3D micro-porous conducting carbon beehive by single s performance supercapacitors: the magic of in situ porog

Energy and Environmental Science 7, 728-735 DOI: 10.1039/c3ee42551g

Citation Report

#	Article	IF	CITATIONS
6	Cross-linked polymers of diethynylbenzene and phenylacetylene as new polymer precursors for high-yield synthesis of high-performance nanoporous activated carbons for supercapacitors, hydrogen storage, and CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 20316-20330.	10.3	40
7	Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode. Electrochimica Acta, 2014, 130, 766-770.	5.2	74
8	A new approach to preparing porous carbons with controllable pore structure and morphology. Chemical Communications, 2014, 50, 14824-14827.	4.1	15
9	Synthesis and electrochemical performance of porous carbon by carbonizing PF/PMMA interpenetrating polymer networks. Electrochimica Acta, 2014, 148, 203-210.	5.2	28
10	Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. Journal of Materials Chemistry A, 2014, 2, 16884-16891.	10.3	66
11	Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Advances, 2014, 4, 51072-51079.	3.6	54
12	Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application. Carbon, 2014, 80, 462-471.	10.3	84
13	Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy and Environmental Science, 2014, 7, 1708-1718.	30.8	381
14	Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology, 2014, 25, 345601.	2.6	108
15	From Waste Paper Basket to Solid State and Liâ€HEC Ultracapacitor Electrodes: A Value Added Journey for Shredded Office Paper. Small, 2014, 10, 4395-4402.	10.0	73
16	Supercapacitive Behavior of Two Glucoseâ€Derived Microporous Carbons: Direct Pyrolysis versus Hydrothermal Carbonization. ChemElectroChem, 2014, 1, 2138-2145.	3.4	59
17	Direct Synthesis of Highly Porous Interconnected Carbon Nanosheets and Their Application as High-Performance Supercapacitors. ACS Nano, 2014, 8, 5069-5078.	14.6	654
19	Thiophene, Selenophene, and Telluropheneâ€based Threeâ€Dimensional Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 9361-9366.	13.8	47
20	Porous reduced graphene oxide paper as a binder-free electrode for high-performance supercapacitors. RSC Advances, 2015, 5, 27175-27180.	3.6	10
21	Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials. RSC Advances, 2015, 5, 51382-51391.	3.6	13
22	Fluorescent carbon quantum dots, capacitance and catalysis active porous carbon microspheres from beer. RSC Advances, 2015, 5, 48665-48674.	3.6	26
23	White clover based nitrogen-doped porous carbon for a high energy density supercapacitor electrode. RSC Advances, 2015, 5, 107707-107715.	3.6	26
24	Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Advances, 2015, 5, 97427-97434.	3.6	61

