An Industrial Perspective on Wireless Sensor Networks Protocols, and Challenges

IEEE Communications Surveys and Tutorials 16, 1391-1412 DOI: 10.1109/surv.2014.012114.00058

Citation Report

#	Article	IF	CITATIONS
1	Link Layer Time-Varying Model for IEEE 802.15.4 Radio in Industrial Environment. International Journal of Distributed Sensor Networks, 2014, 10, 240256.	1.3	2
2	A robust and reliable routing based on multi-hop information in industrial wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 2015, 19, 29.	0.3	1
3	Topology control with application constraints. , 2015, , .		7
4	A study on the architecture of manufacturing internet of things. International Journal of Modelling, Identification and Control, 2015, 23, 8.	0.2	10
5	Survey of IPv6 Support in 3GPP Specifications and Implementations. IEEE Communications Surveys and Tutorials, 2015, 17, 1634-1648.	24.8	2
6	An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial Wireless Sensor Networks. IEEE Access, 2015, 3, 1026-1035.	2.6	51
7	A Two-Level Cluster-Based Cognitive Radio Sensor Network: System Architecture, Hardware Design, and Distributed Protocols. , 2015, , .		4
8	Evaluation of cognitive radio for mission-critical and time-critical WSAN in industrial environments under interference. , 2015, , .		10
9	On the topic of RTT and delivery ratio in query driven Wireless Sensor Networks. , 2015, , .		1
10	Event-driven hybrid MAC protocol for a two-tier cognitive wireless sensor network: design and implementation. International Journal of High Performance Computing and Networking, 2016, 9, 271.	0.4	6
11	Industrial Automation using Wireless Sensor Networks. Indian Journal of Science and Technology, 2016, 9, .	0.5	16
12	Virtual MIMO in wireless sensor network - a survey. , 2016, , .		8
13	NES-SOURCE: Indoor small-scale wireless control network protocol that has a communication failure point avoidance function. , 2016, , .		2
14	Topology Control in Wireless Sensor Networks: What Blocks the Breakthrough?. , 2016, , .		9
15	Networked robust stabilization with simultaneous uncertainties in plant, controller and communication channels. , 2016, , .		6
16	On the importance of the vertical radiation pattern on simulations of WSNs. , 2016, , .		0
17	Intrusion detection system using anomaly technique in wireless sensor network. , 2016, , .		7
18	Handling event-triggered traffic of safety and closed-loop control systems in WSANs. , 2016, , .		0 _

#	Article	IF	CITATIONS
19	Optimal Reliability in Energy Harvesting Industrial Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2016, 15, 5399-5413.	6.1	68
20	Cyber-physical systems clouds: A survey. Computer Networks, 2016, 108, 260-278.	3.2	89
21	Characterization and adaptive selection of radio channels for reliable and energy-efficient WSN. , 2016, , .		1
22	Design and Development of an RF Energy Harvesting Wireless Sensor Node (EH-WSN) for Aerospace Applications. Procedia Computer Science, 2016, 93, 230-237.	1.2	24
23	T-MQM: Testbed based Multi-metric Quality Measurement of Sensor Deployment for Precision Agriculture-A Case Study. IEEE Sensors Journal, 2016, , 1-1.	2.4	23
24	Improving reliability of 920 MHz-band wireless networks using advanced source routing function to guarantee real-time property. , 2016, , .		2
25	Characterization and adaptive selection of radio channels for reliable and energy-efficient WSN. , 2016, , .		2
26	Evaluation study for clustering in wireless sensor networks. , 2016, , .		1
27	Recent Advances in Energy-Efficient Routing Protocols for Wireless Sensor Networks: A Review. IEEE Access, 2016, 4, 5673-5686.	2.6	144
28	A data fusion protocol for WSN performance and data retrieval. , 2016, , .		1
29	Green alarm systems driven by emergencies in industrial wireless sensor networks. , 2016, 54, 16-21.		14
30	Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks. , 2016, 54, 22-28.		49
31	Green and reliable software-defined industrial networks. , 2016, 54, 30-37.		27
32	Green industrial networking: recent advances, taxonomy, and open research challenges. , 2016, 54, 38-45.		12
33	Key design of driving industry 4.0: joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks. , 2016, 54, 46-52.		78
34	Parallel Massive Data Monitoring and Processing Using Sensor Networks. , 2016, , .		0
35	Enhancing Mobility Management and Supporting 3d Visualization. , 2016, , .		0
36	Set-covering-based algorithm for delay constrained relay node placement in Wireless Sensor Networks. , 2016, , .		10

