Treatment of acute respiratory distress syndrome with mesenchymal stem cells: a randomized, placebo-contro

Respiratory Research 15, 39 DOI: 10.1186/1465-9921-15-39

Citation Report

#	Article	IF	CITATIONS
1	Successful Reversal of Acute Lung Injury using Placenta-Derived Decidual Stromal Cells. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	10
2	Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respiratory Medicine,the, 2014, 2, 1016-1026.	5.2	222
3	Application of Adipose-Derived Stem Cells in Heart Disease. Journal of Cardiovascular Translational Research, 2014, 7, 651-663.	1.1	32
4	Adipose stem cells in the clinic. Biomedical Research and Therapy, 2014, 1, .	0.3	4
5	Critical steps in the isolation and expansion of adipose-derived stem cells for translational therapy. Expert Reviews in Molecular Medicine, 2015, 17, e11.	1.6	39
6	Pharmacological Treatments for Acute Respiratory Distress Syndrome. AACN Advanced Critical Care, 2015, 26, 185-191.	0.6	5
7	Mesenchymal stromal cells for treatment of the acute respiratory distress syndrome: The beginning of the story. Journal of the Intensive Care Society, 2015, 16, 320-329.	1.1	4
8	Severe infections in neutropenic patients. Current Opinion in Critical Care, 2015, 21, 1.	1.6	9
9	Mesenchymal Stromal Cell Therapy. Transplantation, 2015, 99, 1113-1118.	0.5	12
10	Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization. Stem Cells International, 2015, 2015, 1-11.	1.2	67
11	Current Perspectives in Mesenchymal Stromal Cell Therapies for Airway Tissue Defects. Stem Cells International, 2015, 2015, 1-7.	1.2	20
12	Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respiratory Medicine,the, 2015, 3, 24-32.	5.2	614
13	Future therapies for ARDS. Intensive Care Medicine, 2015, 41, 322-326.	3.9	6
14	The Acute Respiratory Distress Syndrome: From Mechanism to Translation. Journal of Immunology, 2015, 194, 855-860.	0.4	308
15	Adipose-derived stem cells for wound repair and regeneration. Expert Opinion on Biological Therapy, 2015, 15, 1285-1292.	1.4	100
16	Mesenchymal stromal cells and the acute respiratory distress syndrome (ARDS): challenges for clinical application. Thorax, 2015, 70, 611-612.	2.7	4
17	Mesenchymal stem cells for therapeutic applications in pulmonary medicine. British Medical Bulletin, 2015, 115, 45-56.	2.7	31
18	Adoptive cell transfer in autoimmune hepatitis. Expert Review of Gastroenterology and Hepatology, 2015, 9, 821-836.	1.4	13

#	Article		CITATIONS
19	Could cancer and infection be adverse effects of mesenchymal stromal cell therapy?. World Journal of Stem Cells, 2015, 7, 408.		28
20	Sepsis: a roadmap for future research. Lancet Infectious Diseases, The, 2015, 15, 581-614.	4.6	827
21	The Immunomodulatory and Therapeutic Effects of Mesenchymal Stromal Cells for Acute Lung Injury and Sepsis. Journal of Cellular Physiology, 2015, 230, 2606-2617.	2.0	81
22	Stem cells for respiratory failure. Current Opinion in Critical Care, 2015, 21, 42-49.	1.6	8
23	In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2015, 4, 1199-1213.	1.6	131
24	Are They Really Stem Cells? Scrutinizing the Identity of Cells and the Quality of Reporting in the Use of Adipose Tissue-Derived Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	5
25	Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response. Mediators of Inflammation, 2016, 2016, 1-12.	1.4	24
26	Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome. F1000Research, 2016, 5, 1532.	0.8	22
27	Acute respiratory distress syndrome following cardiovascular surgery. Current Opinion in Anaesthesiology, 2016, 29, 94-100.	0.9	10
28	Pulmonary Retention of Adipose Stromal Cells following Intravenous Delivery is Markedly Altered in the Presence of ARDS. Cell Transplantation, 2016, 25, 1635-1643.	1.2	21
29	Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells. Stem Cells Translational Medicine, 2016, 5, 314-324.	1.6	43
30	Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opinion on Biological Therapy, 2016, 16, 1353-1360.	1.4	30
31	Concise Review: The Bystander Effect: Mesenchymal Stem Cell-Mediated Lung Repair. Stem Cells, 2016, 34, 1437-1444.	1.4	49
32	Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 2016, 34, 2210-2223.	1.4	401
33	Advances in Stem Cell and Cell-Based Gene Therapy Approaches for Experimental Acute Lung Injury: A Review of Preclinical Studies. Human Gene Therapy, 2016, 27, 802-812.	1.4	18
34	Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. Journal of Biomedical Science, 2016, 23, 76.	2.6	258
35	Mesenchymal Stem Cells in Clinical Applications. Stem Cells in Clinical Applications, 2016, , 37-69.	0.4	7
36	Effectiveness of a novel cellular therapy to treat multidrug-resistant tuberculosis. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2016, 4, 21-27.	0.6	21