# 25	ARTICLE High surface area porous carbon for ultracapacitor application by pyrolysis of polystyrene containing pendant carboxylic acid groups prepared via click chemistry. Materials Today	IF 1.9	CITATIONS
26	Communications, 2015, 4, 166-175. N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2853-2860.	10.3	70
27	Nitrogen-enriched porous carbon nanofiber networks for binder-free supercapacitors obtained by using a reactive surfactant as a porogen. Electrochimica Acta, 2015, 158, 306-313.	5.2	51
28	Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochimica Acta, 2015, 157, 290-298.	5.2	223
29	Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon, 2015, 86, 235-244.	10.3	68
30	Hierarchical Microporous/Mesoporous Carbon Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 4344-4353.	8.0	220
31	Superior Capacitive Performance of Hydrocharâ€Based Porous Carbons in Aqueous Electrolytes. ChemSusChem, 2015, 8, 1049-1057.	6.8	65
32	Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale, 2015, 7, 4386-4393.	5.6	163
33	Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. Journal of Materials Chemistry A, 2015, 3, 5656-5664.	10.3	367
34	Single-Step, Plasma-Enabled Reforming of Natural Precursors into Vertical Graphene Electrodes with High Areal Capacitance. ACS Sustainable Chemistry and Engineering, 2015, 3, 544-551.	6.7	34
35	Electrochemical energy storage and adsorptive dye removal of Platanus fruit-derived porous carbon. RSC Advances, 2015, 5, 15969-15976.	3.6	27
36	Nitrogen and oxygen co-doped microporous carbons derived from theÂleaves of Euonymus japonicas as high performance supercapacitor electrode material. Microporous and Mesoporous Materials, 2015, 210, 1-9.	4.4	55
37	One-step, template-free synthesis of highly porous nitrogen/sulfur-codoped carbons from a single protic salt and their application to CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 17849-17857.	10.3	36
38	Schiff-base polymer derived nitrogen-rich microporous carbon spheres synthesized by molten-salt route for high-performance supercapacitors. RSC Advances, 2015, 5, 60956-60961.	3.6	11
39	A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range. Journal of Materials Chemistry A, 2015, 3, 18860-18866.	10.3	41
40	Template-grown graphene/porous Fe2O3 nanocomposite: A high-performance anode material for pseudocapacitors. Nano Energy, 2015, 15, 719-728.	16.0	116
41	Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte. Nano Energy, 2015, 15, 654-661.	16.0	63
42	3D sponge-like nanoporous carbons via a facile synthesis for high-performance supercapacitors: direct carbonization of tartrate salt. Electrochimica Acta, 2015, 169, 13-21.	5.2	47

#	Article	IF	CITATIONS
43	From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy, 2015, 13, 527-536.	16.0	247
44	Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO ₂ nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 9754-9762.	10.3	45
45	Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. International Journal of Hydrogen Energy, 2015, 40, 6188-6196.	7.1	69
46	Peanut-Shell-like Porous Carbon from Nitrogen-Containing Poly- <i>N</i> -phenylethanolamine for High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2015, 7, 22238-22245.	8.0	61
47	Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon, 2015, 95, 268-278.	10.3	48
48	Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors. Nanotechnology, 2015, 26, 345401.	2.6	20
49	Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity. ACS Applied Materials & Interfaces, 2015, 7, 24622-24628.	8.0	156
50	Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2015, 7, 20234-20244.	8.0	129
51	Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage. Energy and Environmental Science, 2015, 8, 3030-3039.	30.8	111
52	N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2914-2923.	10.3	214
53	A two-dimensional highly ordered mesoporous carbon/graphene nanocomposite for electrochemical double layer capacitors: effects of electrical and ionic conduction pathways. Journal of Materials Chemistry A, 2015, 3, 2314-2322.	10.3	49
54	Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon. Journal of Materials Chemistry A, 2015, 3, 1208-1215.	10.3	150
55	Heteroatom ontaining Porous Carbons Derived from Ionic Liquidâ€Doped Alkali Organic Salts for Supercapacitors. Small, 2016, 12, 1935-1944.	10.0	56
56	Functionalized activated carbon prepared form petroleum coke with high-rate supercapacitive performance. Journal of Materials Research, 2016, 31, 3723-3730.	2.6	13
57	A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated N-doped carbon nanosheet architecture for use in supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9900-9909.	10.3	86
58	1D nanorod-like porous carbon with simultaneous high energy and large power density as a supercapacitor electrode material. RSC Advances, 2016, 6, 51332-51336.	3.6	6
59	Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 13918-13925.	8.0	200
60	Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. Journal of Materials Chemistry A, 2016, 4, 8690-8699.	10.3	155

