Molybdenum phosphide as an efficient electrocatalyst f

Energy and Environmental Science 7, 2624-2629 DOI: 10.1039/c4ee00957f

Citation Report

#	Article	IF	CITATIONS
33	Molybdenum Phosphosulfide: An Active, Acid‣table, Earthâ€Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 14433-14437.	7.2	908
34	Self-Supported FeP Nanorod Arrays: A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity. ACS Catalysis, 2014, 4, 4065-4069.	5.5	419
35	Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. Journal of Materials Chemistry A, 2014, 2, 17435-17445.	5.2	325
36	CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. Journal of Physical Chemistry C, 2014, 118, 29294-29300.	1.5	216
37	Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 18593-18599.	5.2	109
38	CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 14634.	5.2	227
39	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie - International Edition, 2014, 53, 12855-12859.	7.2	816
40	Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chemical Communications, 2014, 50, 11026.	2.2	264
41	Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano, 2014, 8, 11101-11107.	7.3	429
42	FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chemical Communications, 2014, 50, 11554-11557.	2.2	187
43	Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy and Environmental Science, 2014, 7, 3519-3542.	15.6	1,151
44	Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. Journal of Materials Chemistry A, 2014, 2, 14812-14816.	5.2	147
45	Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy, 2014, 9, 373-382.	8.2	478
46	Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer. Chemistry of Materials, 2014, 26, 5190-5193.	3.2	178
47	Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2014, 26, 4826-4831.	3.2	379
48	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie, 2014, 126, 13069-13073.	1.6	168
49	Construction of Efficient 3D Gas Evolution Electrocatalyst for Hydrogen Evolution: Porous FeP Nanowire Arrays on Graphene Sheets. Advanced Science, 2015, 2, 1500120.	5.6	163
50	Operando Synthesis of a Dendritic and Wellâ€Crystallized Molybdenum Oxide/Silver Catalyst for Enhanced Activity in the Hydrogen Evolution Reaction. ChemCatChem, 2015, 7, 2517-2525.	1.8	5

#	Article	IF	CITATIONS
51	Hierarchical Transitionâ€Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7426-7431.	11.1	123
52	The Synthesis of Nanostructured Ni ₅ P ₄ Films and their Use as a Nonâ€Noble Bifunctional Electrocatalyst for Full Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 12361-12365.	7.2	751
53	Defectâ€Rich CoP/Nitrogenâ€Doped Carbon Composites Derived from a Metal–Organic Framework: Highâ€Performance Electrocatalysts for the Hydrogen Evolution Reaction. ChemCatChem, 2015, 7, 1920-1925.	1.8	88
54	A Review of Phosphideâ€Based Materials for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2015, 5, 1500985.	10.2	707
55	One‣tep Synthesis of Self‣upported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie - International Edition, 2015, 54, 8188-8192.	7.2	494
56	Metalâ€Phosphideâ€Containing Porous Carbons Derived from an Ionicâ€Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting. Advanced Functional Materials, 2015, 25, 3899-3906.	7.8	176
57	When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. Advanced Materials, 2015, 27, 4752-4759.	11.1	705
58	The Synthesis of Nanostructured Ni ₅ P ₄ Films and their Use as a Nonâ€Noble Bifunctional Electrocatalyst for Full Water Splitting. Angewandte Chemie, 2015, 127, 12538-12542.	1.6	240
59	One‣tep Synthesis of Self‣upported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie, 2015, 127, 8306-8310.	1.6	86
60	Porous one-dimensional Mo ₂ C–amorphous carbon composites: high-efficient and durable electrocatalysts for hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 16609-16614.	1.3	52
61	In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis, 2015, 5, 4066-4074.	5.5	420
62	Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 14942-14962.	5.2	1,061
63	Simultaneous Control of Composition, Size, and Morphology in Discrete Ni _{2–<i>x</i>} Co _{<i>x</i>} P Nanoparticles. Chemistry of Materials, 2015, 27, 4349-4357.	3.2	64
64	Highly Active Catalyst of Two-Dimensional CoS2/Graphene Nanocomposites for Hydrogen Evolution Reaction. Nanoscale Research Letters, 2015, 10, 488.	3.1	29
65	Tungsten diphosphide nanorods as an efficient catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2015, 278, 540-545.	4.0	82
66	Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 6096-6101.	5.2	161
67	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	18.7	4,323
68	A novel synthetic route to transition metal phosphide nanoparticles. Dalton Transactions, 2015, 44, 5503-5509.	1.6	22

#	Article	IF	CITATIONS
69	Novel peapod array of Ni ₂ P@graphitized carbon fiber composites growing on Ti substrate: a superior material for Li-ion batteries and the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 5434-5441.	5.2	69
70	Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 1520-1526.	7.8	325
71	Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction. Nanoscale, 2015, 7, 4400-4405.	2.8	83
72	Molybdenum carbide nanocrystal embedded N-doped carbon nanotubes as electrocatalysts for hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 5783-5788.	5.2	198
73	CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 5337-5343.	5.2	181
74	Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting. RSC Advances, 2015, 5, 10290-10295.	1.7	117
75	Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. Journal of Materials Chemistry A, 2015, 3, 4368-4373.	5.2	100
76	Nanocrystalline Ni ₅ P ₄ : a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy and Environmental Science, 2015, 8, 1027-1034.	15.6	435
77	Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction. Nanoscale, 2015, 7, 3130-3136.	2.8	133
78	Highly branched cobalt phosphide nanostructures for hydrogen-evolution electrocatalysis. Journal of Materials Chemistry A, 2015, 3, 5420-5425.	5.2	116
79	Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni ₂ P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2015, 51, 6738-6741.	2.2	149
80	Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. Journal of Power Sources, 2015, 297, 45-52.	4.0	155
81	Decoration of Micro-/Nanoscale Noble Metal Particles on 3D Porous Nickel Using Electrodeposition Technique as Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte. ACS Applied Materials & Interfaces, 2015, 7, 15716-15725.	4.0	53
82	Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16320-16326.	5.2	100
83	3D arrays of molybdenum sulphide nanosheets on Mo meshes: Efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2015, 174, 653-659.	2.6	33
84	MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. Journal of Materials Chemistry A, 2015, 3, 16941-16947.	5.2	211
85	Ultrastable Polymolybdate-Based Metal–Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water. Journal of the American Chemical Society, 2015, 137, 7169-7177.	6.6	584
86	Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 13087-13094.	5.2	218

#	Article	IF	CITATIONS
87	Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n ⁺ p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H ₂ (g). Journal of Physical Chemistry Letters, 2015, 6, 1679-1683.	2.1	60
88	Nanostructured nickel phosphide supported on carbon nanospheres: Synthesis and application as an efficient electrocatalyst for hydrogen evolution. Journal of Power Sources, 2015, 285, 169-177.	4.0	131
89	Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44, 5148-5180.	18.7	4,776
90	Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. Journal of Materials Chemistry A, 2015, 3, 13533-13539.	5.2	116
91	Iron-Doped Molybdenum Carbide Catalyst with High Activity and Stability for the Hydrogen Evolution Reaction. Chemistry of Materials, 2015, 27, 4281-4288.	3.2	237
92	Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. Nano Energy, 2015, 15, 335-342.	8.2	81
93	Nanostructured Co ₂ P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP. Chemistry of Materials, 2015, 27, 3769-3774.	3.2	450
94	Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chemistry, 2015, 17, 2764-2768.	4.6	64
95	Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 8083-8087.	4.0	180
96	Alternative synthesis of cobalt monophosphide@C core–shell nanocables for electrochemical hydrogen production. Journal of Power Sources, 2015, 286, 464-469.	4.0	54
97	Gold aerogel supported on graphitic carbon nitride: an efficient electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 23120-23135.	5.2	57
98	MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction. RSC Advances, 2015, 5, 90265-90271.	1.7	61
99	Novel synthesis of dispersed molybdenum and nickel phosphides from thermal carbonization of metal- and phosphorus-containing resins. Dalton Transactions, 2015, 44, 19383-19391.	1.6	20
100	Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 2015, 6, 8668.	5.8	1,356
101	Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano Letters, 2015, 15, 7704-7710.	4.5	233
102	Ni ₁₂ P ₅ nanoparticles decorated on carbon nanotubes with enhanced electrocatalytic and lithium storage properties. Nanoscale, 2015, 7, 19241-19249.	2.8	64
103	Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nature Materials, 2015, 14, 1245-1251.	13.3	1,162
104	Nanosized LiNi1â^'xFexPO4 embedded in a mesoporous carbon matrix for high-performance electrochemical water splitting. Chemical Communications, 2015, 51, 15815-15818.	2.2	9

#	Article	IF	CITATIONS
105	Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy and Environmental Science, 2015, 8, 3022-3029.	15.6	851
106	CO ₂ Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO ₂ Reduction. Chemical Reviews, 2015, 115, 12936-12973.	23.0	1,244
107	Porous CoP concave polyhedron electrocatalysts synthesized from metal–organic frameworks with enhanced electrochemical properties for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 21471-21477.	5.2	185
108	High-Performance Electrocatalysis for Hydrogen Evolution Reaction Using Se-Doped Pyrite-Phase Nickel Diphosphide Nanostructures. ACS Catalysis, 2015, 5, 6355-6361.	5.5	258
109	Co-Doped MoS ₂ Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 27242-27253.	4.0	422
110	Unique Fe ₂ P Nanoparticles Enveloped in Sandwichlike Graphited Carbon Sheets as Excellent Hydrogen Evolution Reaction Catalyst and Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2015, 7, 26684-26690.	4.0	101
111	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	3.2	233
112	Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 2015, 3, 2485-2534.	5.2	1,609
113	High-Efficiency Electrochemical Hydrogen Evolution Catalyzed by Tungsten Phosphide Submicroparticles. ACS Catalysis, 2015, 5, 145-149.	5.5	231
114	Molybdenum phosphide-graphite nanomaterials for efficient electrocatalytic hydrogen production. Applied Catalysis A: General, 2015, 490, 101-107.	2.2	31
115	Synthesis of FeP ₂ /C nanohybrids and their performance for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 499-503.	5.2	91
116	Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 1656-1665.	5.2	549
117	Electrocatalytic H ₂ production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7, 2306-2316.	2.8	158
118	What Can We Learn in Electrocatalysis, from Nanoparticulated Precious and/or Non-Precious Catalytic Centers Interacting with Their Support?. Catalysts, 2016, 6, 145.	1.6	17
119	Synthesis of MoP decorated carbon cloth as a binder-free electrode for hydrogen evolution. RSC Advances, 2016, 6, 68568-68573.	1.7	29
120	Phaseâ€Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium. Advanced Materials, 2016, 28, 7527-7532.	11.1	307
121	Monodisperse Ternary NiCoP Nanostructures as a Bifunctional Electrocatalyst for Both Hydrogen and Oxygen Evolution Reactions with Excellent Performance. Advanced Materials Interfaces, 2016, 3, 1500454.	1.9	132
122	Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2016, 26, 4067-4077.	7.8	591

#	Article	IF	CITATIONS
123	Two-Dimensional, Few-Layer Phosphochalcogenide, FePS ₃ : A New Catalyst for Electrochemical Hydrogen Evolution over Wide pH Range. ACS Energy Letters, 2016, 1, 367-372.	8.8	178
124	Chalcogenide and Phosphide Solid‣tate Electrocatalysts for Hydrogen Generation. ChemPlusChem, 2016, 81, 1045-1055.	1.3	74
125	High-efficiency hydrogen evolution reaction catalyzed by iron phosphide nanocrystals. RSC Advances, 2016, 6, 114430-114435.	1.7	16
126	Seed-mediated superior organometal halide films by GeO ₂ nano-particles for high performance perovskite solar cells. Applied Physics Letters, 2016, 108, 053301.	1.5	58
127	Ultrafine Pt Nanoclusters Confined in a Calixarene-Based {Ni ₂₄ } Coordination Cage for High-Efficient Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 16236-16239.	6.6	172
128	One-Step Synthesis of a Self-Supported Copper Phosphide Nanobush for Overall Water Splitting. ACS Omega, 2016, 1, 1367-1373.	1.6	113
129	Surface Roughening of Nickel Cobalt Phosphide Nanowire Arrays/Ni Foam for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces, 2016, 8, 34270-34279.	4.0	116
130	Semimetallic MoP ₂ : an active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale, 2016, 8, 8500-8504.	2.8	155
131	General Models for the Electrochemical Hydrogen Oxidation and Hydrogen Evolution Reactions: Theoretical Derivation and Experimental Results under Near Mass-Transport Free Conditions. Journal of Physical Chemistry C, 2016, 120, 10721-10745.	1.5	136
132	Novel Fe ₂ P/graphitized carbon yolk/shell octahedra for high-efficiency hydrogen production and lithium storage. Journal of Materials Chemistry A, 2016, 4, 9923-9930.	5.2	45
133	Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting. Electrochimica Acta, 2016, 208, 180-187.	2.6	99
134	Highly stable hollow bifunctional cobalt sulfides for flexible supercapacitors and hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 9014-9018.	5.2	85
135	Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range. Applied Catalysis B: Environmental, 2016, 196, 193-198.	10.8	189
136	Controllable synthesis of three dimensional electrodeposited Co–P nanosphere arrays as efficient electrocatalysts for overall water splitting. RSC Advances, 2016, 6, 52761-52771.	1.7	51
137	An efficient WSe ₂ /Co _{0.85} Se/graphene hybrid catalyst for electrochemical hydrogen evolution reaction. RSC Advances, 2016, 6, 51725-51731.	1.7	51
138	CoP ₂ nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry A, 2016, 4, 4686-4690.	5.2	242
139	Template-directed approach to two-dimensional molybdenum phosphide–carbon nanocomposites with high catalytic activities in the hydrogen evolution reaction. New Journal of Chemistry, 2016, 40, 6015-6021.	1.4	25
140	Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. ACS Applied Materials & Interfaces, 2016, 8, 10826-10834.	4.0	205

#	Article	IF	CITATIONS
141	Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts. Journal of Materials Chemistry A, 2016, 4, 7674-7682.	5.2	55
142	Building layered NixCo2x(OH)6x nanosheets decorated three-dimensional Ni frameworks for electrochemical applications. Journal of Power Sources, 2016, 317, 1-9.	4.0	94
143	A self-standing nanoporous MoP ₂ nanosheet array: an advanced pH-universal catalytic electrode for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 7169-7173.	5.2	204
144	A highly active hydrogen evolution electrocatalyst based on a cobalt–nickel sulfide composite electrode. Journal of Materials Chemistry A, 2016, 4, 9744-9749.	5.2	55
145	Hierarchical MoS ₂ @MoP core–shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range. Nanoscale, 2016, 8, 11052-11059.	2.8	160
146	Ditungsten carbide nanoparticles encapsulated by ultrathin graphitic layers with excellent hydrogen-evolution electrocatalytic properties. Journal of Materials Chemistry A, 2016, 4, 8204-8210.	5.2	57
147	Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 2016, 24, 139-147.	8.2	282
148	Co-, N-, and S-Tridoped Carbon Derived from Nitrogen- and Sulfur-Enriched Polymer and Cobalt Salt for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 13341-13347.	4.0	44
149	Electrocatalysts for hydrogen oxidation and evolution reactions. Science China Materials, 2016, 59, 217-238.	3.5	142
150	Decorating mesoporous silicon with amorphous metal–phosphorous-derived nanocatalysts towards enhanced photoelectrochemical water reduction. Journal of Materials Chemistry A, 2016, 4, 14960-14967.	5.2	16
151	Kohlenstoffbasierte Metallfreie Katalysatoren für die Elektrokatalyse jenseits der ORR. Angewandte Chemie, 2016, 128, 11910-11933.	1.6	58
152	Electrospun carbon nanofiber@CoS ₂ core/sheath hybrid as an efficient all-pH hydrogen evolution electrocatalyst. Inorganic Chemistry Frontiers, 2016, 3, 1280-1288.	3.0	37
153	Graphene Loading Molybdenum Carbide/Oxide Hybrids as Advanced Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 21246-21250.	3.8	30
154	Ni ₂ P–CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 16992-16999.	5.2	148
155	MoS ₂ Nanosheet Loaded with TiO ₂ Nanoparticles: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H1087-H1090.	1.3	23
156	Self-supported porous Ni-Fe-P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochimica Acta, 2016, 219, 194-203.	2.6	97
157	Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Power Sources, 2016, 333, 213-236.	4.0	390
158	Hydrogen evolution reaction efficiency by low loading of platinum nanoparticles protected by dendrimers on carbon materials. Electrochemistry Communications, 2016, 72, 135-139.	2.3	60

#	Article	IF	CITATIONS
159	Mechanistic Insights on Ternary Ni _{2â^'} <i>_x</i> Co <i>_x</i> P for Hydrogen Evolution and Their Hybrids with Graphene as Highly Efficient and Robust Catalysts for Overall Water Splitting. Advanced Functional Materials, 2016, 26, 6785-6796.	7.8	500
160	Facile synthesis of hollow carbon microspheres embedded with molybdenum carbide nanoparticles as an efficient electrocatalyst for hydrogen generation. RSC Advances, 2016, 6, 75870-75874.	1.7	26
161	Synthesis and catalytic activity of the metastable phase of gold phosphide. Journal of Solid State Chemistry, 2016, 242, 182-192.	1.4	10
162	Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction. Chemistry of Materials, 2016, 28, 6017-6044.	3.2	519
163	Integrating Perovskite Photovoltaics and Noble-Metal-Free Catalysts toward Efficient Solar Energy Conversion and H ₂ S Splitting. ACS Catalysis, 2016, 6, 6198-6206.	5.5	40
164	Ultra-small nickel phosphide nanoparticles as a high-performance electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 74895-74902.	1.7	12
165	Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2016, 215, 223-230.	2.6	68
166	3D structured porous CoP ₃ nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. Journal of Materials Chemistry A, 2016, 4, 14539-14544.	5.2	131
167	A RhNiP/rGO hybrid for efficient catalytic hydrogen generation from an alkaline solution of hydrazine. Journal of Materials Chemistry A, 2016, 4, 14572-14576.	5.2	36
168	Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Advances, 2016, 6, 87188-87212.	1.7	58
169	Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2016, 328, 551-557.	4.0	88
170	Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 14675-14686.	5.2	146
171	CoP for hydrogen evolution: implications from hydrogen adsorption. Physical Chemistry Chemical Physics, 2016, 18, 23864-23871.	1.3	84
172	Self-Stable WP/C Support with Excellent Cocatalytic Functionality for Pt: Enhanced Catalytic Activity and Durability for Methanol Electro-Oxidation. ACS Applied Materials & amp; Interfaces, 2016, 8, 33572-33582.	4.0	51
173	Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. ACS Nano, 2016, 10, 8738-8745.	7.3	376
174	From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000Âh water splitting. Journal of Power Sources, 2016, 330, 156-166.	4.0	190
175	Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. Nanoscale, 2016, 8, 17256-17261.	2.8	83
176	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalysis beyond the ORR. Angewandte Chemie - International Edition, 2016, 55, 11736-11758.	7.2	598

#	Article	IF	CITATIONS
177	Electrochemical Activity of Iron Phosphide Nanoparticles in Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 5441-5448.	5.5	197
178	Inâ€Situ Fabrication of Tungsten Diphosphide Nanoparticles on Tungsten foil: A Hydrogenâ€Evolution Cathode for a Wide pH Range. Energy Technology, 2016, 4, 1030-1034.	1.8	11
179	One-pot, large-scale, simple synthesis of Co _x P nanocatalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 13011-13016.	5.2	59
180	Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 12854-12858.	7.2	331
181	Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution. Angewandte Chemie, 2016, 128, 13046-13050.	1.6	100
182	Facile Cu 3 P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation. Electrochimica Acta, 2016, 220, 193-204.	2.6	70
183	Nanostructured cobalt-modified molybdenum carbides electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 22899-22912.	3.8	41
184	Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Letters, 2016, 16, 7718-7725.	4.5	1,079
185	A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells. Scientific Reports, 2016, 6, 24633.	1.6	25
186	Self-supported three-dimensional mesoporous semimetallic WP ₂ nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale, 2016, 8, 19779-19786.	2.8	84
187	Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis, 2016, 6, 8069-8097.	5.5	1,936
188	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	0.8	81
189	Controlling the Morphology and Efficiency of Nanostructured Molybdenum Nitride Electrocatalysts for the Hydrogen Evolution Reaction. ChemCatChem, 2016, 8, 1218-1225.	1.8	67
190	Highâ€Performance Hydrogen Evolution from MoS _{2(1–<i>x</i>)} P <i>_x</i> Solid Solution. Advanced Materials, 2016, 28, 1427-1432.	11.1	309
191	A Cuâ€Based Nanoparticulate Film as Superâ€Active and Robust Catalyst Surpasses Pt for Electrochemical H ₂ Production from Neutral and Weak Acidic Aqueous Solutions. Advanced Energy Materials, 2016, 6, 1502319.	10.2	36
192	Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087.	10.2	437
193	Pt Nanoparticle Anchored Molecular Self-Assemblies of DNA: An Extremely Stable and Efficient HER Electrocatalyst with Ultralow Pt Content. ACS Catalysis, 2016, 6, 4660-4672.	5.5	190
194	Ternary metal phosphide nanosheets as a highly efficient electrocatalyst for water reduction to hydrogen over a wide pH range from 0 to 14. Journal of Materials Chemistry A, 2016, 4, 10195-10202.	5.2	117