#	Article		CITATIONS
37	Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. Journal of Translational Medicine, 2016, 14, 47.		15
38	Mesenchymal stem/stromal cells—a key mediator for regeneration after perinatal morbidity?. Molecular and Cellular Pediatrics, 2016, 3, 6.	1.0	15
39	Stem cell therapy for acute respiratory distress syndrome. Current Opinion in Critical Care, 2016, 22, 14-20.	1.6	36
40	Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opinion on Biological Therapy, 2016, 16, 859-871.	1.4	156
41	Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Translational Research, 2016, 167, 183-191.	2.2	148
42	Concise Review: Mesenchymal Stromal Cell-Based Approaches for the Treatment of Acute Respiratory Distress and Sepsis Syndromes. Stem Cells Translational Medicine, 2017, 6, 1141-1151.	1.6	64
43	The use of mesenchymal stromal cells in treatment of lung disorders. Regenerative Medicine, 2017, 12, 203-216.	0.8	8
44	Intraperitoneal adoptive transfer of mesenchymal stem cells enhances recovery from acid aspiration acute lung injury in mice. Intensive Care Medicine Experimental, 2017, 5, 13.	0.9	10
45	Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1275-1286.	2.5	517
46	F <scp>ifty</scp> Y <scp>ears</scp> <scp>of</scp> R <scp>esearch</scp> <scp>in</scp> ARDS.Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 266-273.	2.5	179
47	Regenerative Potential of Mesenchymal Stem Cells: Therapeutic Applications in Lung Disorders. Stem Cells in Clinical Applications, 2017, , 77-117.	0.4	1
48	Concise Review: Mesenchymal Stromal/Stem Cells: A New Treatment for Sepsis and Septic Shock?. Stem Cells, 2017, 35, 2331-2339.	1.4	68
49	Concise Review: A Safety Assessment of Adipose-Derived Cell Therapy in Clinical Trials: A Systematic Review of Reported Adverse Events. Stem Cells Translational Medicine, 2017, 6, 1786-1794.	1.6	103
50	Human adipose-derived mesenchymal stem cells alleviate obliterative bronchiolitis in a murine model via IDO. Respiratory Research, 2017, 18, 119.	1.4	21
51	Adipose-derived mesenchymal stem cells modulate CD14++CD16+ expression on monocytes from sepsis patients in vitro via prostaglandin E2. Stem Cell Research and Therapy, 2017, 8, 97.	2.4	25
52	Cell therapy for lung disease. European Respiratory Review, 2017, 26, 170044.	3.0	69
53	Comparative Clinical Observation of Arthroscopic Microfracture in the Presence and Absence of a Stromal Vascular Fraction Injection for Osteoarthritis. Stem Cells Translational Medicine, 2017, 6, 187-195.	1.6	79
54	Postinjury Inflammation and Organ Dysfunction. Critical Care Clinics, 2017, 33, 167-191.	1.0	123

	CITATION R	EPORT	
#	Article	IF	CITATIONS
55	Mesenchymal stem cells in idiopathic pulmonary fibrosis. Oncotarget, 2017, 8, 102600-102616.	0.8	59
56	Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC). Bio-protocol, 2017, 7, .	0.2	47
57	Serious adverse events of cell therapy for respiratory diseases: a systematic review and meta-analysis. Oncotarget, 2017, 8, 30511-30523.	0.8	24
58	Cell therapy for the treatment of sepsis and acute respiratory distress syndrome. Annals of Translational Medicine, 2017, 5, 446-446.	0.7	30
59	Stem-cell extracellular vesicles and lung repair. Stem Cell Investigation, 2017, 4, 78-78.	1.3	39
60	Clinical applications of mesenchymal stem cells in chronic lung diseases (Review). Biomedical Reports, 2018, 8, 314-318.	0.9	18
61	Mesenchymal Stromal Cell Therapy. Critical Care Medicine, 2018, 46, 343-345.	0.4	2
62	Cellular therapies and stem cell applications in trauma. American Journal of Surgery, 2018, 215, 963-972.		7
63	Human Multilineage-differentiating Stress-Enduring Cells Exert Pleiotropic Effects to Ameliorate Acute Lung Ischemia–Reperfusion Injury in a Rat Model. Cell Transplantation, 2018, 27, 979-993.		29
64	Interleukin-10-Overexpressing Mesenchymal Stromal Cells Induce a Series of Regulatory Effects in the Inflammatory System and Promote the Survival of Endotoxin-Induced Acute Lung Injury in Mice Model. DNA and Cell Biology, 2018, 37, 53-61.		44
65	Cell-based Therapy in Sepsis. A Step Closer. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 280-281.	2.5	9
66	Cellular Immunotherapy for Septic Shock. A Phase I Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 337-347.	2.5	115
67	The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. Journal of Trauma and Acute Care Surgery, 2018, 84, 183-191.	1.1	31
68	How we manage clinical trials in the cellular therapy laboratory. Transfusion, 2018, 58, 8-15.	0.8	0
69	Mesenchymal stem cells in the pathogenesis and treatment of bronchopulmonary dysplasia: a clinical review. Pediatric Research, 2018, 83, 308-317.	1.1	30
70	Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death and Differentiation, 2018, 25, 1209-1223.	5.0	152
71	Mesenchymal stem cells: A doubleâ€edged sword in radiationâ€induced lung injury. Thoracic Cancer, 2018, 9, 208-217.	0.8	17
72	Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, e132-e140.	0.4	59

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
73	Cell therapy in acute respiratory distress syndrome. Journal of Thoracic Disease, 2018, 10, 5607-5620.	0.6	46
74	Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Research and Therapy, 2018, 9, 320.	2.4	204
75	Muse Cells and Ischemia-Reperfusion Lung Injury. Advances in Experimental Medicine and Biology, 2018 1103, 293-303.	8, 0.8	7
76	Upregulation of miRNA‑140‑5p inhibits inflammatory cytokines in acute lung injury through the MyD88/NFâ€ÎºB signaling pathway by targeting TLR4. Experimental and Therapeutic Medicine, 2018, 16 3913-3920.	5, 0.8	34
77	Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Research and Therapy, 2018, 9, 265.	2.4	98
78	Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. Journal of Clinical Medicine, 2018, 7, 355.	1.0	128
79	Recent advances in understanding and treating acute respiratory distress syndrome. F1000Research, 2018, 7, 1322.	0.8	64
80	Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: aphase 1 clinical trial. Translational Research, 2018, 199, 52-61.	2.2	42
81	Comparative Effects of Umbilical Cord- and Menstrual Blood-Derived MSCs in Repairing Acute Lung Injury. Stem Cells International, 2018, 2018, 1-9.	1.2	23
82	Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Research and Therapy, 2018, 9, 45.	2.4	95
83	Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Research and Therapy, 2018, 9, 17.	2.4	253
84	Cell therapy for acute respiratory distress syndrome patients: the START study. Journal of Thoracic Disease, 2019, 11, S1329-S1332.	0.6	13
85	Sepsis-Induced Lung Injury: The Mechanism and Treatment. , 2019, , 253-275.		0
86	Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging, 2019, 11, 7996-8014.	1.4	92
87	Mesenchymal stem cellsâ€derived extracellular vesicles in acute respiratory distress syndrome: a review of current literature and potential future treatment options. Clinical and Translational Medicine, 2019, 8, 25.	1.7	66
88	Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Research and Therapy, 2019, 10, 264.	2.4	33
89	Stem Cell-Based Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome. , 2019, , 331-343.		1
90	Mesenchymal Stem Cell-Based Therapy of Inflammatory Lung Diseases: Current Understanding and Future Perspectives. Stem Cells International, 2019, 2019, 1-14.	1.2	145