# 37	ARTICLE Comparative Examination on Architecture and Protocol of Industrial Wireless Sensor Network Standards. IEEE Communications Surveys and Tutorials, 2016, 18, 2197-2219.	IF 24.8	CITATIONS
38	A simulation framework for industrial wireless networks and process control systems. , 2016, , .		18
39	A Real-Time Big Data Gathering Algorithm Based on Indoor Wireless Sensor Networks for Risk Analysis of Industrial Operations. IEEE Transactions on Industrial Informatics, 2016, 12, 1232-1242.	7.2	74
40	Towards wireless sensor, actuator and robot networks: Conceptual framework, challenges and perspectives. Journal of Network and Computer Applications, 2016, 63, 14-23.	5.8	36
41	IWSN - Standards, Challenges and Future. IEEE Potentials, 2016, 35, 9-16.	0.2	19
42	Transmission Power Control for Link-Level Handshaking in Wireless Sensor Networks. IEEE Sensors Journal, 2016, 16, 561-576.	2.4	53
43	Sustainable Solutions for Machine Tools. Sustainable Production, Life Cycle Engineering and Management, 2017, , 47-69.	0.2	5
44	Effects of wireless packet loss in industrial process control systems. ISA Transactions, 2017, 68, 412-424.	3.1	14
45	Maximizing Lifetime in Wireless Sensor Network for Structural Health Monitoring With and Without Energy Harvesting. IEEE Access, 2017, 5, 2383-2395.	2.6	48
46	Mobile Charging in Wireless-Powered Sensor Networks: Optimal Scheduling and Experimental Implementation. IEEE Transactions on Vehicular Technology, 2017, 66, 7400-7410.	3.9	81
47	Performance evaluation of 6TiSCH for resilient data transport in wireless sensor networks. , 2017, , .		3
48	An implementation of security mechanism in chip for industrial wireless networks. , 2017, , .		0
49	Delay constrained relay node placement in two-tiered wireless sensor networks: A set-covering-based algorithm. Journal of Network and Computer Applications, 2017, 93, 76-90.	5.8	26
50	XLCI Protocol for High QoS in Industrial Wireless Network. Wireless Personal Communications, 2017, 95, 3057-3075.	1.8	1
51	The intelligent industry of the future: AÂsurvey on emerging trends, research challenges and opportunities in Industry 4.0. Journal of Ambient Intelligence and Smart Environments, 2017, 9, 287-298.	0.8	133
52	Deterministic real-time access point concepts for industrial hybrid Ethernet/IEEE 802.11 networks. , 2017, , .		5
53	A cloud-assisted handover optimization strategy for mobile nodes in industrial wireless networks. Computer Networks, 2017, 128, 133-141.	3.2	10
54	An Inequality on Source-to-Sink Average BER and Its Application on Wireless Sensor Networks. IEEE Communications Letters, 2017, 21, 2077-2080.	2.5	2

#	Article	IF	CITATIONS
55	Soft Resource Reservation for Low-Delayed Teleoperation Over Mobile Networks. IEEE Access, 2017, 5, 10445-10455.	2.6	51
56	Flexible online multi-objective optimization framework for ISA100.11a standard in beacon-enabled CSMA/CA mode. Computers and Electrical Engineering, 2017, 64, 537-551.	3.0	6
57	Recursive Principal Component Analysis-Based Data Outlier Detection and Sensor Data Aggregation in IoT Systems. IEEE Internet of Things Journal, 2017, 4, 2207-2216.	5.5	121
58	Scheduling for IEEE802.15.4-TSCH and slow channel hopping MAC in low power industrial wireless networks: A survey. Computer Communications, 2017, 114, 84-105.	3.1	90
59	Eligible earliest deadline first: Server-based scheduling for master-slave industrial wireless networks. Computers and Electrical Engineering, 2017, 64, 305-321.	3.0	4
60	A dynamic self-organising heterogeneous routing protocol for clustered WSNs. International Journal of Wireless and Mobile Computing, 2017, 12, 131.	0.1	1
61	Review and Classification of Multichannel MAC Protocols for Low-Power and Lossy Networks. IEEE Access, 2017, 5, 19536-19561.	2.6	18
62	A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Journal of Network and Computer Applications, 2017, 97, 140-156.	5.8	32
63	Survey and systematic mapping of industrial Wireless Sensor Networks. Journal of Network and Computer Applications, 2017, 97, 96-125.	5.8	74
64	A Distributed Routing Algorithm for Data Collection in Low-Duty-Cycle Wireless Sensor Networks. IEEE Internet of Things Journal, 2017, 4, 1420-1433.	5.5	33
65	A Survey of Multi-Objective Optimization in Wireless Sensor Networks: Metrics, Algorithms, and Open Problems. IEEE Communications Surveys and Tutorials, 2017, 19, 550-586.	24.8	317
66	Face-to-machine proximity estimation for mobile industrial human machine interaction. , 2017, , .		7
67	On optimal deployment of industrial wireless sensor networks. , 2017, , .		1
68	An experimental platform for evaluating low power wireless communication systems for industrial applications. , 2017, , .		0
69	Wireless control of a coupled tanks system: A case study. , 2017, , .		1
70	Deterministic MAC access control scheme for industrial hybrid IEEE 802.3/IEEE 802.11 networks. , 2017, , ·		3
71	Performance analysis of WSN links over Îμ and Î-μ generalized fading channels. , 2017, , .		1
72	Stabilization of cascaded two-port networked systems against nonlinear perturbations. , 2017, , .		2