#	Article	IF	CITATIONS
195	Polymer-Embedded Fabrication of Co ₂ P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation. Nano Letters, 2016, 16, 4691-4698.	4.5	306
196	The Fe-promoted MoP catalyst with high activity for water splitting. Applied Catalysis A: General, 2016, 524, 134-138.	2.2	58
197	Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy, 2016, 26, 603-609.	8.2	120
198	A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots. Nanoscale, 2016, 8, 14438-14447.	2.8	77
199	Universal Strategy to Fabricate a Two-Dimensional Layered Mesoporous Mo ₂ C Electrocatalyst Hybridized on Graphene Sheets with High Activity and Durability for Hydrogen Generation. ACS Applied Materials & Interfaces, 2016, 8, 18107-18118.	4.0	71
200	Molybdenum Polysulfide Anchored on Porous Zr-Metal Organic Framework To Enhance the Performance of Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 12539-12548.	1.5	80
201	Activation Effect of Electrochemical Cycling on Gold Nanoparticles towards the Hydrogen Evolution Reaction in Sulfuric Acid. Electrochimica Acta, 2016, 209, 440-447.	2.6	32
202	Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 2016, 9, 2251-2259.	5.8	342
203	Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production. Nano Energy, 2016, 26, 496-503.	8.2	61
204	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865.	5.2	101
204 205	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 10925-10932.	5.2 5.2	101 62
204 205 206	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 10925-10932. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range. Chemical Communications, 2016, 52, 9530-9533.	5.2 5.2 2.2	101 62 102
204 205 206 207	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 10925-10932. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range. Chemical Communications, 2016, 52, 9530-9533. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541.	5.2 5.2 2.2 18.7	101 62 102 2,664
204 205 206 207 208	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 10925-10932. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range. Chemical Communications, 2016, 52, 9530-9533. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541. Few-Layer MoS ₂ <i>p</i> phosphorus Implantation. ACS Nano, 2016, 10, 2128-2137.	5.2 5.2 2.2 18.7 7.3	101 62 102 2,664 315
204 205 206 207 208	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 10925-10932. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range. Chemical Communications, 2016, 52, 9530-9533. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541. Few-Layer MoS ₂ <i>p</i> Phosphorus Implantation. ACS Nano, 2016, 10, 2128-2137. One-pot synthesis of nanosheet-assembled hierarchical MoSe ₂ /CoSe ₂ /CoSe ₂ /microcages for the enhanced performance of electrocatalytic hydrogen evolution. RSC Advances, 2016, 6, 23-30.	 5.2 5.2 2.2 18.7 7.3 1.7 	 101 62 102 2,664 315 62
204 205 206 207 208 209	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 10925-10932. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range. Chemical Communications, 2016, 52, 9530-9533. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541. Few-Layer MoS ₂ <i>p</i> p-/i>p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation. ACS Nano, 2016, 10, 2128-2137. One-pot synthesis of nanosheet-assembled hierarchical MoSe ₂ /CoSe ₂ /sub>/2/sub>/2/sub>/2/sub>/2/lib Influence of Mo/P Ratio on CoMoP nanoparticles as highly efficient HER catalysts. Applied Catalysis A: General, 2016, 511, 11-15.	 5.2 5.2 2.2 18.7 7.3 1.7 2.2 	101 62 102 2,664 315 62 66
 204 205 206 207 208 209 210 211 	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 10925-10932. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range. Chemical Communications, 2016, 52, 9530-9533. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541. Few-Layer MoS ₂ <i>><i>> One-pot synthesis of nanosheet-assembled hierarchical MoSe₂ Microcages for the enhanced performance of electrocatalytic hydrogen evolution. RSC Advances, 2016, 6, 23-30. Influence of Mo/P Ratio on CoMoP nanoparticles as highly efficient HER catalysts. Applied Catalysis A: General, 2016, 511, 11-15. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 5087-5092.</i></i>	 5.2 5.2 2.2 18.7 7.3 1.7 2.2 6.6 	 101 62 102 2,664 315 62 66 351

#	Article	IF	CITATIONS
213	Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2016, 193, 268-274.	2.6	80
214	Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy and Environmental Science, 2016, 9, 1468-1475.	15.6	437
215	Heteronanowires of MoC–Mo ₂ C as efficient electrocatalysts for hydrogen evolution reaction. Chemical Science, 2016, 7, 3399-3405.	3.7	532
216	Defect-Rich Metallic Titania (TiO _{1.23})—An Efficient Hydrogen Evolution Catalyst for Electrochemical Water Splitting. ACS Catalysis, 2016, 6, 2222-2229.	5.5	86
217	Palladium Nanoparticle–Graphitic Carbon Nitride Porous Synergistic Catalyst for Hydrogen Evolution/Oxidation Reactions over a Broad Range of pH and Correlation of Its Catalytic Activity with Measured Hydrogen Binding Energy. ACS Catalysis, 2016, 6, 1929-1941.	5.5	251
218	Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides. Dalton Transactions, 2016, 45, 1225-1232.	1.6	23
219	Design and Epitaxial Growth of MoSe ₂ –NiSe Vertical Heteronanostructures with Electronic Modulation for Enhanced Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 1838-1846.	3.2	310
220	Metallic Cobalt Encapsulated in Bamboo-Like and Nitrogen-Rich Carbonitride Nanotubes for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 6439-6448.	4.0	110
221	Nanostructured molybdenum phosphide/N,P dual-doped carbon nanotube composite as electrocatalysts for hydrogen evolution. RSC Advances, 2016, 6, 7370-7377.	1.7	30
222	Facile synthesis of palladium phosphide electrocatalysts and their activity for the hydrogen oxidation, hydrogen evolutions, oxygen reduction and formic acid oxidation reactions. Catalysis Today, 2016, 262, 48-56.	2.2	67
223	Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen. ACS Applied Materials & Interfaces, 2016, 8, 2158-2165.	4.0	486
224	Cobalt and Nitrogen Co-Doped Tungsten Carbide Catalyst for Oxygen Reduction and Hydrogen Evolution Reactions. Electrochimica Acta, 2016, 190, 1113-1123.	2.6	56
225	P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 1647-1652.	5.2	60
226	Colloidally-synthesized cobalt molybdenum nanoparticles as active and stable electrocatalysts for the hydrogen evolution reaction under alkaline conditions. Journal of Materials Chemistry A, 2016, 4, 3077-3081.	5.2	40
227	Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chemical Communications, 2016, 52, 1633-1636.	2.2	271
228	Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles. Catalysis Science and Technology, 2016, 6, 1952-1956.	2.1	72
229	Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 59-66.	5.2	95
230	Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy, 2017, 32, 470-478.	8.2	116

#	Article	IF	CITATIONS
231	Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Science Bulletin, 2017, 62, 633-644.	4.3	179
232	High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters. ACS Applied Materials & Interfaces, 2017, 9, 3785-3791.	4.0	108
233	Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media. Catalysis Science and Technology, 2017, 7, 668-676.	2.1	85
234	Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy, 2017, 32, 511-519.	8.2	143
235	In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. Small, 2017, 13, 1602873.	5.2	212
236	Preparation of NiCoP Hollow Quasi-Polyhedra and Their Electrocatalytic Properties for Hydrogen Evolution in Alkaline Solution. ACS Applied Materials & Interfaces, 2017, 9, 5982-5991.	4.0	217
237	Recent Progress in Energyâ€Ðriven Water Splitting. Advanced Science, 2017, 4, 1600337.	5.6	643
238	Novel Ni3S2@NiOOH hybrid nanostructure supported on Ni foam as high-efficient electrocatalyst for hydrogen evolution reaction. AIP Conference Proceedings, 2017, , .	0.3	1
239	Aerosol synthesis of molybdenum diselenide–reduced graphene oxide composite with empty nanovoids and enhanced hydrogen evolution reaction performances. Chemical Engineering Journal, 2017, 315, 355-363.	6.6	43
240	Ionic Liquidsâ€Based Iron Phosphide/Carbon Nanotubes Composites: High Active Electrocatalysts towards Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 1019-1024.	0.7	10
241	Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces. ACS Catalysis, 2017, 7, 2528-2534.	5.5	39
242	Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. Journal of Materials Chemistry A, 2017, 5, 5995-6012.	5.2	142
243	Regulated Synthesis of Mo Sheets and Their Derivative MoX Sheets (X: P, S, or C) as Efficient Electrocatalysts for Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 8041-8046.	4.0	43
244	Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range. Nanoscale, 2017, 9, 3555-3560.	2.8	201
245	Facile synthesis of molybdenum oxide based nanostructure toward high performances catalyst in hydrogen evolved reaction. Materials Letters, 2017, 190, 173-176.	1.3	4
246	Pt/Fe-NF electrode with high double-layer capacitance for efficient hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2017, 42, 9458-9466.	3.8	43
247	Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy and Environmental Science, 2017, 10, 788-798.	15.6	629
248	Nanoporous FeP nanorods grown on Ti plate as an enhanced binder-free hydrogen evolution cathode. Nanotechnology, 2017, 28, 105705.	1.3	19

#	Article	IF	CITATIONS
249	Translation of Ligand-Centered Hydrogen Evolution Reaction Activity and Mechanism of a Rhenium-Thiolate from Solution to Modified Electrodes: A Combined Experimental and Density Functional Theory Study. Inorganic Chemistry, 2017, 56, 2177-2187.	1.9	16
250	Tuning the hydrogen evolution activity of β-Mo ₂ C nanoparticles via control of their growth conditions. Nanoscale, 2017, 9, 3252-3260.	2.8	38
251	A Heterostructure Coupling of Exfoliated Ni–Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials, 2017, 29, 1700017.	11.1	845
252	P Dopants Triggered New Basal Plane Active Sites and Enlarged Interlayer Spacing in MoS ₂ Nanosheets toward Electrocatalytic Hydrogen Evolution. ACS Energy Letters, 2017, 2, 745-752.	8.8	304
253	Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution. Electrochimica Acta, 2017, 232, 254-261.	2.6	66
254	Strong Metal–Phosphide Interactions in Core–Shell Geometry for Enhanced Electrocatalysis. Nano Letters, 2017, 17, 2057-2063.	4.5	145
255	Self-supported rectangular CoP nanosheet arrays grown on a carbon cloth as an efficient electrocatalyst for the hydrogen evolution reaction over a variety of pH values. New Journal of Chemistry, 2017, 41, 2436-2442.	1.4	26
256	Nobleâ€Metalâ€Free Metallic Glass as a Highly Active and Stable Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4, 1601086.	1.9	60
257	Boronâ€Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 5667-5670.	1.6	50
258	Boronâ€Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 5575-5578.	7.2	259
259	Graphene Decorated with Uniform Ultrathin (CoP) <i>_x</i> –(FeP) _{1–} <i>_x</i> Nanorods: A Robust Nonâ€Nobleâ€Metal Catalyst for Hydrogen Evolution. Small, 2017, 13, 1700092.	5.2	39
260	Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090.	4.6	106
261	Well dispersed Fe ₂ N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution. Journal of Materials Research, 2017, 32, 1770-1776.	1.2	19
262	Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2017, 42, 14181-14187.	3.8	94
263	N-doped MoP nanoparticles for improved hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 14566-14571.	3.8	74
264	Nickel–Cobalt phosphide nanowires supported on Ni foam as a highly efficient catalyst for electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 14124-14132.	3.8	52
265	Component-Controlled Synthesis of Necklace-Like Hollow Ni _{<i>X</i>} Ru _{<i>y</i>} Nanoalloys as Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 17326-17336.	4.0	60
266	General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 16187-16193.	4.0	175

#	Article	IF	Citations
267	Magnetic CoPt nanoparticle-decorated ultrathin Co(OH) ₂ nanosheets: an efficient bi-functional water splitting catalyst. Catalysis Science and Technology, 2017, 7, 2486-2497.	2.1	61
268	Formation of Uniform FeP Hollow Microspheres Assembled by Nanosheets for Efficient Hydrogen Evolution Reaction. ChemElectroChem, 2017, 4, 2052-2058.	1.7	27
269	3D-hierarchical MoSe ₂ nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Materials, 2017, 4, 025092.	2.0	78
270	Interlayer expanded lamellar CoSe 2 on carbon paper as highly efficient and stable overall water splitting electrodes. Electrochimica Acta, 2017, 241, 106-115.	2.6	48
271	An interfacial engineering approach towards two-dimensional porous carbon hybrids for high performance energy storage and conversion. Journal of Materials Chemistry A, 2017, 5, 1567-1574.	5.2	22
272	Enhanced hydrogen evolution from the MoP/C hybrid by the modification of Ketjen Black. Journal of Materials Science, 2017, 52, 3337-3343.	1.7	22
273	One-Pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co ₃ S ₄ @MoS ₂ Heterostructures as Efficient Bifunctional Catalysts. Chemistry of Materials, 2017, 29, 5566-5573.	3.2	510
274	Synergistic Phase and Disorder Engineering in 1Tâ€MoSe ₂ Nanosheets for Enhanced Hydrogenâ€Evolution Reaction. Advanced Materials, 2017, 29, 1700311.	11.1	411
275	In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 18-27.	0.8	53
276	Cobalt based nanostructured alloys: Versatile high performance robust hydrogen evolution reaction electro-catalysts for electrolytic and photo-electrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42, 17049-17062.	3.8	35
277	Facile charge transport in \$\$hbox {FeN}_{mathrm{x}}/hbox {Mo}_{2}hbox {N/CNT}\$\$ FeN x / Mo 2. Journal of Chemical Sciences, 2017, 129, 989-997.	0.7	6
278	K0.4TaO2.4F0.6 Nanocubes as Highly Efficient Noble Metal-Free Electrocatalysts for Hydrogen Evolution Reaction in Acidic Media. Electrochimica Acta, 2017, 245, 193-200.	2.6	6
279	Porous Co–Mo phosphide nanotubes: an efficient electrocatalyst for hydrogen evolution. Journal of Materials Science, 2017, 52, 10406-10417.	1.7	39
280	0D/2D heterojunctions of molybdenum carbide-tungsten carbide quantum dots/N-doped graphene nanosheets as superior and durable electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 18494-18501.	5.2	39
281	Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. ACS Applied Materials & Interfaces, 2017, 9, 14013-14022.	4.0	59
282	Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide. Royal Society Open Science, 2017, 4, 161016.	1.1	16
283	Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene. ChemSusChem, 2017, 10, 2402-2407.	3.6	41
284	Hierarchical NiCo ₂ S ₄ @NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Applied Materials & Interfaces, 2017, 9, 15364-15372.	4.0	468

#	Article	IF	CITATIONS
285	Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 7564-7570.	5.2	47
286	Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution. Journal of Power Sources, 2017, 349, 138-143.	4.0	27
287	Nano-porous Mo 2 C in-situ grafted on macroporous carbon electrode as an efficient 3D hydrogen evolution cathode. Journal of Alloys and Compounds, 2017, 712, 103-110.	2.8	22
288	A highly stable non-noble metal Ni ₂ P co-catalyst for increased H ₂ generation by g-C ₃ N ₄ under visible light irradiation. Journal of Materials Chemistry A, 2017, 5, 8493-8498.	5.2	190
289	New insights into high-valence state Mo in molybdenum carbide nanobelts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 10880-10890.	3.8	29
290	Facile Synthesis of <scp>Mo₂C</scp> Nanocrystals Embedded in Nanoporous Carbon Network for Efficient Hydrogen Evolution. Chinese Journal of Chemistry, 2017, 35, 911-917.	2.6	12
291	Self-supported NiMoP ₂ nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7191-7199.	5.2	168
292	Ag ₂ S/Ag Heterostructure: A Promising Electrocatalyst for the Hydrogen Evolution Reaction. Langmuir, 2017, 33, 3178-3186.	1.6	91
293	In Situ Synthesis Strategy for Hierarchically Porous Ni ₂ P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 11642-11650.	4.0	158
294	Sulfur and Nitrogen Dual-Doped Molybdenum Phosphide Nanocrystallites as an Active and Stable Hydrogen Evolution Reaction Electrocatalyst in Acidic and Alkaline Media. ACS Catalysis, 2017, 7, 3030-3038.	5.5	210
295	Nano-structured hybrid molybdenum carbides/nitrides generated in situ for HER applications. Journal of Materials Chemistry A, 2017, 5, 7764-7768.	5.2	64
296	Phosphorus containing materials for photocatalytic hydrogen evolution. Green Chemistry, 2017, 19, 588-613.	4.6	148
297	One-pot synthesis of holey MoS2 nanostructures as efficient electrocatalysts for hydrogen evolution. Applied Surface Science, 2017, 396, 1719-1725.	3.1	17
298	Activating Basal Planes and Sâ€Terminated Edges of MoS ₂ toward More Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1604943.	7.8	131
299	Ternary NiCo ₂ P <i>_x</i> Nanowires as pHâ€Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1605502.	11.1	544
300	Porous molybdenum carbide microspheres as efficient binder-free electrocatalysts for suspended hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 6448-6454.	3.8	24
301	Self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst. Nano Research, 2017, 10, 1001-1009.	5.8	39
302	Improving the activity of Co _x P nanoparticles for the electrochemical hydrogen evolution by hydrogenation. Sustainable Energy and Fuels, 2017, 1, 62-68.	2.5	41

#	Article	IF	CITATIONS
303	Materials for solar fuels and chemicals. Nature Materials, 2017, 16, 70-81.	13.3	1,163
304	Three-dimensional metal–organic framework derived porous CoP ₃ concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen. Physical Chemistry Chemical Physics, 2017, 19, 2104-2110.	1.3	117
305	Scalable Two-Step Synthesis of Nickel–Iron Phosphide Electrodes for Stable and Efficient Electrocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2017, 121, 284-292.	1.5	31
306	Improving Hydrogen Evolution Activity of Earthâ€Abundant Cobaltâ€Doped Iron Pyrite Catalysts by Surface Modification with Phosphide. Small, 2017, 13, 1603356.	5.2	68
307	Highly efficient hydrogen evolution electrocatalysts based on coupled molybdenum phosphide and reduced graphene oxide derived from MOFs. Chemical Communications, 2017, 53, 12576-12579.	2.2	64
308	Iron-assisted engineering of molybdenum phosphide nanowires on carbon cloth for efficient hydrogen evolution in a wide pH range. Journal of Materials Chemistry A, 2017, 5, 22790-22796.	5.2	34
309	Cuboid Ni ₂ P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2017, 12, 2967-2972.	1.7	21
310	Recent advances in cobalt phosphide based materials for energy-related applications. Journal of Materials Chemistry A, 2017, 5, 22913-22932.	5.2	121
311	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
312	Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24193-24198.	5.2	154
313	Decoration of Carbon Nitride Surface with Bimetallic Nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via Galvanic Exchange for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 19548-19558.	1.5	63
314	Developing bifunctional electrocatalyst for overall water splitting using three-dimensional porous CoP3 nanospheres integrated on carbon cloth. Journal of Alloys and Compounds, 2017, 729, 203-209.	2.8	39
315	Vapour-phase hydrothermal synthesis of Ni2P nanocrystallines on carbon fiber cloth for high-efficiency H2 production and simultaneous urea decomposition. Electrochimica Acta, 2017, 254, 44-49.	2.6	62
316	Molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2017, 1, 1928-1934.	2.5	96
317	Mo2C@NC@MoSx porous nanospheres with sandwich shell based on MoO42–polymer precursor for efficient hydrogen evolution in both acidic and alkaline media. Carbon, 2017, 124, 555-564.	5.4	57
318	Well-dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2017, 5, 20932-20937.	5.2	100
319	3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production. Nanoscale, 2017, 9, 15895-15900.	2.8	45
320	Stoichiometric Control of Electrocatalytic Amorphous Nickel Phosphide to Increase Hydrogen Evolution Reaction Activity and Stability in Acidic Medium. ChemistrySelect, 2017, 2, 8020-8027.	0.7	14

#	Article	IF	CITATIONS
321	Graphene- and Phosphorene-like Boron Layers with Contrasting Activities in Highly Active Mo ₂ B ₄ for Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 12915-12918.	6.6	104
322	<i>Insitu</i> grown Ni ₉ S ₈ nanorod/O-MoS ₂ nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst. Nanotechnology, 2017, 28, 445407.	1.3	44
323	Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 26134-26142.	4.0	220
324	Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy, 2017, 40, 88-94.	8.2	128
325	Molybdenum carbides embedded on carbon nanotubes for efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2017, 801, 7-13.	1.9	23
326	Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 9, 12231-12247.	2.8	403
327	Deoxygenation of Palmitic Acid on Unsupported Transition-Metal Phosphides. ACS Catalysis, 2017, 7, 6331-6341.	5.5	83
328	CoP nanoparticles embedded in P and N co-doped carbon as efficient bifunctional electrocatalyst for water splitting. Journal of Energy Chemistry, 2017, 26, 1223-1230.	7.1	98
329	A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride. Journal of Materials Chemistry A, 2017, 5, 19025-19035.	5.2	151
330	Template-synthesis and electrochemical properties of urchin-like NiCoP electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2017, 249, 301-307.	2.6	29
331	Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries. Chemistry of Materials, 2017, 29, 7313-7322.	3.2	102
332	Assembly line synthesis of isoprene from formaldehyde and isobutene over SiO2-supported MoP catalysts with active deposited carbon. RSC Advances, 2017, 7, 37392-37401.	1.7	11
333	Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 25378-25384.	5.2	100
334	Structural and electrochemical studies of tungsten carbide/carbon composites for hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 29781-29790.	3.8	31
335	Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Transactions, 2017, 46, 16770-16773.	1.6	28
336	Highly Performance Core-Shell TiO2(B)/anatase Homojunction Nanobelts with Active Cobalt phosphide Cocatalyst for Hydrogen Production. Scientific Reports, 2017, 7, 14594.	1.6	23
337	Tuning Mixed Nickel Iron Phosphosulfide Nanosheet Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Catalysis, 2017, 7, 8549-8557.	5.5	268
338	Unique Hierarchical Mo ₂ C/C Nanosheet Hybrids as Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 41314-41322.	4.0	112