#	Article	IF	CITATIONS
91	Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Molecular Neurobiology, 2019, 56, 6902-6927.	1.9	52
92	Pharmacological agents for adults with acute respiratory distress syndrome. The Cochrane Library, 2019, 7, CD004477.	1.5	112
93	Acute Respiratory Distress Syndrome Novel Therapies. Critical Care Nursing Quarterly, 2019, 42, 411-416.	0.4	3
94	Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research and Therapy, 2019, 10, 359.	2.4	122
95	Strategies to Enhance Mesenchymal Stem Cell-Based Therapies for Acute Respiratory Distress Syndrome. Stem Cells International, 2019, 2019, 1-12.	1.2	29
96	Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Research and Therapy, 2019, 10, 386.	2.4	31
97	Effects of Mesenchymal Stem Cell Treatment on Systemic Cytokine Levels in a Phase 1 Dose Escalation Safety Trial of Septic Shock Patients*. Critical Care Medicine, 2019, 47, 918-925.	0.4	58
98	Mesenchymal stem cell treatment attenuates liver and lung inflammation after ethanol intoxication and burn injury. Alcohol, 2019, 80, 139-148.	0.8	14
99	Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. Journal of Pathology, 2019, 247, 672-685.	2.1	168
100	Hypercapnic acidosis induces mitochondrial dysfunction and impairs the ability of mesenchymal stem cells to promote distal lung epithelial repair. FASEB Journal, 2019, 33, 5585-5598.	0.2	34
101	Human unrestricted somatic stem cells ameliorate sepsisâ€related acute lung injury in mice. Journal of Cellular Physiology, 2019, 234, 13942-13950.	2.0	6
102	Therapeutic potential of mesenchymal stromal cells in the treatment of ARDS. Transfusion, 2019, 59, 869-875.	0.8	16
103	Identification and Modulation of Microenvironment Is Crucial for Effective Mesenchymal Stromal Cell Therapy in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1214-1224.	2.5	92
104	Administration of mesenchymal stem cells during ECMO results in a rapid decline in oxygenator performance. Thorax, 2019, 74, 194-196.	2.7	27
105	Acute Respiratory Distress Syndrome: Etiology, Pathogenesis, and Summary on Management. Journal of Intensive Care Medicine, 2020, 35, 723-737.	1.3	52
106	Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biology and Toxicology, 2020, 36, 83-102.	2.4	56
107	Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opinion on Biological Therapy, 2020, 20, 125-140.	1.4	62
108	Treatment of radiculomyelopathy in two patients with placenta-derived decidua stromal cells. International Journal of Hematology, 2020, 111, 591-594.	0.7	4

#	Article	IF	CITATIONS
109	Mesenchymal stem cells: a new front emerges in coronavirus disease 2019 treatment. Cytotherapy, 2022, 24, 755-766.		22
110	Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Research and Therapy, 2020, 11, 437.	2.4	54
111	<p>Challenges for Mesenchymal Stem Cell-Based Therapy for COVID-19</p> . Drug Design, Development and Therapy, 2020, Volume 14, 3995-4001.	2.0	12
112	Mesenchymal stem cell therapies for COVID-19: Current status and mechanism of action. Life Sciences, 2020, 262, 118493.	2.0	41
113	Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Frontiers in Immunology, 2020, 11, 1563.	2.2	31
114	Systematic Review: Allogenic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 4982.	1.8	71
115	The efficacy of mesenchymal stromal cell-derived therapies for acute respiratory distress syndrome—a meta-analysis of preclinical trials. Respiratory Research, 2020, 21, 307.	1.4	10
116	Exosomes from adipose tissue-derived mesenchymal stem cells ameliorate histone-induced acute lung injury by activating the PI3K/Akt pathway in endothelial cells. Stem Cell Research and Therapy, 2020, 11, 508.	2.4	41
117	Mesenchymal Stromal Cells Attenuate Infection-Induced Acute Respiratory Distress Syndrome in Animal Experiments: A Meta-Analysis. Cell Transplantation, 2020, 29, 096368972096918.	1.2	11
118	Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19. Frontiers of Medicine, 2020, 14, 664-673.	1.5	100
119	Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective. Human Cell, 2020, 33, 907-918.	1.2	63
120	The rationale of using mesenchymal stem cells in patients with COVID-19-related acute respiratory distress syndrome: What to expect. Stem Cells Translational Medicine, 2020, 9, 1287-1302.	1.6	45
121	Mesenchymal stem cells: current clinical progress in ARDS and COVID-19. Stem Cell Research and Therapy, 2020, 11, 305.	2.4	66
122	The Coronavirus Pandemic (SARS-CoV-2): New Problems Demand New Solutions, the Alternative of Mesenchymal (Stem) Stromal Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 645.	1.8	11
123	Immune Pathogenesis of COVID-19 Intoxication: Storm or Silence?. Pharmaceuticals, 2020, 13, 166.	1.7	16
124	Value of mesenchymal stem cell therapy for patients with septic shock: an early health economic evaluation. International Journal of Technology Assessment in Health Care, 2020, 36, 525-532.	0.2	8
125	Insights into the use of mesenchymal stem cells in COVID-19 mediated acute respiratory failure. Npj Regenerative Medicine, 2020, 5, 17.	2.5	48
126	The use of mesenchymal stromal cells in the treatment of coronavirus disease 2019. Journal of Translational Medicine, 2020, 18, 359.	1.8	20