	C	itation Re	PORT	
#	Article		IF	CITATIONS
73	A Reliable Handoff Mechanism for Mobile Industrial Wireless Sensor Networks. Sensors, 2017, 17, 17	'97.	2.1	14
74	Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network. Sensors, 2017, 17, 544.		2.1	3
75	A Biologically Inspired Energy-Efficient Duty Cycle Design Method for Wireless Sensor Networks. Journal of Sensors, 2017, 2017, 1-9.		0.6	0
76	Evaluation of 5G Modulation Candidates WCP-COQAM, GFDM-OQAM, and FBMC-OQAM in Low-Ban Highly Dispersive Wireless Channels. Journal of Computer Networks and Communications, 2017, 201 1-11.	d 17,	1.2	8
77	Elite Immune Parallel Evolutionary Algorithm for Maximizing the Monitored Percentage in Self-Organizing Wireless Sensor Networks. , 2017, , .			0
78	Stability of networked feedback system with frequency-wise bounded uncertainty quartets. , 2017, ,			1
79	Superframe Duration Allocation Schemes to Improve the Throughput of Cluster-Tree Wireless Sensor Networks. Sensors, 2017, 17, 249.		2.1	19
80	Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods. Sensors, 2017, 17, 1049.		2.1	4
81	An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous WSNs. International Journal of Rough Sets and Data Analysis, 2017, 4, 17-32.		1.0	2
82	An Efficient Approach for Storage Balancing in Wireless Sensor Networks. International Journal of Online Engineering, 2017, 13, 4.		0.5	1
83	A Pragmatic Relay Placement Approach in 3-D Space and Q-Learning-Based Transmission Scheme for Reliable Factory Automation Applications. IEEE Systems Journal, 2018, 12, 823-833.		2.9	13
84	A Tutorial on Performance Evaluation and Validation Methodology for Low-Power and Lossy Networks. IEEE Communications Surveys and Tutorials, 2018, 20, 1799-1825.		24.8	31
85	Unicast QoS Routing Algorithms for SDN: A Comprehensive Survey and Performance Evaluation. IEEE Communications Surveys and Tutorials, 2018, 20, 388-415.		24.8	121
86	Energy Efficient Link-Delay Aware Routing in Wireless Sensor Networks. IEEE Sensors Journal, 2018, 1 837-848.	.8,	2.4	47
87	Estimation of Clock Skew for Time Synchronization Based on Two-Way Message Exchange Mechanis in Industrial Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 2018, 14, 4755-4765.	m	7.2	41
88	Wireless Network Design for Control Systems: A Survey. IEEE Communications Surveys and Tutorials 2018, 20, 978-1013.		24.8	303
89	An SNR-Assured Anti-Jamming Routing Protocol for Reliable Communication in Industrial Wireless Sensor Networks. , 2018, 56, 23-29.			25
90	An Energy Efficient Autonomous Method for Coverage Optimization in Wireless Multimedia Sensor Networks. Wireless Personal Communications, 2018, 99, 717-736.		1.8	8

#	Article	IF	CITATIONS
91	State of the Art and Future Applications of Industrial Wireless Sensor Networks. Technologien Für Die Intelligente Automation, 2018, , 28-39.	0.3	14
92	An Optimal Communications Protocol for Maximizing Lifetime of Railway Infrastructure Wireless Monitoring Network. IEEE Transactions on Industrial Informatics, 2018, 14, 3347-3357.	7.2	27
93	Industrial Communication based on Modbus and Node-RED. Procedia Computer Science, 2018, 130, 583-588.	1.2	38
94	Safe-WirelessHART: A Novel Framework Enabling Safety-Critical Applications Over Industrial WSNs. IEEE Transactions on Industrial Informatics, 2018, 14, 3513-3523.	7.2	19
95	FaceME: Face-to-Machine Proximity Estimation Based on RSSI Difference for Mobile Industrial Human–Machine Interaction. IEEE Transactions on Industrial Informatics, 2018, 14, 3547-3558.	7.2	35
96	IWSN Based on DWPT Using an Industrial Noisy Channel for Industry 4.0 Wireless Applications. , 2018, ,		0
97	PD-MAC: Design and Implementation of Polling Distribution-MAC for Improving Energy Efficiency of Wireless Sensor Networks. International Journal of Wireless Information Networks, 2018, 25, 200-208.	1.8	8
98	Challenges and Research Issues of Data Management in IoT for Large-Scale Petrochemical Plants. IEEE Systems Journal, 2018, 12, 2509-2523.	2.9	38
99	Delay Constrained Relay Node Placement in Wireless Sensor Networks: A Subtree-and-Mergence-based Approach. Mobile Networks and Applications, 2018, 23, 1220-1232.	2.2	6
100	End-to-End Data Delivery Reliability Model for Estimating and Optimizing the Link Quality of Industrial WSNs. IEEE Transactions on Automation Science and Engineering, 2018, 15, 1127-1137.	3.4	51
101	Recent Advances in Attacks, Technical Challenges, Vulnerabilities and Their Countermeasures in Wireless Sensor Networks. Wireless Personal Communications, 2018, 98, 2037-2077.	1.8	134
102	A Critical Analysis of Research Potential, Challenges, and Future Directives in Industrial Wireless Sensor Networks. IEEE Communications Surveys and Tutorials, 2018, 20, 39-95.	24.8	181
103	Review of Industrial Standards for Wireless Sensor Networks. Advances in Intelligent Systems and Computing, 2018, , 77-87.	0.5	1
104	Genetic Algorithm for the Nodes Deployment Problem in Industrial Wireless Sensor Networks. , 2018, ,		0
105	Experimental Evaluation of a Wireless Control for a Coupled Tanks System. , 2018, , .		0
106	Random Network Coding for Secure Packet Transmission in SCADA Networks. , 2018, , .		2
107	Wireless Sensor Networks in Industry 4.0: WirelessHART and ISA100.11a. , 2018, , .		6
108	Energy-Balancing Unequal Clustering Approach to Reduce the Blind Spot Problem in Wireless Sensor Networks (WSNs). Sensors, 2018, 18, 4258.	2.1	8