#	Article	IF	CITATIONS
339	Transition-Metal Phosphide–Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. ACS Applied Materials & Interfaces, 2017, 9, 40171-40179.	4.0	83
340	Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS ₃ by cobalt doping. Chemical Communications, 2017, 53, 8199-8202.	2.2	64
341	Tailoring catalytic activities of transition metal disulfides for water splitting. FlatChem, 2017, 4, 68-80.	2.8	24
342	Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15, 26-55.	6.2	560
343	The controllable synthesis of porous MoN nanorods/carbon for highly efficient electrochemical hydrogen evolution. Research on Chemical Intermediates, 2017, 43, 5557-5568.	1.3	3
344	A facile route for large-scale synthesis of molybdenum phosphide nanoparticles with high surface area. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 1159-1164.	0.8	5
345	Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catalysis Science and Technology, 2017, 7, 330-347.	2.1	132
346	Ternary Transitional Metal Chalcogenide Nanosheet with Significantly Enhanced Electrocatalytic Hydrogen-Evolution Activity. Catalysis Letters, 2017, 147, 215-220.	1.4	12
347	Bimetallic Cobaltâ€Based Phosphide Zeolitic Imidazolate Framework: CoP <i>_x</i> Phaseâ€Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1601555.	10.2	340
348	Advances in Transitionâ€Metal Phosphide Applications in Electrochemical Energy Storage and Catalysis. ChemElectroChem, 2017, 4, 20-34.	1.7	155
349	Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure. Advanced Energy Materials, 2017, 7, 1601285.	10.2	149
350	Wire-on-flake heterostructured ternary Co _{0.5} Ni _{0.5} P/CC: an efficient hydrogen evolution electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 982-987.	5.2	48
351	Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catalysis Today, 2017, 287, 122-129.	2.2	105
352	The Effects of CeO2 Nanorods and CeO2 Nanoflakes on Ni–S Alloys in Hydrogen Evolution Reactions in Alkaline Solutions. Catalysts, 2017, 7, 197.	1.6	9
353	Dualâ€Native Vacancy Activated Basal Plane and Conductivity of MoSe ₂ with Highâ€Efficiency Hydrogen Evolution Reaction. Small, 2018, 14, e1704150.	5.2	114
354	Molybdenum Phosphide/Carbon Nanotube Hybrids as pHâ€Universal Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2018, 28, 1706523.	7.8	185
355	Aerosol-spray metal phosphide microspheres with bifunctional electrocatalytic properties for water splitting. Journal of Materials Chemistry A, 2018, 6, 4783-4792.	5.2	53
356	Electrodeposited amorphous Co–P–B ternary catalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 6282-6288.	5.2	83

#	Article	IF	CITATIONS
357	High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and their Photocatalytic Activity. Advanced Functional Materials, 2018, 28, 1800548.	7.8	116
358	Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 6387-6392.	5.2	79
359	Nanohybrid of Carbon Quantum Dots/Molybdenum Phosphide Nanoparticle for Efficient Electrochemical Hydrogen Evolution in Alkaline Medium. ACS Applied Materials & Interfaces, 2018, 10, 9460-9467.	4.0	80
360	Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9, 924.	5.8	571
361	A nanoporous metal phosphide catalyst for bifunctional water splitting. Journal of Materials Chemistry A, 2018, 6, 5574-5579.	5.2	106
362	Iron (III) metaphosphate/iron phosphide heterojunctions embedded in partly-graphitized carbon for enhancing charge transfer and power generation in microbial fuel cells. Chemical Engineering Journal, 2018, 342, 228-237.	6.6	32
363	Cobalt Phosphide Composite Encapsulated within N,Pâ€Doped Carbon Nanotubes for Synergistic Oxygen Evolution. Small, 2018, 14, e1800367.	5.2	106
364	MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: Self-supported electrodes for efficient hydrogen generation. Nano Research, 2018, 11, 4728-4734.	5.8	59
365	Controllable Synthesis of Ruthenium Phosphides (RuP and RuP ₂) for pH-Universal Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 6388-6394.	3.2	83
366	Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium <i>in situ</i> embedded in carbon. Energy and Environmental Science, 2018, 11, 1232-1239.	15.6	230
367	Synthesis of single crystalline two-dimensional transition-metal phosphides <i>via</i> a salt-templating method. Nanoscale, 2018, 10, 6844-6849.	2.8	61
368	Laminated Hybrid Junction of Sulfurâ€Doped TiO ₂ and a Carbon Substrate Derived from Ti ₃ C ₂ MXenes: Toward Highly Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Science, 2018, 5, 1700870.	5.6	163
369	A Universal Strategy for Intimately Coupled Carbon Nanosheets/MoM Nanocrystals (M = P, S, C, and O) Hierarchical Hollow Nanospheres for Hydrogen Evolution Catalysis and Sodiumâ€Ion Storage. Advanced Materials, 2018, 30, e1706085.	11.1	147
370	A Hierarchical MoP Nanoflake Array Supported on Ni Foam: A Bifunctional Electrocatalyst for Overall Water Splitting. Small Methods, 2018, 2, 1700369.	4.6	106
371	Porous Microrod Arrays Constructed by Carbonâ€Confined NiCo@NiCoO ₂ Core@Shell Nanoparticles as Efficient Electrocatalysts for Oxygen Evolution. Advanced Materials, 2018, 30, e1705442.	11.1	366
372	Stability of CoP _{<i>x</i>} Electrocatalysts in Continuous and Interrupted Acidic Electrolysis of Water. ChemElectroChem, 2018, 5, 1230-1239.	1.7	35
373	Tandem MoP nanocrystals with rich grain boundaries for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2018, 54, 2502-2505.	2.2	30
374	Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale, 2018, 10, 4816-4824.	2.8	256

#	Article	IF	CITATIONS
375	MoP Nanoflakes as Efficient Electrocatalysts for Rechargeable Li–O ₂ Batteries. ACS Applied Energy Materials, 2018, 1, 331-335.	2.5	26
376	A Type of 1 nm Molybdenum Carbide Confined within Carbon Nanomesh as Highly Efficient Bifunctional Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705967.	7.8	78
377	Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 2018, 140, 2610-2618.	6.6	1,556
378	MoP Nanoparticles Supported on Indiumâ€Đoped Porous Carbon: Outstanding Catalysts for Highly Efficient CO ₂ Electroreduction. Angewandte Chemie, 2018, 130, 2451-2455.	1.6	42
379	MoP Nanoparticles Supported on Indiumâ€Đoped Porous Carbon: Outstanding Catalysts for Highly Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2018, 57, 2427-2431.	7.2	199
380	The Role of Active Oxide Species for Electrochemical Water Oxidation on the Surface of 3dâ€Metal Phosphides. Advanced Energy Materials, 2018, 8, 1703290.	10.2	104
381	Design of Electroactive Carbon Fibers Decorated with Metal and Metalâ€Phosphide Nanoparticles for Hydrogen Evolution Technology. Energy Technology, 2018, 6, 1310-1331.	1.8	13
382	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Science Advances, 2018, 4, eaao6657.	4.7	460
383	Clayâ€Inspired MXeneâ€Based Electrochemical Devices and Photoâ€Electrocatalyst: Stateâ€ofâ€theâ€Art Progresses and Challenges. Advanced Materials, 2018, 30, e1704561.	11.1	431
384	Nonprecious Intermetallic Al ₇ Cu ₄ Ni Nanocrystals Seamlessly Integrated in Freestanding Bimodal Nanoporous Copper for Efficient Hydrogen Evolution Catalysis. Advanced Functional Materials, 2018, 28, 1706127.	7.8	64
385	Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction. Nano Research, 2018, 11, 3537-3547.	5.8	78
386	Ultrasmall NiFe-Phosphate Nanoparticles Incorporated α-Fe ₂ O ₃ Nanoarrays Photoanode Realizing High Efficient Solar Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 2353-2361.	3.2	50
387	Biphasic nickel phosphide nanosheets: Self-supported electrocatalyst for sensitive and selective electrochemical H2O2 detection and its practical applications in blood and living cells. Sensors and Actuators B: Chemical, 2018, 258, 789-795.	4.0	19
388	2D Co ₆ Mo ₆ C Nanosheets as Robust Hydrogen Evolution Reaction Electrocatalyst. Advanced Sustainable Systems, 2018, 2, 1700136.	2.7	32
389	Nitrogen-doped carbon active sites boost the ultra-stable hydrogen evolution reaction on defect-rich MoS2 nanosheets. International Journal of Hydrogen Energy, 2018, 43, 2026-2033.	3.8	35
390	Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: From sol-gel derived powder catalysts to graphene supported co-electrodeposits. International Journal of Hydrogen Energy, 2018, 43, 16846-16858.	3.8	22
391	Few-Layer Iron Selenophosphate, FePSe ₃ : Efficient Electrocatalyst toward Water Splitting and Oxygen Reduction Reactions. ACS Applied Energy Materials, 2018, 1, 220-231.	2.5	80
392	Engineering sub-100Ânm Mo _(1â^'x) W _x Se ₂ crystals for efficient hydrogen evolution catalysis. Journal of Materials Chemistry A, 2018, 6, 2900-2907.	5.2	34

#	Article	IF	CITATIONS
393	In Situ Engineering of Double-Phase Interface in Mo/Mo ₂ C Heteronanosheets for Boosted Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 341-348.	8.8	144
394	Surface Chemistry in Cobalt Phosphide-Stabilized Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2018, 140, 1455-1459.	6.6	393
395	Molybdenum Sulphoselenophosphide Spheroids as an Effective Catalyst for Hydrogen Evolution Reaction. Small, 2018, 14, 1703862.	5.2	37
396	Self-Supported Ternary Ni–S–Se Nanorod Arrays as Highly Active Electrocatalyst for Hydrogen Generation in Both Acidic and Basic Media: Experimental Investigation and DFT Calculation. ACS Applied Materials & Interfaces, 2018, 10, 2430-2441.	4.0	83
397	Tungsten-Assisted Phase Tuning of Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 2451-2459.	4.0	33
398	Selective phosphidation: an effective strategy toward CoP/CeO ₂ interface engineering for superior alkaline hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 1985-1990.	5.2	212
399	Interweaved Nickel Phosphide Sponge as an Electrode for Flexible Supercapattery and Water Splitting Applications. ACS Applied Energy Materials, 2018, 1, 78-92.	2.5	62
400	Cost effective Mo rich Mo ₂ C electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 10028-10035.	5.2	121
401	Confined Molybdenum Phosphide in P-Doped Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 17140-17146.	4.0	173
402	Preparation of porous MoP-C microspheres without a hydrothermal process as a high capacity anode for lithium ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1432-1437.	3.0	19
403	Anchoring Ni ₂ P on the UiOâ€66â€NH ₂ /gâ€C ₃ N ₄ â€derived Câ€doped ZrO ₂ /gâ€C ₃ N ₄ Heterostructure: Highly Efficient Photocatalysts for H ₂ Production from Water Splitting. ChemCatChem, 2018, 10, 3327-3335.	1.8	49
404	Environmental Catalysis. Nanostructure Science and Technology, 2018, , 61-99.	0.1	0
405	M _X P(M = Co/Ni)@carbon core–shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction. Nanoscale, 2018, 10, 9698-9706.	2.8	58
406	Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction. Nanoscale, 2018, 10, 7619-7629.	2.8	72
407	1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Research, 2018, 11, 4587-4598.	5.8	56
408	Electrochemically active and robust cobalt doped copper phosphosulfide electro-catalysts for hydrogen evolution reaction in electrolytic and photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2018, 43, 7855-7871.	3.8	37
409	Nanostructured nickel ferrite embedded in reduced graphene oxide for electrocatalytic hydrogen evolution reaction. Materials Today Energy, 2018, 8, 118-124.	2.5	47
410	A Monodisperse Rh ₂ Pâ€Based Electrocatalyst for Highly Efficient and pHâ€Universal Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703489.	10.2	180

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
411	Two-dimensional Co3W3C nanosheets on graphene nanocomposition: An Pt-like electrocatalyst toward hydrogen evolution reaction in wide pH range. Materials Today Energy, 2018, 8, 65-72.	2.5	21
412	Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 7299-7306.	3.8	76
413	Ultrafine Molybdenum Carbide Nanocrystals Confined in Carbon Foams via a Colloidâ€Confinement Route for Efficient Hydrogen Production. Small Methods, 2018, 2, 1700396.	4.6	83
414	Template-free fabrication of hierarchical MoS 2 /MoO 2 nanostructures as efficient catalysts for hydrogen production. Applied Surface Science, 2018, 433, 723-729.	3.1	44
415	Sproutâ€like Growth of Mesoporous Mo ₂ C/NC Nanonetworks as Efficient Electrocatalysts for Hydrogen Evolution. ChemCatChem, 2018, 10, 625-631.	1.8	15
416	N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 2018, 224, 533-540.	10.8	358
417	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	16.0	195
418	Nitrogenâ€Doped Porous Molybdenum Carbide and Phosphide Hybrids on a Carbon Matrix as Highly Effective Electrocatalysts for the Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701601.	10.2	215
419	Fe2P nanoparticles as highly efficient freestanding co-catalyst for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 5337-5345.	3.8	42
420	Encapsulating Co ₂ P@C Core–Shell Nanoparticles in a Porous Carbon Sandwich as Dualâ€Đoped Electrocatalyst for Hydrogen Evolution. ChemSusChem, 2018, 11, 376-388.	3.6	45
421	A DFT based method for calculating the surface energies of asymmetric MoP facets. Applied Surface Science, 2018, 427, 357-362.	3.1	81
422	Polyoxometalate and Resinâ€Derived Pâ€Doped Mo ₂ C@Nâ€Doped Carbon as a Highly Efficient Hydrogenâ€Evolution Reaction Catalyst at All pH Values. Chemistry - an Asian Journal, 2018, 13, 158-163.	1.7	41
423	Phosphorusâ€Doped MoS ₂ Nanosheets Supported on Carbon Cloths as Efficient Hydrogenâ€Generation Electrocatalysts. ChemCatChem, 2018, 10, 1571-1577.	1.8	55
424	MoS ₂ –MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 616-622.	5.2	104
425	Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 16-23.	3.8	41
426	CoBP nanoparticles supported on three-dimensional nitrogen-doped graphene hydrogel and their superior catalysis for hydrogen generation from hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2018, 735, 1271-1276.	2.8	41
427	Polycrystalline CoP/CoP ₂ Structures for Efficient Full Water Splitting. ChemElectroChem, 2018, 5, 701-707.	1.7	90
428	High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting. Journal of Alloys and Compounds, 2018, 732, 248-256.	2.8	49

#	Article	IF	CITATIONS
429	MoB/g ₃ N ₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie, 2018, 130, 505-509.	1.6	71
430	MoB/gâ€C ₃ N ₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 496-500.	7.2	308
431	Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Advanced Science, 2018, 5, 1700464.	5.6	1,022
432	Si/Mo4O11 nanowire arrays with enhanced photoelectrochemical performance. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 55-59.	2.0	5
433	Nitrogen, phosphorus dual-doped molybdenum-carbide/molybdenum-phosphide-@-carbon nanospheres for efficient hydrogen evolution over the whole pH range. Journal of Colloid and Interface Science, 2018, 513, 151-160.	5.0	49
434	Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells. Applied Energy, 2018, 209, 56-64.	5.1	39
435	Design of naturally derived lead phytate as an electrocatalyst for highly efficient CO ₂ reduction to formic acid. Green Chemistry, 2018, 20, 4602-4606.	4.6	13
436	Boosting Alkaline Hydrogen Evolution Activity with Niâ€Doped MoS ₂ /Reduced Graphene Oxide Hybrid Aerogel. ChemSusChem, 2019, 12, 457-466.	3.6	56
437	Polyoxometalate Compound-Derived MoP-Based Electrocatalyst with N-Doped Mesoporous Carbon as Matrix, a Cathode Material for Zn–H ⁺ Battery. ACS Applied Materials & Interfaces, 2018, 10, 42320-42327.	4.0	9
438	Influence of solvent in solvothermal synthesis of Cu3SnS4: Morphology and band gap dependant electrocatalytic hydrogen evolution reaction and photocatalytic dye degradation. International Journal of Hydrogen Energy, 2018, 43, 22861-22873.	3.8	30
439	Recent developments of transition metal phosphides as catalysts in the energy conversionÂfield. Journal of Materials Chemistry A, 2018, 6, 23220-23243.	5.2	200
440	Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers. Catalysts, 2018, 8, 657.	1.6	51
441	Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Materials Today Physics, 2018, 7, 121-138.	2.9	203
442	Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale, 2018, 10, 21617-21624.	2.8	312
443	Heterointerface engineering of trilayer-shelled ultrathin MoS ₂ /MoP/N-doped carbon hollow nanobubbles for efficient hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 24783-24792.	5.2	79
444	Urchin-like MoP Nanocrystals Embedded in N-Doped Carbon as High Rate Lithium Ion Battery Anode. ACS Applied Energy Materials, 2018, 1, 7140-7145.	2.5	14
445	Phosphorized MXene-Phase Molybdenum Carbide as an Earth-Abundant Hydrogen Evolution Electrocatalyst. ACS Applied Energy Materials, 2018, 1, 7206-7212.	2.5	88
446	Air-stable phosphorus-doped molybdenum nitride for enhanced electrocatalytic hydrogen evolution. Communications Chemistry, 2018, 1, .	2.0	36

# 447	ARTICLE Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped	IF 4.5	Citations
448	Mo2C@NC nanowire bundle for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 19510-19520.	3.8	22
449	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 2018, 10, 67.	14.4	65
450	Preparation of Copper Phosphate from Naturally Occurring Phytic Acid as an Advanced Catalyst for Oxidation of Aromatic Benzyl Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 13670-13675.	3.2	24
451	Simple synthesis of two-dimensional MoP2 nanosheets for efficient electrocatalytic hydrogen evolution. Electrochemistry Communications, 2018, 97, 27-31.	2.3	9
452	Density Functional Study of Hydrogen Evolution on Cobalt-Embedded Carbon Nanotubes: Effects of Doping and Surface Curvature. ACS Applied Nano Materials, 2018, 1, 6258-6268.	2.4	34
453	Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydrideâ€Proton Isomerism, and HER Reactivity. Angewandte Chemie - International Edition, 2018, 57, 16329-16333.	7.2	16
454	Molybdenumâ€Based Carbon Hybrid Materials to Enhance the Hydrogen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 18158-18179.	1.7	46
455	Self-Assembly Precursor-Derived MoP Supported on N,P-Codoped Reduced Graphene Oxides as Efficient Catalysts for Hydrogen Evolution Reaction. Inorganic Chemistry, 2018, 57, 13859-13865.	1.9	21
456	Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydrideâ€Proton Isomerism, and HER Reactivity. Angewandte Chemie, 2018, 130, 16567-16571.	1.6	4
457	Transition Metal Phosphide As Cocatalysts for Semiconductor-Based Photocatalytic Hydrogen Evolution Reaction. Lecture Notes in Quantum Chemistry II, 2018, , 375-402.	0.3	2
458	Cobalt phosphide nanoparticles anchored on molybdenum selenide nanosheets as high-performance electrocatalysts for water reduction. International Journal of Hydrogen Energy, 2018, 43, 20346-20353.	3.8	9
459	Room-Temperature Preparation of Cobalt-Based Electrocatalysts through Simple Solution Treatment for Selectively High-Efficiency Hydrogen Evolution Reaction in Alkaline or Acidic Medium. Journal of Nanomaterials, 2018, 2018, 1-9.	1.5	2
460	Coâ€Moâ€₽ Based Electrocatalyst for Superior Reactivity in the Alkaline Hydrogen Evolution Reaction. ChemCatChem, 2018, 10, 4832-4837.	1.8	33
461	Mosaicâ€Structured Cobalt Nickel Thiophosphate Nanosheets Incorporated Nâ€doped Carbon for Efficient and Stable Electrocatalytic Water Splitting. Advanced Functional Materials, 2018, 28, 1805075.	7.8	57
462	Highly Efficient, Biocharâ€Derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst. Advanced Energy Materials, 2018, 8, 1801461.	10.2	75
463	Facile Electrodeposition of Ni–Cu–P Dendrite Nanotube Films with Enhanced Hydrogen Evolution Reaction Activity and Durability. ACS Applied Materials & Interfaces, 2018, 10, 35224-35233.	4.0	74
464	General Construction of Molybdenumâ€Based Nanowire Arrays for pHâ€Universal Hydrogen Evolution Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804600.	7.8	134