#	Article	IF	CITATIONS
127	The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Research and Therapy, 2020, 11, 404.	2.4	53
128	Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. Signal Transduction and Targeted Therapy, 2020, 5, 172.	7.1	236
129	Mesenchymal Stem Cell Therapy—Is the Vessel Half Full or Half Empty?. Russian Journal of Developmental Biology, 2020, 51, 267-270.	0.1	0
130	Mesenchymal stromal cells for sepsis and septic shock: Lessons for treatment of COVID-19. Stem Cells Translational Medicine, 2020, 9, 1488-1494.	1.6	14
131	Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 361.	2.4	227
132	COVIDâ€19 therapy with mesenchymal stromal cells (MSC) and convalescent plasma must consider exosome involvement: Do the exosomes in convalescent plasma antagonize the weak immune antibodies?. Journal of Extracellular Vesicles, 2020, 10, e12004.	5.5	43
133	The role of mesenchymal stem/stromal cells in the acute clinical setting. American Journal of Emergency Medicine, 2021, 46, 572-578.	0.7	9
134	Mechanically Stretched Mesenchymal Stem Cells Can Reduce the Effects of LPS-Induced Injury on the Pulmonary Microvascular Endothelium Barrier. Stem Cells International, 2020, 2020, 1-12.	1.2	3
135	Human Umbilical Cord-Derived Mesenchymal Stem Cells for Acute Respiratory Distress Syndrome. Critical Care Medicine, 2020, 48, e391-e399.	0.4	67
136	Mesenchymal stem cell use in acute respiratory distress syndrome: a potential therapeutic application. Future Science OA, 2020, 6, FSO584.	0.9	3
137	Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy — Achieving global consensus and visibility for cellular host-directed therapies. International Journal of Infectious Diseases, 2020, 96, 431-439.	1.5	43
138	Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. Journal of Translational Medicine, 2020, 18, 203.	1.8	83
139	Acute Lung Injury: Disease Modelling and the Therapeutic Potential of Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1298, 149-166.	0.8	17
140	Mesenchymal Stem Cells for Coronavirus (COVID-19)-Induced Pneumonia: Revisiting the Paracrine Hypothesis with New Hopes?. , 2020, 11, 477.		12
141	Future Trends in Nebulized Therapies for Pulmonary Disease. Journal of Personalized Medicine, 2020, 10, 37.	1.1	36
142	Cell Therapy for Lung Disease: Current Status and Future Prospects. Current Stem Cell Reports, 2020, 6, 30-39.	0.7	10
143	Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Translational Medicine, 2020, 9, 1007-1022.	1.6	85
144	The immunology of COVID-19: is immune modulation an option for treatment?. Lancet Rheumatology, The, 2020, 2, e428-e436.	2.2	192

#	ARTICLE Magnetic targeting increases mesenchymal stromal cell retention in lungs and enhances beneficial effects on pulmonary damage in experimental silicosis. Stem Cells Translational Medicine, 2020, 9,	IF	CITATIONS
145	1244-1256.	1.6	12
146	Mesenchymal Stem Cell–Derived Extracellular Vesicles Alleviate Acute Lung Injury Via Transfer of miR-27a-3p*. Critical Care Medicine, 2020, 48, e599-e610.		104
147	Mesenchymal stromal cells as a salvage treatment for confirmed acute respiratory distress syndrome: preliminary data from a single-arm study. Intensive Care Medicine, 2020, 46, 1944-1947.		11
148	Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein and Cell, 2020, 11, 707-722.	4.8	97
149	Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19. Stem Cells Translational Medicine, 2020, 9, 1163-1173.	1.6	62
150	MSC Based Therapies—New Perspectives for the Injured Lung. Journal of Clinical Medicine, 2020, 9, 682.	1.0	118
151	Current Status of Stem Cell Therapy for Sepsis and Acute Respiratory Distress Syndrome. , 2020, , .		2
152	Therapeutic targeting of metabolic alterations in acute respiratory distress syndrome. European Respiratory Review, 2020, 29, 200114.	3.0	14
153	Clinical Study of Mesenchymal Stem Cell Treatment for Acute Respiratory Distress Syndrome Induced by Epidemic Influenza A (H7N9) Infection: A Hint for COVID-19 Treatment. Engineering, 2020, 6, 1153-1161.	3.2	202
154	Recombinant human thrombomodulin attenuated sepsis severity in a non-surgical preterm mouse model. Scientific Reports, 2020, 10, 333.	1.6	3
155	Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis. EClinicalMedicine, 2020, 19, 100249.	3.2	150
156	Downregulated miR-150 in bone marrow mesenchymal stem cells attenuates the apoptosis of LPS-stimulated RAW264.7 via MTCH2-dependent mitochondria transfer. Biochemical and Biophysical Research Communications, 2020, 526, 560-567.	1.0	9
157	Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?. Journal of Autoimmunity, 2020, 111, 102452.	3.0	606
158	Current status of potential therapeutic candidates for the COVID-19 crisis. Brain, Behavior, and Immunity, 2020, 87, 59-73.	2.0	239
159	Regenerative Medicine in COVID-19 Treatment: Real Opportunities and Range of Promises. Stem Cell Reviews and Reports, 2021, 17, 163-175.	1.7	59
160	Fighting the War Against COVID-19 via Cell-Based Regenerative Medicine: Lessons Learned from 1918 Spanish Flu and Other Previous Pandemics. Stem Cell Reviews and Reports, 2021, 17, 9-32.	1.7	11
161	Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 020-039.	0.8	20
162	Cell-Based Therapy for Severe COVID-19 Patients: Clinical Trials and Cost-Utility. Stem Cell Reviews and Reports, 2021, 17, 56-62.	1.7	57