#	Article	IF	CITATIONS
109	Performance Analysis of Wireless Sensor Networks over κ–μ Shadowed Fading Channel. , 2018, , .		0
110	Information Age and Packet Loss Performance Analysis of Energy Harvesting WSNs. , 2018, , .		1
111	On the use of Wireless Sensor Networks in Preventative Maintenance for Industry 4.0. , 2018, , .		18
112	Robust Fault Detection H <inf>â^ž</inf> Filter for Markovian Jump Linear Systems. , 2018, , .		1
113	Industrial IoT Monitoring: Technologies and Architecture Proposal. Sensors, 2018, 18, 3568.	2.1	59
114	Node-Identification-Based Secure Time Synchronization in Industrial Wireless Sensor Networks. Sensors, 2018, 18, 2718.	2.1	11
115	Model-based cosimulation for industrial wireless networks. , 2018, , .		7
116	An Efficient Retransmission Scheme for Reliable End-to-End Wireless Communication Over WSANs. IEEE Access, 2018, 6, 49838-49849.	2.6	9
117	Development of a mobile oil well dosing control system. IOP Conference Series: Materials Science and Engineering, 2018, 423, 012042.	0.3	0
118	A D2D-Based Protocol for Ultra-Reliable Wireless Communications for Industrial Automation. IEEE Transactions on Wireless Communications, 2018, 17, 5045-5058.	6.1	69
119	Two-Layer Hierarchy Optimization Model for Communication Protocol in Railway Wireless Monitoring Networks. Wireless Communications and Mobile Computing, 2018, 2018, 1-14.	0.8	6
120	An Improved Niche Chaotic Genetic Algorithm for Low-Energy Clustering Problem in Large-Scale Wireless Sensor Networks. Journal of Sensors, 2018, 2018, 1-8.	0.6	1
121	SDN-Based Secure Localization in Heterogeneous WSN. Lecture Notes in Computer Science, 2018, , 276-287.	1.0	3
122	High resolution testbed for heterogenous industrial wireless sensor and actuator networks. , 2018, , \cdot		2
123	Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks. Sensors, 2018, 18, 545.	2.1	9
124	Event-Triggered Fault Estimation for Stochastic Systems over Multi-Hop Relay Networks with Randomly Occurring Sensor Nonlinearities and Packet Dropouts. Sensors, 2018, 18, 731.	2.1	8
125	CRNP: A cover-based relay node placement algorithm to delay-constrained wireless sensor networks. , 2018, , .		0
126	Protocol for Energy-Efficiency in Networked Control Systems Based on WSN. Sensors, 2018, 18, 2590.	2.1	5

#	Article	IF	CITATIONS
127	Origin-Mediated Sink Mobility Support for Large-Scale Phenomena Monitoring in IWSNs. , 2018, , .		3
128	PR-CCA MAC: A Prioritized Random CCA MAC Protocol for Mission-Critical IoT Applications. , 2018, , .		5
129	Space-Air-Ground Integrated Network: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 2714-2741.	24.8	634
130	Lifetime Maximization by Optimizing the Computation/Communication Strategy for Railway Wireless Monitoring System. , 2018, , .		0
131	Relay Node Placement in Wireless Sensor Networks With Respect to Delay and Reliability Requirements. IEEE Systems Journal, 2019, 13, 2570-2581.	2.9	24
132	Intrusion detection model of wireless sensor networks based on game theory and an autoregressive model. Information Sciences, 2019, 476, 491-504.	4.0	60
133	Synchronization Uncertainty Versus Power Efficiency in LoRaWAN Networks. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 1101-1111.	2.4	33
134	Link quality evaluation of a wireless sensor network in metal marine environments. Wireless Networks, 2019, 25, 1253-1271.	2.0	4
135	Industrial wireless sensor and actuator networks in industry 4.0: Exploring requirements, protocols, and challenges—A MAC survey. International Journal of Communication Systems, 2019, 32, e4074.	1.6	33
136	Critical review on slope monitoring systems with a vision of unifying WSN and IoT. IET Wireless Sensor Systems, 2019, 9, 167-180.	1.3	15
138	Design Space Exploration for Wireless-Integrated Factory Automation Systems. , 2019, , .		4
139	Channel Coding and Low Latency HARQ for Industrial Wireless Sensor Networks. , 2019, , .		6
140	Novel Filtering-Based Approach Using Fuzzy Logic for Prevention of Adversaries in Sensory Application. Advances in Intelligent Systems and Computing, 2019, , 1-10.	0.5	0
141	Analysis and Evaluation of Self-Organizing TDMA for Industrial Applications. , 2019, , .		2
142	An Energy-Efficient Region Source Routing Protocol for Lifetime Maximization in WSN. IEEE Access, 2019, 7, 135277-135289.	2.6	102
143	Performance Analysis of Algorithms for Energy-Efficient Data Transfer in Wireless Sensor Networks. , 2019, , .		4
144	Minimization of Energy Consumption Per Bit Using an Average Dwell-Time Approach for Wireless Networked Control Systems. IEEE Access, 2019, 7, 81839-81848.	2.6	3
145	A Survey on Fundamental of Wireless Sensor Network with Various Issues in Optimization. , 2019, , .		0