#	Article	IF	CITATIONS
465	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie, 2018, 130, 14335-14339.	1.6	58
466	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14139-14143.	7.2	70
467	Molybdenumâ€Based Coâ€catalysts in Photocatalytic Hydrogen Production: Categories, Structures, and Roles. ChemSusChem, 2018, 11, 3871-3881.	3.6	34
468	Well-Defined Mo ₂ C Nanoparticles Embedded in Porous N-Doped Carbon Matrix for Highly Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 33276-33286.	4.0	67
469	Molybdenum carbide nanoparticle decorated hierarchical tubular carbon superstructures with vertical nanosheet arrays for efficient hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 18833-18838.	5.2	18
470	Theoretical investigation of platinum-like catalysts of molybdenum carbides for hydrogen evolution reaction. Solid State Communications, 2018, 284-286, 25-30.	0.9	11
471	Earthâ€Abundant Transitionâ€Metalâ€Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen. Chemistry - A European Journal, 2018, 24, 18334-18355.	1.7	203
472	Few Layered N, P Dualâ€Doped Carbonâ€Encapsulated Ultrafine MoP Nanocrystal/MoP Cluster Hybrids on Carbon Cloth: An Ultrahigh Active and Durable 3D Selfâ€Supported Integrated Electrode for Hydrogen Evolution Reaction in a Wide pH Range. Advanced Functional Materials, 2018, 28, 1801527.	7.8	142
473	Structure and Electrocatalytic Reactivity of Cobalt Phosphosulfide Nanomaterials. Topics in Catalysis, 2018, 61, 958-964.	1.3	18
474	Crystallinity Dependence of Ruthenium Nanocatalyst toward Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 5714-5720.	5.5	162
475	Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for water splitting. Nature Communications, 2018, 9, 2014.	5.8	126
476	Hierarchical CoP/Ni ₅ P ₄ /CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy and Environmental Science, 2018, 11, 2246-2252.	15.6	306
477	Precious metal free Ni/Cu/Mo trimetallic nanocomposite supported on multi-walled carbon nanotubes as highly efficient and durable anode-catalyst for alkaline direct methanol fuel cells. Journal of Electroanalytical Chemistry, 2018, 823, 98-105.	1.9	22
478	New Insight into the Mechanism of the Hydrogen Evolution Reaction on MoP(001) from First Principles. ACS Applied Materials & Interfaces, 2018, 10, 20429-20439.	4.0	67
479	Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media. Electrochimica Acta, 2018, 281, 540-548.	2.6	44
480	Multiscale porous molybdenum phosphide of honeycomb structure for highly efficient hydrogen evolution. Nanoscale, 2018, 10, 14594-14599.	2.8	42
481	Carbonâ€∓ailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media. Advanced Energy Materials, 2018, 8, 1801258.	10.2	111
482	Skutterudite-Type Ternary Co _{1–<i>x</i>} Ni _{<i>x</i>} P ₃ Nanoneedle Array Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Energy Letters, 2018, 3, 1744-1752.	8.8	160

#	Article	IF	CITATIONS
483	Ultrafine molybdenum phosphide nanocrystals on a highly porous N,P-codoped carbon matrix as an efficient catalyst for the hydrogen evolution reaction. Materials Chemistry Frontiers, 2018, 2, 1987-1996.	3.2	36
484	Pomegranate-like molybdenum phosphide@phosphorus-doped carbon nanospheres coupled with carbon nanotubes for efficient hydrogen evolution reaction. Carbon, 2018, 139, 234-240.	5.4	55
485	Reduced Graphene Oxide-Supported MoP@P-Doped Porous Carbon Nano-octahedrons as High-Performance Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 10252-10259.	3.2	42
486	Convenient one step synthesis of molybdenum carbide embedded N-doped carbon nanolayer hybrid architecture using cheap cotton as precursor for efficient hydrogen evolution. Journal of Electroanalytical Chemistry, 2018, 824, 207-215.	1.9	4
487	Cobalt and nitrogen-codoped ordered mesoporous carbon as highly efficient bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 17067-17074.	5.2	41
488	VS ₂ : an efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalton Transactions, 2018, 47, 13792-13799.	1.6	49
489	Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochemical Energy Reviews, 2018, 1, 483-530.	13.1	285
490	Mn doped CoP nanoparticle clusters: an efficient electrocatalyst for hydrogen evolution reaction. Catalysis Science and Technology, 2018, 8, 4407-4412.	2.1	68
491	A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution. Frontiers of Chemical Science and Engineering, 2018, 12, 425-432.	2.3	9
492	Electronic structure tuning during facile construction of two-phase tungsten based electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 283, 834-841.	2.6	16
493	Electrocatalytic H2 Evolution of Bis(3,5-di-methylpyrazol-1-yl)acetate Anchored Hexa-coordinated Co(II) Derivative. Catalysis Letters, 2018, 148, 2703-2708.	1.4	1
494	Structural Diversity and Electronic Properties of 3d Transition Metal Tetraphosphides, TMP ₄ (TM = V, Cr, Mn, and Fe). Inorganic Chemistry, 2018, 57, 9385-9392.	1.9	21
495	Nitrogen-doped flexible carbon cloth for durable metal free electrocatalyst for overall water splitting. Surface and Coatings Technology, 2018, 347, 407-413.	2.2	29
496	In Situ Synthesis of MoP Nanoflakes Intercalated Nâ€Doped Graphene Nanobelts from MoO ₃ –Amine Hybrid for Highâ€Efficient Hydrogen Evolution Reaction. Small, 2018, 14, e1800667.	5.2	85
497	Electrodeposited molybdenum sulfide as a cathode for proton exchange membrane water electrolyzer. Journal of Power Sources, 2018, 392, 69-78.	4.0	37
498	<i>In situ</i> synthesis of molybdenum carbide/N-doped carbon hybrids as an efficient hydrogen-evolution electrocatalyst. RSC Advances, 2018, 8, 17202-17208.	1.7	34
499	Surface engineering-modulated porous N-doped rod-like molybdenum phosphide catalysts: towards high activity and stability for hydrogen evolution reaction over a wide pH range. RSC Advances, 2018, 8, 26871-26879.	1.7	20
500	Highly Dispersed Platinum on Honeycomb-like NiO@Ni Film as a Synergistic Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 8866-8872.	5.5	141

#	Article	IF	Citations
501	Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy, 2018, 53, 492-500.	8.2	216
502	Rationally Dispersed Molybdenum Phosphide on Carbon Nanotubes for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11414-11423.	3.2	46
503	Bigger is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1800047.	11.1	212
504	Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale, 2018, 10, 11241-11280.	2.8	258
505	Facile synthesis of Tungsten Phosphide/Ketjen Black Hybrid Electrocatalyst for Hydrogen Production. Materials Research Express, 2018, 5, 065509.	0.8	5
506	Ultrafine MoP Nanoparticles Well Embedded in Carbon Nanosheets as Electrocatalyst with High Active Site Density for Hydrogen Evolution. ChemElectroChem, 2018, 5, 2256-2262.	1.7	23
507	Electrochemical Formation of Amorphous Molybdenum Phosphosulfide for Enabling the Hydrogen Evolution Reaction in Alkaline and Acidic Media. ACS Applied Energy Materials, 2018, 1, 2849-2858.	2.5	18
508	Fabrication of Core–Sheath NiCoP@FeP _{<i>x</i>} Nanoarrays for Efficient Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8847-8855.	3.2	23
509	In-Situ Formed Hydroxide Accelerating Water Dissociation Kinetics on Co ₃ N for Hydrogen Production in Alkaline Solution. ACS Applied Materials & Interfaces, 2018, 10, 22102-22109.	4.0	54
510	In Situ Hydrothermal Synthesis MoS ₂ /Guar Gum Carbon Nanoflowers as Advanced Electrocatalysts for Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8688-8696.	3.2	34
511	Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes. Nano Energy, 2018, 51, 223-230.	8.2	79
512	DFT Study on the Hydrogen Evolution Reaction for Different Facets of Co ₂ P. ChemElectroChem, 2019, 6, 260-267.	1.7	42
513	Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355, 602-623.	6.6	197
514	Electrocatalytic Hydrogen Evolution in Neutral pH Solutions: Dual-Phase Synergy. ACS Catalysis, 2019, 9, 8712-8718.	5.5	103
515	Metal Oxides/Chalcogenides and Composites. SpringerBriefs in Materials, 2019, , .	0.1	16
516	Hydrogen and oxygen evolution reactions of molybdenum disulfide synthesized by hydrothermal and plasma method. Journal of Electroanalytical Chemistry, 2019, 849, 113383.	1.9	27
517	Electroactive Materials. SpringerBriefs in Materials, 2019, , 31-67.	0.1	0
518	A wood-derived hierarchically porous monolithic carbon matrix embedded with Co nanoparticles as an advanced electrocatalyst for water splitting. Sustainable Energy and Fuels, 2019, 3, 2753-2762.	2.5	25

#	Article	IF	CITATIONS
519	Compactly Coupled Nitrogenâ€Doped Carbon Nanosheets/Molybdenum Phosphide Nanocrystal Hollow Nanospheres as Polysulfide Reservoirs for Highâ€Performance Lithium–Sulfur Chemistry. Small, 2019, 15, e1902491.	5.2	74
520	A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting. Applied Catalysis B: Environmental, 2019, 259, 118051.	10.8	112
521	High-performance alkaline hydrogen evolution of NiMoP2 nanowire boosted by bimetallic synergic effect. International Journal of Hydrogen Energy, 2019, 44, 23066-23073.	3.8	21
522	Molybdophosphate derived MoP based electrocatalyst as cathode for Sn–H+ battery to generate H2 and electricity simultaneously. Journal of Solid State Chemistry, 2019, 277, 602-610.	1.4	5
523	Controllable synthesized CoP-MP (M=Fe, Mn) as efficient and stable electrocatalyst for hydrogen evolution reaction at all pH values. International Journal of Hydrogen Energy, 2019, 44, 19978-19985.	3.8	34
524	Chemical Doped Ternary and Quaternary Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 4998-5012.	1.8	7
525	Synthesis and mechanism investigation of three-dimensional porous CoP3 nanoplate arrays as efficient hydrogen evolution reaction electrocatalyst. Applied Surface Science, 2019, 494, 179-186.	3.1	14
526	In Situ Hybridizing MoS ₂ Microflowers on VS ₂ Microflakes in a One-Pot CVD Process for Electrolytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5799-5808.	2.5	53
527	Template-free synthesis of porous Mo3P/MoP nanobelts as efficient catalysts for hydrogen generation. Applied Surface Science, 2019, 493, 740-746.	3.1	16
528	Channelâ€Rich RuCu Nanosheets for pHâ€Universal Overall Water Splitting Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 13983-13988.	7.2	274
529	Efficient photocatalytic hydrogen production from formic acid on inexpensive and stable phosphide/Zn3In2S6 composite photocatalysts under mild conditions. International Journal of Hydrogen Energy, 2019, 44, 21803-21820.	3.8	36
530	Constructing Bifunctional 3D Holey and Ultrathin CoP Nanosheets for Efficient Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2019, 11, 29879-29887.	4.0	50
531	Channelâ€Rich RuCu Nanosheets for pHâ€Universal Overall Water Splitting Electrocatalysis. Angewandte Chemie, 2019, 131, 14121-14126.	1.6	58
532	A polydopamine-mediated biomimetic facile synthesis of molybdenum carbide-phosphide nanodots encapsulated in carbon shell for electrochemical hydrogen evolution reaction with long-term durability. Composites Part B: Engineering, 2019, 175, 107071.	5.9	32
533	Bipolar Electrochemistry as a Simple Synthetic Route toward Nanoscale Transition of Mo ₂ B ₅ and W ₂ B ₅ for Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6
534	Hyperbranched Co ₂ P nanocrystals with 3D morphology for hydrogen generation in both alkaline and acidic media. RSC Advances, 2019, 9, 20612-20617.	1.7	5
535	Facile synthesis of nanostructured molybdenum carbide/nitrogen-doped CNT-RGO composite via a modified urea glass route for efficient hydrogen evolution. Journal of Alloys and Compounds, 2019, 805, 113-119.	2.8	16
536	Recent Advances in Cuâ€Based Cocatalysts toward Solarâ€ŧoâ€Hydrogen Evolution: Categories and Roles. Solar Rrl, 2019, 3, 1900256.	3.1	41

#	Article	IF	CITATIONS
537	Synthesis of ternary NiCoP nanowire alloy and its enhanced electrochemical catalytic activity. Materials Research Express, 2019, 6, 1150b3.	0.8	4
538	Highly efficient amorphous np-PdFePC catalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 328, 135082.	2.6	35
539	The effects of fine and coarse particulate matter on lung function among the elderly. Scientific Reports, 2019, 9, 14790.	1.6	49
540	New insight on hydrogen evolution reaction activity of the most exposure (0 1 1) surface and its monovacancy defect for FeP system: A theoretical perspective. Chemical Physics Letters, 2019, 734, 136740.	1.2	6
541	Synthesis of ultrafine ruthenium phosphide nanoparticles and nitrogen/phosphorus dual-doped carbon hybrids as advanced electrocatalysts for all-pH hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 25632-25641.	3.8	15
542	Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis. Topics in Current Chemistry, 2019, 377, 29.	3.0	26
543	Tuning of metallic valence in CoMoP for promoting electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 31072-31081.	3.8	22
544	The catalytic performance enhancement of Ni2P electrocatalysts for hydrogen evolution reaction by carbon-based substrates. International Journal of Hydrogen Energy, 2019, 44, 31960-31968.	3.8	20
545	Solid‣tate Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A European Journal, 2020, 26, 3961-3972.	1.7	8
546	Photoactive Earthâ€Abundant Iron Pyrite Catalysts for Electrocatalytic Nitrogen Reduction Reaction. Small, 2019, 15, e1904723.	5.2	33
547	Precursorâ€Transformation Strategy Preparation of CuP x Nanodots–Decorated CoP 3 Nanowires Hybrid Catalysts for Boosting pHâ€Universal Electrocatalytic Hydrogen Evolution. Small, 2019, 15, 1904681.	5.2	25
548	MoP/Co 2 P Hybrid Nanostructure Anchored on Carbon Fiber Paper as an Effective Electrocatalyst for Hydrogen Evolution. ChemCatChem, 2019, 11, 6086-6091.	1.8	24
549	Hierarchical MoP Hollow Nanospheres Anchored on a N,P,Sâ€Đoped Porous Carbon Matrix as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 4662-4670.	3.6	38
550	NaCl template-directed approach to ultrathin lamellar molybdenum phosphide-carbon hybrids for efficient hydrogen production. Journal of Power Sources, 2019, 438, 227048.	4.0	20
551	Fe doped skutterudite-type CoP3 nanoneedles as efficient electrocatalysts for hydrogen and oxygen evolution in alkaline media. Journal of Alloys and Compounds, 2019, 808, 151767.	2.8	16
552	C-CoP hollow microporous nanocages based on phosphating regulation: a high-performance bifunctional electrocatalyst for overall water splitting. Nanoscale, 2019, 11, 17084-17092.	2.8	54
553	Mesoporous amorphous Al ₂ O ₃ /crystalline WO ₃ heterophase hybrids for electrocatalysis and gas sensing applications. Journal of Materials Chemistry A, 2019, 7, 21874-21883.	5.2	34
554	Effect of Stacking Interactions on the Translation of Structurally Related Bis(thiosemicarbazonato)nickel(II) HER Catalysts to Modified Electrode Surfaces. Inorganic Chemistry, 2019, 58, 12025-12039.	1.9	6

#	Article	IF	CITATIONS
555	Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorganic Chemistry Frontiers, 2019, 6, 2686-2695.	3.0	27
556	Metal–Organic Framework-Derived Cu-Doped Co ₉ S ₈ Nanorod Array with Less Low-Valence Co Sites as Highly Efficient Bifunctional Electrodes for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 16917-16926.	3.2	129
557	Novel synthesis of a NiMoP phosphide catalyst in a CH4–CO2 gas mixture. Dalton Transactions, 2019, 48, 14256-14260.	1.6	11
558	N, P-co-doped carbon coupled with CoP as superior electrocatalysts for hydrogen evolution reaction and overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 24342-24352.	3.8	30
559	N-Doped Mo2C Nanobelts/Graphene Nanosheets Bonded with Hydroxy Nanocellulose as Flexible and Editable Electrode for Hydrogen Evolution Reaction. IScience, 2019, 19, 1090-1100.	1.9	37
560	New Insight on Hydrogen Evolution Reaction Activity of MoP2 from Theoretical Perspective. Nanomaterials, 2019, 9, 1270.	1.9	9
561	Transition Metal Arsenide Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 24007-24012.	1.5	18
562	MoP-protected Mo oxide nanotube arrays for long-term stable supercapacitors. Applied Materials Today, 2019, 17, 227-235.	2.3	17
563	Carved nanoframes of cobalt–iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2019, 10, 464-474.	3.7	238
564	Graphene oxide supported cobalt phosphide nanorods designed from a molecular complex for efficient hydrogen evolution at low overpotential. Chemical Communications, 2019, 55, 2186-2189.	2.2	15
565	Hydrogen adsorption trends on various metal-doped Ni ₂ P surfaces for optimal catalyst design. Physical Chemistry Chemical Physics, 2019, 21, 184-191.	1.3	17
566	An efficient amplification strategy for N-doped NiCo ₂ O ₄ with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 1468-1478.	5.2	64
567	Metal–organic frameworks based on tetraphenylpyrazine-derived tetracarboxylic acid for electrocatalytic hydrogen evolution reaction and NAC sensing. CrystEngComm, 2019, 21, 494-501.	1.3	25
568	Unique photocatalytic activities of transition metal phosphide for hydrogen evolution. Journal of Colloid and Interface Science, 2019, 541, 287-299.	5.0	57
569	Structural Transformation Identification of Sputtered Amorphous MoS _{<i>x</i>} as an Efficient Hydrogen-Evolving Catalyst during Electrochemical Activation. ACS Catalysis, 2019, 9, 2368-2380.	5.5	78
570	The hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity and efficiency, and mechanism. Green Chemistry, 2019, 21, 850-860.	4.6	70
571	Lamellarly Stacking Porous N, P Coâ€Doped Mo ₂ C/C Nanosheets as High Performance Anode for Lithiumâ€ion Batteries. Small, 2019, 15, e1805022.	5.2	43
572	Facile synthesis of MoP/MoO2 heterostructures for efficient hydrogen generation. Materials Letters, 2019, 241, 227-230.	1.3	19

ARTICLE IF CITATIONS Metal organic framework derived nickel phosphide/graphitic carbon hybrid for electrochemical 573 2.7 27 hydrogen generation reaction. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 634-638. Trifunctional Selfâ€Supporting Cobaltâ€Embedded Carbon Nanotube Films for ORR, OER, and HER 574 11.1 Triggered by Solid Diffusion from Bulk Metal. Advanced Materials, 2019, 31, e1808043. Ultrathin Graphitic Carbon Coated Molybdenum Phosphide as Nobleâ€Metalâ€Free Electrocatalyst for 575 0.7 5 Hydrogen Evolution. ChemistrySelect, 2019, 4, 846-852. In pursuit of advanced materials from single-source precursors based on metal carbonyls. Dalton Transactions, 2019, 48, 2248-2262. Embedding RhP<i>_x</i> in N, P Coâ€Doped Carbon Nanoshells Through Synergetic Phosphorization and Pyrolysis for Efficient Hydrogen Evolution. Advanced Functional Materials, 577 7.8 76 2019, 29, 1901790. Electrochemically active novel amorphous carbon (a-C)/Cu3P peapod nanowires by low-temperature chemical vapor phosphorization reaction as high efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 318, 374-383. 2.6 Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. 579 5.2 111 Journal of Materials Chemistry A, 2019, 7, 14380-14390. Direct synthesis of furfuryl alcohol from furfural: catalytic performance of monometallic and 580 2.1 bimetallic Mo and Ru phosphides. Catalysis Science and Technology, 2019, 9, 3656-3668. Selfâ€Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for 581 11.1 216 Highâ€Energyâ€Density Lithiumâ€"Sulfur Batteries. Advanced Materials, 2019, 31, e1902228. Coupled Biphase (1Tâ€2H)â€MoSe₂ on Mold Spore Carbon for Advanced Hydrogen Evolution 5.2 Reaction. Small, 2019, 15, e1901796. Insights into the unique role of cobalt phosphide for boosting hydrogen evolution activity based on 583 3.8 26 MIL-125-NH2. International Journal of Hydrogen Energy, 2019, 44, 17909-17921. Highâ€Currentâ€Density HER Electrocatalysts: Grapheneâ€like Boron Layer and Tungsten as Key Ingredients 584 3.6 in Metal Diborides. ChemSusChem, 2019, 12, 3726-3731. Hierarchical CoP3/NiMoO4 heterostructures on Ni foam as an efficient bifunctional electrocatalyst 585 2.3 40 for overall water splitting. Ceramics International, 2019, 45, 17128-17136. Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction. Applied Materials Today, 2019, 16, 146-168. 2.3 Robust hydrogen evolution reaction catalysis by ultrasmall amorphous ruthenium phosphide 587 2.2 26 nanoparticles. Chemical Communications, 2019, 55, 7623-7626. Ultrafine Dualâ€Phased Carbide Nanocrystals Confined in Porous Nitrogenâ€Doped Carbon 11.1 311 Dodecahedrons for Efficient Hydrogen Évolution Reaction. Advanced Materials, 2019, 31, e1900699. Surface Pseudocapacitive Mechanism of Molybdenum Phosphide for Highâ€Energy and Highâ€Power 589 10.2 62 Sodiumâ€Ion Capacitors. Advanced Energy Materials, 2019, 9, 1900967. Multifunctional Dicyandiamide Blowing-Induced Formation of Electrocatalysts for the Hydrogen 590 1.6 Evolution Reaction. ACS Omega, 2019, 4, 10347-10353.