	CHATION	KLPOKI	
#	Article	IF	CITATIONS
163	Umbilical cord: an allogenic tissue for potential treatment of COVID-19. Human Cell, 2021, 34, 1-13.	1.2	18
164	Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Review of Respiratory Medicine, 2021, 15, 301-324.	1.0	41
165	Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine and Growth Factor Reviews, 2021, 58, 114-133.	3.2	17
160	Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome?. Blood Reviews, 2021, 46, 100742.	2.8	11
167	, Coronavirus disease 2019: A tissue engineering and regenerative medicine perspective. Stem Cells Translational Medicine, 2021, 10, 27-38.	1.6	21
168	Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Reviews and Reports, 2021, 17, 390-410.	1.7	23
169	MSC-NTF (NurOwn®) exosomes: a novel therapeutic modality in the mouse LPS-induced ARDS model. Stem Cell Research and Therapy, 2021, 12, 72.	2.4	36
171	Preclinical and clinical applications of mesenchymal stem cell-based therapy in pulmonary diseases. , 2021, , 99-117.		0
173	Evaluation of the safety and efficacy of using human menstrual bloodâ€derived mesenchymal stromal cells in treating severe and critically ill COVIDâ€19 patients: An exploratory clinical trial. Clinical and Translational Medicine, 2021, 11, e297.	1.7	90
174	Clinical applications of mesenchymal stromal cell-based therapies for pulmonary diseases: An Update and Concise Review. International Journal of Medical Sciences, 2021, 18, 2849-2870.	1.1	14
175	Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series. Stem Cell Research and Therapy, 2021, 12, 91.	2.4	141
176	Placenta-derived mesenchymal stem cells (P-MSCs) for COVID-19 pneumonia—a regenerative dogma. Stem Cell Investigation, 2021, 8, 3-3.	1.3	13
177	Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 600711.	1.8	51
178	Non-muscle myosin II knockdown improves survival and therapeutic effects of implanted bone marrow-derived mesenchymal stem cells in lipopolysaccharide-induced acute lung injury. Annals of Translational Medicine, 2021, 9, 262-262.	0.7	2
179	Nháºn xét káº;t quả lâm sÃng và chức năng thÃ′ng khÃ-sau Ä'iá»u trị bệnh phổi táº⁻c nghẽ mỡ. Tap Chi Nghien Cuu Y Hoc, 2021, 137, 146-157.	n má⁰in tÃr 0:0	nh bá⁰±ng tá⁰¿
180	Mesenchymal Stem Cell-Based Therapy for COVID-19: Possibility and Potential. Current Stem Cell Research and Therapy, 2021, 16, 105-108.	0.6	6
181	Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduction and Targeted Therapy, 2021, 6, 58.	7.1	178
182	Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. International Journal of Molecular Sciences, 2021, 22, 3576.	1.8	43

#	Article	IF	CITATIONS
183	BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A–YAP axis. Acta Pharmacologica Sinica, 2021, 42, 2082-2093.		24
184	HGF-Modified Dental Pulp Stem Cells Mitigate the Inflammatory and Fibrotic Responses in Paraquat-Induced Acute Respiratory Distress Syndrome. Stem Cells International, 2021, 2021, 1-15.		9
185	Efficacy of mesenchymal stromal cells and cellular products in improvement of symptoms for COVIDâ€19 and similar lung diseases. Biotechnology and Bioengineering, 2021, 118, 2168-2183.	1.7	3
186	Secretome of Multipotent Mesenchymal Stromal Cells as a Promising Treatment and for Rehabilitation of Patients with the Novel Coronaviral Infection. Herald of the Russian Academy of Sciences, 2021, 91, 170-175.	0.2	1
187	Between-trial heterogeneity in ARDS research. Intensive Care Medicine, 2021, 47, 422-434.	3.9	16
188	Concentrated Secretome of Adipose Stromal Cells Limits Influenza A Virus-Induced Lung Injury in Mice. Cells, 2021, 10, 720.	1.8	5
189	COVID-19 vaccines: The status and perspectives in delivery points of view. Advanced Drug Delivery Reviews, 2021, 170, 1-25.	6.6	262
190	Progress and potential of mesenchymal stromal cell therapy in acute respiratory distress syndrome. , 2021, , 353-372.		1
191	MSCs and Inflammatory Cells Crosstalk in Regenerative Medicine: Concerted Actions for Optimized Resolution Driven by Energy Metabolism. Frontiers in Immunology, 2021, 12, 626755.	2.2	63
192	Research Progress on Strategies that can Enhance the Therapeutic Benefits of Mesenchymal Stromal Cells in Respiratory Diseases With a Specific Focus on Acute Respiratory Distress Syndrome and Other Inflammatory Lung Diseases. Frontiers in Pharmacology, 2021, 12, 647652.		9
193	Autologous adiposeâ€derived stem cells therapy in COPD treatment: a case report. Respirology Case Reports, 2021, 9, e00748.	0.3	1
194	Fundamental and Advanced Therapies, Vaccine Development against SARS-CoV-2. Pathogens, 2021, 10, 636.	1.2	2
195	Exosomes contribution in COVID-19 patients' treatment. Journal of Translational Medicine, 2021, 19, 234.	1.8	25
196	Therapeutic mechanisms of mesenchymal stem cells in acute respiratory distress syndrome reveal potentials for Covid-19 treatment. Journal of Translational Medicine, 2021, 19, 198.	1.8	15
197	Stem cell therapy in COVID-19: Pooled evidence from SARS-CoV-2, SARS-CoV, MERS-CoV and ARDS: A systematic review. Biomedicine and Pharmacotherapy, 2021, 137, 111300.	2.5	21
198	Effects of mesenchymal stromal cellâ€derived extracellular vesicles in acute respiratory distress syndrome (ARDS): Current understanding and future perspectives. Journal of Leukocyte Biology, 2021, 110, 27-38.	1.5	10
199	Advances in Mesenchymal Stem Cell Therapy for Immune and Inflammatory Diseases: Use of Cell-Free Products and Human pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 2021, 10, 1288-1303.	1.6	52
200	Umbilical Cord Mesenchymal Stromal Cells as Critical COVID-19 Adjuvant Therapy: A Randomized Controlled Trial. Stem Cells Translational Medicine, 2021, 10, 1279-1287.	1.6	107