#	Article	IF	CITATIONS
146	Combining Proximity Estimation With Visible Symbol Assignment to Simplify Line-of-Sight Connections in Mobile Industrial Human-Machine Interaction. IEEE Access, 2019, 7, 133559-133571.	2.6	4
147	Combined Reed-Solomon and Convolutional codes for IWSN based on IDWPT/DWPT Architecture. Procedia Computer Science, 2019, 155, 666-671.	1.2	3
148	Anti-Interference Deep Visual Identification Method for Fault Localization of Transformer Using a Winding Model. Sensors, 2019, 19, 4153.	2.1	5
149	Adaptive Fuzzy-Based Energy and Delay-Aware Routing Protocol for a Heterogeneous Sensor Network. Journal of Computer Networks and Communications, 2019, 2019, 1-11.	1.2	18
150	Consensus-based filtering under false data injection attacks. European Journal of Control, 2019, 48, 3-8.	1.6	5
151	Running Smart Monitoring Maintenance Application Using Cooja Simulator. International Journal of Engineering Research in Africa, 2019, 42, 149-159.	0.7	4
152	WIA-FA and Its Applications to Digital Factory: A Wireless Network Solution for Factory Automation. Proceedings of the IEEE, 2019, 107, 1053-1073.	16.4	70
153	Spectrum handoff strategy for cognitive radio-based MAC for real-time industrial wireless sensor and actuator networks. Computer Networks, 2019, 152, 186-198.	3.2	14
154	A Wireless Sensors Network for Monitoring the Carasau Bread Manufacturing Process. Electronics (Switzerland), 2019, 8, 1541.	1.8	33
155	WSN Hardware for Automotive Applications: Preliminary Results for the Case of Public Transportation. Electronics (Switzerland), 2019, 8, 1483.	1.8	10
156	Energy Harvesting Powered Wireless Sensor Nodes With Energy Efficient Network Joining Strategies. , 2019, , .		0
157	Matrix-Based Information Sharing Approach for Dynamic Robot Teams. IEEE Access, 2019, 7, 175331-175340.	2.6	0
158	The Implementation of Wireless Industrial Internet of Things (IIoT) Based Upon IEEE 802.15.4-2015 TSCH Access Mode. , 2019, , .		5
159	Nearly-Optimal Resource Allocation for Coexisting Industrial Wireless Networks with Line Topologies. , 2019, , .		3
160	Software-Defined Wireless Communication for Industrial Control: A Realistic Approach. IEEE Industrial Electronics Magazine, 2019, 13, 31-37.	2.3	20
161	Performance Analysis of Wireless Sensor Networks over \$alpha-mu/Gamma, eta-mu/Gamma\$ and \$kappa-mu/Gamma\$ Composite Channels. , 2019, , .		0
162	A survey on network formation and scheduling algorithms for time slotted channel hopping in in industrial networks. Journal of Network and Computer Applications, 2019, 126, 59-87.	5.8	41
163	Design, analysis and implementation of a time-bounded spectrum handoff algorithm for real-time industrial wireless sensor and actuator networks. Journal of Network and Computer Applications, 2019, 125, 1-16.	5.8	2

#	Article	IF	CITATIONS
164	Seamless roaming and guaranteed communication using a synchronized single-hop multi-gateway 802.15.4e TSCH network. Ad Hoc Networks, 2019, 86, 1-14.	3.4	10
165	Improvements of Energy-Efficient Techniques in WSNs: A MAC-Protocol Approach. IEEE Communications Surveys and Tutorials, 2019, 21, 1188-1208.	24.8	39
166	A Taxonomy for MAC Protocols in Wireless Sensor Networks Based on Traffic Prioritization. Wireless Personal Communications, 2019, 104, 1493-1522.	1.8	2
167	State Estimation Oriented Wireless Transmission for Ubiquitous Monitoring in Industrial Cyber-Physical Systems. IEEE Transactions on Emerging Topics in Computing, 2019, 7, 187-201.	3.2	24
168	A QoS-aware congestion control mechanism for wireless multimedia sensor networks. Wireless Networks, 2019, 25, 4173-4192.	2.0	10
169	Stabilization of Two-Port Networked Systems With Simultaneous Uncertainties in Plant, Controller, and Communication Channels. IEEE Transactions on Automatic Control, 2020, 65, 1160-1175.	3.6	11
170	An energy efficient data transmission approach for low-duty-cycle wireless sensor networks. Peer-to-Peer Networking and Applications, 2020, 13, 255-268.	2.6	6
171	Learning-Based Energy-Efficient Resource Management by Heterogeneous RF/VLC for Ultra-Reliable Low-Latency Industrial IoT Networks. IEEE Transactions on Industrial Informatics, 2020, 16, 5565-5576.	7.2	125
173	WaterGrid-Sense: A LoRa-Based Sensor Node for Industrial IoT Applications. IEEE Sensors Journal, 2020, 20, 2722-2729.	2.4	32
174	Energy Harvesting Wireless Sensor Networks With Channel Estimation: Delay and Packet Loss Performance Analysis. IEEE Transactions on Vehicular Technology, 2020, 69, 1956-1969.	3.9	19
175	Dragonfly approach for resource allocation in industrial wireless networks. Physical Communication, 2020, 43, 101198.	1.2	4
176	A Garden of Cyber Physical Systems: Requirements, Challenges, and Implementation Aspects. IEEE Internet of Things Magazine, 2020, 3, 84-89.	2.0	7
177	Improving MAC Protocols for Wireless Industrial Networks via Packet Prioritization and Cooperation. , 2020, , .		1
178	An End-to-End Early Warning System Based on Wireless Sensor Network for Gas Leakage Detection in Industrial Facilities. IEEE Systems Journal, 2021, 15, 5135-5143.	2.9	11
179	A Survey on Industrial Internet With ISA100 Wireless. IEEE Access, 2020, 8, 157177-157196.	2.6	16
180	Meet the PAREO Functions: Towards Reliable and Available Wireless Networks. , 2020, , .		12
181	NOMA-Based 802.11n for Industrial Automation. IEEE Access, 2020, 8, 168546-168557.	2.6	22
182	IoT Streaming Data Outlier Detection and Sensor Data Aggregation. , 2020, , .		1

