO ₂ /BDD Heterojunction Thin Film for Enhanced Photoelectrochemical Performance. ACS Applied Materials & Interfaces, 2016, 8, 1583-1588.	4.0	55
297	Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO4/reduced graphene oxide/Bi2O3 all-solid-state Z-scheme system. Journal of Alloys and Compounds, 2016, 662, 108-117.	2.8	54
298	Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2365-2402.	5.2	368
299	Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures. Catalysis Today, 2016, 266, 36-45.	2.2	69
300	Photocatalytic CO 2 reduction over B 4 C/C 3 N 4 with internal electric field under visible light irradiation. Journal of Colloid and Interface Science, 2016, 464, 89-95.	5.0	68
301	A pure organic heterostructure of μ-oxo dimeric iron(<scp>iii</scp>) porphyrin and graphitic-C ₃ N ₄ for solar H ₂ roduction from water. Journal of Materials Chemistry A, 2016, 4, 290-296.	5.2	117
302	Synthesis of Cu ₂ O Octadecahedron/TiO ₂ Quantum Dot Heterojunctions with High Visible Light Photocatalytic Activity and High Stability. ACS Applied Materials & Interfaces, 2016, 8, 91-101.	4.0	132
303	ZnO quantum dots arranged by hole scavenger groups for enhanced and stable photocatalyic hydrogen generation. Materials Letters, 2016, 165, 196-199.	1.3	10
304	Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts. Materials and Design, 2016, 98, 324-332.	3.3	86
305	Ternary cooperative Au–CdS–rGO hetero-nanostructures: synthesis with multi-interface control and their photoelectrochemical sensor applications. RSC Advances, 2016, 6, 30785-30790.	1.7	11
306	Metal–Organic Frameworks as Promising Photosensitizers for Photoelectrochemical Water Splitting. Advanced Science, 2016, 3, 1500243.	5.6	100
307	A simple and effective method for fabricating novel p–n heterojunction photocatalyst g-C3N4/Bi4Ti3O12 and its photocatalytic performances. Applied Catalysis B: Environmental, 2016, 192, 57-71.	10.8	199
308	Enhanced magnetic and photocatalytic properties of Bi 2 Fe 4 O 9 semiconductor with large exposed (001) surface. Applied Surface Science, 2016, 377, 253-261.	3.1	51
309	Cadmium Sulfide Nanorods Decorated with Copper Sulfide via Oneâ€6tep Cation Exchange Approach for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem, 2016, 8, 157-162.	1.8	39
310	Alkali-Induced <i>in Situ</i> Fabrication of Bi ₂ O ₄ -Decorated BiOBr Nanosheets with Excellent Photocatalytic Performance. Journal of Physical Chemistry C, 2016, 120, 7715-7727.	1.5	110
311	Single-nanowire photoelectrochemistry. Nature Nanotechnology, 2016, 11, 609-612.	15.6	111

#	Article	IF	CITATIONS
312	Fabrication and excellent visible-light-driven photodegradation activity for antibiotics of SrTiO ₃ nanocube coated CdS microsphere heterojunctions. RSC Advances, 2016, 6, 19878-19886.	1.7	34
313	Electroless deposition of gold on silicon and its potential applications: review. Surface Engineering, 2016, 32, 321-337.	1.1	32
314	The energy band alignment at the interface between mechanically exfoliated few-layer NiPS3 nanosheets and ZnO. Current Applied Physics, 2016, 16, 404-408.	1.1	14
315	Conducting Polymer-Based Catalysts. Journal of the American Chemical Society, 2016, 138, 2868-2876.	6.6	165
316	A self-sacrifice template route to iodine modified BiOIO ₃ : band gap engineering and highly boosted visible-light active photoreactivity. Physical Chemistry Chemical Physics, 2016, 18, 7851-7859.	1.3	40
317	Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation. Catalysis Science and Technology, 2016, 6, 4458-4472.	2.1	119
318	Near-infrared light-induced imaging and targeted anti-cancer therapy based on a yolk/shell structure. RSC Advances, 2016, 6, 21590-21599.	1.7	3
319	Ionic liquid-assisted synthesis and improved photocatalytic activity of p-n junction g-C3N4/BiOCl. Journal of Materials Science, 2016, 51, 4769-4777.	1.7	65
320	Biomimetic synthesis of interlaced mesh structures TiO2 nanofibers with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2016, 668, 113-120.	2.8	14
321	Ambient controlled synthesis of advanced core–shell plasmonic Ag@ZnO photocatalysts. CrystEngComm, 2016, 18, 1713-1722.	1.3	45
322	ZIF-8 derived carbon (C-ZIF) as a bifunctional electron acceptor and HER cocatalyst for g-C ₃ N ₄ : construction of a metal-free, all carbon-based photocatalytic system for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 3822-3827.	5.2	127
323	Engineering the Morphology and Configuration of Ternary Heterostructures for Improving Their Photocatalytic Activity. ACS Applied Materials & Interfaces, 2016, 8, 4516-4522.	4.0	34
324	Ag ₂ CrO ₄ nanoparticles loaded on two-dimensional large surface area graphite-like carbon nitride sheets: simple synthesis and excellent photocatalytic performance. Dalton Transactions, 2016, 45, 5815-5824.	1.6	52
325	Facile synthesis of Bi2WO6/Bi2O3-loaded polyurethane sponge with enhanced visible light photocatalytic activity. Functional Materials Letters, 2016, 09, 1650026.	0.7	8
326	Rational Design of α-Fe ₂ O ₃ /Reduced Graphene Oxide Composites: Rapid Detection and Effective Removal of Organic Pollutants. ACS Applied Materials & Interfaces, 2016, 8, 6431-6438.	4.0	91
327	Recent advances in 2D materials for photocatalysis. Nanoscale, 2016, 8, 6904-6920.	2.8	680
328	Polymer-Mediated Self-Assembly of TiO ₂ @Cu ₂ O Core–Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 6082-6092.	4.0	105
329	A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. Journal of Hazardous Materials, 2016, 311, 51-62.	6.5	103

#	Article	IF	CITATIONS
330	Efficient degradation of methylene blue over boron-doped g-C ₃ N ₄ /Zn _{0.8} Cd _{0.2} S photocatalysts under simulated solar irradiation. RSC Advances, 2016, 6, 25568-25576.	1.7	26
331	Synthesis of highly dispersed silver doped g-C 3 N 4 nanocomposites with enhanced visible-light photocatalytic activity. Materials and Design, 2016, 98, 223-230.	3.3	108
332	Carbon nitride nanosheet/metal–organic framework nanocomposites with synergistic photocatalytic activities. Catalysis Science and Technology, 2016, 6, 5042-5051.	2.1	116
333	Using graphene oxide as a sacrificial support of polyoxotitanium clusters to replicate its two-dimensionality on pure titania photocatalysts. Journal of Materials Chemistry A, 2016, 4, 7200-7206.	5.2	13
334	Hierarchical photocatalysts. Chemical Society Reviews, 2016, 45, 2603-2636.	18.7	1,517
335	Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 3954-3957.	6.6	335
336	Efficient visible light photocatalytic oxidation of NO with hierarchical nanostructured 3D flower-like BiOClxBr1â^x solid solutions. Journal of Alloys and Compounds, 2016, 671, 318-327.	2.8	66
337	Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure. Applied Catalysis B: Environmental, 2016, 185, 307-314.	10.8	131
338	A novel P-doped g-C3N4/Zn0.8Cd0.2S composite photocatalyst for degradation of methylene blue under simulated sunlight. Applied Surface Science, 2016, 361, 251-258.	3.1	60
339	A novel p-LaFeO ₃ /n-Ag ₃ PO ₄ heterojunction photocatalyst for phenol degradation under visible light irradiation. Chemical Communications, 2016, 52, 2620-2623.	2.2	123
340	Tailored Fabrication of Thoroughly Mesoporous BiVO ₄ Nanofibers and Their Visible-Light Photocatalytic Activities. ACS Applied Materials & Interfaces, 2016, 8, 1929-1936.	4.0	76
341	Novel visible-light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic activity. Journal of Colloid and Interface Science, 2016, 466, 284-290.	5.0	71
342	Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness. Journal of Materials Chemistry A, 2016, 4, 4413-4419.	5.2	41
343	In Situ Composition-Transforming Fabrication of BiOI/BiOIO ₃ Heterostructure: Semiconductor p–n Junction and Dominantly Exposed Reactive Facets. Crystal Growth and Design, 2016, 16, 221-228.	1.4	87
344	Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Applied Catalysis B: Environmental, 2016, 181, 495-503.	10.8	163
345	Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS. Journal of Materials Science, 2016, 51, 779-787.	1.7	31
346	A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chemistry, 2016, 18, 594-607.	4.6	238
347	Molecularly Imprinted TiO2/WO3-Coated Magnetic Nanocomposite for Photocatalytic Degradation of 4-Nitrophenol Under Visible Light. Australian Journal of Chemistry, 2016, 69, 638.	0.5	6

#	Article	IF	CITATIONS
348	lodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chemical Communications, 2016, 52, 354-357.	2.2	59
349	Effects of La-doping on charge separation behavior of ZnO:GaN for its enhanced photocatalytic performance. Catalysis Science and Technology, 2016, 6, 1033-1041.	2.1	13
350	Hierarchical BiOCl microspheres with narrow band gap as visible light active photocatalysts. Inorganica Chimica Acta, 2016, 439, 123-129.	1.2	21
351	Sol–gel synthesis and enhanced photocatalytic activity of doped bismuth tungsten oxide composite. Materials Research Bulletin, 2016, 73, 385-393.	2.7	19
352	Synthesis of Yb 3+ /Er 3+ co-doped Bi 2 WO 6 nanosheets with enhanced photocatalytic activity. Materials Letters, 2016, 163, 16-19.	1.3	36
353	Construction of novel ternary component photocatalyst Sr0.25H1.5Ta2O6·H2O coupled with g-C3N4 and Ag toward efficient visible light photocatalytic activity for environmental remediation. Applied Catalysis B: Environmental, 2016, 181, 197-209.	10.8	61
354	Graphitic carbon nitride nanosheet for photocatalytic hydrogen production: The impact of morphology and element composition. Applied Surface Science, 2017, 391, 369-375.	3.1	88
355	A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 2017, 310, 537-559.	6.6	449
356	Construction of a crossed-layer-structure MoS ₂ /g-C ₃ N ₄ heterojunction with enhanced photocatalytic performance. RSC Advances, 2017, 7, 6131-6139.	1.7	77
357	Titania supported MOF-199 derived Cu–Cu ₂ O nanoparticles: highly efficient non-noble metal photocatalysts for hydrogen production from alcohol–water mixtures. Catalysis Science and Technology, 2017, 7, 677-686.	2.1	58
358	n/n junctioned g-C ₃ N ₄ for enhanced photocatalytic H ₂ generation. Sustainable Energy and Fuels, 2017, 1, 317-323.	2.5	96
359	Single step combustion synthesis, characterization and photocatalytic application of α-Fe 2 O 3 -Bi 2 S 3 heterojunctions for efficient and selective reduction of structurally diverse nitroarenes. Chemical Engineering Journal, 2017, 316, 70-81.	6.6	43
360	An ion exchange strategy to BiOI/CH3COO(BiO) heterojunction with enhanced visible-light photocatalytic activity. Applied Surface Science, 2017, 403, 103-111.	3.1	30
361	Tuning Composition of Electrospun ZnO/CuO Nanofibers: Toward Controllable and Efficient Solar Photocatalytic Degradation of Organic Pollutants. Journal of Physical Chemistry C, 2017, 121, 3327-3338.	1.5	117
362	Improved photocatalytic activity of few-layer Bi4O5I2 nanosheets induced by efficient charge separation and lower valence position. Journal of Alloys and Compounds, 2017, 695, 922-930.	2.8	68
363	MWCNTs/BiOCOOH composites with improved sunlight photocatalytic activity. Materials Letters, 2017, 191, 157-160.	1.3	22
364	Ionic liquid-induced strategy for porous perovskite-like PbBiO2Br photocatalysts with enhanced photocatalytic activity and mechanism insight. Applied Catalysis B: Environmental, 2017, 206, 127-135.	10.8	101
365	Hydrothermal synthesis of CdS/CoWO 4 heterojunctions with enhanced visible light properties toward organic pollutants degradation. Ceramics International, 2017, 43, 5388-5395.	2.3	43

#	Article	IF	CITATIONS
366	Visible-light-driven Ag2MoO4/Ag3PO4 composites with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2017, 701, 350-357.	2.8	63
367	Magnetically separable photocatalyst of direct Z-scheme g-C3N4 nanosheets/natural hematite ore hybrids. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 156-163.	2.0	29
368	Preparation of mesoporous TiO2 with enhanced photocatalytic activity towards tannery wastewater degradation. Water Science and Technology, 2017, 75, 1494-1499.	1.2	11
369	Room-temperature solid state synthesis of Co 3 O 4 /ZnO p–n heterostructure and its photocatalytic activity. Advanced Powder Technology, 2017, 28, 953-963.	2.0	90
370	An Efficient, Visible Light Driven, Selective Oxidation of Aromatic Alcohols and Amines with O ₂ Using BiVO ₄ /g-C ₃ N ₄ Nanocomposite: A Systematic and Comprehensive Study toward the Development of a Photocatalytic Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 2562-2577.	3.2	172
371	Heterostructured ZnFe2O4/TiO2 nanotube arrays with remarkable visible-light photoelectrocatalytic performance and stability. Journal of Colloid and Interface Science, 2017, 493, 198-205.	5.0	29
372	Photocatalytic back-conversion of CO 2 into oxygenate fuels using an efficient ZnO/CuO/carbon nanotube solar-energy-material: Artificial photosynthesis. Journal of CO2 Utilization, 2017, 18, 89-97.	3.3	23
373	One-step solvothermal synthesis of interlaced nanoflake-assembled flower-like hierarchical Ag/Cu ₂ O composite microspheres with enhanced visible light photocatalytic properties. RSC Advances, 2017, 7, 6957-6965.	1.7	31
374	Spatial distribution of active sites on a ferroelectric PbTiO ₃ photocatalyst for photocatalytic hydrogen production. Faraday Discussions, 2017, 198, 463-472.	1.6	30
375	Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale, 2017, 9, 2398-2416.	2.8	121
376	A direct charger transfer from interface to surface for the highly efficient spatial separation of electrons and holes: The construction of Ti–C bonded interfaces in TiO2-C composite as a touchstone for photocatalytic water splitting. Nano Energy, 2017, 33, 29-36.	8.2	63
377	Achieving highly promoted visible-light sensitive photocatalytic activity on BiOIO3 via facile iodine doping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 158-165.	2.3	32
378	Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chinese Journal of Catalysis, 2017, 38, 5-12.	6.9	206
379	p-Cu ₂ S/n-Zn _x Cd _{1â^x} S nanocrystals dispersed in a 3D porous graphene nanostructure: an excellent photocatalyst for hydrogen generation through sunlight driven water splitting. Catalysis Science and Technology, 2017, 7, 1305-1314.	2.1	23
380	Enhancing Charge Separation in Photocatalysts with Internal Polar Electric Fields. ChemPhotoChem, 2017, 1, 136-147.	1.5	66
381	Heterojunction Photocatalysts. Advanced Materials, 2017, 29, 1601694.	11.1	3,143
382	Organic salt induced electrospinning gradient effect: Achievement of BiVO 4 nanotubes with promoted photocatalytic performance. Applied Catalysis B: Environmental, 2017, 208, 14-21.	10.8	60
383	Novel Î ² -Ag ₂ MoO ₄ /g-C ₃ N ₄ heterojunction catalysts with highly enhanced visible-light-driven photocatalytic activity. RSC Advances, 2017, 7, 2163-2171.	1.7	68

#	Article	IF	CITATIONS
384	Hydrothermal synthesis of graphene/TiO 2 /CdS nanocomposites as efficient visible-light-driven photocatalysts. Materials Letters, 2017, 194, 172-175.	1.3	31
385	Black Phosphorus Revisited: A Missing Metalâ€Free Elemental Photocatalyst for Visible Light Hydrogen Evolution. Advanced Materials, 2017, 29, 1605776.	11.1	405
386	Solvothermal Synthesis of TiO ₂ /Bi ₂ WO ₆ Heterojunction Photocatalyst with Optimized Interface Structure and Enabled Photocatalytic Performance. Chinese Journal of Chemistry, 2017, 35, 183-188.	2.6	8
387	Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Frontiers of Chemical Science and Engineering, 2017, 11, 100-106.	2.3	44
388	L-cysteine-assisted synthesis of hierarchical NiS ₂ hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime. Nanotechnology, 2017, 28, 115708.	1.3	23
389	A Redox Shuttle Accelerates O ₂ Evolution of Photocatalysts Formed In Situ under Visible Light. Advanced Materials, 2017, 29, 1606009.	11.1	48
390	Carbon nanodots/WO 3 nanorods Z-scheme composites: Remarkably enhanced photocatalytic performance under broad spectrum. Applied Catalysis B: Environmental, 2017, 209, 253-264.	10.8	173
391	Novel Ag 3 PO 4 /MoO 3 p - n heterojunction with enhanced photocatalytic activity and stability under visible light irradiation. Applied Surface Science, 2017, 409, 250-260.	3.1	59
392	Nickel cobalt sulfide nanosheets uniformly anchored on porous graphitic carbon nitride for supercapacitors with high cycling performance. Electrochimica Acta, 2017, 231, 617-625.	2.6	100
393	Photocatalytic degradation of Rhodamine B and Ibuprofen with upconversion luminescence in Ag-BaMoO4: Er3+/Yb3+/K+ microcrystals. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 36-48.	2.0	49
394	A highly efficient pn junction nanocomposite solar-energy-material [nano-photovoltaic] for direct conversion of water molecules to hydrogen solar fuel. Solar Energy Materials and Solar Cells, 2017, 165, 9-16.	3.0	21
395	Prolonged lifetime and enhanced separation of photogenerated charges of nanosized α-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde. Nano Research, 2017, 10, 2321-2331.	5.8	44
396	Facile synthesis of Fe 2 O 3 nanoparticles anchored on Bi 2 MoO 6 microflowers with improved visible light photocatalytic activity. Journal of Colloid and Interface Science, 2017, 497, 93-101.	5.0	96
397	Facile synthesis of CdS/MnWO4 heterojunction with enhanced visible-light-driven photocatalytic activity and mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 138-145.	2.3	49
398	Heterogeneous Semiconductor Shells Sequentially Coated on Upconversion Nanoplates for NIR-Light Enhanced Photocatalysis. Inorganic Chemistry, 2017, 56, 2328-2336.	1.9	24
399	Improving the plasmonic efficiency of the Au nanorod-semiconductor photocatalysis toward water reduction by constructing a unique hot-dog nanostructure. Nano Energy, 2017, 33, 469-475.	8.2	55
400	Enhanced photocatalytic activity and photostability for novel g-C 3 N 4 decorated Bi 2 O 4 microrod composites. Materials Research Bulletin, 2017, 89, 253-262.	2.7	36
401	CeO ₂ /Bi ₂ <scp>WO</scp> ₆ Heterostructured Microsphere with Excellent Visibleâ€lightâ€driven Photocatalytic Performance for Degradation of Tetracycline Hydrochloride. Photochemistry and Photobiology, 2017, 93, 1154-1164.	1.3	20

#	Article	IF	CITATIONS
402	A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation. RSC Advances, 2017, 7, 22234-22242.	1.7	29
403	Electrospinning Preparation of Nanostructured g-C ₃ N ₄ /BiVO ₄ Composite Films with an Enhanced Photoelectrochemical Performance. Langmuir, 2017, 33, 4694-4701.	1.6	81
404	Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 10365-10373.	5.2	89
405	Fabrication of Ni-doped BiVO 4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment. Applied Surface Science, 2017, 413, 253-265.	3.1	89
406	Degradation of refractory organic compounds by photocatalytic fuel cell with solar responsive WO 3 /FTO photoanode and air-breathing cathode. Journal of Colloid and Interface Science, 2017, 500, 220-227.	5.0	47
407	Synthesis of Yb3+/Ho3+ co-doped Bi2WO6 upconversion photocatalyst with highly improved visible light photocatalytic activity. Catalysis Communications, 2017, 97, 60-64.	1.6	34
408	A Review of Direct Zâ€Scheme Photocatalysts. Small Methods, 2017, 1, 1700080.	4.6	955
409	Synthesis of n -type TaON microspheres decorated by p -type Ag 2 O with enhanced visible light photocatalytic activity. Molecular Catalysis, 2017, 435, 135-143.	1.0	40
410	Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2Hâ€/1T′â€MoS ₂ on Graphene for Enhanced Photoresponse. Advanced Electronic Materials, 2017, 3, 1700024.	2.6	31
411	Facile hydrothermal synthesis of Fe 3+ doped Bi 2 Mo 2 O 9 ultrathin nanosheet with improved photocatalytic performance. Ceramics International, 2017, 43, 9214-9219.	2.3	26
412	Highly efficient visible-light photocatalytic activity of MoS ₂ –TiO ₂ mixtures hybrid photocatalyst and functional properties. RSC Advances, 2017, 7, 24754-24763.	1.7	96
413	Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO 3 nanostructures for controlling electrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst. Nano Energy, 2017, 38, 335-341.	8.2	183
414	CO2-Induced Defect Engineering: A New Protocol by Doping Vacancies in 2D Heterostructures for Enhanced Visible-Light Photocatalysis. Applied Surface Science, 2017, 419, 573-579.	3.1	22
415	Oxygen vacancies promoted interfacial charge carrier transfer of CdS/ZnO heterostructure for photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2017, 503, 198-204.	5.0	97
416	Photoelectrochemical performance and photoelectrocatalytic degradation of organic compounds using Ga:WO 3 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 56-63.	2.0	14
417	Determining the Chargeâ€Transfer Direction in a p–n Heterojunction BiOCl/gâ€C ₃ N ₄ Photocatalyst by Ultrafast Spectroscopy. ChemPhotoChem, 2017, 1, 350-354.	1.5	18
418	Rare-earth-doped tungsten oxide microspheres with highly enhanced photocatalytic activites. Ceramics International, 2017, 43, 10263-10269.	2.3	18
419	Evaluation of a multi-dimensional hybrid photocatalyst for enrichment of H ₂ evolution and elimination of dye/non-dye pollutants. Catalysis Science and Technology, 2017, 7, 2579-2590.	2.1	49

# 420	ARTICLE Facile synthesis of flower-like Ag 3 VO 4 /Bi 2 WO 6 heterojunction with enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2017, 501, 156-163.	IF 5.0	Citations
421	Generated photocatalytic performance of h-BN sheet by coupling with reduced graphene oxide/fluorid: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 46-53.	1.3	1
422	Flower-like Ag3VO4/BiOBr n-p heterojunction photocatalysts with enhanced visible-light-driven catalytic activity. Molecular Catalysis, 2017, 436, 190-198.	1.0	65
423	TiO 2 coated CuO nanowire array: Ultrathin p–n heterojunction to modulate cationic/anionic dye photo-degradation in water. Applied Surface Science, 2017, 416, 885-890.	3.1	39
424	Degradation of Chloramphenicol with Novel Metal Foam Electrodes in Bioelectrochemical Systems. Electrochimica Acta, 2017, 240, 136-145.	2.6	32
425	Construction of WO ₃ –g-C ₃ N ₄ composites as efficient photocatalysts for pharmaceutical degradation under visible light. Catalysis Science and Technology, 2017, 7, 2591-2600.	2.1	86
426	Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO 3 (La,Cr)-decorated WO 3 nanosheets. Applied Surface Science, 2017, 412, 279-289.	3.1	42
427	Vertically Aligned Nanosheets-Array-like BiOI Homojunction: Three-in-One Promoting Photocatalytic Oxidation and Reduction Abilities. ACS Sustainable Chemistry and Engineering, 2017, 5, 5253-5264.	3.2	59
428	Wide spectrum responsive CdS/NiTiO ₃ /CoS with superior photocatalytic performance for hydrogen evolution. Catalysis Science and Technology, 2017, 7, 2524-2530.	2.1	45
429	Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 140-148.	2.0	79
430	Excellent visible-light photocatalytic activity of p-type Ag 2 O coated n-type Fe 2 O 3 microspheres. Materials Letters, 2017, 188, 368-371.	1.3	29
431	Novel quantum dot and nano-sheet TiO2 (B) composite for enhanced photocatalytic H2 – Production without Co-Catalyst. Journal of Power Sources, 2017, 360, 353-359.	4.0	29
432	Long-Lived Photoinduced Charge Separation in a Trinuclear Iron-μ ₃ -oxo-based Metal–Organic Framework. Journal of Physical Chemistry C, 2017, 121, 13570-13576.	1.5	35
433	Effect of Ni doping in Ni _x Mn _{1â^{°,}x} Ti ₁₀ (x = 0.1–0.5) on activity and SO ₂ resistance for NH ₃ -SCR of NO studied with in situ DRIFTS. Catalysis Science and Technology, 2017, 7, 3243-3257.	2.1	111
434	Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance. Applied Surface Science, 2017, 423, 119-130.	3.1	84
435	In Situ Hydrothermal Construction of Direct Solid-State Nano-Z-Scheme BiVO ₄ /Pyridine-Doped g-C ₃ N ₄ Photocatalyst with Efficient Visible-Light-Induced Photocatalytic Degradation of Phenol and Dyes. ACS Omega, 2017, 2, 2728-2739.	1.6	75
436	Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts. Journal of Colloid and Interface Science, 2017, 504, 561-569.	5.0	64
437	Facile Synthesis of Heterostructured WS2/Bi2MoO6 as High-Performance Visible-Light-Driven Photocatalysts. Nanoscale Research Letters, 2017, 12, 377.	3.1	42

#	Article	IF	CITATIONS
438	Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: band gap tuning via iron substitutions. Journal of Materials Chemistry A, 2017, 5, 11894-11904.	5.2	84
439	One-pot facile synthesis of Bi 2 S 3 /SnS 2 /Bi 2 O 3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation. Applied Surface Science, 2017, 420, 233-242.	3.1	78
440	Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017, 218, 163-173.	10.8	233
441	Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. Journal of Catalysis, 2017, 352, 274-281.	3.1	193
442	CuO-ZnO Nanosheets with p-n Heterojunction for Enhanced Visible Light Mediated Photocatalytic Activity. ChemistrySelect, 2017, 2, 4866-4873.	0.7	15
443	A facile microwave-hydrothermal method to fabricate B doped ZnWO 4 nanorods with high crystalline and highly efficient photocatalytic activity. Materials Research Bulletin, 2017, 94, 298-306.	2.7	48
444	Hydrogen Production from Aqueous Solutions of Glycerol on TiO2/Ru-MCM-41 Photocatalysts Using Solar Light. Topics in Catalysis, 2017, 60, 1196-1209.	1.3	3
445	Enhanced visible light photocatalytic water reduction from a g-C3N4/SrTa2O6 heterojunction. Applied Catalysis B: Environmental, 2017, 217, 448-458.	10.8	58
446	Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 217, 551-559.	10.8	126
447	Efficient visible-light photocatalytic and enhanced photocorrosion inhibition of Ag2WO4 decorated MoS2 nanosheets. Journal of Physics and Chemistry of Solids, 2017, 110, 266-273.	1.9	38
448	Manganese Copper Sulfide Nanocomposites: Structure Tailoring and Photo/Electrocatalytic Hydrogen Generation. ChemCatChem, 2017, 9, 4148-4154.	1.8	10
449	Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder-Engineered TiO2 Photonic Crystals. CheM, 2017, 2, 877-892.	5.8	168
450	Preparation of porous CuO nanosheet-liked structure (CuO-NS) using C 3 N 4 template with enhanced visible-light photoactivity in degradation of chlortetracycline. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 168-176.	2.0	16
451	Tryptone based synthesis of TiO2@graphite carbon heterojunction with enhanced Photoreduction activity under visible light. Catalysis Communications, 2017, 99, 71-74.	1.6	3
452	Novel Nb ₃ O ₇ F/WS ₂ hybrid nanomaterials with enhanced optical absorption and photocatalytic activity. Nanotechnology, 2017, 28, 275707.	1.3	8
453	Coupling of solid-solution and heterojunction in a 2D-1D core-shell-like BiOCl0.5l0.5/Bi5O7I hierarchy for promoting full-spectrum photocatalysis and molecular oxygen activation. Journal of Colloid and Interface Science, 2017, 504, 257-267.	5.0	40
454	Silicone-oil-assisted synthesis of high-quality sodium niobate nanowires. CrystEngComm, 2017, 19, 3553-3556.	1.3	4
455	Dealloying-driven synthesis and characterization of AgCl/Ag/TiO ₂ nanocomposites with enhanced photocatalytic properties. IOP Conference Series: Materials Science and Engineering, 2017, 182, 012006	0.3	Ο

#	Article	IF	CITATIONS
456	Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Applied Catalysis B: Environmental, 2017, 217, 115-124.	10.8	182
457	A Bi _{7.38} Cr _{0.62} O _{12+x} crystal as a novel visible-light-active photocatalyst up to â^1⁄4650 nm. RSC Advances, 2017, 7, 28797-28801.	1.7	5
458	In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: A pseudo-zero-order rather than a first-order process. Applied Catalysis B: Environmental, 2017, 217, 591-602.	10.8	120
459	Constructing heterojunction photocatalyst with nanosized interface via a facile strategy for achieving enhanced photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 13814-13820.	1.1	1
460	In-situ room-temperature synthesis of amorphous/crystalline contact Bi2S3/Bi2WO6 heterostructures for improved photocatalytic ability. Ceramics International, 2017, 43, 11296-11304.	2.3	34
461	Synthesis and characterization of porous TiO 2 -NS/Pt/GO aerogel: A novel three-dimensional composite with enhanced visible-light photoactivity in degradation of chlortetracycline. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 1-9.	2.0	32
462	Rationally designed Bi@BiOCl/g-C3N4 heterostructure with exceptional solar-driven photocatalytic activity. Molecular Catalysis, 2017, 434, 69-79.	1.0	36
463	A building blocks strategy for preparing photocatalytically active anatase TiO2/rutile SnO2 heterostructures by hydrothermal annealing. Journal of Colloid and Interface Science, 2017, 505, 454-459.	5.0	31
464	Overcoming poisoning effects of heavy metal ions against photocatalysis for synergetic photo-hydrogen generation from wastewater. Nano Energy, 2017, 38, 494-503.	8.2	50
465	Layer Stacked Iodine and Phosphorus Coâ€doped C ₃ N ₄ for Enhanced Visibleâ€Light Photocatalytic Hydrogen Evolution. ChemCatChem, 2017, 9, 4083-4089.	1.8	36
466	Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites. Applied Surface Science, 2017, 423, 185-196.	3.1	77
467	Fullâ€Spectrum Solarâ€Lightâ€Activated Photocatalysts for Light–Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700473.	10.2	213
468	Synthesis and photocatalytic performance of reduced graphene oxide–TiO2 nanocomposites for orange II degradation under UV light irradiation. Environmental Science and Pollution Research, 2017, 24, 12416-12425.	2.7	29
469	Heterojunction: important strategy for constructing composite photocatalysts. Science Bulletin, 2017, 62, 599-601.	4.3	57
470	Visible-light-driven heterojunction photocatalysts based on g-C3N4 decorated La2Ti2O7: Effective transportation of photogenerated carriers in this heterostructure. Catalysis Communications, 2017, 96, 50-53.	1.6	15
471	Fabrication of Ag/AgBr/Ga2O3 heterojunction composite with efficient photocatalytic activity. Molecular Catalysis, 2017, 432, 57-63.	1.0	20
472	Construction of Ag 3 PO 4 /Ag 2 MoO 4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants. Chinese Journal of Catalysis, 2017, 38, 337-347.	6.9	105
473	Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO ₃ /TiO ₂ Heterojunction Films: A Computational and Experimental Study. Advanced Functional Materials, 2017, 27, 1605413.	7.8	115

#	Article	IF	CITATIONS
474	ZnCr LDH nanosheets modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 23427-23436.	3.8	61
475	SnO2-loaded BaTiO3 nanotube arrays: fabrication and visible-light photocatalytic application. Journal of Materials Science: Materials in Electronics, 2017, 28, 9770-9776.	1.1	10
476	Insights into the excitonic processes in polymeric photocatalysts. Chemical Science, 2017, 8, 4087-4092.	3.7	136
477	Carbon dots and Ag nanoparticles decorated g-C 3 N 4 nanosheets for enhanced organic pollutants degradation under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 342, 42-52.	2.0	82
478	Enhanced photocatalytic hydrogen generation using carbazole-based sensitizers. Sustainable Energy and Fuels, 2017, 1, 694-698.	2.5	23
479	Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy, 2017, 35, 405-414.	8.2	162
480	Nanostructured Semiconductors for Bifunctional Photocatalytic and Photoelectrochemical Energy Conversion. Semiconductors and Semimetals, 2017, 97, 315-347.	0.4	6
481	Enhanced photocatalytic performance of TiO 2 nanotube based heterojunction photocatalyst via the coupling of graphene and FTO. Applied Surface Science, 2017, 413, 7-15.	3.1	39
482	ZnO/Au nanocatalysts for enhanced decolorization of an azo dye under solar, UV-A and dark conditions. Journal of Alloys and Compounds, 2017, 710, 557-566.	2.8	39
483	Solvothermal synthesis of CdIn2S4 photocatalyst for selective photosynthesis of organic aromatic compounds under visible light. Scientific Reports, 2017, 7, 27.	1.6	72
484	Synthesis of Ta ₃ N ₅ /Bi ₂ MoO ₆ core–shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts. Environmental Science: Nano, 2017, 4, 1155-1167.	2.2	180
485	Photocatalytic performance of Cu2O-loaded TiO2/rGO nanoheterojunctions obtained by UV reduction. Journal of Materials Science, 2017, 52, 6754-6766.	1.7	45
486	Layered structured CoAl/CdSâ€LDHs nanocomposites as visible light photocatalyst. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600910.	0.8	11
487	Oxygen Vacancies in Shape Controlled Cu ₂ O/Reduced Graphene Oxide/In ₂ O ₃ Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants. ACS Applied Materials & Interfaces, 2017, 9, 11678-11688.	4.0	137
488	Constructing ternary polyaniline-graphene-TiO2 hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection. Applied Surface Science, 2017, 410, 547-556.	3.1	73
489	FeVO4 nanobelts: controllable synthesis by electrospinning and visible-light photocatalytic properties. Journal of Sol-Gel Science and Technology, 2017, 82, 67-74.	1.1	20
490	[Ti ₁₂ In ₆ O ₁₈ (OOCC ₆ H ₅) ₃₀]: a multifunctional hetero-polyoxotitanate nanocluster with high stability and visible photoactivity. Dalton Transactions, 2017, 46, 678-684.	1.6	31
491	Synthesis of cobalt-doped ZnO/rGO nanoparticles with visible-light photocatalytic activity through a cobalt-induced electrochemical method. Journal of Energy Chemistry, 2017, 26, 549-555.	7.1	26

#	Article	IF	CITATIONS
492	The photocatalytic performance of silver halides – Silver carbonate heterostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 1-7.	2.0	9
493	One-pot synthesis of 3D hierarchical Bi 2 S 3 /(BiO) 2 CO 3 hollow microspheres at room temperature and their photocatalytic performance. Materials Chemistry and Physics, 2017, 187, 72-81.	2.0	19
494	Modulation of charge carrier pathways in CdS nanospheres by integrating MoS ₂ and Ni ₂ P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 641-649.	2.1	76
495	A visible-light-driven heterojunction for enhanced photocatalytic water splitting over Ta2O5 modified g-C3N4 photocatalyst. International Journal of Hydrogen Energy, 2017, 42, 6738-6745.	3.8	120
496	Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: A review. Catalysis Today, 2017, 284, 202-214.	2.2	99
497	p-Agl anchored on {001} facets of n-Bi2O2CO3 sheets with enhanced photocatalytic activity and stability. Applied Catalysis B: Environmental, 2017, 205, 34-41.	10.8	97
498	A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light. Small, 2017, 13, 1603182.	5.2	55
499	In-situ preparation of Fe2O3 hierarchical arrays on stainless steel substrate for high efficient catalysis. Journal of Solid State Chemistry, 2017, 246, 278-283.	1.4	8
500	Sheet-like and truncated-dodecahedron-like AgI structures via a surfactant-assisted protocol and their morphology-dependent photocatalytic performance. Physical Chemistry Chemical Physics, 2017, 19, 837-845.	1.3	14
501	Flower-like Ag 2 MoO 4 /Bi 2 MoO 6 heterojunctions with enhanced photocatalytic activity under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 156-164.	2.7	56
502	Enhanced visible-light-driven photocatalytic activity of Au@Ag core–shell bimetallic nanoparticles immobilized on electrospun TiO ₂ nanofibers for degradation of organic compounds. Catalysis Science and Technology, 2017, 7, 570-580.	2.1	134
503	Highly efficient photocatalytic performances of SnO2-deposited ZnS nanorods based on interfacial charge transfer. Applied Catalysis B: Environmental, 2017, 205, 433-442.	10.8	48
504	Leaf-like hybrid of bismuth subcarbonate nanotubes/graphene sheet with highly efficient photocatalytic activities. Journal of Colloid and Interface Science, 2017, 491, 273-278.	5.0	8
505	The Role of Interfaces in Heterostructures. ChemPlusChem, 2017, 82, 42-59.	1.3	33
506	Mechanistic insights into the formation of porous carbons from gelatin. Journal of Materials Chemistry A, 2017, 5, 11644-11651.	5.2	15
507	Heterojunction construction between TiO2 hollowsphere and ZnIn2S4 flower for photocatalysis application. Applied Surface Science, 2017, 398, 81-88.	3.1	123
508	Enhanced photocatalytic activity of g-C3N4-TiO2 nanocomposites for degradation of Rhodamine B dye. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 287-293.	2.0	53
509	Nb3O7F/MoS2 nanocrystal for expanded visible-light absorption and enhanced photocatalytic activity. Ceramics International, 2017, 43, 2743-2749.	2.3	7

#	Article	IF	CITATIONS
510	Synthesis of Bi2WO6 composites by carbon adsorption for visible light photocatalytic degradation of metronidazole. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 809-820.	0.8	5
511	Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899.	4.6	261
512	Colloidal Silicon–Germanium Nanorod Heterostructures. Chemistry of Materials, 2017, 29, 9786-9792.	3.2	14
513	Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au–Pt core–shell nanoparticles. Dalton Transactions, 2017, 46, 16050-16057.	1.6	32
514	Ternary-component reduced graphene oxide aerogel constructed by g-C3N4/BiOBr heterojunction and graphene oxide with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2017, 729, 162-170.	2.8	52
515	Turbostratic carbon nitride enhances the performance and stability of cadmium sulfide nanorod hydrogen evolution photocatalysts. Inorganic Chemistry Frontiers, 2017, 4, 1923-1929.	3.0	8
516	Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam. Materials Today, 2017, 20, 501-506.	8.3	157
517	Ternary heterojunctions composed of BiOCl, BiVO4 and nitrogen-doped carbon quantum dots for use in photoelectrochemical sensing: effective charge separation and application to ultrasensitive sensing of dopamine. Mikrochimica Acta, 2017, 184, 4827-4833.	2.5	30
518	Preparation of WO3, BiVO4 and reduced graphene oxide composite thin films and their photoelectrochemical performance. Korean Journal of Chemical Engineering, 2017, 34, 3220-3225.	1.2	18
519	Facile synthesis and characterization of FeP x V1Ââ^'Âx O4 nanobelts with enhanced photocatalytic performance. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	3
520	Fabrication of CaFe ₂ O ₄ nanofibers via electrospinning method with enhanced visible light photocatalytic activity. Functional Materials Letters, 2017, 10, 1750058.	0.7	12
521	A two-dimensional layered CdS/C ₂ N heterostructure for visible-light-driven photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 28216-28224.	1.3	75
522	New Titanium Dioxide-Based Heterojunction Nanohybrid for Highly Selective Photoelectrochemical–Electrochemical Dual-Mode Sensors. ACS Applied Materials & Interfaces, 2017, 9, 37166-37183.	4.0	62
523	Tunable conduction band energy and metal-to-ligand charge transfer for wide-spectrum photocatalytic H2 evolution and stability from isostructural metal-organic frameworks. International Journal of Hydrogen Energy, 2017, 42, 26605-26616.	3.8	43
524	Atomistic Explanation for Interlayer Charge Transfer in Metal–Semiconductor Nanocomposites: The Case of Silver and Anatase. Journal of Physical Chemistry Letters, 2017, 8, 5372-5377.	2.1	25
526	One-step synthesis of NiTe ₂ nanorods coated with few-layers MoS ₂ for enhancing photocatalytic activity. Nanotechnology, 2017, 28, 495602.	1.3	30
527	Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites. Molecular Systems Design and Engineering, 2017, 2, 422-439.	1.7	92
528	In-depth insight into facet-dependent charge movement behaviors and photo-redox catalysis: A case of {0 0 1} and {0 1 0} facets BiOCl. Journal of Colloid and Interface Science, 2017, 508, 174-183.	5.0	45

#	Article	IF	CITATIONS
529	Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy, 2017, 41, 49-65.	8.2	248
530	Highly efficient visible-light-induced photoactivity of Z-scheme Ag ₂ CO ₃ /Ag/WO ₃ photocatalysts for organic pollutant degradation. Environmental Science: Nano, 2017, 4, 2175-2185.	2.2	121
531	TiO ₂ -Loaded WO ₃ Composite Films for Enhancement of Photocurrent Density. Chinese Physics Letters, 2017, 34, 028201.	1.3	2
532	Density Functional Studies on Layered Perovskite Oxyhalide Bi ₄ MO ₈ X Photocatalysts (M = Nb and Ta, X = Cl, Br, and I). Journal of Physical Chemistry C, 2017, 121, 20662-20672.	1.5	24
533	CO ₂ Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 2017, 4, 1700194.	5.6	651
534	One-Pot in Situ Hydrothermal Growth of BiVO4/Ag/rGO Hybrid Architectures for Solar Water Splitting and Environmental Remediation. Scientific Reports, 2017, 7, 8404.	1.6	78
535	Elemental Bismuth–Graphene Heterostructures for Photocatalysis from Ultraviolet to Infrared Light. ACS Catalysis, 2017, 7, 7043-7050.	5.5	65
536	Surfactant-mediated synthesis of single-crystalline Bi ₃ O ₄ Br nanorings with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 15706-15713.	5.2	59
537	Micelleâ€Directing Synthesis of Agâ€Doped WO ₃ and MoO ₃ Composites for Photocatalytic Water Oxidation and Organicâ€Dye Adsorption. Chemistry - an Asian Journal, 2017, 12, 2597-2603.	1.7	21
538	Fabrication of transparent conductive tri-composite film for electrochromic application. Applied Surface Science, 2017, 425, 1006-1013.	3.1	20
539	In situ synthesis of a nanoplate-like Bi-based heterojunction for photocatalytic degradation of ciprofloxacin. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 69-77.	1.7	23
540	Br-Doped Bi ₂ O ₂ CO ₃ exposed (001) crystal facets with enhanced photocatalytic activity. CrystEngComm, 2017, 19, 5001-5007.	1.3	36
541	Synthesis of m-LaVO4/BiOBr composite photocatalysts and their photocatalytic performance under visible light. Materials Research Bulletin, 2017, 95, 146-151.	2.7	13
542	Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater. Applied Catalysis B: Environmental, 2017, 219, 425-431.	10.8	132
543	Achieving Enhanced UV and Visible Light Photocatalytic Activity for Ternary Ag/AgBr/BiOIO ₃ : Decomposition for Diverse Industrial Contaminants with Distinct Mechanisms and Complete Mineralization Ability. ACS Sustainable Chemistry and Engineering, 2017, 5, 7777-7791	3.2	88
544	Self-assembled three-dimensional flowerlike Mn _{0.8} Cd _{0.2} S microspheres as efficient visible-light-driven photocatalysts for H ₂ evolution and CO ₂ reduction. Catalysis Science and Technology, 2017, 7, 3802-3811.	2.1	48
545	Surface polycondensation as an effective tool to activate organic crystals: from "boxed― semiconductors for water oxidation to 1d carbon nanotubes. Journal of Materials Chemistry A, 2017, 5, 18502-18508.	5.2	24
546	Cobalt-doped BiVO4 (Co-BiVO4) as a visible-light-driven photocatalyst for the degradation of malachite green and inactivation of harmful microorganisms in wastewater. Research on Chemical Intermediates, 2017, 43, 5203-5216.	1.3	43

#	Article	IF	CITATIONS
547	Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis. ChemistrySelect, 2017, 2, 6163-6177.	0.7	23
548	Magnetically separable Agl–BiOI/CoFe ₂ O ₄ hybrid composites for Hg ⁰ removal: characterization, activity and mechanism. RSC Advances, 2017, 7, 31448-31456.	1.7	27
549	Enhancing Charge Separation and Photocatalytic Activity of Cubic SrTiO ₃ withÂPerovskiteâ€Type Materials MTaO ₃ (M=Na, K) for Environmental Remediation: A Firstâ€Principles Study. ChemistrySelect, 2017, 2, 6304-6316.	0.7	29
550	Folded-up thin carbon nanosheets grown on Cu ₂ O cubes for improving photocatalytic activity. Nanoscale, 2017, 9, 12348-12352.	2.8	17
551	m-BiVO 4 hollow spheres coated on carbon fiber with superior reusability as photocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 213-220.	2.3	29
552	Characterization and photocatalytic activity of Bi 3 TaO 7 prepared by hydrothermal method. Journal of Solid State Chemistry, 2017, 256, 203-212.	1.4	24
553	Cu ₂ ZnSnS ₄ –CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production. Catalysis Science and Technology, 2017, 7, 3980-3984.	2.1	15
554	Asymmetric Zinc Porphyrin Derivative-Sensitized Graphitic Carbon Nitride for Efficient Visible-Light-Driven H ₂ Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 7549-7556.	3.2	66
555	Facet Engineered Interface Design of Plasmonic Metal and Cocatalyst on BiOCl Nanoplates for Enhanced Visible Photocatalytic Oxygen Evolution. Small, 2017, 13, 1701607.	5.2	47
556	Strongly interactive 0D/2D hetero-structure of a Zn _x Cd _{1â^'x} S nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H ₂ production. Chemical Communications, 2017, 53, 9882-9885.	2.2	68
557	Hybrid visible-light responsive Al2O3 particles. Chemical Physics Letters, 2017, 685, 416-421.	1.2	14
558	Cu-α-NiMoO4 photocatalyst for degradation of Methylene blue with pathways and antibacterial performance. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 18-32.	2.0	62
559	Hierarchical core–shell SiO ₂ @PDA@BiOBr microspheres with enhanced visible-light-driven photocatalytic performance. Dalton Transactions, 2017, 46, 11451-11458.	1.6	49
560	Fabrication of metal-free two dimensional/two dimensional homojunction photocatalyst using various carbon nitride nanosheets as building blocks. Journal of Colloid and Interface Science, 2017, 507, 209-216.	5.0	49
561	High-Efficiency Broadband C ₃ N ₄ Photocatalysts: Synergistic Effects from Upconversion and Plasmons. ACS Catalysis, 2017, 7, 6225-6234.	5.5	144
562	Enhanced photoelectrochemical performance of hydrogen-treated SrTiO3/TiO2 nanotube arrays heterojunction composite. Journal of Electroanalytical Chemistry, 2017, 807, 213-219.	1.9	19
563	Ferromagnetic photocatalysts of FeTiO3–Fe2O3 nanocomposites. RSC Advances, 2017, 7, 54594-54602.	1.7	8
564	Nonstoichiometric Cu _{<i>x</i>} In _{<i>y</i>} S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4833-4838.	3.6	45

#	Article	IF	CITATIONS
565	Fabrication of αâ€Fe ₂ O ₃ @rGO/PAN Nanofiber Composite Membrane for Photocatalytic Degradation of Organic Dyes. Advanced Materials Interfaces, 2017, 4, 1700845.	1.9	39
566	Preparation of Cu(<scp>ii</scp>) porphyrin–TiO ₂ composite in one-pot method and research on photocatalytic property. RSC Advances, 2017, 7, 52738-52746.	1.7	23
567	Synergy effect of specific electrons and surface plasmonic resonance enhanced visible-light photoelectrochemical sensing for sensitive analysis of the CaMV 35S promoter. Journal of Materials Chemistry B, 2017, 5, 8999-9005.	2.9	16
568	Surface Passivation and Supersaturation: Strategies for Regioselective Deposition in Seeded Syntheses. ACS Nano, 2017, 11, 12624-12631.	7.3	24
569	Novel CuO/Bi 2 WO 6 heterojunction with enhanced visible light photoactivity. Advanced Powder Technology, 2017, 28, 3247-3256.	2.0	14
570	An environmentally friendly Z-scheme WO3/CDots/CdS heterostructure with remarkable photocatalytic activity and anti-photocorrosion performance. Journal of Catalysis, 2017, 356, 1-13.	3.1	99
571	Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures. Journal of Applied Physics, 2017, 122, .	1.1	6
572	Formation of Hierarchical In ₂ S ₃ –CdIn ₂ S ₄ Heterostructured Nanotubes for Efficient and Stable Visible Light CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 17305-17308.	6.6	585
573	Recent progress in crystalline metal chalcogenides as efficient photocatalysts for organic pollutant degradation. Inorganic Chemistry Frontiers, 2017, 4, 1953-1962.	3.0	154
574	Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: Enhanced photocatalysis and reaction mechanism. Journal of Catalysis, 2017, 352, 351-360.	3.1	173
575	Photocatalyst TiO 2 /WO 3 /GO nano-composite with high efficient photocatalytic performance for BPA degradation under visible light and solar light illumination. Journal of Industrial and Engineering Chemistry, 2017, 55, 140-148.	2.9	44
576	Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation. Journal of Environmental Chemical Engineering, 2017, 5, 3455-3462.	3.3	12
577	Hybrid PbS Quantum Dot/Nanoporous NiO Film Nanostructure: Preparation, Characterization, and Application for a Self-Powered Cathodic Photoelectrochemical Biosensor. Analytical Chemistry, 2017, 89, 8070-8078.	3.2	149
578	Graphdiyne: A Promising Catalyst–Support To Stabilize Cobalt Nanoparticles for Oxygen Evolution. ACS Catalysis, 2017, 7, 5209-5213.	5.5	150
579	Synergistic effect of photocatalysis and thermocatalysis for selective oxidation of aromatic alcohols to aromatic aldehydes using Zn3ln2S6@ZnO composite. Applied Catalysis B: Environmental, 2017, 218, 420-429.	10.8	90
580	Interfacial Manipulation by Rutile TiO ₂ Nanoparticles to Boost CO ₂ Reduction into CO on a Metal-Complex/Semiconductor Hybrid Photocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 23869-23877.	4.0	69
581	2D/2D heterojunctions of WO ₃ nanosheet/K ⁺ Ca ₂ Nb ₃ O ₁₀ ^{â^'} ultrathin nanosheet with improved charge separation efficiency for significantly boosting photocatalysis. Catalysis Science and Technology, 2017, 7, 3481-3491.	2.1	68
582	Facile synthesis of MoS2/Ag2CrO4 composites with improved visible light driven photocatalytic performance. Journal of Materials Science: Materials in <u>Electronics, 2017, 28, 14069-14078</u> .	1.1	4

#	Article	IF	CITATIONS
583	Chemical-bond conjugated BiO(OH)xl1-x-AgI heterojunction with high visible light activity and stability in degradation of pollutants. Applied Catalysis B: Environmental, 2017, 218, 443-451.	10.8	27
584	Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Applied Catalysis B: Environmental, 2017, 218, 555-569.	10.8	173
585	Structure Tuning of Bi ₂ MoO ₆ and Their Enhanced Visible Light Photocatalytic Performances. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 347-372.	6.8	56
586	Growth of BiVO ₄ Nanoparticles on a Bi ₂ O ₃ Surface: Effect of Heterojunction Formation on Visible Irradiation-Driven Catalytic Performance. Journal of Physical Chemistry C, 2017, 121, 13747-13756.	1.5	37
587	Metal-complex chromophores for solar hydrogen generation. Chemical Society Reviews, 2017, 46, 603-631.	18.7	342
588	The visible-light-driven type III heterojunction H3PW12O40/TiO2-In2S3: A photocatalysis composite with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2017, 696, 51-59.	2.8	59
589	Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes. Applied Catalysis B: Environmental, 2017, 204, 224-238.	10.8	137
590	Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications. Journal of Materials Science and Technology, 2017, 33, 1-22.	5.6	176
592	Photocatalytic N 2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: A novel hydrogenation strategy and basic understanding of the phenomenon. Applied Catalysis A: General, 2017, 529, 91-97.	2.2	71
593	Effective surface disorder engineering of metal oxide nanocrystals for improved photocatalysis. Applied Catalysis B: Environmental, 2017, 203, 615-624.	10.8	51
594	Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Applied Catalysis B: Environmental, 2017, 203, 879-888.	10.8	289
595	Photocatalytic and photoelectrochemical properties of hierarchical mesoporous TiO2 microspheres produced using a crown template. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 334, 26-35.	2.0	10
596	Co ₃ O ₄ –C ₃ N ₄ p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environmental Science: Nano, 2017, 4, 212-221.	2.2	127
597	Synthesis, characterisation and antibacterial activity of ZnS–ZnO nanocomposites. Materials Technology, 2017, 32, 299-304.	1.5	6
598	Utilization of visible to NIR light energy by Yb+3, Er+3 and Tm+3 doped BiVO4 for the photocatalytic degradation of methylene blue. Applied Surface Science, 2017, 392, 61-70.	3.1	114
599	Preparation and characterization of graphitic C3N4/Ag3VO4 with excellent photocatalytic performance under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2017, 28, 641-651.	1.1	14
600	In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode. Applied Surface Science, 2017, 392, 144-152.	3.1	52
601	Degradation of emerging pollutants in water under solar irradiation using novel TiO 2 -ZnO/clay nanoarchitectures. Chemical Engineering Journal, 2017, 309, 596-606.	6.6	134

#	Article	IF	CITATIONS
602	Energy-efficient fabrication of a novel multivalence Mn3O4-MnO2 heterojunction for dye degradation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 202, 509-517.	10.8	160
603	Facile synthesis, structure and enhanced photocatalytic activity of novel BiOBr/Bi(C2O4)OH composite photocatalysts. Journal of Colloid and Interface Science, 2017, 486, 8-15.	5.0	31
604	Constructing a novel ternary composite (C16H33(CH3)3N)4W10O32/g-C3N4/rGO with enhanced visible-light-driven photocatalytic activity for degradation of dyes and phenol. Applied Catalysis B: Environmental, 2017, 200, 283-296.	10.8	81
605	Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: In situ FTIR analysis for structure-activity correlation. Applied Catalysis B: Environmental, 2017, 200, 297-308.	10.8	388
606	Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO 2 , WO 3 and ZnO). Applied Surface Science, 2017, 391, 124-148.	3.1	615
607	Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Applied Catalysis B: Environmental, 2017, 200, 47-55.	10.8	314
608	Enhanced visible light photocatalytic H 2 evolution of metal-free g-C 3 N 4 /SiC heterostructured photocatalysts. Applied Surface Science, 2017, 391, 449-456.	3.1	140
609	Dual redox couples Ag/Ag+ and Iâ^'/(IO3)â^' self-sacrificed transformation for realizing multiplex hierarchical architectures with universally powerful photocatalytic performance. Applied Catalysis B: Environmental, 2017, 200, 620-632.	10.8	44
610	Synthesis of flower-like Ag2O/BiOCOOH p-n heterojunction with enhanced visible light photocatalytic activity. Applied Surface Science, 2017, 397, 95-103.	3.1	81
611	Photoelectrocatalytic Materials for Water Disinfection. Green Chemistry and Sustainable Technology, 2017, , 199-219.	0.4	1
612	Ag/Bi12O17Cl2 composite: A case study of visible-light-driven plasmonic photocatalyst. Molecular Catalysis, 2017, 427, 45-53.	1.0	35
613	Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 2017, 392, 658-686.	3.1	989
614	Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. Journal of Alloys and Compounds, 2017, 690, 640-646.	2.8	71
615	Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review. Materials Chemistry Frontiers, 2017, 1, 231-250.	3.2	67
616	A review on TiO2-based Z-scheme photocatalysts. Chinese Journal of Catalysis, 2017, 38, 1936-1955.	6.9	511
617	Flux Growth of Highly Crystalline Photocatalytic BaTiO3 Particle Layers on Porous Titanium Sponge Substrate and Insights into the Formation Mechanism. IOP Conference Series: Materials Science and Engineering, 2017, 239, 012013.	0.3	1
618	Novel Bi2MoO6 Nanosheets/Vertical TiO2 Nanorods Arrays Heterojunction with Enhanced Photoelectrochemical Performance under Visible Light Irradiation. Chinese Journal of Chemical Physics, 2017, 30, 576-580.	0.6	1
619	CdSe nanorod/TiO ₂ nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity. Beilstein Journal of Nanotechnology, 2017, 8, 2741-2752	1.5	27