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
201	Harnessing adipose stem cell diversity in regenerative medicine. APL Bioengineering, 2021, 5, 0	21501.	3.3	12
202	Updates on clinical trials evaluating the regenerative potential of allogenic mesenchymal stem of in COVID-19. Npj Regenerative Medicine, 2021, 6, 37.	ells	2.5	31
203	An overview of some potential immunotherapeutic options against COVID-19. International Immunopharmacology, 2021, 95, 107516.		1.7	7
204	Can Autologous Adipose-Derived Mesenchymal Stem Cell Transplantation Improve Sexual Func People with Sexual Functional Deficiency?. Stem Cell Reviews and Reports, 2021, 17, 2153-216		1.7	12
205	Nanotherapeutics in the treatment of acute respiratory distress syndrome. Life Sciences, 2021, 119428.	276,	2.0	12
206	Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentariun against COVID-19?. Stem Cell Research and Therapy, 2021, 12, 425.	n	2.4	15
207	Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Syndrome: Current Evidence and Future Perspectives. International Journal of Molecular Science 2021, 22, 7850.		1.8	33
208	Overexpression of HOXB4 Promotes Protection of Bone Marrow Mesenchymal Stem Cells Again Lipopolysaccharide-Induced Acute Lung Injury Partially Through the Activation of Wnt/Î2-Cateni Signaling. Journal of Inflammation Research, 2021, Volume 14, 3637-3649.	ist h	1.6	5
209	Impact of differences in acute respiratory distress syndrome randomised controlled trial inclusic and exclusion criteria: systematic review and meta-analysis. British Journal of Anaesthesia, 2021 85-101.		1.5	13
210	Visualized analyses of investigations upon mesenchymal stem/stromal cell-based cytotherapy a underlying mechanisms for COVID-19 associated ARDS. Current Stem Cell Research and Therap 16, .		0.6	8
211	Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary d From bench to bedside. World Journal of Stem Cells, 2021, 13, 1058-1071.	iseases:	1.3	14
212	Allogeneic adipose tissue-derived mesenchymal stem cells in ischaemic stroke (AMASCIS-02): a multicentre, double-blind, placebo-controlled clinical trial protocol. BMJ Open, 2021, 11, e0517		0.8	13
213	The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Frontiers in Cell and Developmental Biology, 2021, 9, 6	61532.	1.8	70
214	Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospect Cell Research and Therapy, 2021, 12, 469.	s. Stem	2.4	28
215	Preclinical efficacy and clinical safety of clinicalâ€grade nebulized allogenic adipose mesenchym stromal cellsâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12134.		5.5	72
216	Anti-inflammatory Effects of Mesenchymal Stem Cells and their Secretomes in Pneumonia. Curr Pharmaceutical Biotechnology, 2022, 23, 1153-1167.	ent	0.9	4
217	Mesenchymal stem cell therapy for severe COVID-19. Signal Transduction and Targeted Therapy 339.	ı, 2021, 6,	7.1	58
218	Mesenchymal stem cells and COVID-19: What they do and what they can do. World Journal of S Cells, 2021, 13, 1318-1337.	Stem	1.3	5

#	ARTICLE Engineered mesenchymal stromal cell therapy during human lung exÂvivo lung perfusion is	lF	CITATIONS
219	compromised by acidic lung microenvironment. Molecular Therapy - Methods and Clinical Development, 2021, 23, 184-197.	1.8	13
220	Current Status of Cell-Based Therapies for COVID-19: Evidence From Mesenchymal Stromal Cells in Sepsis and ARDS. Frontiers in Immunology, 2021, 12, 738697.	2.2	14
221	Clinical experience with adipose tissue enriched with adipose stem cells. , 2022, , 185-223.		0
222	Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Translational Medicine, 2021, 10, 660-673.	1.6	281
223	Combined Use of Tocilizumab and Mesenchymal Stromal Cells in the Treatment of Severe Covid-19: Case Report. Cell Transplantation, 2021, 30, 096368972110210.	1.2	14
224	Utilizing Xenogeneic Cells As a Therapeutic Agent for Treating Diseases. Cell Transplantation, 2021, 30, 096368972110119.	1.2	11
225	The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. , 2019, , 219-238.		4
226	The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung. , 2019, , 57-70.		1
227	Overexpression of FoxM1 promotes differentiation of bone marrow mesenchymal stem cells into alveolar type II cells through activating Wnt/l²-catenin signalling. Biochemical and Biophysical Research Communications, 2020, 528, 311-317.	1.0	6
229	Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Research and Therapy, 2020, 11, 424.	2.4	63
230	Recent advances in understanding acute respiratory distress syndrome. F1000Research, 2018, 7, 263.	0.8	25
231	Mesenchymal Stem Cells Therapy for Coronavirus COVID-19 Induced ARDS: A Promising Concept. , 0, 15, 2.		1
232	Placenta‑derived mesenchymal stem cells ameliorate lipopolysaccharide‑induced inflammation in RAW264.7 cells and acute lung injury in rats. Molecular Medicine Reports, 2020, 22, 1458-1466.	1.1	4
233	Mesenchymal Stem Cell Therapy in Pulmonary Disease. Korean Journal of Medicine, 2015, 89, 522-526.	0.1	3
234	Mesenchymal stem cells as living anti-inflammatory therapy for COVID-19 related acute respiratory distress syndrome. World Journal of Stem Cells, 2020, 12, 1067-1079.	1.3	24
235	Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19. World Journal of Stem Cells, 2020, 12, 1013-1022.	1.3	15
236	Researches and Applications of Stem Cell Secretome. , 2021, , 191-223.		11
237	Inhibitory Effect of Bovine Adipose-Derived Mesenchymal Stem Cells on Lipopolysaccharide Induced Inflammation of Endometrial Epithelial Cells in Dairy Cows. Frontiers in Veterinary Science, 2021, 8, 726328.	0.9	6