#	Article	IF	CITATIONS
183	On Providing Differentiated Service Exploiting Multi-Instance RPL for Industrial Low-Power and Lossy Networks. Wireless Communications and Mobile Computing, 2020, 2020, 1-12.	0.8	4
184	A two-channel slotted sense multiple access protocol for timely and reliable data transmission in industrial wireless sensor networks. International Journal of Distributed Sensor Networks, 2020, 16, 155014772090200.	1.3	5
185	Detection of Data Integrity Attacks in Distributed State Estimation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7735-7744.	5.9	8
186	Integrating Field Measurements into a Model-Based Simulator for Industrial Communication Networks. , 2020, , .		2
187	Broadcast and Reliable Coverage based Efficient Recursive Routing in Large-Scale WSNs. Telecommunication Systems, 2020, 75, 63-78.	1.6	5
188	Fuzzy logic rate adjustment controls using a circuit breaker for persistent congestion in wireless sensor networks. Wireless Networks, 2020, 26, 3603-3627.	2.0	6
189	Affinity propagationâ€based interferenceâ€free clustering for wireless sensor networks. International Journal of Communication Systems, 2020, 33, e4273.	1.6	2
190	Optimal Energy Consumption Tasks Scheduling Strategy for Multi-Radio WSNs. Sensors, 2020, 20, 881.	2.1	5
191	Hierarchical routing protocols for wireless sensor network: a compressive survey. Wireless Networks, 2020, 26, 3291-3314.	2.0	71
192	Survey on Wireless Technology Trade-Offs for the Industrial Internet of Things. Sensors, 2020, 20, 488.	2.1	66
193	A Hybrid Energy Harvesting Design for On-Body Internet-of-Things (IoT) Networks. Sensors, 2020, 20, 407.	2.1	61
194	Comparative Evaluation of Three Wireless Sensor Network Transceivers in a High Radiation Environment. EPJ Web of Conferences, 2020, 225, 08007.	0.1	1
195	Factory Communications at the Dawn of the Fourth Industrial Revolution. Computer Standards and Interfaces, 2020, 71, 103433.	3.8	42
196	A New Distributed Fault Detection Method for Wireless Sensor Networks. IEEE Systems Journal, 2020, 14, 4883-4890.	2.9	40
197	Improved many-to-one architecture based on discrete wavelet packet transform for industrial IoT applications using channel coding. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 275-283.	3.3	4
198	Energy Savvy Network Joining Strategies for Energy Harvesting Powered TSCH Nodes. IEEE Transactions on Industrial Informatics, 2021, 17, 1505-1514.	7.2	8
199	Improving Redundancy in LoRaWAN for Mixed-Criticality Scenarios. IEEE Systems Journal, 2021, 15, 3682-3691.	2.9	9
200	Providing interoperability in Bluetooth mesh with an improved provisioning protocol. Wireless Networks, 2021, 27, 1011-1033.	2.0	3

#	Article	IF	CITATIONS
201	Wireless Avionics Intracommunications: A Survey of Benefits, Challenges, and Solutions. IEEE Internet of Things Journal, 2021, 8, 7745-7767.	5.5	24
202	Relay Node Placement in Wireless Sensor Networks: From Theory to Practice. IEEE Transactions on Mobile Computing, 2021, 20, 1602-1613.	3.9	15
203	Outage Aware Power Control for Vehicular Wireless Energy Transfer Over Dynamic Channels. IEEE Transactions on Vehicular Technology, 2021, 70, 1089-1093.	3.9	0
204	Networked Robust Stability for LTV Systems with Simultaneous Uncertainties in Plant, Controller, and Communication Channels. SIAM Journal on Control and Optimization, 2021, 59, 1-23.	1.1	3
205	A Hierarchical Routing Graph for Supporting Mobile Devices in Industrial Wireless Sensor Networks. Sensors, 2021, 21, 458.	2.1	3
206	Relay-Aided Wireless Sensor Network Discovery Algorithm for Dense Industrial IoT Utilizing ESPAR Antennas. IEEE Internet of Things Journal, 2021, 8, 16653-16665.	5.5	8
207	Performance Evaluation of Containerization in Edge-Cloud Computing Stacks for Industrial Applications: A Client Perspective. IEEE Open Journal of the Industrial Electronics Society, 2021, 2, 153-168.	4.8	14
208	The Impact of Networking Protocols on Massive M2M Communication in the Industrial IoT. IEEE Transactions on Network and Service Management, 2021, 18, 4814-4828.	3.2	13
209	Kalman Filtering over the Random Delay and Packet Drop Channel. SIAM Journal on Control and Optimization, 2021, 59, 2454-2476.	1.1	2
210	Reinforcement Learning-Based Detection for State Estimation Under False Data Injection. IEEE Access, 2021, 9, 66498-66508.	2.6	4
211	Load aware multipath data forwarding for enhanced lifetime of WSN. International Journal of Information Technology (Singapore), 2021, 13, 807-815.	1.8	5
212	Enhancing SDN WISE with Slicing Over TSCH. Sensors, 2021, 21, 1075.	2.1	14
213	Predictive Maintenance and Intelligent Sensors in Smart Factory: Review. Sensors, 2021, 21, 1470.	2.1	148
214	Distributed Channel Ranking Scheduling Function for Dense Industrial 6TiSCH Networks. Sensors, 2021, 21, 1593.	2.1	8
215	Long-Term LoRa Experiments in a Chemical Plant. , 2021, , .		1
216	URLLC-Oriented Joint Power Control and Resource Allocation in UAV-Assisted Networks. IEEE Internet of Things Journal, 2021, 8, 10103-10116.	5.5	20
217	Feature Extraction and Classification for Communication Channels in Wireless Mechatronic Systems. , 2021, , .		1
218	A Survey on the Application of WirelessHART for Industrial Process Monitoring and Control. Sensors, 2021, 21, 4951.	2.1	39