		15	Currentia
#	ARTICLE	IF	CITATIONS
620	degradation of organic dyes. Optical Materials Express, 2017, 7, 158.	1.6	43
621	Introduction to semiconductor nanomaterial and its optical and electronics properties. , 2017, , 1-33.		6
622	ZnO nanoparticles sensitized by CuInZn <i>_x</i> S ₂₊ <i>_x</i> quantum dots as highly efficient solar light driven photocatalysts. Beilstein Journal of Nanotechnology, 2017, 8, 1080-1093.	1.5	25
623	CTAB-Assisted Fabrication of Bi2WO6 Thin Nanoplates with High Adsorption and Enhanced Visible Light-Driven Photocatalytic Performance. Molecules, 2017, 22, 859.	1.7	18
624	A Novel Heterostructure of BiOI Nanosheets Anchored onto MWCNTs with Excellent Visible-Light Photocatalytic Activity. Nanomaterials, 2017, 7, 22.	1.9	45
625	The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation. Frontiers in Chemistry, 2017, 5, 84.	1.8	52
626	Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges. Catalysts, 2017, 7, 13.	1.6	202
627	Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications. Catalysts, 2017, 7, 100.	1.6	93
628	Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials. Energies, 2017, 10, 1624.	1.6	56
629	Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts. Advances in Catalysis, 2017, 60, 1-57.	0.1	72
630	Investigation morphological, electrical, and optical properties of Mn-doped ZnO thin film by sol–gel spin-coating method. Journal of Theoretical and Applied Physics, 2017, 11, 325-331.	1.4	11
631	Co-modified Commercial P25 TiO2 by Fe Doping and g-C3N4 Coating as High Performance Photocatalyst under visible light irradiation. International Journal of Electrochemical Science, 2017, 12, 5951-5963.	0.5	14
633	One-step hydrothermal synthesis of a novel 3D BiFeWO _x /Bi ₂ WO ₆ composite with superior visible-light photocatalytic activity. Green Chemistry, 2018, 20, 3014-3023.	4.6	51
634	Enhanced photocatalytic activity of Bi12O17Cl2 nano-sheets via surface modification of carbon nanotubes as electron carriers. Journal of Colloid and Interface Science, 2018, 519, 1-10.	5.0	90
635	Photodeposited metal-semiconductor nanocomposites and their applications. Journal of Materiomics, 2018, 4, 83-94.	2.8	32
636	Facile Synthesis of 1D/2D Core–Shell Structured Sb2S3@MoS2 Nanorods with Enhanced Photocatalytic Performance. Electronic Materials Letters, 2018, 14, 499-504.	1.0	7
637	Oneâ€pot combustion synthesis and efficient broad spectrum photoactivity of Bi/Bi <scp>OB</scp> r:Yb,Er/C photocatalyst. Journal of the American Ceramic Society, 2018, 101, 3424-3436.	1.9	74
638	Photoelectrocatalytic Degradation of 4-Chlorophenol by Using Decahedron BiVO ₄ as Catalyst and Pd and MnO _x as Cocatalysts on Designed Facets. Journal of the Electrochemical Society, 2018, 165, H147-H154.	1.3	7
#	Article	IF	CITATIONS
-----	--	------	-----------
639	Three-dimensional BiOI/TiO2 heterostructures with photocatalytic activity under visible light irradiation. Journal of Porous Materials, 2018, 25, 1805-1812.	1.3	18
640	TiO2 nanosheets decorated with B4C nanoparticles as photocatalysts for solar fuel production under visible light irradiation. Applied Surface Science, 2018, 443, 558-566.	3.1	15
641	AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	6
642	Rational design and fabrication of multifunctional catalyzer Co2SnO4-SnO2/GC for catalysis applications: Photocatalytic degradation/catalytic reduction of organic pollutants. Applied Catalysis B: Environmental, 2018, 231, 34-42.	10.8	56
643	Coherent Bi2O3-TiO2 hetero-junction material through oriented growth as an efficient photo-catalyst for methyl orange degradation. Materials Today Chemistry, 2018, 8, 36-41.	1.7	5
644	Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation. Journal of Molecular Liquids, 2018, 262, 194-203.	2.3	43
645	CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction. Nano Energy, 2018, 49, 363-371.	8.2	107
647	Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type II junction structure for overall water splitting. Catalysis Science and Technology, 2018, 8, 3025-3033.	2.1	8
648	Dye-Sensitized-Assisted, Enhanced Photocatalytic Activity of TiO ₂ /Bi ₄ V ₂ O ₁₁ . Nano, 2018, 13, 1850028.	0.5	12
649	Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Materials Science and Engineering Reports, 2018, 130, 1-39.	14.8	116
650	CdS sensitized TiO <mml:math <br="" id="mml3" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll" altimg="si3.gif"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> nano heterostructures as sunlight driven photocatalyst. Nano Structures Nano Objects. 2018, 16, 24-30	1.9	42
651	Boosting Charge Separation and Transfer by Plasmon-Enhanced MoS ₂ /BiVO ₄ p–n Heterojunction Composite for Efficient Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 6378-6387.	3.2	77
652	Construction of Eu2 O3 /g-C3 N4 Redox Heterojunctions Containing Eu3+ /Eu2+ Self-Redox Centers for Boosted Visible-Light Photocatalytic Activity. European Journal of Inorganic Chemistry, 2018, 2018, 2564-2573.	1.0	12
653	Gold nanobipyramid@cuprous oxide jujube-like nanostructures for plasmon-enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2018, 234, 26-36.	10.8	52
654	Synthesis and visible-light photocatalytic performance of flower-like porous Bi ₅ O ₇ I. Materials Research Express, 2018, 5, 045042.	0.8	10
655	Hydrothermal synthesis of CeO2/NaNbO3 composites with enhanced photocatalytic performance. Chinese Journal of Catalysis, 2018, 39, 682-692.	6.9	22
656	Epitaxial facet junctions on TiO ₂ single crystals for efficient photocatalytic water splitting. Energy and Environmental Science, 2018, 11, 1444-1448.	15.6	102
657	KCl-mediated dual electronic channels in layered g-C ₃ N ₄ for enhanced visible light photocatalytic NO removal. Nanoscale, 2018, 10, 8066-8074.	2.8	126

#	Article	IF	CITATIONS
658	Sunlight highly photoactive TiO 2 @poly- p -phenylene composite microspheres for malachite green degradation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 112-116.	2.7	8
659	Photoreduction route for Cu ₂ O/TiO ₂ nanotubes junction for enhanced photocatalytic activity. RSC Advances, 2018, 8, 12420-12427.	1.7	42
660	Aqueous synthesis of Z-scheme photocatalyst powders and thin-film photoanodes from earth abundant elements. Journal of Environmental Chemical Engineering, 2018, 6, 2606-2615.	3.3	8
661	<i>α</i> â€Fe ₂ O ₃ /TiO ₂ Hybrids with Tunable Morphologies as Efficient Photocatalysts and Positive Electrodes for Supercapacitors. ChemistrySelect, 2018, 3, 3284-3294.	0.7	5
662	Porous carbon nitride with defect mediated interfacial oxidation for improving visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 232, 384-390.	10.8	62
663	Highly Efficient and Stable CO ₂ Reduction Photocatalyst with a Hierarchical Structure of Mesoporous TiO ₂ on 3D Graphene with Few-Layered MoS ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 5718-5724.	3.2	110
664	Computational Screening of 2D Materials and Rational Design of Heterojunctions for Water Splitting Photocatalysts. Small Methods, 2018, 2, 1700359.	4.6	151
665	Effect of Surface Trap States on Photocatalytic Activity of Semiconductor Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 9312-9319.	1.5	22
666	Fe-modified perovskite-type NaMgF3 photocatalyst: Synthesis and photocatalytic properties. Materials Science in Semiconductor Processing, 2018, 83, 12-17.	1.9	11
667	Photocatalyst based on TiO2 nanotube arrays co-decorated with CdS quantum dots and reduced graphene oxide irradiated by γ rays for effective degradation of ethylene. Applied Surface Science, 2018, 442, 245-255.	3.1	36
668	Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catalysis Science and Technology, 2018, 8, 1686-1695.	2.1	70
669	Single step aerosol assisted chemical vapor deposition of p–n Sn(<scp>ii</scp>) oxide–Ti(<scp>iv</scp>) oxide nanocomposite thin film electrodes for investigation of photoelectrochemical properties. New Journal of Chemistry, 2018, 42, 5256-5266.	1.4	25
670	An Anion-Exchange Strategy to Bi ₂ S ₃ /Bi ₂ O ₂ (OH)(NO ₃) Heterojunction with Efficient Visible Light Photoreactivity. Nano, 2018, 13, 1850016.	0.5	7
671	Facile two-step treatment of carbon nitride for preparation of highly efficient visible-light photocatalyst. Applied Catalysis B: Environmental, 2018, 227, 541-547.	10.8	19
672	Shape-controlled fabrication of TiO2 hollow shells toward photocatalytic application. Applied Catalysis B: Environmental, 2018, 227, 519-529.	10.8	42
673	Fabrication of In ₂ S ₃ /NaTaO ₃ composites for enhancing the photocatalytic activity toward the degradation of tetracycline. New Journal of Chemistry, 2018, 42, 5052-5058.	1.4	52
674	Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity. Applied Surface Science, 2018, 440, 804-813.	3.1	48
675	In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Applied Catalysis B: Environmental, 2018, 227, 376-385.	10.8	495

#	Article	IF	CITATIONS
676	Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction. ACS Catalysis, 2018, 8, 2209-2217.	5.5	298
677	Environment-friendly 0D/2D Ag/CDots/BiOCl heterojunction with enhanced photocatalytic tetracycline degradation and mechanism insight. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 411-417.	2.0	21
678	Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 2018, 62, 1-25.	2.9	697
679	Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device. Talanta, 2018, 182, 544-548.	2.9	37
680	Scalable and clean exfoliation of graphitic carbon nitride in NaClO solution: enriched surface active sites for enhanced photocatalytic H ₂ evolution. Green Chemistry, 2018, 20, 1354-1361.	4.6	82
681	Highly efficient pollutant removal of graphitic carbon nitride by the synergistic effect of adsorption and photocatalytic degradation. RSC Advances, 2018, 8, 7260-7268.	1.7	25
682	Passivated dye-sensitised TiO2 photoanode with conductive polymer with improved photocatalyst stability for photoelectrochemical application. Ionics, 2018, 24, 2093-2098.	1.2	0
683	Lightâ€Driven Janus Hollow Mesoporous TiO ₂ –Au Microswimmers. Advanced Functional Materials, 2018, 28, 1704902.	7.8	86
684	Generation of hydrogen under visible light irradiation with enhanced photocatalytic activity of Bi ₂ <scp>WO</scp> ₆ /Cu _{1.8} Se for organic pollutants under Visâ€NIR light reign. Journal of the American Ceramic Society, 2018, 101, 3015-3025.	1.9	19
685	Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Applied Catalysis B: Environmental, 2018, 227, 418-424.	10.8	126
686	Surface and Interface Engineering in Ag ₂ S@MoS ₂ Core–Shell Nanowire Heterojunctions for Enhanced Visible Photocatalytic Hydrogen Production. ChemCatChem, 2018, 10, 2107-2114.	1.8	47
687	Synthesis of anatase/brookite TiO2–Bi2WO6 multiheterojunction and its photocatalytic properties under visible-light irradiation. Research on Chemical Intermediates, 2018, 44, 3017-3030.	1.3	4
688	Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 2018, 228, 54-63.	10.8	117
689	VISIBLE-LIGHT-DRIVEN PHOTOCATALYSIS. , 2018, , 109-173.		0
690	A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities. Catalysis Science and Technology, 2018, 8, 1207-1228.	2.1	89
691	Ultrafine ZnO quantum dot-modified TiO ₂ composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2018, 8, 1296-1303.	2.1	55
692	Fabrication of Direct Zâ€scheme αâ€Fe ₂ O ₃ /FeVO ₄ Nanobelts with Enhanced Photoelectrochemical Performance. ChemistrySelect, 2018, 3, 809-815.	0.7	12
693	Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production. Science China Materials, 2018, 61, 851-860.	3.5	39

#	Article	IF	CITATIONS
694	Ag nanoparticle-decorated biscuit-like Bi24O31Cl10 hierarchical microstructure composed of ultrathin nanoflake with outstanding photocatalytic activity. Journal of Alloys and Compounds, 2018, 735, 660-667.	2.8	31
695	Z-Scheme in a Co ₃ (PO ₄) ₂ (α-Fe ₂ O ₃ photocatalysis system for overall water splitting under visible light. Catalysis Science and Technology, 2018, 8, 840-846.	2.1	39
696	Influence of copper oxide grown on various conducting substrates towards improved performance for photoelectrocatalytic bacterial inactivation. Molecular Catalysis, 2018, 451, 161-169.	1.0	14
697	Sub-nanometer Co ₃ O ₄ clusters anchored on TiO ₂ (B) nano-sheets: Pt replaceable Co-catalysts for H ₂ evolution. Nanoscale, 2018, 10, 2596-2602.	2.8	50
698	Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. CheM, 2018, 4, 162-173.	5.8	202
699	A kind of economical, environment-friendly and controllable synthesis of Nb 3 O 7 F nanowalls and their photocatalytic properties. Materials Letters, 2018, 214, 165-169.	1.3	6
700	Microwave-assisted one-step rapid synthesis of ternary Ag/Ag2S/g-C3N4 heterojunction photocatalysts for improved visible-light induced photodegradation of organic pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 557-563.	2.0	31
701	Surface Engineering for Extremely Enhanced Charge Separation and Photocatalytic Hydrogen Evolution on g ₃ N ₄ . Advanced Materials, 2018, 30, 1705060.	11.1	389
702	Engineering nanoscale p–n junction <i>via</i> the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 3181-3194.	5.2	143
703	Rationally designed MoS 2 /protonated g-C 3 N 4 nanosheet composites as photocatalysts with an excellent synergistic effect toward photocatalytic degradation of organic pollutants. Journal of Hazardous Materials, 2018, 347, 431-441.	6.5	115
704	Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity. Environmental Science: Nano, 2018, 5, 599-615.	2.2	174
705	Noble metal sandwich-like TiO2@Pt@C3N4 hollow spheres enhance photocatalytic performance. Journal of Colloid and Interface Science, 2018, 514, 791-800.	5.0	36
706	Designing Novel Nonsymmetric Ag/Agl Nanoplates for Superior Photocatalytic Activity. Small, 2018, 14, 1702948.	5.2	18
707	Direct Z-scheme heterojunction nanocomposite for the enhanced solar H2 production. Applied Catalysis A: General, 2018, 553, 43-51.	2.2	33
708	Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance. Applied Catalysis B: Environmental, 2018, 226, 441-450.	10.8	169
709	Metal–Organic Frameworkâ€Derived ZnO/ZnS Heteronanostructures for Efficient Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Production. Advanced Science, 2018, 5, 1700590.	5.6	169
710	Construction of rGO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 2018, 227, 132-144.	10.8	131
711	Efficient charge carrier separation and enhanced UV–visible photocatalytic activity in macroporous TiO 2 decorated with V 2 O 5 /Ag nanostructures. Nano Structures Nano Objects, 2018, 13, 67-73.	1.9	11

#	Article	IF	CITATIONS
712	Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth. Materials Research Bulletin, 2018, 100, 345-352.	2.7	19
713	Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light. Applied Catalysis B: Environmental, 2018, 235, 225-237.	10.8	184
714	Enhanced photodegradation of sulfamethoxazole by a novel WO3-CNT composite under visible light irradiation. Journal of Alloys and Compounds, 2018, 754, 153-162.	2.8	75
715	Construction of p-n heterojunction film of Cu2O/α-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline. Journal of Colloid and Interface Science, 2018, 526, 470-479.	5.0	75
716	Sea-Buckthorn-Like MnO ₂ Decorated Titanate Nanotubes with Oxidation Property and Photocatalytic Activity for Enhanced Degradation of 17β-Estradiol under Solar Light. ACS Applied Energy Materials, 2018, 1, 2123-2133.	2.5	34
717	Facile and Costâ€Efficient Synthesis of Quasiâ€0D/2D ZnO/MoS ₂ Nanocomposites for Highly Enhanced Visibleâ€Lightâ€Driven Photocatalytic Degradation of Organic Pollutants and Antibiotics. Chemistry - A European Journal, 2018, 24, 9305-9315.	1.7	61
718	Visible-light-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment. Applied Catalysis B: Environmental, 2018, 238, 61-69.	10.8	203
719	Probing Local Electronic Structures of Au–PbS Metal–Semiconductor Nanodumbbells. ACS Applied Nano Materials, 2018, 1, 2104-2111.	2.4	6
720	Ecofriendly Nanomaterials for Sustainable Photocatalytic Decontamination of Organics and Bacteria. , 2018, , 1-29.		2
721	TiO ₂ –AgCl Based Nanoparticles for Photocatalytic Production of Phenolic Compounds from Lignocellulosic Residues. Energy & Fuels, 2018, 32, 6813-6822.	2.5	16
722	Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale, 2018, 10, 9427-9440.	2.8	89
723	Cationic Polycarbazole Networks as Visible-Light Heterogeneous Photocatalysts for Oxidative Organic Transformations. ACS Catalysis, 2018, 8, 5313-5322.	5.5	113
724	Ammonia photosynthesis under ambient conditions using an efficient nanostructured FeS2/CNT solar-energy-material with water feedstock and nitrogen gas. Nano Energy, 2018, 48, 361-368.	8.2	50
725	Synthesis of δ-Bi2O3/Bi2MoO6 composites with enhanced photocatalytic activity by hydrothermal method. Materials Research Bulletin, 2018, 103, 47-54.	2.7	28
726	Steering plasmonic hot electrons to realize enhanced full-spectrum photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2018, 39, 453-462.	6.9	18
727	Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability. Chinese Journal of Catalysis, 2018, 39, 407-412.	6.9	14
728	Smart Hybridization of Au Coupled CdS Nanorods with Few Layered MoS ₂ Nanosheets for High Performance Photocatalytic Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 6445-6457.	3.2	121
729	Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting. Applied Catalysis B: Environmental, 2018, 231, 43-50.	10.8	75

#	Article	IF	CITATIONS
730	Construction of Znln ₂ S ₄ –In ₂ O ₃ Hierarchical Tubular Heterostructures for Efficient CO ₂ Photoreduction. Journal of the American Chemical Society, 2018, 140, 5037-5040.	6.6	934
731	Postillumination Activity in a Single-Phase Photocatalyst of Mo-Doped TiO ₂ Nanotube Array from Its Photocatalytic "Memory― ACS Sustainable Chemistry and Engineering, 2018, 6, 6166-6174.	3.2	47
732	Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2018, 29, 9291-9300.	1.1	68
733	A new SnS 2 -BiFeO 3 /reduced graphene oxide photocatalyst with superior photocatalytic capability under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 359, 11-22.	2.0	45
734	Fabrication and characterization of trimetallic nano-photocatalyst for remediation of ampicillin antibiotic. Journal of Molecular Liquids, 2018, 260, 342-350.	2.3	119
735	Fabrication of multiple hierarchical heterojunction Ag@AgBr/BiPO 4 /r-GO with enhanced visible-light-driven photocatalytic activities towards dye degradation. Applied Surface Science, 2018, 445, 39-49.	3.1	56
736	BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Advances in Colloid and Interface Science, 2018, 254, 76-93.	7.0	422
737	Tunable band alignment in two-phase-coexistence Nb ₃ O ₇ F nanocrystals with enhanced light harvesting and photocatalytic performance. Nanotechnology, 2018, 29, 225605.	1.3	5
738	A monodisperse anionic silver nanoparticles colloid: Its selective adsorption and excellent plasmon-induced photodegradation of Methylene Blue. Journal of Colloid and Interface Science, 2018, 523, 98-109.	5.0	27
739	Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chemistry Letters and Reviews, 2018, 11, 166-175.	2.1	76
740	Hierarchical architectures of bismuth molybdate nanosheets onto nickel titanate nanofibers: Facile synthesis and efficient photocatalytic removal of tetracycline hydrochloride. Journal of Colloid and Interface Science, 2018, 521, 42-49.	5.0	90
741	MnCo–Ferrite/TiO 2 composite as an efficient magnetically separable photocatalyst for decolorization of dye pollutants in aqueous solution. Surfaces and Interfaces, 2018, 11, 91-97.	1.5	17
742	Preparation of phenyl group functionalized g-C3N4 nanosheets with extended electron delocalization for enhanced visible-light photocatalytic activity. New Journal of Chemistry, 2018, 42, 6756-6762.	1.4	19
743	Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption. Russian Journal of Physical Chemistry A, 2018, 92, 508-515.	0.1	0
744	Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3-x for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2018, 231, 381-390.	10.8	54
745	The Effects of Hydrogenation on Graphitic C ₃ N ₄ Nanosheets for Enhanced Photocatalytic Activity. Particle and Particle Systems Characterization, 2018, 35, 1700038.	1.2	52
746	Photocatalytic degradation of polyvinylpyrrolidone in aqueous solution using TiO ₂ /H ₂ O ₂ /UV system. Environmental Technology (United) Tj ETQq0 0 0	rg B ⊉ /Ove	rlack 10 Tf 50

747Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts
and its visible light photocatalytic activity. Catalysis Today, 2018, 300, 58-70.2.285

#	Article	IF	CITATIONS
748	Facile synthesis of Bi 2 MoO 6 /ZnSnO 3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue. Applied Surface Science, 2018, 430, 561-570.	3.1	81
749	Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Applied Catalysis B: Environmental, 2018, 224, 46-52.	10.8	81
750	Enhanced UV- and visible-light driven photocatalytic performances and recycling properties of graphene oxide/ZnO hybrid layers. Ceramics International, 2018, 44, 1826-1835.	2.3	37
751	Effect of reaction atmosphere on photodeposition of Pt nanoparticles and photocatalytic hydrogen evolution from SrTiO3 suspension system. International Journal of Hydrogen Energy, 2018, 43, 5331-5336.	3.8	21
752	One-pot synthesis and improved photocatalytic performance of Ag10Si4O13/N–CeO2 composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 2282-2290.	1.1	3
753	Enhanced visible-light-driven photocatalysis from WS ₂ quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight. Catalysis Science and Technology, 2018, 8, 201-209.	2.1	95
754	Synthesis of Au nanoparticle-decorated carbon nitride nanorods with plasmon-enhanced photoabsorption and photocatalytic activity for removing various pollutants from water. Journal of Hazardous Materials, 2018, 344, 1188-1197.	6.5	81
755	Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Applied Catalysis B: Environmental, 2018, 221, 565-573.	10.8	214
756	Enhanced Photocatalytic Hydrogen Evolution of NiCoP/g ₃ N ₄ with Improved Separation Efficiency and Charge Transfer Efficiency. ChemSusChem, 2018, 11, 276-284.	3.6	208
757	Metal-free heterojunction of graphitic carbon nitride composite with superior and stable visible-light active photocatalysis. Materials Chemistry and Physics, 2018, 204, 243-250.	2.0	26
758	NiFe 2 O 4 /g-C 3 N 4 heterojunction composite with enhanced visible-light photocatalytic activity. Journal of Saudi Chemical Society, 2018, 22, 439-448.	2.4	67
759	Nanohybrids of Twoâ€Ðimensional Transitionâ€Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications. Chemistry - A European Journal, 2018, 24, 18-31.	1.7	53
760	Active photocatalytic water splitting solar-to-hydrogen energy conversion: Chalcogenide photocatalyst Ba2ZnSe3 under visible irradiation. Applied Catalysis B: Environmental, 2018, 221, 17-26.	10.8	42
761	Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Applied Catalysis B: Environmental, 2018, 220, 290-302.	10.8	490
762	A novel WO3/MoS2 photocatalyst applied to the decolorization of the textile dye Reactive Blue 198. Journal of Solid State Electrochemistry, 2018, 22, 1449-1458.	1.2	6
763	A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: Synthesis, characterization, and improved photocatalytic performance. Journal of Colloid and Interface Science, 2018, 510, 20-31.	5.0	120
764	Enhanced photocatalytic hydrogen production on three-dimensional gold butterfly wing scales/CdS nanoparticles. Applied Surface Science, 2018, 427, 807-812.	3.1	13
765	Ferroelectric spontaneous polarization steering charge carriers migration for promoting photocatalysis and molecular oxygen activation. Journal of Colloid and Interface Science, 2018, 509, 113-122.	5.0	100

#	Article	IF	Citations
766	CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants. Applied Catalysis B: Environmental, 2018, 221, 215-222.	10.8	186
767	Facile synthesis of heterostructured YVO4/g-C3N4/Ag photocatalysts with enhanced visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2018, 224, 586-593.	10.8	91
768	Efficient degradation of rhodamine B with magnetically separable Ag3PO4@MgFe2O4 composites under visible irradiation. Journal of Alloys and Compounds, 2018, 735, 1277-1290.	2.8	38
769	Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. Journal of Materials Chemistry A, 2018, 6, 702-734.	5.2	126
770	Fabrication of Bi ₂ S ₃ /ZnO heterostructures: an excellent photocatalyst for visible-light-driven hydrogen generation and photoelectrochemical properties. New Journal of Chemistry, 2018, 42, 541-554.	1.4	96
771	Synergistic effects of 2D/2D ZnV2O6/RGO nanosheets heterojunction for stable and high performance photo-induced CO2 reduction to solar fuels. Chemical Engineering Journal, 2018, 334, 2142-2153.	6.6	76
772	Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity. Journal of Environmental Chemical Engineering, 2018, 6, 9-18.	3.3	29
773	In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C, N co-doped anatase/rutile: Efficient charge separation and enhanced visible-light photocatalytic performance. Applied Surface Science, 2018, 436, 302-318.	3.1	54
774	Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light. Journal of Industrial and Engineering Chemistry, 2018, 61, 53-64.	2.9	97
775	Spreading CdS Nanocrystals on GdBO3:Ce,Tb Substrates for Enhancing Their Photocatalytic Performance. Catalysis Letters, 2018, 148, 523-530.	1.4	2
776	Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting. Applied Surface Science, 2018, 439, 374-379.	3.1	36
777	Conjugated system in metal-free 1D polyaniline nanotubes/carbon nitride hollow composites with strong adsorption and enhanced visible-light photocatalytic activities. Journal of Materials Science: Materials in Electronics, 2018, 29, 4266-4275.	1.1	4
778	Novel g-C3N4Âwrapped γ-Al2O3 microspheres heterojunction for efficient photocatalytic application under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 4509-4516.	1.1	11
779	Synthesis of monodisperse pancake-like Bi2WO6 with prominent photocatalytic performances. Research on Chemical Intermediates, 2018, 44, 2251-2259.	1.3	12
780	Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sensors and Actuators B: Chemical, 2018, 259, 269-281.	4.0	177
781	Construction of the Bi ₂ WO ₆ /Bi ₄ V ₂ O ₁₁ heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(<scp>vi</scp>). New Journal of Chemistry, 2018, 42, 647-653.	1.4	22
782	Construction of 2D-composite HCa2Nb3O10/CaNb2O6 heterostructured photocatalysts with enhanced hydrogen production performance. New Journal of Chemistry, 2018, 42, 681-687.	1.4	18
783	Construction of hierarchical Ag@TiO ₂ @ZnO nanowires with high photocatalytic activity. New Journal of Chemistry, 2018, 42, 265-271.	1.4	29

#	Article	IF	CITATIONS
784	<i>In situ</i> g-C ₃ N ₄ self-sacrificial synthesis of a g-C ₃ N ₄ /LaCO ₃ OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal. Journal of Materials Chemistry A, 2018, 6, 972-981.	5.2	54
785	Solution combustion synthesis of heterostructure bismuth titanate nanocomposites: Structural phases and its correlation with photocatalytic activity. International Journal of Hydrogen Energy, 2018, 43, 708-720.	3.8	10
786	A sustainable method toward melamine-based conjugated polymer semiconductors for efficient photocatalytic hydrogen production under visible light. Green Chemistry, 2018, 20, 664-670.	4.6	77
787	Visible light-assisted photocatalytic mineralization of diuron pesticide using novel type II CuS/Bi ₂ W ₂ O ₉ heterojunctions with a hierarchical microspherical structure. New Journal of Chemistry, 2018, 42, 281-292.	1.4	51
788	Insights into enhanced visible light photocatalytic activity of t-Se nanorods/BiOCl ultrathin nanosheets 1D/2D heterojunctions. Chemical Engineering Journal, 2018, 338, 218-229.	6.6	69
789	Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	10
790	Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Applied Catalysis B: Environmental, 2018, 224, 725-732.	10.8	155
791	Effective elimination of antibiotics over hot-melt adhesive sheath-core polyester fiber supported graphitic carbon nitride under solar irradiation. Chemical Engineering Journal, 2018, 335, 82-93.	6.6	30
792	Enhanced photoactivity of BiPO4/(001) facet-dominated square BiOBr flakes by combining heterojunctions with facet engineering effects. Journal of Physics and Chemistry of Solids, 2018, 113, 142-150.	1.9	16
793	Design of a Unique Energy-Band Structure and Morphology in a Carbon Nitride Photocatalyst for Improved Charge Separation and Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 519-530.	3.2	60
794	Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities. Journal of Electronic Materials, 2018, 47, 672-676.	1.0	12
795	Cd-doped SnO2/CdS heterostructures for efficient application in photocatalytic reforming of glycerol to produce hydrogen under visible light irradiation. Journal of Alloys and Compounds, 2018, 735, 400-408.	2.8	26
796	Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts. Applied Catalysis B: Environmental, 2018, 224, 841-853.	10.8	99
797	Highly efficient visible-light active photocatalyst: thoroughly mesoporous Fe doped TiO2 nanofibers. Journal of Materials Science: Materials in Electronics, 2018, 29, 2733-2742.	1.1	6
798	Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism. Applied Catalysis B: Environmental, 2018, 224, 705-714.	10.8	177
799	One step hydrothermal synthesis of novel Cu2S-MoO3 nanocomposite for lithium ion batteryÂand photocatalytic applications. International Journal of Hydrogen Energy, 2018, 43, 4003-4014.	3.8	28
800	One-pot construction of 1D/2D Zn1-Cd S/D-ZnS(en)0.5 composites with perfect heterojunctions and their superior visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 220, 324-336.	10.8	64
801	MoS 2 quantum dots decorated g-C 3 N 4 /Ag heterostructures for enhanced visible light photocatalytic activity. Applied Surface Science, 2018, 430, 234-242.	3.1	131

#	Article	IF	CITATIONS
803	Enhanced Photocatalytic Activity of Cu _{1.8} Se/CuAgSe for Organic Pollutants under Visible and Near-Infrared Light. Solid State Phenomena, 0, 281, 825-829.	0.3	1
804	Visible light Bi2S3/BiFeO3 photocatalyst for effective removal of Rhodamine B. MATEC Web of Conferences, 2018, 238, 03007.	0.1	4
805	TiO ₂ -based heterojunction photocatalysts for photocatalytic reduction of CO ₂ into solar fuels. Journal of Materials Chemistry A, 2018, 6, 22411-22436.	5.2	195
806	A green and facile method to prepare graphitic carbon nitride nanosheets with outstanding photocatalytic H ₂ O ₂ production ability <i>via</i> NaClO hydrothermal treatment. New Journal of Chemistry, 2018, 42, 18335-18341.	1.4	26
807	Customizable 3D-printed architecture with ZnO-based hierarchical structures for enhanced photocatalytic performance. Nanoscale, 2018, 10, 21696-21702.	2.8	50
808	Charge transfer from internal electrostatic fields is superior to surface defects for 2,4-dichlorophenol degradation in K _{3â^'x} Na _x B ₆ O ₁₀ Br photocatalysts. Nanoscale, 2018, 10, 20443-20452.	2.8	15
809	Rational design of a novel quaternary ZnO@ZnS/Ag@Ag ₂ S nanojunction system for enhanced photocatalytic H ₂ production. Inorganic Chemistry Frontiers, 2018, 5, 3074-3081.	3.0	21
810	Oxygen vacancy modulation of two-dimensional γ-Ga ₂ O ₃ nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale, 2018, 10, 21509-21517.	2.8	31
811	Synthesis and photocatalytic CO ₂ reduction performance of aminated coal-based carbon nanoparticles. RSC Advances, 2018, 8, 35989-35997.	1.7	13
812	A systematic study on polymerization and photocatalytic performance by investigating Ag ₂ 0· <i>x</i> (MoO ₃) (<i>x</i> = 1, 2, 3, 4) photocatalysts. Catalysis Science and Technology, 2018, 8, 5544-5556.	2.1	7
814	Synthesis and characterization of Al-Fe-Cu tri-doped TiO ₂ by in-situ hydrothermal for degradation of methylene blue dyes. IOP Conference Series: Materials Science and Engineering, 0, 440, 012019.	0.3	3
815	Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy. Frontiers of Optoelectronics, 2018, 11, 333-347.	1.9	3
816	Theoretical Design of an InSe/GaTe vdW Heterobilayer: A Potential Visible-Light Photocatalyst for Water Splitting. Journal of Physical Chemistry C, 2018, 122, 27803-27810.	1.5	55
817	Theory-Driven Heterojunction Photocatalyst Design with Continuously Adjustable Band Gap Materials. Journal of Physical Chemistry C, 2018, 122, 28065-28074.	1.5	20
818	Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO2 Nanowire Photoanode: The Role of Deposition Temperature. Scientific Reports, 2018, 8, 16322.	1.6	39
819	Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 22235-22242.	3.8	17
820	Photocatalytic degradation enhancements of dyes with bi-functionalized zones of modified nanoflower like TiO2 with Pt-C3N4 under sunlight irradiation. Journal of Environmental Chemical Engineering, 2018, 6, 7010-7020.	3.3	6
821	Janus nanostructures for heterogeneous photocatalysis. Applied Physics Reviews, 2018, 5, 041111.	5.5	51

#	Article	IF	CITATIONS
822	Synthesis of Superparamagnetic Cu _{0.4} Zn _{0.6} Fe ₂ O ₄ -Implanted Bi ₂ S ₃ -Capped TiO ₂ 2D and 3D Nanostructures for Visible Light Photocatalysis. ACS Omega, 2018, 3, 18958-18966.	1.6	7
823	Next-Generation Energy Storage Materials Explored by Advanced Scanning Techniques. Scanning, 2018, 2018, 1-3.	0.7	Ο
824	Bioâ€Inspired Plasmonic Photocatalysts. Small Methods, 2019, 3, 1800295.	4.6	13
825	Systematic Investigation for the Photocatalytic Applications of Carbon Nitride/Porous Zeolite Heterojunction. ACS Omega, 2018, 3, 17261-17275.	1.6	31
826	Boosted Water Oxidation Activity and Kinetics on BiVO4 Photoanodes with Multihigh-Index Crystal Facets. Inorganic Chemistry, 2018, 57, 15280-15288.	1.9	22
827	Photocatalytic Activity of Zinc Oxide Based Heterostructures. , 2018, , .		0
828	Monolayer Attachment of Metallic MoS ₂ on Restacked Titania Nanosheets for Efficient Photocatalytic Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 6912-6918.	2.5	15
829	Semiconductor Heterojunctions for Enhanced Visible Light Photocatalytic H2 Production. MRS Advances, 2018, 3, 3263-3270.	0.5	1
830	Synthesis and Broadband Spectra Photocatalytic Properties of Bi2O2(CO3)1â^xSx. Materials, 2018, 11, 791.	1.3	5
831	Construction of rGO/Bi ₂ MoO ₆ 2D/2D nanocomposites for enhancement visible light-driven photocatalytic reduction of Cr (VI). Materials Research Express, 2018, 5, 115031.	0.8	13
832	Photocatalytic Activity of TiO2/AuNRs–SiO2 Nanocomposites Applied to Building Materials. Coatings, 2018, 8, 296.	1.2	12
833	Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 2018, 10, 5573-5586.	1.8	105
834	Acetic acid functionalized TiO2/kaolinite composite photocatalysts with enhanced photocatalytic performance through regulating interfacial charge transfer. Journal of Catalysis, 2018, 367, 126-138.	3.1	60
835	Visible-Light-Driven Efficient Hydrogen Production from CdS NanoRods Anchored with Co-catalysts Based on Transition Metal Alloy Nanosheets of NiPd, NiZn, and NiPdZn. ACS Applied Energy Materials, 0, , .	2.5	5
836	Construction of Heterostructured Fe ₂ O ₃ â€īO ₂ Microdumbbells for Photoelectrochemical Water Oxidation. Angewandte Chemie, 2018, 130, 15296-15300.	1.6	23
837	Construction of Heterostructured Fe ₂ O ₃ â€īO ₂ Microdumbbells for Photoelectrochemical Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 15076-15080.	7.2	130
838	Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	170
839	Direct <i>Z</i> -Scheme Cs ₂ O–Bi ₂ O ₃ –ZnO Heterostructures as Efficient Sunlight-Driven Photocatalysts. ACS Omega, 2018, 3, 12260-12269.	1.6	60

#	Article	IF	CITATIONS
840	A Hollow Porous CdS Photocatalyst. Advanced Materials, 2018, 30, e1804368.	11.1	204
841	Three-Dimensional Core–Shell Nanorod Arrays for Efficient Visible-Light Photocatalytic H ₂ Production. ACS Applied Materials & Interfaces, 2018, 10, 35184-35193.	4.0	22
842	Construction of Highly Hierarchical Layered Structure Consisting of Titanate Nanosheets, Tungstate Nanosheets, Ru(bpy) ₃ ²⁺ , and Pt(terpy) for Vectorial Photoinduced Z-Scheme Electron Transfer. ACS Applied Materials & Interfaces, 2018, 10, 37150-37162.	4.0	12
843	Preparation and Physical and Photocatalytic Activity of a New Niobate Oxide Material Containing NbO4 Tetrahedra. International Journal of Photoenergy, 2018, 2018, 1-6.	1.4	4
844	Plasmonic Metal and Semiconductor Nanoparticle Decorated TiO2-Based Photocatalysts for Solar Light Driven Photocatalysis. , 2018, , 786-794.		20
845	Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy, 2018, 10, 352-367.	2.5	73
846	Enhanced visible-light-driven photocatalytic activity of Bi12O15Cl6/Bi2WO6 Z-scheme heterojunction photocatalysts for tetracycline degradation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 231, 86-92.	1.7	29
847	An Unusual Red Carbon Nitride to Boost the Photoelectrochemical Performance of Wide Bandgap Photoanodes. Advanced Functional Materials, 2018, 28, 1805698.	7.8	94
848	Efficient Degradation of Phenol and 4â€Nitrophenol by Surface Oxygen Vacancies and Plasmonic Silver Coâ€Modified Bi ₂ MoO ₆ Photocatalysts. Chemistry - A European Journal, 2018, 24, 18463-18478.	1.7	40
849	Fabrication of ZnO/Red Phosphorus Heterostructure for Effective Photocatalytic H2 Evolution from Water Splitting. Nanomaterials, 2018, 8, 835.	1.9	26
850	Material Design for Photocatalytic Water Splitting from a Theoretical Perspective. Advanced Materials, 2018, 30, e1802106.	11.1	258
851	Cu2ZnSnS4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 20408-20416.	3.8	51
852	Efficient Nanoclay-Based Composite Photocatalyst: The Role of Nanoclay in Photogenerated Charge Separation. Journal of Physical Chemistry C, 2018, 122, 25900-25908.	1.5	24
853	Formation of Hierarchical Co ₉ S ₈ @ZnIn ₂ S ₄ Heterostructured Cages as an Efficient Photocatalyst for Hydrogen Evolution. Journal of the American Chemical Society, 2018, 140, 15145-15148.	6.6	642
854	Facile synthesis of recyclable Co3O4/Co(OH)2/RGO ternary heterostructures with synergistic effect for photocatalysis. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	12
855	Strong Photothermal Effect of Plasmonic Pt Nanoparticles for Efficient Degradation of Volatile Organic Compounds under Solar Light Irradiation. ACS Applied Nano Materials, 2018, 1, 6368-6377.	2.4	43
856	Roles of Phase Junction in Photocatalysis and Photoelectrocatalysis. Journal of Physical Chemistry C, 2018, 122, 21083-21096.	1.5	95
858	Broadband light active MTCNQ-based metal–organic semiconducting hybrids for enhanced redox catalysis. Applied Materials Today, 2018, 13, 107-115.	2.3	16

#	Article	IF	CITATIONS
859	Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chemical Society Reviews, 2018, 47, 7504-7521.	18.7	99
860	Target preparation of multicomponent composites Au@CdS/g-C3N4 as efficient visible light photocatalysts with the assistance of biomolecules. Materials Research Bulletin, 2018, 108, 176-186.	2.7	26
862	Efficient gas phase VOC removal and electricity generation in an integrated bio-photo-electro-catalytic reactor with bio-anode and TiO2 photo-electro-catalytic air cathode. Bioresource Technology, 2018, 270, 554-561.	4.8	32
863	Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solarâ€Driven Chemical Reactions. Advanced Materials, 2018, 30, e1803641.	11.1	105
864	Cadmium selenide quantum dot-zinc oxide composite: Synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 19-27.	1.7	69
865	Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance. International Journal of Hydrogen Energy, 2018, 43, 18242-18252.	3.8	82
866	One-Dimensional-Like Titania/4â€2-Pentyl-4-Biphenylcarbonitrile Composite Synthesized Under Magnetic Field and its Structure–Photocatalytic Activity Relationship. Frontiers in Chemistry, 2018, 6, 370.	1.8	4
867	Defect engineering in photocatalytic materials. Nano Energy, 2018, 53, 296-336.	8.2	732
868	Visible-light-active g-C ₃ N ₄ /N-doped Sr ₂ Nb ₂ O ₇ heterojunctions as photocatalysts for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2018, 2, 2507-2515.	2.5	46
869	Oxygen vacancy induced bismuth basic nitrate with excellent photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 18067-18073.	1.1	6
870	Facile synthesis and characterization of low crystalline Nb2O5 ultrafine nanoparticles as a new efficient photocatalyst. Journal of Non-Crystalline Solids, 2018, 500, 371-376.	1.5	19
871	Doubling the photocatalytic performance of SnO ₂ by carbon coating mixed-phase particles. RSC Advances, 2018, 8, 30366-30373.	1.7	7
872	Photocatalysis. , 2018, , 135-175.		107
873	One-step fabrication of carbon decorated Co3O4/BiVO4 p-n heterostructure for enhanced visible-light photocatalytic properties. Chemical Physics Letters, 2018, 706, 440-447.	1.2	35
874	Efficient charge separation and visible-light response in bilayer HfS ₂ -based van der Waals heterostructures. RSC Advances, 2018, 8, 18889-18895.	1.7	20
875	Cerium Metal–Organic Framework for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 7904-7912.	6.6	313
876	The unique photocatalysis properties of a 2D vertical MoO ₂ /WO ₂ heterostructure: a first-principles study. Journal Physics D: Applied Physics, 2018, 51, 265106.	1.3	14
877	Two Ni(II) semiconducting metal-organic frameworks based on the tetrakis(4-carboxyphenyl)silane and an imidazole ligand: Syntheses, characterization, water stability and photoelectric properties. Journal of Solid State Chemistry, 2018, 265, 100-108.	1.4	5

#	Article	IF	CITATIONS
878	Construction of Au/CuO/Co ₃ O ₄ Tricomponent Heterojunction Nanotubes for Enhanced Photocatalytic Oxygen Evolution under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8801-8808.	3.2	30
879	Construction of novel Sr0.4H1.2Nb2O6·H2O/g-C3N4 heterojunction with enhanced visible light photocatalytic activity for hydrogen evolution. Journal of Colloid and Interface Science, 2018, 526, 451-458.	5.0	26
880	Controllable Fabrication of Regular Hexagon-Shaped SnS ₂ Nanoplates and Their Enhanced Visible-Light-Driven H ₂ Production Activity. ACS Applied Nano Materials, 2018, 1, 2923-2933.	2.4	43
881	Ultrathin nanosheets of graphitic carbon nitride heterojunction with flower like Bi2O3 for photodegradation of organic pollutants. Materials Research Express, 2018, 5, 055030.	0.8	4
882	One-step hydrothermal synthesis of MoS2/ CdS nanocomposite and study of structural, photocatalytic, and optical properties of this nanocomposite. Optik, 2018, 169, 249-256.	1.4	28
883	Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride. Nano Energy, 2018, 50, 383-392.	8.2	226
884	A Short Review on Hydrogen, Biofuel, and Electricity Production Using Seawater as a Medium. Energy & Fuels, 2018, 32, 6423-6437.	2.5	53
885	Enhanced Photocatalytic Performance of Hierarchical ZnFe2O4/g-C3N4 Heterojunction Composite Microspheres. Catalysis Letters, 2018, 148, 2179-2189.	1.4	31
886	Effect of crystalline/amorphous structure on light absorption and carrier separationof CeO2-TiO2 heterojunctions. Applied Surface Science, 2018, 452, 49-57.	3.1	18
887	Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 2018, 6, 3827-3836.	3.3	82
888	Hierarchical photocatalyst of In2S3 on exfoliated MoS2 nanosheets for enhanced visible-light-driven Aza-Henry reaction. Applied Catalysis B: Environmental, 2018, 237, 288-294.	10.8	70
889	In situ growth of cube-like AgCl on montmorillonite as an efficient photocatalyst for dye (Acid Red) Tj ETQq1 1 0.	784314 rg	3BT_Overlo
890	Graphene oxide and carbon nanodots co-modified BiOBr nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight. Journal of Colloid and Interface Science, 2018, 527, 78-86.	5.0	39
891	Enhanced photocatalytic activity of surface disorder-engineered CaTiO 3. Materials Research Bulletin, 2018, 105, 286-290.	2.7	128
892	Manipulation structure of carbon nitride via trace level iron with improved interfacial redox activity and charge separation for synthetic enhancing photocatalytic hydrogen evolution. Applied Surface Science, 2018, 456, 609-614.	3.1	13
893	Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method. Journal of Materiomics, 2018, 4, 402-411.	2.8	19
894	Facile fabrication of a BiOI/TiO2 p-n junction via a surface charge-induced electrostatic self-assembly method. Applied Surface Science, 2018, 457, 59-68.	3.1	42
895	Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nature Energy, 2018, 3, 655-663.	19.8	275

#	Article	IF	CITATIONS
896	Controlled synthesis of Bi ₂ O ₃ /BiOBr/Zn ₂ GeO ₄ heterojunction photocatalysts with enhanced photocatalytic activity. Journal of the American Ceramic Society, 2018, 101, 5858-5869.	1.9	19
897	Steam engraving optimization of graphitic carbon nitride with enhanced photocatalytic hydrogen evolution. Carbon, 2018, 139, 189-194.	5.4	20
898	Photoinduced in Situ Deposition of Uniform and Well-Dispersed PtO ₂ Nanoparticles on ZnO Nanorods for Efficient Catalytic Reduction of 4-Nitrophenol. ACS Applied Materials & Interfaces, 2018, 10, 23154-23162.	4.0	60
899	Electron Transfer Controls the Photochemical Splitting of Water Mediated by a Titanocene Transition Metal Complex. Journal of Physical Chemistry C, 2018, 122, 18412-18421.	1.5	6
900	A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. Journal of Materials Chemistry A, 2018, 6, 21696-21718.	5.2	244
901	Adsorption and photocatalytic study of dye degradation over the g ₃ N ₄ /W ₁₈ O ₄₉ nanocomposite. Micro and Nano Letters, 2018, 13, 541-545.	0.6	7
902	CNTs modified graphitic C 3 N 4 with enhanced visibleâ€light photocatalytic activity for the degradation of organic pollutants. Micro and Nano Letters, 2018, 13, 752-757.	0.6	7
903	Visible Light-Responsive Photocatalysts—From TiO2 to Carbon Nitrides and Boron Carbon Nitride. Advances in Inorganic Chemistry, 2018, 72, 49-92.	0.4	9
904	Insight into the Transfer Mechanisms of Photogenerated Carriers for Heterojunction Photocatalysts with the Analogous Positions of Valence Band and Conduction Band: A Case Study of ZnO/TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 15409-15420.	1.5	84
905	Engineering and modeling the effect of Mg doping in TiO ₂ for enhanced photocatalytic reduction of CO ₂ to fuels. Catalysis Science and Technology, 2018, 8, 3686-3694.	2.1	38
906	Amorphous FeCoPOx nanowires coupled to g-C3N4 nanosheets with enhanced interfacial electronic transfer for boosting photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 238, 161-167.	10.8	49
907	Defective Anatase TiO _{2â^'<i>x</i>} Mesocrystal Growth In Situ on gâ€C ₃ N ₄ Nanosheets: Construction of 3D/2D Zâ€Scheme Heterostructures for Highly Efficient Visibleâ€Light Photocatalysis. Chemistry - A European Journal, 2018, 24, 13311-13321.	1.7	46
908	Enhanced photocatalytic activity of Bi12O17Cl2 preferentially oriented growth along [200] with various surfactants. Journal of Materials Science, 2018, 53, 14217-14230.	1.7	17
909	In-situ construction of direct Z-scheme Bi2WO6/g-C3N4 composites with remarkably promoted solar-driven photocatalytic activity. Materials Chemistry and Physics, 2018, 217, 207-215.	2.0	40
910	Switching charge transfer process of carbon nitride and bismuth vanadate by anchoring silver nanoparticle toward cocatalyst free water reduction. Journal of Colloid and Interface Science, 2018, 529, 375-384.	5.0	27
911	Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chemical Society Reviews, 2018, 47, 8238-8262.	18.7	343
912	Flake-like InVO ₄ modified TiO ₂ nanofibers with longer carrier lifetimes for visible-light photocatalysts. RSC Advances, 2018, 8, 27073-27079.	1.7	13
913	Surface and interface design for photocatalytic water splitting. Dalton Transactions, 2018, 47, 12035-12040.	1.6	16

#	Article	IF	Citations
914	Effect of Nb on the structural, optical and photocatalytic properties of Al-doped ZnO thin films fabricated by the sol-gel method. Ceramics International, 2018, 44, 20170-20177.	2.3	31
915	Environment-friendly Ag/CDots/g-C3N4 photocatalysts: Remarkably enhanced photocatalytic tetracycline degradation in visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 23-31.	2.0	12
916	Effect of electronic migration of MIL-53(Fe) on the activation of peroxymonosulfate under visible light. Chemical Physics Letters, 2018, 706, 694-701.	1.2	53
917	Ag ₂ WO ₄ nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants. Beilstein Journal of Nanotechnology, 2018, 9, 1308-1316.	1.5	22
918	Phosphorus-doped cerium vanadate nanorods with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2018, 531, 618-627.	5.0	27
919	Architecture of high efficient zinc vacancy mediated Z-scheme photocatalyst from metal-organic frameworks. Nano Energy, 2018, 52, 105-116.	8.2	179
920	Ag ₃ PO ₄ â€MILâ€53(Fe) Composites with Visibleâ€Lightâ€Enhanced Photocatalytic Activities for Rhodamine B Degradation. ChemistrySelect, 2018, 3, 8045-8050.	0.7	16
921	Tunable MoS ₂ /SnO ₂ P–N Heterojunctions for an Efficient Trimethylamine Gas Sensor and 4-Nitrophenol Reduction Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 12375-12384.	3.2	151
922	A Mn ₁₃ -cluster based coordination polymer as a co-catalyst of CdS for enhanced visible-light driven H ₂ evolution. Dalton Transactions, 2018, 47, 10857-10860.	1.6	7
923	Fabrication of Hierarchical Two-Dimensional MoS ₂ Nanoflowers Decorated upon Cubic Caln ₂ S ₄ Microflowers: Facile Approach To Construct Novel Metal-Free p–n Heterojunction Semiconductors with Superior Charge Separation Efficiency. Inorganic Chemistry, 2018. 57. 10059-10071.	1.9	117
924	Perovskite Oxide LaNiO ₃ Nanoparticles for Boosting H ₂ Evolution over Commercial CdS with Visible Light. Chemistry - A European Journal, 2018, 24, 18512-18517.	1.7	69
925	Synthesis of ZnWO4â^'x nanorods with oxygen vacancy for efficient photocatalytic degradation of tetracycline. Progress in Natural Science: Materials International, 2018, 28, 408-415.	1.8	61
926	Metal-based semiconductor nanomaterials for photocatalysis. , 2018, , 187-213.		3
927	TiO ₂ nanotubes co-modified by Ag/AgCl plasmonic photocatalyst and graphene and a comparison of their enhanced photocatalytic performance under ultraviolet and visible light. Materials Research Express, 2018, 5, 085028.	0.8	3
928	Highly Efficient and Visible Light Responsive Heterojunction Composites as Dual Photoelectrodes for Photocatalytic Fuel Cell. Catalysts, 2018, 8, 30.	1.6	19
929	Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 686-695.	2.0	58
930	Construction of 2D/2D layered g-C ₃ N ₄ /Bi ₁₂ O ₁₇ Cl ₂ hybrid material with matched energy band structure and its improved photocatalytic performance. RSC Advances, 2018, 8, 24500-24508.	1.7	43
931	In-situ synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 14934-14943.	3.8	64

#	Article	IF	CITATIONS
932	Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications. ChemSusChem, 2018, 11, 3023-3047.	3.6	243
933	Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight. Journal of Colloid and Interface Science, 2018, 530, 714-724.	5.0	32
934	Enhanced Photocatalytic Activity toward Organic Pollutants Degradation and Mechanism Insight of Novel CQDs/Bi2O2CO3 Composite. Nanomaterials, 2018, 8, 330.	1.9	19
935	Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 15310-15319.	5.2	108
936	A novel Ag@AgBr-Ag2Mo3O10 ternary core-shell photocatalyst: Energy band modification and additional superoxide radical production. Applied Surface Science, 2018, 458, 1-9.	3.1	19
937	Visible light induced electron transfer from a semiconductor to an insulator enables efficient photocatalytic activity on insulator-based heterojunctions. Nanoscale, 2018, 10, 15513-15520.	2.8	53
938	Photo-switchable pure water splitting under visible light over nano-Pt@P25 by recycling scattered photons. Applied Catalysis B: Environmental, 2018, 236, 140-146.	10.8	15
939	Synthesis of Ag nanoparticles as cocatalyst onto CdSe/Al2TiO5 composite photocatalysts for enhancing photocatalytic activity. Journal of Environmental Chemical Engineering, 2018, 6, 686-693.	3.3	7
940	Design of Singleâ€ s ite Photocatalysts by Using Metal–Organic Frameworks as a Matrix. Chemistry - an Asian Journal, 2018, 13, 1767-1779.	1.7	49
941	Preparation of PbS and CdS cosensitized graphene/TiO2 nanosheets for photoelectrochemical protection of 304 stainless steels. Applied Surface Science, 2018, 452, 58-66.	3.1	29
942	Photocatalytic Activity of ZnV ₂ O ₆ /Reduced Graphene Oxide Nanocomposite: From Theory to Experiment. Journal of the Electrochemical Society, 2018, 165, H353-H359.	1.3	39
943	Ag 3 VO 4 /BiOIO 3 heterojunction with enhanced visible-light-driven catalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88, 177-185.	2.7	25
944	Ultrathin two-dimensional BiOBrxI1-x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation. Applied Catalysis B: Environmental, 2018, 236, 222-232.	10.8	183
945	Synthesis of <i>Ĵ²</i> -AgVO ₃ nanowires decorated with Ag ₂ CrO ₄ , with improved visible light photocatalytic performance. Semiconductor Science and Technology, 2018, 33, 055010.	1.0	9
946	Review on nanoscale Bi-based photocatalysts. Nanoscale Horizons, 2018, 3, 464-504.	4.1	421
947	Potential application of a porous graphitic carbon nitride as an organic metal-free photocatalyst for water splitting. Diamond and Related Materials, 2018, 87, 50-55.	1.8	27
948	Towards click chemistry: Multicomponent reactions via combinations of name reactions. Tetrahedron, 2018, 74, 3391-3457.	1.0	50
949	Synthesis of poly (<i>N</i> -isopropylacrylamide)- <i>co</i> -(acrylic acid) microgel-entrapped CdS quantum dots and their photocatalytic degradation of an organic dye. RSC Advances, 2018, 8, 16850-16857.	1.7	15

#	Article	IF	CITATIONS
950	Polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework for photocatalytic hydrogen peroxide production under visible light. Journal of Catalysis, 2018, 366, 98-106.	3.1	61
951	Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Applied Catalysis B: Environmental, 2018, 239, 578-585.	10.8	193
952	Layered Heterostructures of Ultrathin Polymeric Carbon Nitride and ZnIn ₂ S ₄ Nanosheets for Photocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2018, 24, 18529-18534.	1.7	116
953	Silver-loaded ZnO/ZnFe2O4 mesoporous hollow spheres with enhanced photocatalytic activity for 2,4-dichlorophenol degradation under visible light irradiation. Materials Research Bulletin, 2018, 107, 339-346.	2.7	13
954	Fe-doped SnO2 decorated reduced graphene oxide nanocomposite with enhanced visible light photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 145-155.	2.0	26
955	Nano/microsized TiO ₂ composite photocatalysts for environmental purification. Journal of the Ceramic Society of Japan, 2018, 126, 625-631.	0.5	4
956	Efficient visible-light-driven hydrogen evolution over ternary MoS2/Pt TiO2 photocatalysts with low overpotential. International Journal of Hydrogen Energy, 2018, 43, 16534-16542.	3.8	20
957	Preparation and performance of Cu2O/TiO2 nanocomposite thin film and photocatalytic degradation of Rhodamine B. Water Science and Technology, 2018, 78, 913-924.	1.2	9
958	Sodiumâ€Doped C ₃ N ₄ /MOF Heterojunction Composites with Tunable Band Structures for Photocatalysis: Interplay between Light Harvesting and Electron Transfer. Chemistry - A European Journal, 2018, 24, 18403-18407.	1.7	85
959	N-doped carbon dots@layer facilitated heterostructure of TiO2 polymorphs for efficient photoelectrochemical water oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 388-396.	2.7	14
960	Visible light induced efficient hydrogen production through semiconductor–conductor–semiconductor (S–C–S) interfaces formed between g-C ₃ N ₄ and rGO/Fe ₂ O ₃ core–shell composites. Catalysis Science and Technology, 2018, 8, 5081-5090.	2.1	39
961	Au–Cd _{1â^'x} Zn _x S core–alloyed shell nanocrystals: boosting the interfacial charge dynamics by adjusting the shell composition. Journal of Materials Chemistry A, 2018, 6, 17503-17513.	5.2	43
962	Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. Applied Catalysis B: Environmental, 2018, 239, 187-195.	10.8	145
963	Synergistic effect between the redox property and acidity on enhancing the low temperature NH3-SCR activity for NO removal over the Co0.2CexMn0.8-xTi10 (x = 0–0.40) oxides catalysts. Chemical Engineering Journal, 2018, 354, 393-406.	6.6	69
964	Mechanistic insights into plasmonic photocatalysts in utilizing visible light. Beilstein Journal of Nanotechnology, 2018, 9, 628-648.	1.5	54
965	Preparation of TiO2/C3N4 heterojunctions on carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst for removing various pollutants from the flowing wastewater. Journal of Colloid and Interface Science, 2018, 532, 798-807.	5.0	85
966	Novel Zn _{0.8} Cd _{0.2} S@g-C ₃ N ₄ core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 17086-17094.	5.2	85
967	UV–Vis–IR driven thermocatalytic activity of OMS-2/SnO2 nanocomposite significantly enhanced by novel photoactivation and synergetic photocatalysis-thermocatalysis. Applied Surface Science, 2018, 462, 590-597.	3.1	26

