High‥ield Electrochemical Production of Formaldehy Seawater

Angewandte Chemie - International Edition 53, 871-874 DOI: 10.1002/anie.201308657

Citation Report

#	Article	IF	CITATIONS
2	Polyethylenimine-Enhanced Electrocatalytic Reduction of CO ₂ to Formate at Nitrogen-Doped Carbon Nanomaterials. Journal of the American Chemical Society, 2014, 136, 7845-7848.	6.6	591
3	Diamond functionalization with light-harvesting molecular wires: improved surface coverage by optimized Suzuki cross-coupling conditions. RSC Advances, 2014, 4, 42044-42053.	1.7	21
4	Reactions of an Isolable Dialkylsilylene with Carbon Dioxide and Related Heterocumulenes. Organometallics, 2014, 33, 5434-5439.	1.1	57
5	Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane. Journal of Power Sources, 2014, 272, 303-310.	4.0	21
6	Electrochemical CO ₂ Reduction: Recent Advances and Current Trends. Israel Journal of Chemistry, 2014, 54, 1451-1466.	1.0	356
7	Versatile Simple Doping Technique for Diamond by Solid Dopant Source Immersion during Microwave Plasma CVD. Chemistry Letters, 2014, 43, 1569-1571.	0.7	3
8	Electrocatalytic Production of C3â€C4 Compounds by Conversion of CO ₂ on a Chlorideâ€Induced Biâ€Phasic Cu ₂ Oâ€Cu Catalyst. Angewandte Chemie - International Edition, 2015, 54, 14701-14705.	7.2	243
11	Electrocatalytic Carbon Dioxide Reduction by Using Cationic Pentamethylcyclopentadienyl–Iridium Complexes with Unsymmetrically Substituted Bipyridine Ligands. Chemistry - A European Journal, 2015, 21, 6564-6571.	1.7	28
12	Transformation of Carbon Dioxide by Diamond Powders. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2015, 23, 114-118.	0.0	0
13	From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO ₂ to formic acid. Journal of Materials Chemistry A, 2015, 3, 3901-3907.	5.2	69
14	Electrolyte Dependence of CO ₂ Electroreduction: Tetraalkylammonium Ions Are Not Electrocatalysts. ACS Catalysis, 2015, 5, 703-707.	5.5	40
15	Efficient Electrochemical CO ₂ Conversion Powered by Renewable Energy. ACS Applied Materials & Interfaces, 2015, 7, 15626-15632.	4.0	189
16	Electrochemical reduction of CO ₂ to HCOOH using zinc and cobalt oxide as electrocatalysts. New Journal of Chemistry, 2015, 39, 7348-7354.	1.4	32
17	An Iron Electrocatalyst for Selective Reduction of CO ₂ to Formate in Water: Including Thermochemical Insights. ACS Catalysis, 2015, 5, 7140-7151.	5.5	177
18	Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond. Journal of the American Chemical Society, 2015, 137, 11631-11636.	6.6	458
19	Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chemical Communications, 2015, 51, 16061-16064.	2.2	239
20	Revealing the Origin of Activity in Nitrogenâ€Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide. ChemSusChem, 2016, 9, 1085-1089.	3.6	143
21	High production of CH4 and H2 by reducing PET waste water using a non-diaphragm-based electrochemical method. Scientific Reports, 2016, 6, 20512.	1.6	3

#	Article	IF	CITATIONS
22	Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD). AIP Conference Proceedings, 2016, , .	0.3	11
23	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	23.0	2,051
24	Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy, 2016, 29, 439-456.	8.2	623
25	Electrochemical reduction of carbon dioxide to formic acid at a tin cathode in divided and undivided cells: effect of carbon dioxide pressure and other operating parameters. Electrochimica Acta, 2016, 199, 332-341.	2.6	76
26	Formation of bismuth-core-carbon-shell nanoparticles by bismuth immersion during plasma CVD synthesis of thin diamond films. Diamond and Related Materials, 2016, 69, 127-132.	1.8	4
27	Surface Sites in Cu-Nanoparticles: Chemical Reactivity or Microscopy?. Journal of Physical Chemistry Letters, 2016, 7, 3259-3263.	2.1	30
28	Rational Design and Synthesis of SnO _{<i>x</i>} Electrocatalysts with Coralline Structure for Highly Improved Aqueous CO ₂ Reduction to Formate. ChemElectroChem, 2016, 3, 1618-1628.	1.7	56
29	Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification. Scientific Reports, 2016, 6, 38010.	1.6	43
30	Introduction to CO2 Electroreduction. Electrochemical Energy Storage and Conversion, 2016, , 1-46.	0.0	1
31	Selective production of methanol by the electrochemical reduction of CO ₂ on boron-doped diamond electrodes in aqueous ammonia solution. RSC Advances, 2016, 6, 102214-102217.	1.7	61
32	A Grossâ€Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO ₂ . ChemSusChem, 2016, 9, 1972-1979.	3.6	485
33	Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today, 2016, 11, 373-391.	6.2	200
34	Non-Oxide Materials (Nitrides, Chalcogenides, and Arsenides). , 2016, , 393-426.		0
35	Hydrogenation of Carbon Monoxide into Formaldehyde in Liquid Media. ACS Sustainable Chemistry and Engineering, 2016, 4, 3970-3977.	3.2	45
36	Recent Advances in Breaking Scaling Relations for Effective Electrochemical Conversion of CO ₂ . Advanced Energy Materials, 2016, 6, 1600463.	10.2	308
37	Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy and Environmental Science, 2016, 9, 1687-1695.	15.6	290
38	Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews, 2016, 45, 715-752.	18.7	249
39	Fabrication of a Microfluidic Device with Boron-doped Diamond Electrodes for Electrochemical Analysis. Electrochimica Acta, 2016, 197, 159-166.	2.6	16