#	Article	IF	CITATIONS
219	A Passive Target Recognition Method Based on LED Lighting for Industrial Internet of Things. IEEE Photonics Journal, 2021, 13, 1-8.	1.0	8
220	A Hybrid Reliable Routing Algorithm Based on LQI and PRR in Industrial Wireless Networks. Wireless Communications and Mobile Computing, 2021, 2021, 1-16.	0.8	Ο
221	Energy Efficient Data Gathering in IoT Networks With Heterogeneous Traffic for Remote Area Surveillance Applications: A Cross Layer Approach. IEEE Transactions on Green Communications and Networking, 2021, 5, 1165-1178.	3.5	6
222	Mission-Critical Resource Allocation With Puncturing in Industrial Wireless Networks Under Mixed Services. IEEE Access, 2021, 9, 21870-21880.	2.6	7
223	Low-Level Wireless and Sensor Networks for Industry 4.0 Communication – Presentation. Communications in Computer and Information Science, 2021, , 474-484.	0.4	3
224	Autoconfiguration with Global Addresses Using IEEE 802.15.4 Standard in Multi-hop Networks. Enfoqute, 2021, 12, 44-58.	0.3	2
225	Traffic-Adaptive CFP Extension for IEEE 802.15.4 DSME MAC in Industrial Wireless Sensor Networks. IEEE Access, 2021, 9, 94454-94469.	2.6	3
227	Toward Wireless Control in Industrial Process Automation: A Case Study at a Paper Mill. IEEE Control Systems, 2019, 39, 36-57.	1.0	43
228	Next Generation Auto-Identification and Traceability Technologies for Industry 5.0: A Methodology and Practical Use Case for the Shipbuilding Industry. IEEE Access, 2021, 9, 140700-140730.	2.6	37
229	Latency Improvement Strategies for Reliability-Aware Scheduling in Industrial Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2015, 2015, 1-10.	1.3	3
230	Top-Down TDMA Scheduling Algorithm in Wireless Sensor Networks. Journal of Advances in Computer Networks, 2016, 4, 41-45.	0.2	0
231	Challenges: From Standards to Implementation for Industrial Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2016, 12, 3898535.	1.3	2
233	Cross-Layer Cooperative Protocol for Industrial Wireless Sensor Network. Advances in Wireless Technologies and Telecommunication Book Series, 2017, , 218-241.	0.3	0
234	Compact wireless control network protocol with fast path switching. Advances in Science, Technology and Engineering Systems, 2017, 2, 1350-1357.	0.4	Ο
235	Preparing Smart Sensors for Industrie 4.0: Requirements, Potentials, and Solutions. , 2018, , 995-1008.		0
236	Fuel Station Monitoring and Automation based on WSN. International Journal of Electrical and Computer Engineering, 2018, 8, 3647.	0.5	1
237	A Survey on Wireless Sensor Network-Based IoT Designs For Gas Leakage Detection and Fire-Fighting Applications. Jordanian Journal of Computers and Information Technology, 2019, , 1.	0.3	5
238	An anomaly detection technique-based intrusion detection system for wireless sensor network. International Journal of Wireless and Mobile Computing, 2019, 17, 323.	0.1	0