#	Article	IF	CITATIONS
61	Simple synthesis of porous carbon materials for high-performance supercapacitors. Journal of Applied Electrochemistry, 2016, 46, 703-712.	2.9	19
62	A new benzimidazole based covalent organic polymer having high energy storage capacity. Chemical Communications, 2016, 52, 7592-7595.	4.1	97
63	Rational functionalization of reduced graphene oxide with imidazolium-based ionic liquid for supercapacitor application. International Journal of Hydrogen Energy, 2016, 41, 22134-22143.	7.1	59
64	N-Doped hierarchical porous carbon prepared by simultaneous-activation of KOH and NH ₃ for high performance supercapacitors. RSC Advances, 2016, 6, 101372-101379.	3.6	43
65	Cross-linked carbon network with hierarchical porous structure for high performance solid-state electrochemical capacitor. Journal of Power Sources, 2016, 327, 488-494.	7.8	23
66	Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy, 2016, 27, 482-491.	16.0	299
67	Electrolytes for Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 31-254.	0.0	5
68	Hierarchically Porous N-Doped Carbon Nanosheets Derived From Grapefruit Peels for High-Performance Supercapacitors. ChemistrySelect, 2016, 1, 1441-1447.	1.5	47
69	Highly Porous Renewable Carbons for Enhanced Storage of Energy-Related Gases (H ₂ and) Tj ETQq0	0.0.rgBT 6.7	Overlock 10
70	<i>Aloe vera</i> Derived Activated High-Surface-Area Carbon for Flexible and High-Energy	80	198

70	Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 35191-35202.	0.0	190
71	The synthesis and electrochemical performance of core-shell structured Ni-Al layered double hydroxide/carbon nanotubes composites. Electrochimica Acta, 2016, 222, 185-193.	5.2	45
72	Hierarchically porous carbons with graphene incorporation for efficient supercapacitors. Electrochimica Acta, 2016, 213, 382-392.	5.2	39
73	Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous structure and their adsorption performance for benzene and butanone. Chemical Engineering Journal, 2016, 306, 99-106.	12.7	58
74	Design of Advanced MnO/Nâ€Gr 3D Walls through Polymer Crossâ€Linking for Highâ€Performance Supercapacitor. Chemistry - A European Journal, 2016, 22, 1652-1657.	3.3	19
75	Highly Stable Laserâ€6cribed Flexible Planar Microsupercapacitor Using Mushroom Derived Carbon Electrodes. Advanced Materials Interfaces, 2016, 3, 1600057.	3.7	58
76	Facile synthesis of microporous carbon for supercapacitors with a LiNO3 electrolyte. Carbon, 2016, 100, 214-222.	10.3	32
77	Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy, 2016, 21, 80-89.	16.0	89
78	Porous carbon nanoflakes with a high specific surface area derived from a kapok fiber for high-performance electrode materials of supercapacitors. RSC Advances, 2016, 6, 6967-6977.	3.6	19

#	Article	IF	CITATIONS
79	Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors. Materials Chemistry and Physics, 2016, 169, 1-5.	4.0	29
80	Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance. Materials Letters, 2016, 174, 249-252.	2.6	62
81	Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor. Energy Storage Materials, 2016, 3, 140-148.	18.0	67
82	Highly ordered, polypyrrole-coated Co(OH) ₂ architectures for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 6603-6609.	10.3	52
83	Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. Journal of Materials Chemistry A, 2016, 4, 5578-5591.	10.3	60
84	Nanostructured Electrode Materials Derived from Metal–Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2016, 8, 2148-2157.	8.0	140
85	Enhanced electrochemical performance of lamellar structured Co–Ni(OH) ₂ /reduced graphene oxide (rGO) via hydrothermal synthesis. RSC Advances, 2016, 6, 4764-4769.	3.6	14
86	Functional Groups and Pore Size Distribution Do Matter to Hierarchically Porous Carbons as High-Rate-Performance Supercapacitors. Chemistry of Materials, 2016, 28, 445-458.	6.7	221
87	Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chemistry of Materials, 2017, 29, 2074-2080.	6.7	277
88	The electrochemical enhancement due to the aligned structural effect of carbon nanofibers in a supercapacitor electrode. Synthetic Metals, 2017, 226, 195-206.	3.9	4
89	Template-free synthesis of N-doped carbon with pillared-layered pores as bifunctional materials for supercapacitor and environmental applications. Carbon, 2017, 118, 98-105.	10.3	98
90	Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors. Nano Energy, 2017, 33, 453-461.	16.0	210
91	From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon, 2017, 116, 490-499.	10.3	188
92	Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 9412-9417.	10.3	80
93	Unconventional mesopore carbon nanomesh prepared through explosion–assisted activation approach: A robust electrode material for ultrafast organic electrolyte supercapacitors. Carbon, 2017, 119, 30-39.	10.3	80
94	The synthesis and electro-catalytic activity for ORR of the structured electrode material: CP/Fe-N-CNFs. Journal of Solid State Electrochemistry, 2017, 21, 2909-2920.	2.5	6
95	Low-temperature plasma exfoliated n-doped graphene for symmetrical electrode supercapacitors. Nano Energy, 2017, 31, 486-494.	16.0	93
96	Biomass-derived carbon electrode materials for supercapacitors. Sustainable Energy and Fuels, 2017, 1, 1265-1281.	4.9	287