#	Article	IF	CITATIONS
968	Graphitic-C3N4 quantum dots decorated {001}-faceted TiO2 nanosheets as a 0D/2D composite with enhanced solar photocatalytic activity. Research on Chemical Intermediates, 2018, 44, 7369-7389.	1.3	17
969	Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance. Applied Catalysis B: Environmental, 2018, 237, 449-463.	10.8	131
970	SiC/MoS2 layered heterostructures: Promising photocatalysts revealed by a first-principles study. Materials Chemistry and Physics, 2018, 216, 64-71.	2.0	63
971	Synthesis and enhanced photocatalytic activity of Cu(OH) ₂ cluster modified Bi ₂ WO ₆ toward RhB degradation. Materials Technology, 2018, 33, 513-523.	1.5	8
972	Light harvesting and charge management by Ni4S3 modified metalâ~'organic frameworks and rGO in the process of photocatalysis. Journal of Colloid and Interface Science, 2018, 529, 44-52.	5.0	60
973	Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation. Chinese Journal of Catalysis, 2018, 39, 810-820.	6.9	55
974	Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction. Applied Catalysis B: Environmental, 2018, 237, 416-423.	10.8	24
975	Black Phosphorusâ€Based Compound with Few Layers for Photocatalytic Water Oxidation. ChemCatChem, 2018, 10, 3424-3428.	1.8	14
976	Fabrication of FTO–BiVO4–W–WO3 photoanode for improving photoelectrochemical performance: based on the Z-scheme electron transfer mechanism. Journal of Materials Chemistry A, 2018, 6, 12956-12961.	5.2	37
977	Synthesis of BiOCl nanosheets with exposed (010) facets via a facile two-phase reaction and photocatalytic activity. Ferroelectrics, 2018, 527, 37-43.	0.3	2
978	Water Splitting on Rutile TiO ₂ â€Based Photocatalysts. Chemistry - A European Journal, 2018, 24, 18204-18219.	1.7	142
979	The mechanism of charge carrier generation at the TiO2—n-Si heterojunction activated by gold nanoparticles. Semiconductor Science and Technology, 2018, 33, 075014.	1.0	12
980	Hierarchical spheres assembled from large ultrathin anatase TiO2 nanosheets for photocatalytic hydrogen evolution from water splitting. International Journal of Hydrogen Energy, 2018, 43, 13190-13199.	3.8	26
981	Decoration of Bi2Se3 nanosheets with a thin Bi2SeO2 layer for visible-light-driven overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 10950-10958.	3.8	17
982	In Situ Raman Probing of Chlorphenol Degradation on Different Facets of K ₃ B ₆ O ₁₀ Br Single Crystal. Journal of Physical Chemistry C, 2018, 122, 14574-14581.	1.5	7
983	Photocarrier Transport Mechanisms in Amorphous and Epitaxial TiO2/SrRuO3 Heterojunction Photocatalysts. Journal of Physical Chemistry C, 2018, 122, 15688-15695.	1.5	2
984	Metal oxide photocatalysts. , 2018, , 51-209.		19
985	Twoâ€dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges. Journal of Chemical Technology and Biotechnology, 2019, 94, 22-37.	1.6	76

#	Article	IF	CITATIONS
986	Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study. Microporous and Mesoporous Materials, 2019, 273, 41-49.	2.2	15
988	Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite. , 2019, , 413-438.		20
989	Fabrication of GO/CDots/BiOI nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight. Separation and Purification Technology, 2019, 210, 382-389.	3.9	34
990	Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019, 31, e1801369.	11.1	506
991	Alkali Metal Chloride Flux Growth of Ilmenite-Type ZnTiO ₃ and Subsequent Nitrogen Doping for Visible-Light-Driven Water Oxidation Catalysis. ACS Applied Energy Materials, 2019, 2, 7762-7771.	2.5	10
992	Efficient synthesis of BiVO4 nanobelts with enhanced visible-light-driven photocatalytic activity for water purification. Journal of Materials Science: Materials in Electronics, 2019, 30, 16135-16141.	1.1	5
993	Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts, 2019, 9, 680.	1.6	77
994	Rational modulation of p-n homojunction in P-doped g-C3N4 decorated with Ti3C2 for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2019, 259, 118077.	10.8	94
995	Hollow mesoporous TiO2/WO3 sphere heterojunction with high visible-light-driven photocatalytic activity. Materials Research Bulletin, 2019, 119, 110571.	2.7	40
996	A two-dimensional vertical van der Waals heterostructure based on g-GaN and Mg(OH)2 used as a promising photocatalyst for water splitting: A first-principles calculation. Journal of Applied Physics, 2019, 126, .	1.1	59
997	A novel Cs2O–Bi2O3–TiO2–ZnO heterostructure with direct Z-Scheme for efficient photocatalytic water splitting. Ceramics International, 2019, 45, 23756-23764.	2.3	17
998	Toward Efficient Preconcentrating Photocatalysis: 3D g-C ₃ N ₄ Monolith with Isotype Heterojunctions Assembled from Hybrid 1D and 2D Nanoblocks. ACS Applied Materials & Interfaces, 2019, 11, 31934-31942.	4.0	25
999	Electronic Integration and Thin Film Aspects of Au–Pd/rGO/TiO ₂ for Improved Solar Hydrogen Generation. ACS Applied Materials & Interfaces, 2019, 11, 32869-32878.	4.0	63
1000	<i>In situ</i> growth of CuS nanoparticles on g-C ₃ N ₄ nanosheets for H ₂ production and the degradation of organic pollutant under visible-light irradiation. RSC Advances, 2019, 9, 25638-25646.	1.7	18
1001	Mineralization of carcinogenic anthracene and phenanthrene by sunlight active bimetallic oxides nanocomposites. Journal of Colloid and Interface Science, 2019, 555, 676-688.	5.0	37
1002	Synthesis of nobleâ€metalâ€free ternary K ₇ HNb ₆ O ₁₉ /Cd _{0.5} Zn _{0.5} S/gâ€C ₃ tandem heterojunctions for efficient photocatalytic performance under visible light. Applied Organometallic Chemistry. 2019. 33. e5178	N _{4< 1.7}	/syb>
1003	Photocatalytic nitrogen fixation: the role of defects in photocatalysts. Journal of Materials Chemistry A, 2019, 7, 19616-19633.	5.2	198
1004	Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants. Applied Catalysis B: Environmental, 2019, 258, 118024.	10.8	84

#	Article	IF	CITATIONS
1005	Fabrication of Ag based ternary nanocomposite system for visible-light photocatalytic hydrogen evolution reaction. Applied Surface Science, 2019, 494, 886-894.	3.1	20
1006	Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study. Progress in Natural Science: Materials International, 2019, 29, 335-340.	1.8	28
1007	Visible light driven photocatalytic degradation enhanced by α/β phase heterojunctions on electrospun Bi2O3 nanofibers. Journal of Alloys and Compounds, 2019, 806, 1060-1067.	2.8	32
1008	Fabrication of leaf extract mediated bismuth oxybromide/oxyiodide (BiOBrxI1â^'x) photocatalysts with tunable band gap and enhanced optical absorption for degradation of organic pollutants. Journal of Colloid and Interface Science, 2019, 555, 304-314.	5.0	39
1009	Synthesis of single-phase CuCo2â^'xNixS4 for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 555, 284-293.	5.0	21
1010	Ordered mesoporous CeO2/ZnO composite with photodegradation concomitant photocatalytic hydrogen production performance. Journal of Solid State Chemistry, 2019, 278, 120893.	1.4	39
1011	General self-assembly of metal/metal chalcogenide heterostructures initiated by a surface linker: modulating tunable charge flow toward versatile photoredox catalysis. Journal of Materials Chemistry A, 2019, 7, 21182-21194.	5.2	40
1012	Energy-Dependent Z-Scheme via Metal-Interfacing Two-Dimensional p-Type and n-Type Semiconductor Layers for Efficient Optoelectronic Conversion. Journal of Physical Chemistry Letters, 2019, 10, 4317-4322.	2.1	2
1013	One-pot sonochemical synthesis of 3D flower-like hierarchical AgCl microsphere with enhanced photocatalytic activity. Environmental Science and Pollution Research, 2019, 26, 26883-26892.	2.7	11
1014	Ethanol-quenching modified the surface environment of titanium dioxide for visible light-assisted hydrogen production. Catalysis Science and Technology, 2019, 9, 4222-4225.	2.1	1
1015	Ethanol-Quenching Introduced Oxygen Vacancies in Strontium Titanate Surface and the Enhanced Photocatalytic Activity. Nanomaterials, 2019, 9, 883.	1.9	5
1016	Synthesis of Hollow Flower-Like Fe3O4/MnO2/Mn3O4 Magnetically Separable Microspheres with Valence Heterostructure for Dye Degradation. Catalysts, 2019, 9, 589.	1.6	18
1017	Integration of Plasmonic Metal and Cocatalyst: An Efficient Strategy for Boosting the Visible and Broad‧pectrum Photocatalytic H 2 Evolution. Advanced Materials Interfaces, 2019, 6, 1900775.	1.9	18
1018	Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light. Frontiers of Chemical Science and Engineering, 2019, 13, 665-671.	2.3	14
1019	Ag Nanoparticles∫α-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents. Scientific Reports, 2019, 9, 9927.	1.6	40
1020	Characterization of Bauxite as a Potential Natural Photocatalyst for Photodegradation of Textile Dye. Arabian Journal for Science and Engineering, 2019, 44, 10031-10040.	1.7	12
1021	Highly effective UV–Vis-IR and IR photothermocatalytic CO abatement on Zn doped OMS-2 nanorods. Applied Surface Science, 2019, 483, 827-834.	3.1	15
1022	Green synthesis of SnO2 nanoparticle using Lycopersicon esculentum peel extract. Journal of Molecular Structure, 2019, 1197, 354-360.	1.8	45

#	Article	IF	CITATIONS
1023	Ultrathin Nanotubes of Bi ₅ O ₇ I with a Reduced Band Gap as a High-Performance Photocatalyst. Inorganic Chemistry, 2019, 58, 9833-9843.	1.9	45
1024	Direct Z-Scheme 2D/2D Photocatalyst Based on Ultrathin g-C3N4 and WO3 Nanosheets for Efficient Visible-Light-Driven H2 Generation. ACS Applied Materials & Interfaces, 2019, 11, 27913-27923.	4.0	161
1025	Novel organo modified MoCdS3 heterojunctions for enhancement of photocatalytic activity: The synergistic effects of surface modification and fast photogenerated carrier transfer. Applied Surface Science, 2019, 493, 561-568.	3.1	1
1026	ZnO rod/reduced graphene oxide sensitized by α-Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. Journal of Colloid and Interface Science, 2019, 554, 335-343.	5.0	51
1027	Fabrication of AgBr/La2Ti2O7 hierarchical heterojunctions: Boosted interfacial charge transfer and high efficiency visible-light photocatalytic activity. Separation and Purification Technology, 2019, 229, 115798.	3.9	23
1028	Insight into the impact of surface hydrothermal carbon layer on photocatalytic performance of ZnO nanowire. Applied Catalysis A: General, 2019, 583, 117145.	2.2	16
1029	Conjugated porous polymer based on BOPHY dyes as photocatalyst under visible light. Applied Catalysis B: Environmental, 2019, 258, 117933.	10.8	46
1030	Energy-band-controlled ZnxCd1â ``xIn2S4 solid solution coupled with g-C3N4 nanosheets as 2D/2D heterostructure toward efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2019, 378, 122192.	6.6	97
1031	Towards efficient photocatalytic degradation of organic pollutants in hierarchical TiO ₂ /SnO p–n heterojunction under visible-light irradiation. Nanotechnology, 2019, 30, 434001.	1.3	12
1032	Less is more: Enhancement of photocatalytic activity of g-C3N4 nanosheets by site-selective atomic layer deposition of TiO2. Applied Surface Science, 2019, 494, 508-518.	3.1	20
1033	Defect-Rich MoS ₂ Ultrathin Nanosheets-Coated Nitrogen-Doped ZnO Nanorod Heterostructures: An Insight into in-Situ-Generated ZnS for Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 5622-5634.	2.5	109
1034	Incorporating <i>p</i> â€Phenylene as an Electronâ€Donating Group into Graphitic Carbon Nitride for Efficient Charge Separation. ChemSusChem, 2019, 12, 4285-4292.	3.6	22
1035	Nickel Ammine Complexâ€derived NiO Modified g 3 N 4 Composites with Enhanced Visibleâ€light Photocatalytic H 2 Evolution Performance. ChemistrySelect, 2019, 4, 8095-8103.	0.7	5
1036	Local structure of iron oxide sensitizing Nb2O5 photocatalysts. Journal of Alloys and Compounds, 2019, 806, 543-552.	2.8	9
1037	TiO ₂ /Fe ₂ O ₃ heterostructures with enhanced photocatalytic reduction of Cr(<scp>vi</scp>) under visible light irradiation. RSC Advances, 2019, 9, 22764-22771.	1.7	60
1038	Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. Journal of Saudi Chemical Society, 2019, 23, 1119-1136.	2.4	224
1039	Core–Shell or Dimer Heterostructures? Synergistic Catalysis of an Advanced Oxidation Process at the Exposed Interface under Illumination. ACS Applied Materials & Interfaces, 2019, 11, 28996-29003.	4.0	5
1040	Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Applied Surface Science, 2019, 495, 143432.	3.1	77

#	Article	IF	CITATIONS
1041	Insights into charge transfer and solar light photocatalytic activity induced by the synergistic effect of defect state and plasmon in Au nanoparticle-decorated hierarchical 3D porous ZnO microspheres. Applied Surface Science, 2019, 494, 959-968.	3.1	24
1042	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
1043	Accelerated degradation of pollutants via a close interface connection in heterojunction, and special solid-liquid interactions. Journal of Colloid and Interface Science, 2019, 553, 598-605.	5.0	3
1044	Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity. Inorganic Chemistry Communication, 2019, 107, 107451.	1.8	42
1045	Photoelectrocatalytic fuel cells and photoelectrode microbial fuel cells for wastewater treatment and power generation. Journal of Environmental Chemical Engineering, 2019, 7, 103241.	3.3	44
1046	Highly active WO3@anatase-SiO2 aerogel for solar-light-driven phenanthrene degradation: Mechanism insight and toxicity assessment. Water Research, 2019, 162, 369-382.	5.3	225
1047	Study of Oxygen Vacancies on Different Facets of Anatase TiO ₂ . Chinese Journal of Chemistry, 2019, 37, 922-928.	2.6	22
1048	Synthesis of BiVO4 quantum dots/reduced graphene oxide composites for CO2 reduction. Materials Science in Semiconductor Processing, 2019, 102, 104578.	1.9	34
1049	Deliberate construction of direct <i>Z</i> -scheme photocatalysts through photodeposition. Journal of Materials Chemistry A, 2019, 7, 18348-18356.	5.2	85
1050	3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity. International Journal of Hydrogen Energy, 2019, 44, 21865-21872.	3.8	51
1051	The Electronic Structure and Optical Properties of Twoâ€Đimensional BiOX–YO ₃ (X = Cl	Br,) Tj ETo	Qq0 0 0 rgB1
1052	One-step co-precipitation method to construct black phosphorus nanosheets/ZnO nanohybrid for enhanced visible light photocatalytic activity. Applied Surface Science, 2019, 497, 143682.	3.1	40
1053	Green Synthesis of a Metalâ€Free 0D/2D Heterojunction: A Costâ€Effective Approach. ChemistrySelect, 2019, 4, 11541-11547.	0.7	7
1054	Photocatalytic treatment of tannery wastewater using reduced graphene oxide and CdS/ZnO to produce hydrogen with simultaneous sulfide abatement. SN Applied Sciences, 2019, 1, 1.	1.5	9
1055	Highly Efficient Sodium Storage in Iron Oxide Nanotube Arrays Enabled by Builtâ€In Electric Field. Advanced Materials, 2019, 31, e1902603.	11.1	120
1056	The semiconductor SrFe0.2Ti0.8O3-Î ⁻ ZnO heterostructure electrolyte fuel cells. International Journal of Hydrogen Energy, 2019, 44, 30319-30327.	3.8	75
1057	Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation. Journal of Power Sources, 2019, 444, 227300.	4.0	34
1058	Process optimization for simultaneous antibiotic removal and precious metal recovery in an energy	3.9	16 _

#	Article	IF	CITATIONS
1059	TiO2/S-Doped Carbons Hybrids: Analysis of Their Interfacial and Surface Features. Molecules, 2019, 24, 3585.	1.7	8
1060	Design of SiO2-TiO2-PAM composite flocculant with self-degrading characteristics and optimization of the flocculation process using a combination of central composite design and response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123982.	2.3	16
1061	Enhanced visible-light-photoconversion efficiency of TiO2 nanotubes decorated by pulsed laser deposited CoNi nanoparticles. International Journal of Hydrogen Energy, 2019, 44, 28656-28667.	3.8	9
1062	Efficient activity and stability of ZnWO4/CdS composite towards visible-light photocatalytic H2 evolution. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112046.	2.0	13
1063	Boosting NIR-Driven Photocatalytic Activity of BiOBr:Yb ³⁺ /Er ³⁺ /Ho ³⁺ Nanosheets by Enhanced Green Upconversion Emissions via Energy Transfer from Er ³⁺ to Ho ³⁺ lons. ACS Sustainable Chemistry and Engineering, 2019, 7, 18185-18196.	3.2	40
1064	Fabrication and characterization of <i>l±</i> -Fe ₂ O ₃ /CuO heterostructure thin films via dip-coating technique for improved photoelectrochemical performance. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 035012.	0.7	13
1065	Amorphous Co–Cu–Al mixed metal oxide nanoparticles modified BiVO ₄ to improve photocatalytic desulfurization. Materials Research Express, 2019, 6, 096205.	0.8	1
1066	Nanowire Genome: A Magic Toolbox for 1D Nanostructures. Advanced Materials, 2019, 31, e1902807.	11.1	44
1067	Interfacial Charge Transfer Transitions in Colloidal TiO ₂ Nanoparticles Functionalized with Salicylic acid and 5-Aminosalicylic acid: A Comparative Photoelectron Spectroscopy and DFT Study. Journal of Physical Chemistry C, 2019, 123, 29057-29066.	1.5	17
1068	Coordination between Electron Transfer and Molecule Diffusion through a Bioinspired Amorphous Titania Nanoshell for Photocatalytic Nicotinamide Cofactor Regeneration. ACS Catalysis, 2019, 9, 11492-11501.	5.5	49
1069	Plate-like WO3 inserting into I-deficient BiO1.2I0.6 microsphere for highly efficient photocatalytic degradation of VOCs. Journal of the Taiwan Institute of Chemical Engineers, 2019, 105, 96-103.	2.7	5
1070	Facet-dependent and interfacial plane-related photocatalytic behaviors of semiconductor nanocrystals and heterostructures. Nano Today, 2019, 28, 100768.	6.2	81
1071	Construction of Heterogenous S–C–S MoS ₂ /SnS ₂ /r-GO Heterojunction for Efficient CO ₂ Photoreduction. Inorganic Chemistry, 2019, 58, 15590-15601.	1.9	42
1072	Supramolecular Nanostructures with Tunable Donor Loading for Controlled H ₂ S Release. ACS Applied Bio Materials, 2019, 2, 5093-5098.	2.3	20
1073	Rational Construction of Zâ€Scheme CuInS ₂ /Au/g ₃ N ₄ Heterostructure: Experimental Results and Theoretical Calculation. ChemCatChem, 2019, 11, 6372-6383.	1.8	28
1074	Utilization of the internal electric field in semiconductor photocatalysis: A short review. Journal of Industrial and Engineering Chemistry, 2019, 72, 18-30.	2.9	72
1075	TiO2/ZnO Nanofibers Prepared by Electrospinning and Their Photocatalytic Degradation of Methylene Blue Compared with TiO2 Nanofibers. Applied Sciences (Switzerland), 2019, 9, 3404.	1.3	28
1076	ZnO/ZnFe2O4/Ag hollow nanofibers with multicomponent heterojunctions for highly efficient photocatalytic water pollutants removal. Ceramics International, 2019, 45, 23522-23527.	2.3	13

#	Article	IF	CITATIONS
1077	Novel High Efficiency Layered Oxide Photocatalyst Li2SnO3 for Rhodamine B and Tetracycline Degradation. Catalysts, 2019, 9, 712.	1.6	11
1078	Serendipitous Assembly of Mixed Phase BiVO ₄ on B-Doped g-C ₃ N ₄ : An Appropriate p–n Heterojunction for Photocatalytic O ₂ evolution and Cr(VI) reduction. Inorganic Chemistry, 2019, 58, 12480-12491.	1.9	85
1079	Tape casting and phase inversion derived easily recyclable PVDF@g-C3N4/Bi2W0.98Nb0.02O6 porous film for high performance and long-term photocatalytic pollutants degradation. Applied Surface Science, 2019, 496, 143731.	3.1	19
1080	Synthesis of ultrathin g-C3N4/graphene nanocomposites with excellent visible-light photocatalytic performances. Functional Materials Letters, 2019, 12, 1950025.	0.7	3
1081	Switching on wide visible light photocatalytic activity over Mg4Ta2O9 by nitrogen doping for water oxidation and reduction. Journal of Catalysis, 2019, 377, 455-464.	3.1	13
1082	In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants. Journal of Colloid and Interface Science, 2019, 556, 335-344.	5.0	219
1083	Facile synthesis of 3D flower-like mesoporous Ce-ZnO at room temperature for the sunlight-driven photocatalytic degradations of RhB and phenol. Journal of Colloid and Interface Science, 2019, 556, 726-733.	5.0	30
1084	Hollow In ₂ O ₃ @ZnFe ₂ O ₄ heterojunctions for highly efficient photocatalytic degradation of tetracycline under visible light. Environmental Science: Nano, 2019, 6, 3123-3132.	2.2	50
1085	Electronic, elastic and piezoelectric properties of boron-V group binary and ternary monolayers. Physica B: Condensed Matter, 2019, 574, 311634.	1.3	23
1086	Influence of MoS2 on Activity and Stability of Carbon Nitride in Photocatalytic Hydrogen Production. Catalysts, 2019, 9, 695.	1.6	15
1087	Enhanced photocatalytic reduction activity of BiOCl nanosheets loaded on β-Bi2O3. Journal of Materials Science: Materials in Electronics, 2019, 30, 17956-17962.	1.1	9
1088	First-principles study of two-dimensional van der Waals heterostructure based on ZnO and Mg(OH)2: A potential photocatalyst for water splitting. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125916.	0.9	18
1089	Enhanced photoelectrocatalytic activity of direct Z-scheme porous amorphous carbon nitride/manganese dioxide nanorod arrays. Journal of Colloid and Interface Science, 2019, 557, 644-654.	5.0	39
1090	Design of core–shell titania–heteropolyacid–metal nanocomposites for photocatalytic reduction of CO2 to CO at ambient temperature. Nanoscale Advances, 2019, 1, 4321-4330.	2.2	6
1091	Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Research, 2019, 12, 2749-2759.	5.8	115
1092	Boosting the photocatalytic hydrogen evolution performance via an atomically thin 2D heterojunction visualized by scanning photoelectrochemical microscopy. Nano Energy, 2019, 65, 104053.	8.2	18
1093	Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity. Journal of Fuel Chemistry and Technology, 2019, 47, 834-842.	0.9	22
1094	Magnetic Hollow Spheres Assembled from Graphene-Encapsulated Nickel Nanoparticles for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 7670-7678.	2.5	78

#	Article	IF	CITATIONS
1095	<i>In situ</i> hydrothermal etching fabrication of CaTiO ₃ on TiO ₂ nanosheets with heterojunction effects to enhance CO ₂ adsorption and photocatalytic reduction. Catalysis Science and Technology, 2019, 9, 336-346.	2.1	56
1096	Enhanced trimethoxypyrimidine degradation by piezophotocatalysis of BaTiO ₃ /Ag ₃ PO ₄ using mechanical vibration and visible light simultaneously. Environmental Science: Nano, 2019, 6, 554-564.	2.2	41
1097	Semiconductor-Based Nanocomposites for Photodegradation of Organic Pollutants. , 2019, , 25-58.		3
1098	Unraveling the impact of the Pd nanoparticle@BiVO ₄ /S-CN heterostructure on the photo-physical & opto-electronic properties for enhanced catalytic activity in water splitting and one-pot three-step tandem reaction. Nanoscale Advances, 2019, 1, 1395-1412.	2.2	15
1099	<i>In situ</i> reduction and exfoliation of g-C ₃ N ₄ nanosheets with copious active sites <i>via</i> a thermal approach for effective water splitting. Catalysis Science and Technology, 2019, 9, 1004-1012.	2.1	33
1100	Synthesis and photocatalytic properties of electrodeposited bismuth oxyiodide on rutile/anatase TiO2 heterostructure. Materials Research Express, 2019, 6, 055905.	0.8	6
1101	Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity. Advanced Functional Materials, 2019, 29, 1808079.	7.8	95
1102	2D/2D Heterojunctions for Catalysis. Advanced Science, 2019, 6, 1801702.	5.6	224
1103	Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. Applied Surface Science, 2019, 476, 982-992.	3.1	101
1104	NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 4821-4831.	3.8	66
1105	Novel magnetic amine functionalized carbon nanotube/metal-organic framework nanocomposites: From green ultrasound-assisted synthesis to detailed selective pollutant removal modelling from binary systems. Journal of Hazardous Materials, 2019, 368, 746-759.	6.5	131
1106	Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 5090-5110.	5.2	128
1107	Synthesis of a Cu 2 O/Carbon Film/NiCoBâ€Graphene Oxide Heterostructure as Photocathode for Photoelectrochemical Water Splitting. ChemElectroChem, 2019, 6, 2004-2012.	1.7	13
1108	CdS Photocatalysts Modified with Ag: Effect of the Solvothermal Temperature on the Structure and Photoactivity for Hydrogen Production. Catalysts, 2019, 9, 110.	1.6	14
1109	Interaction-Dependent Interfacial Charge-Transfer Behavior in Solar Water-Splitting Systems. Nano Letters, 2019, 19, 1234-1241.	4.5	42
1110	Environmentally benign synthesis of Co3O4-SnO2 heteronanorods with efficient photocatalytic performance activated by visible light. Journal of Colloid and Interface Science, 2019, 542, 460-468.	5.0	49
1111	ZnTe/ZnSe heterostructures: In-situ synthesis, characterization and photocatalytic activity for Congo Red degradation. SN Applied Sciences, 2019, 1, 1.	1.5	13
1112	ZIF-8 derived hollow CuO/ZnO material for study of enhanced photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 1-10.	2.3	56

#	Article	IF	CITATIONS
1113	Acoustic extraordinary transmission manipulation based on proximity effects of heterojunctions. Scientific Reports, 2019, 9, 1080.	1.6	4
1114	CuSbSe ₂ /TiO ₂ : novel type-II heterojunction nano-photocatalyst. Materials Chemistry Frontiers, 2019, 3, 437-449.	3.2	22
1115	Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chemical Science, 2019, 10, 2585-2591.	3.7	50
1116	A magnetically separable plate-like cadmium titanate–copper ferrite nanocomposite with enhanced visible-light photocatalytic degradation performance for organic contaminants. RSC Advances, 2019, 9, 15615-15628.	1.7	31
1117	ZnS–CdS–TaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity. Journal of Sol-Gel Science and Technology, 2019, 91, 82-91.	1.1	18
1118	Investigation of photodegradation of rhodamine B over a BiOX (XÂ=ÂCl, Br and I) photocatalyst under white LED irradiation. Bulletin of Materials Science, 2019, 42, .	0.8	20
1119	Enhanced Interfacial Charge Transfer and Separation Rate based on Sub 10 nm MoS ₂ Nanoflakes In Situ Grown on Graphiticâ€C ₃ N ₄ . Advanced Materials Interfaces, 2019, 6, 1900554.	1.9	33
1120	(Sr0.6Bi0.305)2Bi2O7 as a new visible-light-responsive photocatalyst: An experimental and theoretical study. Materials Research Bulletin, 2019, 118, 110484.	2.7	16
1121	A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation. Applied Catalysis B: Environmental, 2019, 256, 117872.	10.8	136
1122	Magnetically recyclable Fe3O4@SiO2/Bi2WO6/Bi2S3 with visible-light-driven photocatalytic oxidative desulfurization. Materials Research Bulletin, 2019, 118, 110520.	2.7	50
1123	Synthesis and Enhanced Photocatalytic Activity of Visible-Light-Driven Co-Doped Bi2MoO6 Photocatalyst with Flower-Like Nanostructures. Russian Journal of Physical Chemistry A, 2019, 93, 736-742.	0.1	7
1124	Interfacial restructuration of carbon nitride polymers for visible-light photocatalysis. Chemical Communications, 2019, 55, 8235-8237.	2.2	9
1125	Encapsulated MWCNT@MOF-derived In2S3 tubular heterostructures for boosted visible-light-driven degradation of tetracycline. Applied Catalysis B: Environmental, 2019, 256, 117882.	10.8	92
1126	Nanomaterials Properties of Environmental Interest and How to Assess Them. , 2019, , 45-105.		2
1127	g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction. Environment International, 2019, 130, 104898.	4.8	86
1128	Acetylene black quantum dots as a bridge for few-layer g-C3N4/MoS2 nanosheet architecture: 0D–2D heterojunction as an efficient visible-light-driven photocatalyst. Research on Chemical Intermediates, 2019, 45, 4975-4993.	1.3	21
1129	Understanding the relative efficacies and versatile roles of 2D conductive nanosheets in hybrid-type photocatalyst. Applied Catalysis B: Environmental, 2019, 257, 117875.	10.8	19
1130	An on-demand solar hydrogen-evolution system for unassisted high-efficiency pure-water splitting. Journal of Materials Chemistry A, 2019, 7, 17315-17323.	5.2	17

#	Article	IF	CITATIONS
1131	Heterojunction αâ€Fe ₂ O ₃ /ZnO Films with Enhanced Photocatalytic Properties Grown by Aerosolâ€Assisted Chemical Vapour Deposition. Chemistry - A European Journal, 2019, 25, 11337-11345.	1.7	28
1132	Ag plasmon resonance promoted 2D AgBr-δ-Bi2O3 nanosheets with enhanced photocatalytic ability. Journal of Alloys and Compounds, 2019, 803, 565-575.	2.8	28
1133	Photoactive nanoarchitectures based on clays incorporating TiO ₂ and ZnO nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1140-1156.	1.5	50
1134	Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B. Carbon, 2019, 152, 284-294.	5.4	75
1135	TiO2 @ MoSe2 line-to-face heterostructure: An advanced photocatalyst for highly efficient reduction of Cr (VI). Ceramics International, 2019, 45, 18065-18072.	2.3	19
1136	Improved photocatalytic degradation of perfluorooctanoic acid on oxygen vacancies-tunable bismuth oxychloride nanosheets prepared by a facile hydrolysis. Journal of Hazardous Materials, 2019, 377, 371-380.	6.5	73
1137	Organic–Inorganic Hybrid Nanomaterials: Synthesis, Characterization, and Application. , 2019, , 419-449.		5
1138	Cobalt porphyrin (CoTCPP) advanced visible light response of g-C3N4 nanosheets. Sustainable Materials and Technologies, 2019, 22, e00114.	1.7	9
1139	In situ photochemical fabrication of CdS/g-C3N4 nanocomposites with high performance for hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2019, 256, 117848.	10.8	105
1140	A facile hydrothermal synthesis of visible-light responsive BiFeWO6/MoS2 composite as superior photocatalyst for degradation of organic pollutants. Ceramics International, 2019, 45, 18683-18690.	2.3	72
1141	Synthesis and photo-catalytic activity of porous g-C3N4: Promotion effect of nitrogen vacancy in H2 evolution and pollutant degradation reactions. International Journal of Hydrogen Energy, 2019, 44, 16315-16326.	3.8	105
1142	Design of Heterostructured Hollow Photocatalysts for Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2019, 31, e1900281.	11.1	307
1143	Novel g-C3N4/BiOClxl1-x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light. Applied Catalysis B: Environmental, 2019, 256, 117789.	10.8	103
1144	Enhanced Photocatalytic Activities of RhB Degradation and H ₂ Evolution from in Situ Formation of the Electrostatic Heterostructure MoS ₂ /NiFe LDH Nanocomposite through the Z-Scheme Mechanism via p–n Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 20923-20942.	4.0	263
1145	One-step synthesis of oxygen vacancy-rich SnO2 quantum dots with ultrahigh visible-light photocatalytic activity. Materials Research Bulletin, 2019, 118, 110486.	2.7	16
1146	Poly(sodium 4â€styrenesulfonate) Assisted Roomâ€Temperature Synthesis for the Mass Production of Bismuth Oxychloride Ultrathin Nanoplates with Enhanced Photocatalytic Activity. ChemPlusChem, 2019, 84, 828-837.	1.3	10
1147	Rational design and preparation of nanoheterostructures based on zinc titanate for solar-driven photocatalytic conversion of CO2 to valuable fuels. Applied Catalysis B: Environmental, 2019, 256, 117800.	10.8	41
1148	A novel energy-dependent p-semiconductor–metal–n-semiconductor heterojunction for selectively steering charge flow in a <i>Z</i> -scheme photocatalyst. Journal of Materials Chemistry A, 2019, 7, 15036-15041.	5.2	6

		CITATION REPORT		
#	Article		IF	Citations
1149	Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chemical Engineering Journal, 2019, 374, 1025-1045.		6.6	180
1150	Eco-friendly and high-performance photoelectrochemical anode based on AgInS _{2 quantum dots embedded in 3D graphene nanowalls. Journal of Materials Chemistry C, 9830-9839.}	2 2019, 7,	2.7	48
1151	Toward large-scale water treatment using nanomaterials. Nano Today, 2019, 27, 11-27		6.2	94
1152	Revealing important role of graphitic carbon nitride surface catalytic activity in photoca hydrogen evolution by using different carbon co-catalysts. Applied Surface Science, 20	atalytic 19, 491, 236-244.	3.1	14
1153	Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Perfor Review. Materials, 2019, 12, 1916.	rmances: A Mini	1.3	93
1154	A Co(OH) _x nanolayer integrated planar WO ₃ /Fe _{2photoanode for efficient photoelectrochemical water splitting. Sustainable Energy and 2135-2141.}	b>O ₃ Fuels, 2019, 3,	2.5	12
1155	Enhanced photocatalytic activity towards H2 evolution over NiO via phosphonic acid se modification with different functional groups. International Journal of Hydrogen Energy 16575-16581.	urface , 2019, 44,	3.8	14
1156	Novel Tm3+ and Yb3+ co-doped bismuth tungstate up-conversion photocatalyst with a photocatalytic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2	greatly improved 019, 380, 111864.	2.0	27
1157	A Theoretical Perspective on Charge Separation and Transfer in Metal Oxide Photocata Splitting. ChemCatChem, 2019, 11, 3688-3715.	lysts for Water	1.8	27
1158	Advanced photocatalytic performance of novel BiOBr/BiOI/cellulose composites for the organic pollutant. Cellulose, 2019, 26, 5543-5557.	removal of	2.4	33
1159	Electrophoretic deposition of photocatalytic materials. Advances in Colloid and Interface 2019, 269, 236-255.	ce Science,	7.0	56
1160	Enhanced visible light photocatalytic activity of Agl/TiO2 composite fabricated by a gri Water Quality Research Journal of Canada, 2019, 54, 257-264.	nding method.	1.2	1
1161	Unprecedented Eighteenâ€Faceted BiOCl with a Ternary Facet Junction Boosting Casc: and Photoâ€redox. Angewandte Chemie - International Edition, 2019, 58, 9517-9521.	ade Charge Flow	7.2	230
1162	Insight into efficient photocatalytic elimination of tetracycline over SrTiO3(La,Cr) unde irradiation: The relationship of doping and performance. Applied Surface Science, 2019	r visible-light , 486, 93-101.	3.1	42
1163	Photocatalytic membrane in water purification: is it stepping closer to be driven by visil Journal of Membrane Science, 2019, 584, 364-392.	ble light?.	4.1	168
1164	Review on heterophase/homophase junctions for efficient photocatalysis: The case of p construction. Chinese Journal of Catalysis, 2019, 40, 796-818.	bhase transition	6.9	96
1165	Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Su Photocatalytic Reduction of CO ₂ into Fuels. Advanced Functional Materia 1901825.	unlightâ€Driven ıls, 2019, 29,	7.8	315
1166	Interfacial structure and properties of TiO2 phase junction studied by DFT calculations. Surface Science, 2019, 485, 8-21.	Applied	3.1	14

#	Article	IF	CITATIONS
1167	Synergistic interaction of 2D layered MoS2/ZnS nanocomposite for highly efficient photocatalytic activity under visible light irradiation. Applied Surface Science, 2019, 488, 36-45.	3.1	33
1168	A visible light induced ultrasensitive photoelectrochemical sensor based on Cu3Mo2O9/BaTiO3 p–n heterojunction for detecting oxytetracycline. Journal of Electroanalytical Chemistry, 2019, 842, 161-167.	1.9	34
1169	Enhancement of the degradation ability for organic pollutants via the synergistic effect of photoelectrocatalysis on a self-assembled perylene diimide (SA-PDI) thin film. Science Bulletin, 2019, 64, 896-903.	4.3	34
1170	Ag1.69Sb2.27O6.25 coupled carbon nitride photocatalyst with high redox potential for efficient multifunctional environmental applications. Applied Surface Science, 2019, 487, 82-90.	3.1	14
1171	A review of visible light-active photocatalysts for water disinfection: Features and prospects. Chemical Engineering Journal, 2019, 373, 624-641.	6.6	302
1172	Two dimensional InSe/C2N van der Waals heterojunction as enhanced visible-light-responsible photocatalyst for water splitting. Applied Surface Science, 2019, 485, 375-380.	3.1	61
1173	Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nature Communications, 2019, 10, 2177.	5.8	476
1174	Single-crystalline melem (C ₆ N ₁₀ H ₆) nanorods: a novel stable molecular crystal photocatalyst with modulated charge potentials and dynamics. Journal of Materials Chemistry A, 2019, 7, 13234-13241.	5.2	22
1175	Unprecedented Eighteenâ€Faceted BiOCl with a Ternary Facet Junction Boosting Cascade Charge Flow and Photoâ€redox. Angewandte Chemie, 2019, 131, 9617-9621.	1.6	21
1176	Al-doped \$\$hbox {Nb}_{3}mathrm{O}_{7}hbox {F}\$\$ nanosheets: preparation, characterization and photocatalytic performance under visible light irradiation. Bulletin of Materials Science, 2019, 42, 1.	0.8	2
1177	P3HT/Ag/TiO2 ternary photocatalyst with significantly enhanced activity under both visible light and ultraviolet irradiation. Applied Surface Science, 2019, 488, 228-236.	3.1	19
1178	ZnO:ZnWO4 heterostructure with enhanced photocatalytic activity for pollutant degradation in liquid and gas phases. Journal of Alloys and Compounds, 2019, 797, 1299-1309.	2.8	26
1179	Synthesis of MoS ₂ /CdS Heterostructures on Carbonâ€Fiber Cloth as Filterâ€Membraneâ€Shaped Photocatalyst for Purifying the Flowing Wastewater under Visibleâ€Light Illumination. ChemCatChem, 2019, 11, 2855-2863.	1.8	49
1180	Nitrogen-doped black TiO2 spheres with enhanced visible light photocatalytic performance. SN Applied Sciences, 2019, 1, 1.	1.5	12
1181	Fabrication of visible-light-active Bi/BiOI-Bi2O3 composite with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2019, 548, 255-264.	5.0	51
1182	Rationally designed Fe2O3/GO/WO3 Z-Scheme photocatalyst for enhanced solar light photocatalytic water remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 74-84.	2.0	63
1183	Using van der Waals heterostructures based on two-dimensional blue phosphorus and XC (X = Ge, Si) for water-splitting photocatalysis: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 9949-9956	1.3	66
1184	overflow="scroll"> <mml:msub><mml:mrow><mml:mi>Bi</mml:mi>VO</mml:mrow>BiVO-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mrow></mml:mrow><mml:mi< td=""><td>nn>41.5</td><td>nl:mn>23</td></mml:mi<></mml:msub></mml:math </mml:msub>	nn>41.5	nl:mn>23
	matnvariant="normal">C <mml:mn>3. Physical Review Applied,</mml:mn>		

#	Article	IF	CITATIONS
1185	Influence of ZnO Surface Modification on the Photocatalytic Performance of ZnO/NiO Thin Films. Catalysis Letters, 2019, 149, 1813-1824.	1.4	16
1186	Fabrication of strong internal electric field ZnS/Fe ₉ S ₁₀ heterostructures for highly efficient sodium ion storage. Journal of Materials Chemistry A, 2019, 7, 11771-11781.	5.2	83
1187	Band structure engineering of boron–oxygen-based materials for efficient charge separation. Materials Chemistry Frontiers, 2019, 3, 1440-1448.	3.2	5
1188	Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy and Environmental Science, 2019, 12, 2345-2374.	15.6	88
1189	AgBr/(Sr0.6Bi0.305)2Bi2O7 Heterostructured Composites: Fabrication, Characterization, and Significantly Enhanced Photocatalytic Activity. Catalysts, 2019, 9, 394.	1.6	6
1190	2D sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water. CheM, 2019, 5, 1632-1647.	5.8	408
1191	Emerging approach in semiconductor photocatalysis: Towards 3D architectures for efficient solar fuels generation in semi-artificial photosynthetic systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 142-160.	5.6	34
1192	Facile Synthesis of Ag/ZnO Hollow Microspheres with Enhanced Photocatalytic Performance under Simulated Sunlight Irradiation. Nano, 2019, 14, 1950036.	0.5	4
1193	All-solid-state Z-scheme WO3/HTiNbO5-NS heterojunctions with enhanced photocatalytic performance. Journal of Solid State Chemistry, 2019, 276, 104-113.	1.4	16
1194	Aqueous synthesis of highly monodisperse sub-100 nm AgCl nanospheres/cubes and their plasmonic nanomesh replicas as visible-light photocatalysts and single SERS probes. Nanotechnology, 2019, 30, 295604.	1.3	7
1195	Multicomponent Oxynitride Thin Films: Precise Growth Control and Excited State Dynamics. Chemistry of Materials, 2019, 31, 3461-3467.	3.2	7
1196	Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail―for the photocatalytic hydrogen evolution reaction under visible light. Energy and Environmental Science, 2019, 12, 2080-2147.	15.6	803
1197	Fabrication of a zinc tungstate-based a p-n heterojunction photocatalysts towards refractory pollutants degradation under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 137-145.	2.3	28
1198	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	1.6	214
1199	0D CoP cocatalyst/ 2D g ₃ N ₄ nanosheets: An efficient photocatalyst for promoting photocatalytic hydrogen evolution. Journal of the American Ceramic Society, 2019, 102, 5484-5493.	1.9	51
1200	The role of 1T@2H-MoS2 in improving the photocatalytic activity of Bi2S3. Materials Letters, 2019, 246, 214-218.	1.3	9
1201	Study of visible-light photocatalytic degradation of 2,4-dichlorophenoxy acetic acid in batch and circulated-mode photoreactors. Journal of Environmental Health Science & Engineering, 2019, 17, 233-245.	1.4	4
1202	Designing 3D magnetic peony flower-like cobalt oxides/g-C3N4 dual Z-scheme photocatalyst for remarkably enhanced sunlight driven photocatalytic redox activity. Chemical Engineering Journal, 2019, 369, 947-956.	6.6	117

#	Article	IF	CITATIONS
1203	Facile fabrication of CdS/UiO-66-NH2 heterojunction photocatalysts for efficient and stable photodegradation of pollution. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 80-87.	2.0	41
1204	Preparation of Bi2MoO6–BiOCOOH plate-on-plate heterojunction photocatalysts with significantly improved photocatalytic performance under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 326-335.	2.7	21
1205	Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chinese Journal of Catalysis, 2019, 40, 289-319.	6.9	413
1206	One-step low-temperature synthesis of 0D CeO2 quantum dots/2D BiOX (X = Cl, Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability. Applied Catalysis B: Environmental, 2019, 250, 17-30.	10.8	122
1207	Construction of hierarchical hetero-structured TiO2 photoanodes for dye-sensitized solar energy conversion: Case study of anatase nanobranches on rutile nanorod arrays. Chemical Physics, 2019, 522, 129-133.	0.9	7
1208	Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries. Studies in Surface Science and Catalysis, 2019, 178, 65-84.	1.5	11
1209	Flexible, auxetic and strain-tunable two dimensional penta-X ₂ C family as water splitting photocatalysts with high carrier mobility. Journal of Materials Chemistry A, 2019, 7, 7791-7799.	5.2	66
1210	Synthesis and photocatalytic properties of BiOI/NiFe ₂ O ₄ composites. Materials Research Express, 2019, 6, 066207.	0.8	2
1211	Facile ultrasound-driven formation and deposition of few-layered MoS2 nanosheets on CdS for highly enhanced photocatalytic hydrogen evolution. Applied Surface Science, 2019, 481, 795-801.	3.1	22
1212	Synergistic effects in simultaneous photocatalytic removal of Cr(VI) and tetracycline hydrochloride by Z-scheme Co3O4/Ag/Bi2WO6 heterojunction. Applied Surface Science, 2019, 483, 677-687.	3.1	109
1213	Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics. Journal of Hazardous Materials, 2019, 373, 303-312.	6.5	107
1214	Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin, 2019, 115, 140-149.	2.7	128
1215	Stimulating Charge Transfer Over Quantum Dots via Ligand-Triggered Layer-by-Layer Assembly toward Multifarious Photoredox Organic Transformation. Journal of Physical Chemistry C, 2019, 123, 9721-9734.	1.5	41
1216	Solid-State, Low-Cost, and Green Synthesis and Robust Photochemical Hydrogen Evolution Performance of Ternary TiO2/MgTiO3/C Photocatalysts. IScience, 2019, 14, 15-26.	1.9	23
1217	HPW-Anchored UiO-66 Metal–Organic Framework: A Promising Photocatalyst Effective toward Tetracycline Hydrochloride Degradation and H ₂ Evolution via Z-Scheme Charge Dynamics. Inorganic Chemistry, 2019, 58, 4921-4934.	1.9	129
1218	Enhanced photoelectrochemical sensing based on novel synthesized Bi2S3@Bi2O3 nanosheet heterostructure for ultrasensitive determination of l-cysteine. Analytical and Bioanalytical Chemistry, 2019, 411, 3059-3068.	1.9	19
1219	Synergistic effect of ZnO QDs and Sn4+ ions to control anatase-rutile phase of three-dimensional ordered hollow sphere TiO2 with enhanced photodegradation and hydrogen evolution. Applied Surface Science, 2019, 481, 1185-1195.	3.1	17
1220	TiO2-x/Ag3PO4 photocatalyst: Oxygen vacancy dependent visible light photocatalytic performance and BPA degradative pathway. Materials Science in Semiconductor Processing, 2019, 97, 1-10.	1.9	58

#	Article	IF	CITATIONS
1221	Growth Process and CQDs-modified Bi4Ti3O12 Square Plates with Enhanced Photocatalytic Performance. Micromachines, 2019, 10, 66.	1.4	41
1222	Tungsten Trioxide Nanostructures for Photoelectrochemical Water Splitting: Material Engineering and Charge Carrier Dynamic Manipulation. Advanced Functional Materials, 2019, 29, 1809036.	7.8	122
1223	Self-limited ion-exchange grown Bi6Fe2Ti3O18-BiOBr ferroelectric heterostructure and the enhanced photocatalytic oxygen evolution. Applied Surface Science, 2019, 479, 137-147.	3.1	19
1224	In situ fabrication of a 2D Ni2P/red phosphorus heterojunction for efficient photocatalytic H2 evolution. Materials Research Bulletin, 2019, 115, 27-36.	2.7	39
1225	Metal/Semiconductor Nanocomposites for Photocatalysis: Fundamentals, Structures, Applications and Properties. Nanomaterials, 2019, 9, 359.	1.9	78
1226	Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS. Applied Surface Science, 2019, 483, 442-452.	3.1	56
1227	Glucose-induced fabrication of Bi/α-FeC ₂ O ₄ ·2H ₂ O heterojunctions: a bifunctional catalyst with enhanced photocatalytic and Fenton oxidation efficiency. Catalysis Science and Technology, 2019, 9, 2543-2552.	2.1	9
1228	Visible-Light Plasmonic Enhancement of Catalytic Activity of Anisotropic Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2019, 19, 5130-5141.	0.9	3
1229	A Facile Synthetic Method to Obtain Bismuth Oxyiodide Microspheres Highly Functional for the Photocatalytic Processes of Water Depuration. Journal of Visualized Experiments, 2019, , .	0.2	1
1230	Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nature Communications, 2019, 10, 1707.	5.8	218
1231	Enhanced visible-light-driven photocatalytic properties of acceptor dopant Nb5+ modified Bi2WO6 by tailoring the morphology from 3D hierarchical microspheres to 2D nanosheets. Applied Surface Science, 2019, 484, 112-123.	3.1	34
1232	Enhanced Generation of Non-Oxygen Dependent Free Radicals by Schottky-type Heterostructures of Au–Bi ₂ S ₃ Nanoparticles <i>via</i> X-ray-Induced Catalytic Reaction for Radiosensitization. ACS Nano, 2019, 13, 5947-5958.	7.3	126
1233	One-dimensional SiC nanostructures: Designed growth, properties, and applications. Progress in Materials Science, 2019, 104, 138-214.	16.0	110
1234	Synergistic Effect of Dual Particle-Size AuNPs on TiO2 for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials, 2019, 9, 499.	1.9	14
1235	Well-organized CN-M/CN-U/Pt-TiO2 ternary heterojunction design for boosting photocatalytic H2 production via electronic continuous and directional transmission. Applied Catalysis A: General, 2019, 576, 74-84.	2.2	8
1236	Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catalysis, 2019, 9, 4642-4687.	5.5	432
1237	Artificial inflation of apparent photocatalytic activity induced by catalyst-mass-normalization and a method to fairly compare heterojunction systems. Energy and Environmental Science, 2019, 12, 1657-1667.	15.6	23
1238	Oxygen Vacancy Engineering of Bi ₂₄ O ₃₁ Cl ₁₀ for Boosted Photocatalytic CO ₂ Conversion. ChemSusChem, 2019, 12, 2740-2747.	3.6	92

#	Article	IF	CITATIONS
1239	Facile synthesis of bismuth oxyhalogen-based Z-scheme photocatalyst for visible-light-driven pollutant removal: Kinetics, degradation pathways and mechanism. Journal of Cleaner Production, 2019, 225, 898-912.	4.6	101
1240	Dual templated synthesis of tri-modal porous SrTiO3/TiO2@ carbon composites with enhanced photocatalytic activity. Applied Catalysis A: General, 2019, 575, 132-141.	2.2	42
1241	Novel Z-Scheme Ag/TiO2/AgMIL-101(Cr) as an efficient photocatalyst for nitrogen production from nitrate. Applied Surface Science, 2019, 479, 1048-1056.	3.1	22
1242	Constructing a Green Light Photodetector on Inorganic/Organic Semiconductor Homogeneous Hybrid Nanowire Arrays with Remarkably Enhanced Photoelectric Response. ACS Applied Materials & Interfaces, 2019, 11, 10146-10152.	4.0	5
1243	Superwettabilityâ€Based Interfacial Chemical Reactions. Advanced Materials, 2019, 31, e1800718.	11.1	128
1244	Multifunctional photocatalytic coatings for construction materials. , 2019, , 557-589.		4
1245	Fabrication of 3D ultra-light graphene aerogel/Bi2WO6 composite with excellent photocatalytic performance: A promising photocatalysts for water purification. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 288-296.	2.7	88
1246	Recent advances in computational photocatalysis: A review. Canadian Journal of Chemical Engineering, 2019, 97, 1982-1998.	0.9	45
1247	A Facile One Pot Synthesis of Cu ₂ O@TiO ₂ : A Nanocomposite Catalyst for Enhanced Visible Light Driven Photocatalysis [#] . ChemistrySelect, 2019, 4, 2249-2257.	0.7	26
1248	Pyrochlore-structured Y2Ti2O7–2TiO2 composite thin films for photovoltaic applications. Journal of the Australian Ceramic Society, 2019, 55, 921-932.	1.1	17
1249	Construction of Ag/AgCl-CN heterojunctions with enhanced photocatalytic activities for degrading contaminants in wastewater. Journal of Colloid and Interface Science, 2019, 543, 25-33.	5.0	31
1250	Ligand-Triggered Tunable Charge Transfer toward Multifarious Photoreduction Catalysis. Journal of Physical Chemistry C, 2019, 123, 4701-4714.	1.5	41
1251	One-pot selective synthesis of azoxy compounds and imines via the photoredox reaction of nitroaromatic compounds and amines in water. Scientific Reports, 2019, 9, 1280.	1.6	10
1252	Strain-enhanced properties of van der Waals heterostructure based on blue phosphorus and g-GaN as a visible-light-driven photocatalyst for water splitting. RSC Advances, 2019, 9, 4816-4823.	1.7	86
1253	A highly stable metal–organic framework derived phosphorus doped carbon/Cu ₂ O structure for efficient photocatalytic phenol degradation and hydrogen production. Journal of Materials Chemistry A, 2019, 7, 6062-6079.	5.2	61
1254	Chemisorption-enhanced photocatalytic nitrogen fixation via 2D ultrathin p–n heterojunction AgCl/Î-Bi2O3 nanosheets. Journal of Catalysis, 2019, 371, 71-80.	3.1	129
1255	Composite Nanofibers for Removing Water Pollutants: Fabrication Techniques. , 2019, , 441-468.		3
1256	Facile Formation of Bi ₂ O ₂ CO ₃ /Bi ₂ MoO ₆ Nanosheets for Visible Light-Driven Photocatalysis. ACS Omega, 2019, 4, 3871-3880.	1.6	56

#	Article	IF	CITATIONS
1257	More efficiently enhancing photocatalytic activity by embedding Pt within anatase–rutile TiO2 heterophase junction than exposing Pt on the outside surface. Journal of Catalysis, 2019, 372, 8-18.	3.1	37
1258	Gold Nanoparticle-Decorated g-C ₃ N ₄ Nanosheets for Controlled Generation of Reactive Oxygen Species upon 670 nm Laser Illumination. ACS Applied Materials & Interfaces, 2019, 11, 10589-10596.	4.0	75
1259	Metal chalcogenide quantum dot-sensitized 1D-based semiconducting heterostructures for optical-related applications. Energy and Environmental Science, 2019, 12, 1454-1494.	15.6	19
1260	Template-free synthesis of Na _{0.5} Bi _{2.5} Ta ₂ O ₉ /Bi ₄ TaO ₈ Cl nano-heterostructures <i>via</i> a one-pot molten salt reaction for efficient photocatalysis. Journal of Materials Chemistry C. 2019. 7. 2936-2942.	2.7	4
1261	Designed synthesis of a p-Ag ₂ S/n-PDI self-assembled supramolecular heterojunction for enhanced full-spectrum photocatalytic activity. Journal of Materials Chemistry A, 2019, 7, 6482-6490.	5.2	117
1262	Combination of polyoxotantalate and metal sulfide: A new-type noble-metal-free binary photocatalyst Na8Ta6O19/Cd0.7Zn0.3S for highly efficient visible-light-driven H2 evolution. Applied Catalysis B: Environmental, 2019, 248, 423-429.	10.8	47
1263	Heterostructure of 1D Ta ₃ N ₅ Nanorod/BaTaO ₂ N Nanoparticle Fabricated by a One‣tep Ammonia Thermal Route for Remarkably Promoted Solar Hydrogen Production. Advanced Materials, 2019, 31, e1808185.	11.1	115
1264	Development of novel TiO2-Cu2(OH)PO4 heterojunction as nanophotocatalyst for improved Cr (VI) reduction. Journal of Environmental Chemical Engineering, 2019, 7, 102968.	3.3	21
1265	Enhanced visible-light-driven photocatalytic activity of Ag3PO4/metal–organic framework composite. Polyhedron, 2019, 163, 1-6.	1.0	22
1266	Synthesis of Z-scheme g-C3N4/PPy/Bi2WO6 composite with enhanced visible-light photocatalytic performance. Materials Research Bulletin, 2019, 113, 241-249.	2.7	58
1267	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
1268	Insights of Diffusion Doping in Formation of Dual-Layered Material and Doped Heterostructure SnS–Sn:Sb ₂ S ₃ for Sodium Ion Storage. Journal of Physical Chemistry Letters, 2019, 10, 1024-1030.	2.1	14
1269	Structure and catalytic performance of Zn-doped TiO ₂ film. Pigment and Resin Technology, 2019, 48, 508-514.	0.5	7
1270	Photocatalysts Fabricated by Depositing Ag on Co-g-C ₃ N ₄ and Its Enhanced Visible-Light Photocatalytic Performance. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012126.	0.3	3
1271	Fabrication of Ag/TiO2/Fe2TiO5 nanofibers by electrospinning and their enhanced photocatalytic activity. IOP Conference Series: Earth and Environmental Science, 2019, 344, 012096.	0.2	2
1272	Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite. Chinese Journal of Catalysis, 2019, 40, 1912-1923.	6.9	70
1273	Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chemical Society Reviews, 2019, 48, 5454-5487.	18.7	228
1274	The role of gold oxidation state in the synthesis of Au-CsPbX ₃ heterostructure or lead-free Cs ₂ Au ^I Au ^{III} X ₆ perovskite nanoparticles. Nanoscale, 2019, 11, 18109-18115.	2.8	13