		CITATION REPORT		
# 240	ARTICLE Cyber-physical Autonomous Vehicular System (CAVS): A MAC Layer Perspective. , 2020, ,	, 129-152.	IF	CITATIONS 2
241	A Study on Semantic-Based Autonomous Computing Technology for Highly Reliable Sma Industry 4.0. Applied Sciences (Switzerland), 2021, 11, 10121.	rt Factory in	1.3	3
242	Comparative evaluation of six wireless sensor devices in a high ionizing radiation environ Wireless Sensor Systems, 2020, 10, 276-282.	ment. IET	1.3	2
243	An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogene 2020, , 221-237.	eous WSNs. ,		0
244	A Novel Security Scheme of Temporal-Key Based Encryption Policy in Sensor Applications Notes on Data Engineering and Communications Technologies, 2020, , 152-161.	. Lecture	0.5	0
245	Cross-Layer Cooperative Protocol for Industrial Wireless Sensor Network. , 2020, , 532-5	55.		0
246	Improving Wireless Charging Efficiency with Machine Vision and Communication for Indu Wireless Rechargeable Sensor Networks. , 2020, , .	ıstrial		2
247	FLEAC: Fuzzy Logic-based Energy Adequate Clustering Protocol for Wireless Sensor Netw Improved Grasshopper Optimization Algorithm. Wireless Personal Communications, 202	vorks using 2, 124, 573-606.	1.8	11
248	Wireless Sensor Networks (WSN) in Oil and Gas Industry: Applications, Requirements and Solutions. Lecture Notes in Networks and Systems, 2022, , 547-563.	d Existing	0.5	2
249	Optimization of delays and power consumption in large-scale linear networks using iACK	. , 2020, , .		3
250	Sensor Selection for Maneuvering Target Tracking in Wireless Sensor Networks With Une IEEE Sensors Journal, 2022, 22, 15071-15081.	certainty.	2.4	8
251	RSSI-Based Machine Learning with Pre-and Post-Processing for Cell-Localization in IWSNs	.,2021,,.		1
253	A novel slot scheduling technique for duty-cycle based data transmission for wireless sen network. Digital Communications and Networks, 2022, 8, 351-358.	sor	2.7	9
254	An adaptive unscented Kalman filter approach to secure state estimation for wireless sen networks. Asian Journal of Control, 2023, 25, 629-636.	sor	1.9	8
255	Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Indu Revolution 4.0: A Systematic Literature Review. Sensors, 2022, 22, 2087.	stry	2.1	232
256	Reliability of linear WSNs: A complementary overview and analysis of impact of cascaded network lifetime. Ad Hoc Networks, 2022, 131, 102839.	failures on	3.4	6
257	An improved DV-Hop algorithm for wireless sensor networks based on neural dynamics. Neurocomputing, 2022, 491, 172-185.		3.5	16
258	A Survey of 802.15.4 TSCH Schedulers for a Standardized Industrial Internet of Things. So 22, 15.	ensors, 2022,	2.1	23

#	Article	IF	CITATIONS
259	MODBUS-TR: Advanced MODBUS-RTU Protocol for IoT with Auto-discovery and Triggers. Wireless Personal Communications, 2022, 125, 2769-2780.	1.8	2
260	Survey on energy efficient dynamic sink optimum routing for wireless sensor network and communication technologies. International Journal of Communication Systems, 2022, 35, .	1.6	9
261	Centralized and Distributed Robust State Estimation Over Sensor Networks Using Elliptical Distribution. IEEE Internet of Things Journal, 2022, 9, 21825-21837.	5.5	5
262	Notice of Removal: An Improved Equal Hierarchical Cluster-Based Routing Protocol for EH-WSNs to Enhance Balanced Utilization of Harvested Energy. IEEE Access, 2022, 10, 67081-67095.	2.6	2
263	Reliable network lifetime and energy-aware routing protocol for wireless sensor network using hybrid particle swarm-flower pollination search algorithm. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 16183-16193.	3.3	2
264	ICIC: A Dual Mode Intra-Cluster and Inter-Cluster Energy Minimization Approach for Multihop WSN. IEEE Access, 2022, 10, 70581-70594.	2.6	8
265	Assisted Navigation Algorithm for Wireless Sensor Actuator and Robot Networks. , 2018, 10, .		0
267	Resource Allocation for Cell-free Massive MIMO enabled URLLC Downlink Systems. , 2022, , .		2
268	A Deterministic Algorithm for the Deployment of Wireless Sensor Networks. , 2016, 8, .		7
269	Analysis and Challenges in Wireless Networked Control System: A Survey. International Journal of Robotics and Control Systems, 2022, 2, 492-522.	0.6	4
270	Wireless Communications for Smart Manufacturing and Industrial IoT: Existing Technologies, 5G and Beyond. Sensors, 2023, 23, 73.	2.1	5
271	Optimal Innovation-Based Stealthy Attacks in Networked LQG Systems With Attack Cost. IEEE Transactions on Cybernetics, 2024, 54, 787-796.	6.2	2
272	Wireless Sensor Security Issues on Data Link Layer: A Survey. Computers, Materials and Continua, 2023, 75, 4065-4084.	1.5	2
273	RAFT Consensus Reliability in Wireless Networks: Probabilistic Analysis. IEEE Internet of Things Journal, 2023, 10, 12839-12853.	5.5	2
274	An AoTI-Driven Joint Sampling Frequency and Access Selection Optimization for Industrial Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2023, , 1-15.	3.9	0
275	A dual-mode MAC protocol with service differentiation for industrial IoT networks using wake-up radio. Ad Hoc Networks, 2023, 142, 103111.	3.4	2
280	Reliability of a Reconfigurable Network with Segment Switching. , 2023, , .		0
284	Sensing and Communication Integrated Optimization for Multi-Spectral Electric Equipment Monitoring. , 2023, , .		0

#	Article	IF	CITATIONS
287	On the Performance of Joint Resource Allocation and Control in Industrial IoT. , 2023, , .		0
288	Demonstrating the Necessity of Model Generation in Security Protocol Verification. , 2023, , .		0