#	Article	IF	CITATIONS
97	Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage. Journal of Materials Chemistry A, 2017, 5, 13511-13525.	10.3	63
98	Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte. Journal of Power Sources, 2017, 359, 556-567.	7.8	121
99	Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustainable Energy and Fuels, 2017, 1, 891-898.	4.9	28
100	Synthesis of Hierarchically Porous Nitrogenâ€Doped Carbon Nanosheets from Agaric for Highâ€Performance Symmetric Supercapacitors. Advanced Materials Interfaces, 2017, 4, 1700033.	3.7	77
101	Synthesis of ultra-small carbon nanospheres (<50 nm) with uniform tunable sizes by a convenient catalytic emulsion polymerization strategy: superior supercapacitive and sorption performance. Journal of Materials Chemistry A, 2017, 5, 12131-12143.	10.3	35
102	Oxygen Electroreduction by Single PtPd Nanocubes Encaged in Hollow Carbon Nanospheres: Improved Durability and Strong Effect of Carbon-Shell Thickness. Particle and Particle Systems Characterization, 2017, 34, 1700034.	2.3	17
103	Azide-assisted hydrothermal synthesis of N-doped mesoporous carbon cloth for high-performance symmetric supercapacitor employing LiClO 4 as electrolyte. Composites Part A: Applied Science and Manufacturing, 2017, 98, 58-65.	7.6	21
104	Biomass Organs Control the Porosity of Their Pyrolyzed Carbon. Advanced Functional Materials, 2017, 27, 1604687.	14.9	154
105	Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon, 2017, 114, 50-58.	10.3	203
106	Supramolecular Nanofibers as Ambient Stable Wide Voltage Window Electrolyte for Microâ€5upercapacitors. ChemNanoMat, 2017, 3, 39-43.	2.8	5
107	Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nature Communications, 2017, 8, 13592.	12.8	142
108	Interlinked Porous Carbon Nanoflakes Derived from Hydrolyzate Residue during Cellulosic Bioethanol Production for Ultrahigh-Rate Supercapacitors in Nonaqueous Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 1297-1305.	6.7	45
109	Hierarchically Porous Carbon Derived from PolyHIPE for Supercapacitor and Deionization Applications. Langmuir, 2017, 33, 13364-13375.	3.5	61
110	Three-dimensional CoMoO 4 nanorods/nanographene composites on a Ni coated macroporous electrically conductive network with excellent electrochemical performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 177-187.	3.5	7
111	Lignin-derived carbon nanosheets for high-capacitance supercapacitors. RSC Advances, 2017, 7, 48537-48543.	3.6	55
112	Controlled Fabrication of Interconnected Porous Carbon Nanosheets for Supercapacitors with a Long Cycle Life. ChemElectroChem, 2017, 4, 3196-3203.	3.4	8
113	Sustainability of microporous polymers and their applications. Science China Chemistry, 2017, 60, 1033-1055.	8.2	15
114	Novel process for producing hierarchical carbide derived carbon monolith and low carbon ferromanganese from high carbon ferromanganese. RSC Advances, 2017, 7, 33875-33882.	3.6	13