#	Article	IF	CITATIONS
1275	Synthesis of BiVO ₄ photocatalyst via cyclic microwave irradiation method. Ferroelectrics, 2019, 552, 42-52.	0.3	1
1276	Photo-induced Charge Separation and Photoredox Catalysis in Cerium-Based Metal–Organic Frameworks. ACS Symposium Series, 2019, , 309-326.	0.5	5
1277	Metal–organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production. Inorganic Chemistry Frontiers, 2019, 6, 3456-3467.	3.0	92
1278	Branch-like ZnS–DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 26877-26883.	5.2	91
1279	Sunlight-Driven Combustion Synthesis of Defective Metal Oxide Nanostructures with Enhanced Photocatalytic Activity. ACS Omega, 2019, 4, 20595-20605.	1.6	28
1280	Bilayer MoSe2/HfS2 Nanocomposite as a Potential Visible-Light-Driven Z-Scheme Photocatalyst. Nanomaterials, 2019, 9, 1706.	1.9	20
1281	Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat, 2019, 1, e12007.	6.8	134
1282	Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts. Catalysts, 2019, 9, 990.	1.6	50
1283	Hydrothermal Synthesis of rGO/PbTiO ₃ Photocatalyst and Its Photocatalytic H ₂ Evolution Activity. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	15
1284	In-situ synthesis of CdS@TiO2 Nanoparticles-nanobelt Heterojunctions with high photocatalytic property. IOP Conference Series: Materials Science and Engineering, 2019, 617, 012003.	0.3	0
1285	A van der Waals Heterostructure Based on Graphene-like Gallium Nitride and Boron Selenide: A High-Efficiency Photocatalyst for Water Splitting. ACS Omega, 2019, 4, 21689-21697.	1.6	78
1286	Light-Induced Generation and Regeneration of Oxygen Vacancies in BiSbO ₄ for Sustainable Visible Light Photocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 47984-47991.	4.0	61
1287	Facile synthesis of a novel WO ₃ /Ag ₂ MoO ₄ particles-on-plate staggered type II heterojunction with improved visible-light photocatalytic activity in removing environmental pollutants. RSC Advances, 2019, 9, 34804-34813.	1.7	21
1288	Synthesis of a semi-conductor-like MOF with black phosphorous as a composite for visible light-driven photocatalysis. RSC Advances, 2019, 9, 37321-37330.	1.7	21
1289	Enhanced photocatalytic activities of Bi2WO6/BiOCl composite synthesized by one-step hydrothermal method with the assistance of HCl. Materials Science in Semiconductor Processing, 2019, 89, 32-40.	1.9	74
1290	Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation. Applied Surface Science, 2019, 464, 606-615.	3.1	63
1291	Fabrication of a novel g-C3N4/Carbon nanotubes/Ag3PO4 Z-scheme photocatalyst with enhanced photocatalytic performance. Materials Letters, 2019, 234, 183-186.	1.3	37
1292	Polymer-assisted freeze-drying synthesis of Ag-doped ZnO nanoparticles with enhanced photocatalytic activity. Ceramics International, 2019, 45, 494-502.	2.3	49
#	Article	IF	CITATIONS
------	--	------	-----------
1293	Template-free synthesis of carbon-doped boron nitride nanosheets for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 241, 246-255.	10.8	120
1294	One-pot synthesis of BaMg1/3Ta2/3O3-xNy/Ta3N5 heterostructures as H2-evolving photocatalysts for construction of visible-light-driven Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2019, 241, 1-7.	10.8	51
1295	Construction of <i>in situ</i> self-assembled FeWO ₄ /g-C ₃ N ₄ nanosheet heterostructured Z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. Nanoscale Advances, 2019, 1, 322-333.	2.2	64
1296	Effects of the central metal ions on the photosensitization of metalloporphyrins over carbon nitride for visible-light-responsive H2 production. Applied Surface Science, 2019, 464, 255-261.	3.1	29
1297	Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications. Journal of Alloys and Compounds, 2019, 772, 447-459.	2.8	18
1298	Boosting charge transfer via molybdenum doping and electric-field effect in bismuth tungstate: Density function theory calculation and potential applications. Journal of Colloid and Interface Science, 2019, 534, 20-30.	5.0	36
1299	Epitaxial growth and band alignment of p-NiO/n-Fe2O3 heterojunction on Al2O3(0 0 0 1). Applied Surface Science, 2019, 464, 488-493.	3.1	16
1300	Rational design of C ₂ N-based type-II heterojunctions for overall photocatalytic water splitting. Nanoscale Advances, 2019, 1, 154-161.	2.2	70
1301	Rational Design of Efficient Semiconductor-based Photocatalysts via Microdroplets: A Review. KONA Powder and Particle Journal, 2019, 36, 201-214.	0.9	8
1302	Development of Mixedâ€Anion Photocatalysts with Wide Visibleâ€Light Absorption Bands for Solar Water Splitting. ChemSusChem, 2019, 12, 1872-1888.	3.6	36
1303	Facet engineering on the interface of BiOCl-PbS heterostructures for enhanced broad-spectrum photocatalytic H2 production. Chemical Engineering Journal, 2019, 362, 1-11.	6.6	42
1304	In situ synthesis of visible-light-driven Z-scheme Agl/Bi2WO6 heterojunction photocatalysts with enhanced photocatalytic activity. Ceramics International, 2019, 45, 6340-6349.	2.3	85
1305	Interfacial engineering of Fe2O3@BOC heterojunction for efficient detoxification of toxic metal and dye under visible light illumination. Journal of Environmental Chemical Engineering, 2019, 7, 102843.	3.3	56
1306	Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid. Journal of Hazardous Materials, 2019, 367, 277-285.	6.5	97
1307	A plasmonic Z-scheme three-component photocatalyst g-C3N4/Ag/LaFeO3 with enhanced visible-light photocatalytic activities. Optical Materials, 2019, 88, 229-237.	1.7	41
1308	Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Research, 2019, 12, 2031-2054.	5.8	95
1309	Oxygenâ€Deficient Dumbbell‧haped Anatase TiO _{2â^'<i>x</i>} Mesocrystals with Nearly 100 % Exposed {101} Facets: Synthesis, Growth Mechanism, and Photocatalytic Performance. Chemistry - A European Journal, 2019, 25, 3032-3041.	1.7	9
1310	Optimization of photocatalytic degradation of dye wastewater by CuFe ₂ O ₄ /AgBr composite using response surface methodology. Materials Research Express, 2019, 6, 036109.	0.8	12

#	Article	IF	CITATIONS
1311	Carbon nanosheet facilitated charge separation and transfer between molybdenum carbide and graphitic carbon nitride toward efficient photocatalytic H2 production. Applied Surface Science, 2019, 473, 91-101.	3.1	59
1312	Synthesis of CuO–GO/TiO2 visible light photocatalyst for 2-chlorophenol degradation, pretreatment of dairy wastewater and aerobic digestion. Applied Nanoscience (Switzerland), 2019, 9, 579-591.	1.6	21
1313	Rational Electron Transmission Structure in an Ag ₂ 0/TiO ₂ (anatase-B) System for Effective Enhancement of Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2019, 123, 1817-1827.	1.5	23
1314	Graphitic Carbon Nitride with Carbon Vacancies for Photocatalytic Degradation of Bisphenol A. ACS Applied Nano Materials, 2019, 2, 517-524.	2.4	92
1315	Strain-controlled shell morphology on quantum rods. Nature Communications, 2019, 10, 2.	5.8	73
1316	Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine. Journal of Environmental Management, 2019, 233, 660-672.	3.8	115
1317	Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. Advanced Materials, 2019, 31, e1804872.	11.1	55
1318	Controllable synthesis of transition metal ion-doped CeO2 micro/nanostructures for improving photocatalytic performance. Journal of Alloys and Compounds, 2019, 782, 780-788.	2.8	53
1319	One-step synthesis and deposition of ZnFe ₂ O ₄ related composite films via SPPS route for photodegradation application. Nanotechnology, 2019, 30, 045707.	1.3	8
1320	Ag/AgCl/Ag2MoO4 composites for visible-light-driven photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 67-75.	2.0	59
1321	Hierarchical core-shell tungsten oxide/TiO2 nanowires as an effective photocatalyst. Chemical Physics Letters, 2019, 714, 156-159.	1.2	11
1322	Enhancing interfacial charge transfer on novel 3D/1D multidimensional MoS2/TiO2 heterojunction toward efficient photoelectrocatalytic removal of levofloxacin. Electrochimica Acta, 2019, 295, 810-821.	2.6	38
1323	Fabrication of hierarchical sheet-on-sheet WO3/g-C3N4 composites with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2019, 777, 325-334.	2.8	54
1324	Semiconductor Photocatalysis for Water Purification. , 2019, , 689-705.		12
1325	Recent Progress in TiO2- and ZnO-Based Nanostructured Hybrid Photocatalysts for Water Purification and Hydrogen Generation. , 2019, , 815-843.		11
1326	Z-scheme recyclable photocatalysts based on flower-like nickel zinc ferrite nanoparticles/ZnO nanorods: Enhanced activity under UV and visible irradiation. Journal of Alloys and Compounds, 2019, 777, 1108-1114.	2.8	19
1327	Novel MnS/(InxCu1-x)2S3 composite for robust solar hydrogen sulphide splitting via the synergy of solid solution and heterojunction. Applied Catalysis B: Environmental, 2019, 243, 790-800.	10.8	36
1328	Synthesis and magnetic properties of Feâ€doped CdS nanorods. Micro and Nano Letters, 2019, 14, 275-279.	0.6	1

#	Article	IF	CITATIONS
1329	BiVO4(010)/rGO Nanocomposite and Its Photocatalysis Application. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1000-1009.	1.9	7
1330	The excellent photocatalytic activity of novel Cs3PW12O40/WO3 composite toward the degradation of rhodamine B. Advanced Powder Technology, 2019, 30, 257-265.	2.0	21
1331	Nanowire Electronics. Nanostructure Science and Technology, 2019, , .	0.1	4
1332	Silicon Carbide Nanowires and Electronics. Nanostructure Science and Technology, 2019, , 237-335.	0.1	1
1333	Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Applied Surface Science, 2019, 470, 1101-1110.	3.1	72
1334	Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 2019, 471, 43-87.	3.1	170
1335	Laser-induced synthesis and photocatalytic properties of hybrid organic–inorganic composite layers. Journal of Materials Science, 2019, 54, 3927-3941.	1.7	18
1336	Design of visible-light photocatalysts by coupling of inorganic semiconductors. Catalysis Today, 2019, 335, 3-19.	2.2	46
1337	MoS2/Bi2S3 heterojunctions-decorated carbon-fiber cloth as flexible and filter-membrane-shaped photocatalyst for the efficient degradation of flowing wastewater. Journal of Alloys and Compounds, 2019, 779, 599-608.	2.8	51
1338	Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Research, 2019, 12, 955-972.	5.8	430
1339	In situ derived Ni2P/Ni encapsulated in carbon/g-C3N4 hybrids from metal–organic frameworks/g-C3N4 for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 72-81.	10.8	130
1340	Strengthened spatial charge separation over Z-scheme heterojunction photocatalyst for efficient photocatalytic H2 evolution. Applied Surface Science, 2019, 475, 453-461.	3.1	23
1341	Visâ€NIR Lightâ€Responsive Photocatalytic Activity of C ₃ N ₄ â^'Agâ^'Ag ₂ O Heterojunctionâ€Decorated Carbonâ€fiber Cloth as Efficient Filterâ€Membraneâ€Shaped Photocatalyst. ChemCatChem, 2019, 11, 1362-1373.	1.8	38
1342	AgCl/Ag/LaFeO3 heterojunction with a prolonged charge lifetime and enhanced visible light catalytic property. Journal of Physics and Chemistry of Solids, 2019, 127, 186-193.	1.9	14
1343	Imaging of Carbon Nanotube Electronic States Polarized by the Field of an Excited Quantum Dot. ACS Nano, 2019, 13, 1012-1018.	7.3	3
1344	Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks. Nano-Micro Letters, 2019, 11, 1.	14.4	364
1345	Review on Metal Sulphideâ€based Zâ€scheme Photocatalysts. ChemCatChem, 2019, 11, 1394-1411.	1.8	439
1346	Silver decorated Cu/ZnO photocomposite: efficient green degradation of malachite. Journal of Materials Science: Materials in Electronics. 2019. 30. 3629-3638.	1.1	18

#	ARTICLE	IF	CITATIONS
1347	O 12 nanosheets for the degradation of dyes. Environmental Science and Pollution Research, 2019, 26, 5524-5538.	2.7	39
1348	Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance. Applied Surface Science, 2019, 476, 205-220.	3.1	66
1349	Platinum decorated zinc oxide nanowires as an efficient counter electrode for dye sensitized solar cells. Journal of Electroanalytical Chemistry, 2019, 835, 86-95.	1.9	15
1350	Recent advances in photoinduced catalysis for water splitting and environmental applications. Journal of Industrial and Engineering Chemistry, 2019, 72, 31-49.	2.9	43
1351	TiO2/MoS2 heterojunctions-decorated carbon fibers with broad-spectrum response as weaveable photocatalyst/photoelectrode. Materials Research Bulletin, 2019, 112, 354-362.	2.7	53
1352	KBiO ₃ as an Effective Visible-Light-Driven Photocatalyst: Stability Improvement by In Situ Constructing KBiO ₃ /BiOX (X = Cl, Br, I) Heterostructure. Industrial & Engineering Chemistry Research, 2019, 58, 1875-1887.	1.8	13
1353	Boosting Visible-Light-Driven Photo-oxidation of BiOCl by Promoted Charge Separation via Vacancy Engineering. ACS Sustainable Chemistry and Engineering, 2019, 7, 3010-3017.	3.2	101
1354	Surface decoration of BiOCl with BiVO ₄ particles towards enhanced visible-light-driven photocatalytic performance. Materials Research Express, 2019, 6, 045512.	0.8	4
1355	Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism. Separation and Purification Technology, 2019, 215, 490-499.	3.9	66
1356	Tailoring the Bactericidal Activity of Ag Nanoparticles/α-Ag ₂ WO ₄ Composite Induced by Electron Beam and Femtosecond Laser Irradiation: Integration of Experiment and Computational Modeling. ACS Applied Bio Materials, 2019, 2, 824-837.	2.3	30
1357	Photocatalytic and Antimicrobial Properties of Ag2O/TiO2 Heterojunction. ChemEngineering, 2019, 3, 3.	1.0	33
1358	Enhanced visible light photocatalytic activity in AgI/BiOCOOH composite. Advanced Powder Technology, 2019, 30, 111-119.	2.0	21
1359	Decoration of zinc oxide nanospheres by platinum nanoparticles driven visible light for hydrogen evolution. Applied Nanoscience (Switzerland), 2019, 9, 461-467.	1.6	2
1360	Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 2019, 380, 201-229.	9.5	112
1361	Interfacial charge transfer in Pt-loaded TiO2 P25 photocatalysts studied by in-situ diffuse reflectance FTIR spectroscopy of adsorbed CO. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 84-88.	2.0	19
1362	Gram-scale synthesis of UV–vis light active plasmonic photocatalytic nanocomposite based on TiO2/Au nanorods for degradation of pollutants in water. Applied Catalysis B: Environmental, 2019, 243, 604-613.	10.8	76
1363	Construction of Z-scheme Fe2O3@e-HNbWO6 composite and its enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2019, 126, 33-42.	1.9	4
1364	Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 nanoparticles in visible light organic degradation. Materials Science in Semiconductor Processing, 2019, 90, 190-197.	1.9	48

#	Article	IF	CITATIONS
1365	Energyâ€Bandâ€Controlling Strategy to Construct Novel Cd _x In _{1â€x} S Solid Solution for Durable Visible Light Photocatalytic Hydrogen Sulfide Splitting. Solar Rrl, 2019, 3, 1800237.	3.1	34
1366	Role of emerging contaminants on solar photocatalytic treatment of organic matter in reverse osmosis concentrate. Catalysis Today, 2019, 326, 101-107.	2.2	13
1367	Surprise in the phosphate modification of BiOCl with oxygen vacancy: In situ construction of hierarchical Z-scheme BiOCl-OV-BiPO4 photocatalyst for the degradation of carbamazepine. Chemical Engineering Journal, 2019, 360, 1320-1329.	6.6	129
1368	Non-metal boron modified carbon nitride tube with enhanced visible light-driven photocatalytic performance. Materials Research Bulletin, 2019, 110, 18-23.	2.7	28
1369	Construction of mesoporous g-C3N4/TiO2 nanocrystals with enhanced photonic efficiency. Ceramics International, 2019, 45, 1265-1272.	2.3	62
1370	Photoassisted CO ₂ Conversion to Fuels. ChemCatChem, 2019, 11, 342-356.	1.8	41
1371	A Z‣cheme Polyimide/AgBr@Ag Aerogel with Excellent Photocatalytic Performance for the Degradation of Oxytetracycline. Chemistry - an Asian Journal, 2019, 14, 422-430.	1.7	17
1372	Selective growth of palladium nanocrystals on the (100) facets of truncated octahedral Cu ₂ O for UV plasmonic photocatalysis. CrystEngComm, 2019, 21, 30-33.	1.3	9
1373	A synergistic heterostructured ZnO/BaTiO3 loaded carbon photoanode in photocatalytic fuel cell for degradation of Reactive Red 120 and electricity generation. Chemosphere, 2019, 219, 277-285.	4.2	51
1374	Guiding Principles for Designing Highly Efficient Metalâ€Free Carbon Catalysts. Advanced Materials, 2019, 31, e1805252.	11.1	110
1375	Design of graphitic carbon nitride supported Ag–Cu2O composites with hierarchical structures for enhanced photocatalytic properties. Applied Surface Science, 2019, 471, 714-725.	3.1	35
1376	Oxygen vacancy-rich ultrathin sulfur-doped bismuth oxybromide nanosheet as a highly efficient visible-light responsive photocatalyst for environmental remediation. Chemical Engineering Journal, 2019, 360, 838-847.	6.6	79
1377	Respective construction of Type-II and direct Z-scheme heterostructure by selectively depositing CdS on {001} and {101} facets of TiO2 nanosheet with CDots modification: A comprehensive comparison. Journal of Hazardous Materials, 2019, 366, 311-320.	6.5	45
1378	Two-dimensional g-C3N4/TiO2 nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection. Catalysis Today, 2019, 335, 243-251.	2.2	93
1379	In-situ fabrication of Ag/P-g-C3N4 composites with enhanced photocatalytic activity for sulfamethoxazole degradation. Journal of Hazardous Materials, 2019, 366, 219-228.	6.5	104
1380	Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, 2019, 244, 1021-1064.	10.8	676
1381	N Doped Carbon Dot Modified WO ₃ Nanoflakes for Efficient Photoelectrochemical Water Oxidation. Advanced Materials Interfaces, 2019, 6, 1801653.	1.9	36
1382	One step to prepare CNTs modified porous g-C3N4 with excellent visible-light photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 1714-1723.	1.1	16

#	Article	IF	CITATIONS
1383	Enhancement of Photoelectrochemical Hydrogen Evolution of P-Type Silicon Nanowires Array by Loading MoS2. Silicon, 2019, 11, 1963-1970.	1.8	6
1384	Manipulation of surface plasmon resonance for high photocatalytic activity of Ag-Bi2WO6 hetero-architecture. Optik, 2019, 180, 285-294.	1.4	21
1385	The synthesis of Bi2S3/2D-Bi2WO6 composite materials with enhanced photocatalytic activities. Journal of Alloys and Compounds, 2019, 780, 634-642.	2.8	67
1386	ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 141-147.	2.0	79
1387	Photocatalytic Nanoheterostructures and Chemically Bonded Junctions Made by Solution-Based Approaches. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 239-263.	6.8	13
1388	Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite. Journal of Hazardous Materials, 2019, 363, 205-213.	6.5	157
1389	Elucidating the effects of different photoanode materials on electricity generation and dye degradation in a sustainable hybrid system of photocatalytic fuel cell and peroxi-coagulation process. Chemosphere, 2019, 214, 614-622.	4.2	35
1390	Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution. Nanoscale, 2019, 11, 1618-1625.	2.8	81
1391	Hydrothermal synthesis and fast photoresponsive characterization of SnS2 hexagonal nanoflakes. Journal of Materials Science, 2019, 54, 2059-2065.	1.7	26
1392	Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (0 0 1) facets for photocatalytic CO2 reduction under visible-light irradiation. Applied Catalysis B: Environmental, 2019, 243, 236-242.	10.8	147
1393	Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels. Applied Catalysis B: Environmental, 2019, 242, 312-326.	10.8	162
1394	Nanojunction-mediated visible light photocatalytic enhancement in heterostructured ternary BiOCl/ CdS/g-C3N4 nanocomposites. Catalysis Today, 2019, 321-322, 18-25.	2.2	72
1395	UV–vis light induced photocatalytic activity of TiO2/graphene oxide nanocomposite coatings. Catalysis Today, 2019, 321-322, 81-86.	2.2	21
1396	2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 150-190.	5.6	89
1397	Visible-light induced electron modulation to improve photoactivities of coral-like Bi2WO6 by coupling SnO2 as a proper energy platform. Catalysis Today, 2019, 327, 288-294.	2.2	11
1398	Photocatalytic oxidation of urea on TiO2 in water and urine: mechanism, product distribution, and effect of surface platinization. Environmental Science and Pollution Research, 2019, 26, 1044-1053.	2.7	25
1399	Transition metal oxides dispersed on Ti-MCM-41 hybrid core-shell catalysts for the photocatalytic degradation of Congo red colorant. Catalysis Today, 2020, 349, 128-140.	2.2	6
1400	Effects of annealing conditions on the oxygen evolution activity of a BaTaO2N photocatalyst loaded with cobalt species. Catalysis Today, 2020, 354, 204-210.	2.2	18

#	Article	IF	CITATIONS
1401	An unusual dependency on the hole-scavengers in photocatalytic reductions mediated by a titanium-based metal-organic framework. Catalysis Today, 2020, 340, 86-91.	2.2	27
1402	Sensitizing effects of BiVO4 and visible light induced production of highly reductive electrons in the TiO2/BiVO4 heterojunction. Catalysis Today, 2020, 340, 19-25.	2.2	30
1403	Effect of precursor types on the performance of polyimide: A metal-free visible-light-driven photocatalyst for effective photocatalytic degradation of pollutants. Catalysis Today, 2020, 340, 225-235.	2.2	21
1404	Two-dimensional ZnO/BSe van der waals heterostructure used as a promising photocatalyst for water splitting: A DFT study. Journal of Alloys and Compounds, 2020, 812, 152049.	2.8	87
1405	Review on the interface engineering in the carbonaceous titania for the improved photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 7584-7615.	3.8	44
1406	Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light. Journal of Hazardous Materials, 2020, 384, 121323.	6.5	108
1407	Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Applied Catalysis B: Environmental, 2020, 262, 118144.	10.8	175
1408	Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chemical Engineering Journal, 2020, 382, 122812.	6.6	155
1409	Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation. Journal of Materials Science and Technology, 2020, 38, 93-106.	5.6	31
1410	Effective charge separation in rGO/NiWO4@Au photocatalyst for efficient CO2 reduction under visible light. Journal of Industrial and Engineering Chemistry, 2020, 81, 427-439.	2.9	17
1411	Design of AgxAu1â^'x alloy/ZnIn2S4 system with tunable spectral response and Schottky barrier height for visible-light-driven hydrogen evolution. Chemical Engineering Journal, 2020, 382, 122953.	6.6	55
1412	Solvothermal synthesis of a peony flower-like dual Z-scheme PANI/BiOBr/ZnFe2O4 photocatalyst with excellent photocatalytic redox activity for organic pollutant under visible-light. Separation and Purification Technology, 2020, 234, 116098.	3.9	67
1413	Construction of hierarchical MnMoO4/NiFe2O4 nanocomposite: Highly efficient visible light driven photocatalyst in the degradation of different polluting dyes in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124090.	2.3	30
1414	Chemical reaction induced carrier localization in nanometer-thin Al/Ru, Al/Co, and Al/Mo superlattices. Nanotechnology, 2020, 31, 035001.	1.3	2
1415	Hierarchical Hollow Heterostructures for Photocatalytic CO ₂ Reduction and Water Splitting. Small Methods, 2020, 4, 1900586.	4.6	157
1416	3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction. Applied Surface Science, 2020, 504, 144347.	3.1	76
1417	Unique Cd1â^'xZnxS@WO3â^'x and Cd1â^'xZnxS@WO3â^'x/CoOx/NiOx Z-scheme photocatalysts for efficient visible-light-induced H2 evolution. Science China Materials, 2020, 63, 75-90.	3.5	16
1418	Recent developments on Agl based heterojunction photocatalytic systems in photocatalytic application. Chemical Engineering Journal, 2020, 383, 123083.	6.6	147

#	Article	IF	CITATIONS
1419	Synthesis of ZnO/ZnFe2O4/ Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity. Ceramics International, 2020, 46, 3558-3564.	2.3	32
1420	A new polyoxometalate-TiO2 nanocomposite for efficient visible photodegradation of dye from wastewater, liquorice and yeast extract: Photoelectrochemical, electrochemical, and physical investigations. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112145.	2.0	22
1421	Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 2020, 120, 919-985.	23.0	1,605
1422	The Influence of pH on Phase and Morphology of BiOIO3 Nanoplates Synthesized by Microwave-Assisted Method and Their Photocatalytic Activities. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 869-878.	1.9	7
1423	Preparation of In2S3 nanosheets decorated KNbO3 nanocubes composite photocatalysts with significantly enhanced activity under visible light irradiation. Separation and Purification Technology, 2020, 230, 115861.	3.9	39
1424	Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol. Separation and Purification Technology, 2020, 231, 115915.	3.9	65
1425	Nanomaterials with Different Morphologies for Photocatalysis. Environmental Chemistry for A Sustainable World, 2020, , 47-87.	0.3	2
1426	Highly durable isotypic heterojunction generated by covalent cross-linking with organic linkers for improving visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2020, 260, 118182.	10.8	20
1427	Facile fabrication of MnWO4/CdS composites for visible-light-driven photocatalytic Cr(VI) reduction. Journal of Physics and Chemistry of Solids, 2020, 136, 109150.	1.9	16
1428	Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 260, 118131.	10.8	200
1429	Recent advances of SBA-15-based composites as the heterogeneous catalysts in water decontamination: A mini-review. Journal of Environmental Management, 2020, 254, 109787.	3.8	55
1430	Structured photocatalysts for the removal of emerging contaminants under visible or solar light. , 2020, , 41-98.		6
1431	Visible light active photocatalysts for the removal of organic emerging contaminants. , 2020, , 121-139.		1
1432	Reaction intermediates during the photocatalytic degradation of emerging contaminants under visible or solar light. , 2020, , 163-193.		0
1433	2D Hexagonal Boron Nitride/Cadmium Sulfide Heterostructure as a Promising Waterâ€Splitting Photocatalyst. Physica Status Solidi (B): Basic Research, 2020, 257, 1900431.	0.7	22
1434	Black Phosphorusâ€Based Semiconductor Heterojunctions for Photocatalytic Water Splitting. Chemistry - A European Journal, 2020, 26, 4449-4460.	1.7	33
1435	In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118382.	10.8	429
1436	One-pot preparation of AgBr/α-Ag2WO4 composite with superior photocatalytic activity under visible-light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124079.	2.3	68

#	Article	IF	CITATIONS
1437	Visible-light-driven photocatalysis-assisted adsorption of azo dyes using Ag2O. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124105.	2.3	37
1438	Hydroxyl-regulated BiOI nanosheets with a highly positive valence band maximum for improved visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2020, 268, 118390.	10.8	74
1439	Modulating the Chargeâ€Transfer Step of a p–n Heterojunction with Nitrogenâ€Đoped Carbon: A Promising Strategy To Improve Photocatalytic Performance. Chemistry - A European Journal, 2020, 26, 921-926.	1.7	15
1440	Facile synthesis of dual Z-scheme g-C3N4/Ag3PO4/Ag1 composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide. Applied Catalysis B: Environmental, 2020, 268, 118395.	10.8	225
1441	A Facile Synthesis of Heterojunctional BiVO4/Bi5O7I with Enhanced Photocatalytic Activity for Organic Dyes Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1829-1838.	1.9	3
1442	Efficient self-assembly synthesis of LaPO4/CdS hierarchical heterostructure with enhanced visible-light photocatalytic CO2 reduction. Applied Surface Science, 2020, 504, 144379.	3.1	38
1443	Preparation and characterization of (Ba0.85Ca0.15)(Zr0.1Ti0.9)TiO3(BCZT)/Bi2O3 composites as efficient visible-light-responsive photocatalysts. Journal of Materials Science, 2020, 55, 1904-1914.	1.7	12
1444	Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light. Applied Surface Science, 2020, 505, 144638.	3.1	37
1445	Construction of WS2/MoSe2 heterojunction for efficient photoelectrocatalytic hydrogen evolution. Materials Science in Semiconductor Processing, 2020, 107, 104822.	1.9	15
1446	The pivotal roles of spatially separated charge localization centers on the molecules activation and photocatalysis mechanism. Applied Catalysis B: Environmental, 2020, 262, 118251.	10.8	89
1447	Stainless steel mesh-supported three-dimensional hierarchical SnO2/Zn2SnO4 composite for the applications in solar cell, gas sensor, and photocatalysis. Applied Surface Science, 2020, 502, 144113.	3.1	39
1448	Enhanced photocatalytic hydrogen evolution under visible light irradiation by p-type MoS2/n-type Ni2P doped g-C3N4. Applied Surface Science, 2020, 504, 144448.	3.1	42
1449	Hollow β-Bi2O3@CeO2 heterostructure microsphere with controllable crystal phase for efficient photocatalysis. Chemical Engineering Journal, 2020, 387, 124100.	6.6	92
1450	Fabrication of an innovative designed TiO2 nanosheets/CdSe/polyaniline/graphene quaternary composite and its application as in-situ photocathodic protection coatings on 304SS. Journal of Alloys and Compounds, 2020, 822, 153685.	2.8	33
1451	Revealing the size effect of metallic CoS2 on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction. Applied Catalysis A: General, 2020, 592, 117377.	2.2	26
1452	Charge Transport Surmounting Hierarchical Ligand Confinement toward Multifarious Photoredox Catalysis. Inorganic Chemistry, 2020, 59, 1364-1375.	1.9	11
1453	Construction of DyVO4/nitrogen deficient g-C3N4 composite for enhanced visible-light photocatalytic activity for tetracycline degradation. Materials Research Bulletin, 2020, 124, 110766.	2.7	50
1454	A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection. Corrosion Science, 2020, 166, 108441.	3.0	52

#	Article	IF	CITATIONS
1455	TiO2-based catalysts for photocatalytic reduction of aqueous oxyanions: State-of-the-art and future prospects. Environment International, 2020, 136, 105453.	4.8	68
1456	Recent Advances of Metalâ€Oxide Photoanodes: Engineering of Charge Separation and Transportation toward Efficient Solar Water Splitting. Solar Rrl, 2020, 4, 1900509.	3.1	45
1457	Energy and separation optimization of photogenerated charge in BiVO4 quantum dots by piezo-potential for efficient gaseous pollutant degradation. Nano Energy, 2020, 69, 104448.	8.2	52
1458	Ternary noble-metal-free heterostructured NiS–CuS–C3N4 with near-infrared response for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 4084-4094.	3.8	30
1459	An amorphous nickel boride-modified Zn _x Cd _{1â^'x} S solid solution for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2020, 49, 1220-1231.	1.6	41
1460	A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity. New Journal of Chemistry, 2020, 44, 79-86.	1.4	31
1461	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 1900487.	3.1	85
1462	One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation. Applied Surface Science, 2020, 507, 145072.	3.1	28
1463	Direct Z-scheme hierarchical WO3/BiOBr with enhanced photocatalytic degradation performance under visible light. Applied Surface Science, 2020, 509, 145201.	3.1	85
1464	Photocatalytic decolourization of a new water-insoluble organic dye based on phenothiazine by ZnO and TiO2 nanoparticles. Arabian Journal of Chemistry, 2020, 13, 3633-3638.	2.3	27
1465	Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction. International Journal of Hydrogen Energy, 2020, 45, 2785-2793.	3.8	54
1466	Synthesis of (Ni,Mg,Cu)Fe2O4 from nickel sulfide ore: A novel heterogeneous photo-Fenton-like catalyst with enhanced activity in the presence of oxalic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112308.	2.0	13
1467	Fabrication of SrTiO3/g-C3N4 heterostructures for visible light-induced photocatalysis. Materials Science in Semiconductor Processing, 2020, 108, 104887.	1.9	31
1468	Design of twin junction with solid solution interface for efficient photocatalytic H2 production. Nano Energy, 2020, 69, 104410.	8.2	62
1469	Exceptional photocatalytic activity for Ag,Cr- SrTiO ₃ activated by H ₂ O ₂ for removal of organic pollutants. Materials Research Express, 2020, 7, 015034.	0.8	3
1470	High-Efficiency Photo-Generated Charges of ZnO/TiO ₂ Heterojunction Thin Films for Photocatalytic and Antibacterial Performance. Journal of Nanoscience and Nanotechnology, 2020, 20, 2214-2222.	0.9	25
1471	Surface defect-engineered silver silicate/ceria p-n heterojunctions with a flower-like structure for boosting visible light photocatalysis with mechanistic insight. Journal of Colloid and Interface Science, 2020, 564, 442-453.	5.0	47
1472	Strain-tunable electronic and optical properties in two dimensional GaSe/g-C3N4 van der Waals heterojunction as photocatalyst for water splitting. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113896.	1.3	22

#	Article	IF	Citations
1473	In-situ synthesis of metal nanoparticles@metalâ^'organic frameworks: Highly effective catalytic performance and synergistic antimicrobial activity. Journal of Hazardous Materials, 2020, 387, 121687.	6.5	54
1474	Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Analytical Chemistry, 2020, 92, 363-377.	3.2	614
1475	Programming Covalent Organic Frameworks for Photocatalysis: Investigation of Chemical and Structural Variations. Matter, 2020, 2, 416-427.	5.0	110
1476	Beyond Artificial Photosynthesis: Prospects on Photobiorefinery. ChemCatChem, 2020, 12, 1873-1890.	1.8	42
1477	Photocatalysis: an overview of recent developments and technological advancements. Science China Chemistry, 2020, 63, 149-181.	4.2	107
1478	Controllable synthesis of a 3D ZnS@MoO ₃ heterojunction <i>via</i> a hydrothermal method towards efficient NO purification under visible light. CrystEngComm, 2020, 22, 257-266.	1.3	9
1479	CoP nanoparticles as cocatalyst modified the CdS/NiWO ₄ p–n heterojunction to produce hydrogen efficiently. New Journal of Chemistry, 2020, 44, 1426-1438.	1.4	40
1480	Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers, 2020, 7, 300-339.	3.0	429
1481	Recent developments in carbon nitride based films for photoelectrochemical water splitting. Sustainable Energy and Fuels, 2020, 4, 485-503.	2.5	68
1482	Titanate nanotube confined merger of organic photocatalysis and TEMPO catalysis for highly selective aerobic oxidation of sulfides. Sustainable Energy and Fuels, 2020, 4, 1754-1763.	2.5	15
1483	The halogen atoms induced different oxygen vacancies in RbNa2B6O10X (X = Cl, Br) for the enhanced photo-dechlorination properties. Applied Surface Science, 2020, 504, 144498.	3.1	5
1484	Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chemical Engineering Journal, 2020, 386, 124010.	6.6	231
1485	Orderly layer-by-layered TiO2/carbon superstructures based on MXene's defect engineeringfor efficient hydrogen evolution. Applied Catalysis A: General, 2020, 590, 117341.	2.2	46
1486	Enhanced activation of peroxymonosulfate by nitrogen-doped graphene/TiO2 under photo-assistance for organic pollutants degradation: Insight into N doping mechanism. Chemosphere, 2020, 244, 125526.	4.2	35
1487	Pompon Dahliaâ€like Cu ₂ O/rGO Nanostructures for Visible Light Photocatalytic H ₂ Production and 4â€Chlorophenol Degradation. ChemCatChem, 2020, 12, 1699-1709.	1.8	34
1488	Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Advanced Materials, 2020, 32, e1904717.	11.1	213
1489	Band-matching transformation between CdS and BCNNTs with tunable p-n homojunction for enhanced photocatalytic pure water splitting. Nano Energy, 2020, 69, 104408.	8.2	52
1490	Heterojunctions Based on Amorphous Silicon: A Versatile Surface Engineering Strategy To Tune Peak Position of Redox Monolayers on Photoelectrodes. Journal of Physical Chemistry C, 2020, 124, 836-844.	1.5	15

#	Article	IF	CITATIONS
1491	Fabrication and band structure of Ag3PO4–TiO2 heterojunction with enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 149-159.	3.8	42
1492	A novel efficient visible-light-driven double Z-scheme PANI/Ag3PO4/CNO heterojunction photocatalyst mediated by PANI and in situ grown AgNPs. Journal of Materials Science, 2020, 55, 3974-3990.	1.7	21
1493	Semiconductor nanoheterostructures for photoconversion applications. Journal Physics D: Applied Physics, 2020, 53, 143001.	1.3	130
1494	Visible-light responsive Z-scheme Bi $@\hat{l}^2$ -Bi2O3/g-C3N4 heterojunction for efficient photocatalytic degradation of 2,3-dihydroxynaphthalene. Chemical Engineering Journal, 2020, 392, 123686.	6.6	80
1495	Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n junction. Science China Chemistry, 2020, 63, 28-34.	4.2	43
1496	Visible lightâ€Driven AgBr/AgCl@MILâ€101(Fe) Composites For Removal of Organic Contaminant From Wastewater. Photochemistry and Photobiology, 2020, 96, 4-13.	1.3	6
1497	Fabrication of 2D/2D g-C3N4/Au/Bi2WO6 Z-scheme photocatalyst with enhanced visible-light-driven photocatalytic activity. Applied Surface Science, 2020, 508, 144182.	3.1	70
1498	Hydroxyl radical formation in the hybrid system of photocatalytic fuel cell and peroxi-coagulation process affected by iron plate and UV light. Chemosphere, 2020, 244, 125459.	4.2	17
1499	Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation. Applied Surface Science, 2020, 505, 144595.	3.1	119
1500	Visible light driven MoS2/α-NiMoO4 ultra-thin nanoneedle composite for efficient Staphylococcus aureus inactivation. Journal of Hazardous Materials, 2020, 385, 121553.	6.5	49
1501	AgI/Ag2Mo3O10·1.8H2O: A new photocatalyst working under visible light. Materials Chemistry and Physics, 2020, 241, 122406.	2.0	6
1502	Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(VI) and organic pollutants. Chemical Engineering Journal, 2020, 391, 123607.	6.6	97
1503	Construction of titanium dioxide/cadmium sulfide heterojunction on carbon fibers as weavable photocatalyst for eliminating various contaminants. Journal of Colloid and Interface Science, 2020, 561, 307-317.	5.0	39
1504	Pt–TiO2–Nb2O5 heterojunction as effective photocatalyst for the degradation of diclofenac and ketoprofen. Materials Science in Semiconductor Processing, 2020, 107, 104839.	1.9	43
1505	In Situ Construction of a MgSn(OH)6 Perovskite/SnO2 Type-II Heterojunction: A Highly Efficient Photocatalyst towards Photodegradation of Tetracycline. Nanomaterials, 2020, 10, 53.	1.9	10
1506	Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?. Journal of Materials Chemistry A, 2020, 8, 2286-2322.	5.2	251
1507	Enhanced photoelectrocatalytic activity of Bi2S3–TiO2 nanotube arrays hetero-structure under visible light irradiation. International Journal of Hydrogen Energy, 2020, 45, 32012-32021.	3.8	35
1508	Surface defect-rich g-C ₃ N ₄ /TiO ₂ Z-scheme heterojunction for efficient photocatalytic antibiotic removal: rational regulation of free radicals and photocatalytic mechanism. Catalysis Science and Technology, 2020, 10, 8295-8304.	2.1	37

#	Apticie	IC	CITATIONS
π 1509	Solar Degradation of Toxic Colorants in Polluted Water by Thermally Tuned Ceria Nanocrystal-Based	2.4	7
1007	Nanofibers. ACS Applied Nano Materials, 2020, 3, 11194-11202.		·
1510	Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review. Arabian Journal of Chemistry, 2020, 13, 8458-8480.	2.3	60
1511	Facile synthesis of porous C-doped C ₃ N ₄ : fast charge separation and enhanced photocatalytic hydrogen evolution. New Journal of Chemistry, 2020, 44, 17891-17898.	1.4	27
1512	Alkali Halide Boost of Carbon Nitride for Photocatalytic H ₂ Evolution in Seawater. ACS Applied Materials & Interfaces, 2020, 12, 48526-48532.	4.0	19
1513	Single crystalline quaternary sulfide nanobelts for efficient solar-to-hydrogen conversion. Nature Communications, 2020, 11, 5194.	5.8	64
1514	Biâ€based photocatalysts for <scp>lightâ€driven</scp> environmental and energy applications: Structural tuning, reaction mechanisms, and challenges. EcoMat, 2020, 2, e12047.	6.8	79
1515	Engineering the Band-Edge of Fe ₂ O ₃ /ZnO Nanoplates via Separate Dual Cation Incorporation for Efficient Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2020, 59, 18865-18872.	1.8	66
1516	In situ intercalation and exploitation of Co3O4 nanoparticles grown on carbon nitride nanosheets for highly efficient degradation of methylene blue. Dalton Transactions, 2020, 49, 14665-14672.	1.6	12
1517	Theoretical study on transport-scheme conversion of g-C3N4/TiO2 heterojunctions by oxygen vacancies. Applied Surface Science, 2020, 531, 147318.	3.1	33
1518	Fabrication of MoS ₂ /BiOBr heterojunctions on carbon fibers as a weaveable photocatalyst for tetracycline hydrochloride degradation and Cr(<scp>vi</scp>) reduction under visible light. Environmental Science: Nano, 2020, 7, 2708-2722.	2.2	47
1519	Interfacial Chemical-Bond-Modulated Charge Transfer of Heterostructures for Improving Photocatalytic Performance. ACS Applied Materials & Interfaces, 2020, 12, 9872-9880.	4.0	38
1520	Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Science of the Total Environment, 2020, 743, 140694.	3.9	92
1521	Composition-tunable ZnS1–Se nanobelt solid solutions for efficient solar-fuel production. Chinese Journal of Catalysis, 2020, 41, 1663-1673.	6.9	6
1522	Application of a Triple-Conducting Heterostructure Electrolyte of Ba _{0.5} Sr _{0.5} Co _{0.1} Fe _{0.7} Zr _{0.1} Y _{0.1} Co and Ca _{0.04} Ce _{0.80} Sm _{0.16} O _{2â^{*1}(} in a High-Performance Low-Temperature Solid Oxide Fuel Cell ACS Applied Materials & Amp: Interfaces 2020, 12, 35071-35080	_{3â^ 4.0}	'δ⟨sub>
1523	Engineering Heterostructured Nanocatalysts for CO 2 Transformation Reactions: Advances and Perspectives. ChemSusChem, 2020, 13, 6090-6123.	3.6	12
1524	Computational screening of vdWs heterostructures of BSe with MoSe2 and WSe2 as sustainable hydrogen production materials. Current Applied Physics, 2020, , .	1.1	1
1525	A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets. Journal of Colloid and Interface Science, 2020, 567, 213-223.	5.0	77
1526	Heterojunction Photocatalysts Based on 2D Materials: The Role of Configuration. Advanced Sustainable Systems, 2020, 4, 2000130.	2.7	120

ARTICLE IF CITATIONS Comparative study of Ce-Nb-Ti oxide catalysts prepared by different methods for selective catalytic 1527 1.0 6 reduction of NO with NH3. Molecular Catalysis, 2020, 496, 111161. Construction of In₂S₃@NH₂-MIL-68(In)@In₂S₃ Sandwich 1528 1.8 29 Homologous Heterojunction for Efficient CO₂ Photoreduction. Industrial & amp; Engineering Chemistry Research, 2020, 59, 20711-20718. Synthesis, Characterization and Photocatalytic Activity of MoS2/ZnSe Heterostructures for the 1529 15 1.6 Degradation of Levofloxacin. Catalysts, 2020, 10, 1380. Atomic carbon chain-linked polymeric carbon nitride: Roles of the carbon chain in enhancing the 2.2 photocatalytic hydrogen evolution performance. Applied Catalysis A: General, 2020, 606, 117833. Construction of a Highly Efficient and Durable 1D Ternary CdS/ZnS/Pt Nanohybrid Catalyst for Photocatalytic CO₂ Reduction into Chemical Fuels under Solar Light Irradiation. ACS 1531 2.5 29 Applied Energy Materials, 2020, 3, 10533-10540. Selective photocatalytic oxidation of aromatic alcohols to aldehydes with air by magnetic WO₃ZnO/Fe₃O₄. <i>In situ</i> 1.7 2-substituted benzimidazoles. RSC Advances, 2020, 10, 40725-40738. Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel 1533 8.3 56 production. Materials Today, 2020, 40, 160-172. A Ti-MOF Decorated With a Pt Nanoparticle Cocatalyst for Efficient Photocatalytic H2 Evolution: A 1534 1.8 Theoretical Study. Frontiers in Chemistry, 2020, 8, 660. Nitrogen deficient carbon nitride for efficient visible light driven tetracycline degradation: a 1535 2.1 11 combination of experimental and DFT studies. Catalysis Science and Technology, 2020, 10, 6800-6808. Mixed zinc–cobalt oxide coatings for photocatalytic applications. Applied Physics A: Materials Science 1.1 and Processing, 2020, 126, 1. A highly efficient dual-phase GaN(O)/Nb2O5(N) photocatalyst prepared through nitridation and 1537 22 6.6 reoxidation process for NO removal. Chemical Engineering Journal, 2020, 402, 126199. Unique ternary Cd0.85Zn0.15S@WO3/WS2 core-shell nanorods for highly-efficient photocatalytic H2 evolution under visible-light irradiation. International Journal of Hydrogen Energy, 2020, 45, 1538 3.8 27160-27170. Improved dye degradation and simultaneous electricity generation in a photoelectrocatalytic microbial fuel cell equipped with AgBr/CuO hybrid photocathode. Journal of Power Sources, 2020, 1539 4.0 42 474, 228589. Perovskite Microcrystals with Intercalated Monolayer MoS2 Nanosheets as Advanced Photocatalyst 1540 5.0 for Solar-Powered Hydrogen Generation. Matter, 2020, 3, 935-949. Study of enhanced photocatalytic performance mechanisms towards a new binary-Bi heterojunction 1541 3.115 with spontaneously formed interfacial defects. Applied Surface Science, 2020, 532, 147412. Solar active heterojunction of p-CaFe2O4/n-ZnO for photoredox reactions. Environmental 1542 Technology and Innovation, 2020, 20, 101060. Current trends in strategies to improve photocatalytic performance of perovskites materials for 1543 8.2 69 solar to hydrogen production. Renewable and Sustainable Energy Reviews, 2020, 132, 110073. In situ decoration of SnS quantum dots on the α-SnWO4 nanosheets for superior visible-light 1544 3.1 24 photocatalytic performance. Applied Surface Science, 2020, 531, 147379.

#	Article	IF	CITATIONS
1545	Tailoring the CdS surface structure for photocatalytic applications. Journal of Environmental Chemical Engineering, 2020, 8, 104313.	3.3	35
1546	Probing Ultrafast Charge Separation in CZTS/CdS Heterojunctions through Femtosecond Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 19476-19483.	1.5	25
1547	Impact of thermal annealing inducing oxidation process on the crystalline powder of In2S3. Journal of Materials Science: Materials in Electronics, 2020, 31, 13636-13645.	1.1	14
1548	Efficient visible-light induced H2 evolution from T-CdxZn1-xS/defective MoS2 nano-hybrid with both bulk twinning homojunctions and interfacial heterostructures. Applied Catalysis B: Environmental, 2020, 267, 118702.	10.8	55
1549	Enhanced photocatalytic activity of BiFeO3 for water remediation via the addition of Ni2+. Materials Research Bulletin, 2020, 132, 111012.	2.7	10
1550	A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 2020, 846, 156446.	2.8	359
1551	Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. Photobiomodulation, Photomedicine, and Laser Surgery, 2020, 38, 481-496.	0.7	18
1552	Visible light-driven ZnO/g-C3N4/carbon xerogel ternary photocatalyst with enhanced activity for 4-chlorophenol degradation. Materials Chemistry and Physics, 2020, 256, 123651.	2.0	34
1553	Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. International Journal of Hydrogen Energy, 2021, 46, 23334-23357.	3.8	48
1554	Novel Visible Light-Driven Photocatalytic Chlorine Activation Process for Carbamazepine Degradation in Drinking Water. Environmental Science & amp; Technology, 2020, 54, 11584-11593.	4.6	79
1555	Recent advancements in g-C ₃ N ₄ -based photocatalysts for photocatalytic CO ₂ reduction: a mini review. RSC Advances, 2020, 10, 29408-29418.	1.7	75
1556	Micro-scale spatial location engineering of COF–TiO ₂ heterojunctions for visible light driven photocatalytic alcohol oxidation. Journal of Materials Chemistry A, 2020, 8, 18745-18754.	5.2	58
1557	Qualitative Approaches Towards Useful Photocatalytic Materials. Frontiers in Chemistry, 2020, 8, 817.	1.8	5
1558	Combustion synthesis of g-C3N4/Fe2O3 nanocomposite for superior photoelectrochemical catalytic performance. Applied Surface Science, 2020, 534, 147563.	3.1	43
1559	Semiconductor nanocrystals for small molecule activation <i>via</i> artificial photosynthesis. Chemical Society Reviews, 2020, 49, 9028-9056.	18.7	127
1560	Application of gâ€C ₃ N ₄ Matrix Composites Photocatalytic Performance from Degradation of Antibiotics. ChemistrySelect, 2020, 5, 12353-12364.	0.7	11
1561	Recent advances in two-dimensional layered materials for photoelectrochemical sensing. TrAC - Trends in Analytical Chemistry, 2020, 133, 116089.	5.8	57
1562	Performance and Mechanism of Photocatalytic Toluene Degradation and Catalyst Regeneration by Thermal/UV Treatment. Environmental Science & amp; Technology, 2020, 54, 14465-14473.	4.6	76

#	Article	IF	CITATIONS
1563	Photoexcited Electron Dynamics of Nitrogen Fixation Catalyzed by Ruthenium Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2020, 11, 9579-9586.	2.1	32
1564	Optimizing the Carbon Dioxide Reduction Pathway through Surface Modification by Halogenation. ChemSusChem, 2020, 13, 5638-5646.	3.6	17
1565	Photo-electrochemical degradation of wastewaters containing organics catalysed by phosphate-based materials: a review. Reviews in Environmental Science and Biotechnology, 2020, 19, 843-872.	3.9	31
1566	Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis. ACS Catalysis, 2020, 10, 11011-11045.	5.5	260
1567	Study on Ag2WO4/g-C3N4 Nanotubes as an Efficient Photocatalyst for Degradation of Rhodamine B. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4847-4857.	1.9	17
1568	Role of Vacancies in Photocatalysis: A Review of Recent Progress. Chemistry - an Asian Journal, 2020, 15, 3599-3619.	1.7	67
1569	Mechanism of visible photon absorption: unveiling of the C ₃ N ₄ –ZnO photoactive interface by means of EPR spectroscopy. Materials Advances, 2020, 1, 2357-2367.	2.6	16
1570	Visible-light-driven photocatalytic selective organic oxidation reactions. Journal of Materials Chemistry A, 2020, 8, 20897-20924.	5.2	60
1571	Concurrent and dual N-doping of graphene/ZnO nanocomposites for enhanced Cr(<scp>vi</scp>) photoreduction activity under visible-light irradiation. RSC Advances, 2020, 10, 30832-30839.	1.7	9
1572	Recent Advances in the Fabrication of All-Solid-State Nanostructured TiO ₂ -Based Z-scheme Heterojunctions for Environmental Remediation. Journal of Nanoscience and Nanotechnology, 2020, 20, 5861-5873.	0.9	11
1573	One-dimensional CdS@Cd _{0.5} Zn _{0.5} S@ZnS-Ni(OH) ₂ nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H ₂ evolution. Nanoscale, 2020, 12, 20522-20535.	2.8	17
1574	Electrocatalysis of sulfur and polysulfides in Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 19704-19728.	5.2	83
1575	Selective organic transformation over a self-assembled all-solid-state Z-scheme core–shell photoredox system. Journal of Materials Chemistry A, 2020, 8, 20151-20161.	5.2	29
1576	Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite. Journal of Semiconductors, 2020, 41, 091709.	2.0	8
1577	Construction of oxygen vacancy modified Bi/BiOI nanocomposite with improved photocatalytic activity for microcystin-LR degradation. Journal of Materials Science: Materials in Electronics, 2020, 31, 17003-17012.	1.1	11
1578	Enhanced Photocatalysis by Synergistic Piezotronic Effect and Exciton–Plasmon Interaction Based on (Agâ€Ag ₂ S)/BaTiO ₃ Heterostructures. Advanced Functional Materials, 2020, 30, 2005716.	7.8	65
1579	Design of Ti3C2ZnOAlN ternary nanocomposite for photocatalytic antifouling: a first-principle study. Journal of Materials Science, 2020, 55, 16588-16602.	1.7	5
1580	Enhanced visible-light utilization with ZnCo2O4–BiErWO6 heterojunctions towards photocatalytic degradation of antibiotics. Journal of Materials Science: Materials in Electronics, 2020, 31, 18248-18262.	1.1	2

Сіт	ΛTI	ON	PEDODT
CIL	AH		NEPOKI

#	Article	IF	CITATIONS
1581	Enhanced Photocatalytic Performance of Nanosized Mixed-Ligand Metal–Organic Frameworks through Sequential Energy and Electron Transfer Process. Inorganic Chemistry, 2020, 59, 12947-12953.	1.9	28
1582	Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts, 2020, 10, 901.	1.6	45
1583	Ag ₃ PO ₄ /NiO Composites with Enhanced Photocatalytic Activity under Visible Light. ACS Omega, 2020, 5, 21651-21661.	1.6	34
1584	A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts, 2020, 10, 1435.	1.6	132
1585	Construction of heterojunction and homojunction to improve the photocatalytic performance of ZnO quantum dots sensitization three-dimensional ordered hollow sphere ZrO2–TiO2 arrays. International Journal of Hydrogen Energy, 2020, 45, 31812-31824.	3.8	12
1586	Photocatalytic activity of K2Ti6O13/TiO2 nanocomposite prepared using water extract of wood ash from waste for degradation of dye pollutants. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117, 242-251.	2.7	17
1587	Crafting carbon sphere-titania core–shell interfacial structure to achieve enhanced visible light photocatalysis. Applied Surface Science, 2020, 534, 147566.	3.1	16
1588	Emerging Concepts in Carbon Nitride Organic Photocatalysis. ChemPlusChem, 2020, 85, 2499-2517.	1.3	47
1589	Double build-in electric fields mediated double Z-scheme semiconductor-nonmetal plasma heterojunction for dark-full-spectrum-driven environmental clean. Applied Surface Science, 2020, 533, 147565.	3.1	12
1590	Top-down fabrication of bromine doped Bi2O3 nanowires with efficient charge separation for photoelectrochemical application. Physica B: Condensed Matter, 2020, 599, 412587.	1.3	5
1591	Ru and RuO _x decorated carbon nitride for efficient ammonia photosynthesis. Nanoscale, 2020, 12, 12329-12335.	2.8	80
1592	Light/Electricity Energy Conversion and Storage for a Hierarchical Porous In ₂ S ₃ @CNT/SS Cathode towards a Flexible Li O ₂ Battery. Angewandte Chemie - International Edition, 2020, 59, 19518-19524.	7.2	94
1593	Light/Electricity Energy Conversion and Storage for a Hierarchical Porous In ₂ S ₃ @CNT/SS Cathode towards a Flexible Li O ₂ Battery. Angewandte Chemie, 2020, 132, 19686-19692.	1.6	13
1594	Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nature Energy, 2020, 5, 511-519.	19.8	130
1595	Nature of SrTiO3/TiO2 (anatase) heterostructure from hybrid density functional theory calculations. Journal of Chemical Physics, 2020, 152, 184704.	1.2	23
1596	Manipulation of Electron Transfer between Pd and TiO ₂ for Improved Electrocatalytic Hydrogen Evolution Reaction Performance. ACS Applied Materials & Interfaces, 2020, 12, 27037-27044.	4.0	13
1597	Carrier Transfer and Capture Kinetics of the TiO2/Ag2V4O11 Photocatalyst. Nanomaterials, 2020, 10, 828.	1.9	9
1598	Recent Advancement of p―and dâ€Block Elements, Single Atoms, and Grapheneâ€Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials, 2020, 10, 2000280.	10.2	88

#	Article	IF	CITATIONS
1599	Nonlinear Optical Response in Natural van der Waals Heterostructures. Advanced Optical Materials, 2020, 8, 2000382.	3.6	22
1600	Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells. Journal of Materials Chemistry A, 2020, 8, 10625-10669.	5.2	162
1601	Titania-based nanoheterostructured microspheres for prolonged visible-light-driven photocatalysis. Nanotechnology, 2020, 31, 345207.	1.3	8
1602	Ternary TiO2/MoSe2/lî³-graphyne heterojunctions with enhanced photocatalytic hydrogen evolution. Journal of Materials Science: Materials in Electronics, 2020, 31, 8796-8804.	1.1	9
1603	Synthesis of Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 Nanoparticles: The Photocatalytic Effects on Organic Pollutants upon Irradiation with UV-Vis Light. Catalysts, 2020, 10, 494.	1.6	32
1604	Experimental and DFT investigation on the different effects of Er3+- and Ag+-doped BiOBr microspheres in enhancing photocatalytic activity under visible light irradiation. Journal of Materials Science, 2020, 55, 11226-11240.	1.7	13
1605	Exfoliated, mesoporous W18O49/g-C3N4 composites for efficient photocatalytic H2 evolution. Solid State Sciences, 2020, 106, 106298.	1.5	12
1606	Z-scheme In2O3/WO3 heterogeneous photocatalysts with enhanced visible-light-driven photocatalytic activity toward degradation of organic dyes. Journal of Materials Science, 2020, 55, 11919-11937.	1.7	93
1607	The efficient degradation of sulfisoxazole by singlet oxygen (1O2) derived from activated peroxymonosulfate (PMS) with Co3O4–SnO2/RSBC. Environmental Research, 2020, 187, 109665.	3.7	85
1608	Synthesis of L. Acidissima mediated tin oxide nanoparticles for cervical carcinoma treatment in nursing care. Journal of Drug Delivery Science and Technology, 2020, 57, 101745.	1.4	7
1609	Amorphous NiCoB nanoalloy modified Mn0.05Cd0.95S for photocatalytic hydrogen evolution. Molecular Catalysis, 2020, 492, 111001.	1.0	24
1610	Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment—an Overview. Catalysts, 2020, 10, 439.	1.6	60
1611	Photocatalytic TiO2@CS-embedded cellulose nanofiber mixed matrix membrane. Applied Catalysis B: Environmental, 2020, 276, 119111.	10.8	39
1612	Construction of S-scheme g-C3N4/ZrO2 heterostructures for enhancing photocatalytic disposals of pollutants and electrocatalytic hydrogen evolution. Dyes and Pigments, 2020, 180, 108525.	2.0	58
1613	Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 15985-16038.	3.8	187
1614	Hierarchical core–shell heterostructures of ZnIn2S4 nanosheets on electrospun In2O3 nanofibers with highly enhanced photocatalytic activity. Journal of Hazardous Materials, 2020, 398, 122889.	6.5	79
1615	Preparation of Flower-Like Ag@AgBr/ZnO Photocatalyst and Photocatalytic Degradation Mechanism on Cefuroxime Sodium. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	6
1616	Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. ChemSusChem, 2020, 13, 3605-3613.	3.6	9