#	Article	IF	CITATIONS
40	Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Industrial & amp; Engineering Chemistry Research, 2016, 55, 3383-3419.	1.8	205
41	Selective electrochemical reduction of CO ₂ to different alcohol products by an organically doped alloy catalyst. Green Chemistry, 2016, 18, 3216-3220.	4.6	63
42	Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development. Nano Energy, 2016, 29, 4-28.	8.2	104
43	Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO ₂ to CO. Journal of Materials Chemistry A, 2016, 4, 4776-4782.	5.2	115
44	One-pot fabrication of Bi3O4Cl/BiOCl plate-on-plate heterojunction with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2016, 185, 203-212.	10.8	141
45	Electrochemistry of Carbon Dioxide on Carbon Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 28357-28371.	4.0	128
46	Highly efficient electrochemical reduction of CO ₂ to CH ₄ in an ionic liquid using a metal–organic framework cathode. Chemical Science, 2016, 7, 266-273.	3.7	225
47	The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2017, 139, 2030-2034.	6.6	133
48	Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper. Nano Research, 2017, 10, 1641-1650.	5.8	35
49	Nanostructured Materials for Heterogeneous Electrocatalytic CO ₂ Reduction and their Related Reaction Mechanisms. Angewandte Chemie - International Edition, 2017, 56, 11326-11353.	7.2	811
50	Nanostrukturierte Materialien für die elektrokatalytische CO ₂ â€Reduktion und ihre Reaktionsmechanismen. Angewandte Chemie, 2017, 129, 11482-11511.	1.6	102
51	CO ₂ reduction: the quest for electrocatalytic materials. Journal of Materials Chemistry A, 2017, 5, 8230-8246.	5.2	214
52	Efficient Electrocatalytic Reduction of CO ₂ by Nitrogenâ€Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO ₂ Refinery. Angewandte Chemie - International Edition, 2017, 56, 7847-7852.	7.2	252
53	Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Advances, 2017, 7, 22510-22514.	1.7	36
54	Preparation of platinum-modified boron-doped diamond for electroreduction of CO2. IOP Conference Series: Materials Science and Engineering, 2017, 188, 012037.	0.3	5
55	Efficient Electrocatalytic Reduction of CO ₂ by Nitrogenâ€Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO ₂ Refinery. Angewandte Chemie, 2017, 129, 7955-7960.	1.6	78
56	Synergistic contributions by decreasing overpotential and enhancing electrocatalytic reduction in ONPCNRs/SWCNTs nanocomposite for highly sensitive nonenzymatic detection of hydrogen peroxide. Sensors and Actuators B: Chemical, 2017, 246, 726-733.	4.0	8
57	Future perspectives for formaldehyde: pathways for reductive synthesis and energy storage. Green Chemistry, 2017, 19, 2347-2355.	4.6	115

#	Article	IF	CITATIONS
58	Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chemical Communications, 2017, 53, 1338-1347.	2.2	78
59	Liquid Hydrocarbon Production from CO ₂ : Recent Development in Metalâ€Based Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.	3.6	54
60	Production of Liquid Solar Fuels and Their Use in Fuel Cells. Joule, 2017, 1, 689-738.	11.7	149
61	Catalytic CO ₂ reduction to valuable chemicals using NiFe-based nanoclusters: a first-principles theoretical evaluation. Physical Chemistry Chemical Physics, 2017, 19, 28344-28353.	1.3	18
62	Heterogeneous electrochemical CO ₂ reduction using nonmetallic carbon-based catalysts: current status and future challenges. Nanotechnology, 2017, 28, 472001.	1.3	87
63	Metalâ€Free Carbon Materials for CO ₂ Electrochemical Reduction. Advanced Materials, 2017, 29, 1701784.	11.1	558
64	CO ₂ Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 2017, 4, 1700194.	5.6	651
65	Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron―and Nitrogen oâ€doped Nanodiamond. Angewandte Chemie, 2017, 129, 15813-15817.	1.6	196
66	Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron―and Nitrogenâ€Coâ€doped Nanodiamond. Angewandte Chemie - International Edition, 2017, 56, 15607-15611.	7.2	226
67	CO ₂ electoreduction reaction on heteroatom-doped carbon cathode materials. Journal of Materials Chemistry A, 2017, 5, 21596-21603.	5.2	60
68	Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbonâ€Based Catalysts for the Electrochemical Reduction of CO ₂ . Advanced Energy Materials, 2017, 7, 1700759.	10.2	327
69	Building Blocks for High Performance in Electrocatalytic CO ₂ Reduction: Materials, Optimization Strategies, and Device Engineering. Journal of Physical Chemistry Letters, 2017, 8, 3933-3944.	2.1	147
70	Development of an Electrochemical Process for the Simultaneous Treatment of Wastewater and the Conversion of Carbon Dioxide to Higher Value Products. ChemElectroChem, 2017, 4, 150-159.	1.7	50
71	Preparation of copper oxide modified boron-doped diamond electrodes and its preliminary study for CO ₂ reduction. IOP Conference Series: Materials Science and Engineering, 2017, 188, 012011.	0.3	6
72	Preparation of boron doped diamond modified by iridium for electroreduction of carbon dioxide (CO2). IOP Conference Series: Materials Science and Engineering, 2017, 188, 012030.	0.3	5
73	Diamond Electrochemistry. , 2017, , .		2
74	Introduction of carbon–boron atomic groups as an efficient strategy to boost formic acid production toward CO ₂ electrochemical reduction. Chemical Communications, 2018, 54, 3367-3370.	2.2	24
75	CO2-based hydrogen storage – Hydrogen generation from formaldehyde/water. ChemistrySelect, 2018, 3, .	0.7	5