#	Article	IF	CITATIONS
115	Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. Journal of Materials Chemistry A, 2017, 5, 17705-17733.	10.3	464
116	Novel Core–Shell FeOF/Ni(OH) ₂ Hierarchical Nanostructure for Allâ€Solidâ€State Flexible Supercapacitors with Enhanced Performance. Advanced Functional Materials, 2017, 27, 1701014.	14.9	106
117	Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale, 2017, 9, 13119-13127.	5.6	108
118	Characterization and optical properties of TeO2/ZnO nanocomposites synthesized in a narrow temperature range. Materials Research Express, 2017, 4, 085018.	1.6	1
119	Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance. Journal of Materials Chemistry A, 2017, 5, 17379-17387.	10.3	169
120	Framework-mediated synthesis of highly microporous onion-like carbon: energy enhancement in supercapacitors without compromising power. Journal of Materials Chemistry A, 2017, 5, 2519-2529.	10.3	42
121	Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon, 2017, 111, 419-427.	10.3	243
122	Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. Journal of Materials Chemistry A, 2017, 5, 181-188.	10.3	130
123	Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. Journal of Power Sources, 2017, 337, 25-35.	7.8	81
124	Nano carbon materials from palm oil wastes for supercapacitor applications. , 2017, , .		4
125	Nitrogen Self-Doped Porous Carbon Materials Derived from a New Biomass Source for Highly Stable Supercapacitors. International Journal of Electrochemical Science, 2017, 12, 12084-12097.	1.3	12
126	ZnCo2O4-reduced graphene oxide composite with balanced capacitive performance in asymmetric supercapacitors. Applied Surface Science, 2018, 442, 138-147.	6.1	52
127	Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 5124-5132.	7.1	50
128	Viologenâ€Hypercrosslinked Ionic Porous Polymer Films as Active Layers for Electronic and Energy Storage Devices. Advanced Materials Interfaces, 2018, 5, 1701679.	3.7	27
129	A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous and Mesoporous Materials, 2018, 266, 109-116.	4.4	84
130	Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes <i>via</i> nonsolvent-induced phase separation for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8909-8915.	10.3	23
131	N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors. Electrochimica Acta, 2018, 274, 378-388.	5.2	105
132	Self-Biotemplate Preparation of Hierarchical Porous Carbon with Rational Mesopore Ratio and High Oxygen Content for an Ultrahigh Energy-Density Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 7138-7150.	6.7	95