#	Article	IF	CITATIONS
591	RGO induced one-dimensional bimetallic carbide nanorods: An efficient and pH-universal hydrogen evolution reaction electrocatalyst. Nano Energy, 2019, 62, 85-93.	8.2	53
592	Nanoporous Ni3S2 Film on Ni Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Electrolyte. Russian Journal of Electrochemistry, 2019, 55, 88-96.	0.3	5
593	Layered Crystalline and Amorphous Platinum Disulfide (PtS ₂): Contrasting Electrochemistry. Chemistry - A European Journal, 2019, 25, 7330-7338.	1.7	20
594	A facile preparation of WS2 nanosheets as a highly effective HER catalyst. Tungsten, 2019, 1, 101-109.	2.0	19
595	Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy, 2019, 62, 338-347.	8.2	102
596	The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and Recent Advances. ChemElectroChem, 2019, 6, 3570-3589.	1.7	72
597	Nanoporous molybdenum dioxide on pencil graphite electrode as high effective electrocatalyst for the hydrogen evolution reaction. Journal of the Iranian Chemical Society, 2019, 16, 2065-2070.	1.2	3
598	Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials. Progress in Natural Science: Materials International, 2019, 29, 247-255.	1.8	70
599	Expanding Multinary Selenide Based High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition: Case Study with Fe–Cu–Co Selenides. ACS Sustainable Chemistry and Engineering, 2019, 7, 9588-9600.	3.2	64
600	Facile construction of N-doped Mo2C@CNT composites with 3D nanospherical structures as an efficient electrocatalyst for hydrogen evolution reaction. Ionics, 2019, 25, 4273-4283.	1.2	19
601	Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 3530-3548.	1.7	73
602	Three-Dimensional Dendritic Cu–Co–P Electrode by One-Step Electrodeposition on a Hydrogen Bubble Template for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 10734-10741.	3.2	100
603	Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting. Advanced Energy Materials, 2019, 9, 1900624.	10.2	538
604	Ultrasmall MoP encapsulated in nitrogen-doped carbon hybrid frameworks for highly efficient hydrogen evolution reaction in both acid and alkaline solutions. Inorganic Chemistry Frontiers, 2019, 6, 1482-1489.	3.0	26
605	Sulfur-doped Cu ₃ Pâ^£S electrocatalyst for hydrogen evolution reaction. Materials Research Express, 2019, 6, 075501.	0.8	8
606	Self-supported nanotubular MoP electrode for highly efficient hydrogen evolution via water splitting. Catalysis Communications, 2019, 127, 1-4.	1.6	14
607	MoP hollow nanospheres encapsulated in 3D reduced graphene oxide networks as high rate and ultralong cycle performance anodes for sodium-ion batteries. Nanoscale, 2019, 11, 7129-7134.	2.8	47
608	Hydrogen production by water reduction on Si photocathode coupled with Ni2P. International Journal of Hydrogen Energy, 2019, 44, 7241-7251.	3.8	8

#	Article	IF	CITATIONS
609	A Highly Active and Robust CoP/CoS2-Based Electrocatalyst Toward Overall Water Splitting. Electrocatalysis, 2019, 10, 253-261.	1.5	18
610	Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting. Applied Surface Science, 2019, 481, 1403-1411.	3.1	46
611	Tailoring the Electronic Structure of Co ₂ P by N Doping for Boosting Hydrogen Evolution Reaction at All pH Values. ACS Catalysis, 2019, 9, 3744-3752.	5.5	357
612	Review of borophene and its potential applications. Frontiers of Physics, 2019, 14, 1.	2.4	201
613	A comparative study of molybdenum phosphide catalyst for partial oxidation and dry reforming of methane. International Journal of Hydrogen Energy, 2019, 44, 11441-11447.	3.8	30
614	Synthesis of Offâ€6toichiometric CoS Nanoplates from a Molecular Precursor for Efficient H ₂ /O ₂ Evolution and Supercapacitance. ChemElectroChem, 2019, 6, 2560-2569.	1.7	40
615	Constructing MoP _{<i>x</i>} @MnP _{<i>y</i>} Heteronanoparticle-Supported Mesoporous N,P-Codoped Graphene for Boosting Oxygen Reduction and Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 2892-2904.	3.2	71
616	Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 307, 260-268.	2.6	55
617	Cobalt molybdenum sulfide decorated with highly conductive sulfur-doped carbon as an electrocatalyst for the enhanced activity of hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 9164-9173.	3.8	31
618	P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 547, 291-298.	5.0	33
619	Porous aluminum electrodes with 3D channels and zig-zag edges for efficient hydrogen evolution. Chemical Communications, 2019, 55, 5447-5450.	2.2	7
620	Nanostructured Rhenium–Carbon Composites as Hydrogen-Evolving Catalysts Effective over the Entire pH Range. ACS Applied Nano Materials, 2019, 2, 2725-2733.	2.4	24
621	Vertically standing MoP nanosheet arrays on Mo substrate: An integrated binder-free electrode for highly efficient and stable hydrogen evolution. Journal of Alloys and Compounds, 2019, 792, 732-741.	2.8	21
622	Morphology ontrolled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Advanced Materials, 2019, 31, e1806682.	11.1	500
623	Dinuclear Manganese Carbonyl Complexes: Electrocatalytic Reduction of Protons to Dihydrogen. ChemistrySelect, 2019, 4, 1789-1794.	0.7	6
624	Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 6161-6172.	5.2	61
625	Coverage dependent CO adsorption manners on seven MoP surfaces with DFT based thermodynamics method. Applied Surface Science, 2019, 480, 172-176.	3.1	9
626	Surface-clean, phase-pure multi-metallic carbides for efficient electrocatalytic hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 940-947.	3.0	29

#	Article	IF	Citations
627	Electrochemically Fabricated Niâ^'P, Niâ^'S and Niâ^'Se Materials for Overall Water Splitting: Investigating the Concept of Bifunctional Electrocatalysis. ChemElectroChem, 2019, 6, 2630-2637.	1.7	23
628	NiCo2O4 nanowire arrays rich in oxygen deficiencies for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 6612-6617.	3.8	40
629	Theoretical study of single transition metal atom modified MoP as a nitrogen reduction electrocatalyst. Physical Chemistry Chemical Physics, 2019, 21, 5950-5955.	1.3	43
630	Predictive fabrication of Ni phosphide embedded in carbon nanofibers as active and stable electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 7451-7458.	5.2	24
631	Vertically aligned NiP2 nanosheets with interlaced mesh network for highly efficient water splitting under alkaline and acid solutions. International Journal of Hydrogen Energy, 2019, 44, 6535-6543.	3.8	35
632	Noble-Metal-Free Nanoelectrocatalysts for Hydrogen Evolution Reaction. Environmental Chemistry for A Sustainable World, 2019, , 73-120.	0.3	2
633	FeP ₃ monolayer as a high-efficiency catalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25665-25671.	5.2	43
634	Electronic structure, phonon and superconductivity for WP 5d-transition metal. Journal of Applied Physics, 2019, 126, 175103.	1.1	9
635	Fe ions modulated formation of hollow NiFe oxyphosphide spheres with enhanced oxygen evolution performance. Chemical Communications, 2019, 55, 14371-14374.	2.2	9
636	Pressure-Induced Novel Stable Stoichiometries in Molybdenum–Phosphorus Phase Diagrams under Pressure. Journal of Physical Chemistry C, 2019, 123, 30187-30197.	1.5	8
637	Constructing Mono-/Di-/Tri-Types of Active Sites in MoS ₂ Film toward Understanding Their Electrocatalytic Activity for the Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 8974-8984.	2.5	8
638	Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nature Communications, 2019, 10, 5599.	5.8	475
639	Niobium disulphide (NbS ₂)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25593-25608.	5.2	50
640	NH2-MIL-101(Fe)/Ni(OH)2-derived C,N-codoped Fe2P/Ni2P cocatalyst modified g-C3N4 for enhanced photocatalytic hydrogen evolution from water splitting. Applied Catalysis B: Environmental, 2019, 241, 178-186.	10.8	175
641	N-doped carbon-wrapped Mo C heterophase sheets for high-efficiency electrochemical hydrogen production. Chemical Engineering Journal, 2019, 358, 362-368.	6.6	44
642	Cobalt Phosphide Nanowire Arrays on Conductive Substrate as an Efficient Bifunctional Catalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 2360-2369.	3.2	37
643	Hydrogen evolution reaction catalyzed by nickel/nickel phosphide nanospheres synthesized through electrochemical methods. Electrochimica Acta, 2019, 298, 229-236.	2.6	27
644	S-Doped MoP Nanoporous Layer Toward High-Efficiency Hydrogen Evolution in pH-Universal Electrolyte. ACS Catalysis, 2019, 9, 651-659.	5.5	167

#	Article	IF	CITATIONS
645	Morphology engineering of CoSe2 as efficient electrocatalyst for water splitting. Journal of Colloid and Interface Science, 2019, 539, 646-653.	5.0	52
646	Abundant Vanadium Diboride with Graphene-like Boron layers for Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 176-181.	2.5	35
647	Shrunken hollow Mo-N/Mo-C nanosphere structure for efficient hydrogen evolution in a broad pH range. Electrochimica Acta, 2019, 298, 799-805.	2.6	38
648	Ultrahigh length-to-diameter ratio nickel phosphide nanowires as pH-wide electrocatalyst for efficient hydrogen evolution. Electrochimica Acta, 2019, 298, 943-949.	2.6	23
649	Rational design of red phosphorus/reduced graphene oxide composites for stable sodium ion storage. Journal of Alloys and Compounds, 2019, 775, 1270-1276.	2.8	21
650	Direct synthesis of parallel doped N-MoP/N-CNT as highly active hydrogen evolution reaction catalyst. Science China Materials, 2019, 62, 690-698.	3.5	21
651	Activating MoS ₂ Basal Plane with Ni ₂ P Nanoparticles for Ptâ€Like Hydrogen Evolution Reaction in Acidic Media. Advanced Functional Materials, 2019, 29, 1809151.	7.8	114
652	Co9S8 nanowires@NiCo LDH nanosheets arrays on nickel foams towards efficient overall water splitting. Science Bulletin, 2019, 64, 158-165.	4.3	68
653	Cobalt/Molybdenum Phosphide and Oxide Heterostructures Encapsulated in N-Doped Carbon Nanocomposite for Overall Water Splitting in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 6890-6899.	4.0	91
654	Noble-metal-free molybdenum phosphide co-catalyst loaded graphitic carbon nitride for efficient photocatalysis under simulated irradiation. Journal of Catalysis, 2019, 370, 79-87.	3.1	77
655	Cobalt phosphide microspheres integrated with cadmium sulfide nanowires as an efficient photocatalyst for hydrogen evolution reaction. Molecular Catalysis, 2019, 469, 161-166.	1.0	18
656	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	8.2	298
657	2D Metallic Transitional Metal Dichalcogenides for Electrochemical Hydrogen Evolution. Energy Technology, 2019, 7, 1801025.	1.8	10
658	Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 299, 708-716.	2.6	48
659	Morphology of MoP catalyst under hydrogenation conditions: A DFT based thermodynamics study. Molecular Catalysis, 2019, 464, 57-62.	1.0	10
660	Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5373-5379.	4.0	78
661	Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2019, 245, 656-661.	10.8	108
662	Highly stable tungsten disulfide supported on a self-standing nickel phosphide foam as a hybrid electrocatalyst for efficient electrolytic hydrogen evolution. Nano Energy, 2019, 55, 193-202.	8.2	59

#	Article	IF	CITATIONS
663	Metallic 1T-MoS2 nanosheets in-situ entrenched on N,P,S-codoped hierarchical carbon microflower as an efficient and robust electro-catalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2019, 243, 614-620.	10.8	77
664	Ultrathin molybdenum phosphide films as high-efficiency electrocatalysts for hydrogen evolution reaction. Materials Research Express, 2019, 6, 016418.	0.8	8
665	P,Seâ€Codoped MoS ₂ Nanosheets as Accelerated Electrocatalysts for Hydrogen Evolution. ChemCatChem, 2019, 11, 689-692.	1.8	71
666	The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction. Electrochimica Acta, 2019, 294, 142-147.	2.6	57
667	Partial Surface Selenization of Cobalt Sulfide Microspheres for Enhancing the Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 456-465.	5.5	71
668	Controlled synthesis of 3D porous structured cobalt-iron based nanosheets by electrodeposition as asymmetric electrodes for ultra-efficient water splitting. Applied Catalysis B: Environmental, 2019, 244, 583-593.	10.8	105
669	Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 244, 620-627.	10.8	122
670	Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting. Small, 2019, 15, e1804212.	5.2	135
671	Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis. Materials Research Bulletin, 2019, 112, 46-52.	2.7	25
672	Phase ontrolled Cobalt Phosphide Nanoparticles Coupled with N, P, S Coâ€Doped Hollow Carbon Polyhedrons as Efficient Catalysts for Both Alkaline and Acidic Hydrogen Evolution. Energy Technology, 2019, 7, 1800757.	1.8	5
673	Metal organic framework-derived Ni/Zn/Co/NC composites as efficient catalyst for oxygen evolution reaction. Journal of Porous Materials, 2019, 26, 381-387.	1.3	10
674	NiCoP 1D nanothorns grown on 3D hierarchically porous Ni films for high performance hydrogen evolution reaction. Chinese Chemical Letters, 2020, 31, 855-858.	4.8	31
675	Efficient overall water splitting over Mn doped Ni2P microflowers grown on nickel foam. Catalysis Today, 2020, 355, 815-821.	2.2	33
676	A novel and facile synthetic route to MMo (M = Ni or Co) bimetallic phosphides. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 165-172.	0.8	2
677	Ni-Ni3P nanoparticles embedded into N, P-doped carbon on 3D graphene frameworks via in situ phosphatization of saccharomycetes with multifunctional electrodes for electrocatalytic hydrogen production and anodic degradation. Applied Catalysis B: Environmental, 2020, 261, 118147.	10.8	82
678	Electron density modulation of Fe1-xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting. Nano Energy, 2020, 67, 104174.	8.2	87
679	Multifunctional Transition Metalâ€Based Phosphides in Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902104.	10.2	322
680	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2020, 59, 8982-8990.	7.2	263

#	Article	IF	CITATIONS
681	Nowotny phase Mo ₃₊₂ <i>_x</i> Si ₃ C _{0.6} dispersed in a porous SiC/C matrix: A novel catalyst for hydrogen evolution reaction. Journal of the American Ceramic Society, 2020, 103, 508-519.	1.9	15
682	Metal phosphide modified CdxZn1â^'xS solid solutions as a highly active visible-light photocatalyst for hydrogen evolution. Applied Catalysis A: General, 2020, 590, 117336.	2.2	28
683	Novel electrocatalyst of nanoporous FeP cubes prepared by fast electrodeposition coupling with acid-etching for efficient hydrogen evolution. Electrochimica Acta, 2020, 329, 135185.	2.6	44
684	A Shallow Acceptor of Phosphorous Doped in MoSe ₂ Monolayer. Advanced Electronic Materials, 2020, 6, 1900830.	2.6	16
685	Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727.	2.8	9
686	Enhanced hydrogen evolution reaction catalyzed by carbonâ€rich Mo _{4.8} Si ₃ C _{0.6} /C/SiC nanocomposites via a PDC approach. Journal of the American Ceramic Society, 2020, 103, 1385-1395.	1.9	11
687	Topochemical Synthesis of Twoâ€Dimensional Transitionâ€Metal Phosphides Using Phosphorene Templates. Angewandte Chemie - International Edition, 2020, 59, 465-470.	7.2	94
688	Cofunction of Protons as Dopant and Reactant Activate the Electrocatalytic Hydrogen Evolution in Emeraldineâ€Polyguanine. Advanced Materials Interfaces, 2020, 7, 1901364.	1.9	7
689	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie, 2020, 132, 9067-9075.	1.6	45
690	Topochemical Synthesis of Twoâ€Dimensional Transitionâ€Metal Phosphides Using Phosphorene Templates. Angewandte Chemie, 2020, 132, 473-478.	1.6	8
691	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	23.0	1,767
692	Porous carbon coupled with an interlaced MoP–MoS2 heterojunction hybrid for efficient hydrogen evolution reaction. Journal of Energy Chemistry, 2020, 45, 45-51.	7.1	43
693	Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2020, 265, 118620.	10.8	153
694	Decipher of the structure and surface chemistry in molybdenum phosphosulfide on electrochemical catalytic hydrogen evolution reaction. Journal of Catalysis, 2020, 382, 228-236.	3.1	12
695	Synthesis and resistivity of topological metal MoP nanostructures. APL Materials, 2020, 8, .	2.2	11
696	MoP supported on reduced graphene oxide for high performance electrochemical nitrogen reduction. Dalton Transactions, 2020, 49, 988-992.	1.6	20
697	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	4.1	223
698	Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy, 2020, 70, 104445.	8.2	118

5.2

424

- ARTICLE IF CITATIONS Earth Abundant Electrocatalyst., 2020, , 1-28. 699 0 Overestimation of Photoelectrochemical Hydrogen Evolution Reactivity Induced by Noble Metal 5.5 Impurities Dissolved from Counter/Reference Electrodes. ACS Catalysis, 2020, 10, 3381-3389. Mo₂C-embedded biomass-derived honeycomb-like nitrogen-doped carbon 701 nanosheet/graphene aerogel films for highly efficient electrocatalytic hydrogen evolution. New 1.4 20 Journal of Chemistry, 2020, 44, 1147-1156. A phosphorene-like InP₃ monolayer: structure, stability, and catalytic properties toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 1307-1314. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. 703 2.8 191 Journal of Alloys and Compounds, 2020, 821, 153542. Hierarchical Zn-Co-P nanoneedle arrays supported on three-dimensional framework as efficient electrocatalysts for hydrogen evolution reaction in alkaline condition. Journal of Electroanalytical Chemistry, 2020, 858, 113803. 3Dâ€Graphene Decorated with gâ€C₃N₄/Cu₃P Composite: A Noble 705 1.8 71 Metalâ€free Bifunctional Electrocatalyst for Overall Water Splitting. ChemCatChem, 2020, 12, 1394-1402. Defect enhanced CoP/Reduced graphene oxide electrocatalytic hydrogen production with pt-like 706 10.8 34 activity. Applied Catalysis B: Environmental, 2020, 265, 118576. Combined Experimental and Theoretical Assessment of WX < ub < iy < iu > (x = C, N, S, P) for 707 2.5 32 Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1082-1088. In situ formation of N-doped carbon-coated porous MoP nanowires: a highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range. Applied Catalysis B: Environmental, 2020, 263, 10.8 118358. Multi-walled carbon nanotubes reinforced nickel phosphide composite: As an efficient 709 electrocatalyst for hydrogen evolution reaction by one-step powder sintering. International Journal 3.8 10 of Hydrogen Energy, 2020, 45, 412-423. Developments and Perspectives in 3d Transitionâ€Metalâ€Based Electrocatalysts for Neutral and 10.2 226 Nearâ€Neutral Water Electrolysis. Advanced Energy Materials, 2020, 10, 1902666. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: New efficient 711 10.8 60 electrocatalysts for ambient nitrogen fixation. Applied Catalysis B: Environmental, 2020, 265, 118589. Hydrogen Evolution by Ni₂P Catalysts Derived from Phosphine MOFs. ACS Applied Energy 2.5 Materials, 2020, 3, 176-183.
 - 714Flexible Membrane Consisting of MoP Ultrafine Nanoparticles Highly Distributed Inside N and P
Codoped Carbon Nanofibers as Highâ€Performance Anode for Potassiumâ€Ion Batteries. Small, 2020, 16,
e1905301.5.285715Construction strategy of Mo-S@Mo-P heterojunction formed with in-situ phosphating Mo-S
nanospheres toward efficient photocatalytic hydrogen production. Chemical Engineering Journal,
2020, 391, 123545.6.668716Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for
efficient hydrogen evolution. Chinese Journal of Catalysis, 2020, 41, 82-94.6.9207

Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony. Small, 2020,

713

16, eİ905779.