#	Article	IF	CITATIONS
76	Electrochemical Reduction of CO ₂ in Waterâ€Based Electrolytes KHCO ₃ and K ₂ SO ₄ Using Boron Doped Diamond Electrodes. ChemistrySelect, 2018, 3, 3591-3595.	0.7	15
77	Oxygen Vacancies in ZnO Nanosheets Enhance CO ₂ Electrochemical Reduction to CO. Angewandte Chemie, 2018, 130, 6162-6167.	1.6	122
78	Oxygen Vacancies in ZnO Nanosheets Enhance CO ₂ Electrochemical Reduction to CO. Angewandte Chemie - International Edition, 2018, 57, 6054-6059.	7.2	564
79	Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. Journal of Materials Chemistry A, 2018, 6, 5025-5031.	5.2	109
80	Electrochemical reduction of CO ₂ on defect-rich Bi derived from Bi ₂ S ₃ with enhanced formate selectivity. Journal of Materials Chemistry A, 2018, 6, 4714-4720.	5.2	144
81	The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochimica Acta, 2018, 266, 414-419.	2.6	54
82	An integrated electrochemical and biochemical system for sequential reduction of CO2 to methane. Fuel, 2018, 220, 8-13.	3.4	28
83	Direct CO ₂ Addition to a Ni(0)–CO Species Allows the Selective Generation of a Nickel(II) Carboxylate with Expulsion of CO. Journal of the American Chemical Society, 2018, 140, 2179-2185.	6.6	52
84	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. Angewandte Chemie - International Edition, 2018, 57, 2639-2643.	7.2	121
85	Modern Electrochemical Aspects for the Synthesis of Valueâ€Added Organic Products. Angewandte Chemie - International Edition, 2018, 57, 6018-6041.	7.2	763
86	Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte. Angewandte Chemie, 2018, 130, 6124-6149.	1.6	240
87	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. Angewandte Chemie, 2018, 130, 2669-2673.	1.6	24
88	CO ₂ Reduction Promoted by Imidazole Supported on a Phosphonium-Type Ionic-Liquid-Modified Au Electrode at a Low Overpotential. ACS Catalysis, 2018, 8, 1990-2000.	5.5	49
89	Artificial Photosynthesis for Formaldehyde Production with 85% of Faradaic Efficiency by Tuning the Reduction Potential. ACS Catalysis, 2018, 8, 968-974.	5.5	36
90	Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes. Diamond and Related Materials, 2018, 86, 167-172.	1.8	61
91	A Simple Framework for Quantifying Electrochemical CO2 Fixation. Joule, 2018, 2, 594-606.	11.7	70
92	Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. Annual Review of Analytical Chemistry, 2018, 11, 463-484.	2.8	152
93	Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental Protection. Electrochemical Energy Reviews, 2018, 1, 84-112.	13.1	153

#	Article	IF	CITATIONS
94	Improvement of product selectivity in bicarbonate reduction into formic acid on a tin-based catalyst by integrating nano-diamond particles. Chemical Engineering Research and Design, 2018, 116, 494-505.	2.7	5
95	Progress and Perspective of Electrocatalytic CO ₂ Reduction for Renewable Carbonaceous Fuels and Chemicals. Advanced Science, 2018, 5, 1700275.	5.6	638
96	Positive shift in the potential of photo-electrochemical CO2 reduction to CO on Ag-loaded boron-doped diamond electrode by an electrochemical pre-treatment. Journal of Applied Electrochemistry, 2018, 48, 61-73.	1.5	15
97	Selective Electrocatalysis of a Water-Soluble Rhenium(I) Complex for CO ₂ Reduction Using Water As an Electron Donor. ACS Catalysis, 2018, 8, 354-363.	5.5	57
99	CO ₂ electrolysis in seawater: calcification effect and a hybrid self-powered concept. Journal of Materials Chemistry A, 2018, 6, 23301-23307.	5.2	15
100	Preparation of iridium-modified boron-doped diamond (BDD) electrodes for electroreduction of CO2. AIP Conference Proceedings, 2018, , .	0.3	3
101	Electrochemical conversion of CO2 at metal-modified boron-doped diamond electrodes. AIP Conference Proceedings, 2018, , .	0.3	6
102	Electrochemical Reduction of CO ₂ over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods, 2019, 3, 1800369.	4.6	168
103	In Situ ATR-IR Observation of the Electrochemical Oxidation of a Polycrystalline Boron-Doped Diamond Electrode in Acidic Solutions. Journal of Physical Chemistry C, 2018, 122, 27456-27461.	1.5	15
104	Influence of Electrolyte on the Electrochemical Reduction of Carbon Dioxide Using Boronâ€Đoped Diamond Electrodes. ChemistrySelect, 2018, 3, 10209-10213.	0.7	36
105	Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction. Joule, 2018, 2, 2551-2582.	11.7	459
106	Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Materials Today Energy, 2018, 10, 280-301.	2.5	188
107	Development of Electrochemical Applications of Boron-Doped Diamond Electrodes. Bulletin of the Chemical Society of Japan, 2018, 91, 1752-1762.	2.0	54
109	Efficient electroreduction of CO ₂ to C2 products over B-doped oxide-derived copper. Green Chemistry, 2018, 20, 4579-4583.	4.6	68
110	Review on optofluidic microreactors for artificial photosynthesis. Beilstein Journal of Nanotechnology, 2018, 9, 30-41.	1.5	28
111	Phosphorus-doped onion-like carbon for CO ₂ electrochemical reduction: the decisive role of the bonding configuration of phosphorus. Journal of Materials Chemistry A, 2018, 6, 19998-20004.	5.2	51
112	Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chemical Society Reviews, 2018, 47, 5423-5443.	18.7	181
113	Oxygenates from the Electrochemical Reduction of Carbon Dioxide. Chemistry - an Asian Journal, 2018, 13, 1992-2008.	1.7	11