#	Article	IF	CITATIONS
1617	Novel FeWO4/WO3 nanoplate with p–n heterostructure and its enhanced mechanism for organic pollutants removal under visible-light illumination. Journal of Environmental Chemical Engineering, 2020, 8, 104044.	3.3	30
1618	Mechanistic investigation and photocatalytic activity of yttrium vanadate (YVO4) nanoparticles for organic pollutants mineralization. Journal of Materials Research and Technology, 2020, 9, 5666-5675.	2.6	11
1619	Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: Mechanistic inside and photocatalysis pathway. Journal of Water Process Engineering, 2020, 36, 101256.	2.6	34
1620	Synthesis of magnetic recoverable electron-rich TCTA@PVP based conjugated polymer for photocatalytic water remediation and disinfection. Separation and Purification Technology, 2020, 250, 116954.	3.9	29
1621	A nine-fold enhancement of visible-light photocatalytic hydrogen production of g-C ₃ N ₄ with TCNQ by forming a conjugated structure. RSC Advances, 2020, 10, 20110-20117.	1.7	4
1622	Fe-Doped UiO-66 Combined with ZnIn ₂ S ₄ for Adsorption and Degradation of RhB Under Visible Light. Nano, 2020, 15, 2050089.	0.5	6
1623	Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination. Ceramics International, 2020, 46, 22090-22101.	2.3	77
1624	A Review of Composite/Hybrid Electrocatalysts and Photocatalysts for Nitrogen Reduction Reactions: Advanced Materials, Mechanisms, Challenges and Perspectives. Electrochemical Energy Reviews, 2020, 3, 506-540.	13.1	35
1625	Covalent organic frameworks for photocatalytic applications. Applied Catalysis B: Environmental, 2020, 276, 119174.	10.8	277
1626	Visible light-assisted formaldehyde sensor based on HoFeO3 nanoparticles with sub-ppm detection limit. Ceramics International, 2020, 46, 16337-16344.	2.3	26
1627	Surface modifications, perspectives, and challenges of scheelite metal molybdate photocatalysts for removal of organic pollutants in wastewater. Ceramics International, 2020, 46, 20608-20622.	2.3	36
1628	Synthesis of EDTA-bridged CdS/g-C3N4 heterostructure photocatalyst with enhanced performance for photoredox reactions. Journal of Colloid and Interface Science, 2020, 577, 459-470.	5.0	62
1629	Bioinspired Construction of g-C ₃ N ₄ Nanolayers on a Carbonized Polydopamine Nanosphere Surface with Excellent Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2020, 59, 12389-12398.	1.8	11
1630	Simultaneous formation of Bi2O2(OH)(NO3)/BiOBr ultrathin hierarchical microspheres for effectively promoting visible-light-driven photocatalytic activity in environmental remediation. Chemosphere, 2020, 258, 127384.	4.2	19
1631	Synthesis of New Hollow Nanocomposite Photocatalysts: Sunlight Applications for Removal of Gaseous Organic Pollutants. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 181-190.	2.7	13
1632	Umbrella-like CdS single crystal: exposed (002) facets and enhanced photocatalytic properties. Journal of Materials Science, 2020, 55, 11167-11176.	1.7	13
1633	Mineralization and toxicity reduction of the benzophenone-1 using 2D/2D Cu2WS4/BiOCl Z-scheme system: Simultaneously improved visible-light absorption and charge transfer efficiency. Chemical Engineering Journal, 2020, 400, 125913.	6.6	57
1634	Black Phosphorus and Carbon Nitride Hybrid Photocatalysts for Photoredox Reactions. Advanced Functional Materials, 2020, 30, 2002021.	7.8	75

#	Article	IF	CITATIONS
1635	Visible light responsive photoactive polymer supported on carbonaceous biomass for photocatalytic water remediation. Journal of Cleaner Production, 2020, 269, 122286.	4.6	34
1636	Novel BiOCl/BiCl ₃ Br–CTA Heterostructure Photocatalyst with Abundant Oxygen Vacancies and a Superoleophilic Surface for Promoting Selective Oxidation of Toluene. Industrial & Engineering Chemistry Research, 2020, 59, 11517-11526.	1.8	19
1637	Atomic Sulfur Passivation Improves the Photoelectrochemical Performance of ZnSe Nanorods. Nanomaterials, 2020, 10, 1081.	1.9	5
1638	Constructing Z-scheme LaTiO2N/g-C3N4@Fe3O4 magnetic nano heterojunctions with promoted charge separation for visible and solar removal of indomethacin. Journal of Water Process Engineering, 2020, 36, 101391.	2.6	25
1639	Preparation and Kinetics of gâ€C ₃ N ₄ /TiO ₂ Nanomaterials for the Photodegradation of Pyridine Under Solarâ€Light Irradiation. ChemistrySelect, 2020, 5, 6389-6402.	0.7	3
1640	Tunable Photoâ€Electrochemistry of Patterned TiO ₂ /BDD Heterojunctions. Small Methods, 2020, 4, 2000257.	4.6	26
1641	Enhanced photocatalytic degradation of organic pollutants using carbon nanotube mediated CuO and Bi ₂ WO ₆ sandwich flaky structures. Nanotechnology, 2020, 31, 425202.	1.3	12
1642	Indium-modified Ga ₂ O ₃ hierarchical nanosheets as efficient photocatalysts for the degradation of perfluorooctanoic acid. Environmental Science: Nano, 2020, 7, 2229-2239.	2.2	25
1643	Effect of supporting materials on the electrocatalytic activity, stability and selectivity of noble metal-based catalysts for oxygen reduction and hydrogen evolution reactions. Progress in Natural Science: Materials International, 2020, 30, 289-297.	1.8	56
1644	Rational Design of Carbonâ€Based 2D Nanostructures for Enhanced Photocatalytic CO ₂ Reduction: A Dimensionality Perspective. Chemistry - A European Journal, 2020, 26, 9710-9748.	1.7	125
1645	Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting. Chemical Engineering Journal, 2020, 399, 125836.	6.6	41
1646	Facile preparation of dual Z-scheme Bi2O3/g-C3N4/Ag6Si2O7 photocatalyst for highly efficient visible-light photocatalytic degradation of organic pollutants. Applied Surface Science, 2020, 527, 146901.	3.1	54
1647	Dual roles of basic bismuth nitrates in the composites: morphology regulation and heterojunction effects. Journal of Materials Science, 2020, 55, 11984-11998.	1.7	6
1648	Synthesis of pineapple slab like morphology of ternary BiVO4/graphene/porphyrin nanocomposite with enhanced visible light photocatalytic activity. SN Applied Sciences, 2020, 2, 1.	1.5	0
1649	Influence of p-n junction mechanism and alumina overlayer on the photocatalytic performance of TiO ₂ nanotubes. Nanotechnology, 2020, 31, 275403.	1.3	9
1650	Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials, 2020, 13, 1338.	1.3	76
1651	BiVO4 /Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Applied Catalysis B: Environmental, 2020, 270, 118876.	10.8	179
1652	An overview of synthesis techniques for preparing doped photocatalysts. , 2020, , 1-13.		0

#	Article	IF	CITATIONS
1653	Photocatalyst: mechanism, challenges, and strategy for organic contaminant degradation. , 2020, , 127-149.		7
1654	Development of Multifunctional Coatings for Protecting Stones and Lime Mortars of the Architectural Heritage. International Journal of Architectural Heritage, 2020, 14, 1008-1029.	1.7	20
1655	High-efficiency photocatalyst for water splitting: a Janus MoSSe/XN (X  =  Ga, Al) van der Waals heterostructure. Journal Physics D: Applied Physics, 2020, 53, 185504.	1.3	110
1656	Construction of 1D Ag-AgBr/AlOOH Plasmonic Photocatalyst for Degradation of Tetracycline Hydrochloride. Frontiers in Chemistry, 2020, 8, 117.	1.8	27
1657	Efficient Z-Scheme heterostructure based on TiO2/Ti3C2T /Cu2O to boost photoelectrochemical response for ultrasensitive biosensing. Sensors and Actuators B: Chemical, 2020, 312, 127951.	4.0	56
1658	Recent progress on photocatalytic heterostructures with full solar spectral responses. Chemical Engineering Journal, 2020, 393, 124719.	6.6	123
1659	3D graphene aerogel based photocatalysts: Synthesized, properties, and applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124666.	2.3	24
1660	Layer-by-Layer Self-Assembly of Metal/Metal Oxide Superstructures: Self-Etching Enables Boosted Photoredox Catalysis. Inorganic Chemistry, 2020, 59, 4129-4139.	1.9	12
1661	Polymeric heptazine imide by O doping and constructing van der Waals heterostructures for photocatalytic water splitting: a theoretical perspective from transition dipole moment analyses. Physical Chemistry Chemical Physics, 2020, 22, 9915-9922.	1.3	14
1662	Fabrication of a Lateral Heterostructure of Crystallized MoO ₂ /Amorphous MoO _{3â€x} for Photothermal Conversion. ChemNanoMat, 2020, 6, 779-782.	1.5	6
1663	Fabrication of TiO2-SrCO3 Composite Coatings by Suspension Plasma Spraying: Microstructure and Enhanced Visible Light Photocatalytic Performances. Journal of Thermal Spray Technology, 2020, 29, 1172-1182.	1.6	9
1664	Plasma enhanced Bi/Bi2O2CO3 heterojunction photocatalyst via a novel in-situ method. Journal of Colloid and Interface Science, 2020, 571, 80-89.	5.0	39
1665	Ultrathin ZnIn ₂ S ₄ Nanosheets Anchored on Ti ₃ C ₂ T _{<i>X</i>} MXene for Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 11287-11292.	7.2	416
1666	Superior Adsorption and Photocatalytic Degradation Capability of Mesoporous LaFeO3/g-C3N4 for Removal of Oxytetracycline. Catalysts, 2020, 10, 301.	1.6	23
1667	Construction of TiO2/Ag3PO4 nanojunctions on carbon fiber cloth for photocatalytically removing various organic pollutants in static or flowing wastewater. Journal of Colloid and Interface Science, 2020, 571, 213-221.	5.0	50
1668	Pt Nanowire-Anchored Dodecahedral Ag3PO4{110} Constructed for Significant Enhancement of Photocatalytic Activity and Anti-Photocorrosion Properties: Spatial Separation of Charge Carriers and PhotogeneratedElectron Utilization. Catalysts, 2020, 10, 206.	1.6	8
1670	Construction of sugar-gourd-shaped CdS/Co1-xS hollow hetero-nanostructure as an efficient Z-scheme photocatalyst for hydrogen generation. Chemical Engineering Journal, 2020, 400, 125925.	6.6	76
1671	Facile preparation of Bi-doped ZnO/β-Bi2O3/Carbon xerogel composites towards visible-light photocatalytic applications: Effect of calcination temperature and bismuth content. Ceramics International, 2020, 46, 23895-23909.	2.3	20

#	Article	IF	CITATIONS
1672	Polyaniline-modified 3D-spongy SnS composites for the enhanced visible-light photocatalytic degradation of methyl orange. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125240.		45
1673	Localized surface plasmon resonance enhanced visible-light-driven CO ₂ photoreduction in Cu nanoparticle loaded ZnInS solid solutions. Nanoscale, 2020, 12, 15169-15174.	2.8	30
1674	Facile fabrication of mesoporous In2O3/LaNaTaO3 nanocomposites for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2020, 45, 19214-19225.	3.8	31
1675	Layered α–AgAl0.4Ga0.6O2/Bi2WO6 p–n composites with improved photoelectrochemical performance under visible light. Journal of Alloys and Compounds, 2020, 843, 156037.	2.8	1
1676	Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation. Applied Materials Today, 2020, 20, 100741.	2.3	28
1677	Fabrication of Ag3PO4/Ag/MoO3-x Z-scheme system with excellent photocatalytic degradation performance under visible light irradiation. Materials Chemistry and Physics, 2020, 253, 123325.	2.0	16
1678	Enhancement of organic contaminants degradation at low dosages of Fe(III) and H2O2 in g-C3N4 promoted Fe(III)/H2O2 system under visible light irradiation. Separation and Purification Technology, 2020, 251, 117333.	3.9	17
1679	Boosting Visible-Light Photodegradation over Ternary Strategy-Engineered Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2020, 59, 13491-13501.	1.8	8
1680	Polyimide-based photocatalysts: rational design for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 14441-14462.	5.2	38
1681	Highly Sensitive and Selective Photoelectrochemical Aptasensor for Cancer Biomarker CA125 Based on AuNPs/GaN Schottky Junction. Analytical Chemistry, 2020, 92, 10114-10120.	3.2	69
1682	A Sharp Jump in Photocatalytic Activity of Elemental Sulfur for Dye Degradation in Alkaline Solution. Photochemistry and Photobiology, 2020, 96, 1191-1199.	1.3	6
1683	A direct Z-scheme PtS ₂ /arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency. Nanoscale, 2020, 12, 17281-17289.	2.8	108
1684	Construction of BiPO4/CdS heterojunction photocatalysts for enhanced degradation of organic pollutants under visible light. Journal of Materials Science: Materials in Electronics, 2020, 31, 12056-12065.	1.1	5
1685	Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: A review. International Journal of Hydrogen Energy, 2020, 45, 19078-19111.	3.8	76
1686	Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catalysis, 2020, 10, 8683-8716.	5.5	48
1687	Multifunctional g-C3N4/Ag NPs intercalated GO composite membrane for SERS detection and photocatalytic degradation of paraoxon-ethyl. Chemical Engineering Journal, 2020, 402, 126223.	6.6	72
1688	Band engineering of ZnO/Si nanowire arrays in Z-scheme heterojunction for efficient dye photodegradation. Applied Surface Science, 2020, 529, 147023.	3.1	14
1689	Photocatalytic degradation of RhB from an aqueous solution using Ag3PO4/N-TiO2 heterostructure. Journal of Molecular Liquids, 2020, 313, 113522.	2.3	63

	Сітаті	on Report	
#	Article	IF	CITATIONS
1690	Bifunctional Water Splitting Photoelectrocatalysts Using Flexible Organometallic Complex and Nanographene Multilayer Thin Films. ACS Applied Energy Materials, 2020, 3, 7103-7112.	2.5	5
1691	Efficient photocatalytic overall water splitting on metal-free 1D SWCNT/2D ultrathin C3N4 heterojunctions via novel non-resonant plasmonic effect. Applied Catalysis B: Environmental, 2020, 278, 119312.	10.8	89
1692	Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chemical Engineering Journal, 2020, 402, 126165.	6.6	277
1693	In-situ green topotactic synthesis of a novel Z-scheme Ag@AgVO3/BiVO4 heterostructure with highly enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2020, 579, 431-447.	5.0	64
1694	Photocatalytic activity enhanced via surface hybridization. , 2020, 2, 308-349.		68
1695	Semiconducting Metal Oxide Photonic Crystal Plasmonic Photocatalysts. Advanced Materials Interfaces, 2020, 7, 1901805.	1.9	26
1696	A Three-Component Plasmonic Photocatalyst Consisting of Gold Nanoparticle and TiO2–SnO2 Nanohybrid with Heteroepitaxial Junction: Hydrogen Peroxide Synthesis. Journal of Physical Chemistry C, 2020, 124, 7797-7802.	1.5	22
1697	Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 2541-2561.	2.9	103
1698	Preparation of the floating HGMs-Ag3PO4 composites and the visible-light photocatalytic properties. Materials Research Express, 2020, 7, 015049.	0.8	0
1699	Facile constructing ZnO/ZnCO3 heterojunction for high-performance photocatalytic NO oxidation and reaction pathway study. Journal of Materials Science: Materials in Electronics, 2020, 31, 4527-4534.	1.1	3
1700	Ultra-thin deaminated tri-s-triazine-based crystalline nanosheets with high photocatalytic hydrogen evolution performance. Journal of Alloys and Compounds, 2020, 827, 154307.	2.8	22
1701	Fabrication of Bi2S3/MOFs composites without noble metals for enhanced photoreduction of Cr (VI). Separation and Purification Technology, 2020, 241, 116703.	3.9	44
1702	MoSe ₂ /TiO ₂ Nanofibers for Cycling Photocatalytic Removing Water Pollutants under UV–Vis–NIR Light. ACS Applied Nano Materials, 2020, 3, 2278-2287.	2.4	35
1703	Bridge engineering in photocatalysis and photoelectrocatalysis. Nanoscale, 2020, 12, 5764-5791.	2.8	77
1704	Realizing synergistic effect of electronic modulation and nanostructure engineering over graphitic carbon nitride for highly efficient visible-light H2 production coupled with benzyl alcohol oxidation. Applied Catalysis B: Environmental, 2020, 269, 118772.	10.8	66
1705	Room-temperature conversion of Cu _{2â^'x} Se to CuAgSe nanoparticles to enhance the photocatalytic performance of their composites with TiO ₂ . Dalton Transactions, 2020, 49, 3580-3591.	1.6	13
1706	A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance. Journal of Colloid and Interface Science, 2020, 569, 150-163.	5.0	102
1707	α-Fe2O3/BiFeO3 composites as visible-active photocatalysts and their optical response mechanism. Journal of Physics and Chemistry of Solids, 2020, 141, 109329.	1.9	14

	C	ITATION REPORT	
#	Article	IF	CITATIONS
1708	Highly efficient SrTiO ₃ /Ag ₂ O n-p heterojunction photocatalysts: improved charge carrier separation and enhanced visible-light harvesting. Nanotechnology, 2020, 31, 245702.	1.3	13
1709	The Dependence of Implicit Solvent Model Parameters and Electronic Absorption Spectra and Photoinduced Charge Transfer. Scientific Reports, 2020, 10, 3713.	1.6	11
1710	BiVO4, a ternary metal oxide as an efficient photocatalytic material. , 2020, , 245-266.		0
1711	Progress in the preparation of TiO2 films at boron-doped diamond toward environmental applications. , 2020, , 197-224.		1
1712	Acid etching followed by hydrothermal preparation of nanosized Bi2O4/Bi2O3 p-n junction as highly efficient visible-light photocatalyst for organic pollutants removal. Journal of Colloid and Interface Science, 2020, 576, 291-301.	5.0	38
1713	Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coordination Chemistry Reviews, 2020, 409, 213220.	9.5	169
1714	Type-II/type-II band alignment to boost spatial charge separation: a case study of g-C ₃ N ₄ quantum dots/a-TiO ₂ /r-TiO ₂ for highly efficient photocatalytic hydrogen and oxygen evolution. Nanoscale, 2020, 12, 6037-6046.	2.8	79
1715	Recent Advances and a Roadmap to Wearable UV Sensor Technologies. Advanced Materials Technologies, 2020, 5, 1901036.	3.0	78
1716	Performance enhancement strategies of bi-based photocatalysts: A review on recent progress. Chemical Engineering Journal, 2020, 389, 124402.	6.6	119
1717	Band Modulation and Interfacial Engineering to Generate Efficient Visible-Light-Induced Bifunctional Photocatalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 2919-2930.	3.2	35
1718	Enhancement of photocatalytic activities of nitrogen-doped titanium dioxide by ambient plasma. Chemical Physics Letters, 2020, 744, 137234.	1.2	10
1719	Facile preparation of new nanohybrids for enhancing photocatalytic activity toward removal of organic dyes under visible light irradiation. Journal of Physics and Chemistry of Solids, 2020, 140, 109271.	1.9	24
1720	Noble metal-free bimetallic NiCo decorated Zn0.5Cd0.5S solid solution for enhanced photocatalytic H2 evolution under visible light. International Journal of Hydrogen Energy, 2020, 45, 8300-8309.	3.8	27
1721	Controlling Pt co-catalyst loading in a WO ₃ quantum dot and MoS ₂ nanosheet composite Z-scheme system for enhanced photocatalytic H ₂ evolution. Nanotechnology, 2020, 31, 185701.	1.3	8
1722	Construction of Hybrid MoS ₂ Phase Coupled with SiC Heterojunctions with Promoted Photocatalytic Activity for 4-Nitrophenol Degradation. Langmuir, 2020, 36, 1174-1182.	1.6	41
1723	Effect of p-n type nano-heterojunction formed between two narrow bandgap semiconductors in Cu ⁺ doped GeSe ₂ -Sb ₂ Se ₃ glass ceramics on photocatalytic activities. Semiconductor Science and Technology, 2020, 35, 035017.	1.0	4
1724	The solvothermal synthesis of novel β-Bi2O3/(BiO)4(OH)2CO3 heterojunctions and its photocatalyt activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 4050-4057.	ic 1.1	4
1725	Enhancement of degradation for nitrogen doped zinc oxide to degrade methylene blue. Physica B: Condensed Matter, 2020, 583, 412029.	1.3	16

#	Article	IF	CITATIONS
1726	Metal Chalcogenides Based Heterojunctions and Novel Nanostructures for Photocatalytic Hydrogen Evolution. Catalysts, 2020, 10, 89.	1.6	48
1727	Charge Carriers Cascade in a Ternary TiO ₂ /TiO ₂ /ZnS Heterojunction: A DFT Study. ChemCatChem, 2020, 12, 2097-2105.	1.8	25
1728	Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity. Separation and Purification Technology, 2020, 239, 116562.	3.9	99
1729	Preparation and photocatalytic properties of rutile TiO2 with a unique morphology and SrTiO3–TiO2 composites obtained by acid treatment of SrTiO3. Materials Research Bulletin, 2020, 125, 110762.	2.7	15
1730	Development of Hybrid TiO2/Paint Sludge Extracted Microbe Composite for Enhanced Photocatalytic Dye Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2805-2813.	1.9	7
1731	Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field. Chinese Journal of Catalysis, 2020, 41, 534-549.	6.9	75
1732	Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Industrial and Engineering Chemistry, 2020, 85, 1-33.	2.9	107
1733	Direct Z-scheme Ag3PO4/Bi4Ti3O12 heterojunction with enhanced photocatalytic performance for sulfamethoxazole degradation. Separation and Purification Technology, 2020, 241, 116622.	3.9	40
1734	Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC - Trends in Analytical Chemistry, 2020, 124, 115814.	5.8	276
1735	First-principles study of structural, electronic and optical properties of AgSbO3 and AgSb0.78Se0.22O3 photocatalyst. SN Applied Sciences, 2020, 2, 1.	1.5	10
1736	Nanostructured BiVO4 Derived from Bi-MOF for Enhanced Visible-light Photodegradation. Chemical Research in Chinese Universities, 2020, 36, 120-126.	1.3	11
1737	Copper modified Ti3+ self-doped TiO2 photocatalyst for highly efficient photodisinfection of five agricultural pathogenic fungus. Chemical Engineering Journal, 2020, 387, 124171.	6.6	17
1738	Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight. Journal of Alloys and Compounds, 2020, 826, 154122.	2.8	80
1739	Water Oxidation through Interfacial Electron Transfer by Visible Light Using Cobalt-Modified Rutile Titania Thin-Film Photoanode. ACS Applied Materials & Interfaces, 2020, 12, 9219-9225.	4.0	12
1740	Colour centre controlled formation of stable sub-nanometer transition metal clusters on TiO2 nanosheet for high efficient H2 production. Applied Surface Science, 2020, 511, 145577.	3.1	19
1741	Design of porous double-shell Cu2O@CuCo2O4 Z-Scheme hollow microspheres with superior redox property for synergistic photocatalytic degradation of multi-pollutants. Chemical Engineering Journal, 2020, 389, 124339.	6.6	61
1742	Spatial Heterojunction in Nanostructured TiO ₂ and Its Cascade Effect for Efficient Photocatalysis. Nano Letters, 2020, 20, 3122-3129.	4.5	74
1743	Fabrication of Hierarchical Co ₉ S ₈ @ZnAgInS Heterostructured Cages for Highly Efficient Photocatalytic Hydrogen Generation and Pollutants Degradation. Inorganic Chemistry, 2020, 59, 7027-7038.	1.9	29

#	Article	IF	CITATIONS
1744	Fabrication of Ag ₂ 0/WO ₃ p–n heterojunction composite thin films by magnetron sputtering for visible light photocatalysis. RSC Advances, 2020, 10, 16187-16195.	1.7	12
1745	Z-scheme heterojunction Ag3PO4/BiVO4 with exposing high-active facets and stretching spatial charge separation ability for photocatalytic organic pollutants degradation. Applied Surface Science, 2020, 524, 146506.	3.1	37
1746	LaCl3 flux mediated Ta3N5 planar photoanode for solar water oxidation. Chemical Engineering Journal, 2020, 396, 125161.	6.6	13
1747	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 2070045.	3.1	4
1748	Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure. Applied Catalysis B: Environmental, 2020, 273, 119066.	10.8	73
1749	Zn ₂ GeO _{4â^x} /ZnS heterojunctions fabricated <i>via in situ</i> etching sulfurization for Pt-free photocatalytic hydrogen evolution: interface roughness and defect engineering. Physical Chemistry Chemical Physics, 2020, 22, 10265-10277.	1.3	5
1750	Effect of ultrasound-induced hydroxylation and exfoliation on P90–TiO2/g-C3N4 hybrids with enhanced optoelectronic properties for visible-light photocatalysis and electrochemical sensing. Ceramics International, 2020, 46, 18002-18018.	2.3	31
1751	Innovative photocatalytic reactor for the degradation of chlorpyrifos using a coated composite of ZrV2O7 and graphene nano-platelets. Chemical Engineering Journal, 2020, 395, 124974.	6.6	66
1752	Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chemical Engineering Journal, 2020, 395, 125030.	6.6	133
1753	Construction of ZnO/ZIF-9 heterojunction photocatalyst: enhanced photocatalytic performance and mechanistic insight. New Journal of Chemistry, 2020, 44, 6384-6393.	1.4	34
1754	Ultrathin ZnIn ₂ S ₄ Nanosheets Anchored on Ti ₃ C ₂ T _{<i>X</i>} MXene for Photocatalytic H ₂ Evolution. Angewandte Chemie, 2020, 132, 11383-11388.	1.6	69
1755	An Efficient and Stable MoS ₂ /Zn _{0.5} Cd _{0.5} S Nanocatalyst for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 12206-12211.	1.7	25
1756	Enhanced Piezoâ€Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Auâ^'ZnO Nanorod Array. Small, 2020, 16, e1907603.	5.2	136
1757	2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Science China Materials, 2020, 63, 2119-2152.	3.5	71
1758	Hierarchical porous photocatalysts. Interface Science and Technology, 2020, , 63-102.	1.6	4
1759	Imidazole framework based metal oxide nanoparticles photocatalysts: An approach towards amputation of organic pollutants from water. , 2020, , 173-193.		0
1760	Semiconductor heterojunction-based radiocatalytic platforms for tumors treatment by enhancing radiation response and reducing radioresistance. Chemical Engineering Journal, 2020, 394, 124872.	6.6	15
1761	Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environmental Research, 2020, 185, 109409.	3.7	151

#	Article	IF	CITATIONS
1762	Synchronous construction of oxygen vacancies and phase junction in TiO2 hierarchical structure for enhancement of visible light photocatalytic activity. Journal of Alloys and Compounds, 2020, 830, 154649.	2.8	20
1763	Historical development and prospects of photocatalysts for pollutant removal in water. Journal of Hazardous Materials, 2020, 395, 122599.	6.5	245
1764	Chlorophyllin sensitized carbon nitride scaffolds for photocatalytic application. Materials Today Communications, 2020, 24, 101119.	0.9	2
1765	One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Progress in Materials Science, 2020, 113, 100671.	16.0	64
1766	Preparation of a g-C ₃ N ₄ /Co ₃ O ₄ /Ag ₂ O ternary heterojunction nanocomposite and its photocatalytic activity and mechanism. New Journal of Chemistry, 2020, 44, 6261-6268.	1.4	21
1767	An <i>in situ</i> assembled WO ₃ –TiO ₂ vertical heterojunction for enhanced Z-scheme photocatalytic activity. Nanoscale, 2020, 12, 8775-8784.	2.8	47
1768	Ultraviolet-induced Ostwald ripening strategy towards a mesoporous Ga ₂ O ₃ /GaOOH heterojunction composite with a controllable structure for enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2020, 10, 2882-2892.	2.1	14
1769	Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks. Molecules, 2020, 25, 1552.	1.7	7
1770	Photocatalytic Conversion of Lignin into Chemicals and Fuels. ChemSusChem, 2020, 13, 4199-4213.	3.6	71
1771	High and reversible oxygen uptake in carbon dot solutions generated from polyethylene facilitating reactant-enhanced solar light harvesting. Nanoscale, 2020, 12, 10480-10490.	2.8	15
1772	A facile in situ growth of CdS quantum dots on covalent triazine-based frameworks for photocatalytic H2 production. Journal of Alloys and Compounds, 2020, 833, 155057.	2.8	24
1773	Recent advances in g-C3N4-based heterojunction photocatalysts. Journal of Materials Science and Technology, 2020, 56, 1-17.	5.6	297
1774	Controlled synthesis of CuO decorated defect enriched ZnO nanoflakes for improved sunlight-induced photocatalytic degradation of organic pollutants. Applied Surface Science, 2020, 521, 146420.	3.1	86
1775	Investigation of the survival viability of cervical cancer cells (HeLa) under visible light induced photo-catalysis with facile synthesized WO3/ZnO nanocomposite. Saudi Journal of Biological Sciences, 2020, 27, 1743-1752.	1.8	15
1776	Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. Journal of Colloid and Interface Science, 2020, 574, 364-376.	5.0	100
1777	Modulating charge separation and transfer kinetics in carbon nanodots for photoredox catalysis. Journal of Energy Chemistry, 2020, 50, 365-377.	7.1	15
1778	Enhancing ZnO nanowire gas sensors using Au/Fe ₂ O ₃ hybrid nanoparticle decoration. Nanotechnology, 2020, 31, 325505.	1.3	7
1779	Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives. Small, 2020, 16, e1907087.	5.2	73

#	Article	IF	CITATIONS
1780	Design and fabrication of direct Z-scheme photocatalysts. Interface Science and Technology, 2020, 31, 193-229.	1.6	12
1781	Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Applied Surface Science, 2020, 520, 146344.	3.1	106
1782	Unravelling the rate controlling step in degradation of phenol on a higher potential photocatalyst. Journal of Environmental Chemical Engineering, 2020, 8, 103938.	3.3	8
1783	Fluorination over Cr doped layered perovskite Sr2TiO4 for efficient photocatalytic hydrogen production under visible light illumination. Journal of Energy Chemistry, 2020, 51, 30-38.	7.1	14
1784	Photogenerated Charge Separation in a CdSe Nanocluster Encapsulated in a Metal–Organic Framework for Improved Photocatalysis. Journal of Physical Chemistry C, 2020, 124, 8504-8513.	1.5	14
1785	Enabling Efficient Charge Separation for Optoelectronic Conversion via an Energy-Dependent Z-Scheme n-Semiconductor–Metal–p-Semiconductor Schottky Heterojunction. Journal of Physical Chemistry Letters, 2020, 11, 3313-3319.	2.1	9
1786	Understanding Charge Transfer Mechanism on Effective Truxene-Based Porous Polymers–TiO ₂ Hybrid Photocatalysts for Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 4411-4420.	2.5	29
1787	NiSe/Cd _{0.5} Zn _{0.5} S Composite Nanoparticles for Use in p–n Heterojunction-Based Photocatalysts for Solar Energy Harvesting. ACS Applied Nano Materials, 2020, 3, 3665-3674.	2.4	75
1788	Template-Free, Solid-State Synthesis of Hierarchically Macroporous S-Doped TiO ₂ Nano-Photocatalysts for Efficient Water Remediation. ACS Omega, 2020, 5, 7969-7978.	1.6	29
1789	Functionalization of two-dimensional 1T′-ReS ₂ with surface ligands for use as a photocatalyst in the hydrogen evolution reaction: a first-principles calculation study. Physical Chemistry Chemical Physics, 2020, 22, 9415-9423.	1.3	8
1790	Enhanced performance of a novel superparamagnetic g-C3N4/NiO/ZnO/Fe3O4 nanohybrid photocatalyst for removal of esomeprazole: Effects of reaction parameters, co-existing substances and water matrices. Chemical Engineering Journal, 2020, 395, 124969.	6.6	93
1791	Efficient Photocatalytic Hydrogen Evolution and CO ₂ Reduction: Enhanced Light Absorption, Charge Separation, and Hydrophilicity by Tailoring Terminal and Linker Units in g-C ₃ N ₄ . ACS Applied Materials & Interfaces, 2020, 12, 19607-19615.	4.0	40
1792	Zr-based MOF: An enhanced photocatalytic application towards H2 evolution by consequence of functional group and LSPR effect. Materials Today: Proceedings, 2021, 35, 198-202.	0.9	3
1793	Construction of hierarchical photocatalysts by growing ZnIn2S4 nanosheets on Prussian blue analogue-derived bimetallic sulfides for solar co-production of H2 and organic chemicals. Journal of Energy Chemistry, 2021, 54, 386-394.	7.1	39
1794	Tuning semiconductor LaFe0.65Ti0.35O3-Î′ to fast ionic transport for advanced ceramics fuel cells. International Journal of Hydrogen Energy, 2021, 46, 9861-9873.	3.8	11
1795	Construction of Î ² -Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. Journal of Hazardous Materials, 2021, 401, 123262.	6.5	47
1796	The development of semiconductor-ionic conductor composite electrolytes for fuel cells with symmetrical electrodes. International Journal of Hydrogen Energy, 2021, 46, 9835-9846.	3.8	8
1797	Effect of metal ions doping on structural, optical properties and photocatalytic activity of anatase TiO ₂ thin films. Surface and Interface Analysis, 2021, 53, 194-205.	0.8	16

#	Article	IF	CITATIONS
1798	Role of Dopants on the Local Electronic Structure of PolymericÂCarbon Nitride Photocatalysts. Small Methods, 2021, 5, e2000707.	4.6	11
1799	Recent Progress on Photoâ€Promoted Alcohol Electrooxidation for Fuel Cells. Energy Technology, 2021, 9, .	1.8	9
1800	Construction of CuO quantum Dots/WO3 nanosheets 0D/2D Z-scheme heterojunction with enhanced photocatalytic CO2 reduction activity under visible-light. Journal of Alloys and Compounds, 2021, 858, 157668.	2.8	51
1801	A novel and facile procedure to decorate Bi2O3 with Bi2S3 nanocrystals: Composites synthesis, analyses, and photocatalytic performance assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125640.	2.3	14
1802	Promoting photocatalytic hydrogen evolution by introducing hot islands: SnSe nanoparticles on ZnIn2S4 monolayer. Chemical Engineering Journal, 2021, 404, 126477.	6.6	44
1803	Polyaniline-TiO2-based photocatalysts for dyes degradation. Polymer Bulletin, 2021, 78, 4743-4777.	1.7	63
1804	Cu (II) decorated thiol-functionalized MOF as an efficient transfer medium of charge carriers promoting photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 404, 126533.	6.6	80
1805	Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chinese Journal of Catalysis, 2021, 42, 501-509.	6.9	61
1806	Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. Advanced Materials, 2021, 33, e2001731.	11.1	108
1807	Decomposition of highly persistent perfluorooctanoic acid by hollow Bi/BiOI1-xFx: Synergistic effects of surface plasmon resonance and modified band structures. Journal of Hazardous Materials, 2021, 402, 123459.	6.5	32
1808	Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene Schottky junction nanohybrid. Chemical Engineering Journal, 2021, 403, 126328.	6.6	94
1809	Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Research, 2021, 14, 2003-2022.	5.8	61
1810	lodine doped Z-scheme Bi2O2CO3/Bi2WO6 photocatalysts: Facile synthesis, efficient visible light photocatalysis, and photocatalytic mechanism. Chemical Engineering Journal, 2021, 403, 126327.	6.6	106
1811	Recent advances and prospects of persistent luminescent materials as inner secondary self-luminous light source for photocatalytic applications. Chemical Engineering Journal, 2021, 403, 126099.	6.6	84
1812	Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 282, 119538.	10.8	303
1813	Engineering photocatalytic and photoelectrocatalytic CO2 reduction reactions: Mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modelling simulations. Chemical Engineering Journal, 2021, 407, 126799.	6.6	107
1814	Progress and perspectives of bismuth oxyhalides in catalytic applications. Materials Today Physics, 2021, 16, 100294.	2.9	37
1815	Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. Journal of Hazardous Materials, 2021, 404, 124191.	6.5	351

ARTICLE IF CITATIONS Cooperative TiO2 photocatalysis with TEMPO and N-hydroxysuccinimide for blue light-driven selective 1816 4.2 12 aerobic oxidation of amines. Chemosphere, 2021, 262, 127873. Recent advances in photocatalytic removal of organic and inorganic pollutants in air. Journal of 4.6 Cleaner Production, 2021, 278, 123895. Preparation of Zn2GeO4 nanosheets with MIL-125(Ti) hybrid photocatalyst for improved 1818 2.7 10 photodegradation of organic pollutants. Materials Research Bulletin, 2021, 133, 111013. Broad-spectrum response NCQDs/Bi2O2CO3 heterojunction nanosheets for ciprofloxacin photodegradation: Unraveling the unique roles of NCQDs upon different light irradiation. Chemosphere, 2021, 264, 128434. 2-Methylimidazole-modulated UiO-66 as an effective photocatalyst to degrade Rhodamine B under 1820 1.7 7 visible light. Journal of Materials Science, 2021, 56, 1577-1589. In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution. Applied Surface Science, 2021, 538, 148132. 3.1 Construction of C3N4/CdS nanojunctions on carbon fiber cloth as a filter-membrane-shaped 1822 2.8 40 photocatalyst for degrading flowing wastewater. Journal of Alloys and Compounds, 2021, 851, 156743. A two-dimensional MoS2/SnS heterostructure for promising photocatalytic performance: First-principles investigations. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 1.3 114453. Constructing a plasmonic p-n heterojunction photocatalyst of 3D Ag/Ag6Si2O7/Bi2MoO6 for 1824 efficiently removing broad-spectrum antibiotics. Separation and Purification Technology, 2021, 254, 3.9 119 117579. Insights into the Surface/Interface Modifications of Bi₂MoO₆: Feasible 3.1 Strategies and Photocatalytic Applications. Solar Rrl, 2021, 5, 2000442. SnO2/ZnO heterostructured nanorods: Structural properties and mechanistic insights into the 1826 1.9 10 enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2021, 149, 109762. Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO₂ Reduction. 3.1 34 Solar Rrl, 2021, 5, 2000478. Thiopheneâ€Bridged Donor–Acceptor sp²â€Carbonâ€Linked 2D Conjugated Polymers as 1828 11.1 100 Photocathodes for Water Reduction. Advanced Materials, 2021, 33, e2006274. MOF-derived core/shell C-TiO2/CoTiO3 type II heterojunction for efficient photocatalytic removal of 1829 6.5 antibiotics. Journal of Hazardous Materials, 2021, 406, 124675. Local-interaction-field-coupled semiconductor photocatalysis: recent progress and future 1830 5.248 challenges. Journal of Materials Chemistry A, 2021, 9, 2491-2525. Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis. EnergyChem, 2021, 3, 103 100047. Synthesis of MoSe₂/CoSe₂ Nanosheets for NIRâ€Enhanced Chemodynamic 1832 Therapy via Synergistic Inâ€Situ H₂O₂ Production and Activation. Advanced 7.8 59 Functional Materials, 2021, 31, 2008420. Inter-embedded Au-Cu2O heterostructure for the enhanced hydrogen production from water 6.6 splitting under the visible light. Chemical Engineering Journal, 2021, 405, 126709.

#	Article	IF	CITATIONS
1834	Adopting sulfur-atom sharing strategy to construct CoS2/MoS2 heterostructure on three-dimensional nitrogen-doped graphene aerogels: A novel photocatalyst for wastewater treatment. Journal of Environmental Chemical Engineering, 2021, 9, 104771.	3.3	11
1835	Heterojunction Cr2O3-Ag2O nanocomposite decorated porous polymer monoliths a new class of visible light fast responsive heterogeneous photocatalysts for pollutant clean-up. Journal of Environmental Chemical Engineering, 2021, 9, 104846.	3.3	14
1836	Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Materials Horizons, 2021, 8, 758-802.	6.4	92
1837	Effect of hydrothermal temperature on the antibacterial and photocatalytic activity of WO3 decorated with silver nanoparticles. Journal of Sol-Gel Science and Technology, 2021, 97, 228-244.	1.1	8
1838	Visible light-induced stable HER performance using duality of ultrafine Pt NPs in a Z-scheme p-n junction Fe2O3@Pt@FeS catalyst. Applied Surface Science, 2021, 541, 148347.	3.1	13
1839	The unique carrier mobility of Janus MoSSe/GaN heterostructures. Frontiers of Physics, 2021, 16, 1.	2.4	18
1840	Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: Characteristics, kinetics, models, and mechanisms. Chemical Engineering Journal, 2021, 420, 127719.	6.6	148
1841	Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Materials Science, 2021, 3, 25-46.	3.9	72
1842	Advanced Functional Electroactive and Photoactive Materials for Monitoring the Environmental Pollutants. Advanced Functional Materials, 2021, 31, 2008227.	7.8	39
1843	What is the role of light in persulfate-based advanced oxidation for water treatment?. Water Research, 2021, 189, 116627.	5.3	214
1844	Inâ€Situ Corrosion Fabrication of NaNbO 3 /Nb 3 O 7 F Heterojunctions with Optimized Band Realignment for Enhanced Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 4683-4690.	1.7	1
1845	Preparation of PEO-based Cu2O/Bi2O2CO3 electrospun fibrous membrane toward enhanced photocatalytic degradation of chloramphenicol. Journal of Materials Science, 2021, 56, 4599-4614.	1.7	9
1846	New heterojunctions of CN/TiO2 with different band structure as highly efficient catalysts for artificial photosynthesis. Applied Catalysis B: Environmental, 2021, 285, 119781.	10.8	25
1847	Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. Applied Catalysis B: Environmental, 2021, 285, 119785.	10.8	124
1848	The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment. Chemical Engineering Journal, 2021, 417, 127914.	6.6	62
1849	Improved photoelectrochemical properties of TiO2 nanotubes doped with Er and effects on hydrogen production from water splitting. Chemosphere, 2021, 267, 129289.	4.2	34
1850	Surface and interface engineering of two-dimensional bismuth-based photocatalysts for ambient molecule activation. Journal of Materials Chemistry A, 2021, 9, 196-233.	5.2	50
1851	Ag3PO4 decorated black urchin-like defective TiO2 for rapid and long-term bacteria-killing under visible light. Bioactive Materials, 2021, 6, 1575-1587.	8.6	85

#	Article	IF	CITATIONS
1852	Visibleâ€Light Responsive TiO ₂ â€Based Materials for Efficient Solar Energy Utilization. Advanced Energy Materials, 2021, 11, 2003303.	10.2	118
1853	Microwave-mechanochemistry-assisted synthesis of Z-scheme HSr2Nb3O10/WO3 heterojunctions for improved simulated sunlight driven photocatalytic activity. Journal of Environmental Chemical Engineering, 2021, 9, 104624.	3.3	8
1854	Black Phosphorus Quantum Dots Modified CdS Nanowires with Efficient Charge Separation for Enhanced Photocatalytic H ₂ Evolution. ChemCatChem, 2021, 13, 1355-1361.	1.8	20
1855	Bulk phase charge transfer in focus – And in sequential along with surface steps. Catalysis Today, 2021, 364, 2-6.	2.2	8
1856	Internal field engineering of WO ₃ by ion channel migration with enhanced photocatalytic oxygen evolution ability. Journal of Materials Chemistry A, 2021, 9, 1678-1691.	5.2	23
1857	Enhanced photocatalytic conversion of NOx with satisfactory selectivity of 3D-2D Bi4O5Br2-GO hierarchical structures via a facile microwave-assisted preparation. Separation and Purification Technology, 2021, 266, 118237.	3.9	49
1858	Electrospun Zn-doped Ga2O3 nanofibers and their application in photodegrading rhodamine B dye. Ceramics International, 2021, 47, 4963-4971.	2.3	12
1859	Exploring the mechanism of Ta3N5/KTaO3 photocatalyst for overall water splitting by first-principles calculations. Journal of Energy Chemistry, 2021, 56, 353-364.	7.1	4
1860	Construction of p-n type heterojunction for effective photo-generated electron separation and visible light hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 1934-1944.	3.8	24
1861	Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. Water Research, 2021, 188, 116543.	5.3	88
1862	Highly promoted hydrogen production enabled by interfacial P N chemical bonds in copper phosphosulfide Z-scheme composite. Applied Catalysis B: Environmental, 2021, 283, 119624.	10.8	45
1863	Environment friendly and remarkably efficient photocatalytic hydrogen evolution based on metal organic framework derived hexagonal/cubic In2O3 phase-junction. Applied Catalysis B: Environmental, 2021, 282, 119602.	10.8	81
1864	Recent advances of monoelemental 2D materials for photocatalytic applications. Journal of Hazardous Materials, 2021, 405, 124179.	6.5	78
1865	A critical review on modulation of NiMoO4-based materials for photocatalytic applications. Journal of Environmental Management, 2021, 278, 111562.	3.8	27
1866	Advances in 2D/2D Z‧cheme Heterojunctions for Photocatalytic Applications. Solar Rrl, 2021, 5, 2000397.	3.1	82
1867	Controlled Synthesis of Higher Interfacial Electron Transfer Graphiteâ€Like Carbon Nitride/Perylenetetracarboxylic Diimide Heterogeneous for Enhanced Photocatalytic Activity. Solar Rrl, 2021, 5, 2000453.	3.1	19
1868	Junction Engineering for Photocatalytic and Photoelectrocatalytic CO ₂ Reduction. Solar Rrl, 2021, 5, 2000430.	3.1	35
1869	Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward Highâ€Efficiency Photocatalytic Hydrogen Production. Solar Rrl, 2021, 5, 2000414.	3.1	83

	CITATION	Report	
#	Article	IF	CITATIONS
1870	Nearâ€Infraredâ€Driven Photocatalysts: Design, Construction, and Applications. Small, 2021, 17, e1904107.	5.2	63
1871	Emerging Applications for Graphitic Carbon Nitride-based Materials: CO2 Reduction as a Case Study. RSC Nanoscience and Nanotechnology, 2021, , 295-317.	0.2	0
1872	Chalcogenides-based nanomaterials for artificial photosynthesis. , 2021, , 219-242.		0
1873	Cocatalyst-integrated photocatalysts for solar-driven hydrogen and oxygen production. , 2021, , 217-247.		0
1874	Modulating Photoinduced Charge Separation in Metal–Azolate Frameworks. Journal of Physical Chemistry C, 2021, 125, 2064-2073.	1.5	5
1875	MoS2/Ag2CO3 Z-scheme system with enhancing water splitting photocatalytic activity. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
1876	Shedding light on <scp>CO₂</scp> : Catalytic synthesis of solar methanol. EcoMat, 2021, 3, e12078.	6.8	13
1877	Gas–Liquid–Solid Triphase Interfacial Chemical Reactions Associated with Gas Wettability. Advanced Materials Interfaces, 2021, 8, 2001636.	1.9	17
1878	Prussian blue as a co-catalyst for enhanced Cr(vi) photocatalytic reduction promoted by titania-based nanoparticles and aerogels. New Journal of Chemistry, 0, , .	1.4	9
1879	CO2 photoreduction by MOF-derived carbon nanomaterials: A review. Materials Today: Proceedings, 2021, 46, 2982-2997.	0.9	5
1880	<i>In situ</i> growth of metal-free snowflake-like 1D/2D phosphorus element heterostructures for photocatalytic overall pure-water splitting. New Journal of Chemistry, 2021, 45, 19876-19882.	1.4	4
1881	Electronic structure: From basic principles to photocatalysis. Interface Science and Technology, 2021, 32, 1-53.	1.6	11
1882	Enhanced visible light photocatalytic degradation of rhodamine B by Z-scheme CuWO4/g-C3N4 heterojunction. Journal of Materials Science: Materials in Electronics, 2021, 32, 2731-2743.	1.1	14
1883	Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications. Journal of Materials Chemistry A, 2021, 9, 10039-10080.	5.2	90
1884	Fe-Ion-Catalyzed Synthesis of CdSe/Cu Core/Shell Nanowires. Inorganic Chemistry, 2021, 60, 2614-2622.	1.9	5
1885	Recent developments in photocatalytic irradiation from CO2 to methanol. , 2021, , 519-540.		12
1886	Construction and photocatalytic properties of WS2/MoS2/BiOCl heterojunction. Chemical Physics Letters, 2021, 763, 138203.	1.2	20
1887	Enhanced photocatalytic degradation of tetracycline by constructing a controllable Cu ₂ O–TiO ₂ heterojunction with specific crystal facets. Catalysis Science and Technology, 2021, 11, 6248-6256.	2.1	19

#	Article	IF	CITATIONS
1888	Simple fabrication of Z-scheme MgIn ₂ S ₄ /Bi ₂ WO ₆ hierarchical heterostructures for enhancing photocatalytic reduction of Cr(<scp>vi</scp>). Catalysis Science and Technology, 2021, 11, 6271-6280.	2.1	15
1889	Z-Scheme <i>versus</i> type-II junction in g-C ₃ N ₄ /TiO ₂ and g-C ₃ N ₄ /SrTiO ₃ /TiO ₂ heterostructures. Catalysis Science and Technology, 2021, 11, 3589-3598.	2.1	25
1890	Role of surface termination and quantum size in α-CsPbX ₃ (X = Cl, Br, I) 2D nanostructures for solar light harvesting. Physical Chemistry Chemical Physics, 2021, 23, 3031-3040.	1.3	20
1891	Recent progress on strategies for the preparation of 2D/2D MXene/g-C ₃ N ₄ nanocomposites for photocatalytic energy and environmental applications. Catalysis Science and Technology, 2021, 11, 1222-1248.	2.1	75
1892	Y ₂ O ₃ :Yb ³⁺ , Tm ³⁺ /ZnO composite with a heterojunction structure and upconversion function for the photocatalytic degradation of organic dyes. RSC Advances, 2021, 11, 24044-24053.	1.7	14
1893	Artificial Z-scheme-based photocatalysts: design strategies and approaches. , 2021, , 165-186.		0
1894	Extending the π-conjugated molecules on TiO2 for the selective photocatalytic aerobic oxidation of sulfides triggered by visible light. Sustainable Energy and Fuels, 2021, 5, 2127-2135.	2.5	9
1895	Band gap engineered chalcogenide nanomaterials for visible light-induced photocatalysis. , 2021, , 135-172.		1
1896	Chemical Sensors: Photoelectrochemical Sensors. , 2023, , 243-259.		1
1897	Practical strategies for enhanced performance of anode materials in Na ⁺ /K ⁺ -ion batteries. Journal of Materials Chemistry A, 2021, 9, 7317-7335.	5.2	41
1898	A new core–shellÂZ-scheme heterojunction structured La(OH)3@In2S3 composite with superior photocatalytic performance. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
1899	Loading SnS ₂ nanosheets decorated with MoS ₂ nanoparticles on a flake-shaped g-C ₃ N ₄ network for enhanced photocatalytic performance. CrystEngComm, 2021, 23, 4680-4693.	1.3	12
1900	The n-type and p-type conductivity mechanisms of the bulk BiOCl photocatalyst from hybrid density functional theory calculations. Physical Chemistry Chemical Physics, 2021, 23, 19841-19853.	1.3	18
1901	Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light. Russian Chemical Reviews, 2021, 90, 1520-1543.	2.5	6
1902	Highly efficient In ₂ S ₃ /WO ₃ photocatalysts: Z-scheme photocatalytic mechanism for enhanced photocatalytic water pollutant degradation under visible light irradiation. RSC Advances, 2021, 11, 3333-3341.	1.7	23
1903	State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: photocatalysis. Nanoscale Advances, 2021, 3, 1887-1900.	2.2	51
1904			
	2021, , 289-328.		0

\mathbf{C}	TAT	ON	DEDC	NDT.
	IAI	UN	KEPU	жт

#	Article	IF	CITATIONS
1906	Metal halide perovskites as an emergent catalyst for CO ₂ photoreduction: a minireview. Reaction Chemistry and Engineering, 2021, 6, 828-838.	1.9	13
1907	Novel prism shaped C ₃ N ₄ -doped Fe@Co ₃ O ₄ nanocomposites and their dye degradation and bactericidal potential with molecular docking study. RSC Advances, 2021, 11, 23330-23344.	1.7	26
1908	Design of photocatalysts for the decontamination of emerging pharmaceutical pollutants in water. , 2021, , 475-502.		0
1909	Sunlight-Mediated Plasmonic Photocatalysis: Mechanism and Material Prospects. , 2021, , 113-135.		0
1910	Ru/Mo ₂ C@NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 20518-20529.	5.2	30
1911	Recent advances on TiO2 photocatalysis for wastewater degradation: fundamentals, commercial TiO2 materials, and photocatalytic reactors. , 2021, , 25-65.		2
1912	lonic liquid-assisted synthesis of a novel PANI/ZnWO ₄ /WO ₃ ternary nanocomposite: a facile double electron transfer photocatalyst for efficient degradation of a herbicide. Environmental Science: Nano, 2021, 8, 2676-2692.	2.2	7
1913	NIR-excitable heterostructured upconversion perovskite nanodots with improved stability. Nature Communications, 2021, 12, 219.	5.8	57
1914	The edge-epitaxial growth of yellow g-C ₃ N ₄ on red g-C ₃ N ₄ nanosheets with superior photocatalytic activities. Chemical Communications, 2021, 57, 3119-3122.	2.2	61
1915	Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catalysis Science and Technology, 2021, 11, 5028-5049.	2.1	11
1916	Metal and Metal Oxide Nanomaterials for Wastewater Decontamination. Environmental Chemistry for A Sustainable World, 2021, , 63-95.	0.3	0
1917	Design of a Non ytotoxic ZnFe ₂ O ₄ eO ₂ /BRGO Direct Z cheme Photocatalyst with Bioreduced Graphene Oxide as Cocatalyst. ChemistrySelect, 2021, 6, 101-112.	0.7	7
1918	Plasmonic photocatalyst for hydrogen energy generation. , 2021, , 253-278.		0
1919	Bio-Based Materials in Photocatalysis. , 2021, , .		1
1920	An overview: recent development of semiconductor/graphene nanocomposites for photodegradation of phenol and phenolic compounds in aqueous solution. Journal of Asian Ceramic Societies, 2021, 9, 1-23.	1.0	15
1921	Aerogels in photocatalysis. , 2021, , 87-108.		1
1922	Defect-mediated electron transfer in photocatalysts. Chemical Communications, 2021, 57, 3532-3542.	2.2	19
1923	Visible-Light-Responsive Heterostructured Nanophotocatalysts for Organic Pollutants Decomposition. Environmental Chemistry for A Sustainable World, 2021, , 35-84.	0.3	0