#	Article	IF	CITATIONS
717	Surface Activation and Reconstruction of Non-Oxide-Based Catalysts Through in Situ Electrochemical Tuning for Oxygen Evolution Reactions in Alkaline Media. ACS Catalysis, 2020, 10, 463-493.	5.5	196
718	Plasma-Engineered MoP with nitrogen doping: Electron localization toward efficient alkaline hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118441.	10.8	69
719	Facile electrochemical preparation of nonprecious Co u alloy catalysts for hydrogen production in proton exchange membrane water electrolysis. International Journal of Energy Research, 2020, 44, 2833-2844.	2.2	22
720	N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Science Advances, 2020, 6, eaaw8113.	4.7	211
721	Pd doped Ni derived from Ni - Metal organic framework for efficient hydrogen evolution reaction in alkaline electrolyte. International Journal of Hydrogen Energy, 2020, 45, 28870-28875.	3.8	8
722	Boron-doped molybdenum carbide as a pH-independent electrocatalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 30659-30665.	3.8	17
723	Electrochemical fabrication of Ni–Mo nanostars with Pt-like catalytic activity for both electrochemical hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2020, 45, 30533-30546.	3.8	23
724	FeMnO3 nanoparticles promoted electrocatalysts Ni–Fe–P–FeMnO3/NF with superior hydrogen evolution performances. Renewable Energy, 2020, 161, 956-962.	4.3	19
725	Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting. Materials Today Energy, 2020, 18, 100524.	2.5	28
726	A Simple Route for the Synthesis of Cobalt Phosphate Nanoparticles for Electrocatalytic Water Oxidation in Alkaline Medium. Energy & Fuels, 2020, 34, 12891-12899.	2.5	23
727	Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy and Environmental Science, 2020, 13, 4564-4582.	15.6	268
728	Delineating the role of crystallinity in the electrocatalytic activity of colloidally synthesized MoP nanocrystals. New Journal of Chemistry, 2020, 44, 14041-14049.	1.4	8
729	Bicontinuous transition metal phosphides/rGO binder-free electrodes: generalized synthesis and excellent cycling stability for sodium storage. Nanoscale, 2020, 12, 16716-16723.	2.8	15
730	Novel electronic properties of monoclinic MP4 (M = Cr, Mo, W) compounds with or without topological nodal line. Scientific Reports, 2020, 10, 11502.	1.6	10
731	Hydrogen evolution on non-metal oxide catalysts. JPhys Energy, 2020, 2, 042002.	2.3	16
732	Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of Sâ€Doped RuP Embedded in N,P,Sâ€Doped Carbon. Advanced Science, 2020, 7, 2001526.	5.6	77
733	A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. Journal of Materials Science, 2020, 55, 14081-14104.	1.7	80
734	Polyoxometalate Derived Mo Based Hybrid HER Electrocatalysts with Carbon as Matrix and Their Application in Zn-H+ Battery. Journal of Cluster Science, 2020, , 1.	1.7	2

#	Article	IF	Citations
735	Potential Dependent Electrochemical Exfoliation of NiPS ₃ and Implications for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 11992-11999.	2.5	19
736	Hierarchical Ultrathin Mo/MoS _{2(1â^'} <i>_x<i>_{â^'}<i>_y</i>₎P<i>_{x< Nanosheets Assembled on P, N Coâ€Doped Carbon Nanotubes for Hydrogen Evolution in Both Acidic and Alkaline Electrolytes, Small, 2020, 16, e2004973}</i></i></i>	/syb>	29
737	Facile immobilization of polyoxometalates for low-cost molybdenum/tungsten phosphide nanoparticles on carbon black for efficient electrocatalytic hydrogen evolution. Journal of Coordination Chemistry, 2020, 73, 2590-2601.	0.8	3
738	Advancing Applications of Black Phosphorus and BPâ€Analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. Advanced Science, 2020, 7, 2001431.	5.6	51
739	Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coordination Chemistry Reviews, 2020, 424, 213516.	9.5	64
740	Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy and Environmental Science, 2020, 13, 3185-3206.	15.6	225
741	Phosphorusâ€Based Electrocatalysts: Black Phosphorus, Metal Phosphides, and Phosphates. Advanced Materials Interfaces, 2020, 7, 2000676.	1.9	35
742	Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium. Journal of Catalysis, 2020, 390, 23-29.	3.1	61
743	Tailoring the CdS surface structure for photocatalytic applications. Journal of Environmental Chemical Engineering, 2020, 8, 104313.	3.3	35
744	Highly Efficient Synthesis of Carbon-Based Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution. Nanoscale Research Letters, 2020, 15, 6.	3.1	12
745	Electrocatalytic Activity of Bimetallic Ni–Mo–P Nanocrystals for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2020, 3, 8199-8207.	2.4	30
746	Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production. Nano Energy, 2020, 78, 105151.	8.2	16
747	Defects Enhance the Electrocatalytic Hydrogen Evolution Properties of MoS ₂ â€based Materials. Chemistry - an Asian Journal, 2020, 15, 3123-3134.	1.7	57
748	Engineering NiCoP/Mo C heterojunction for highly efficient hydrogen evolution reaction in alkaline and acid solution. International Journal of Hydrogen Energy, 2020, 45, 28774-28782.	3.8	5
749	Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77, 105212.	8.2	39
750	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	18.7	448
751	Bibliometric and content analysis on emerging technologies of hydrogen production using microbial electrolysis cells. International Journal of Hydrogen Energy, 2020, 45, 33310-33324.	3.8	32
752	Ru-based electrocatalysts for hydrogen evolution reaction:Recent research advances and perspectives. Materials Today Physics, 2020, 15, 100274.	2.9	92

#	Article	IF	CITATIONS
753	Porous Plate-like MoP Assembly as an Efficient pH-Universal Hydrogen Evolution Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 49596-49606.	4.0	46
754	Ultrafine Co ₃ O ₄ nanolayer-shelled CoWP nanowire array: a bifunctional electrocatalyst for overall water splitting. RSC Advances, 2020, 10, 29326-29335.	1.7	14
755	Nitrogen-Doped Oxygenated Molybdenum Phosphide as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Media. Frontiers in Chemistry, 2020, 8, 733.	1.8	16
756	CoMo-bimetallic N-doped porous carbon materials embedded with highly dispersed Pt nanoparticles as pH-universal hydrogen evolution reaction electrocatalysts. Nanoscale, 2020, 12, 19804-19813.	2.8	38
757	Transitionâ€Metal Phosphides: Activity Origin, Energyâ€Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials, 2020, 30, 2004009.	7.8	309
758	Self-supporting composited electrocatalysts of ultrafine Mo ₂ C on 3D-hierarchical porous carbon monoliths for efficient hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 23265-23273.	5.2	13
759	A Mini Review on Doped Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction. Energies, 2020, 13, 4651.	1.6	9
760	N,P-dual doped molybdenum disulfide nanosheets for enhanced electrocatalytic hydrogen evolution reaction. AIP Conference Proceedings, 2020, , .	0.3	0
761	Activation of Humic Acid in Lignite Using Molybdate-Phosphorus Hierarchical Hollow Nanosphere Catalyst Oxidation: Molecular Characterization and Rice Seed Germination-Promoting Performances. Journal of Agricultural and Food Chemistry, 2020, 68, 13620-13631.	2.4	11
762	Kinetically Stable Oxide Overlayers on Mo ₃ P Nanoparticles Enabling Lithium–Air Batteries with Low Overpotentials and Long Cycle Life. Advanced Materials, 2020, 32, e2004028.	11.1	42
763	Synthesis of Co2â^'xNixO2 (0 < x < 1.0) hexagonal nanostructures as efficient bifunctional electrocatalysts for overall water splitting. Dalton Transactions, 2020, 49, 6587-6595.	1.6	20
764	Metalâ€Free Hydrogenâ€Bonded Polymers Mimic Noble Metal Electrocatalysts. Advanced Materials, 2020, 32, e1902177.	11.1	24
765	Copper phosphosulfides as a highly active and stable photocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 273, 118927.	10.8	28
766	Sulfur-Doped CoSe ₂ Porous Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 28288-28297.	4.0	86
767	Catalytic Metal-Accelerated Crystallization of High-Performance Solution-Processed Earth-Abundant Metal Oxide Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 25000-25010.	4.0	4
768	Employing dual-ligand co-coordination compound to construct nanorod-like Bi-metallic (Fe, Co)P decorated with nitrogen-doped graphene for electrocatalytic overall water splitting. Electrochimica Acta, 2020, 350, 136338.	2.6	23
769	Fabricating structured 2D Ti3AlC2 MAX dispersed TiO2 heterostructure with Ni2P as a cocatalyst for efficient photocatalytic H2 production. Journal of Alloys and Compounds, 2020, 842, 155752.	2.8	82
770	Integrating H2 generation with sewage disposal by an efficient anti-poisoning bifunctional electrocatalyst. Applied Catalysis B: Environmental, 2020, 277, 119175.	10.8	18

#	Article	IF	Citations
771	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
772	RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 12810-12820.	5.2	69
773	Synergistic effect of MoS2 over WP photocatalyst for promoting hydrogen production. Journal of Solid State Chemistry, 2020, 288, 121419.	1.4	6
774	Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem, 2020, 7, 3578-3589.	1.7	63
775	In-built durable Li–S counterparts from Li–TiS2 batteries. Materials Today Energy, 2020, 17, 100439.	2.5	8
776	MoP with rich species generated via radio frequency thermal plasma for higher alcohols synthesis from syngas. Plasma Science and Technology, 2020, 22, 105502.	0.7	3
777	Understanding the role of boron and stoichiometric ratio in the catalytic performance of amorphous Co-B catalyst. Applied Surface Science, 2020, 518, 146199.	3.1	7
778	Catalytic Activity of Strontium Modified TiO2 Nanotubes for Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 2020, 15, 4218-4231.	0.5	13
779	Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production. Materials Today Advances, 2020, 7, 100083.	2.5	29
780	2D MoSe2/CoP intercalated nanosheets for efficient electrocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 19246-19256.	3.8	32
781	Molybdenum Nitride Electrocatalysts for Hydrogen Evolution More Efficient than Platinum/Carbon: Mo ₂ N/CeO ₂ @Nickel Foam. ACS Applied Materials & Interfaces, 2020, 12, 29153-29161.	4.0	18
782	In situ construction of tandem nitrogen-doped MoP nanocrystals for high-efficient electrocatalytic hydrogen evolution. Electrochimica Acta, 2020, 342, 136059.	2.6	11
783	Facile Route to Achieve Co@Mo2C Encapsulated by N-Doped Carbon as Efficient Electrocatalyst for Overall Water Splitting in Alkaline Media. Journal of the Electrochemical Society, 2020, 167, 044520.	1.3	10
784	Depositing Different Carbon Species on MoP to Enhance Its Activity for Isoprene Production in Different Ways. Industrial & Engineering Chemistry Research, 2020, 59, 5491-5499.	1.8	2
785	Binary and ternary transition metal phosphides for dry reforming of methane. Reaction Chemistry and Engineering, 2020, 5, 719-727.	1.9	18
786	NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production. Renewable Energy, 2020, 154, 1144-1152.	4.3	29
787	Transition Metal Phosphideâ€Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem, 2020, 13, 3357-3375.	3.6	218
788	Ionic Liquid-Assisted Synthesis of Hierarchical One-Dimensional MoP/NPC for High-Performance Supercapacitor and Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 6343-6351.	3.2	53

#	Article	IF	CITATIONS
789	Polymeric Nanofibers Containing CoNi-Based Zeolitic Imidazolate Framework Nanoparticles for Electrocatalytic Water Oxidation. ACS Applied Nano Materials, 2020, 3, 4274-4282.	2.4	35
790	Saltâ€Assisted Synthesis of 2D Materials. Advanced Functional Materials, 2020, 30, 1908486.	7.8	115
791	Fabrication, photoelectrochemical and electrocatalytic activity of 1D linear Co(â¡) and Fe(â¢) TPP-based coordination compounds. International Journal of Hydrogen Energy, 2020, 45, 9328-9341.	3.8	1
792	Integration of Cobalt Metal–Organic Frameworks into an Interpenetrated Prussian Blue Analogue to Derive Dual Metal–Organic Framework-Assisted Cobalt Iron Derivatives for Enhancing Electrochemical Total Water Splitting. Journal of Physical Chemistry C, 2020, 124, 14465-14476.	1.5	38
793	CuCo2S4 hollow nanoneedle arrays supported on Ni foam as efficient trifunctional electrocatalysts for overall water splitting and Al–Air batteries. Journal of Alloys and Compounds, 2020, 845, 155392.	2.8	17
794	Core–shell nanostructured electrocatalysts for water splitting. Nanoscale, 2020, 12, 15944-15969.	2.8	83
795	Nanostructured molybdenum Phosphide/N-Doped carbon nanotube-graphene composites as efficient electrocatalysts for hydrogen evolution reaction. Applied Catalysis A: General, 2020, 594, 117451.	2.2	20
796	Mo2C Decorated High-Defective Graphene Nanospheres for Improved Hydrogen Evolution Reaction Catalytic Performance. Catalysis Letters, 2020, 150, 2141-2149.	1.4	9
797	Tunable Ni/Feâ€Mo carbide catalyst with high activity toward hydrogen evolution reaction. Canadian Journal of Chemical Engineering, 2020, 98, 1784-1793.	0.9	5
798	A three-dimensional self-standing Mo2C/nitrogen-doped graphene aerogel: Enhancement hydrogen production from landfill leachate wastewater in MFCs-AEC coupled system. Environmental Research, 2020, 184, 109283.	3.7	15
799	Copper Cobalt Selenide as a High-Efficiency Bifunctional Electrocatalyst for Overall Water Splitting: Combined Experimental and Theoretical Study. ACS Applied Energy Materials, 2020, 3, 3092-3103.	2.5	60
800	General Approach for the Synthesis of Nitrogen-Doped Carbon Encapsulated Mo and W Phosphide Nanostructures for Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 2811-2820.	2.5	22
801	Ultrafast microwave manufacturing of MoP/MoO2/carbon nanotube arrays for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2020, 24, 809-819.	1.2	11
802	Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63, 921-948.	3.5	76
803	Design and modulation principles of molybdenum carbide-based materials for green hydrogen evolution. Journal of Energy Chemistry, 2020, 48, 398-423.	7.1	39
804	Ultrafine α-CoOOH Nanorods Activated with Iron for Exceptional Oxygen Evolution Reaction. Langmuir, 2020, 36, 2223-2230.	1.6	21
805	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
806	A nanostructured MoO ₂ /MoS ₂ /MoP heterojunction electrocatalyst for the hydrogen evolution reaction. Nanotechnology, 2020, 31, 225403.	1.3	24

#	Article	IF	CITATIONS
807	Hierarchical star-like molybdenum phosphides nanostructures decorated graphene on 3D foam as self-supported electrocatalyst for hydrogen evolution reaction. Solid State Sciences, 2020, 101, 106143.	1.5	9
808	Amorphous FeO _x (<i>x</i> = 1, 1.5) coated Cu ₃ P nanosheets with bamboo leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts. Journal of Materials Chemistry A, 2020, 8, 3351-3356.	5.2	17
809	Transition metal-doped FeP nanoparticles for hydrogen evolution reaction catalysis. Applied Surface Science, 2020, 510, 145427.	3.1	43
810	Iron-doped nickle cobalt ternary phosphide hyperbranched hierarchical arrays for efficient overall water splitting. Electrochimica Acta, 2020, 334, 135633.	2.6	38
811	Facile synthesis of one-dimensional MoWP hybrid nanowires and their enhanced electrochemical catalytic activities. Chemical Physics Letters, 2020, 741, 137107.	1.2	6
812	High Capacity and Energy Density of Zn–Ni–Co–P Nanowire Arrays as an Advanced Electrode for Aqueous Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2020, 12, 9158-9168.	4.0	115
813	Accelerated alkaline hydrogen evolution on M(OH) _x /M-MoPO _x (M = Ni, Co, Fe,) Tj ETQo Science, 2020, 11, 2487-2493.	0 0 0 rgB1 3.7	[Overlock] 54
814	Stringing Bimetallic Metal–Organic Frameworkâ€Derived Cobalt Phosphide Composite for High‣fficiency Overall Water Splitting. Advanced Science, 2020, 7, 1903195.	5.6	214
815	Biomass-derived self-supported porous carbon membrane embedded with Co nanoparticles as an advanced electrocatalyst for efficient and robust hydrogen evolution reaction. Renewable Energy, 2020, 155, 447-455.	4.3	26
816	Confinement Effect of Mesopores: In Situ Synthesis of Cationic Tungsten-Vacancies for a Highly Ordered Mesoporous Tungsten Phosphide Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 22741-22750.	4.0	34
817	MoP nanoparticles encapsulated in P-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Catalysis Communications, 2020, 140, 106000.	1.6	17
818	A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 2020, 39, 335-351.	3.6	196
819	Ultrathin-layered MoS2 hollow nanospheres decorating Ni3S2 nanowires as high effective self-supporting electrode for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 13149-13162.	3.8	31
820	Free-standing phosphorous-doped molybdenum nitride in 3D carbon nanosheet towards hydrogen evolution at all pH values. Journal of Energy Chemistry, 2020, 50, 44-51.	7.1	38
821	Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale, 2020, 12, 9327-9351.	2.8	88
822	Preparation of cobalt-based nanomaterials carried by nitrogen-doped carbon nanotubes as high performance electrocatalysts for hydrogen evolution reaction. New Carbon Materials, 2020, 35, 87-96.	2.9	7
823	Facile electrodeposition of V-doped CoP on vertical graphene for efficient alkaline water electrolysis. RSC Advances, 2020, 10, 13016-13020.	1.7	11
824	Selfâ€Supported FePâ€CoMoP Hierarchical Nanostructures for Efficient Hydrogen Evolution. Chemistry - an Asian Journal, 2020, 15, 1590-1597.	1.7	6

#	Article	IF	CITATIONS
825	Self-Epitaxial Hetero-Nanolayers and Surface Atom Reconstruction in Electrocatalytic Nickel Phosphides. ACS Applied Materials & amp; Interfaces, 2020, 12, 21616-21622.	4.0	9
826	Porous Ni-Mo bimetallic hybrid electrocatalyst by intermolecular forces in precursors for enhanced hydrogen generation. Chemical Engineering Journal, 2021, 405, 126962.	6.6	28
827	Water Adsorption and Dissociation Promoted by Co*-/N-C*-Biactive Sites of Metallic Co/N-Doped Carbon Hybrids for Efficient Hydrogen Evolution. Applied Catalysis B: Environmental, 2021, 282, 119463.	10.8	77
828	Stable CO/H2 ratio on MoP surfaces under working condition: A DFT based thermodynamics study. Surface Science, 2021, 703, 121738.	0.8	0
829	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
830	The mechanism and surface engineering of carbon encapsulate defects-rich molybdenum phosphide for the hydrogen evolution reaction in alkaline media. Journal of Alloys and Compounds, 2021, 850, 156737.	2.8	16
831	Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 283, 119583.	10.8	78
832	Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy and Environment, 2021, 6, 458-478.	4.7	79
833	Computational and experimental investigation of Co and S-doped Ni ₂ P as an efficient electrocatalyst for acid mediated proton exchange membrane hydrogen evolution reaction. Catalysis Science and Technology, 2021, 11, 861-873.	2.1	16
834	A review: Target-oriented transition metal phosphide design and synthesis for water splitting. International Journal of Hydrogen Energy, 2021, 46, 5131-5149.	3.8	80
835	In-situ Synthesis of Coral-Like Molybdenum Phosphide (MoP) Microspheres for Lithium-Ion Battery. Acta Metallurgica Sinica (English Letters), 2021, 34, 401-409.	1.5	7
836	Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. Journal of Materials Science and Technology, 2021, 77, 108-116.	5.6	48
837	Recent Progress of Transition Metal Phosphides for Photocatalytic Hydrogen Evolution. ChemSusChem, 2021, 14, 539-557.	3.6	76
838	Melamine-assisted synthesis of ultrafine Mo2C/Mo2N@N-doped carbon nanofibers for enhanced alkaline hydrogen evolution reaction activity. Science China Materials, 2021, 64, 1150-1158.	3.5	25
839	Structural engineering of Ti-Mn bimetallic phosphide nanotubes for efficient photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 3605-3614.	3.8	11
840	Growth of 2D MoP single crystals on liquid metals by chemical vapor deposition. Science China Materials, 2021, 64, 1182-1188.	3.5	15
841	Wide pH range electrocatalytic hydrogen evolution using molybdenum phosphide nanoparticles uniformly anchored on porous carbon cloth. Ceramics International, 2021, 47, 9347-9353.	2.3	5
842	A density functional calculations on electronic, magnetic, optical, mechanical and half-metallic properties in molybdenum based pnictogens in GGA and GGA+U approach. Materials Chemistry and Physics, 2021, 260, 124159.	2.0	8

#	Article	IF	CITATIONS
843	Co–Mo–P carbon nanospheres derived from metal–organic frameworks as a high-performance electrocatalyst towards efficient water splitting. Journal of Materials Chemistry A, 2021, 9, 1143-1149.	5.2	36
844	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117
845	Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie, 2021, 133, 5835-5841.	1.6	37
846	First-principles investigation of the hydrogen evolution reaction of transition metal phosphides CrP, MnP, FeP, CoP, and NiP. Physical Chemistry Chemical Physics, 2021, 23, 2305-2312.	1.3	24
847	Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chemical Communications, 2021, 57, 417-440.	2.2	34
848	Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5771-5777.	7.2	182
849	Proton-induced fast preparation of size-controllable MoS2 nanocatalyst towards highly efficient water electrolysis. Chinese Chemical Letters, 2021, 32, 1191-1196.	4.8	8
850	A highly active composite electrocatalyst Ni–Fe–P–Nb2O5/NF for overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 581-588.	3.8	7
851	In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Metals, 2021, 40, 1373-1382.	3.6	87
852	Phase-dependent electrocatalytic activity of colloidally synthesized WP and α-WP ₂ electrocatalysts for hydrogen evolution reaction. New Journal of Chemistry, 2021, 45, 15594-15606.	1.4	10
854	Design of charge transfer channels: defective TiO ₂ /MoP supported on carbon cloth for solar-light-driven hydrogen generation. Inorganic Chemistry Frontiers, 2021, 8, 2017-2026.	3.0	6
855	Double layer lanthanide –Pt/TiO ₂ nanotube arrays electrode as a cost-highly efficient electrocatalyst for hydrogen evolution in acid media. Journal of Experimental Nanoscience, 2021, 16, 81-100.	1.3	6
856	Research Progress of Electrocatalyst for Hydrogen Evolution Reaction. Hans Journal of Nanotechnology, 2021, 11, 155-165.	0.1	0
857	Metal–organic framework (MOF) derived flower-shaped CoSe ₂ nanoplates as a superior bifunctional electrocatalyst for both oxygen and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 4992-5000.	2.5	22
858	Bimetallic Phosphides as High-Efficient Electrocatalysts for Hydrogen Generation. Inorganic Chemistry, 2021, 60, 1624-1630.	1.9	31
859	Self-Limiting Growth of Single-Layer N-Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production. ACS Applied Materials & amp; Interfaces, 2021, 13, 4294-4304.	4.0	16
860	Doping and strain effect on hydrogen evolution reaction catalysts of NiP ₂ . Wuli Xuebao/Acta Physica Sinica, 2021, 70, 148802-148802.	0.2	0
861	Amine-functionalized multi-walled carbon nanotubes (EDA-MWCNTs) for electrochemical water splitting reactions. New Journal of Chemistry, 2021, 45, 3932-3939.	1.4	17