#	Article	IF	CITATIONS
114	Carbon Dioxide as Building Block in the Synthesis of the Antiâ€Infective Agent Hexamine. ChemistrySelect, 2018, 3, 7178-7183.	0.7	0
115	Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate. Chemosphere, 2018, 210, 524-530.	4.2	39
116	Synthesis of Porous Polymeric Catalysts for the Conversion of Carbon Dioxide. ACS Catalysis, 2018, 8, 9079-9102.	5.5	196
117	Electrochemical Conversion of CO 2 to Value-Added Products. , 2018, , 29-59.		17
118	Electrochemical Reduction of CO 2., 2018, , 307-371.		2
119	Electrochemical reduction of CO2 and degradation of KHP on boron-doped diamond electrodes in a simultaneous and enhanced process. Chinese Chemical Letters, 2019, 30, 509-512.	4.8	16
120	Carbon-Based Electrodes and Catalysts for the Electroreduction of Carbon Dioxide (CO2) to Value-Added Chemicals. Nanostructure Science and Technology, 2019, , 219-251.	0.1	7
121	Boronâ€Doped Diamond as an Efficient Back Contact to Thermally Grown TiO 2 Photoelectrodes. ChemElectroChem, 2019, 6, 4545-4549.	1.7	3
122	Diamond surface functionalization: from gemstone to photoelectrochemical applications. Journal of Materials Chemistry C, 2019, 7, 10134-10165.	2.7	62
123	Carbon-based catalysts for electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2019, 3, 2890-2906.	2.5	67
124	Ranking the relative CO2 electrochemical reduction activity in carbon materials. Carbon, 2019, 154, 108-114.	5.4	14
125	sp ² /sp ³ Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catalysis, 2019, 9, 7494-7519.	5.5	86
126	CO ₂ reduction to formic acid at low overpotential on BDD electrodes modified with nanostructured CeO ₂ . Journal of Materials Chemistry A, 2019, 7, 17896-17905.	5.2	25
127	Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review. Journal of Energy Chemistry, 2019, 36, 95-105.	7.1	91
128	Metal-free carbon-based materials for electrocatalytic and photo-electrocatalytic CO2 reduction. Rendiconti Lincei, 2019, 30, 497-513.	1.0	12
129	Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals. Frontiers in Chemistry, 2019, 7, 392.	1.8	112
130	Semiconductor Quantum Dots: An Emerging Candidate for CO ₂ Photoreduction. Advanced Materials, 2019, 31, e1900709.	11.1	316
131	Electrode Materials Engineering in Electrocatalytic CO ₂ Reduction: Energy Input and Conversion Efficiency. Advanced Materials, 2020, 32, e1903796.	11.1	87

#	Article	IF	CITATIONS
132	Selective Conversion of Carbon Dioxide to Formaldehyde via a Bis(silyl)acetal: Incorporation of Isotopically Labeled C1 Moieties Derived from Carbon Dioxide into Organic Molecules. Journal of the American Chemical Society, 2019, 141, 17754-17762.	6.6	68
133	Nanodiamonds for energy. , 2019, 1, 13-18.		116
134	Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 2019, 10, 3851.	5.8	288
135	Electrochemical Carbon Dioxide Splitting. ChemElectroChem, 2019, 6, 1587-1604.	1.7	22
136	Conductive diamond: synthesis, properties, and electrochemical applications. Chemical Society Reviews, 2019, 48, 157-204.	18.7	333
137	Advanced Nonâ€metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions. Chemistry - A European Journal, 2019, 25, 12464-12485.	1.7	57
138	Electrical energy storage with engineered biological systems. Journal of Biological Engineering, 2019, 13, 38.	2.0	25
139	Challenges and trends in developing technology for electrochemically reducing CO2 in solid polymer electrolyte membrane reactors. Journal of CO2 Utilization, 2019, 32, 178-186.	3.3	36
140	Material design at nano and atomic scale for electrocatalytic CO2 reduction. Nano Materials Science, 2019, 1, 60-69.	3.9	52
141	Unveiling Electrochemical Reaction Pathways of CO ₂ Reduction to C _{<i>N</i>} Species at Sâ€Vacancies of MoS ₂ . ChemSusChem, 2019, 12, 2671-2678.	3.6	25
142	The Utilization of Boron-doped Diamond Electrodes for the Electrochemical Reduction of CO ₂ : Toward the Production Compounds with a High Number of Carbon Atoms. Electrochemistry, 2019, 87, 109-113.	0.6	19
143	Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nature Catalysis, 2019, 2, 198-210.	16.1	927
144	Electrochemical Pinacol Coupling of Acetophenone Using Boronâ€Doped Diamond Electrode. ChemElectroChem, 2019, 6, 4153-4157.	1.7	21
145	Nanoelectrocatalysts for Carbon Dioxide Reduction. , 2019, , 243-272.		1
146	The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion. CheM, 2019, 5, 1371-1397.	5.8	273
147	Switchable Product Selectivity in the Electrochemical Reduction of Carbon Dioxide Using Boron-Doped Diamond Electrodes. Journal of the American Chemical Society, 2019, 141, 7414-7420.	6.6	81
148	Trends of Organic Electrosynthesis by Using Boron-Doped Diamond Electrodes. Topics in Applied Physics, 2019, , 173-197.	0.4	9
149	Production of Solar Fuels Using CO2. Studies in Surface Science and Catalysis, 2019, , 7-30.	1.5	11