#	Article	IF	CITATIONS
1924	Direct measurement and modeling of spontaneous charge migration across anatase–brookite nanoheterojunctions. Journal of Materials Chemistry A, 2021, 9, 7782-7790.	5.2	14
1925	Three-dimensional ordered macroporous materials for photocatalysis: design and applications. Journal of Materials Chemistry A, 2021, 9, 18129-18147.	5.2	34
1926	Effective Visible Light-Driven Photocatalytic Degradation of Ciprofloxacin over Flower-like Fe ₃ O ₄ /Bi ₂ WO ₆ Composites. ACS Omega, 2021, 6, 1647-1656.	1.6	57
1927	Design of a noble-metal-free direct Z-scheme photocatalyst for overall water splitting based on a SnC/SnSSe van der Waals heterostructure. Physical Chemistry Chemical Physics, 2021, 23, 21641-21651.	1.3	30
1928	Engineering 2D Photocatalysts toward Carbon Dioxide Reduction. Advanced Energy Materials, 2021, 11, 2003159.	10.2	130
1929	Zinc oxide heterostructures: advances in devices from self-powered photodetectors to self-charging supercapacitors. Materials Advances, 2021, 2, 6768-6799.	2.6	19
1930	Direct Zâ€scheme Nâ€doped TiO ₂ /MoS ₂ Heterojunction Photocatalyst for Photodegradation of Methylene Blue under Simulated Sunlight. ChemistrySelect, 2021, 6, 181-186.	0.7	11
1931	A C ₂ N/ZnSe heterostructure with type-II band alignment and excellent photocatalytic water splitting performance. New Journal of Chemistry, 2021, 45, 13571-13578.	1.4	10
1932	Dual functionality of mixed Cu-based two-dimensional (2D) heterostructures derived from electronic waste. Green Chemistry, 2021, 23, 5511-5523.	4.6	5
1933	Photo-enhanced electrocatalytic hydrogen evolution reaction coupled semiconductor with plasma in neutral solution. Chemical Communications, 2021, 57, 8596-8599.	2.2	7
1934	3D/2D Bi ₂ S ₃ /SnS ₂ heterostructures: superior charge separation and enhanced solar light-driven photocatalytic performance. CrystEngComm, 2021, 23, 2276-2288.	1.3	7
1935	TiO2-based materials for photocatalytic hydrogen production. , 2021, , 211-240.		0
1936	Fabrication of 1D/2D CdS/CoSx direct Z-scheme photocatalyst with enhanced photocatalytic hydrogen evolution performance. International Journal of Hydrogen Energy, 2021, 46, 9351-9359.	3.8	24
1937	Photocatalytic and Thermocatalytic Conversion of Methane. Solar Rrl, 2021, 5, 2000596.	3.1	16
1938	Z-scheme g-C3N4/C/S-g-C3N4 heterostructural nanotube with enhanced porous structure and visible light driven photocatalysis. Microporous and Mesoporous Materials, 2021, 314, 110891.	2.2	34
1939	Fabrication of Mesoporous PtO–ZnO Nanocomposites with Promoted Photocatalytic Performance for Degradation of Tetracycline. ACS Omega, 2021, 6, 6438-6447.	1.6	30
1940	Synthesis and electrochemical characterization of Si/TiO2/Au composite anode: Efficient oxygen evolution and hydroxyl radicals generation. Electrochimica Acta, 2021, 370, 137742.	2.6	8
1941	Developing cuprospinel CuFe2O4–ZnO semiconductor heterostructure as a proton conducting electrolyte for advanced fuel cells. International Journal of Hydrogen Energy, 2021, 46, 9927-9937.	3.8	33
#	Article	IF	CITATIONS
------	---	-----	-----------
1942	Charge Transport Phenomena in Heterojunction Photocatalysts: The WO ₃ /TiO ₂ System as an Archetypical Model. ACS Applied Materials & Interfaces, 2021, 13, 9781-9793.	4.0	24
1943	New advances in accurate monitoring of breast cancer biomarkers by electrochemistry, electrochemiluminescence, and photoelectrochemistry. Journal of Electroanalytical Chemistry, 2021, 882, 115010.	1.9	13
1944	Newly emerging borate-based nonlinear optical materials for organic pollutant degradation: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2227-2269.	6.6	10
1945	Insights into the complementary behaviour of Gd doping in GO/Gd/ZnO composites as an efficient candidate towards photocatalytic degradation of indigo carmine dye. Journal of Materials Science, 2021, 56, 8511-8527.	1.7	16
1946	Rationalize the Significantly Enhanced Photocatalytic Efficiency of In ³⁺ -doped α′-Ga ₂ S ₃ by Bond Theory and Local Structural Distortion. Journal of Physical Chemistry Letters, 2021, 12, 1772-1776.	2.1	6
1948	A review on mechanisms and recent developments in p-n heterojunctions of 2D materials for gas sensing applications. Journal of Materials Science, 2021, 56, 9575-9604.	1.7	64
1949	Insight into the enhanced photocatalytic properties of AgBr/Ag4P2O7 composites synthesized via in situ ion exchange reaction. Journal of Environmental Chemical Engineering, 2021, 9, 104889.	3.3	4
1950	Fabrication of Robust Covalent Organic Frameworks for Enhanced Visible-Light-Driven H ₂ Evolution. ACS Catalysis, 2021, 11, 2098-2107.	5.5	116
1951	Nature and Role of Surface Junctions in BiOIO ₃ Photocatalysts. Advanced Functional Materials, 2021, 31, 2009472.	7.8	20
1952	In Situ Construction of Direct Z‣cheme Cs _{<i>x</i>} WO ₃ /CsPbBr ₃ Heterojunctions via Cosharing Cs Atom. Solar Rrl, 2021, 5, 2100036.	3.1	11
1953	Review on the Visible Light Photocatalysis for the Decomposition of Ciprofloxacin, Norfloxacin, Tetracyclines, and Sulfonamides Antibiotics in Wastewater. Catalysts, 2021, 11, 437.	1.6	65
1956	Tuning the Electronic Bandgap of Graphdiyne by Hâ€Substitution to Promote Interfacial Charge Carrier Separation for Enhanced Photocatalytic Hydrogen Production. Advanced Functional Materials, 2021, 31, 2100994.	7.8	41
1957	Biomass-derived active Carbon@ZnO/SnO2 novel visible-light photocatalyst for rapid degradation of linezolid antibiotic and imidacloprid insecticide. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 313-324.	2.7	27
1958	MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants. Journal of Cleaner Production, 2021, 290, 125782.	4.6	52
1959	Advances in nanomaterials for heterogeneous photocatalysis. Nano Express, 2021, 2, 012005.	1.2	25
1960	Drawing on Membrane Photocatalysis for Fouling Mitigation. ACS Applied Materials & Interfaces, 2021, 13, 14844-14865.	4.0	87
1961	Robust Co ₉ S ₈ @CdIn ₂ S ₄ Cage for Efficient Photocatalytic H ₂ Evolution. Journal of Physical Chemistry C, 2021, 125, 5099-5109.	1.5	44
1962	Design of BiOBr nanosheets decorated SiC whisker hybrid structure with enhanced photocatalytic performance. Applied Surface Science, 2021, 543, 148779.	3.1	15

#	Article	IF	CITATIONS
1963	Ternary Cu ₂ SnS ₃ : Synthesis, Structure, Photoelectrochemical Activity, and Heterojunction Band Offset and Alignment. Chemistry of Materials, 2021, 33, 1983-1993.	3.2	30
1964	Novel magnetically retrievable In2O3/MoS2/Fe3O4 nanocomposite materials for enhanced photocatalytic performance. Scientific Reports, 2021, 11, 6379.	1.6	19
1965	Regulating the interface defect of TiO ₂ /Ag ₂ O nanoheterojunction and its effect on photogenerated carrier dynamics. Nanotechnology, 2021, 32, 225704.	1.3	7
1966	Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & Interfaces, 2021, 13, 14239-14247.	4.0	73
1967	<scp>Agâ€CdS Yolk–Shell</scp> Heteronanostructures for <scp>Plasmonâ€Enhanced</scp> Photocatalysis. Bulletin of the Korean Chemical Society, 2021, 42, 806-809.	1.0	11
1968	In-situ construction of novel naphthalenediimide/metal-iodide hybrid heterostructures for enhanced photoreduction of Cr (VI). Dyes and Pigments, 2021, 187, 109146.	2.0	9
1969	Hierarchical OD NiSe ₂ /2D ZnIn ₂ S ₄ Nanosheetâ€Assembled Microflowers for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2021, 8, 2100052.	1.9	34
1970	Synergistic effect of hierarchical structure and Z-scheme heterojunction constructed by CdS nanoparticles and nanoflower-structured Co9S8 with significantly enhanced photocatalytic hydrogen production performance. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409. 113160.	2.0	21
1971	Selective recovery of precious metals through photocatalysis. Nature Sustainability, 2021, 4, 618-626.	11.5	188
1972	Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Reports Physical Science, 2021, 2, 100355.	2.8	99
1973	Semiconductorâ€based nanocomposites for selective organic synthesis. Nano Select, 2021, 2, 1799.	1.9	1
1974	Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation. Applied Materials Today, 2021, 22, 100963.	2.3	23
1975	Junction and energy band on novel semiconductor-based fuel cells. IScience, 2021, 24, 102191.	1.9	45
1976	Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for Its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol. Molecules, 2021, 26, 2062.	1.7	22
1977	Facile synthesis of ZnFe2O4/SnO2 composites for efficient photocatalytic degradation of methylene blue. Materials Chemistry and Physics, 2021, 262, 124273.	2.0	18
1978	Nanoarray Structures for Artificial Photosynthesis. Small, 2021, 17, e2006530.	5.2	32
1979	Promoting reactive oxygen species generation: a key strategy in nanosensitizer-mediated radiotherapy. Nanomedicine, 2021, 16, 759-778.	1.7	26
1980	An excellent triethylamine (TEA) sensor based on unique hierarchical MoS2/ZnO composites composed of porous microspheres and nanosheets. Sensors and Actuators B: Chemical, 2021, 333, 129616.	4.0	68

#	Article	IF	CITATIONS
1981	Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting. Ceramics International, 2021, 47, 21769-21776.	2.3	55
1982	Recent Development in Defects Engineered Photocatalysts: An Overview of the Experimental and Theoretical Strategies. Energy and Environmental Materials, 2022, 5, 68-114.	7.3	81
1984	Free-standing ultra-thin Janus indium oxysulfide for ultrasensitive visible-light-driven optoelectronic chemical sensing. Nano Today, 2021, 37, 101096.	6.2	38
1985	Electronic structure of aqueous two-dimensional photocatalyst. Npj Computational Materials, 2021, 7, .	3.5	8
1986	Review of various strategies to boost the photocatalytic activity of the cuprous oxide-based photocatalyst. Journal of Environmental Chemical Engineering, 2021, 9, 105138.	3.3	43
1987	MOF-derived synthesis of MnS/In2S3 p-n heterojunctions with hierarchical structures for efficient photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2021, 588, 547-556.	5.0	48
1988	An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. Chemical Record, 2021, 21, 1811-1844.	2.9	29
1989	Preparation of a novel TiO2-graphene 3D framework material for efficient adsorption-photocatalytic removal of micro-organic contaminants from water. Materials Chemistry and Physics, 2021, 263, 124339.	2.0	6
1990	Self-Driven Salt-Thermal Reduction Approach for the Synthesis of Cu ₂ O and AgCl–Cu ₂ O Hybrids with Superior Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 5651-5660.	3.2	7
1991	Recent Advances in TiO2-Based Heterojunctions for Photocatalytic CO2 Reduction With Water Oxidation: A Review. Frontiers in Chemistry, 2021, 9, 637501.	1.8	26
1992	Prospects of Z-Scheme Photocatalytic Systems Based on Metal Halide Perovskites. ACS Nano, 2021, 15, 7860-7878.	7.3	40
1993	Decomposition of dye pigment via photocatalysis process using CuO-TiO2 nanocomposite. Materials Today: Proceedings, 2021, 47, 3441-3444.	0.9	6
1994	Hierarchically Porous WO ₃ /CdWO ₄ Fiber-in-Tube Nanostructures Featuring Readily Accessible Active Sites and Enhanced Photocatalytic Effectiveness for Antibiotic Degradation in Water. ACS Applied Materials & Interfaces, 2021, 13, 21138-21148.	4.0	64
1995	Bilayer MoTe2/XS2 (XÂ=ÂHf,Sn,Zr) heterostructures with efficient carrier separation and light absorption for photocatalytic water splitting into hydrogen. Applied Surface Science, 2021, 544, 148842.	3.1	24
1996	Holey defected TiO2 nanosheets with oxygen vacancies for efficient photocatalytic hydrogen production from water splitting. Surfaces and Interfaces, 2021, 23, 100979.	1.5	12
1997	Enhanced photocatalytic H2 production over g-C3N4/NiS hybrid photocatalyst. Materials Letters, 2021, 290, 129476.	1.3	13
1998	Photodegradation of Naproxen Using Ag/AgCl–PANI Composite under Solar Light: Transformation Product and Reaction Kinetics. Kinetics and Catalysis, 2021, 62, 367-374.	0.3	3
1999	Improving the Performance of ZnS Photocatalyst in Degrading Organic Pollutants by Constructing Composites with Ag2O. Nanomaterials, 2021, 11, 1451.	1.9	13

# 2000	ARTICLE Nanoscale control of high-quality boron-doped ultrananodiamond on dioxide titanium nanotubes as a porous composite. Journal of Materials Research and Technology, 2021, 12, 597-612.	IF 2.6	CITATIONS 6
2001	Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction. Environmental Science and Pollution Research, 2021, 28, 50747-50766.	2.7	11
2002	Cadmium sulfide/titanate hybrid green light photocatalysis for selective aerobic oxidative homocoupling of amines. Journal of Colloid and Interface Science, 2021, 590, 387-395.	5.0	21
2003	Molecule/Semiconductor Hybrid Materials for Visible-Light CO ₂ Reduction: Design Principles and Interfacial Engineering. Accounts of Materials Research, 2021, 2, 458-470.	5.9	51
2004	Photochemical Construction of Ni/CdS Doubleâ€Walled Magnetic Hollow Microspheres with Simultaneously Enhanced Visible‣ight Photocatalytic Activity and Recyclability. ChemPhotoChem, 2021, 5, 735-747.	1.5	6
2005	Structure and Band Alignment of InP Photocatalysts Passivated by TiO ₂ Thin Films. Journal of Physical Chemistry C, 2021, 125, 11620-11627.	1.5	7
2006	Synthesis of lateral heterostructure of 2D materials for optoelectronic devices: challenges and opportunities. Emergent Materials, 2021, 4, 923-949.	3.2	14
2007	Effect of Co Doping on Electrocatalytic Performance of Co-NiS2/CoS2 Heterostructures. Nanomaterials, 2021, 11, 1245.	1.9	3
2008	ZIF-9 derived cobalt phosphide and In2O3 as co-catalysts for efficient hydrogen production. Molecular Catalysis, 2021, 507, 111551.	1.0	5
2009	First-Principles Evaluation of Volatile Organic Compounds Degradation in Z-Scheme Photocatalytic Systems: MXene and Graphitic-CN Heterostructures. ACS Applied Materials & Interfaces, 2021, 13, 23843-23852.	4.0	47
2010	Controllable One-Step Synthesis of Mixed-Phase TiO2 Nanocrystals with Equivalent Anatase/Rutile Ratio for Enhanced Photocatalytic Performance. Nanomaterials, 2021, 11, 1347.	1.9	19
2011	Facile hydrothermal preparation of a ZnFe2O4/TiO2 heterojunction for NOx removal. Molecular Catalysis, 2021, 507, 111570.	1.0	5
2012	Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C3N4 heterojunction for promoting the oxidative coupling of amines. Applied Catalysis B: Environmental, 2021, 285, 119863.	10.8	49
2013	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	9.5	57
2014	Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 2021, 271, 129506.	4.2	132
2015	Ternary TiO2/WO3/CQDs nanocomposites for enhanced photocatalytic mineralization of aqueous cephalexin: Degradation mechanism and toxicity evaluation. Chemical Engineering Journal, 2021, 412, 128679.	6.6	40
2016	Ligand-free Au nanoclusters/g-C3N4 ultra-thin nanosheets composite photocatalysts for efficient visible-light-driven photocatalytic H2 generation. Journal of Materials Science, 2021, 56, 13736-13751.	1.7	4
2017	Physicochemical characterization and catalytic performance of Fe doped CuS thin films deposited by the chemical spray pyrolysis technique. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	14

#	Article	IF	CITATIONS
2019	Plasmonic Metal Bridge Leading Type III Heterojunctions to Robust Type B Photothermocatalysts. Industrial & Engineering Chemistry Research, 2021, 60, 8420-8429.	1.8	20
2020	Integrating Ag2WO4 on VS4 nanoplates with synergy of plasmonic photocatalysis and boosted visible-light harvesting and its antibacterial applications. Journal of Alloys and Compounds, 2021, 865, 158810.	2.8	29
2021	Facile fabrication of AgI/Sb2O3 heterojunction photocatalyst with enhanced visible-light driven photocatalytic performance for efficient degradation of organic pollutants in water. Environmental Research, 2021, 197, 111143.	3.7	36
2022	High solar-to-hydrogen efficiency in Arsenene/GaX (XÂ=ÂS, Se) van der Waals heterostructure for photocatalytic water splitting. Journal of Alloys and Compounds, 2021, 866, 158774.	2.8	56
2023	Crystal face-selective Bi4Ti3O12/BiOI heterojunction constructed for enhanced visible ligtht-driven photocatalytic activity. Applied Surface Science, 2021, 552, 149507.	3.1	22
2024	Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nature Reviews Chemistry, 2021, 5, 564-579.	13.8	253
2025	Photocatalytic reduction of Cr(VI) using a wurtzite/natural sphalerite heterostructure: Synergistic effects of exposed active facets, vacancies and a heterophase junction. Applied Surface Science, 2021, 550, 149267.	3.1	6
2026	Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. Chemical Engineering Journal, 2021, 414, 128783.	6.6	135
2027	Turning waste into wealth. Joule, 2021, 5, 1328-1330.	11.7	1
2028	Orientational Alignment of Oxygen Vacancies: Electric-Field-Inducing Conductive Channels in TiO ₂ Film to Boost Photocatalytic Conversion of CO ₂ into CO. Nano Letters, 2021, 21, 5060-5067.	4.5	19
2029	Dual-sensitized modification engineering with enhanced photocatalytic degradation for organic dye. Journal of Materials Science: Materials in Electronics, 2021, 32, 19380-19389.	1.1	0
2030	Exact Analytical Solution of the Ground-State Hydrogenic Problem with Soft Coulomb Potential. Journal of Physical Chemistry A, 2021, 125, 5146-5151.	1.1	6
2031	Recent Progress on Metal-Enhanced Photocatalysis: A Review on the Mechanism. Research, 2021, 2021, 9794329.	2.8	101
2032	Study of Sheetlike BiOI/Rodlike Bi ₅ O ₇ I Composite Photocatalyst by In Situ Crystallization of BiOI with pH-Dependence for Hg ^O Removal. Energy & Fuels, 2021, 35, 11415-11426.	2.5	17
2033	Facile decoration of CdS nanoparticles on TiO ₂ : robust photocatalytic activity under LED illumination. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.3	2
2034	Supported-Metal Oxide Nanoparticles-Potential Photocatalysts. , 0, , .		3
2035	Designing spinel NiCr2O4 loaded Bi2O3 semiconductor hybrid for mitigating the charge recombination and tuned band gap for enhanced white light photocatalysis and antibacterial applications. Journal of Alloys and Compounds, 2021, 865, 158735.	2.8	43
2036	Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. Npj 2D Materials and Applications, 2021, 5, .	3.9	163

#	Article	IF	CITATIONS
2037	Bi2O3-sensitized hierarchically mesoporous ZnO nanoparticles for Hg(II) reduction. Ceramics International, 2021, 47, 17069-17076.	2.3	5
2038	A novel Caln2S4/TiO2 NTAs heterojunction photoanode for highly efficient photocathodic protection performance of 316 SS under visible light. Nanotechnology, 2021, 32, .	1.3	16
2039	Spontaneously formed gradient chemical compositional structures of niobium doped titanium dioxide nanoparticles enhance ultraviolet- and visible-light photocatalytic performance. Scientific Reports, 2021, 11, 15236.	1.6	9
2040	Ultrafast Microwave Synthesis of WO ₃ Nanostructured Films for Solar Photocatalysis. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100196.	1.2	12
2041	TiO2/BiOI p-n junction-decorated carbon fibers as weavable photocatalyst with UV–vis photoresponsive for efficiently degrading various pollutants. Chemical Engineering Journal, 2021, 415, 129019.	6.6	130
2042	Construction of 2D polyoxoniobate/RGO heterojunction photocatalysts for the enhanced photodegradation of tetracycline. Applied Surface Science, 2021, 553, 149505.	3.1	24
2043	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	14.4	71
2044	3D hollow Bi2O3@CoAl-LDHs direct Z-scheme heterostructure for visible-light-driven photocatalytic ammonia synthesis. Journal of Colloid and Interface Science, 2021, 604, 798-809.	5.0	30
2045	Aluminium-doped TiO2 nanotubes with enhanced light-harvesting properties. Ceramics International, 2021, 47, 18358-18366.	2.3	6
2046	Rational design of kaolinite-based photocatalytic materials for environment decontamination. Applied Clay Science, 2021, 208, 106098.	2.6	30
2047	Efficient photocatalytic oxygen activation by oxygen-vacancy-rich CeO2-based heterojunctions: Synergistic effect of photoexcited electrons transfer and oxygen chemisorption. Applied Catalysis B: Environmental, 2021, 289, 120020.	10.8	102
2048	Synergistic Polarization Engineering on Bulk and Surface for Boosting CO ₂ Photoreduction. Angewandte Chemie, 2021, 133, 18451-18456.	1.6	19
2049	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	23.0	156
2050	Photocatalytic Applications in Wastewater and Air Treatment: A Patent Review (2010–2020). Catalysts, 2021, 11, 834.	1.6	18
2051	Core-shell ZIF-8@MIL-68(In) derived ZnO nanoparticles-embedded In2O3 hollow tubular with oxygen vacancy for photocatalytic degradation of antibiotic pollutant. Journal of Hazardous Materials, 2021, 414, 125395.	6.5	85
2052	Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials, 2021, 11, 1804.	1.9	192
2053	Construction of a Bioinspired Hierarchical BiVO ₄ /BiOCl Heterojunction and Its Enhanced Photocatalytic Activity for Phenol Degradation. ACS Applied Materials & Interfaces, 2021, 13, 32906-32915.	4.0	73
2054	Metal–Organic Framework Nanosheets: Programmable 2D Materials for Catalysis, Sensing, Electronics, and Separation Applications. Advanced Functional Materials, 2021, 31, 2103723.	7.8	77

#	Article	IF	CITATIONS
2055	0D/2D NiS/CdS nanocomposite heterojunction photocatalyst with enhanced photocatalytic H2 evolution activity. Applied Surface Science, 2021, 554, 149622.	3.1	48
2056	Highly efficient Ti3+ self-doped TiO2 co-modified with carbon dots and palladium nanocomposites for disinfection of bacterial and fungi. Journal of Hazardous Materials, 2021, 413, 125318.	6.5	31
2057	Modulation strategies in titania photocatalyst for energy recovery and environmental remediation. Catalysis Today, 2022, 384-386, 45-69.	2.2	9
2058	Photoelectrochemical Biosensor for MicroRNA-21 Based on High Photocurrent of TiO ₂ /Two-Dimensional Coordination Polymer CuCl _{<i>x</i>} (MBA) _{<i>y</i>} Photoelectrode. Analytical Chemistry, 2021, 93, 11010-11018	3.2	24
2059	Facile synthesis of defected TiO2- (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity. Journal of Materials Science and Technology, 2021, 80, 171-178.	5.6	15
2060	Hydrogel photocatalysts for efficient energy conversion and environmental treatment. Frontiers in Energy, 2021, 15, 577-595.	1.2	14
2061	Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999–2020). Journal of Hazardous Materials, 2021, 414, 125488.	6.5	22
2062	Unique hollow heterostructured CdS/Cd0.5Zn0.5S-Mo1â^'xWxS2: Highly-improved visible-light-driven H2 generation via synergy of Cd0.5Zn0.5S protective shell and defect-rich Mo1â^'xWXS2 cocatalyst. Nano Research, 2022, 15, 985-995.	5.8	15
2063	Facile preparation of carbon quantum dots/TiO2 composites at room temperature with improved visible-light photocatalytic activity. Journal of Alloys and Compounds, 2021, 869, 159389.	2.8	32
2064	Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chemical Engineering Journal, 2021, 415, 128991.	6.6	253
2065	Synergistic Polarization Engineering on Bulk and Surface for Boosting CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2021, 60, 18303-18308.	7.2	197
2066	A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technology, 2021, 388, 274-304.	2.1	52
2067	Disclosing the hidden presence of Ti3+ ions in different TiO2 crystal structures synthesized at low temperature and photocatalytic evaluation by methylene blue photobleaching. Journal of Materials Research, 2021, 36, 3353-3365.	1.2	6
2068	Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: Principles and synthesis perspectives. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 88-114.	2.7	29
2069	Insights into nano-heterostructured materials for gas sensing: a review. Multifunctional Materials, 2021, 4, 032002.	2.4	40
2070	A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air. Journal of Industrial and Engineering Chemistry, 2021, 100, 19-39.	2.9	15
2071	The PtSe2/GaN van der Waals heterostructure photocatalyst with type II alignment: A first-principles study. Applied Catalysis A: General, 2021, 624, 118332.	2.2	34
2072	Cooperative Photocatalysis with 4â€Aminoâ€TEMPO for Selective Aerobic Oxidation of Amines over TiO ₂ Nanotubes. Chemistry - an Asian Journal, 2021, 16, 2659-2668.	1.7	5

#	Article	IF	CITATIONS
2073	Ternary Photodegradable Nanocomposite (BiOBr/ZnO/WO ₃) for the Degradation of Phenol Pollutants: Optimization and Experimental Design. ACS Omega, 2021, 6, 22047-22064.	1.6	16
2074	Band offset in semiconductor heterojunctions. Journal of Physics Condensed Matter, 2021, 33, 415002.	0.7	19
2075	Interfacial charge transfer of heterojunction photocatalysts: Characterization and calculation. Surfaces and Interfaces, 2021, 25, 101265.	1.5	16
2076	Green synthesis of reduced graphene oxide-CoFe2O4 nanocomposite as a highly efficient visible-light-driven catalyst in photocatalysis and photo Fenton-like reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115223.	1.7	19
2077	Rapid sonochemical synthesis of copper doped ZnO grafted on graphene as a multi-component hierarchically structured visible-light-driven photocatalyst. Materials Research Bulletin, 2021, 140, 111290.	2.7	24
2078	WO ₃ /BiVO ₄ Photoanodes: Facets Matching at the Heterojunction and BiVO ₄ Layer Thickness Effects. ACS Applied Energy Materials, 2021, 4, 8421-8431.	2.5	22
2079	MoO3/g-C3N4 heterostructure for degradation of organic pollutants under visible light irradiation: High efficiency, general degradation and Z-scheme degradation mechanism. Ceramics International, 2021, 47, 33697-33708.	2.3	19
2080	Investigation of surface interaction in rGO-CdS photocatalyst for hydrogen production: An insight from XPS studies. International Journal of Hydrogen Energy, 2021, 46, 26757-26769.	3.8	43
2081	Theoretical study on structural, excitonic and electronic properties of Nb2O5 with five crystal structures. Materials Science in Semiconductor Processing, 2021, 130, 105831.	1.9	3
2082	Influence of a hole inversion layer at the In2O3 / BiVO4 interface on the high-efficiency photocatalytic performance. Surfaces and Interfaces, 2021, 25, 101148.	1.5	7
2083	Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. Environmental Chemistry Letters, 2021, 19, 4563-4601.	8.3	206
2084	Enhancing the Charge Carrier Transfer of ZnFe ₂ O ₄ /C/TiO ₂ Hollow Nanosphere Photocatalyst via Contact Interface Engineering. Industrial & Engineering Chemistry Research, 2021, 60, 12893-12900.	1.8	5
2085	Various Material Development Strategies for Suitable Catalysts of Photo Catalytic Water Splitting to Green Fuel H2:A Critical Review. Material Science Research India, 2021, 18, 108-142.	0.9	3
2086	Novel CoWO4-Ag2MoO4 NCs: Synthesis, enhanced photocatalytic activity under visible-light irradiation and its antimicrobial activity. Surfaces and Interfaces, 2021, 25, 101237.	1.5	14
2087	Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catalysis, 2021, 11, 11336-11359.	5.5	81
2088	Photoinduced hydrophilic behavior of TiO2 thin film on Si substrate. Journal of Alloys and Compounds, 2021, 872, 159746.	2.8	12
2089	Zn(II)-MOF with flexible dicarboxylate ligand with different N-donor linkage as photocatalyst for aromatic dye degradation. Inorganic Chemistry Communication, 2021, 130, 108685.	1.8	8
2090	Spatial separation of photo-induced charge carriers in a Na3VO2B6O11 polar material and its enhanced photocatalytic activity. Applied Surface Science, 2021, 556, 149809.	3.1	3

#	Article	IF	CITATIONS
2091	Sulfur-Doped BiOCl with Enhanced Light Absorption and Photocatalytic Water Oxidation Activity. Nanomaterials, 2021, 11, 2221.	1.9	10
2092	Visible light excited graphitic carbon nitride for efficient degradation of thiamethoxam: Removal efficiency, factors effect and reaction mechanism study. Journal of Environmental Chemical Engineering, 2021, 9, 105739.	3.3	5
2093	Promising pure gold aerogel: in situ preparation by composite sol–gel and application in catalytic removal of pollutants and SERS. Journal of Sol-Gel Science and Technology, 2021, 99, 614-626.	1.1	5
2094	Engineering an Interfacial Facet of S-Scheme Heterojunction for Improved Photocatalytic Hydrogen Evolution by Modulating the Internal Electric Field. ACS Applied Materials & Interfaces, 2021, 13, 39491-39500.	4.0	118
2095	Rational Design of Semiconductor Heterojunctions for Photocatalysis. Chemistry - A European Journal, 2021, 27, 13306-13317.	1.7	44
2096	One-pot synthesis of Bi2TiO4F2/BiOBr ferroelectric heterostructure for photocatalytic oxygen evolution. Journal of Alloys and Compounds, 2021, 873, 159847.	2.8	9
2097	Modification of surface α-Fe2O3/TiO2 photocatalyst nanocomposite with enhanced photocatalytic activity by Ar gas plasma treatment for hydrogen evolution. Journal of Environmental Chemical Engineering, 2021, 9, 105660.	3.3	30
2098	A Facile In Situ Hydrothermal Etching Method to CaTiO3/TiO2 Heterostructure for Efficient Photocatalytic N2 Reduction. Catalysis Letters, 2022, 152, 1990-1998.	1.4	7
2099	Recent advances in carbon nitride-based nanomaterials for hydrogen production and storage. International Journal of Hydrogen Energy, 2022, 47, 37490-37516.	3.8	11
2100	Enhancing the photoelectrochemical performance of p-silicon through TiO2 coating decorated with mesoporous MoS2. Frontiers in Energy, 0, , 1.	1.2	0
2101	Shedding Light on the Role of Chemical Bond in Catalysis of Nitrogen Fixation. Advanced Materials, 2021, 33, e2007891.	11.1	32
2102	Factors affecting photocatalytic performance through the evolution of the properties due to the phase transition from NaBiO3·2H2O to BiO2â°x. Frontiers in Energy, 2022, 16, 471-482.	1.2	1
2103	Titanium Vacancies in TiO ₂ Nanofibers Enable Highly Efficient Photodriven Seawater Splitting. Chemistry - A European Journal, 2021, 27, 14202-14208.	1.7	16
2104	Recent developments of perylene diimide (PDI) supramolecular photocatalysts: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100436.	5.6	66
2105	A review on monoclinic metal molybdate photocatalyst for environmental remediation. Journal of Industrial and Engineering Chemistry, 2021, 101, 28-50.	2.9	22
2106	Visible-light-driven Z-scheme protonated g-C3N4/wood flour biochar/BiVO4 photocatalyst with biochar as charge-transfer channel for enhanced RhB degradation and Cr(VI) reduction. Science of the Total Environment, 2022, 806, 150662.	3.9	50
2107	High Visible Light Photocatalytic Activity of SnO _{2â€x} Nanocrystals with Rich Oxygen Vacancy. European Journal of Inorganic Chemistry, 2021, 2021, 4370-4376.	1.0	17
2108	Modification of BiOBr with cellulose nanocrystals to improve the photocatalytic performance under visible light. Cellulose, 2021, 28, 9893-9905.	2.4	11

#	Article	IF	CITATIONS
2109	Polymer Nanocomposite Films Based on Two-Dimensional Materials for Photocatalytic Applications. Green Chemistry and Sustainable Technology, 2022, , 111-143.	0.4	1
2110	Photocatalytic water purification with graphitic C3N4-based composites: Enhancement, mechanisms, and performance. Applied Materials Today, 2021, 24, 101118.	2.3	13
2111	Efficient photodegradation of 4-chlorophenol under solar radiation using a new ZnO/ZnS/carbon xerogel composite as a photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113377.	2.0	16
2112	Designing heterointerface in BiOBr/g-C3N4 photocatalyst to enhance visible-light-driven photocatalytic performance in water purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126796.	2.3	21
2113	Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance. Journal of Catalysis, 2021, 401, 262-270.	3.1	18
2114	Heterostructure of Ta3N5 nanorods and CaTaO2N nanosheets fabricated using a precursor template to boost water splitting under visible light. Journal of Energy Chemistry, 2022, 67, 27-33.	7.1	14
2115	Bio-fabrication of TiO2 Nanomaterials and Their Applications in Electronics Devices. Journal of Electronic Materials, 2021, 50, 6087-6101.	1.0	2
2116	Molten salt-assisted shape modification of CaFe2O4 nanorods for highly efficient photocatalytic degradation of methylene blue. Optical Materials, 2021, 119, 111295.	1.7	16
2117	Graphitic carbon nitride heterojunction photocatalysts for solar hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 37242-37267.	3.8	36
2118	Construction and application of BiOCl/Cu-doped Bi2S3 composites for highly efficient photocatalytic degradation of ciprofloxacin. Chemosphere, 2022, 287, 132391.	4.2	38
2119	Recent advancements in strategies to improve performance of tungsten-based semiconductors for photocatalytic hydrogen production: a review. Journal Physics D: Applied Physics, 2021, 54, 503001.	1.3	15
2120	Highly efficient biomass-derived carbon@Au/ZnO novel ternary photocatalyst for ultra-fast degradation of gemifloxacin drug. Journal of Materials Research and Technology, 2021, 14, 954-967.	2.6	12
2121	Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. Inorganic Chemistry Communication, 2021, 131, 108763.	1.8	29
2122	TiO2 doped with europium (Eu): Synthesis, characterization and catalytic performance on pesticide degradation under solar irradiation. Catalysis Today, 2022, 394-396, 304-313.	2.2	12
2123	Photocatalysis: an effective tool for photodegradation of dyes—a review. Environmental Science and Pollution Research, 2022, 29, 293-311.	2.7	139
2124	Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis, 2021, 42, 1413-1438.	6.9	208
2125	Novel NiS/Ag2MoO4 heterostructure nanocomposite: Synthesis, characterization and superior antibacterial and enhanced photocatalytic activity. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 133, 114767.	1.3	21
2126	In-situ construction of sequential heterostructured CoS/CdS/CuS for building "electron-welcome zone―to enhance solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2022, 300, 120763.	10.8	38

#	Article	IF	CITATIONS
2127	Construction of 2D-layered quantum dots/2D-nanosheets heterostructures with compact interfaces for highly efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 608, 284-293.	5.0	6
2128	ZnIn ₂ S ₄ â€Based Photocatalysts for Energy and Environmental Applications. Small Methods, 2021, 5, e2100887.	4.6	153
2129	A Review: Photocatalysts Based on BiOCl and g-C3N4 for Water Purification. Catalysts, 2021, 11, 1084.	1.6	7
2130	Synthesis of Selected Mixed Oxide Materials with Tailored Photocatalytic Activity in the Degradation of Tetracycline. Materials, 2021, 14, 5361.	1.3	10
2131	NH2-MIL-125(Ti) doped CdS/Graphene composite as electro and photo catalyst in basic medium under light irradiation. Environmental Research, 2021, 200, 111719.	3.7	10
2132	Single-Atom Fe-N4 sites promote the triplet-energy transfer process of g-C3N4 for the photooxidation. Journal of Catalysis, 2021, 404, 89-95.	3.1	26
2133	Titanium Vacancies in TiO ₂ Nanofibers Enable Highly Efficient Photodriven Seawater Splitting. Chemistry - A European Journal, 2021, 27, 14142-14142.	1.7	1
2134	Improved charge separation and carbon dioxide photoreduction performance of surface oxygen vacancy-enriched zinc ferrite@titanium dioxide hollow nanospheres with spatially separated cocatalysts. Journal of Colloid and Interface Science, 2021, 599, 1-11.	5.0	15
2135	Current and future perspectives on catalytic-based integrated carbon capture and utilization. Science of the Total Environment, 2021, 790, 148081.	3.9	67
2136	Facile synthesis of MgS/Ag2MoO4 nanohybrid heterojunction: Outstanding visible light harvesting for boosted photocatalytic degradation of MB and its anti-microbial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127097.	2.3	26
2137	The facile fabrication of Z-scheme Bi2WO6-P25 heterojunction with enhanced photodegradation of antibiotics under visible light. Journal of Environmental Chemical Engineering, 2021, 9, 106167.	3.3	16
2138	Insights into enhancement of photocatalytic properties of g-C3N4 by local electric field induced by polarization of MgO(111). Journal of Environmental Chemical Engineering, 2021, 9, 105922.	3.3	13
2139	Z-Scheme heterojunction Ag/NH2-MIL-125(Ti)/CdS with enhanced photocatalytic activity for ketoprofen degradation: Mechanism and intermediates. Chemical Engineering Journal, 2021, 422, 130105.	6.6	52
2140	ZnS-based quantum dots as photocatalysts for water purification. Journal of Water Process Engineering, 2021, 43, 102217.	2.6	41
2141	Bi2WO6-TiO2/starch composite films with Ag nanoparticle irradiated by Î ³ -ray used for the visible light photocatalytic degradation of ethylene. Chemical Engineering Journal, 2021, 421, 129986.	6.6	43
2142	Photocatalytically reductive defluorination of perfluorooctanoic acid (PFOA) using Pt/La2Ti2O7 nanoplates: Experimental and DFT assessment. Journal of Hazardous Materials, 2021, 419, 126452.	6.5	32
2143	One-step synthesis of porous BiOCl microflowers with oxygen vacancies for photoreduction of CO2 under visible light irradiation. Inorganic Chemistry Communication, 2021, 132, 108815.	1.8	9
2144	Synergistic photocatalytic activity of SnO2/PANI nanocomposite for the removal of direct blue 15 under UV light irradiation. Ceramics International, 2021, 47, 29225-29231.	2.3	16

#	Article	IF	CITATIONS
2145	Behavior and structure tuning of (Mn&Fe)AlOx-based catalysts for superior denitrification performance. Journal of Environmental Chemical Engineering, 2021, 9, 106153.	3.3	4
2146	The effect of piezo-photocatalysis on enhancing the charge carrier separation in BaTiO3/KNbO3 heterostructure photocatalyst. Applied Surface Science, 2021, 562, 150164.	3.1	43
2147	Ag NPs decorated C–TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction. Environmental Pollution, 2021, 286, 117305.	3.7	44
2148	A novel mixed matrix polysulfone membrane for enhanced ultrafiltration and photocatalytic self-cleaning performance. Journal of Colloid and Interface Science, 2021, 599, 178-189.	5.0	27
2149	Ag-Cu2O composite films with enhanced photocatalytic activities for methylene blue degradation: Analysis of the mechanism and the degradation pathways. Journal of Environmental Chemical Engineering, 2021, 9, 106161.	3.3	60
2150	Type-II vdW heterojunction SeGa2Te/SeIn2Se as a high-efficiency visible-light-driven water-splitting photocatalyst. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 413, 127594.	0.9	9
2151	In-situ fabrication of novel flower like MoS2/CoTiO3 nanorod heterostructures for the recyclable degradation of ciprofloxacin and bisphenol A under sunlight. Chemosphere, 2021, 281, 130822.	4.2	22
2152	Preparation of g-C3N4/BMO heterojunction for visible photocatalytic degradation of O-Nitrophenol and actual pharmaceutical wastewater. Materials Science in Semiconductor Processing, 2021, 133, 105950.	1.9	4
2153	Computational study of group III-V semiconductors and their interaction with oxide thin films. Solid-State Electronics, 2021, 184, 108038.	0.8	2
2154	Designing 0D/2D CdS nanoparticles/g-C3N4 nanosheets heterojunction as efficient photocatalyst for improved H2-evolution. Surfaces and Interfaces, 2021, 26, 101312.	1.5	22
2155	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	3.3	47
2156	Sugar-regulated bismuth oxybromide flowers with active imprinting sites for efficient photooxidative ability. Journal of Alloys and Compounds, 2021, 879, 160374.	2.8	4
2157	Exploring the structural and electronic properties of GeC/BP van der Waals heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114804.	1.3	6
2158	Enhanced photocatalytic performance of heterogeneous hydrotalcite by spontaneously polarized ferroelectric. Journal of Colloid and Interface Science, 2021, 600, 473-479.	5.0	4
2159	Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction. Journal of Environmental Chemical Engineering, 2021, 9, 105961.	3.3	15
2160	Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cell. International Journal of Hydrogen Energy, 2021, 46, 33969-33977.	3.8	28
2161	Black phosphorus-TiF3 photocatalyst for hydrogen production with an excellent capacity. Journal of Alloys and Compounds, 2021, 883, 160775.	2.8	11
2162	Surface engineering of CdS with ternary Bi/Bi2MoO6-MoS2 heterojunctions for enhanced photoexcited charge separation in solar-driven hydrogen evolution reaction. Applied Surface Science, 2021, 565, 150601.	3.1	40

#	Article	IF	CITATIONS
2163	TiO2 photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. Catalysis Today, 2021, 380, 3-15.	2.2	19
2164	Enhanced photocatalytic degradation of Diclofenac with Agl/CeO2: A comparison with Mn, Cu and Ag-doped CeO2. Materials Research Bulletin, 2021, 143, 111463.	2.7	28
2165	Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water. Chinese Journal of Catalysis, 2021, 42, 2010-2019.	6.9	45
2166	Fabrication of one-dimensional Bi2WO6/CuBi2O4 heterojunction nanofiber and its photocatalytic degradation property. Optical Materials, 2021, 121, 111508.	1.7	25
2167	Performance of sunlight responsive WO3/AgBr heterojunction photocatalyst toward degradation of Rhodamine B dye and ofloxacin antibiotic. Optical Materials, 2021, 121, 111573.	1.7	35
2168	SiOC and SiCN-based ceramic supports for catalysts and photocatalysts. Microporous and Mesoporous Materials, 2021, 327, 111435.	2.2	3
2169	Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review. Fuel, 2021, 303, 121207.	3.4	114
2170	Photocatalytic degradation of rhodamine B by Bi2O3@LDHs S–scheme heterojunction: Performance, kinetics and mechanism. Applied Surface Science, 2021, 567, 150760.	3.1	36
2171	B doped Bi2O2CO3 hierarchical microspheres: Enhanced photocatalytic performance and reaction mechanism for NO removal. Catalysis Today, 2021, 380, 230-236.	2.2	14
2172	Construction of direct Z-scheme photocatalyst by the interfacial interaction of WO3 and SiC to enhance the redox activity of electrons and holes. Chemosphere, 2021, 282, 130866.	4.2	15
2173	Designing spinel CoFe2O4 loaded sheet-like Bi2O3 nano-heterostructure for synergetic white-light photocatalysis with recombination delay and antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127449.	2.3	8
2174	Noble-metal-free Cd0.3Zn0.7S-Ni(OH)2 for high efficiency visible light photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2021, 601, 177-185.	5.0	17
2175	State-of-the-art progress in the selective photo-oxidation of alcohols. Journal of Energy Chemistry, 2021, 62, 338-350.	7.1	50
2176	Cooperative photocatalysis of dye-TiO2 nanotubes with TEMPO+BF4â^' for selective aerobic oxidation of amines driven by green light. Applied Catalysis B: Environmental, 2021, 296, 120368.	10.8	21
2177	Recent advances on heterojunction-based photocatalysts for the degradation of persistent organic pollutants. Chemical Engineering Journal, 2021, 426, 130617.	6.6	53
2178	Construction heterojunction by Cd0.5Zn0.5S nanoparticles anchored on basic zinc carbonate doped Ni(HCO3)2 nanosheets for highly efficient photocatalytic hydrogen production under visible light irradiation. Applied Surface Science, 2021, 569, 151096.	3.1	5
2179	Carbon quantum dots modified BiOCl for highly efficient degradation of contaminants benefited from effective generation of ·O2â~'. Materials Science in Semiconductor Processing, 2021, 136, 106165.	1.9	26
2180	Controlled thermal treatment of NH2-MIL-125(Ti) for drastically enhanced photocatalytic reduction of Cr(VI). Separation and Purification Technology, 2021, 277, 119643.	3.9	29

#	Article	IF	CITATIONS
2181	Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer. Chemical Engineering Journal, 2021, 426, 130832.	6.6	28
2182	Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects. Talanta, 2021, 235, 122726.	2.9	46
2183	Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production. Journal of Materials Science and Technology, 2021, 95, 167-171.	5.6	26
2184	Bi2WO6 nanoparticles-decorated ZnO nanosheets and their enhanced gas sensing properties. Vacuum, 2021, 194, 110627.	1.6	7
2185	Synthesis of TiO2@ZnO heterojunction for dye photodegradation and wastewater treatment. Journal of Alloys and Compounds, 2021, 886, 161169.	2.8	94
2186	A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustainable Materials and Technologies, 2021, 30, e00343.	1.7	30
2188	Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: A comparative study. Environmental Research, 2022, 203, 111841.	3.7	32
2189	Photocatalytic fuel cell – A review. Chemical Engineering Journal, 2022, 428, 131074.	6.6	57
2190	Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-Ta P2O11 (xÂ=Â0, 0.5, 1.0, 1.5, and 2.0) compounds. Journal of Materials Science and Technology, 2022, 98, 26-32.	5.6	4
2191	Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment. Journal of Hazardous Materials, 2022, 422, 126912.	6.5	49
2192	Three-dimensional C3N5/RGO aerogels with enhanced visible-light response and electron-hole separation efficiency for photocatalytic uranium reduction. Chemical Engineering Journal, 2022, 427, 131773.	6.6	56
2193	Performance of NiO intercalated rGO nanocomposites for NH3 sensing at room temperature. Materials Science in Semiconductor Processing, 2022, 137, 106221.	1.9	23
2194	Boosted photocatalytic NO removal performance by S-scheme hierarchical composites WO3/Bi4O5Br2 prepared through a facile ball-milling protocol. Separation and Purification Technology, 2021, 278, 119662.	3.9	23
2195	Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 2022, 64, 406-431.	7.1	125
2196	Surface treatment for efficient photocarriers transfer and separation: A general case of nitric acid activated Bi4Ti3O12. Journal of Molecular Structure, 2022, 1247, 131329.	1.8	3
2197	Au nanoparticles decorated polypyrrole-carbon black/g-C3N4 nanocomposite as ultrafast and efficient visible light photocatalyst. Chemosphere, 2022, 287, 131984.	4.2	41
2198	Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization. Chemical Engineering Journal, 2022, 429, 132217.	6.6	29
2199	Visible light-driven g-C3N4 peroxymonosulfate activation process for carbamazepine degradation: Activation mechanism and matrix effects. Chemosphere, 2022, 286, 131906.	4.2	22

#	Article	IF	Citations
2200	Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles. Journal of Colloid and Interface Science, 2022, 605, 373-384.	5.0	34
2201	The preparation of visible light-driven ZnO/Ag2MoO4/Ag nanocomposites with effective photocatalytic and antibacterial activity. Journal of Alloys and Compounds, 2022, 891, 161898.	2.8	42
2202	Mechanism investigation for ultra-efficient photocatalytic water disinfection based on rational design of indirect Z-scheme heterojunction black phosphorus QDs/Cu2O nanoparticles. Journal of Hazardous Materials, 2022, 424, 127281.	6.5	24
2203	Fabrication of graphitic carbon Nitride/Nonstoichiometric molybdenum oxide nanorod composite with the nonmetal plasma enhanced photocatalytic hydrogen evolution activity. Journal of Colloid and Interface Science, 2022, 606, 848-859.	5.0	21
2204	The band engineering of 2D-hybridized PCN-Sb ₂ MoO ₆ -Bi ₂ O ₃ nanomaterials with dual Z-scheme heterojunction for enhanced photocatalytic water splitting without sacrificial agents. Sustainable Energy and Fuels, 2021, 5, 2325-2334.	2.5	5
2205	TiO2 based Z-scheme photocatalysts for energy and environmental applications. , 2021, , 257-282.		1
2206	Ultrafast and high efficiency photodegradation of dyes under visible light by Au nanocluster-promoted Zn0.5Cd0.5S nanorods. CrystEngComm, 2021, 23, 3288-3296.	1.3	2
2207	SIn ₂ Te/TeIn ₂ Se: a type-II heterojunction as a water-splitting photocatalyst with high solar energy harvesting. Journal of Materials Chemistry C, 2021, 9, 7734-7744.	2.7	10
2208	Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Research, 2021, 14, 2512-2534.	5.8	49
2209	Investigation of the properties of oxide-based multilayer thin films and their use in the photocatalytic applications. , 2021, , 697-715.		0
2210	Synthesis, characterization, and application of CuO nanoparticle 2D doped with Zn2+ against photodegradation of organic dyes (MB & MO) under sunlight. Journal of Materials Science: Materials in Electronics, 2021, 32, 2127-2145.	1.1	4
2211	Synthesis and characterization of CdS/UiO-66/Ag3PO4 nanocomposite for photocatalytic degradation of methyl orange under visible light irradiation. Bulletin of the Chemical Society of Ethiopia, 2021, 34, 571-588.	0.5	4
2212	Magnetic field effect on the photocatalytic degradation of methyl orange by commercial TiO ₂ powder. RSC Advances, 2021, 11, 6284-6291.	1.7	15
2213	Rapid fabrication of silver–cuprous oxide core–shell nanowires for visible light photocatalysts. CrystEngComm, 2021, 23, 24-29.	1.3	6
2214	Heterogeneous photocatalysis. , 2021, , 1-38.		0
2215	Photocatalytic of Congo Red Decolorization in the Presence of Ag/AgCl/TiO2 Nanocomposite: Optimization of Process with Taguchi Method. Arabian Journal for Science and Engineering, 2021, 46, 5619-5632.	1.7	7
2216	Effect of Core–Shell Structure of TiO2 on Its Photocatalytic Performance. Nanostructure Science and Technology, 2021, , 443-458.	0.1	0
2217	Construction of CoS _x –ZnIn ₂ S ₄ hollow nanocages derived from metal–organic frameworks for efficient photocatalytic hydrogen production. New Journal of Chemistry, 2021, 45, 13860-13868.	1.4	7

#	Article	IF	CITATIONS
2218	Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale, 2021, 13, 7011-7033.	2.8	62
2219	Heterojunction-based photocatalyst. , 2021, , 85-130.		1
2220	Ultrafast spectroscopic investigation of the artificial photosynthetic activity of CuAlS ₂ /ZnS quantum dots. Nano Select, 2021, 2, 958-966.	1.9	7
2221	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	2.7	24
2222	P-Doped CdS integrated with multiphasic MoSe ₂ nanosheets accomplish prominent photocatalytic activity for hydrogen evolution. Catalysis Science and Technology, 2021, 11, 5849-5858.	2.1	6
2223	Preparation and photoelectrochemical properties of hierarchical heterostructure ZnO/CuO array. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
2224	Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catalysis Science and Technology, 2021, 11, 27-42.	2.1	86
2225	Interface chemistry of two-dimensional heterostructures – fundamentals to applications. Chemical Society Reviews, 2021, 50, 4684-4729.	18.7	152
2226	A rationally designed two-dimensional MoSe ₂ /Ti ₂ CO ₂ heterojunction for photocatalytic overall water splitting: simultaneously suppressing electron–hole recombination and photocorrosion. Chemical Science, 2021, 12, 2863-2869.	3.7	82
2227	SnS ₂ /Bi ₄ Ti ₃ O ₁₂ Heterostructure Material: A UVâ€Visible Light Active Direct Zâ€6cheme Photocatalyst for Aqueous Phase Degradation of Diazinon. ChemistrySelect, 2020, 5, 1567-1577.	0.7	16
2228	Graphene oxide–ZnO nanocomposite: an efficient visible light photocatalyst for degradation of rhodamine B. Applied Nanoscience (Switzerland), 2021, 11, 1291-1302.	1.6	40
2229	Recent Advances of Epitaxial BiVO4 Thin Film: Preparation and Physical and Photoelectrochemical Properties. Brazilian Journal of Physics, 2020, 50, 185-191.	0.7	7
2230	Improved photocatalytic degradation of ketoprofen by Pt/MIL-125(Ti)/Ag with synergetic effect of Pt-MOF and MOF-Ag double interfaces: Mechanism and degradation pathway. Chemosphere, 2020, 257, 127123.	4.2	41
2231	Construction of ternary hybrid layered reduced graphene oxide supported g-C 3 N 4 -TiO 2 nanocomposite and its photocatalytic hydrogen production activity. International Journal of Hydrogen Energy, 2018, 43, 3892-3904.	3.8	137
2232	Synthesis of flower-like Ta3N5-Au heterojunction with enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2017, 695, 1137-1144.	2.8	26
2233	UiO-66-NH2/Cu2O composite as an enhanced visible light photocatalyst for decomposition of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 399, 112625.	2.0	19
2234	The role of redox states and junctions in photocatalytic hydrogen generation of MoS2-TiO2-rGO and CeO2-Ce2Ti3O8.7-TiO2-rGO composites. Materials Science in Semiconductor Processing, 2020, 118, 105185.	1.9	16
2235	Microwave-assisted synthesis of novel imine-linked copper porphyrin conjugated microporous polymers as heterogeneous photocatalysts. Reactive and Functional Polymers, 2020, 154, 104633.	2.0	14

#	Article	IF	CITATIONS
2236	Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Separation and Purification Technology, 2020, 248, 117062.	3.9	73
2237	BiOCl/cattail carbon composites with hierarchical structure for enhanced photocatalytic activity. Solar Energy, 2020, 211, 1263-1269.	2.9	27
2238	Enhanced Photocatalytic VOCs Mineralization via Special Ga-O-H Charge Transfer Channel in α-Ga ₂ O ₃ /MgAl-LDH Heterojunction. ACS ES&T Engineering, 2021, 1, 501-511.	3.7	32
2239	Synthesis of NiTiO ₃ –Bi ₂ MoO ₆ core–shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts. New Journal of Chemistry, 2018, 42, 411-419.	1.4	24
2240	Selective oxidation of alcohols by using CoFe ₂ O ₄ /Ag ₂ MoO ₄ as a visible-light-driven heterogeneous photocatalyst. New Journal of Chemistry, 2020, 44, 2858-2867.	1.4	28
2241	Recent progress and advances in the environmental applications of MXene related materials. Nanoscale, 2020, 12, 3574-3592.	2.8	186
2242	Construction of heterostructure based on hierarchical Bi ₂ MoO ₆ and g-C ₃ N ₄ with ease for impressive performance in photoelectrocatalytic water splitting and supercapacitor. Catalysis Science and Technology, 2020, 10, 2427-2442.	2.1	43
2243	Improving the efficiency of GaAs solar cells using a double semi-transparent carbon nanotubes thin layer. EPJ Applied Physics, 2019, 88, 20401.	0.3	7
2244	Role of surface termination in forming type-II photocatalyst heterojunctions: the case of TiO ₂ /BiVO ₄ . Journal of Physics Condensed Matter, 2021, 33, 075001.	0.7	18
2245	Facile one-step hydrothermal synthesis of single-crystalline SnNb ₂ O ₆ nanosheets with greatly extended visible-light response for enhanced photocatalytic performance and mechanism insight. Nanotechnology, 2021, 32, 065705.	1.3	7
2246	Effect of surface modification and H ₂ reduction of WO ₃ nanoparticles in Methylene Blue photodegradation. Surface Topography: Metrology and Properties, 2020, 8, 045012.	0.9	3
2247	Green synthesis of p-Co ₃ O ₄ /n-ZnO composite catalyst with Eichhornia Crassipes plant extract mediated for methylene blue degradation under visible light irradiation. Materials Research Express, 2020, 7, 095508.	0.8	20
2248	Two-dimensional heterostructures for photocatalytic water splitting: a review of recent progress. Nano Futures, 2020, 4, 032006.	1.0	31
2249	Latest progress in g-C ₃ N ₄ based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review. JPhys Energy, 2020, 2, 042003.	2.3	41
2250	Passive photonic diodes based on natural van der Waals heterostructures. Nanophotonics, 2020, 10, 927-935.	2.9	11
2251	Recent Progress on Nano-heterostructure Photocatalysts for Solar Fuels Generation. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30, 1121.	0.6	8
2252	Visible Light Responsive Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: a Comprehensive Review on Rational Materials Design. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 173.	0.6	23
2253	Photosensitive nanocomposites: environmental and biological applications. Journal of Composites and Compounds, 2019, 2, 50-60.	0.4	13

#	Article	IF	CITATIONS
2254	Photochemical Preparation of Ag/SnO2 Composites and their Photocatalytic Properties. , 0, , .		3
2255	Adsorption and Photocatalytic Reduction of Carbon Dioxide on TiO2. Catalysts, 2021, 11, 47.	1.6	11
2256	Advances in Photo-catalytic Materials for Environmental Applications. Research & Reviews Journal of Material Sciences, 2016, 04, .	0.1	4
2257	Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review. Journal of the Korean Ceramic Society, 2018, 55, 185-202.	1.1	35
2258	High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal. Aerosol and Air Quality Research, 2017, 17, 2555-2565.	0.9	38
2259	Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-M _{x_{y_{Heterostructures, Journal of Water Resource and Protection, 2019, 11, 357-370}}}	0.3	17
2260	Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst. European Journal of Chemistry, 2019, 10, 82-94.	0.3	9
2261	Recent Advances in Titania-based Composites for Photocatalytic Degradation of Indoor Volatile Organic Compounds. Asian Journal of Atmospheric Environment, 2017, 11, 217-234.	0.4	20
2262	Synthesis of Zn0.4 (CuGa)0.3 Ga2 S4 /CdS Photocatalyst for CO2 Reduction. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, , 480.	0.6	2
2263	Two-dimensional layered type-II MS ₂ /BiOCl (M = Zr, Hf) van der Waals heterostructures: promising photocatalysts for hydrogen generation. New Journal of Chemistry, 2021, 45, 20365-20373.	1.4	12
2264	Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Materials Advances, 2021, 2, 7543-7558.	2.6	38
2265	Photocatalysis for Water Treatment: From Nanoparticle to Single Atom, From Lab-scale to Industry-trial. Chemistry in the Environment, 2021, , 376-404.	0.2	0
2266	Effect of calcination induced phase transition on the photocatalytic hydrogen production activity of BiOI and Bi5O7I based photocatalysts. International Journal of Hydrogen Energy, 2022, 47, 40777-40786.	3.8	12
2267	2D MOF-Based Photoelectrochemical Aptasensor for SARS-CoV-2 Spike Glycoprotein Detection. ACS Applied Materials & amp; Interfaces, 2021, 13, 49754-49761.	4.0	48
2268	Recent Progress on Metallic Bismuthâ€Based Photocatalysts: Synthesis, Construction, and Application in Water Purification. Solar Rrl, 2021, 5, 2100668.	3.1	37
2269	Comparative study of metal oxides and phosphate modification with different mechanisms over g-C3N4 for visible-light photocatalytic degradation of metribuzin. Rare Metals, 2022, 41, 155-165.	3.6	50
2270	Unique NiCo ₂ S ₄ @ZnS/CdS Yolk–Shell Heterojunction for Efficient Visible-Light-Driven Photocatalytic Water Splitting. Crystal Growth and Design, 2021, 21, 6437-6447.	1.4	5
2271	Cuprous Oxide Films Deposition by Mid-Frequency Magnetron Sputtering and Their Photocatalytic Activity under Visible Light. Nano, 2021, 16, .	0.5	0