#	Article	IF	CITATIONS
862	Porous nickel powder supported Ni–P/CNTs: an efficient catalyst for hydrogen production via water splitting. Journal of Porous Materials, 2021, 28, 543-554.	1.3	2
863	Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chemical Society Reviews, 2021, 50, 8790-8817.	18.7	331
864	Highly Efficient Electrocatalytic Water Splitting. , 2021, , 1335-1367.		1
865	Tuning the interfacial electronic structure <i>via</i> Au clusters for boosting photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1759-1769.	5.2	33
866	<i>In situ</i> transformation of Fe-doped Ni ₁₂ P ₅ into low-crystallized NiFe ₂ O ₄ with high-spin Fe ⁴⁺ for efficient electrocatalytic water oxidation. Journal of Materials Chemistry A, 2021, 9, 10289-10296.	5.2	10
867	Self-supported nickel-doped molybdenum carbide nanoflower clusters on carbon fiber paper for an efficient hydrogen evolution reaction. Nanoscale, 2021, 13, 8264-8274.	2.8	96
868	Multiâ€Elemental Electronic Coupling for Enhanced Hydrogen Generation. Small, 2021, 17, e2006617.	5.2	6
869	Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews, 2021, 4, 473-507.	13.1	224
870	Active Site Engineering in Transition Metal Based Electrocatalysts for Green Energy Applications. Accounts of Materials Research, 2021, 2, 147-158.	5.9	11
871	Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chinese Chemical Letters, 2021, 32, 2679-2692.	4.8	11
872	Ultrafine Ni2P Nanoparticle-Decorated r-GO: A Novel Liquid-Phase Approach and Dibenzothiophene Hydro-desulfurization. Industrial & Engineering Chemistry Research, 2021, 60, 4300-4309.	1.8	1
873	Impact of Surface Hydrophilicity on Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 11940-11947.	4.0	65
874	Controlled synthesis and high performance of Zn–Ni–Co–M (MÂ=ÂO, S, P and Se) nanoneedle arrays as an advanced electrode for overall water splitting. Applied Surface Science, 2021, 543, 148818.	3.1	22
875	Incorporation of Metal Phosphide Domains into Colloidal Hybrid Nanoparticles. Inorganic Chemistry, 2021, 60, 4278-4290.	1.9	7
876	Liâ€Ion Intercalated Exfoliated WS ₂ Nanosheets with Enhanced Electrocatalytic Hydrogen Evolution Performance. Crystal Research and Technology, 2021, 56, 2000165.	0.6	9
877	Direct Synthesis of Molybdenum Phosphide Nanorods on Silicon Using Graphene at the Heterointerface for Efficient Photoelectrochemical Water Reduction. Nano-Micro Letters, 2021, 13, 81.	14.4	20
878	Electronic structure modulation of MoS2 by substitutional Se incorporation and interfacial MoO3 hybridization: Implications of Fermi engineering for electrocatalytic hydrogen evolution and oxygen evolution. Chemical Physics Reviews, 2021, 2, .	2.6	8
879	Phosphorus-Doped Metal–Organic Framework-Derived CoS ₂ Nanoboxes with Improved Adsorption-Catalysis Effect for Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15226-15236.	4.0	51

#	Article	IF	CITATIONS
880	Priority of Mixed Diamine Ligands in Cobalt Dithiolene Complex-Catalyzed H2 Evolution: A Theoretical Study. Inorganic Chemistry, 2021, 60, 6688-6695.	1.9	1
881	Insights into the principles, design methodology and applications of electrocatalysts towards hydrogen evolution reaction. Energy Reports, 2021, 7, 8577-8596.	2.5	4
882	Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Research, 0, , 1.	5.8	12
883	NiCo Nanoneedles on 3D Carbon Nanotubes/Carbon Foam Electrode as an Efficient Bi-Functional Catalyst for Electro-Oxidation of Water and Methanol. Catalysts, 2021, 11, 500.	1.6	5
884	Optimized MoP with Pseudo-Single-Atom Tungsten for Efficient Hydrogen Electrocatalysis. Chemistry of Materials, 2021, 33, 3639-3649.	3.2	20
885	Solvent Mediated Fabrication of Ditched Hollow Indium Sulfide (In ₂ S ₃) Spheres for Overall Electrocatalytic Water Splitting. Journal of the Electrochemical Society, 2021, 168, 066510.	1.3	7
886	Self-supported Mo0.2Co0.8P nanowire arrays on carbon cloth as a high-performance and durable hydrogen evolution reaction electrocatalyst in wide-range pH. Journal of Electroanalytical Chemistry, 2021, 888, 115201.	1.9	3
887	Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values. ACS Applied Materials & Interfaces, 2021, 13, 22077-22097.	4.0	133
888	Active Site Identification and Interfacial Design of a MoP/N-Doped Carbon Catalyst for Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 5486-5492.	2.5	13
889	Enhanced catalytic hydrogen evolution reaction performance of highly dispersed Ni2P nanoparticles supported by P-doped porous carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126308.	2.3	10
890	Origins of the Instability of Nonprecious Hydrogen Evolution Reaction Catalysts at Open-Circuit Potential. ACS Energy Letters, 2021, 6, 2268-2274.	8.8	44
891	Enhanced Hydrogen Evolution Activity of Phosphorusâ€Rich Tungsten Phosphide by Cobalt Doping: A Comprehensive Study of the Active Sites and Electronic Structure. ChemElectroChem, 2021, 8, 1658-1664.	1.7	7
892	Revealing the catalytic micro-mechanism of MoN, WN and WC on hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 23615-23628.	3.8	14
893	Hydrazine-assisted electrochemical hydrogen production by efficient and self-supported electrodeposited Ni-Cu-P@Ni-Cu nano-micro dendrite catalyst. Electrochimica Acta, 2021, 382, 138335.	2.6	46
894	Meritorious spatially on hierarchically Co3O4/MoS2 phase nanocomposite synergistically a high-efficient electrocatalyst for hydrogen evolution reaction performance: Recent advances & future perspectives. International Journal of Hydrogen Energy, 2021, 46, 22707-22718.	3.8	24
895	Spin Polarization Properties of Two Dimensional GaP3 Induced by 3d Transition-Metal Doping. Micromachines, 2021, 12, 743.	1.4	2
896	Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals, 2021, 40, 3375-3405.	3.6	112
897	Cyclooligophosphanes and their coordination chemistry. Coordination Chemistry Reviews, 2021, 437, 213749.	9.5	13

#	Article	IF	CITATIONS
898	Molybdenum phosphide (MoP) with dual active sites for the degradation of diclofenac in Fenton-like system. Chinese Chemical Letters, 2022, 33, 1321-1324.	4.8	22
899	Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas. Journal of Fuel Chemistry and Technology, 2021, 49, 952-958.	0.9	1
900	MOF-derived CoP3/FeP on nitrogen-doped carbon nanoarray boosted high-performance hydrogen evolution. Journal of Electroanalytical Chemistry, 2021, 895, 115521.	1.9	4
901	Elucidating the mechanistic origins of P dopants triggered active sites and direct Z-scheme charge transfer by P-MoS2@WO3 heterostructures for efficient photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 872, 159637.	2.8	13
902	Dual Doping of MoP with M(Mn,Fe) and S to Achieve High Hydrogen Evolution Reaction Activity in Both Acidic and Alkaline Media. ChemCatChem, 2021, 13, 4392-4402.	1.8	6
903	Strategies for the enhanced water splitting activity over metal–organic frameworks-based electrocatalysts and photocatalysts. Materials Today Nano, 2021, 15, 100124.	2.3	28
904	Directly sputtered nickel electrodes for alkaline water electrolysis. Electrochimica Acta, 2021, 386, 138458.	2.6	21
905	Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction. Composites Communications, 2021, 26, 100792.	3.3	38
906	Facile Fabrication of Robust Hydrogen Evolution Electrodes under High Current Densities via Pt@Cu Interactions. Advanced Functional Materials, 2021, 31, 2105579.	7.8	45
907	Core-shell Ni2P@CoP nanoarrays supported on NF as a highly efficient electrocatalyst for hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126526.	2.3	18
908	Hydrogen evolution catalysis by terminal molybdenum-oxo complexes. IScience, 2021, 24, 102924.	1.9	14
909	Investigation of Strain and Transition-Metal Doping Effect on Hydrogen Evolution Reaction Catalysts of Mo ₂ C, MoP, and Ni ₂ P. Journal of Physical Chemistry C, 2021, 125, 19119-19130.	1.5	9
910	Rational design of multifunctional electrocatalyst: An approach towards efficient overall water splitting and rechargeable flexible solid-state zinc–air battery. Applied Catalysis B: Environmental, 2022, 300, 120752.	10.8	150
911	FeNi2P three-dimensional oriented nanosheet array bifunctional catalysts with better full water splitting performance than the full noble metal catalysts. Journal of Colloid and Interface Science, 2022, 608, 2192-2202.	5.0	20
912	Novel Ni2P-microporous nickel phosphite supported on nitrogen-doped graphene composite electrocatalyst for efficient hydrogen evolution reaction. Nanotechnology, 2021, 32, 505703.	1.3	1
913	Robust carbon-encapsulated Ni nanoparticles as high-performance electrocatalysts for the hydrogen evolution reaction in highly acidic media. Electrochimica Acta, 2021, 398, 139332.	2.6	11
914	One-step plasma nitriding synthesis of NixN/NF (xÂ=Â3, 4) for efficient hydrogen evolution. Applied Surface Science, 2021, 561, 149972.	3.1	11
915	Tri-molybdenum phosphide (Mo3P) and multi-walled carbon nanotube junctions for volatile organic compounds (VOCs) detection. Applied Physics Letters, 2021, 119, .	1.5	4

#	Article	IF	CITATIONS
916	Interface Passivation of Inverted Perovskite Solar Cells by Dye Molecules. ACS Applied Energy Materials, 2021, 4, 9525-9533.	2.5	10
917	Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides. Chemical Engineering Journal, 2022, 430, 132699.	6.6	16
918	Phosphorus-doping induced electronic modulation of CoS2–MoS2 hollow spheres on MoO2 film-Mo foil for synergistically boosting alkaline hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 33388-33396.	3.8	10
919	Electronic Structure Modulation of Nanoporous Cobalt Phosphide by Carbon Doping for Alkaline Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2107333.	7.8	104
920	Selectively Se-doped Co3O4@CeO2 nanoparticle-dotted nanoneedle arrays for high-efficiency overall water splitting. Applied Surface Science, 2021, 562, 150227.	3.1	89
921	Porous N, P co-doped carbon-coated ultrafine Co2P nanoparticles derived from DNA: An electrocatalyst for highly efficient hydrogen evolution reaction. Electrochimica Acta, 2021, 393, 139051.	2.6	17
922	Morphology and distribution of in-situ grown MoP nanoparticles on carbon nanotubes to enhance hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 877, 160214.	2.8	19
923	Synthesis of Mo2C/MoC and Mo2C/MoC/MoP heterostructures supported on N-doped carbon as electrocatalyst for high-efficient hydrogen evolution reaction. Electrochimica Acta, 2021, 394, 139119.	2.6	22
924	Regulating Water Reduction Kinetics on MoP Electrocatalysts Through Se Doping for Accelerated Alkaline Hydrogen Production. Frontiers in Chemistry, 2021, 9, 737495.	1.8	6
925	A ternary calabash model photocatalyst (Pd/MoP)/CdS for enhancing H2 evolution under visible light irradiation. Applied Surface Science, 2021, 564, 150432.	3.1	20
926	Micro-indented-mechanically-engineered Ni-Fe-Mo-Cu alloying electrocatalyst for oxygen evolution reaction: A cost-effective approach for green hydrogen production. Electrochimica Acta, 2021, 400, 139345.	2.6	5
927	Corrosion of monometallic iron- and nickel-based electrocatalysts for the alkaline oxygen evolution reaction: A review. Journal of Power Sources, 2021, 510, 230387.	4.0	21
928	Rational design of core-shell-structured CoP @FeOOH for efficient seawater electrolysis. Applied Catalysis B: Environmental, 2021, 294, 120256.	10.8	141
929	NiSe2@NixSy nanorod on nickel foam as efficient bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 34713-34726.	3.8	16
930	MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries. Journal of Materials Science and Technology, 2021, 90, 37-44.	5.6	34
931	In situ synthesis of dicobalt phosphide on tungsten carbide-cobalt cemented carbide substrates as a hydrogen evolution reaction electrocatalyst. Scripta Materialia, 2021, 204, 114159.	2.6	7
932	Nanostructured NiCo2S4@NiCo2O4-reduced graphene oxide as an efficient hydrogen evolution electrocatalyst in alkaline electrolyte. Journal of Colloid and Interface Science, 2021, 601, 570-580.	5.0	22
933	Interfacial interaction between molybdenum phosphide and N, P co-doped hollow carbon fibers boosting the oxygen electrode reactions in zinc-air batteries. Electrochimica Acta, 2021, 395, 139211.	2.6	8

		15	0
#	ARTICLE	IF	CITATIONS
934	Mo2C quantum dots inlaid in nitrogen-doped carbon nanofibers as free-standing anodes with long-term stability K-ion storage. Journal of Alloys and Compounds, 2021, 888, 161498.	2.8	8
935	Interfacial charge transfer in carbon nitride heterojunctions monitored by optical methods. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100453.	5.6	26
936	Dual-phase amorphous-nanocrystalline nanoporous sites activated in Mo inserted CuTi metallic glass as efficient electrocatalysts for hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 886, 161270.	2.8	7
937	Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 299, 120657.	10.8	57
938	In situ coupled MoO3 with CoP/rGO to construct three-dimensional self-supported catalyst for highly efficient alkaline hydrogen evolution reaction. Journal of Materials Science and Technology, 2022, 104, 194-201.	5.6	15
939	Electronic wastes: A near inexhaustible and an unimaginably wealthy resource for water splitting electrocatalysts. Journal of Hazardous Materials, 2022, 421, 126687.	6.5	18
940	Fe–Co–P multi-heterostructure arrays for efficient electrocatalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 24677-24685.	5.2	64
941	Carbon nitride used as a reactive template to prepare mesoporous molybdenum sulfide and nitride. RSC Advances, 2021, 11, 21678-21684.	1.7	6
942	Investigation on the key factors of MoP catalysts prepared by a carbothermal reduction method for dry reforming of methane. Catalysis Science and Technology, 2021, 11, 3818-3825.	2.1	9
943	Pulse electrodeposited CoFeNiP as a highly active and stable electrocatalyst for alkaline water electrolysis. Sustainable Energy and Fuels, 2021, 5, 3172-3181.	2.5	6
944	Recent Advanced Study of Novel Electrode Materials. Advances in Analytical Chemistry, 2021, 11, 200-216.	0.1	1
945	Highly dispersed CoP on three-dimensional ordered mesoporous FeP for efficient electrocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 23574-23581.	5.2	28
946	A self-supported NiCo ₂ O ₄ /Cu _x O nanoforest with electronically modulated interfaces as an efficient electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 14466-14476.	5.2	52
947	P doped CoMoO4/RGO as an efficient hybrid catalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 15157-15165.	3.8	19
948	Cu2SnS3 nanocrystals decorated rGO nanosheets towards efficient and stable hydrogen evolution reaction in both acid and alkaline solutions. Materials Today Energy, 2020, 17, 100435.	2.5	12
949	Utilizing hydrogen underpotential deposition in CO reduction for highly selective formaldehyde production under ambient conditions. Green Chemistry, 2020, 22, 5639-5647.	4.6	14
950	Recent advancement in the electrocatalytic synthesis of ammonia. Nanoscale, 2020, 12, 8065-8094.	2.8	37
951	Carbon-Decorated Fe ₃ S ₄ -Fe ₇ Se ₈ Hetero-Nanowires: Interfacial Engineering for Bifunctional Electrocatalysis Toward Hydrogen and Oxygen Evolution Reactions. Journal of the Electrochemical Society, 2020, 167, 086501.	1.3	14

#	Article	IF	CITATIONS
952	Communication—Electrodeposited Co–Mo–P–TiO ₂ Composites Electrocatalysts for the Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2020, 167, 132502.	1.3	8
953	Co ₉ S ₈ Nanotubes as an Efficient Catalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte. American Journal of Analytical Chemistry, 2016, 07, 210-218.	0.3	9
954	Synthesis and Applications of Colloidal Nanomaterials of Main Group- and Transition- Metal Phosphides. Indian Institute of Metals Series, 2021, , 461-536.	0.2	1
955	The local electronic structure modulation of the molybdenum selenide–nitride heterojunction for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 26113-26118.	5.2	22
956	Unlocking the catalytic activities of 2H-phase Mo-based compounds via topological conversion reaction. Materials Today, 2021, 51, 136-144.	8.3	11
957	MOF-derived Zn–Co–Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy and Environment, 2023, 8, 798-811.	4.7	11
958	Recent advances in Co-based co-catalysts for efficient photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2022, 608, 1553-1575.	5.0	15
959	Electrochemical Surface Restructuring of Phosphorus-Doped Carbon@MoP Electrocatalysts for Hydrogen Evolution. Nano-Micro Letters, 2021, 13, 215.	14.4	63
960	Spontaneous amorphous oxide-interfaced ultrafine noble metal nanoclusters for unexpected anodic electrocatalysis. Chem Catalysis, 2021, 1, 1104-1117.	2.9	14
961	3D Catalysts of Mo(W) Carbide, Nitride, Oxide, Phosphide, and Boride. Advances in Chemical and Materials Engineering Book Series, 2017, , 53-99.	0.2	0
962	Superstructures of Organic–Polyoxometalate Coâ€crystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	2
963	Superstructures of Organic–Polyoxometalate Coâ€crystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
964	Cu3P@Ni core-shell heterostructure with modulated electronic structure for highly efficient hydrogen evolution. Nano Research, 2022, 15, 2935-2942.	5.8	35
965	Molybdenum Diphosphide Nanorods with Laserâ€Potentiated Peroxidase Catalytic/Mildâ€Photothermal Therapy of Oral Cancer. Advanced Science, 2022, 9, e2101527.	5.6	18
966	Carbon Dioxide Utilisation—The Formate Route. , 2021, , 29-81.		9
967	Highly Efficient Electrocatalytic Water Splitting. , 2020, , 1-33.		0
968	Interface Engineering and Anion Engineering of Moâ€Based Heterogeneous Electrocatalysts for Hydrogen Evolution Reaction. Energy and Environmental Materials, 2023, 6, .	7.3	30
969	Early Transition-Metal-Based Binary Oxide/Nitride for Efficient Electrocatalytic Hydrogen Evolution from Saline Water in Different pH Environments. ACS Applied Materials & Interfaces, 2021, 13, 53702-53716.	4.0	22

#	Article	IF	CITATIONS
970	Modification of NiCo-S with Phytate for Enhanced Electrocatalytic Hydrogen Evolution Activity. Journal of the Electrochemical Society, 2021, 168, 114504.	1.3	1
971	FeNiP/MoOx integrated electrode grown on monocrystalline NiMoO4 nanorods with multi-interface for accelerating alkaline hydrogen evolution reaction. Applied Catalysis B: Environmental, 2022, 303, 120913.	10.8	55
972	Janus Mo ₂ P ₃ Monolayer as an Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 57422-57429.	4.0	10
973	Metallic and bimetallic phosphides-based nanomaterials for photocatalytic hydrogen production and water detoxification: a review. Environmental Chemistry Letters, 2022, 20, 597-632.	8.3	12
974	Analysis and modeling of high-performance polymer electrolyte membrane electrolyzers by machine learning. International Journal of Hydrogen Energy, 2022, 47, 2134-2151.	3.8	13
975	Critical Role of Phosphorus in Hollow Structures Cobaltâ€Based Phosphides as Bifunctional Catalysts for Water Splitting. Small, 2022, 18, e2103561.	5.2	54
976	MoS2 supported on Er-MOF as efficient electrocatalysts for hydrogen evolution reaction. Journal of Alloys and Compounds, 2022, 898, 162991.	2.8	21
977	Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity. Npj Computational Materials, 2021, 7, .	3.5	41
978	Non-precious hydrogen evolution reaction catalysts: Stepping forward to practical polymer electrolyte membrane-based zero-gap water electrolyzers. Chemical Engineering Journal, 2022, 433, 133681.	6.6	28
979	Low loading of P modified Rh nanoparticles encapsulated in N, P-doped carbon for boosted and pH-universal hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 3791-3800.	3.8	7
980	Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 431, 133923.	6.6	36
981	Optimal preparation of molybdenum phosphide cocatalyst for efficient dye-sensitized photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 3814-3823.	3.8	6
982	Facile Preparation of Nanosized MoP as Cocatalyst Coupled with TiO2 for Highly Efficient Photocatalytic H2 Production. Catalysis Letters, 2022, 152, 3192-3201.	1.4	4
983	Se-Incorporated Porous Carbon/Ni ₅ P ₄ Nanostructures for Electrocatalytic Hydrogen Evolution Reaction with Waste Heat Management. ACS Applied Nano Materials, 2022, 5, 1385-1396.	2.4	16
984	Insightful view on the active sites of Ni/NixP for hydrogen evolution reaction. Applied Materials Today, 2022, 26, 101343.	2.3	8
985	Metal/antiperovskite metal nitride composites Ag/AgNNi3 as novel efficient electrocatalysts for hydrogen evolution reaction in alkaline media. Journal of Materials Science and Technology, 2022, 112, 222-229.	5.6	8
986	Photovoltaic powered solar hydrogen production coupled with waste SO2 valorization enabled by MoP electrocatalysts. Applied Catalysis B: Environmental, 2022, 305, 121045.	10.8	11
987	Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting. Journal of Energy Chemistry, 2022, 68, 494-520.	7.1	70