#	Article	IF	CITATIONS
150	Carbon Nanomaterials for Energy and Biorelated Catalysis: Recent Advances and Looking Forward. ACS Central Science, 2019, 5, 389-408.	5.3	67
151	Recent Progress of Carbon Dioxide Conversion into Renewable Fuels and Chemicals Using Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, , 271-293.	0.3	4
152	Two-Dimensional Materials on the Rocks: Positive and Negative Role of Dopants and Impurities in Electrochemistry. ACS Nano, 2019, 13, 2681-2728.	7.3	62
153	MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO ₂ to CO: the calcining temperature effect and the mechanism. Nanoscale, 2019, 11, 4911-4917.	2.8	73
154	Selective Electroreduction of CO ₂ to C2 Products over Cu ₃ Nâ€Derived Cu Nanowires. ChemElectroChem, 2019, 6, 2393-2397.	1.7	49
155	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
156	Modification of boron-doped diamond electrodes with platinum-iridium for carbon dioxide electroreduction. IOP Conference Series: Materials Science and Engineering, 0, 496, 012040.	0.3	6
157	Surface strategies for catalytic CO ₂ reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews, 2019, 48, 5310-5349.	18.7	607
158	Emerging Carbonâ€Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Valueâ€Added Chemicals. Advanced Materials, 2019, 31, e1804257.	11.1	218
159	Oxidative Cleavage of the Acyl arbon Bond in Phenylacetone with Electrogenerated Superoxide Anions. ChemElectroChem, 2019, 6, 4194-4198.	1.7	11
160	Carbonâ€Based Metalâ€Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019, 31, e1801526.	11.1	273
161	Use of Boronâ€Doped Diamond Electrodes in Electroâ€Organic Synthesis. ChemElectroChem, 2019, 6, 1649-1660.	1.7	113
162	Guiding Principles for Designing Highly Efficient Metalâ€Free Carbon Catalysts. Advanced Materials, 2019, 31, e1805252.	11.1	110
163	Electrochemical Reduction of Carbon Dioxide to Valueâ€Added Products: The Electrocatalyst and Microbial Electrosynthesis. Chemical Record, 2019, 19, 1272-1282.	2.9	22
164	Nanostructured Carbon Nitrides for CO ₂ Capture and Conversion. Advanced Materials, 2020, 32, e1904635.	11.1	188
165	Rational Design of Agâ€Based Catalysts for the Electrochemical CO ₂ Reduction to CO: A Review. ChemSusChem, 2020, 13, 39-58.	3.6	106
166	Continuous Semi-Micro Reactor Prototype for the Electrochemical Reduction of CO2 into Formic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 1737-1745.	1.8	15
167	Unusual Electrochemical Properties of Low-Doped Boron-Doped Diamond Electrodes Containing sp ² Carbon. Journal of the American Chemical Society, 2020, 142, 2310-2316.	6.6	68

ARTICLE IF CITATIONS Durable Cathodes and Electrolyzers for the Efficient Aqueous Electrochemical Reduction of 3.6 124 168 CO₂. ChemSusChem, 2020, 13, 855-875. Carbonaceous materials for electrochemical CO2 reduction. EnergyChem, 2020, 2, 100024. 10.1 Efficient electrochemical reduction of CO2 into formate and acetate in polyoxometalate catholyte 170 3.151 with indium catalyst. Journal of Catalysis, 2020, 382, 69-76. Electrochemical Measurement of Bismuth Clusters in Dendrimer Through Transformation from Atomicity Controlled Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 169-173. Mechanism of Chlorine-Mediated Electrochemical Ethylene Oxidation in Saline Water. ACS Catalysis, 173 5.5 44 2020, 10, 14015-14023. Recent Advances in Electrode Materials for Electrochemical CO2Reduction. ACS Symposium Series, 174 2020, , 49-91. Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and 175 5.1 104 electrocatalysts. Applied Energy, 2020, 277, 115557. Towards accelerated durability testing protocols for CO₂ electrolysis. Journal of 5.2 24 Materials Chemistry A, 2020, 8, 22557-22571. 177 Electrode Materials in Modern Organic Electrochemistry. Angewandte Chemie, 2020, 132, 19026-19044. 1.6 53 Totally atom-economical synthesis of lactic acid from formaldehyde: combined bio-carboligation and 178 4.6 14 chemo-rearrangement without the isolation of intermediates. Green Chemistry, 2020, 22, 6809-6814. Oxidized indium with transformable dimensions for CO₂ electroreduction toward 179 2.5 14 formate aided by oxygen vacancies. Sustainable Energy and Fuels, 2020, 4, 3726-3731. Effect of sp2 species in a boron-doped diamond electrode on the electrochemical reduction of CO2. 2.3 Electrochemistry Communications, 2020, 115, 106731. Rational Catalyst Design for N₂ Reduction under Ambient Conditions: Strategies toward 181 5.5 273 Enhanced Conversion Efficiency. ACS Catalysis, 2020, 10, 6870-6899. Metal-free sites with multidimensional structure modifications for selective electrochemical CO2 6.2 reduction. Nano Today, 2020, 33, 100891. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with 183 1.3 50 Some Processes Occurring in Space. Applied Sciences (Switzerland), 2020, 10, 4094. Synergistic Cu/CeO2 carbon nanofiber catalysts for efficient CO2 electroreduction. Electrochemistry 184 34 Communications, 2020, 114, 106716. Boosting CO₂ Electroreduction on N,Pâ€Coâ€doped Carbon Aerogels. Angewandte Chemie -185 7.2 138 International Edition, 2020, 59, 11123-11129. Potential Link between Cu Surface and Selective CO₂ Electroreduction: Perspective on 11.1 Future Electrocatalyst Designs. Advanced Materials, 2020, 32, e1908398.