# 238	ARTICLE Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clinical Microbiology Reviews, 2021, 34, e0006421.	IF 5.7	Citations
239	MSC-Derived Extracellular Vesicles in Tumors and Therapy. Cancers, 2021, 13, 5212.	1.7	35
240	Conquering the cytokine storm in COVIDâ€19â€induced ARDS using placentaâ€derived decidua stromal cells. Journal of Cellular and Molecular Medicine, 2021, 25, 10554-10564.	1.6	20
241	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine, 2021, 41, 101167.	3.2	22
242	Pharmacological Treatments for Acute Respiratory Distress Syndrome. AACN Advanced Critical Care, 2015, 26, 185-191.	0.6	0
243	Acute Respiratory Distress Syndrome: Current Understanding of the Pathogenesis and Future Direction of Management. The Journal of the Japanese Society of Internal Medicine, 2017, 106, 114-119.	0.0	0
244	Clinical Application of Stem/Stromal Cells in COPD. , 2019, , 97-118.		0
246	The role of mesenchymal stem cells in COVID-19 treatment. Tuberkuloz Ve Toraks, 2020, 68, 430-436.	0.2	1
247	Novel copolymers drive differentiation of human adipose derived stem cells towards chondrocytes and osteoblasts identified by high-throughput approach. Biomedical Physics and Engineering Express, 2020, 6, 025005.	0.6	1
248	Stem cell-based therapy for COVID-19 and ARDS: a systematic review. Npj Regenerative Medicine, 2021, 6, 73.	2.5	15
249	Looking for immortality: Review of phytotherapy for stem cell senescence. Iranian Journal of Basic Medical Sciences, 2020, 23, 154-166.	1.0	4
250	The Acute Respiratory Distress Syndrome: Mechanisms and Perspective Therapeutic Approaches. , 2015, 2, .		57
251	Umbilical Cord-derived Mesenchymal Stem Cells for COVID-19 Patients with Acute Respiratory Distress Syndrome (ARDS). CellR4, 2020, 8, .	0.5	3
253	In search of elixir: Pharmacological agents against stem cell senescence. Iranian Journal of Basic Medical Sciences, 2021, 24, 868-880.	1.0	1
254	Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Frontiers in Physiology, 2021, 12, 752287.	1.3	8
255	The Latest Developments in Immunomodulation of Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions, Both Allogeneic and Autologous. Frontiers in Immunology, 2021, 12, 785717.	2.2	14
256	Safety and efficacy of multipotent adult progenitor cells in acute respiratory distress syndrome (MUST-ARDS): a multicentre, randomised, double-blind, placebo-controlled phase 1/2 trial. Intensive Care Medicine, 2022, 48, 36-44.	3.9	22
257	Mesenchymal Stem Cell-Based COVID-19 Therapy: Bioengineering Perspectives. Cells, 2022, 11, 465.	1.8	3

ARTICLE IF CITATIONS # Exosomes from adipose-derived mesenchymal stem cells alleviate sepsis-induced lung injury in mice by 258 2.0 23 inhibiting the secretion of IL-27 in macrophages. Cell Death Discovery, 2022, 8, 18. 259 SARS-CoV-2 Infection and Lung Regeneration. Clinical Microbiology Reviews, 2022, 35, e0018821. 5.7 24 PARP-1 Inhibition Repressed Imbalance of Th17 and Treg Cells in Preterm Rats with Intrauterine 260 Infection-Induced Acute Respiratory Distress Syndrome by Reducing the Expression Level of IL-6. 2 1.1 Journal of Healthcare Engineering, 2022, 2022, 1-9. Final Results of Allogeneic Adipose Tissue–Derived Mesenchymal Stem Cells in Acute Ischemic Stroke (AMASCIS): A Phase II, Randomized, Double-Blind, Placebo-Controlled, Single-Center, Pilot Clinical Trial. Cell Transplantation, 2022, 31, 096368972210838. 1.2 Circular RNA mmu_circ_0001295 from hypoxia pretreated adipose-derived mesenchymal stem cells (ADSCs) exosomes improves outcomes and inhibits sepsis-induced renal injury in a mouse model of 263 1.4 14 sepsis. Bioengineered, 2022, 13, 6323-6331. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: a multicenter randomized 264 2.5 double-blind trial. Critical Care, 2022, 26, 48. Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical 265 2.4 24 applications. Cellular and Molecular Life Sciences, 2022, 79, 142. Mesenchymal stem/stromal cell therapy for COVID-19 pneumonia: potential mechanisms, current 2.4 266 clinical evidence, and future perspectives. Stem Cell Research and Therapy, 2022, 13, 124. 267 Cellular Therapy: The Hope for Covid-19. Avicenna Journal of Medical Biotechnology, 0, , . 0.2 2 Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Frontiers in 2.2 44 Immunology, 2022, 13, 839844. Safety and efficacy study of allogeneic human menstrual blood stromal cells secretome to treat 269 2.4 24 severe COVID-19 patients: clinical trial phase I & amp; II. Stem Cell Research and Therapy, 2022, 13, 96. Mesenchymal stem cell treatment for COVID-19. EBioMedicine, 2022, 77, 103920. 2.7 36 Stem cell therapy: A promising treatment for COVID-19. World Journal of Clinical Cases, 2021, 9, 2710.3 2 11148-11155. Mechanism of Adipose-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying 1.7 16 miR-21-5p in Hyperoxia-Induced Lung Injury. Stem Cell Reviews and Reports, 2022, 18, 1007-1024. Stem Cellâ€based therapies for COVIDâ€19â€related acute respiratory distress syndrome. Journal of Cellular 274 1.6 1 and Molecular Medicine, 2022, , . Targeted Therapy for Inflammatory Diseases with Mesenchymal Stem Cells and Their Derived Exosomes: From Basic to Clínics. International Journal of Nanomedicine, 2022, Volume 17, 1757-1781. Mesenchymal stem cell therapy for COVID-19.. American Journal of Stem Cells, 2021, 10, 79-89. 280 0.4 0 Current strategies and future perspectives in COVID-19 therapy., 2022, 169-227.