#	Article	IF	CITATIONS
988	Sulfurâ€doped molybdenum phosphide as fast dis/charging anode for Liâ€ion and Naâ€ion batteries. International Journal of Energy Research, 2022, 46, 8452-8463.	2.2	7
989	Electronic Structure Modulation in MoO ₂ /MoP Heterostructure to Induce Fast Electronic/Ionic Diffusion Kinetics for Lithium Storage. Advanced Science, 2022, 9, e2104504.	5.6	58
990	Tunable <scp>Ruâ€Ru₂P</scp> heterostructures with charge redistribution for efficient <scp>pHâ€universal</scp> hydrogen evolution. InformaÄnÃ-Materiály, 2022, 4, .	8.5	53
991	Oxides free nanomaterials for (photo)electrochemical water splitting. , 2022, , 369-408.		1
992	A phosphorus modified mesoporous AuRh film as an efficient bifunctional electrocatalyst for urea-assisted energy-saving hydrogen production. Journal of Materials Chemistry A, 2022, 10, 3086-3092.	5.2	10
993	Ultrafine Mo ₂ C nanoparticles embedded in an MOF derived N and P co-doped carbon matrix for an efficient electrocatalytic oxygen reduction reaction in zinc–air batteries. Nanoscale, 2022, 14, 2065-2073.	2.8	16
994	Progress in Preparation and Research of Water Electrolysis Catalyst for Transition Metal Phosphide. Journal of Physics: Conference Series, 2022, 2152, 012063.	0.3	0
995	Enhanced electrocatalytic activity of <i>in situ</i> carbon encapsulated molybdenum phosphide derived from a hybrid POM for the HER over a wide pH range. Sustainable Energy and Fuels, 2022, 6, 289-298.	2.5	4
996	Electrochemical Water Splitting: H2 Evolution Reaction. Materials Horizons, 2022, , 59-89.	0.3	2
997	Metal-nanocluster science and technology: my personal history and outlook. Physical Chemistry Chemical Physics, 2022, 24, 7569-7594.	1.3	15
998	Highâ€efficiency photocatalytic hydrogen production by nanorods NiMoO 4 supported NiCoP nanosheets. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	2
999	Electrocatalytic hydrogen evolution reaction on sulfur-deficient MoS2 nanostructures. International Journal of Hydrogen Energy, 2022, 47, 7713-7723.	3.8	24
1000	Enhance the anchoring and catalytic performance of lithium-sulfur batteries for lithium polysulfide by predicted TiS2 monolayer. Materials Today Communications, 2022, 30, 103196.	0.9	6
1001	Mo- and W-molecular catalysts for the H2 evolution, CO2 reduction and N2 fixation. Coordination Chemistry Reviews, 2022, 457, 214400.	9.5	6
1002	Enhancing the electrochemical hydrogen evolution of CoP3/CoMoP nanosheets through the support of black TiO2â^'x nanotube arrays. Journal of Alloys and Compounds, 2022, 905, 164165.	2.8	10
1003	Part II: NiMoO4 Nanostructures Synthesized by the Solution Combustion Method: A Parametric Study on the Influence of Material Synthesis and Electrode-Fabrication Parameters on the Electrocatalytic Activity in the Hydrogen Evolution Reaction. Molecules, 2022, 27, 1199.	1.7	2
1004	Interfacial Electron Transfer Strategy to Improve the Hydrogen Evolution Catalysis of CrP Heterostructure. Small, 2022, 18, e2106139.	5.2	9
1005	Smart Designs of Mo Based Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 2022, 12, 2.	1.6	8

#	Article	IF	CITATIONS
1006	Tracking the <i>in situ</i> generation of hetero-metal–metal bonds in phosphide electrocatalysts for electrocatalysts for electrocatalytic hydrogen evolution. Catalysis Science and Technology, 2022, 12, 3234-3239.	2.1	3
1007	Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy and Environmental Science, 2022, 15, 1672-1681.	15.6	41
1008	Hierarchical Mo _{<i>x</i>} C@NC hollow microsphere with incorporated Mo vacancies as multifunctional confined reactors for high-loading Li–S batteries. Inorganic Chemistry Frontiers, 2022, 9, 2194-2203.	3.0	6
1009	Priority Occupation of C-Sites by N-Confining P-Implantation in Pyrrodic N-Sites in NCNT@P,N-Mo ₂ C for Highly Efficient Electrocatalytic Hydrogen Evolution. Langmuir, 2022, 38, 3795-3803.	1.6	3
1010	MoP Quantum Dot-Modified N,P-Carbon Nanotubes as a Multifunctional Separator Coating for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16289-16299.	4.0	21
1011	Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy. Electrochemical Science Advances, 2023, 3, .	1.2	8
1012	Dual-Anion Doping Enables NiSe ₂ Electrocatalysts to Accelerate Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 5036-5043.	2.5	12
1013	Self-assembled cotton-like copper–molybdenum sulfide and phosphide as a bifunctional electrode for green energy storage and production. Materials Today Chemistry, 2022, 24, 100848.	1.7	10
1014	MOF-derived RuCoP nanoparticles-embedded nitrogen-doped polyhedron carbon composite for enhanced water splitting in alkaline media. Journal of Colloid and Interface Science, 2022, 616, 803-812.	5.0	26
1015	Heterostructure of polyoxometalate/zinc-iron-oxide nanoplates as an outstanding bifunctional electrocatalyst for the hydrogen and oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 618, 419-430.	5.0	23
1016	Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chemical Engineering Journal, 2022, 439, 135758.	6.6	79
1017	Investigations on the Formation of Transition Metal Phosphides during the Hydrotreating of Light Cycle Oil. Russian Journal of Applied Chemistry, 2021, 94, 1536-1545.	0.1	2
1018	Challenges of modeling nanostructured materials for photocatalytic water splitting. Chemical Society Reviews, 2022, 51, 3794-3818.	18.7	64
1019	First principles study of optoelectronic and photocatalytic performance of novel transition metal dipnictide XP ₂ (X = Ti, Zr, Hf) monolayers. RSC Advances, 2022, 12, 11202-11206.	1.7	2
1020	A large scale self-supported WP–W ₂ C nanoporous network for efficient hydrogen evolution reaction in alkaline media. Journal of Materials Chemistry A, 2022, 10, 10990-10997.	5.2	9
1021	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121
1022	Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. EScience, 2022, 2, 304-310.	25.0	171
1023	Ternary <scp>Niâ€Moâ€P</scp> catalysts for enhanced activity and durability in proton exchange membrane water electrolysis. International Journal of Energy Research, 2022, 46, 13023-13034.	2.2	7

# 1025	ARTICLE Hybrid-metal hydroxyl fluoride nanosheet arrays as a bifunctional electrocatalyst for efficient overall water splitting. Journal of Materials Chemistry A, 2022, 10, 11774-11783.	IF 5.2	CITATIONS
1026	Metal phosphide based electrocatalysts for water splitting. , 2022, , 293-324.		1
1027	Mof-Derived Co/Co3o4/C Hollow Structural Composite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1028	Interfacial Electronic Rearrangement and Synergistic Catalysis for Alkaline Water Splitting in Carbon Encapsulated Ni (111)/Ni3c (113) Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
1029	Ternary-phase nanostructure W ₃ P/WP/W for high-performance pH-universal water/seawater electrolysis. Materials Advances, 0, , .	2.6	2
1030	ElectroCatalytic Activity of Nickel Foam with Co, Mo, and Ni Phosphide Nanostructures. Plasma, 2022, 5, 221-232.	0.7	10
1031	MOF-based bimetallic diselenide nanospheres as a bifunctional efficient electrocatalysts for overall water splitting. Journal of Physics and Chemistry of Solids, 2022, 167, 110780.	1.9	4
1032	Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. Journal of Colloid and Interface Science, 2022, 622, 250-260.	5.0	48
1033	Boosting electrocatalytic hydrogen evolution over the wide pH range for CoP3 nanowire arrays via Ni doping. Journal of Alloys and Compounds, 2022, 915, 165440.	2.8	4
1034	Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceramics International, 2022, 48, 24866-24876.	2.3	77
1035	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
1036	Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Composites Part B: Engineering, 2022, 239, 109992.	5.9	96
1037	Subnanometer MoP clusters confined in mesoporous carbon (CMK-3) as superior electrocatalytic sulfur hosts for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2022, 446, 137050.	6.6	9
1038	Heterostructured Palladium–Nickel Sulfide on Plasma-Activated Nickel Foil for Robust Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 8064-8074.	3.2	7
1039	A single atom Ir doped heterophase of a NiMoP-NiMoP _{<i>x</i>} O _{<i>y</i>} ultrathin layer assembled on CNTs-graphene for high-performance water splitting. Journal of Materials Chemistry A, 2022, 10, 14604-14612.	5.2	12
1040	Boosting the Efficient Urea Synthesis Via Cooperative Electroreduction of N2 and Co2 on Mop. SSRN Electronic Journal, 0, , .	0.4	0
1041	Ni ₂ P nanowire arrays grown on Ni foam as an efficient monolithic cocatalyst for visible light dye-sensitized H ₂ evolution. Dalton Transactions, 2022, 51, 11029-11039.	1.6	2
1042	Transition Metal Nonâ€Oxides as Electrocatalysts: Advantages and Challenges. Small, 2022, 18, .	5.2	47

#	Article	IF	CITATIONS
1044	Mo-induced in-situ architecture of NixCoyP/Co2P heterostructure nano-networks on nickel foam as bifunctional electrocatalysts for overall water splitting. Sustainable Materials and Technologies, 2022, 33, e00461.	1.7	11
1045	Mo-doped NiCoP nanowire array grown in situ on Ni foam as a high-performance bifunctional electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 2022, 918, 165802.	2.8	19
1046	Oriented construction Cu3P and Ni2P heterojunction to boost overall water splitting. Chemical Engineering Journal, 2022, 448, 137706.	6.6	51
1047	Graphene oxide-based materials in electrocatalysis. , 2022, , 189-238.		0
1048	Efficient electron extraction by CoS ₂ loaded onto anatase TiO ₂ for improved photocatalytic hydrogen evolution. Journal of Physics Condensed Matter, 2022, 34, 344005.	0.7	2
1049	Experimental and DFT studies of flower-like Ni-doped Mo2C on carbon fiber paper: A highly efficient and robust HER electrocatalyst modulated by Ni(NO3)2 concentration. Journal of Advanced Ceramics, 2022, 11, 1294-1306.	8.9	75
1050	Transitionâ€metalâ€incorporated molybdenum phosphide nanocatalysts synthesized through postâ€synthetic transformation for the hydrogen evolution reaction. International Journal of Energy Research, 2022, 46, 17668-17681.	2.2	3
1051	Crystal phase engineering of electrocatalysts for energy conversions. Nano Research, 2022, 15, 10194-10217.	5.8	13
1052	An Insight on Molybdenum Phosphide and its Hybrids as Catalyst for Electrochemical Water splitting: A Mini-Review. Molecular Catalysis, 2022, 528, 112514.	1.0	3
1053	Coupling ceria with dual-phased molybdenum carbides for efficient and stable hydrogen evolution electrocatalysis at large-current-density in freshwater and seawater. Applied Catalysis B: Environmental, 2022, 317, 121774.	10.8	21
1054	Superhydrophilic Molybdenum Phosphide Quantum Dots on Porous Carbon Matrix for Boosting Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1055	Preparation of 2D Molybdenum Phosphide via Surfaceâ€Confined Atomic Substitution. Advanced Materials, 2022, 34, .	11.1	14
1056	Directly converting metal organic framework into designable complex architectures with rich co-arranged active species for efficient solar-driven water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 434, 114219.	2.0	4
1057	Molybdenum Oxynitride Atomic Nanoclusters Bonded in Nanosheets of N-Doped Carbon Hierarchical Microspheres for Efficient Sodium Storage. Nano-Micro Letters, 2022, 14, .	14.4	26
1058	Molybdenumâ€based electrocatalysts with nanostructured supports for hydrogen evolution reaction. International Journal of Applied Ceramic Technology, 2023, 20, 1129-1146.	1.1	3
1059	The role of the Pd ratio in increasing the activity of Pt for high efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 921, 116711.	1.9	5
1060	Molybdenum-vanadium diboride core @ amorphous nanoporous carbon shell composite as a novel electrode material for hybrid supercapacitor. Journal of Energy Storage, 2022, 54, 105380.	3.9	9
1061	Rapid and highly selective conversion of CO2 to methanol by heterometallic porous ZIF-8. Journal of CO2 Utilization, 2022, 64, 102172.	3.3	14

#	Article	IF	CITATIONS
1062	Facile one-step synthesis of CuGaS2 nanosheets and its electrocatalytic activity towards hydrogen evolution. Journal of Physics and Chemistry of Solids, 2022, 170, 110929.	1.9	0
1063	MOF-derived Co/Co3O4/C hollow structural composite as an efficient electrocatalyst for hydrogen evolution reaction. Fuel, 2022, 329, 125468.	3.4	16
1064	Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coordination Chemistry Reviews, 2022, 473, 214811.	9.5	57
1065	Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2022, 24, 20638-20673.	1.3	27
1066	In-situ exsolved NiS nanoparticle-socketed CdS with strongly coupled interfaces as a superior visible-light-driven photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2023, 321, 122028.	10.8	24
1067	Combined nano/micro-structure of Ni12P5-Ni2P nanorod array for effective wide pH range HER and overall alkaline water-splitting. Journal of Electroanalytical Chemistry, 2022, 925, 116862.	1.9	1
1068	Synthesis, structural and physical properties of new ternary metal-rich phosphides M3Ge2P (M = Mo) Tj ETQq0 0	0 _{1.4} BT /O	verlock 10 T 4
1069	Unraveling the Role of Defects in Electrocatalysts for Water Splitting: Recent Advances and Perspectives. Energy & Fuels, 2022, 36, 11660-11690.	2.5	15
1070	Greenly Reduced CoFeâ€PBA/Nickel Foam: A Robust Dual Electrocatalyst for Solarâ€Driven Alkaline Water Electrolysis with a Low Cell Voltage. ChemistrySelect, 2022, 7, .	0.7	13
1071	Interfacial Coupling and Defect-Induced Dual Effects Enabling Superhydrophilic Ni ₂ P/V ₂ O _{3–<i>x</i>} Heteronanosheets to Accelerate Alkaline Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 12262-12270.	3.2	8
1072	A Unified Theory for H ₂ Evolution on Mo-Based Electrocatalysts. ACS Energy Letters, 2022, 7, 3695-3702.	8.8	15
1073	Constructing MoS2@Co1.11Te2/Co-NCD with Te nanorods for efficient hydrogen evolution reaction and triiodide reduction. Materials Today Nano, 2022, 20, 100274.	2.3	5
1074	Metal organophosphates: electronic structure tuning from inert materials to universal alkali-metal-ion battery cathodes. Rare Metals, 2023, 42, 122-133.	3.6	3
1075	Platinum-free electrocatalysts for hydrogen oxidation reaction in alkaline media. Nano Energy, 2022, 104, 107877.	8.2	20
1076	Heterostructure Induced S pâ€Band Center Shift for Activating 1Tâ€MoS ₂ Basal Plane towards Hydrogen Evolution Reaction. ChemNanoMat, 2022, 8, .	1.5	2
1077	Investigations on molybdenum phosphide surfaces for CO2 adsorption and activation. Journal of CO2 Utilization, 2022, 65, 102246.	3.3	0
1078	Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion. Nano Research, 2022, 15, 10234-10267.	5.8	9
1079	Superhydrophilic molybdenum phosphide quantum dots on porous carbon matrix for boosting hydrogen evolution reaction. Chemical Engineering Journal, 2023, 454, 140105.	6.6	8

#	Article	IF	CITATIONS
1080	Engineering electron redistribution of bimetallic phosphates with CeO2 enables high-performance overall water splitting. Chemical Engineering Journal, 2023, 453, 139796.	6.6	68
1081	The Role of Discrepant Reactive Intermediates on Ruâ€Ru ₂ P Heterostructure for pHâ€Universal Hydrogen Oxidation Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32
1082	Core–Shell Carbon Nanofibersâ€NiFe Structure on 3D Porous Carbon Foam: Facilitating a Promising Trajectory toward Decarbonizing Energy Production. Advanced Sustainable Systems, 2022, 6, .	2.7	3
1083	Interfacial Electronic Rearrangement and Synergistic Catalysis for Alkaline Water Splitting in Carbon-Encapsulated Ni (111)/Ni3C (113) Heterostructures. Catalysts, 2022, 12, 1367.	1.6	2
1084	The Role of Discrepant Reactive Intermediates on Ruâ€Ru ₂ P Heterostructure for pHâ€Universal Hydrogen Oxidation Reaction. Angewandte Chemie, 2023, 135, .	1.6	3
1085	Unveiling the Metal Incorporation Effect of Steadyâ€Active FeP Hydrogen Evolution Nanocatalysts for Water Electrolyzer. Chemistry - A European Journal, 0, , .	1.7	1
1086	Rational Design of NiSe/ReSe ₂ Nanocomposite For Efficient Electrochemical Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 116512.	1.3	2
1087	Boosting the efficiency of urea synthesis <i>via</i> cooperative electroreduction of N ₂ and CO ₂ on MoP. Journal of Materials Chemistry A, 2022, 11, 232-240.	5.2	30
1088	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
1089	Interference effect of nitrogen-doped CQDs on tailoring nanostructure of CoMoP for improving high-effective water splitting. Electrochimica Acta, 2023, 438, 141595.	2.6	7
1090	A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coordination Chemistry Reviews, 2023, 478, 214956.	9.5	40
1091	Preparation of N-doped MoP-based core-shell nanorods and their electrocatalytic performance in hydrogen evolution. Journal of Fuel Chemistry and Technology, 2022, 50, 1437-1448.	0.9	2
1092	Rational engineering of metal–organic coordination networks into facetâ€controlled phosphides for overall water splitting. EcoMat, 2023, 5, .	6.8	2
1093	Evaluation of polymer electrolyte membrane electrolysis by explainable machine learning, optimum classification model, and active learning. Journal of Applied Electrochemistry, 2023, 53, 415-433.	1.5	3
1094	Rational Design of Transition Metal Phosphideâ€Based Electrocatalysts for Hydrogen Evolution. Advanced Functional Materials, 2023, 33, .	7.8	66
1095	Transition metals incorporated on phosphorene sheet as cost-effective single atom catalysts for hydrogen evolution reaction: A DFT study. Computational and Theoretical Chemistry, 2023, 1220, 113998.	1.1	3
1096	Switching on/off molybdenum nitride catalytic activity in ammonia synthesis through modulating metal–support interaction. Faraday Discussions, 0, 243, 126-147.	1.6	3
1097	Constructing porous RuCu nanotubes with highly efficient alloy phase for water splitting in different pH conditions. Chemical Engineering Journal, 2023, 456, 141148.	6.6	6

#	Article	IF	CITATIONS
1098	Facile synthesis of ordered mesoporous molybdenum carbide electrocatalysts for highâ€performance hydrogen evolution reaction. Electroanalysis, 2023, 35, .	1.5	1
1099	Filling the Gap between Heteroatom Doping and Edge Enrichment of 2D Electrocatalysts for Enhanced Hydrogen Evolution. ACS Nano, 2023, 17, 1287-1297.	7.3	9
1100	Urchinâ€Like Structured MoO ₂ /Mo ₃ P/Mo ₂ C Tripleâ€Interface Heterojunction Encapsulated within Nitrogenâ€Doped Carbon for Enhanced Hydrogen Evolution Reaction. Small, 2023, 19, .	5.2	18
1101	High entropy materials as emerging electrocatalysts for hydrogen production through low-temperature water electrolysis. Materials Futures, 2023, 2, 022102.	3.1	10
1102	Review of Mo-based materials in heterogeneous catalytic oxidation for wastewater purification. Separation and Purification Technology, 2023, 312, 123345.	3.9	10
1103	Nitrogenâ€Doped Porous Nickel Molybdenum Phosphide Sheets for Efficient Seawater Splitting. Small, 2023, 19, .	5.2	23
1106	Engineering nickel phosphides for electrocatalytic hydrogen evolution: A doping perspective. Chemical Engineering Journal, 2023, 461, 141845.	6.6	21
1109	Synthesis and catalytic applications of metal boride ceramics. , 2023, , 57-105.		0
1119	Metal Phosphides for Hydrogen Evolution Reactions. , 2023, , 1-24.		0
1131	Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. RSC Advances, 2023, 13, 24393-24411.	1.7	2
1145	Recent research progress on ruthenium-based catalysts at full pH conditions for the hydrogen	1.2	1

1145 evolution reaction. lonics, 2023, 29, 4987-5001.