#	Article	IF	CITATIONS
187	Investigation on In–TiO2 composites as highly efficient elecctrocatalyst for CO2 reduction. Electrochimica Acta, 2020, 340, 135948.	2.6	11
188	Modification of boron-doped diamond with gold-palladium nanoparticles for CO2 electroreduction. IOP Conference Series: Materials Science and Engineering, 2020, 763, 012001.	0.3	4
189	Towards an Artificial Carbohydrates Supply on Earth. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	6
190	Electroreduction of carbon dioxide using platinum-iridium modified boron-doped diamond (BDD) with various platinum-iridium ratios. IOP Conference Series: Materials Science and Engineering, 2020, 763, 012051.	0.3	4
191	Electrode Materials in Modern Organic Electrochemistry. Angewandte Chemie - International Edition, 2020, 59, 18866-18884.	7.2	238
192	Trends of epitaxial perovskite oxide films catalyzing the oxygen evolution reaction in alkaline media. JPhys Energy, 2020, 2, 032003.	2.3	37
193	Strategies in catalysts and electrolyzer design for electrochemical CO ₂ reduction toward C ₂₊ products. Science Advances, 2020, 6, eaay3111.	4.7	477
194	Visible light-assisted reduction of CO ₂ into formaldehyde by heteroleptic ruthenium metal complex–TiO ₂ hybrids in an aqueous medium. Green Chemistry, 2020, 22, 1650-1661.	4.6	25
195	A Disquisition on the Active Sites of Heterogeneous Catalysts for Electrochemical Reduction of CO ₂ to Valueâ€Added Chemicals and Fuel. Advanced Energy Materials, 2020, 10, 1902106.	10.2	113
196	Boosting CO ₂ Electroreduction on N,Pâ€Coâ€doped Carbon Aerogels. Angewandte Chemie, 2020, 132, 11216-11222.	1.6	39
197	Improving the CO2 electrochemical reduction to formic acid using iridium-oxide-modified boron-doped diamond electrodes. Diamond and Related Materials, 2020, 106, 107874.	1.8	22
198	Minimization of Pt-electrocatalyst deactivation in CO ₂ reduction using a polymer electrolyte cell. Reaction Chemistry and Engineering, 2020, 5, 1064-1070.	1.9	7
199	CO2 Electrolysis in Integrated Artificial Photosynthesis Systems. Chemistry Letters, 2021, 50, 166-179.	0.7	17
200	Nonâ€Nâ€Doped Carbons as Metalâ€Free Electrocatalysts. Advanced Sustainable Systems, 2021, 5, .	2.7	35
201	An overview of catalytic conversion of CO2 into fuels and chemicals using metal organic frameworks. Chemical Engineering Research and Design, 2021, 149, 67-92.	2.7	62
202	Carbonâ€based metalâ€free catalysts for electrochemical CO ₂ reduction: Activity, selectivity, and stability. , 2021, 3, 24-49.		60
203	Recent advances in innovative strategies for the CO ₂ electroreduction reaction. Energy and Environmental Science, 2021, 14, 765-780.	15.6	188
204	Photoelectrocatalytic interface of boron-doped diamond: Modification, functionalization and environmental applications. Carbon, 2021, 175, 454-466.	5.4	21

#	Article	IF	CITATIONS
205	Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction. Nano-Micro Letters, 2021, 13, 5.	14.4	118
206	Electrocatalysis for CO ₂ conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50, 4993-5061.	18.7	559
207	Electrochemical CO ₂ reduction on graphdiyne: a DFT study. Green Chemistry, 2021, 23, 1212-1219.	4.6	42
208	Formic acid disproportionation into formaldehyde triggered by vanadium complexes with iridium catalysis under mild conditions in <i>N</i> -methylation. Green Chemistry, 2021, 23, 2918-2924.	4.6	10
209	A new nitrogen fixation strategy: the direct formation of *N ₂ ^{â^'} excited state on metal-free photocatalyst. Journal of Materials Chemistry A, 2021, 9, 6214-6222.	5.2	8
210	An overview of flow cell architecture design and optimization for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 20897-20918.	5.2	61
211	From nanoparticle to single-atom catalyst; electrocatalytic reduction of carbon dioxide. , 2021, , 111-153.		1
212	Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Research, 2021, 14, 3188-3207.	5.8	57
213	Electrochemical Reduction of CO2 Using Group VII Metal Catalysts. Trends in Chemistry, 2021, 3, 176-187.	4.4	22
214	Nanoscale Reactivity Mapping of a Single-Crystal Boron-Doped Diamond Particle. Analytical Chemistry, 2021, 93, 5831-5838.	3.2	33
215	Enhancing the Electrochemical Reduction of CO ₂ by Controlling the Flow Conditions: An Intermittent Flow Reduction System with a Boron-Doped Diamond Electrode. ACS Sustainable Chemistry and Engineering, 2021, 9, 5298-5303.	3.2	18
216	From CO2 to Value-Added Products: A Review about Carbon-Based Materials for Electro-Chemical CO2 Conversion. Catalysts, 2021, 11, 351.	1.6	33
217	Coupling effects of Zn single atom and high curvature supports for improved performance of CO2 reduction. Science Bulletin, 2021, 66, 1649-1649.	4.3	36
218	Conductive Boron-doped Diamond Powder/Nanoparticles for Electrochemical Applications. Chemistry Letters, 2021, 50, 733-741.	0.7	12
219	Highly CO Selective Trimetallic Metal-Organic Framework Electrocatalyst for the Electrochemical Reduction of CO2. Catalysts, 2021, 11, 537.	1.6	8
220	Electrochemical and photochemical CO2 reduction using diamond. Carbon, 2021, 175, 440-453.	5.4	24
221	Review—CO ₂ Attenuation: Electrochemical Methods and Perspectives. Journal of the Electrochemical Society, 2021, 168, 056515.	1.3	3
222	Nitrogen-doped Zn–Ni oxide for electrochemical reduction of carbon dioxide in sea water. Rare Metals, 2021, 40, 3117.	3.6	22