#	Article	IF	Citations
2272	Optoelectronic and photocatalytic properties of GaN, GeS and SiS monolayers and their vdW heterostructures. Journal of Physics and Chemistry of Solids, 2022, 161, 110433.	1.9	6
2273	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	10.1	25
2274	2D–2D SnS ₂ /Covalent Organic Framework Heterojunction Photocatalysts for Highly Enhanced Solar-Driven Hydrogen Evolution without Cocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 14238-14248.	3.2	40
2275	Surface modification boosts exciton extraction in confined layered structure for selective oxidation reaction. Science China Chemistry, 2021, 64, 1964-1969.	4.2	4
2276	Synthesis and characterisation of copper vanadate quantum dots / nanostructured zinc oxide. Journal of Physics: Conference Series, 2021, 2053, 012004.	0.3	0
2277	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021, 8, e2102376.	5.6	24
2278	Oneâ€Step Fabrication of 2D/2D Zâ€Scheme BiOCl/gâ€C ₃ N ₄ Nanosheets Heterojunction for Efficient Degradation of RhB and Cr(VI) Ions Reduction under Visibleâ€Light Illumination. ChemistrySelect, 2021, 6, 10097-10104.	0.7	4
2279	N-Fe-Gd co-doped TiO2/g-C3N4 nanosheet hybrid composites with superior photocatalytic dye degradation. Advanced Composites and Hybrid Materials, 2022, 5, 481-490.	9.9	20
2280	Urea-Assisted Synthesis of Mesoporous TiO2 Photocatalysts for the Efficient Removal of Clofibric Acid from Water. Materials, 2021, 14, 6035.	1.3	7
2281	Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. Advanced Materials, 2022, 34, e2106195.	11.1	307
2282	Post-fabrication structural changes and enhanced photodegradation activity of semiconductors@zeolite composites towards noxious contaminants. Chemosphere, 2022, 288, 132609.	4.2	10
2283	Accelerating charge transfer via nonconjugated polyelectrolyte interlayers toward efficient versatile photoredox catalysis. Communications Chemistry, 2021, 4, .	2.0	5
2284	Photoelectrochemical Performance of Doped and Undoped TiO2 Nanotubes for Light-Harvesting and Water Splitting Techniques: Systematic Review and Meta-Analysis. Engineering Materials, 2022, , 171-183.	0.3	0
2285	2D/2D Heterojunction systems for the removal of organic pollutants: A review. Advances in Colloid and Interface Science, 2021, 297, 102540.	7.0	51
2286	First-principles study of Ag2ZnSnS4 as a photocatalyst. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 247101.	0.2	4
2287	Effect of Reduced Graphene Oxide in Photoanode on Photoelectrochemical Performance in Water Splitting for Hydrogen Production. Transactions of the Korean Hydrogen and New Energy Society, 2016, 27, 329-334.	0.1	1
2288	Synthesis of CuO _x /MnO ₂ Heterostructures with Enhanced Visible Light-Driven Photocatalytic Activity. Journal of Materials Science and Chemical Engineering, 2017, 05, 12-25.	0.2	1
2289	Composite Nanofibers for Removing Water Pollutants: Fabrication Techniques. , 2018, , 1-29.		0

#	Article	IF	CITATIONS
2290	Ecofriendly Nanomaterials for Sustainable Photocatalytic Decontamination of Organics and Bacteria. , 2019, , 1777-1805.		0
2291	Enhancement of Photocatalytic Activity for Nanostructured ZnO Thin Film Prepared by Pulsed Spray Pyrolysis. Egyptian Journal of Chemistry, 2019, .	0.1	Ο
2292	Preparation of Ag2O/Bi12O17Cl2 p-n junction photocatalyst and its photocatalytic performance under visible and infrared light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127811.	2.3	27
2293	Effective photocatalytic degradation of Rhodamine B using tin semiconductors over hydrotalcite-type materials under sunlight driven. Catalysis Today, 2021, 372, 191-197.	2.2	13
2294	Photoactivated materials and sensors for NO ₂ monitoring. Journal of Materials Chemistry C, 2021, 9, 16804-16827.	2.7	16
2295	Graphitic carbon nitride-based photocatalysts for hydrogen production. , 2022, , 213-236.		3
2296	Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coordination Chemistry Reviews, 2022, 450, 214240.	9.5	93
2297	Physical and optical properties of Ag3PO4 decorated TiO2 based nanostructures. Journal of Solid State Chemistry, 2022, 305, 122655.	1.4	5
2298	The mechanisms of interfacial charge transfer and photocatalysis reaction over Cs3Bi2Cl9 QD/(BiO)2CO3 heterojunction. Chemical Engineering Journal, 2022, 430, 132974.	6.6	14
2299	Photocatalytic performance and mechanism of Rhodamine B with two new Zn(II)-based coordination polymers under UV-light. Journal of Molecular Structure, 2022, 1249, 131681.	1.8	7
2300	Heterostructured Cu2S@ZnS/C composite with fast interfacial reaction kinetics for high-performance 3D-printed Sodium-Ion batteries. Chemical Engineering Journal, 2022, 430, 132993.	6.6	53
2301	Selective deposition of gold particles onto silicon at the nanoscale controlled by a femtosecond laser through galvanic displacement. RSC Advances, 2020, 10, 43432-43437.	1.7	0
2302	Visible Light Enabled Janus Indium Oxysulfide Nanoflakes for Ultrasensitive Chemical Sensing. , 2020, , .		0
2303	Ferroelectric semiconductors for photocatalytic energy and environmental applications. , 2020, , 3-19.		3
2304	Rapid photocatalytic reduction of Cr(VI) with high concentration in wastewater by In2S3-ZnIn2S4 heterostructure hierarchical microtubes under visible light. Journal of Solid State Chemistry, 2022, 306, 122721.	1.4	16
2305	Visible light photocatalytic abatement of tetracycline over unique Z-scheme ZnS/Pl composites. Applied Surface Science, 2022, 575, 151798.	3.1	17
2307	Advanced Oxidation Processes for Wastewater Remediation: An Overview. , 2021, , 71-93.		8
2308	Cubic-shape hematite decorated with plasmonic Ag-Au bimetals for enhanced photocatalysis under visible light irradiation. Materials Research Express, 2020, 7, 095014.	0.8	3

#	Article	IF	CITATIONS
2309	Sustainable visible light photocatalytic scavenging of the noxious organic pollutant using recyclable and reusable polyaniline coupled WO3/WS2 nanohybrid. Journal of Cleaner Production, 2022, 330, 129942.	4.6	23
2310	Synthesis and characterization of P-doped g-C3N4 nanosheet hybridized ZnS nanospheres with enhanced visible-light photocatalytic activity. Journal of Solid State Chemistry, 2022, 305, 122703.	1.4	14
2311	Visible-light-induced oxidative alkene difunctionalization to access α-sulfonyloxy ketones catalyzed by oxygen-vacancy-rich Nb2O5. Applied Catalysis B: Environmental, 2022, 304, 120964.	10.8	15
2312	Varying heterojunction thickness within space charge region for photocatalytic water splitting. Cell Reports Physical Science, 2021, 2, 100652.	2.8	8
2313	From Adsorbent to Photocatalyst: The Sensitization Effect of SnO2 Surface towards Dye Photodecomposition. Molecules, 2021, 26, 7123.	1.7	5
2314	Improved photocatalytic performance of N-doped ZnO/graphene/ZnO sandwich composites. Applied Surface Science, 2022, 577, 151856.	3.1	33
2315	Self-Assembly of a 3D Hollow BiOBr@Bi-MOF Heterostructure with Enhanced Photocatalytic Degradation of Dyes. ACS Applied Materials & amp; Interfaces, 2021, 13, 56171-56180.	4.0	88
2316	Electrospun Ceramic Nanofibers for Photocatalysis. Nanomaterials, 2021, 11, 3221.	1.9	8
2317	lonic Porous Aromatic Framework as a Self-Degraded Template for the Synthesis of a Magnetic γ-Fe2O3/WO3·0.5H2O Hybrid Nanostructure with Enhanced Photocatalytic Property. Molecules, 2021, 26, 6857.	1.7	1
2318	Tuning the Interfacial Energetics in WO ₃ /WO ₃ and WO ₃ /TiO ₂ Heterojunctions by Nanostructure Morphological Engineering. Journal of Physical Chemistry Letters, 2021, 12, 11528-11533.	2.1	12
2319	Recent advancements of layered double hydroxide heterojunction composites with engineering approach towards photocatalytic hydrogen production: A review. International Journal of Hydrogen Energy, 2022, 47, 862-901.	3.8	39
2320	Hydrothermal synthesis of CuO/g-C3N4 nanosheets for visible-light driven photodegradation of methylene blue. Diamond and Related Materials, 2022, 121, 108735.	1.8	22
2321	Metallic and bimetallic phosphides-based nanomaterials for photocatalytic hydrogen production and water detoxification: a review. Environmental Chemistry Letters, 2022, 20, 597-632.	8.3	12
2322	Heterostructures obtained by ultrasonic methods for photocatalytic application: A review. Materials Science in Semiconductor Processing, 2022, 139, 106311.	1.9	7
2323	Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: an overview. Environmental Science and Pollution Research, 2022, 29, 4930-4957.	2.7	19
2324	Highly efficient thiomolybdate [Mo2S12]2- nanocluster cocatalyst decorated on TiO2 to boost photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 19570-19579.	3.8	7
2325	Synergistic Effects of Fluorine and WO ₃ Nanoparticles on the Surface of TiO ₂ Hollow Spheres for Enhanced Photocatalytic Activity under Visible Light Irradiation. ACS Omega, 2021, 6, 30942-30948.	1.6	3
2326	Semiconductor heterojunctions for photocatalytic hydrogen production and Cr(VI) Reduction: A review. Materials Research Bulletin, 2022, 147, 111636.	2.7	30

#	Article	IF	CITATIONS
2327	Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Science Bulletin, 2022, 67, 520-528.	4.3	29
2328	Effect of the Type of Heterostructures on Photostimulated Alteration of the Surface Hydrophilicity: TiO2/BiVO4 vs. ZnO/BiVO4 Planar Heterostructured Coatings. Catalysts, 2021, 11, 1424.	1.6	5
2329	Shape-Controllable Tellurium-Driven Heterostructures with Activated Robust Immunomodulatory Potential for Highly Efficient Radiophotothermal Therapy of Colon Cancer. ACS Nano, 2021, 15, 20225-20241.	7.3	25
2330	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	3.2	88
2331	Facile synthesis, morphological, structural, photocatalytic and optical properties of ZnFe2O4-ZnO hybrid nanostructures. Journal of Alloys and Compounds, 2022, 895, 162723.	2.8	22
2332	Au@CoS-BiVO4 {010} Constructed for Visible-Light-Assisted Peroxymonosulfate Activation. Catalysts, 2021, 11, 1414.	1.6	8
2333	Black phosphorus-based heterostructures for photocatalysis and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 67, 745-779.	7.1	51
2334	Paracetamol degradation by photo-assisted activation of peroxymonosulfate over ZnxNi1â^'xFe2O4@BiOBr heterojunctions. Journal of Environmental Chemical Engineering, 2021, 9, 106797.	3.3	9
2335	Platinum Crosslinked Carbon Dot@TiO _{2â^'} <i>_x</i> pâ€n Junctions for Relapseâ€Free Sonodynamic Tumor Eradication via Highâ€Yield ROS and GSH Depletion. Small, 2022, 18, e2103528.	5.2	61
2336	Applications of 1D Mesoporous Inorganic Nanomaterials in Photocatalysis. Springer Series in Materials Science, 2022, , 143-156.	0.4	0
2337	S-Scheme α-Fe2O3/TiO2 Photocatalyst with Pd Cocatalyst for Enhanced Photocatalytic H2 Production Activity and Stability. Catalysis Letters, 2022, 152, 2590-2606.	1.4	16
2338	MOF-COF Composite Photocatalysts: Design, Synthesis, and Mechanism. Crystal Growth and Design, 2022, 22, 893-908.	1.4	47
2339	Computational modeling of green hydrogen generation from photocatalytic H2S splitting: Overview and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100456.	5.6	15
2340	Enhanced Visible-Light Photocatalytic Degradation of Rhodamine B Over TiO ₂ @CS-biochar Heterojunctions Constructed by Co-Calcination Method. SSRN Electronic Journal, 0, , .	0.4	0
2341	Mechanistic Insight the Visible Light Driven Hydrogen Generation by Plasmonic Au-Cu Alloy Mounted on TiO ₂ @B-Doped G-C ₃ N ₄ Heterojunction Photocatalyst. SSRN Electronic Journal, 0, , .	0.4	0
2342	Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chemical Society Reviews, 2021, 50, 13646-13691.	18.7	69
2343	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	18.7	97
2344	A review on dimensionally controlled synthesis of g-C ₃ N ₄ and formation of an isotype heterojunction for photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 7505-7524.	2.1	19

#	Article	IF	CITATIONS
2345	Solar fuels: research and development strategies to accelerate photocatalytic CO ₂ conversion into hydrocarbon fuels. Energy and Environmental Science, 2022, 15, 880-937.	15.6	304
2346	Strategies and perspectives of tailored SnS2 photocatalyst for solar driven energy applications. Solar Energy, 2022, 231, 546-565.	2.9	32
2347	Nitrogen-doped graphene aerogels with rational indium hydroxide decoration for highly efficient photocatalytic of p-nitrophenol. Journal of Environmental Chemical Engineering, 2022, 10, 107125.	3.3	11
2348	In-situ infrared investigation of m-TiO2/α-Fe2O3 photocatalysts and tracing of intermediates in photocatalytic hydrogenation of CO2 to methanol. Journal of CO2 Utilization, 2022, 56, 101864.	3.3	10
2349	Unraveling highly efficient nanomaterial photocatalyst for pollutant removal: a comprehensive review and future progress. Materials Today Chemistry, 2022, 23, 100692.	1.7	26
2350	Enhanced UV–vis photoinduced hydrogen evolution of metalloporphyrin sensitized PSf/TiO2 MMMs by varying center metal ion complexed in porphyrin. Fuel, 2022, 312, 122810.	3.4	7
2351	Progress in the development of photoactivated materials for smart and active food packaging: Photoluminescence and photocatalysis approaches. Chemical Engineering Journal, 2022, 432, 134301.	6.6	18
2352	Ag decorated CeO2-x nanojunctions with plasmon-enhanced catalytic performance for mono/multi-color switching. Chemical Engineering Journal, 2022, 431, 133996.	6.6	6
2353	Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renewable and Sustainable Energy Reviews, 2022, 156, 111980.	8.2	179
2354	Fabrication of Fe/BiOCl/RGO with enhanced photocatalytic degradation of ciprofloxacin under visible light irradiation. Materials Science in Semiconductor Processing, 2022, 140, 106384.	1.9	15
2355	Construction of S-scheme heterojunction consisting of Zn0.5Cd0.5S with sulfur vacancies and Ni Co1-(OH)2 for highly efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 432, 134371.	6.6	34
2356	A Z-scheme Pd modified ZnIn2S4/P25 heterojunction for enhanced photocatalytic hydrogen evolution. Applied Surface Science, 2022, 579, 152003.	3.1	27
2357	Enhancing quantum efficiency at Ag/g-C3N4 interfaces for rapid removal of nitric oxide under visible light. Sustainable Chemistry and Pharmacy, 2022, 25, 100596.	1.6	4
2358	Z-scheme 0D/3D p-Ag6Si2O7 nanoparticles-decorated n-Bi2O2CO3 micro-flowers heterojunction photocatalyst for efficient degradation of organic contaminants. Journal of Alloys and Compounds, 2022, 899, 163150.	2.8	15
2359	Lotus-Leaf-Like Bi ₂ O ₂ CO ₃ Nanosheet Combined with Mo ₂ S ₃ for Higher Photocatalytic Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	35
2360	Mechanistic Insight the Visible Light Driven Hydrogen Generation by Plasmonic Au-Cu Alloy Mounted on TiO ₂ @B-Doped g-C ₃ N ₄ Heterojunction Photocatalyst. SSRN Electronic Journal, 0, , .	0.4	0
2361	Flexible PAN-BiOI-AgI heterojunction nanofiber and the photocatalytic degradation property. Optical Materials Express, 2022, 12, 1031.	1.6	4
2362	Green synthesis ZnO/TiO2 for high recyclability rapid sunlight photodegradation wastewater. MRS Advances, 2022, 7, 444-449.	0.5	6

#	Article	IF	CITATIONS
2363	Photoreforming of model carbohydrate mixtures from pulping industry wastewaters. International Journal of Hydrogen Energy, 2022, , .	3.8	4
2364	Core–Shell Nanophotocatalysts: Review of Materials and Applications. ACS Applied Nano Materials, 2022, 5, 55-86.	2.4	49
2365	Titanium Carbide MXene Nanostructures as Catalysts and Cocatalysts for Photocatalytic Fuel Production: A Review. ACS Applied Nano Materials, 2022, 5, 18-54.	2.4	41
2366	Enhanced Photocatalytic Activity and Stability of Bi2WO6 – TiO2-N Nanocomposites in the Oxidation of Volatile Pollutants. Nanomaterials, 2022, 12, 359.	1.9	17
2367	Lotus-leaf-like Bi2O2CO3 nanosheet combined with Mo2S3 for higher photocatalytic hydrogen evolution. Separation and Purification Technology, 2022, 288, 120588.	3.9	79
2368	Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering, 2022, 6, 8.	1.0	87
2369	Synthesis of photocatalytic hybrid nanostructures. , 2022, , .		0
2370	Use of magnetic hybrid nanomaterials in environmental applications. , 2022, , 187-211.		0
2371	Density Functional Theory Estimate of Halide Perovskite Band Gap: When Spin Orbit Coupling Helps. Journal of Physical Chemistry C, 2022, 126, 2184-2198.	1.5	40
2372	Engineering Schottky-like and heterojunction materials for enhanced photocatalysis performance – a review. Materials Advances, 2022, 3, 2309-2323.	2.6	39
2373	Visible-Light-Driven Reduced Graphite Oxide as a Metal-Free Catalyst for Degradation of Colored Wastewater. Nanomaterials, 2022, 12, 374.	1.9	2
2374	Constructing recyclable NiFe2O4/MoS2 Z-scheme photocatalysts with enhanced catalytic activity. Journal of Materials Science, 2022, 57, 3525-3537.	1.7	4
2375	Doped ceramics for visible light photocatalysis. , 2022, , 277-293.		2
2376	Recent developments in properties and applications of metal oxides. , 2022, , 95-111.		2
2377	ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review. Environmental Chemistry Letters, 2022, 20, 1047-1081.	8.3	68
2378	Photocatalytic transition-metal-oxides-based p–n heterojunction materials: synthesis, sustainable energy and environmental applications, and perspectives. Journal of Nanostructure in Chemistry, 2023, 13, 129-166.	5.3	17
2379	Two dimensional porous Ni12P5 sheet modified Mn0.5Cd0.5S for efficient photo-catalytic hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 8275-8283.	3.8	7
2380	Interfacial coupling effects on adsorptive and photocatalytic performances for photoresponsive graphene-wrapped SrTiO3@Ag under UV–visible light: experimental and DFT approach. Environmental Science and Pollution Research, 2022, 29, 28098-28114.	2.7	10

#	Article	IF	CITATIONS
2381	Solarâ€powered chemistry: Engineering lowâ€dimensional carbon nitrideâ€based nanostructures for selective <scp>CO₂</scp> conversion to <scp>C₁C₂</scp> products. InformaÄnÃ-Materiály, 2022, 4, .	8.5	53
2382	Phytogenic fabrication of CeO2@SnO2 heterojunction nanostructures for antioxidant studies. Chemical Papers, 2022, 76, 2071-2084.	1.0	8
2383	Opto-Electronic Characterization of Photocatalysts Based on p,n-Junction Ternary and Quaternary Mixed Oxides Semiconductors (Cu2O-In2O3 and Cu2O-In2O3-TiO2). Catalysts, 2022, 12, 153.	1.6	8
2384	Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts. Nanomaterials, 2022, 12, 344.	1.9	17
2385	Insight into the Roles of Metal Loading on CO2 Photocatalytic Reduction Behaviors of TiO2. Nanomaterials, 2022, 12, 474.	1.9	10
2386	Facetâ€Control versus Coâ€Catalystâ€Control in Photocatalytic H ₂ Evolution from Anatase TiO ₂ Nanocrystals. ChemistryOpen, 2022, 11, e202200010.	0.9	6
2387	Enhanced removal of acid dye under visible light using CNT-modified photocatalyst coated onto PU foam. Nanotechnology for Environmental Engineering, 2022, 7, 147.	2.0	0
2388	Two-Dimensional WO ₃ -Transition-Metal Dichalcogenide Vertical Heterostructures for Nitrogen Fixation: A Photo(Electro) Catalysis Theoretical Strategy. Journal of Physical Chemistry C, 2022, 126, 3043-3053.	1.5	8
2389	Parasitic Light Absorption, Rate Laws and Heterojunctions in the Photocatalytic Oxidation of Arsenic(III) Using Composite TiO ₂ /Fe ₂ O ₃ . Chemistry - A European Journal, 2022, 28, .	1.7	8
2390	Self-cleaning activity of CuO/ZnO heterostructure: A synergy of photocatalysis and hydrophilicity. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104216.	2.7	27
2391	Visible light dye degradation over fluorinated mesoporous TiO2Ââ^'ÂWO3Ââ^'ÂBi2O3/SiO2 nanocomposite photocatalyst-adsorbent using immersion well reactor. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113790.	2.0	15
2392	Fabrication of 3D CuS@Znln2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 433, 134474.	6.6	81
2393	Synthesis and characterization of bimetallic TiO2/CNT/Pd-Cu for efficient remediation of endocrine disruptors under solar light. Journal of Environmental Chemical Engineering, 2022, 10, 107245.	3.3	13
2394	Recovery of precious metals from industrial wastewater towards resource recovery and environmental sustainability: A critical review. Desalination, 2022, 527, 115510.	4.0	67
2395	One plus one greater than Two: Ultrasensitive Surface-Enhanced Raman scattering by TiO2/ZnO heterojunctions based on Electron-Hole separation. Applied Surface Science, 2022, 584, 152609.	3.1	20
2396	Cu2-xO@TiO2-y Z-scheme heterojunctions for sonodynamic-chemodynamic combined tumor eradication. Chemical Engineering Journal, 2022, 435, 134777.	6.6	30
2397	A review on synergistic coexisting pollutants for efficient photocatalytic reaction in wastewater remediation. Environmental Research, 2022, 209, 112748.	3.7	26
2398	Chapter 5. 2D Photocatalytic Materials for Environmental Applications. Inorganic Materials Series, 2022, , 217-293.	0.5	0

#	Article	IF	CITATIONS
2399	Chapter 4. 2D Inorganic Nanosheet-based Hybrid Photocatalysts for Water Splitting. Inorganic Materials Series, 2022, , 170-216.	0.5	0
2400	Biomimetic Nanoarchitectonics: Natural Cellulose Based Nanocomposites as High Performance Catalysts. RSC Nanoscience and Nanotechnology, 2022, , 63-81.	0.2	0
2401	Photocatalytic degradation and reusable SERS detection by Ag nanoparticles immobilized on g-C3N4/graphene oxide nanosheets. Surface and Coatings Technology, 2022, 435, 128212.	2.2	19
2402	In situ-grown ZnO particles on g-C3N4 layers: a direct Z-scheme-driven photocatalyst for the degradation of dye and pharmaceutical pollutants under solar irradiation. Journal of Materials Science: Materials in Electronics, 2022, 33, 9774-9784.	1.1	12
2403	Hydrothermal Synthesis and Photocatalytic Properties of Graphene@Ag/AgSb2O5.8 Composites: Reaction Laws of the Composites in Sintering Process. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.0	0
2404	Built-In Electric Field Directs Electron Transport at Ultrathin Ni(OH) ₂ /Metal–Organic Framework Interface for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 2161-2168.	2.5	9
2405	Automated search for optimal surface phases (ASOPs) in grand canonical ensemble powered by machine learning. Journal of Chemical Physics, 2022, 156, 094104.	1.2	9
2406	Stacking Engineering of Semiconductor Heterojunctions on Hollow Carbon Spheres for Boosting Photocatalytic CO ₂ Reduction. ACS Catalysis, 2022, 12, 2569-2580.	5.5	86
2407	Photocatalytic destruction and adsorptive processes of methylene blue destruction by potassium titanate. Materials Today: Proceedings, 2022, , .	0.9	0
2408	Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coordination Chemistry Reviews, 2022, 458, 214428.	9.5	107
2409	Fabrication of one-dimensional visible-light-driven BiOCl@WO3 p–n heterojunction with improved photocatalytic performance. Materials Science in Semiconductor Processing, 2022, 143, 106539.	1.9	6
2410	Activating earth-abundant insulator BaSO4 for visible-light induced degradation of tetracycline. Applied Catalysis B: Environmental, 2022, 307, 121182.	10.8	54
2411	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	7.3	37
2412	In-Situ Constructing C3n5 Nanosheets/Bi2wo6 Nanodots S-Scheme Heterojunction with Enhanced Structural Defects for Efficiently Photocatalytic Removal of Tetracycline and Cr(Vi). SSRN Electronic Journal, 0, , .	0.4	0
2413	Active site regulated Z-scheme MIL-101(Fe)/Bi ₂ WO ₆ /Fe(<scp>iii</scp>) with the synergy of hydrogen peroxide and visible-light-driven photo-Fenton degradation of organic contaminants. Nanoscale, 2022, 14, 7055-7074.	2.8	12
2414	Visible-Light-Driven Solvent-Free Photocatalytic Co2 Reduction to Co by Co-Mof/Cu2o Heterojunction with Superior Selectivity. SSRN Electronic Journal, 0, , .	0.4	0
2415	Insight into morphology dependent charge carrier dynamics in ZnSe–CdS nanoheterostructures. Physical Chemistry Chemical Physics, 2022, 24, 8519-8528.	1.3	6
2416	Allochroic Platinum/Carbon Nitride with Photoactivated Ohmic Contact for Efficient Visible-Light Photocatalytic Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
2417	Dual Mofs Heterojunction: Mil-53 Coated with Amorphous Uio-66 for Enhanced Photocatalytic Oxidation of Tetracycline and Methylene Blue. SSRN Electronic Journal, 0, , .	0.4	0
2418	Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Advances, 2022, 12, 7009-7039.	1.7	63
2419	Efficient harvesting and storage of solar energy of an all-vanadium solar redox flow battery with a MoS ₂ @TiO ₂ photoelectrode. Journal of Materials Chemistry A, 2022, 10, 10484-10492.	5.2	11
2420	2D material based heterostructures for solar light driven photocatalytic H ₂ production. Materials Advances, 2022, 3, 3389-3417.	2.6	20
2421	Recent progress on van der Waals heterojunctions applied in photocatalysis. Journal of Materials Chemistry A, 2022, 10, 7604-7625.	5.2	32
2422	用于å‰å,¬åŒ–æ°´è§£çš"äºŒç»´æžæ€§ææ–™. Chinese Science Bulletin, 2022, , .	0.4	1
2423	Bridge role of weak chemical bonding in photocatalytic performance of asymmetric 2H-MoS ₂ /BiOCl Janus heterostructure. Materials Research Express, 2022, 9, 025902.	0.8	2
2424	Optimizing the Gas–Solid Photocatalytic Reactions for Air Purification. ACS ES&T Engineering, 2022, 2, 1103-1115.	3.7	18
2425	Heterojunction Nanomedicine. Advanced Science, 2022, 9, e2105747.	5.6	51
2426	Two-Dimensional PtS2/MoTe2 van der Waals Heterostructure: An Efficient Potential Photocatalyst for Water Splitting. Frontiers in Chemistry, 2022, 10, 847319.	1.8	12
2427	First-principles study of two-dimensional HfS2/GaS van der Waals heterostructure for photocatalytic action. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115257.	1.3	10
2428	Introducing Spin Polarization into Mixedâ€Dimensional Van der Waals Heterostructures for <scp>Highâ€Efficiency Visibleâ€Light</scp> Photocatalysis. Energy and Environmental Materials, 2023, 6, .	7.3	8
2429	Light hybrid micro/nano-robots: From propulsion to functional signals. Nano Research, 2022, 15, 5355-5375.	5.8	12
2430	Emerging Strategies for CO ₂ Photoreduction to CH ₄ : From Experimental to Dataâ€Driven Design. Advanced Energy Materials, 2022, 12, .	10.2	68
2431	p-type ZnO for photocatalytic water splitting. APL Materials, 2022, 10, .	2.2	14
2432	Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. Materials, 2022, 15, 2221.	1.3	43
2433	A novel all-solid-state S-scheme in CdS/ZnTHPP binary nanosystem for hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 13044-13053.	3.8	11
2434	Metal Halide Perovskite Based Heterojunction Photocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48

#	Article	IF	Citations
2435	Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study. Rare Metals, 2022, 41, 2118-2128.	3.6	32
2436	Mechanical strength and band alignment of BAs/GaN heterojunction polar interfaces: A first-principles calculation study. Physical Review Materials, 2022, 6, .	0.9	2
2437	Rational Design of Metal–Organic Frameworkâ€Based Materials for Photocatalytic CO ₂ Reduction. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	23
2438	Challenges and Opportunities for Renewable Ammonia Production via Plasmonâ€Assisted Photocatalysis. Advanced Energy Materials, 2022, 12, .	10.2	18
2439	Metal Halide Perovskite Based Heterojunction Photocatalysts. Angewandte Chemie, 2022, 134, .	1.6	11
2440	Theoretical design of two-dimensional visible light-driven photocatalysts for overall water splitting. Chemical Physics Reviews, 2022, 3, .	2.6	7
2441	Ordered heterogeneity of molecular photosensitizer toward enhanced photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118278119.	3.3	12
2442	Advances in Self-Powered Ultraviolet Photodetectors Based on P-N Heterojunction Low-Dimensional Nanostructures. Nanomaterials, 2022, 12, 910.	1.9	22
2443	Microstructure analysis of NiO nanocrystals and enhanced photocatalytic activities of NiO-CdS nanocomposites. Journal of Materials Science: Materials in Electronics, 2022, 33, 7824-7837.	1.1	4
2444	Isotype Heterojunction-Boosted CO2 Photoreduction to CO. Nano-Micro Letters, 2022, 14, 74.	14.4	56
2445	In Situ Monitoring of Dynamic Photocatalysis of Metal–Organic Frameworks by Three-Dimensional Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Analytical Chemistry, 2022, 94, 5699-5706.	3.2	11
2446	Structural and Optical Properties of Calcium Titanate Prepared from Gypsum. Journal of Nanotechnology, 2022, 2022, 1-9.	1.5	2
2447	Shapeâ€Dependent Performance of Cu/Cu ₂ O for Photocatalytic Reduction of CO ₂ . ChemSusChem, 2022, 15, .	3.6	22
2448	Improving the photocatalytic properties of tin dioxide doped with titanium and copper in the degradation of rhodamine B and safranin T. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 1665-1685.	0.8	5
2449	Hydrogen production from water splitting of real-time industry effluent using novel photocatalyst. Advanced Powder Technology, 2022, 33, 103488.	2.0	5
2450	Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: a review. Environmental Chemistry Letters, 2022, 20, 3505-3523.	8.3	22
2451	First-principles study on the electronic properties of GeC/BSe van der Waals heterostructure: A direct Z-scheme photocatalyst for overall water splitting. Physical Review Materials, 2022, 6, .	0.9	12
2452	Synthesis of CdS nanoparticles in water/DMF medium: an investigation on the effect of time and microwave irradiation. Journal of Sulfur Chemistry, 2022, 43, 366-375.	1.0	2

#	Article	IF	CITATIONS
2453	S-scheme heterojunction BP/WO3 with tight interface firstly prepared in magnetic stirring reactor for enhanced photocatalytic degradation of hazardous contaminants under visible light. Separation and Purification Technology, 2022, 292, 120986.	3.9	10
2454	2D Molybdenum Sulfideâ€Based Materials for Photoâ€Excited Antibacterial Application. Advanced Healthcare Materials, 2022, 11, e2200360.	3.9	24
2455	First principles approach to solar energy conversion efficiency of semiconductor heterojunctions. Solar Energy, 2022, 236, 445-454.	2.9	6
2456	Investigation on the effect of temperature on photothermal glycerol reforming hydrogen production over Ag/TiO2 nanoflake catalyst. International Journal of Hydrogen Energy, 2022, 47, 16507-16517.	3.8	15
2457	Metal Halide Perovskite Heterojunction for Photocatalytic Hydrogen Generation: Progress and Future Opportunities. Advanced Materials Interfaces, 2022, 9, .	1.9	20
2458	Photocatalytic performance of hierarchical metal-doped framework zeolite. Inorganic Chemistry Communication, 2022, 140, 109425.	1.8	5
2459	Novel BiVO4/ZnO heterojunction for amended photoreduction of mercury (II) ions. Optical Materials, 2022, 127, 112251.	1.7	6
2460	Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: A comprehensive review. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100666.	1.7	22
2461	Synergistic photocatalysis of Z-scheme type Fe2O3/g-C3N4 heterojunction coupled with reduced graphene oxide. Surfaces and Interfaces, 2022, 30, 101910.	1.5	10
2462	Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity. Chemical Engineering Journal, 2022, 438, 135622.	6.6	103
2463	A zero-dimensional/two-dimensional Ag–Ag2S–CdS plasmonic nanohybrid for rapid photodegradation of organic pollutant by solar light. Chemosphere, 2022, 296, 133973.	4.2	27
2464	Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. Journal of Water Process Engineering, 2022, 47, 102671.	2.6	69
2465	Interfacial engineering in Pickering emulsion photocatalytic microreactors: From mechanisms to prospects. Chemical Engineering Journal, 2022, 438, 135655.	6.6	16
2466	Enhanced photoelectrochemical water splitting and mitigation of organic pollutants under visible light with NaNbO3@CuS Core-Shell heterostructures. Applied Surface Science Advances, 2022, 9, 100239.	2.9	8
2467	Ultrasensitive V doped WO3 1D nanorods heterojunction photodetector with pronounced photosensing activities. Journal of Alloys and Compounds, 2022, 909, 164753.	2.8	5
2468	Rational design direct Z-scheme β-GeSe/HfS2 heterostructure by interfacial engineering: Efficient photocatalyst for overall water splitting in the wide solar spectrum. Applied Surface Science, 2022, 589, 153025.	3.1	23
2469	Core-shell-like BiOBr@BiOBr homojunction for enhanced photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128829.	2.3	9
2470	Quantitative evaluation of structure-activity relationships in heterogeneous photocatalytic oxidation towards organic contaminants. Applied Catalysis B: Environmental, 2022, 309, 121238.	10.8	28

#	Article	IF	CITATIONS
2471	Size-dependent electron injection over sensitized semiconductor heterojunctions for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2022, 308, 121218.	10.8	28
2472	Constructing MnO2 alpha/amorphous heterophase junction by mechanochemically induced phase transformation for formaldehyde oxidation. Applied Surface Science, 2022, 589, 152855.	3.1	11
2473	Mechanistic insight the visible light driven hydrogen generation by plasmonic Au-Cu alloy mounted on TiO2 @B-doped g-C3N4 heterojunction photocatalyst. Journal of Alloys and Compounds, 2022, 909, 164754.	2.8	16
2474	Rationally designed tetra (4-carboxyphenyl) porphyrin/graphene quantum dots/bismuth molybdate Z-scheme heterojunction for tetracycline degradation and Cr(VI) reduction: Performance, mechanism, intermediate toxicity appraisement. Journal of Colloid and Interface Science, 2022, 619, 307-321.	5.0	135
2475	Facile Synthesis Bi2Te3 Based Nanocomposites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Nanomaterials, 2021, 11, 3390.	1.9	6
2476	Application of One-Dimensional Nanomaterials in Catalysis at the Single-Molecule and Single-Particle Scale. Frontiers in Chemistry, 2021, 9, 812287.	1.8	9
2477	Fabricating a hollow cuboctahedral structure for N-doped carbon coated p-n heterojunctions towards high-performance photocatalytic organic transformation. Nano Research, 2022, 15, 4638-4645.	5.8	5
2478	One-Step Hydrothermal Synthesis of Precious Metal-Doped Titanium Dioxide–Graphene Oxide Composites for Photocatalytic Conversion of CO ₂ to Ethanol. ACS Omega, 2021, 6, 35769-35779.	1.6	20
2479	Highly Improved Photocatalytic Activity of Magnetically Separable Ferroferric Oxide@Zinc Oxide/Carbon Nitride Nanocomposites and Interface Mechanism. Nano, 2021, 16, .	0.5	3
2480	Magnetron sputtered TiO ₂ with metal NPs for plasmonic applications. Journal of Physics: Conference Series, 2021, 2086, 012018.	0.3	0
2481	Recent advances in constructing heterojunctions of binary semiconductor photocatalysts for visible light responsive <scp> CO ₂ </scp> reduction to energy efficient fuels: A review. International Journal of Energy Research, 2022, 46, 5523-5584.	2.2	32
2482	Polymerization-Enhanced Photocatalysis for the Functionalization of C(sp ³)–H Bonds. ACS Catalysis, 2022, 12, 126-134.	5.5	43
2483	Internal Chemiluminescence Light-Driven Photocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 60471-60477.	4.0	10
2484	Metallic Copperâ€Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. Small Methods, 2022, 6, e2101001.	4.6	18
2485	Semiconducting MOF@ZnS Heterostructures for Photocatalytic Hydrogen Peroxide Production: Heterojunction Coverage Matters. Advanced Functional Materials, 2022, 32, .	7.8	59
2486	Bi5O7I/g-C3N4 Heterostructures With Enhanced Visible-Light Photocatalytic Performance for Degradation of Tetracycline Hydrochloride. Frontiers in Chemistry, 2021, 9, 781991.	1.8	8
2487	Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews, 2022, 51, 3561-3608.	18.7	273
2488	Epitaxial growth of structure-tunable ZnO/ZnS core/shell nanowire arrays using HfO ₂ as the buffer layer. Nanoscale, 2022, 14, 7579-7588.	2.8	5

#	Article	IF	CITATIONS
2489	Turning on Highâ€Sensitive Organic Electrochemical Transistorâ€Based Photoelectrochemicalâ€Type Sensor over Modulation of Feâ€MOF by PEDOT. Advanced Functional Materials, 2022, 32, .	7.8	26
2490	Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols. Chem Catalysis, 2022, 2, 1177-1190.	2.9	15
2491	Synthesis of Polyaniline Supported CdS/CdS-ZnS/CdS-TiO2 Nanocomposite for Efficient Photocatalytic Applications. Nanomaterials, 2022, 12, 1355.	1.9	17
2492	Density Functional Theory Study and Photocatalytic Activity of ZnO/N-Doped TiO ₂ Heterojunctions. Journal of Physical Chemistry C, 2022, 126, 7000-7011.	1.5	31
2494	Strategies and reaction systems for solar-driven CO2 reduction by water. , 2022, 1, 1.		10
2495	Theoretical Study of Twoâ€Dimensional ZrO ₂ /g ₃ N ₄ Sandwich Structure Loaded Nobleâ€Metal Rh Singleâ€Atom Catalysts. ChemistrySelect, 2022, 7, .	0.7	Ο
2496	Cu3(PO4)2/BiVO4 photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate. Analytical and Bioanalytical Chemistry, 2022, 414, 4139-4147.	1.9	4
2497	Enhanced hydrogen evolution by using ternary nanocomposites of mesoporous carbon nitride/black phosphorous/transition metal nanoparticles (m-gCN/BP-M; MÂ=ÂCo, Ni, and Cu) as photocatalysts under visible light: A comparative experimental and theoretical study. Applied Surface Science, 2022, 593, 153398.	3.1	12
2500	Nanoscale Doubleâ€Heterojunctional Electrocatalyst for Hydrogen Evolution. Advanced Science, 2022, 9, e2201339.	5.6	39
2501	Challenges surrounding nanosheets and their application to solar-driven photocatalytic water treatment. Materials Advances, 2022, 3, 4103-4131.	2.6	5
2502	Two Dimensional Pts2/Bn Heterostructure as an S-Scheme Photocatalyst with Enhanced Activity for Overall Water Decomposition. SSRN Electronic Journal, 0, , .	0.4	0
2503	Design and synthesis of TiO2/C nanosheets with a directional cascade carriers transfer. Chemical Science, 0, , .	3.7	9
2505	Development and Application of Graphene Oxide Supported Ceo2/In2o3 Heterojunction Nanocomposite for Efficient Degradation of Industrial Effluents and Voltammetric Detection of Sulfamaxole Drug. SSRN Electronic Journal, 0, , .	0.4	0
2506	Insights into Synergistic Effect of Pd Single Atoms and Sub-Nanoclusters on Tio2 for Enhanced Photocatalytic H2 Evolution. SSRN Electronic Journal, 0, , .	0.4	0
2507	Construction and Activity of an Allâ€Organic Heterojunction Photocatalyst Based on Melem and Pyromellitic Dianhydride. ChemSusChem, 2022, 15, e202200477.	3.6	15
2508	Recent Advances in SnSe Nanostructures beyond Thermoelectricity. Advanced Functional Materials, 2022, 32, .	7.8	28
2509	Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution. Chem Catalysis, 2022, 2, 1394-1406.	2.9	23
2510	Hydrogen Production as a Clean Energy Carrier through Heterojunction Semiconductors for Environmental Remediation. Energies, 2022, 15, 3222.	1.6	10

#	Article	IF	CITATIONS
2511	Perovskite-Based Nanomaterials and Nanocomposites for Photocatalytic Decontamination ofÂWater. , 0, , .		1
2512	Encapsulation-Led Adsorption of Neutral Dyes and Complete Photodegradation of Cationic Dyes and Antipsychotic Drugs by Lanthanide-Based Macrocycles. Inorganic Chemistry, 2022, 61, 7682-7699.	1.9	12
2513	Construction of Z-scheme Ag–AgBr/Bi2O2CO3/CNT heterojunctions with remarkable photocatalytic performance using carbon nanotubes as efficient electronic mediators. Chemosphere, 2022, 302, 134927.	4.2	21
2514	Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy. Nature Communications, 2022, 13, 2425.	5.8	65
2515	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphology‶unable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie, 2022, 134, .	1.6	4
2516	Charge Separation by Creating Band Bending in Metal–Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, e202204108.	7.2	90
2517	Functional Carbon Nitride Materials in Photoâ€Fenton‣ike Catalysis for Environmental Remediation. Advanced Functional Materials, 2022, 32, .	7.8	93
2518	Prism-like integrated Bi2WO6Âwith Ag-CuBi2O4 on carbon nanotubes (CNTs) as an efficient and robust S-scheme interfacial charge transfer photocatalyst for the removal of organic pollutants from wastewater. Environmental Science and Pollution Research, 2023, 30, 124530-124545.	2.7	36
2519	Green synthesis of Zn/Cu oxide nanoparticles by <i>Vernicia fordii</i> seed extract: their photocatalytic activity toward industrial dye degradation and their biological activity. Inorganic and Nano-Metal Chemistry, 2023, 53, 388-400.	0.9	3
2520	Charge Separation by Creating Band Bending in Metal–Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	1.6	11
2521	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphologyâ€Tunable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
2522	Tuning the band-gap and enhancing the trichloroethylene photocatalytic degradation activities of flower-like Ni-doped SnS2/SnO2 heterostructures by partial oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 107793.	3.3	8
2523	Constructing Anatase–Brookite TiO ₂ Phase Junction by Thermal Topotactic Transition to Promote Charge Separation for Superior Photocatalytic H ₂ Generation. Journal of Physical Chemistry Letters, 2022, 13, 4244-4250.	2.1	9
2524	Resorcinol-based carbon xerogel/ZnO composite for solar-light-induced photodegradation of sulfamerazine. Optical Materials, 2022, 128, 112470.	1.7	3
2525	First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5-n/(MoSiGeN4)n in-plane heterostructures. Results in Physics, 2022, 37, 105549.	2.0	19
2526	In-situ construction of hollow double-shelled CoSx@CdS nanocages with prominent photoelectric response for highly sensitive photoelectrochemical biosensor. Analytica Chimica Acta, 2022, 1211, 339881.	2.6	13
2527	Magnetically separable Ni/g-C3N4 nanocomposites for enhanced visible-light photocatalytic degradation of methylene blue and ciprofloxacin. Diamond and Related Materials, 2022, 126, 109070.	1.8	15
2528	Polarization-induced carrier separation in conjugated polyimide for boosted visible light driven H2O2 production. Applied Surface Science, 2022, 594, 153478.	3.1	10

#	Article	IF	CITATIONS
2529	Morphological structure engineering of organic-inorganic nanoflowers based on tunable bandgap enables to rapid photodynamic bacteria-killing. Chemical Engineering Journal, 2022, 444, 136613.	6.6	7
2530	Two-dimensional ZnO/BlueP van der Waals heterostructure used for visible-light driven water splitting: A first-principles study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121359.	2.0	9
2531	The type-II PtSe2/WS2 van der Waals heterostructure: A high efficiency water-splitting photocatalyst. Surface Science, 2022, 723, 122103.	0.8	18
2532	A review on recent advances in the treatment of dye-polluted wastewater. Journal of Industrial and Engineering Chemistry, 2022, 112, 1-19.	2.9	116
2533	Ferroelectric nanostructured oxides for solar fuel generation. Materials Science and Technology, 2022, 38, 1332-1347.	0.8	1
2534	Robust visible-light photocatalytic H ₂ evolution on 2D RGO/Cd _{0.15} Zn _{0.85} In ₂ S ₄ –Ni ₂ P hierarchitectures. Catalysis Science and Technology, 2022, 12, 4181-4192.	2.1	3
2536	Enhanced photocatalytic and antimicrobial performance of a multifunctional Cu-loaded nanocomposite under UV light: theoretical and experimental study. Nanoscale, 2022, 14, 8306-8317.	2.8	15
2537	Gas-phase photoelectrocatalytic oxidation of volatile organic compounds using defective WO ₃ /TiO ₂ nanotubes mesh. Environmental Science: Nano, 2022, 9, 2172-2181.	2.2	4
2538	Facile fabrication of BiOBrxCl1-x hierarchical microspheres photocatalysts for efficient degradation of diverse pollutants under visible light. Journal of Molecular Structure, 2022, 1265, 133359.	1.8	3
2539	Synthesis and characterisation of WO ₃ and Ag ₂ O nanoparticles and their nanocomposite for photocatalytic degradation of dyes. International Journal of Environmental Analytical Chemistry, 0, , 1-21.	1.8	4
2540	Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2022, 43, 1719-1748.	6.9	32
2541	Enhanced photo-carrier transportation at semiconductor/electrolyte interface of TiO2 photoanode by oxygen vacancy engineering. Applied Surface Science, 2022, 597, 153744.	3.1	15
2542	Insight into the relationship of redox ability and separation efficiency via the case of α-Bi2O3/Bi5NO3O7. Inorganic Chemistry Frontiers, 0, , .	3.0	1
2543	In situ Growth of UiO-66 with Its Particle Size Reduced by 90% into Porous Polyacrylate: Experiments and Applications. Industrial & Engineering Chemistry Research, 0, , .	1.8	3
2545	Recent development on titania-based nanomaterial for photocatalytic CO2 reduction: A review. Journal of Alloys and Compounds, 2022, 918, 165533.	2.8	29
2546	Cerium-doped MoS2 layered nanostructures for enhanced photocatalytic activity under visible light illumination. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	0
2547	Heterostructured Nanoscale Photocatalysts via Colloidal Chemistry for Pollutant Degradation. Crystals, 2022, 12, 790.	1.0	0
2548	Rational Design of an Efficient S-Scheme Heterojunction of CdS/Bi ₂ WO ₆ –S Nanocomposites for Photocatalytic CO ₂ Reduction. Energy & Fuels, 2022, 36, 11524-11531.	2.5	19

#	Article	IF	CITATIONS
2549	ZnO-based antimicrobial coatings for biomedical applications. Bioprocess and Biosystems Engineering, 2022, 45, 1421-1445.	1.7	48
2550	Reinforcement of Visible-Light Harvesting and Charge-Transfer Dynamics of BiVO ₄ Photoanode via Formation of p–n Heterojunction with CuO for Efficient Photoelectrocatalytic Water Splitting. ACS Applied Energy Materials, 2022, 5, 6618-6632.	2.5	21
2551	Photocatalytic destruction and adsorptive processes of methylene blue by potassium titanate. Materials Today: Proceedings, 2022, , .	0.9	0
2552	Loading density modulation of Zn0.5Cd0.5S nanoparticles on ZnS(en)0.5 nanosheets with effective hole transfer channels towards highly efficient hydrogen evolution. Applied Surface Science, 2022, 598, 153757.	3.1	4
2553	Type-II band alignment in CNT-modified SrTiO3-Fe2TiO5 heterostructure nanocomposite for photocatalytic degradation of organic dyes. Applied Surface Science, 2022, 598, 153816.	3.1	28
2554	Silver niobate perovskites: structure, properties and multifunctional applications. Journal of Materials Chemistry A, 2022, 10, 14747-14787.	5.2	27
2555	Charge Carrier Management in Semiconductors: Modeling Charge Transport and Recombination. Springer Handbooks, 2022, , 365-398.	0.3	2
2556	Electronic and optical properties and quantum tuning effects of As/Hfs ₂ van der Waals heterostructure. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 177304.	0.2	1
2558	Recent development in solarâ€driven photocatalytic hydrogen production utilizing <scp> g ₃ N ₄ </scp> . International Journal of Energy Research, 2022, 46, 14587-14608.	2.2	5
2559	Borate particulate photocatalysts for photocatalytic applications: A review. International Journal of Hydrogen Energy, 2022, 47, 25608-25630.	3.8	68
2560	Enhanced Visible-Light-Driven Photoelectrochemical Activity in Nitrogen-Doped TiO ₂ /Boron-Doped Diamond Heterojunction Electrodes. ACS Applied Energy Materials, 2022, 5, 7144-7156.	2.5	9
2561	Peat-derived nitrogen-doped porous carbons as photothermal-assisted visible-light photocatalysts for water splitting. New Carbon Materials, 2022, 37, 585-594.	2.9	3
2562	Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chemical Engineering Journal, 2022, 449, 137757.	6.6	92
2563	Efficient Photoinduced Thermocatalytic Chemiluminescence System Based on the Z-Scheme Heterojunction Ag ₃ PO ₄ /Ag/Bi ₄ Ti ₃ O ₁₂ for H ₂ S Sensing. Analytical Chemistry, 2022, 94, 9415-9423.	3.2	10
2564	Facile Synthesis of ZnO-CeO2 Heterojunction by Mixture Design and Its Application in Triclosan Degradation: Effect of Urea. Nanomaterials, 2022, 12, 1969.	1.9	0
2565	Thin Inâ€Plane In ₂ O ₃ /ZnIn ₂ S ₄ Heterostructure Formed by Topologicalâ€Atomâ€Extraction: Optimal Distance and Charge Transfer for Effective CO ₂ Photoreduction. Small, 2022, 18, .	5.2	23
2566	One-pot hydrothermal fabrication of 2D/2D BiOIO3/BiOBr Z-scheme heterostructure with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2022, 625, 664-679.	5.0	19
2567	Zn(II) porphyrin sensitized (TiO2@Cd-MOF) nanocomposite aerogel as novel photocatalyst for the effective degradation of methyl orange (MO) dye. Optical Materials, 2022, 132, 112558.	1.7	25

#	Article	IF	CITATIONS
2568	Electrostatic self-assembled PTh/Ag/protonated g-C3N4 nanocomposite with remarkable photocatalytic degradation for organic pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129438.	2.3	4
2569	Steering interfacial charge kinetics: Synergizing cocatalyst roles of Ti3C2M (MXene) and NCDs for superior photocatalytic performance over TiO2. Applied Surface Science, 2022, 599, 154001.	3.1	17
2570	New Cu(II)-based three dimensional supramolecular coordination polymer as photocatalyst for the degradation of methylene blue. Journal of Molecular Structure, 2022, 1266, 133533.	1.8	5
2571	Anchoring ZnIn2S4 nanosheets on ultrathin boron carbon nitride layers for improved photo-redox catalysis. Applied Surface Science, 2022, 599, 153985.	3.1	14
2572	Altered zirconium dioxide based photocatalyst for enhancement of organic pollutants degradation: A review. Chemosphere, 2022, 304, 135349.	4.2	9
2573	Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid. Chemical Engineering Journal, 2022, 448, 137735.	6.6	35
2574	Equimolar Zno-Cds Nanocomposite for Enhanced Photocatalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
2575	Novel 3d Multi-Layered Carbon Nitride/Indium Sulfide Heterostructure for Boosted Superoxide Anion Radical Generation and Enhanced Photocatalysis Under Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
2576	A Novel Mechanism for Visible-Light Degradation of Phenol by Oxygen Vacancy Bi2moo6 Homojunction. SSRN Electronic Journal, 0, , .	0.4	0
2577	Recent developments in optoelectronic and photonic applications of metal oxides. , 2022, , 33-57.		1
2578	Facile Synthesis of Vs2/Cds/Nayf4:Yb, Er Ternary Heterojunctions for TheÂVisible-Near-Infrared-LightÂDriven Photocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
2579	Reduced graphene oxide–zinc sulfide (RGO–ZnS) nanocomposite: a new photocatalyst for oxidative cyclization of benzylamines to benzazoles under visible-light irradiation. Reaction Chemistry and Engineering, 2022, 7, 2202-2210.	1.9	6
2580	Recent Developments and Future Perspective on Electrochemical Glucose Sensors Based on 2D Materials. Biosensors, 2022, 12, 467.	2.3	33
2581	A sustainable approach for the synthesis of bismuth molybdate by continuous flow method using custom design reactor and their photocatalytic application for environmental remediation. Applied Nanoscience (Switzerland), 2022, 12, 2497-2509.	1.6	1
2582	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4, 100078.	10.1	232
2583	Recent Progress on Photoelectrochemical Water Splitting of Graphitic Carbon Nitride (gâ^'CN) Electrodes. Nanomaterials, 2022, 12, 2374.	1.9	2
2584	Interfacial Heterojunction-Engineered Fe ₂ O ₃ /CoFe-Layered Double Hydroxide Catalyst for the Electrocatalytic Oxygen Evolution Reaction. Energy & Fuels, 2022, 36, 11584-11590.	2.5	12
2585	Copper sulfides based photocatalysts for degradation of environmental pollution hazards: A review on the recent catalyst design concepts and future perspectives. Surfaces and Interfaces, 2022, 33, 102182.	1.5	29

#	Article	IF	CITATIONS
2586	Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis. Nano Research, 2022, 15, 10158-10170.	5.8	16
2587	<i>In Situ</i> Construction of Porous β-Bi ₂ O ₃ /BiOCOOH Heterojunction Photocatalysts: Enhancing Nitrogen Fixation Activity by the Synergistic Effect of Oxygen Vacancies and Lattice Oxygen. ACS Applied Energy Materials, 2022, 5, 9503-9511.	2.5	10
2588	Solid-state Z-scheme assisted hydrated tungsten trioxide/Znln ₂ S ₄ photocatalyst for efficient photocatalytic H ₂ production. Materials Futures, 2022, 1, 035103.	3.1	11
2589	Insitu synthesis, characterization of Z-scheme g-C3N4/Bi2O3 as photocatalyst for degradation of azo dye, Amido black-10B under solar irradiation. Ceramics International, 2022, 48, 29445-29459.	2.3	9
2590	S-scheme heterojunctions: Emerging designed photocatalysts toward green energy and environmental remediation redox reactions. Journal of Environmental Chemical Engineering, 2022, 10, 108249.	3.3	58
2591	Photoelectrochemical sensors based on heterogeneous nanostructures for in vitro diagnostics. Biosensors and Bioelectronics: X, 2022, 11, 100200.	0.9	1
2592	Rational regulation of vacancy species to manage migration paths of carriers in MoS2/TiO2 heterojunctions for efficient photocatalytic H2 generation. International Journal of Hydrogen Energy, 2022, 47, 28845-28858.	3.8	6
2593	Moâ^'N Bonds Effect Between MoS _x Coupling With CoN For Efficient Photocatalytic Hydrogen Production. ChemCatChem, 2022, 14, .	1.8	31
2594	Insights into the photocatalytic mechanism of S-scheme g-C3N4/BiOBr heterojunction. Inorganic Chemistry Communication, 2022, 143, 109732.	1.8	6
2595	Enhanced UV–Vis–NIR photocatalytic activity of La doped BaBiO2CI: Role of oxygen vacancies. Journal of Solid State Chemistry, 2022, 314, 123381.	1.4	1
2596	TiO2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization. Science of the Total Environment, 2022, 845, 157221.	3.9	30
2597	Current trends on In2O3 based heterojunction photocatalytic systems in photocatalytic application. Chemical Engineering Journal, 2022, 450, 137804.	6.6	57
2598	Insights into synergistic effect of Pd single atoms and sub-nanoclusters on TiO2 for enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 450, 137873.	6.6	21
2599	Direct Detection of Long-Range Interdomain Auger Recombination in Dumbbell-Shaped Quasi-Type-II Nanoparticle. Journal of Physical Chemistry Letters, 2022, 13, 6845-6851.	2.1	2
2600	Homojunction photocatalysts for water splitting. Nano Research, 2022, 15, 10171-10184.	5.8	34
2601	Processing of SnO ₂ /ZnO Heterostructure by the Sol-Gel Technique for Photocatalytic Applications. Journal of Physics: Conference Series, 2022, 2315, 012011.	0.3	0
2602	Electric-/magnetic-field-assisted photocatalysis: Mechanisms and design strategies. Joule, 2022, 6, 1798-1825.	11.7	19
2603	Visible light-driven photocatalytic reduction of monovalent silver using a composite of Ni3Bi2S2 and O-doped gC3N4. Results in Engineering, 2022, 15, 100540.	2.2	3
	CITATION	Report	
------	--	--------	-----------
#	Article	IF	Citations
2604	A novel self-cleaning functional composite coating with extraordinary anti-corrosion performance in high pressure CO2 conditions. Composites Science and Technology, 2022, 228, 109638.	3.8	4
2605	A Novel Mechanism for Visible-Light Degradation of Phenol by Oxygen Vacancy Bi2moo6 Homojunction. SSRN Electronic Journal, 0, , .	0.4	0
2606	Conversion of CO2 to Fuels. , 2022, , .		0
2607	Probing interfacial charge transfer in heterojunctions for photocatalysis. Physical Chemistry Chemical Physics, 2022, 24, 19659-19672.	1.3	5
2608	Interfacial-engineered CoTiO3-based composite for photocatalytic applications: a review. Environmental Chemistry Letters, 2022, 20, 3039-3069.	8.3	17
2609	Photoactive Heterostructures Based on α-Fe ₂ O ₃ and CuO Thin Films for the Removal of Pollutants from Aqueous Solutions. , 0, , .		0
2610	Rich Indiumâ€Vacancies In ₂ S ₃ with Atomic p–n Homojunction for Boosting Photocatalytic Multifunctional Properties. Small, 2022, 18, .	5.2	28
2611	Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. Advanced Materials, 2023, 35, .	11.1	31
2612	Changes in Structural, Morphological and Optical Features of Differently Synthetized C3N4-ZnO Heterostructures: An Experimental Approach. Inorganics, 2022, 10, 119.	1.2	3
2613	Effects of a Nanoparticulate TiO ₂ Modifier on the Visible-Light CO ₂ Reduction Performance of a Metal-Complex/Semiconductor Hybrid Photocatalyst. ACS Applied Energy Materials, 2022, 5, 9479-9486.	2.5	12
2614	First-principles study on electronic and optical properties of van der Waals heterostructures stacked by g-ZnO and Janus-WSSe monolayers. Applied Surface Science, 2022, 604, 154620.	3.1	10
2615	Pointâ€toâ€face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D gâ€C ₃ N ₄ towards photocatalytic energy applications. , 2022, 4, 665-730.		40
2616	Developing a g-C3N4/NiFe2O4 S-scheme hetero-assembly for efficient photocatalytic degradation of cephalexin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 129968.	2.3	12
2617	Tuning the co-catalyst loading for the optimization of thermo-photocatalytic hydrogen production over Cu/TiO2. Applied Catalysis A: General, 2022, 643, 118804.	2.2	7
2618	Recent Advances in Metal-Based Molecular Photosensitizers for Artificial Photosynthesis. Catalysts, 2022, 12, 919.	1.6	2
2619	Porous BiVO4/Boron-Doped Diamond Heterojunction Photoanode with Enhanced Photoelectrochemical Activity. Molecules, 2022, 27, 5218.	1.7	2
2620	Band bending caused by forming heterojunctions in Cu-Cu2O/rGO-NH2 semiconductor materials and surface coordination of N-methylimidazole, and the intrinsic nature of synergistic effect on the catalysis of selective aerobic oxidation of alcohols. Applied Surface Science, 2022, 605, 154563.	3.1	4
2621	Photocatalytic Aerobic Oxysulfonylation of Alkynes to Access <scp>l²â€Keto</scp> Sulfones Catalyzed by <scp>OVsâ€Nâ€Nb₂O₅</scp> . Chinese Journal of Chemistry, 2022, 40, 2618-2624.	2.6	3