#	Article	IF	CITATIONS
282	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST): a structured study protocol for an open-label dose-escalation phase 1 trial followed by a randomised, triple-blind, allocation concealed, placebo-controlledÂphase 2 trial. Trials, 2022, 23, 401.	0.7	3
284	Association between Mesenchymal Stem Cells and COVID-19 Therapy: Systematic Review and Current Trends. BioMed Research International, 2022, 2022, 1-17.	0.9	6
285	Human Placental Mesenchymal Stem Cells for the Treatment of ARDS in Rat. Stem Cells International, 2022, 2022, 1-13.	1.2	3
286	Safety, efficacy and biomarkers analysis of mesenchymal stromal cells therapy in ARDS: a systematic review and meta-analysis based on phase I and II RCTs. Stem Cell Research and Therapy, 2022, 13, .	2.4	2
287	Current regenerative medicine-based approaches for skin regeneration: A review of literature and a report on clinical applications in Japan. Regenerative Therapy, 2022, 21, 73-80.	1.4	12
288	Mesenchymal stromal cell treatment improves outcomes in children with pneumonia post-hematopoietic stem cell transplantation: a retrospective cohort study. Stem Cell Research and Therapy, 2022, 13, .	2.4	0
289	Bone Marrow-Derived Mesenchymal Stromal Cell Therapy in Severe COVID-19: Preliminary Results of a Phase I/II Clinical Trial. Frontiers in Immunology, 0, 13, .	2.2	24
290	Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19. Cells, 2022, 11, 2319.	1.8	9
291	Human placenta-derived mesenchymal stem cells transplantation in patients with acute respiratory distress syndrome (ARDS) caused by COVID-19 (phase I clinical trial): safety profile assessment. Stem Cell Research and Therapy, 2022, 13, .	2.4	23
292	Treatment for acute respiratory distress syndrome in adults: a narrative review of phase 2 and 3 trials. Expert Opinion on Emerging Drugs, 2022, 27, 187-209.	1.0	5
293	Advances in mesenchymal stromal cell therapy for acute lung injury/acute respiratory distress syndrome. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
294	Stem cell-based therapy for human diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	209
295	Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). International Journal of Molecular Sciences, 2022, 23, 9274.	1.8	11
296	The best of both worlds: mastering nerve regeneration combining biological and nanotechnological tools. Neural Regeneration Research, 2023, 18, 556.	1.6	0
297	Mesenchymal Stem Cells Therapy in critical COVID-19 patient: a case report. , 2022, 3, 7-16.		0
298	Review of the Published Literature Confirms the Safety of Intravenous Infusion of Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2023, 18, 779-786.	0.6	1
299	Challenges in Mesenchymal Stromal Cell-based Therapies. Current Stem Cell Research and Therapy, 2023, 18, 937-946.	0.6	0
300	Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. Journal of Inflammation Research, 0, Volume 15, 5235-5246.	1.6	3

#	Article	IF	CITATIONS
301	Lung organoids: current strategies for generation and transplantation. Cell and Tissue Research, 2022, 390, 317-333.	1.5	6
302	Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines, 2022, 10, 2448.	1.4	2
303	The Effectiveness of Mesenchymal Stem Cell Therapy on COVID-19 Patients at Intensive Care Unit: Case Control Study. Turkish Journal of Haematology, 0, , .	0.2	0
304	Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Military Medical Research, 2022, 9, .	1.9	59
305	Immunomodulation by placenta-derived decidua stromal cells. Role of histocompatibility, accessory cells and freeze–thawing. Cytotherapy, 2023, 25, 68-75.	0.3	2
306	A Comprehensive Review on the Efficacy of Several Pharmacologic Agents for the Treatment of COVID-19. Life, 2022, 12, 1758.	1.1	9
307	Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Frontiers in Immunology, 0, 13, .	2.2	5
308	Pooled evidence from preclinical and clinical studies for stem cell-based therapy in ARDS and COVID-19. Molecular and Cellular Biochemistry, 0, , .	1.4	2
309	Synovial Fluid Derived from Human Knee Osteoarthritis Increases the Viability of Human Adipose-Derived Stem Cells through Upregulation of FOSL1. Cells, 2023, 12, 330.	1.8	1
310	The safety and efficacy of mesenchymal stromal cells in ARDS: a meta-analysis of randomized controlled trials. Critical Care, 2023, 27, .	2.5	13
311	Key Role of Mesenchymal Stromal Cell Interaction with Macrophages in Promoting Repair of Lung Injury. International Journal of Molecular Sciences, 2023, 24, 3376.	1.8	12
312	Challenges in ARDS Definition, Management, and Identification of Effective Personalized Therapies. Journal of Clinical Medicine, 2023, 12, 1381.	1.0	9
313	Cell transplantation for COVID-19 treatment: transmission of stem stomal (mesenchimal) cells. Genes and Cells, 2020, 15, 10-19.	0.2	1
314	Current status in cellular-based therapies for prevention and treatment of COVID-19. Critical Reviews in Clinical Laboratory Sciences, 0, , 1-25.	2.7	0
315	Menstrual Blood-Derived Mesenchymal Stem Cell Therapy for Severe COVID-19 Patients. Current Stem Cell Research and Therapy, 2024, 19, 644-652.	0.6	2
326	Management of Acute Respiratory Distress Syndrome. , 2023, , 1-21.		0
328	Emerging role and therapeutic application of mesenchymal stem cell (MSC) and MSC-derived exosome in Coronavirus disease-2019 (COVID-19) infection. , 0, , .		0
332	MSC-Based Cell Therapy for COVID-19-Associated ARDS and Classical ARDS: Comparative Perspectives. Current Stem Cell Reports, 0, , .	0.7	0

#	Article	IF	CITATIONS
336	Immunomodulatory therapeutic potential of mesenchymal stem cells in COVID-19 pathogenesis. , 2024, , 343-352.		0
337	Mesenchymal stromal cells (MSCs) as a therapeutic agent of inflammatory disease and infectious COVID-19 virus: live or dead mesenchymal?. Molecular Biology Reports, 2024, 51, .	1.0	0