#	Article	IF	CITATIONS
223	Defective carbon-based materials: controllable synthesis and electrochemical applications. EnergyChem, 2021, 3, 100059.	10.1	34
224	Highly CO selective Ca and Zn hybrid metal-organic framework electrocatalyst for the electrochemical reduction of CO2. Current Applied Physics, 2021, 27, 31-37.	1.1	11
225	Boosting Effect of Nitrogen and Phosphorous Co-doped Three-Dimensional Graphene Architecture: Highly Selective Electrocatalysts for Carbon Dioxide Electroreduction to Formate. Topics in Catalysis, 2022, 65, 656-667.	1.3	32
226	Metal-free carbon-based nanomaterials for electrochemical nitrogen and carbon dioxide reductions. Materials Research Bulletin, 2021, 140, 111294.	2.7	10
227	CO2 electro-reduction on Cu3P: Role of Cu(I) oxidation state and surface facet structure in C1-formate production and H2 selectivity. Electrochimica Acta, 2021, 391, 138889.	2.6	27
228	Unique properties of fine bubbles in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. Electrochimica Acta, 2021, 389, 138769.	2.6	3
229	Effect of oxygen terminated surface of boron-doped diamond thin-film electrode on seawater salinity sensing. Journal of Materials Science and Technology, 2021, 86, 1-10.	5.6	10
230	Graphene-assisted construction of electrocatalysts for carbon dioxide reduction. Chemical Engineering Journal, 2021, 425, 130587.	6.6	29
231	Electrochemical CO ₂ reduction to ethanol: from mechanistic understanding to catalyst design. Journal of Materials Chemistry A, 2021, 9, 12474-12494.	5.2	36
232	An efficient, formic acid selective CO ₂ electrolyzer with a boron-doped diamond cathode. Sustainable Energy and Fuels, 2021, 5, 2590-2594.	2.5	10
233	Review—A Review on Electrodes Used in Electroorganic Synthesis and the Significance of Coupled Electrocatalytic Reactions. Journal of the Electrochemical Society, 2020, 167, 125503.	1.3	12
234	Electrochemical Property of Diamond Enhanced with Boron Doping, and its Application. Journal of Smart Processing, 2014, 3, 346-353.	0.0	4
235	Stepping toward the carbon circular economy (CCE): Integration of solar chemistry and biosystems for an effective CO2 conversion into added value chemicals and fuels. Advances in Inorganic Chemistry, 2021, 78, 289-351.	0.4	8
236	5.ãf€ã,¤f¤f¢ãf³ãf‰åŠå°Žä½"ã,'ç""ã,ã¥äºŒé…,åŒ−ç,ç′ã®å…‰é›»æ°—åŒ−å¦é,"å…f. Denki Kagaku, 20]	9,&ø, 25-	300
237	6.ãf€ã,╋f╋f¢ãf³ãf‰é›»æ¥μã,'用ã,ãŸäºŒé…,åŒ−ç,ç´ã®é›»è§£é,"å…f. Denki Kagaku, 2019, 87, 31-36.	0.0	0
239	Conversion of Carbon Dioxide into Formaldehyde. Environmental Chemistry for A Sustainable World, 2020, , 159-183.	0.3	2
240	Study of nitrate contaminants removal from groundwater on copper modified BDD electrode. E3S Web of Conferences, 2020, 194, 04024.	0.2	1
241	Strong Boron–Carbon Bonding Interaction Drives CO ₂ Reduction to Ethanol over the Boron-Doped Cu(111) Surface: An Insight from the First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 572-582.	1.5	12

#	Article	IF	CITATIONS
242	Trapped copper in [6]cycloparaphenylene: a fully-exposed Cu ₇ single cluster for highly active and selective CO electro-reduction. Journal of Materials Chemistry A, 2021, 9, 25922-25926.	5.2	7
243	Study of carbon dioxide electrochemical reduction in flow cell system using copper modified boron-doped diamond. E3S Web of Conferences, 2020, 211, 03011.	0.2	1
244	Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nature Communications, 2021, 12, 6390.	5.8	117
245	Electrochemical reduction of CO2 on fluorine-modified boron-doped diamond electrode. Diamond and Related Materials, 2022, 121, 108753.	1.8	6
246	Electrochemical reduction of carbon dioxide in an aqueous solution using phosphorus-doped polycrystalline diamond electrodes. Electrochemistry Communications, 2022, 134, 107164.	2.3	4
247	Fabrication of a biocathode for formic acid production upon the immobilization of formate dehydrogenase from Candida boidinii on a nanoporous carbon. Chemosphere, 2022, 291, 133117.	4.2	9
248	Promoting CO2 electroreduction on boron-doped diamond electrodes: Challenges and trends. Current Opinion in Electrochemistry, 2022, 32, 100890.	2.5	8
249	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	2.6	17
250	The spontaneous electrochemical reduction of gaseous CO2 using a sacrificial Zn anode and a high-surface-area dendritic Ag-Cu cathode. Separation and Purification Technology, 2022, 285, 120350.	3.9	11
251	Coupling electrochemical CO2 reduction to microbial product generation – identification of the gaps and opportunities. Current Opinion in Biotechnology, 2022, 74, 154-163.	3.3	28
252	Opportunities and challenges of thin-film boron-doped diamond electrochemistry for valuable resources recovery from waste: Organic, inorganic, and volatile productÂelectrosynthesis. Current Opinion in Electrochemistry, 2022, 32, 100903.	2.5	12
253	Empower C1: Combination of Electrochemistry and Biology to Convert C1 Compounds. Advances in Biochemical Engineering/Biotechnology, 2021, , 213-241.	0.6	2
254	Using Methanol as a Formaldehyde Surrogate for Sustainable Synthesis of <scp><i>N</i>â€Heterocycles</scp> via <scp>Manganeseâ€Catalyzed</scp> Dehydrogenative Cyclization. Chinese Journal of Chemistry, 2022, 40, 1137-1143.	2.6	16
255	Immobilization strategies for porphyrin-based molecular catalysts for the electroreduction of CO ₂ . Journal of Materials Chemistry A, 2022, 10, 7626-7636.	5.2	22
257	Electrochemical CO2 Reduction. , 2022, , 161-176.		1
258	Electrochemical CO2 conversion to fuels on metal-free N-doped carbon-based materials: functionalities, mechanistic, and technoeconomic aspects. Materials Today Chemistry, 2022, 24, 100838.	1.7	5
259	Sustainability in Heritage Wood Conservation: Challenges and Directions for Future Research. Forests, 2022, 13, 18.	0.9	7
260	Recent progress in electrochemical reduction of carbon dioxide on metal singleâ€atom catalysts. Energy Science and Engineering, 2022, 10, 1584-1600.	1.9	11