#	Article	IF	CITATIONS
2622	3DOM N/TiO2 composite modified by CdS QDs with Z-scheme: enhanced photocatalytic degradation and hydrogen evolution. Journal of Nanoparticle Research, 2022, 24, .	0.8	1
2623	2D hybrid photocatalysts for solar energy harvesting. Sustainable Materials and Technologies, 2022, 33, e00469.	1.7	7
2624	Construction of oxygen-rich double CN-T/CN-U/Bi2WO6 Z-scheme heterojunction nanocomposite for efficient removal of rhodamine B. FlatChem, 2022, 35, 100419.	2.8	2
2625	Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation. Sustainable Materials and Technologies, 2022, 33, e00478.	1.7	12
2626	Z-scheme systems: From fundamental principles to characterization, synthesis, and photocatalytic fuel-conversion applications. Physics Reports, 2022, 983, 1-41.	10.3	69
2627	Recent advances on Z-scheme engineered BiVO4-based semiconductor photocatalysts for CO2 reduction: A review. Applied Surface Science Advances, 2022, 11, 100289.	2.9	5
2628	Synthesis of a Z-scheme ternary photocatalyst (Ta3N5/Ag3PO4/AgBr) for the enhanced photocatalytic degradation of tetracycline under visible light. Journal of Physics and Chemistry of Solids, 2022, 170, 110962.	1.9	6
2629	Application of Bi2O3/TiO2 heterostructures on glycerol photocatalytic oxidation to chemicals. Energy Reports, 2022, 8, 1076-1083.	2.5	8
2630	An electron-hole separation mechanism caused by the pseudo-gap formed at the interfacial Co-N bond between cobalt porphyrin metal organic framework and boron-doped g-C3N4 for boosting photocatalytic H2 production. Journal of Colloid and Interface Science, 2022, 628, 477-487.	5.0	46
2631	lron-tungsten oxides modified oxygen-rich carbon nitride with defects S-scheme heterojunction for boosting photo-Fenton like removal of pollutants. Chemical Engineering Journal, 2023, 451, 138629.	6.6	19
2632	Surface etching and photodeposition nanostructures core-shell Cu2O@CuO-Ag with S-scheme heterojunction for high efficiency photocatalysis. Surfaces and Interfaces, 2022, 34, 102308.	1.5	4
2633	Fabrication of new Ag2CrO4/Ag2MoO4 and Ag2CrO4/Ag2WO4 heterostructures with enhanced degradation of the mixture of dyes by photocatalysis. Journal of Alloys and Compounds, 2022, 928, 167136.	2.8	8
2634	Ab-initio study of the electronic and photocatalytic performances of MoS2-xSex/SiC van der Waals heterostructures with asymmetric Se doping. Physica B: Condensed Matter, 2022, 646, 414350.	1.3	0
2635	In situ preparation of PDA decorated Ag/black mesoporous TiO2 nanocomposites for photocatalytic and antibacterial applications. Applied Surface Science, 2022, 606, 154778.	3.1	5
2636	In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production. Applied Catalysis B: Environmental, 2022, 319, 121940.	10.8	37
2637	A novel mechanism for visible-light degradation of phenol by oxygen vacancy Bi2MoO6 homojunction. Applied Surface Science, 2022, 605, 154671.	3.1	12
2638	ZIF-8 metal organic framework composites as hydrogen evolution reaction photocatalyst: A review of the current state. Chemosphere, 2022, 308, 136483.	4.2	32
2639	Stimuli-responsive heterojunctions based photo-electrocatalytic membrane reactors for reactive filtration of persistent organic pollutants. Chemical Engineering Journal, 2023, 452, 139374.	6.6	6

#	Article	IF	CITATIONS
2640	Design and Synthesis of Z-Scheme Lafeo3/Mos2/Graphene Heterojunction with Enhanced Photocatalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
2641	Magnetic Ag2co3/Snfe2o4 Heterojunctions with One-Dimensional Rod Structure for Efficient Photodegradation of Ciprofloxacin and Phenol Under Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
2642	Engineered inverse opal structured semiconductors for solar light-driven environmental catalysis. Nanoscale, 2022, 14, 14341-14367.	2.8	5
2643	Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 S-scheme heterojunction for photocatalytic CO2 reduction under visible light. Chinese Journal of Catalysis, 2022, 43, 2606-2614.	6.9	27
2644	Fabrication of binary g-C ₃ N ₄ /UU-200 composites with enhanced visible-light-driven photocatalytic performance toward organic pollutant eliminations. RSC Advances, 2022, 12, 25377-25387.	1.7	5
2645	A mesh-like BiOBr/Bi ₂ S ₃ nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO ₂ photoreduction. Journal of Materials Chemistry A, 2022, 10, 20934-20945.	5.2	43
2646	Carbon-doped anatase titania nanoparticles: similarities and differences with respect to bulk and extended surface models. Physical Chemistry Chemical Physics, 2022, 24, 21381-21387.	1.3	3
2647	Constructing novel hyper-crosslinked In ₂ S ₃ @HLZU-1 through molecular expansion for enhanced photocatalytic performance. Environmental Science: Nano, 2022, 9, 4268-4282.	2.2	4
2648	Hydroxynaphthalene–Nb ₂ O ₅ complex photocatalysis for selective aerobic oxidation of amines induced by blue light. Sustainable Energy and Fuels, 2022, 6, 4437-4445.	2.5	2
2649	Role of ZrO ₂ in TiO ₂ composites with rGO as an electron mediator to enhance the photocatalytic activity for the photodegradation of methylene blue. Materials Advances, 2022, 3, 7904-7917.	2.6	2
2650	Oxygen Vacancy and P-N Junction Synergistically Boosting Photocatalytic Hydrogen Evolution in Alkaline Solution for a 2d Lamellar Co3o4/K7hnb6o19. SSRN Electronic Journal, O, , .	0.4	0
2651	Photocatalytic and antibacterial activity of graphene oxide/cellulose-doped TiO ₂ quantum dots: <i>in silico</i> molecular docking studies. Nanoscale Advances, 2022, 4, 3764-3776.	2.2	9
2652	Water-activated formation of porous graphitic carbon nitride with carbon vacancies to boost photocatalytic hydrogen peroxide production. Chemical Communications, 2022, 58, 10084-10087.	2.2	9
2653	Fenton/Photo-Fenton processes for wastewater treatment and disinfection. , 2022, , 241-252.		0
2654	Hollow MoS ₂ -supported MAPbI ₃ composites for effective photocatalytic hydrogen evolution. New Journal of Chemistry, 0, , .	1.4	0
2655	Ultra-trace simultaneous detection of Hg(II), Cd(II), and Cu(II) and mechanism based on Co/CoO/Co3O4 Z-type heterojunctions. Sensors and Actuators B: Chemical, 2023, 374, 132725.	4.0	13
2656	MgIn2S4@In2O3 hierarchical tubular heterostructures with expedited photocarrier separation for efficient visible-light-driven antimicrobial activity. Chemical Engineering Journal, 2023, 452, 139559.	6.6	10
2657	Investigation of electronic and photocatalytic properties of AgTi2(PO4)3 NASICON-type phosphate: Combining experimental data and DFT calculations. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114289.	2.0	9

#	Article	IF	CITATIONS
2658	Preparation, Characterization, and Photocatalytic Performance of Ag/BiOBr0.8510.15 Nanocomposites. Materials, 2022, 15, 6022.	1.3	2
2659	Recent Advances of Bismuth Halide Based Nanomaterials for Photocatalytic Antibacterial and Photodynamic Therapy. Advanced Materials Interfaces, 2022, 9, .	1.9	8
2660	The GaSe/g-C6N6 type-II van der Waals heterostructure: A prospective water-splitting photocatalyst under acidic, alkaline and neutral conditions. Thin Solid Films, 2022, 758, 139419.	0.8	4
2661	Implanting CoO <i>_x</i> Clusters on Ordered Macroporous ZnO Nanoreactors for Efficient CO ₂ Photoreduction. Advanced Materials, 2022, 34, .	11.1	40
2662	Bio-approach: preparation of RGO-AgNPs on cotton fabric and interface with sweat environment for antibacterial activity. Bioprocess and Biosystems Engineering, 2022, 45, 1825-1837.	1.7	6
2663	Outstanding cooperation of all-inorganic CsPbI3 perovskite with TiO2 forming composites and heterostructures for photodegradation. Journal of Materials Science, 2022, 57, 17363-17379.	1.7	0
2664	Copolymerization Driven Construction of in-Plane Heterostructure for Enhanced Photocatalytic Performance: Structure–Activity and Effects of Water Matrices. Catalysis Letters, 0, , .	1.4	0
2665	Recent Progress in WS2-Based Nanomaterials Employed for Photocatalytic Water Treatment. Catalysts, 2022, 12, 1138.	1.6	5
2666	Helianthus-annuus assisted synthesis of ZrO2 nanoparticles: Enhanced electrochemical, photoluminescent, and optical properties. ChemPhysMater, 2023, 2, 148-154.	1.4	4
2667	Kraft lignin-based carbon xerogel/zinc oxide composite for 4-chlorophenol solar-light photocatalytic degradation: effect of pH, salinity, and simultaneous Cr(VI) reduction. Environmental Science and Pollution Research, 2023, 30, 8280-8296.	2.7	3
2668	Toward Excellence in Photocathode Engineering for Photoelectrochemical CO ₂ Reduction: Design Rationales and Current Progress. Advanced Energy Materials, 2022, 12, .	10.2	30
2669	Efficient Oxygen Vacancy Defect Engineering for Enhancing Visible-Light Photocatalytic Performance over SnO2â ^{~*} x Ultrafine Nanocrystals. Nanomaterials, 2022, 12, 3342.	1.9	2
2670	Facile synthesis of VS2/CdS/NaYF4: Yb, Er ternary heterojunctions for the visible-near-infrared-light driven photocatalysis. Journal of Solid State Chemistry, 2023, 317, 123583.	1.4	1
2671	Highly Sensitive Photoelectrochemical Biosensor for MicroRNA-21 Based on a Dumbbell-Shaped Heterostructure AuNRs@end-TiO ₂ Combined with Carbon Dots as Photosensitizers and Duplex-Specific Nuclease-Assisted Signal Amplification. Analytical Chemistry, 2022, 94, 13575-13581.	3.2	14
2672	Multimodal Antibacterial Platform Constructed by the Schottky Junction of Curcuminâ€Based Bio Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for Efficient Wound Healing. Advanced NanoBiomed Research, 2022, 2, .	1.7	12
2673	Ag-decorated ZnO-based nanocomposites for visible light-driven photocatalytic degradation: basic understanding and outlook. Journal Physics D: Applied Physics, 2022, 55, 483001.	1.3	17
2674	Accurate design of porous g-C ₃ N _{4+x} with greatly extended visible-light response for enhanced photocatalytic performance and mechanism insight for environmental remediation. Journal Physics D: Applied Physics, 2022, 55, 484002.	1.3	1
2675	The development of balanced heterojunction photocatalysts. Cell Reports Physical Science, 2022, 3, 101082.	2.8	4

#		IF	CITATIONS
2677	An S-scheme I±-Fe ₂ 0 ₃ /g-C ₃ N ₄ heterojunction nanostructure with superior visible-light photocatalytic activity for the aza-Henry reaction. Journal of Materials Chemistry C, 2022, 10, 17075-17083.	2.7	3
2678	Numerical modeling investigations of the impact of a thin p-type cocatalyst modifier on an n-type photon absorber for unbiased overall solar water splitting. Materials Advances, 0, , .	2.6	0
2679	Enhancing internal electric field by Zn ²⁺ doping for promoting bulk-charge separation and improving visible photocatalytic activity of Bi ₂ YO ₄ Cl. Materials Chemistry Frontiers, 2022, 6, 3613-3624.	3.2	2
2680	Underlying physics and chemistry of ferroic-photocatalysis: a critical review. Journal of Materials Chemistry A, 2022, 10, 22977-22991.	5.2	5
2681	CoS ₂ -decorated CdS nanorods for efficient degradation of organic pollutants. New Journal of Chemistry, 2022, 46, 21560-21567.	1.4	3
2682	Evidence of Direct Charge Transfer in Plasmon-Mediated Photocatalytic Water Splitting: A Time-Dependent Density Functional Theory Study. Physics of Fluids, 0, , .	1.6	4
2683	The SWSe-BP vdW Heterostructure as a Promising Photocatalyst for Water Splitting with Power Conversion Efficiency of 19.4%. ACS Omega, 2022, 7, 37061-37069.	1.6	4
2684	Preparation and Photocatalytic Activities of TiO2-Based Composite Catalysts. Catalysts, 2022, 12, 1263.	1.6	32
2685	Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules, 2022, 27, 6828.	1.7	22
2686	Artificial and Semiâ€artificial Photosynthesis (<scp>AP</scp> and <scp>SAP</scp>) Systems Based on <scp>Metalâ€Organic</scp> Frameworks. Chinese Journal of Chemistry, 2023, 41, 335-354.	2.6	4
2687	Production of Hydrogen via Water Splitting Using Photocatalytic and Photoelectrocatalytic Route. , 0, , .		0
2688	An unconstrained approach to systematic structural and energetic screening of materials interfaces. Nature Communications, 2022, 13, .	5.8	8
2689	Heterostructured α-Bi2O3/BiOCl Nanosheet for Photocatalytic Applications. Nanomaterials, 2022, 12, 3631.	1.9	8
2690	Molybdenum and chitosan-doped MnO2 nanostructures used as dye degrader and antibacterial agent. Applied Nanoscience (Switzerland), 2022, 12, 3909-3924.	1.6	5
2691	Synthesis of a magnetically removable visible-light photocatalyst based on nickel-doped zinc ferrite. Ceramics International, 2023, 49, 6006-6014.	2.3	9
2692	Spark Plasma Sintering-Assisted Synthesis of Bi2Fe4O9/Bi25FeO40 Heterostructures with Enhanced Photocatalytic Activity for Removal of Antibiotics. International Journal of Molecular Sciences, 2022, 23, 12652.	1.8	5
2693	Recent Advances in Semiconductor Heterojunctions and Z-Schemes for Photocatalytic Hydrogen Generation. Topics in Current Chemistry, 2022, 380, .	3.0	18
2694	Photocatalytic CO ₂ –to–Ethylene Conversion over Bi ₂ S ₃ /CdS Heterostructures Constructed via Facile Cation Exchange. Research, 2022, 2022, .	2.8	4

#	Article	IF	CITATIONS
2695	Enhanced Adsorption–Photocatalytic Degradation of Organic Pollutants <i>via</i> a ZIF-67-Derived Co–N Codoped Carbon Matrix Catalyst. ACS Omega, 2022, 7, 40882-40891.	1.6	3
2696	The Structural, Electronic and Optical Properties of the AlAs/InP/CdS Heterotrilayer: A First-Principles Study. Journal of Electronic Materials, 2022, 51, 7297-7303.	1.0	1
2697	Covalent Organic Frameworks Based Inorganic/Organic Composite Materials for Photocatalytic Applications. ChemNanoMat, 2023, 9, .	1.5	4
2698	Single-Atom Co-Catalysts Employed in Titanium Dioxide Photocatalysis. Catalysts, 2022, 12, 1223.	1.6	13
2699	Stretchable Electrochemical Sensors: From Electrode Fabrication to Cell Mechanotransduction Monitoring ^{â€} . Chinese Journal of Chemistry, 2023, 41, 443-457.	2.6	4
2700	Carbon Quantum Dot-Decorated BiOBr/Bi ₂ WO ₆ Photocatalytic Micromotor for Environmental Remediation and DFT Calculation. ACS Catalysis, 2022, 12, 13897-13909.	5.5	31
2701	UV-light-induced photocatalytic response of Pechini sol–gel synthesized erbium vanadate nanostructures toward degradation of colored pollutants. Environmental Technology and Innovation, 2022, 28, 102947.	3.0	28
2702	Steering Bi-directional Charge Transfer via Non-Conjugated Insulating Polymer. Journal of Catalysis, 2022, , .	3.1	0
2703	Recent developments in photocatalytic water treatment technology with MXene material: A review. Chemical Engineering Journal Advances, 2022, 12, 100418.	2.4	10
2704	Ag3PO4 and Ag3PO4–based visible light active photocatalysts: Recent progress, synthesis, and photocatalytic applications. Catalysis Communications, 2022, 172, 106556.	1.6	18
2705	Graphite-Like C3N4 Nanocatalysts Containing Ru, Ni, Co, Fe, Au, Ag, Cu or Zn for Photocatalytic Degradation of Organic Dyes. Russian Journal of Inorganic Chemistry, 0, , .	0.3	0
2706	Rationally designed 1D CdS/TiO2@Ti3C2 multi-components nanocomposites for enhanced visible light photocatalytic hydrogen production. Chemical Physics Letters, 2022, 809, 140150.	1.2	6
2707	Flexible PAN-Bi2O2CO3–BiOI heterojunction nanofiber and the photocatalytic degradation property. Optical Materials, 2022, 134, 112935.	1.7	10
2708	Equimolar ZnO-CdS nanocomposite for enhanced photocatalytic performance. Chemical Physics Impact, 2022, 5, 100119.	1.7	7
2709	Rapid preparation of g-C3N4/Bi2O2CO3 composites and their enhanced photocatalytic performance. Diamond and Related Materials, 2022, 130, 109488.	1.8	12
2710	GaN/BS van der Waals heterostructure: A direct Z-scheme photocatalyst for overall water splitting. Applied Surface Science, 2023, 609, 155400.	3.1	19
2711	Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coordination Chemistry Reviews, 2023, 475, 214882.	9.5	71
2712	Will the photocatalytic ceramic membrane be the solution for the next generation of photocatalysis? - A comprehensive comparison between g-C3N4 powder and g-C3N4 modified ceramic membrane. Separation and Purification Technology, 2023, 305, 122440.	3.9	11

#	Article	IF	CITATIONS
2713	Internal electric field driven BiOBr homojunction to accelerate O2 reduction reaction for the photodegradation of tetracycline. Applied Surface Science, 2023, 610, 155493.	3.1	4
2714	p-n heterojunctions of Si@WO3 mimicking thylakoid for photoelectrocatalytic CO2 reduction to C2+ products — Morphology control. Chemical Engineering Journal, 2023, 454, 140122.	6.6	5
2715	Synergism between nitrogen vacancies and a unique electrons transfer pathway of Ag modified S-scheme g-C3N4/CdS heterojunction for efficient H2 evolution. Journal of Alloys and Compounds, 2023, 933, 167620.	2.8	23
2716	Emerging trends of pseudobrookite Fe2TiO5 photocatalyst: A versatile material for solar water splitting systems. Journal of Alloys and Compounds, 2023, 933, 167710.	2.8	9
2717	Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater. Chemical Engineering Journal, 2023, 453, 139812.	6.6	41
2718	The construction of high efficient visible-light-driven 3D porous g-C3N4/Fe3O4 photocatalyst: A new photo-induced bacterial inactivation material enhanced by cascade photo-Fenton reaction. Chemosphere, 2023, 312, 137253.	4.2	4
2719	Phase-controlled 1T/2H-MoS2 interaction with reduced TiO2 for highly stable photocatalytic CO2 reduction into CO. Journal of CO2 Utilization, 2023, 67, 102324.	3.3	9
2720	Design and synthesis of Z-scheme LaFeO3/MoS2/graphene heterojunction with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2023, 934, 167948.	2.8	16
2721	Construction of Z-scheme Ag/AgCl/Bi2WO6 photocatalysts with enhanced visible-light photocatalytic performance for gaseous toluene degradation. Applied Surface Science, 2023, 610, 155598.	3.1	23
2722	Novel 3D multi-layered carbon nitride/indium sulfide heterostructure for boosted superoxide anion radical generation and enhanced photocatalysis under visible light. Chemical Engineering Journal, 2023, 453, 139776.	6.6	19
2723	Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction. Journal of Alloys and Compounds, 2023, 933, 167789.	2.8	20
2724	CQDs improved the photoelectrocatalytic performance of plasma assembled WO3/TiO2-NRs for bisphenol A degradation. Journal of Hazardous Materials, 2023, 443, 130250.	6.5	19
2725	Plasmonic Metal Mediated Charge Transfer in Stacked Core–Shell Semiconductor Heterojunction for Significantly Enhanced CO ₂ Photoreduction. Small, 2023, 19, .	5.2	37
2726	Use of conductive polymer-supported oxide-based photocatalysts for efficient VOCs & SVOCs removal in gas/liquid phase. Journal of Environmental Chemical Engineering, 2023, 11, 108935.	3.3	13
2727	Flower-shaped magnetically recyclable ZnS/ZnIn2S4/Fe2O3 nanocomposites towards decolorization of colored pollutants. International Journal of Hydrogen Energy, 2023, 48, 3440-3455.	3.8	3
2728	Research Progress on Cu ₂ Oâ€based Typeâ€I Heterojunction Photocatalysts for Photocatalytic Removal of Antibiotics. ChemistrySelect, 2022, 7, .	0.7	3
2729	Enhanced activation of peroxymonosulfate by a floating FeMo3Ox/C3N4 photocatalyst under visible-light assistance for oxytetracycline degradation: Performance, mechanisms and comparison with H2O2 activation. Environmental Pollution, 2023, 316, 120668.	3.7	13
2730	Facile Synthesis of Hafnium Oxide Nanoparticle Decorated on Graphene Nanosheet and Its Photocatalytic Degradation of Organic Pollutants under UV-Light Irradiation. Applied Sciences (Switzerland), 2022, 12, 11222.	1.3	4

#	Article	IF	CITATIONS
2731	Design of the Synergistic Rectifying Interfaces in Mott–Schottky Catalysts. Chemical Reviews, 2023, 123, 1-30.	23.0	69
2732	Study of NiFe2O4/Cu2O p-n heterojunctions for hydrogen production by photocatalytic water splitting with visible light. Journal of Materials Research and Technology, 2022, 21, 4184-4199.	2.6	18
2733	Synergism between chemisorption and unique electron transfer pathway in S-scheme AgI/g-C3N4 heterojunction for improving the photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2023, 631, 269-280.	5.0	10
2734	Band Edges Engineering of 2D/2D Heterostructures: The C ₃ N ₄ /Phosphorene Interface. ChemPhysChem, 2023, 24, .	1.0	2
2735	Bi2S3/Bi2O3 nanocomposites as effective photocatalysts for photocatalytic degradation of tetracycline under visible-light exposure. Optical Materials, 2023, 135, 113231.	1.7	7
2736	Revealing the stochastic kinetics evolution of photocatalytic CO ₂ reduction. Nanoscale, 0, , .	2.8	1
2737	Femtosecond transient absorption spectroscopy investigation into the electron transfer mechanism in photocatalysis. Chemical Communications, 2023, 59, 688-699.	2.2	32
2738	One-pot construction of S–Mo co-doped BiOCl toward simultaneously decreasing size, tuning energy band structure, and promoting charge separation for efficient photocatalytic degradation of organic pollutants. Materials Today Chemistry, 2023, 27, 101279.	1.7	3
2739	Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent. Nanoscale Advances, 2022, 5, 255-267.	2.2	4
2740	Metal–organic framework-derived semiconductors for photocatalytic hydrogen production. Molecular Systems Design and Engineering, 2023, 8, 151-166.	1.7	3
2741	Redox-active polyimides for energy conversion and storage: from synthesis to application. Chemical Communications, 2022, 59, 153-169.	2.2	11
2742	Two-dimensional Cs ₃ Sb ₂ I ₉ /C ₂ N van der Waals type-II heterostructure: a promising photocatalyst for high efficiency water splitting. Physical Chemistry Chemical Physics, 2022, 25, 486-493.	1.3	7
2743	Recent advances in transition metal sulfide-based electrocatalysts and photocatalysts for nitrogen fixation. Journal of Electroanalytical Chemistry, 2023, 928, 117049.	1.9	6
2744	Metal–organic framework-derived porous carbon-mediated ZnO–nano-ZnO core–shell structure with excellent photocatalytic activity. CrystEngComm, 2023, 25, 425-431.	1.3	7
2745	In-situ construction of h-BN/BiOCl heterojunctions with rich oxygen vacancies for rapid photocatalytic removal of typical contaminants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130756.	2.3	3
2746	Design of hollow nanostructured photocatalysts for clean energy production. Coordination Chemistry Reviews, 2023, 477, 214953.	9.5	9
2747	Theoretical study on the photocatalytic behavior of isoelectronic S/Se-doped BiVO4: DFT+U approach. Physica B: Condensed Matter, 2023, 650, 414535.	1.3	4
2748	Thermal treatment induced the surface enhanced Raman scattering of WO3-TiO2 heterogeneous composite films. Applied Surface Science, 2023, 613, 155975.	3.1	2

#	Article	IF	CITATIONS
2749	PtSe2/SnS2 heterostructure as a direct Z-scheme photocatalyst for water decomposition. Materials Science in Semiconductor Processing, 2023, 155, 107225.	1.9	8
2750	Perovskite catalysts with different dimensionalities for environmental and energy applications: A review. Separation and Purification Technology, 2023, 307, 122716.	3.9	71
2751	Framework structure engineering of polymeric carbon nitrides and its recent applications. Progress in Materials Science, 2023, 133, 101056.	16.0	23
2752	Low-concentration CO2 conversion on AgxNa1â^'xTaO3-AgCl heterojunction photocatalyst. Applied Catalysis B: Environmental, 2023, 324, 122253.	10.8	6
2753	Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. Acta Chimica Sinica, 2022, 80, 1494.	0.5	5
2754	Oxygen vacancy-mediated WO3 phase junction to steering photogenerated charge separation for enhanced water splitting. Journal of Advanced Ceramics, 2022, 11, 1873-1888.	8.9	24
2755	Bismuth-Based BiOBr _{<i>x</i>} I _{1–<i>x</i>} /Ti ₃ C ₂ MXene Schottky Nanocomposites for Hg ²⁺ Photoelectrochemical Sensors. ACS Applied Nano Materials, 2022, 5, 18168-18177.	2.4	10
2756	In Situ Construction of Closely Bonded S-Scheme BiOI@Bi ₂ O ₂ (OH)(NO ₃) Heterojunctions for Boosted Visible-Light-Driven Photocatalytic Activity. ACS Applied Energy Materials, 2022, 5, 15729-15739.	2.5	9
2757	More than One Century of History for Photocatalysis, from Past, Present and Future Perspectives. Catalysts, 2022, 12, 1572.	1.6	3
2758	Structural, magnetic, optical, and photocatalytic properties of Bi1-xSmxFe1-yCryO3 nanostructure synthesized by hydrothermal method. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	1
2759	Synergistic Adsorption–Photocatalysis based on Magnetic Metal–Organic Framework Nanoplatforms for Organic Pollutant Removal. ACS Applied Nano Materials, 2022, 5, 18930-18939.	2.4	4
2760	Controlled photodeposition of Pt onto TiO2-g-C3N4 systems for photocatalytic hydrogen production. Catalysis Today, 2022, , .	2.2	2
2761	Rational design of AgCl@Zr3+-ZrO2 nanostructures for ultra-efficient visible-light photodegradation of emerging pollutants. Applied Catalysis B: Environmental, 2023, 325, 122308.	10.8	32
2762	Oxygen vacancy and p-n junction synergistically boosting photocatalytic hydrogen evolution in alkaline solution for a 2D lamellar Co3O4/K7HNb6O19. International Journal of Hydrogen Energy, 2023, 48, 7305-7318.	3.8	4
2763	Metal-oxide clusters with semiconductive heterojunction counterparts. , 2023, 2, 9140020.		9
2764	Efficient p–n Heterojunction Photocatalyst Composed of Bismuth Oxyiodide and Layered Titanate. Inorganic Chemistry, 2022, 61, 20268-20276.	1.9	3
2765	Integration of Photoâ€Fenton Reaction and Membrane Filtration using Lignin@tâ€FeC ₂ O ₄ /g ₃ N ₄ Nanofibers Toward Accelerated Fe(III)/Fe(II) Cycling and Sustainability. Advanced Sustainable Systems, 0, , 2200378.	2.7	3
2766	Designing a Built-In Electric Field for Efficient Energy Electrocatalysis. ACS Nano, 2022, 16, 19959-19979.	7.3	82

#	Article	IF	CITATIONS
2767	Interfacial regulation of aqueous synthesized metal-semiconductor hetero-nanocrystals. Frontiers in Materials, 0, 9, .	1.2	0
2768	Advanced Oxidation Processes for Water Purification Applications. , 2022, 1, 1.		0
2769	Many Facets of Photonic Crystals: From Optics and Sensors to Energy Storage and Photocatalysis. Advanced Materials Technologies, 2023, 8, .	3.0	12
2770	Plasmonic semiconductors for advanced artificial photosynthesis. , 2023, 2, 100047.		3
2771	Rapid photocatalytic mineralization of glyphosate by Pd@BiVO4/BiOBr nanosheets: Mechanistic studies and degradation pathways. Catalysis Communications, 2023, 174, 106599.	1.6	4
2772	A Review of the Single-Step Flame Synthesis of Defective and Heterostructured TiO2 Nanoparticles for Photocatalytic Applications. Catalysts, 2023, 13, 196.	1.6	7
2773	Photocatalytic hydrogen evolution and simultaneously converting high-concentration of thiols into disulfides with excellent yield under visible-light. Journal of Materials Chemistry A, 2023, 11, 2726-2736.	5.2	3
2774	Heterogeneous Photocatalysis as a Potent Tool for Organic Synthesis: Cross-Dehydrogenative C–C Coupling of N-Heterocycles with Ethers Employing TiO2/N-Hydroxyphthalimide System under Visible Light. Molecules, 2023, 28, 934.	1.7	3
2775	Mechanism Exploration and Catalyst Design for Hydrogen Evolution Reaction Accelerated by Density Functional Theory Simulations. ACS Sustainable Chemistry and Engineering, 2023, 11, 467-481.	3.2	8
2776	Growth of villi-microstructured bismuth vanadate (Vm-BiVO ₄) for photocatalytic degradation of crystal violet dye. RSC Advances, 2023, 13, 2379-2391.	1.7	26
2777	Construction and Enhanced Efficiency of Bi2MoO6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. Nanomaterials, 2023, 13, 214.	1.9	2
2778	Ultrathin black TiO ₂ nanosheet-assembled microspheres with high stability for efficient solar-driven photocatalytic hydrogen evolution. Inorganic Chemistry Frontiers, 2023, 10, 1153-1163.	3.0	7
2779	Solution Process Synthesis of MoSâ,,–BSA–ZnO Nano–Bio Composite for Ultralow-Level Hg² ⁺ Sensing Applications. IEEE Sensors Journal, 2023, 23, 3423-3430.	2.4	0
2780	Graphitic Carbon Nitride Based Materials Towards Photoproduction of H ₂ O ₂ . ChemPhotoChem, 2023, 7, .	1.5	8
2781	Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges. Small Science, 2023, 3, .	5.8	11
2782	In-situ synthesis of novel dual S-scheme AgI/Ag6Mo7O24/g-C3N4 heterojunctions with tandem structure for photocatalytic degradation of organic pollutants. Chemosphere, 2023, 318, 137812.	4.2	9
2783	The precursors' feeding ratio of NCQDs/NaBiO3·2H2O induced the modulation of hydrothermal reaction products and their photocatalytic properties. Journal of Molecular Structure, 2023, 1278, 134966.	1.8	3
2784	Engineering interface structures for heterojunction photocatalysts. Physical Chemistry Chemical Physics, 2023, 25, 4388-4407.	1.3	23

#	Article	IF	CITATIONS
2785	BiOCl Heterojunction photocatalyst: Construction, photocatalytic performance, and applications. Chemosphere, 2023, 317, 137823.	4.2	25
2786	Construction of a g-C ₃ N ₄ -driven photocatalytic system for boosted biomass-derived alcohol oxidation: a promising route towards sustainable biomass valorization. Catalysis Science and Technology, 2023, 13, 940-957.	2.1	8
2787	DFT study on type-II photocatalyst for overall water splitting: g-GaN/C2N van der Waals heterostructure. International Journal of Hydrogen Energy, 2023, 48, 12364-12373.	3.8	14
2788	The effect of metal-titania interaction on photodegradation in SBA-15-supported metal-titania photocatalysts. Chemical Industry and Chemical Engineering Quarterly, 2023, 29, 281-289.	0.4	1
2789	Single transition metal atoms anchored on a two-dimensional polyimide covalent-organic framework as single-atom catalysts for photocatalytic CO2 reduction: A first-principles study. Catalysis Communications, 2023, 175, 106604.	1.6	0
2790	Photocatalytic enhancement mechanisms for novel g-C3N4/PVK nanoheterojunction. Materials Chemistry and Physics, 2023, 296, 127275.	2.0	2
2791	MOF templated to construct hierarchical ZnIn2S4-In2S3 hollow nanotube for enhancing photocatalytic performance. Chemical Engineering Journal, 2023, 458, 141394.	6.6	22
2792	In situ growth g-C3N4 particles on carbon fiber cloth as flexible and easily reusable visible-light-driven photocatalysts. Materials Letters, 2023, 335, 133744.	1.3	2
2793	Silicotungstic acid as electron transfer mediator in Z-scheme g-C3N4/H4SiW12O40/Ag3PO4: Accelerated charge interface transportation for high-efficient photocatalysis. Chemical Engineering Research and Design, 2023, 171, 188-199.	2.7	4
2794	Synthesis of 2D/2D direct Z-scheme WO3/Bi5O7I heterojunctions for decomposition and detoxification of organic compounds under simulated sunlight. Applied Surface Science, 2023, 614, 156050.	3.1	7
2795	Facile synthesis of Ce doped ZnO nanowires for efficient photocatalytic removal of organic pollutants from water. Materials Today Communications, 2023, 34, 105361.	0.9	3
2796	Hydrogenation of C=N bonds on TiO2 surface: The effect of the Cu2O/TiO2 p-n heterojunction photocatalyst. Surfaces and Interfaces, 2023, 37, 102625.	1.5	1
2797	Solvothermal Synthesis of g-C3N4/TiO2 Hybrid Photocatalyst with a Broaden Activation Spectrum. Catalysts, 2023, 13, 46.	1.6	1
2798	Electron transfer in heterojunction catalysts. Physical Chemistry Chemical Physics, 2023, 25, 7106-7119.	1.3	6
2799	Recent Advances in Black TiO2 Nanomaterials for Solar Energy Conversion. Nanomaterials, 2023, 13, 468.	1.9	8
2800	Efficient charge transport and enhanced photocatalysis of ultrasonically decorated SnS QDs on g-C3N4 nanosheets. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
2801	Engineering of graphitic carbon nitride-based heterojunction photocatalysts. , 2023, , 43-57.		0
2802	Thermocatalysis enables photocatalytic oxidation of methane to formic acid at room temperature beyond the selectivity limits. Cell Reports Physical Science, 2023, 4, 101277.	2.8	5

#	Article	IF	CITATIONS
2803	Conjugated Polymer Coupled with Graphitic Carbon Nitride for Boosting Photocatalytic Hydrogen Generation under Visible Light. Sustainable Energy and Fuels, 0, , .	2.5	0
2804	The Capture and Catalytic Conversion of <scp>CO₂</scp> by Dendritic Mesoporous Silicaâ€Based Nanoparticles. Energy and Environmental Materials, 2024, 7, .	7.3	3
2805	Metal–organic frameworks in photocatalytic Z-scheme heterojunctions: an emerging technology. Chemical Communications, 2023, 59, 3627-3654.	2.2	19
2806	First-principles-driven catalyst design protocol of 2D/2D heterostructures for electro- and photocatalytic nitrogen reduction reaction. Physical Chemistry Chemical Physics, 0, , .	1.3	1
2807	Review on the Application of Semiconductor Heterostructures in Photocatalytic Hydrogen Evolution: State-of-the-Art and Outlook. Energy & Fuels, 2023, 37, 1633-1656.	2.5	8
2808	Energy bands matched photocatalysis enhancement based on viologen derivatives electron-transfer-mediator. Catalysis Science and Technology, 2023, 13, 1640-1649.	2.1	5
2809	Ball-milled Ni2P/g-C3N4 for improved photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 15460-15472.	3.8	8
2810	Surface reconstructed polymeric carbon nitride with promoted carrier separation for photocatalytic H ₂ O ₂ production. New Journal of Chemistry, 2023, 47, 4202-4205.	1.4	2
2811	Metal oxide heterostructure-based light-emitting diodes. , 2023, , 331-358.		0
2812	Caln ₂ S ₄ –In ₂ O ₃ hybrid nanofibers with expedited photocarrier separation for fast photocatalytic bacterial inactivation under visible light. Inorganic Chemistry Frontiers, 0, , .	3.0	1
2813	A perspective on two pathways of photocatalytic water splitting and their practical application systems. Physical Chemistry Chemical Physics, 2023, 25, 6586-6601.	1.3	14
2814	Synergetic effect of oxygen vacancies coupled with in-situ Bi clusters in Bi2WO6 for enhancing photocatalytic CO2 reduction. Applied Surface Science, 2023, 616, 156530.	3.1	8
2815	Boosted built-in electric field and active sites based on Ni-doped heptazine/triazine crystalline carbon nitride for achieving high-efficient photocatalytic H2 evolution. Journal of Molecular Structure, 2023, 1280, 135076.	1.8	19
2816	Synthesis of SiO2-doped BiOX (X = Cl, Br) II-type heterojunctions and 2H-MoS2-doped SiO2@BiOX Z-scheme heterojunctions: A comparative study. Journal of Physics and Chemistry of Solids, 2023, 176, 111236.	1.9	4
2817	Superior photocatalytic performance and photo disinfection of bacteria of solvothermally synthesized mesoporous La-doped CeO2 under simulated visible light irradiation for wastewater treatment. Journal of Alloys and Compounds, 2023, 942, 169135.	2.8	7
2818	Preparation of Z-scheme 3D ZnO/Au/g-C ₃ N ₄ heterostructures for the photoelectrochemical sensing of glutathione. Sensors & Diagnostics, 2023, 2, 699-706.	1.9	2
2819	Recent advances on g-C ₃ N ₄ -based Z-scheme photocatalysts for organic pollutant removal. Catalysis Science and Technology, 2023, 13, 2877-2898.	2.1	10
2820	Rational design of 2D/2D CS/SiC van der Waals type-II heterojunctions: a visible-light-driven photocatalyst for hydrogen production. Materials Advances, 2023, 4, 1949-1963.	2.6	4

#	Article	IF	CITATIONS
2821	Enhancement of Visibleâ€Lightâ€Driven Hydrogen Evolution Activity of 2D Ï€â€Conjugated Bipyridineâ€Based Covalent Organic Frameworks via Postâ€Protonation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32
2822	Boosting solar-driven N2 to NH3 conversion using defect-engineered TiO2/CuO heterojunction photocatalyst. Applied Surface Science, 2023, 620, 156812.	3.1	5
2823	Heterostructure charge transfer dynamics on self-assembled ZnO on electronically different single-walled carbon nanotubes. Chemosphere, 2023, 323, 138239.	4.2	5
2824	Cu(II) harmonize g-C3N4 and black phosphorous together under the interaction of surface charges to form unconventional type-II photocatalyst BPs/Cu/CNs with attractive performance. Chemical Engineering Journal, 2023, 463, 142500.	6.6	4
2825	Synthesis and photoelectrochemical catalytic properties of polyoxometalate supported on zeolitic imidazolate Framework, ZIF-9–PMo12. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 291, 116385.	1.7	4
2826	Incorporating CdS and anchoring Pt single atoms into porphyrinic metal–organic frameworks for superior visible-light and sunlight-driven H2 evolution. Chemical Engineering Journal, 2023, 464, 142530.	6.6	12
2827	Constructing outstanding 1D/2D Co3O4/NiMnO3 heterostructure to promote the PEC efficiency for water pollution remediation. Journal of Alloys and Compounds, 2023, 947, 169411.	2.8	4
2828	Development and application of redox active GO supported CeO2/In2O3 nanocomposite for photocatalytic degradation of toxic dyes and electrochemical detection of sulfamaxole. Surfaces and Interfaces, 2023, 38, 102774.	1.5	3
2829	Unique porous ZnS-CdS-CoSx Reuleaux triangle nanosheets: Highly promoted visible-light photocatalytic H2 evolution via synergistic effect of Z-scheme heterojunction and vacancy defects. Fuel, 2023, 342, 127847.	3.4	5
2830	A review on semiconductor photocathode in bioelectrochemical systems: Mechanism, limitation, and environmental application. Materials Today Sustainability, 2023, 22, 100349.	1.9	5
2831	Strategic growth engineering of Ag self-doped Ag2CO3 on MIL-53 MOF: A novel p-n heterostructure facilitates serendipitous charge migration and remarkable multimodal photocatalytic activity. Materials Today Communications, 2023, 35, 105842.	0.9	0
2832	A BP3-AlP3 heterobilayer for the bifunctional photocatalysis of CO2 reduction. Applied Surface Science, 2023, 621, 156890.	3.1	5
2833	Two-dimensional PtI2/Bi2S3 and PtI2/Bi2Se3 heterostructures with high solar-to-hydrogen efficiency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131286.	2.3	1
2834	NiO/Bi2MoxW1â^'xO6 (0Â≤Â≤Â1) nanofibers as a bifunctional platform boosting photocatalytic tetracycline conversion and electrocatalytic oxygen reduction. Journal of Alloys and Compounds, 2023, 947, 169607.	2.8	4
2835	Application of a new lignin/cellulose carbon xerogel/ZnO/Bi2O3/Bi° composite photocatalyst for the degradation of bisphenol-A under sunlight. Chemical Physics Impact, 2023, 6, 100182.	1.7	4
2836	Ta3N5–LaTaON2 heterojunction with matched interfaces to accelerate charge separation for efficient photocatalytic water oxidation. Journal of Materials Science and Technology, 2023, 154, 241-250.	5.6	5
2837	Multi-functional silver nanoprism-titanium dioxide hybrid nanoarrays for trace-level SERS sensing and photocatalytic removal of hazardous organic pollutants. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 297, 122701.	2.0	5
2838	Production of renewable fuel from CO2 by Co3O4/Cr doped MgAl–LDH p-n heterojunction catalyst. Fuel Processing Technology, 2023, 246, 107762.	3.7	2

#	Article	IF	CITATIONS
2839	Pt-Ag/Ag3PO4-WO3 nanocomposites for photocatalytic H2 production from bioethanol. Fuel, 2023, 344, 127998.	3.4	13
2840	Rational design of photoâ^`Â/electroâ^`catalytic systems for the transformation of plastic wastes. Applied Catalysis B: Environmental, 2023, 332, 122744.	10.8	10
2841	NIR-II driven photocatalytic hydrogen peroxide-supply on metallic copper-nickel selenide (Cu-Ni0.85Se) nanoparticle for synergistic therapy. Journal of Colloid and Interface Science, 2023, 641, 113-125.	5.0	1
2842	Structure-directing ability of the kraft-lignin/cellulose carbon xerogel for the development of C-Nb2O5 sunlight-active photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114697.	2.0	2
2843	TiO ₂ –NGQD composite photocatalysts with switchable photocurrent response. Nanoscale, 2023, 15, 2788-2797.	2.8	4
2844	A review on superior advanced oxidation and photocatalytic degradation techniques for perfluorooctanoic acid (PFOA) elimination from wastewater. Environmental Research, 2023, 221, 115326.	3.7	29
2845	Construction of strongly coupled 2D–2D SnS ₂ /CdS S-scheme heterostructures for photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2023, 7, 1311-1321.	2.5	6
2846	Quantum dots: Another choice to sensitize organic transformations. Chemical Physics Reviews, 2023, 4, 011304.	2.6	4
2847	In-situ CdS nanowires on g-C3N4 nanosheet heterojunction construction in 3D-Optofluidic microreactor for the photocatalytic green hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 15406-15420.	3.8	2
2848	Synthesis of 0D/2D CdSe/HSr2Nb3O10 n–n heterojunction with excellent visible-light-driven photocatalytic performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116304.	1.7	0
2849	Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results in Engineering, 2023, 17, 100920.	2.2	40
2850	An Alternative Approach to Study Photo-catalytic Behavior of TiO2 Using Synchrotron-Based Advanced Spectroscopic Techniques. Journal of Materials Engineering and Performance, 2023, 32, 10391-10401.	1.2	3
2851	Sonocatalytic degradation of tetracycline by BiOBr/FeWO4 nanomaterials and enhancement of sonocatalytic effect. Journal of Cleaner Production, 2023, 394, 136275.	4.6	24
2852	The enhanced photocatalytic performance of Co3O4 nanoparticles/In2O3 nanotubes pn junction via dual MOFs template auxiliary. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
2853	A review focused on the superhydrophobic fabrics with functional properties. Journal of Applied Polymer Science, 2023, 140, .	1.3	4
2854	Lowâ€ŧemperature synthesis oneâ€dimensional Ag ₂ CO ₃ /SnFe ₂ O ₄ <i>Z</i> à€scheme with excellent visibleâ€light photoactivity. Journal of the American Ceramic Society, 2023, 106, 3594-3604.	1.9	13
2855	Enhancement of Visibleâ€Lightâ€Driven Hydrogen Evolution Activity of 2D Ï€â€Conjugated Bipyridineâ€Based Covalent Organic Frameworks via Postâ€Protonation. Angewandte Chemie, 2023, 135, .	1.6	7
2856	Hydrothermal-assisted synthesis and characterization of MWCNT/copper oxide nanocomposite for the photodegradation of methyl orange under direct sunlight. Diamond and Related Materials, 2023, 134, 109778.	1.8	4

#	Article	IF	CITATIONS
2857	Bio-inspired ZnWO4â^'x exhibiting vacancy-driven UV-to-NIR photodegradation of antibiotics in wastewater. Journal of Environmental Chemical Engineering, 2023, 11, 109488.	3.3	1
2858	Visible—Light Driven Systems: Effect of the Parameters Affecting Hydrogen Production through Photoreforming of Organics in Presence of Cu2O/TiO2 Nanocomposite Photocatalyst. Applied Sciences (Switzerland), 2023, 13, 2337.	1.3	0
2859	Indirect Z-scheme hydrogen production photocatalyst based on two-dimensional GeC/MoSi2N4 van der Waals heterostructures. International Journal of Hydrogen Energy, 2023, 48, 18301-18314.	3.8	9
2860	A Z-scheme photocatalysis for phenol eradication from water using peroxymonosulfate activation Ag/AgBr/SCN nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144, 104722.	2.7	4
2861	Recent Advances in ZnO-Based Nanostructures for the Photocatalytic Degradation of Hazardous, Non-Biodegradable Medicines. Crystals, 2023, 13, 329.	1.0	27
2862	Ceria-based photocatalysts in water-splitting for hydrogen production and carbon dioxide reduction. Catalysis Reviews - Science and Engineering, 0, , 1-78.	5.7	7
2863	Construction of a BaTiO3/tubular g-C3N4 dual piezoelectric photocatalyst with enhanced carrier separation for efficient degradation of tetracycline. Chemical Engineering Journal, 2023, 461, 141947.	6.6	48
2864	Sulfur recycling into value-added materials: a review. Environmental Chemistry Letters, 2023, 21, 1673-1699.	8.3	12
2865	Synergistic effect of cocatalyst and S-scheme heterojunction over 2D/2D g-C3N4/MoS2 heterostructure coupled Cu nanoparticles for selective photocatalytic CO2 reduction to CO under visible light irradiation. Journal of Environmental Chemical Engineering, 2023, 11, 109545.	3.3	13
2866	Metal ions doped TiO2 nanotubes: synthesis, characterization and performance of metals doping in photocatalytic activity. Digest Journal of Nanomaterials and Biostructures, 2023, 18, 243-252.	0.3	3
2867	A versatile Topology Optimization Strategy for Devising Lowâ€Dimensional Architectures with Boosted Photocatalytic Activity. Advanced Functional Materials, 2023, 33, .	7.8	8
2868	Uniform Catalytic Nanocrystals: From Model Catalysts to Efficient Catalysts. Accounts of Materials Research, 2023, 4, 373-384.	5.9	7
2869	Construction of Z-scheme MnCo2O4/Sn3O4 heterostructured photoanodes with enhanced photoelectrocatalytic degradation of reactive brilliant blue KN-R. International Journal of Electrochemical Science, 2023, 18, 100066.	0.5	2
2870	A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. Journal of Environmental Sciences, 2024, 139, 389-417.	3.2	27
2871	The versatile characteristics of Ars/SGaInS van der Waals heterostructures. Physical Chemistry Chemical Physics, 0, , .	1.3	0
2872	Allochroic platinum/carbon nitride with photoactivated ohmic contact for efficient visible-light photocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 462, 142337.	6.6	3
2873	ZIF-67-derived nickel–cobalt phosphide nanocubes/N-doped carbon/nickel form composite for efficient overall water splitting. International Journal of Hydrogen Energy, 2023, 48, 19995-20005.	3.8	11
2874	Interfacial Coordinational Bond Triggered Photoreduction Membrane for Continuous Light-Driven Precious Metals Recovery. Nano Letters, 2023, 23, 2219-2227.	4.5	1

#	Article	IF	CITATIONS
2875	Engineering Dynamic Defect of Ce ^{III} /Ce ^{IV} â€Based Metalâ€Organic Framework through Ultrasoundâ€Triggered Au Electron Trapper for Sonodynamic Therapy of Osteomyelitis. Small, 2023, 19, .	5.2	11
2877	Plasmonic photocatalysis: Mechanism, applications and perspectives. , 2023, 42, 100066.		8
2878	Application of bismuth sulfide based nanomaterials in cancer diagnosis and treatment. Nano Today, 2023, 49, 101799.	6.2	8
2879	Manganese-Based Metal-Organic Frameworks Photocatalysts for Visible Light-Driven Oxidative Coupling of Benzylamine under Atmospheric Oxygen: A Comparative Study. Catalysts, 2023, 13, 613.	1.6	0
2880	Flowerlike Sm–ZnIn2S4 as a Susceptible Visible-Light Photocatalyst for Cr6+ Reduction: Experimental Design, RSM, and ANN Modeling. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 1621-1637.	1.9	2
2881	BiVO ₄ Microspheres Coated with Nanometer-Thick Porous TiO ₂ Shells for Photocatalytic Water Treatment under Visible-Light Irradiation. ACS Applied Nano Materials, 2023, 6, 5545-5556.	2.4	5
2882	Smart Nanomaterials for Photo-Catalytic Applications. Advances in Chemical and Materials Engineering Book Series, 2023, , 112-154.	0.2	1
2883	Effect of Sulfur Contents in NiZnS Composite Photocatalysts on Solar Water Splitting. Journal of Korean Institute of Metals and Materials, 2023, 61, 284-290.	0.4	0
2884	Photoelectrochemical Biosensors. , 2023, , 567-588.		0
2885	C3N4/GO@MF composites for synergistic Adsorption-Photocatalysis contributions to organic pollutant removal. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114729.	2.0	1
2886	Effect of Ag Modification on the Structure and Photocatalytic Performance of TiO2/Muscovite Composites. Molecules, 2023, 28, 3187.	1.7	1
2887	The heterojunction construction of hybrid B-doped g-C3N4 nanosheets and ZIF67 by simple mechanical grinding for improved photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 25366-25378.	3.8	4
2888	Ternary-structured graphite carbon nitride quantum dots/TiO ₂ nanotubes/3D SiO ₂ photonic crystals for enhanced dye photodegradation. New Journal of Chemistry, 2023, 47, 9101-9112.	1.4	1
2889	Spatial Specific Janus Sâ€Scheme Photocatalyst with Enhanced H ₂ O ₂ Production Performance. Small, 2023, 19, .	5.2	17
2890	Enhanced catalysis for degradation of antibiotic by hydroxyl-functionalized S-doped BiOCl with high capacity of local spatial charge separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 669, 131448.	2.3	3
2891	Mussel-inspired PDA/Ag Nanocomposite Catalyst for High-efficient Cr(VI) Removal via Visible Light-induced Reduction and Absorption. New Journal of Chemistry, 0, , .	1.4	0
2892	Photosynthesis of Hydrogen Peroxide Based on g‑C ₃ N ₄ : The Road of a Costâ€Effective Clean Fuel Production. Small, 2023, 19, .	5.2	16
2893	Customâ€Made Piezoelectric Solid Solution Material for Cancer Therapy. Small, 2023, 19, .	5.2	5

#	Article	IF	CITATIONS
2894	MoS2/polyaniline (PANI)/polyacrylonitrile (PAN)@BiFeO3 bilayer hollow nanofiber membrane: Photocatalytic filtration and piezoelectric effect enhancing degradation and disinfection. Journal of Colloid and Interface Science, 2023, 644, 29-41.	5.0	10
2895	Design and Fabrication of High Performance Visible Light Driven H2 Production of N-doped TiO2 Nanotubes Incorporated 2D MoS2 Nanosheets Heterojunction Photocatalyst. Journal of Cluster Science, 0, , .	1.7	0
2896	Photocatalysis in energy application: What's next?. , 2023, , 100016.		0
2897	Superheterojunction covalent organic frameworks: Supramolecular synergetic charge transfer for highly efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 333, 122782.	10.8	12
2898	Regulating the Metallic Cu–Ga Bond by S Vacancy for Improved Photocatalytic CO ₂ Reduction to C ₂ H ₄ . Advanced Functional Materials, 2023, 33, .	7.8	13
2899	Porphyrin-Based Covalent Organic Frameworks: Design, Synthesis, Photoelectric Conversion Mechanism, and Applications. Biomimetics, 2023, 8, 171.	1.5	4
2901	Interface Engineering of Nano-Photocatalysts for Hydrogen Evolution Reaction and Degradation of Organic Pollutants. Green Chemistry and Sustainable Technology, 2023, , 449-479.	0.4	0
2906	Photocatalytic nanoscale polymer-based coatings. , 2023, , 585-611.		0
2952	Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Environmental Applications. Springer Series in Materials Science, 2023, , 103-136.	0.4	4
2983	Review on the preparation and performance improvement methods of bismuth photocatalyst materials. Catalysis Science and Technology, 2023, 13, 5478-5529.	2.1	3
2997	Photocatalytic desalination techniques for industrial wastewater reuse. , 2023, , 441-461.		0
3022	Recent advances and developments in photoelectrochemical bioanalysis techniques. , 2023, , 307-320.		0
3024	Existing confines and new trends of photoelectrochemical bioanalysis. , 2023, , 99-114.		0
3033	Photothermal catalytic C1 conversion on supported catalysts. Energy Advances, 2023, 2, 1541-1564.	1.4	1
3035	Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts. Nanoscale, 2023, 15, 13909-13931.	2.8	2
3050	Electrospun Nanofibers for Water Purification as Catalyst. Nanostructure Science and Technology, 2023, , 123-151.	0.1	0
3054	Advances in ultrasound-assisted photocatalyst synthesis and piezo-photocatalysts. Journal of Materials Chemistry A, 2023, 11, 22608-22630.	5.2	0
3079	Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. , 2024, 1, 43-69.		3

#	Article	IF	CITATIONS
3084	A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chemical Science, 0, , .	3.7	1
3091	Role of TiO2-Based Photocatalysts in Waste Water Treatment. Advances in Material Research and Technology, 2023, , 201-220.	0.3	0
3125	The multiple roles of rare earth elements in the field of photocatalysis. Inorganic Chemistry Frontiers, 0, , .	3.0	0
3138	Wastewater Treatment: Perspective and Advancements. , 2023, , 265-287.		0
3143	The confusion about S-scheme electron transfer: Critical understanding and new perspective. Energy and Environmental Science, 0, , .	15.6	1
3159	Z-scheme: A Photocatalysis for the Remediation of Environmental Pollutants. , 2023, , 143-155.		0
3175	Enhanced photocatalysis of metal/covalent organic frameworks by plasmonic nanoparticles and homo/hetero-junctions. Materials Horizons, 2024, 11, 1611-1637.	6.4	0
3183	Insights into the performance of binary heterojunction photocatalysts for degradation of refractory pollutants. Environmental Science and Pollution Research, 2024, 31, 11349-11370.	2.7	0
3193	State of-the-art progress of metal–organic frameworks-based photothermal catalysis. , 2024, , 109-127.		0
3202	A review of the REDOX properties of MoS2: From wastewater treatment to tumor therapy. Science China Materials, 2024, 67, 382-396.	3.5	2
3205	Magnetic Adsorbents/Photocatalysts for Water Purification: Progress and Challenges. , 2024, , 78-100.		0
3207	Ru-Doped ZnS as an Enhanced Visible Light-Driven Photocatalyst. Advances in Material Research and Technology, 2024, , 131-169.	0.3	0
3217	Metal–organic framework heterojunctions for photocatalysis. Chemical Society Reviews, 2024, 53, 3002-3035.	18.7	0
3224	Advances in photocatalytic ceramic coatings. , 2024, , 171-211.		0
3240	Graphitic carbon nitride as a metal free photocatalyst for solar water splitting. , 2024, , 347-380.		0

3240 Graphitic carbon nitride as a metal free photocatalyst for solar water splitting. , 2024, , 347-380.