#	Article	IF	CITATIONS
261	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	10.1	20
262	One-pot chemoenzymatic synthesis of glycolic acid from formaldehyde. Green Chemistry, 2022, 24, 5064-5069.	4.6	9
263	Application of Boron-doped Diamond Electrodes: Focusing on the Electrochemical Reduction of Carbon Dioxide. Electrochemistry, 2022, 90, 101002-101002.	0.6	4
264	Counter Electrode Reactions—Important Stumbling Blocks on the Way to a Working Electroâ€organic Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
265	Reaktionen an der Gegenelektrode – wichtige Stolpersteine auf dem Weg einer funktionierenden elektroâ€organischen Synthese. Angewandte Chemie, 2022, 134, .	1.6	5
266	Heteroatom-Doped Porous Carbon-Based Nanostructures for Electrochemical CO2 Reduction. Nanomaterials, 2022, 12, 2379.	1.9	18
267	Electrocatalytic and photocatalytic sustainable conversion of carbon dioxide to value-added chemicals: State-of-the-art progress, challenges, and future directions. Journal of Environmental Chemical Engineering, 2022, 10, 108219.	3.3	17
268	Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. Advanced Science, 2022, 9,	5.6	17
269	Review on Heteroatom Doping Carbonaceous Materials Toward Electrocatalytic Carbon Dioxide Reduction. Transactions of Tianjin University, 2022, 28, 292-306.	3.3	15
270	Review on Heteroatom Doping Carbonaceous Materials Toward Electrocatalytic Carbon Dioxide Reduction. Transactions of Tianjin University, 0, , .	3.3	0
271	Room-temperature Electrochemical C1-to-fuel Conversion: Perspectives from Material Engineering and Device Design. EnergyChem, 2022, 4, 100086.	10.1	5
272	Catalyst Design for Electrolytic CO2 Reduction Toward Low-Carbon Fuels and Chemicals. Electrochemical Energy Reviews, 2022, 5, .	13.1	16
273	Status and gaps toward fossil-free sustainable chemical production. Green Chemistry, 2022, 24, 7305-7331.	4.6	24
274	Recent advancement in heterogeneous CO ₂ reduction processes in aqueous electrolyte. Journal of Materials Chemistry A, 2022, 10, 20667-20706.	5.2	6
275	Challenges and Opportunities in Converting CO ₂ to Carbohydrates. ACS Energy Letters, 2022, 7, 3509-3523.	8.8	12
276	Challenges and Prospects in the Catalytic Conversion of Carbon Dioxide to Formaldehyde. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
277	Toward abiotic sugar synthesis from CO2 electrolysis. Joule, 2022, 6, 2304-2323.	11.7	18
279	Challenges and Prospects in Catalytic Conversion of Carbon Dioxide to Formaldehyde. Angewandte Chemie, 0, , .	1.6	1

	CHATION R		
#	Article	IF	CITATIONS
280	A Mini-Review on CO2 Photoreduction by MgAl-LDH Based Materials. Energies, 2022, 15, 8117.	1.6	5
281	Electroreduction of CO2 on bismuth nanoparticles in seawater. Journal of Applied Electrochemistry, 2023, 53, 217-226.	1.5	1
282	Toward Unifying the Mechanistic Concepts in Electrochemical CO ₂ Reduction from an Integrated Material Design and Catalytic Perspective. Advanced Functional Materials, 2022, 32, .	7.8	15
283	Electrodes selection in electro-organic synthesis. , 2024, , 23-35.		1
284	Recent advances on electrocatalytic CO2 reduction to resources: Target products, reaction pathways and typical catalysts. Chemical Engineering Journal, 2023, 453, 139663.	6.6	55
285	Defect chemistry of electrocatalysts for CO2 reduction. Frontiers in Chemistry, 0, 10, .	1.8	5
287	Electro‧ynthesis of Organic Compounds with Heterogeneous Catalysis. Advanced Science, 2023, 10, .	5.6	25
288	One-step co-electrodeposition of SnBi for efficient electrochemical reduction of carbon dioxide to formic acid. Catalysis Science and Technology, 0, , .	2.1	1
289	Electrochemical CO2 Reduction. RSC Green Chemistry, 2022, , 362-387.	0.0	0
290	Electrochemical Oxidation of Primary Alcohols Using a Co ₂ NiO ₄ Catalyst: Effects of Alcohol Identity and Electrochemical Bias on Product Distribution. ACS Catalysis, 2023, 13, 515-529.	5.5	9
291	Electrochemical organic reactions: A tutorial review. Frontiers in Chemistry, 0, 10, .	1.8	11
292	Synthetic porous carbons for clean energy storage and conversion. EnergyChem, 2023, 5, 100099.	10.1	6
293	Basic principles of CO2 capture and conversion technologies. , 2023, , 25-61.		0
294	Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling. Progress in Materials Science, 2023, 135, 101103.	16.0	5
295	Electrochemical reduction of carbon dioxide into valuable chemicals: a review. Environmental Chemistry Letters, 2023, 21, 1515-1553.	8.3	10
296	Electrochemical CO2-to-ethylene conversion on metal-free covalent quinazoline network-derived electrodes. Chem Catalysis, 2023, 3, 100506.	2.9	1
297	Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review. Catalysts, 2023, 13, 393.	1.6	9
298	New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Industrial & Engineering Chemistry Research, 2023, 62, 5714-5749.	1.8	3

#	Article	IF	CITATIONS
299	Cutting-Edge Electrocatalysts for CO2RR. Molecules, 2023, 28, 3504.	1.7	2
316	Cu-based catalyst designs in CO ₂ electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chemical Science, 2023, 14, 13629-13660.	3.7	2
317	Electrochemical CO ₂ conversion technologies: state-of-the-art and future perspectives. Sustainable Energy and Fuels, 2023, 7, 5445-5472.	2.5	2