#	Article	IF	CITATIONS
133	Hierarchical MnO ₂ Located on Carbon Nanotubes for Enhanced Electrochemical Performance. ChemElectroChem, 2018, 5, 1525-1531.	3.4	6
134	A novel porous carbon material made from wild rice stem and its application in supercapacitors. Materials Chemistry and Physics, 2018, 213, 267-276.	4.0	53
135	Robust Production of Ultrahigh Surface Area Carbon Sheets for Energy Storage. Small, 2018, 14, e1800133.	10.0	25
136	Tailoring the porous structure of N-doped carbon for increased oxygen reduction reaction activity. Catalysis Communications, 2018, 107, 29-32.	3.3	11
137	Freeâ€Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycleâ€Life Supercapacitors. ChemSusChem, 2018, 11, 907-915.	6.8	12
138	Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Materials, 2018, 13, 72-79.	18.0	83
139	Synthesis of three-dimensional hierarchical porous carbon for high-performance supercapacitors. Ionics, 2018, 24, 3133-3141.	2.4	5
140	The in situ grown of activated Fe-N-C nanofibers derived from polypyrrole on carbon paper and its electro-catalytic activity for oxygen reduction reaction. Journal of Solid State Electrochemistry, 2018, 22, 1217-1226.	2.5	10
141	A New Porous Polymer for Highly Efficient Capacitive Energy Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 202-209.	6.7	78
142	Densely packed porous graphene film for high volumetric performance supercapacitor. Electrochimica Acta, 2018, 276, 118-124.	5.2	28
		0.2	
143	Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor. Journal of Energy Storage, 2018, 18, 62-71.	8.1	19
143 144	Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the		19 14
	Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor. Journal of Energy Storage, 2018, 18, 62-71. Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor	8.1	
144	Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor. Journal of Energy Storage, 2018, 18, 62-71. Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor Material. MATEC Web of Conferences, 2018, 156, 03018. Orderly meso-perforated spherical and apple-shaped 3D carbon microstructures for high-energy supercapacitors and high-capacity Li-ion battery anodes. Journal of Materials Chemistry A, 2018, 6,	8.1 0.2	14
144 145	Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor. Journal of Energy Storage, 2018, 18, 62-71. Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor Material. MATEC Web of Conferences, 2018, 156, 03018. Orderly meso-perforated spherical and apple-shaped 3D carbon microstructures for high-energy supercapacitors and high-capacity Li-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6422-6434. Frame-filling C/C composite for high-performance EDLCs with high withstanding voltage. Carbon,	8.1 0.2 10.3	14 15
144 145 146	Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor. Journal of Energy Storage, 2018, 18, 62-71. Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor Material. MATEC Web of Conferences, 2018, 156, 03018. Orderly meso-perforated spherical and apple-shaped 3D carbon microstructures for high-energy supercapacitors and high-capacity Li-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6422-6434. Frame-filling C/C composite for high-performance EDLCs with high withstanding voltage. Carbon, 2018, 131, 184-192. 3D Hybrids of Interconnected Porous Carbon Nanosheets/Vertically Aligned Polyaniline Nanowires	8.10.210.3	14 15 29
144 145 146 147	Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor. Journal of Energy Storage, 2018, 18, 62-71. Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor Material. MATEC Web of Conferences, 2018, 156, 03018. Orderly meso-perforated spherical and apple-shaped 3D carbon microstructures for high-energy supercapacitors and high-capacity Li-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6422-6434. Frame-filling C/C composite for high-performance EDLCs with high withstanding voltage. Carbon, 2018, 131, 184-192. 3D Hybrids of Interconnected Porous Carbon Nanosheets/Vertically Aligned Polyaniline Nanowires for Highâ€Performance Supercapacitors. Advanced Materials Interfaces, 2018, 5, 1800106. Self-templated synthesis of interconnected porous carbon nanosheets with controllable pore size: Mechanism and electrochemical capacitor application. Microporous and Mesoporous Materials, 2018,	 8.1 0.2 10.3 10.3 3.7 	14 15 29 39

#	Article	IF	CITATIONS
151	Li ₄ Ti ₅ O ₁₂ Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices. Chemical Record, 2018, 18, 350-380.	5.8	31
152	Synergistic Doping for Pseudocapacitance Sites in Alkaline Carbon Supercapacitors. ChemElectroChem, 2018, 5, 84-92.	3.4	13
153	Electrochemical Behaviour of Lithium, Sodium and Potassium Ion Electrolytes in a Na _{0.33} V ₂ O ₅ Symmetric Pseudocapacitor with High Performance and High Cyclic Stability. ChemElectroChem, 2018, 5, 101-111.	3.4	71
154	Bread-making synthesis of hierarchically Co@C nanoarchitecture in heteroatom doped porous carbons for oxidative degradation of emerging contaminants. Applied Catalysis B: Environmental, 2018, 225, 76-83.	20.2	194
155	Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance. Composites Science and Technology, 2018, 154, 76-84.	7.8	23
156	Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes. Carbon, 2018, 129, 420-427.	10.3	71
157	Progress of Nanostructured Electrode Materials for Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700110.	5.3	87
158	From biomass wastes to vertically aligned graphene nanosheet arrays: A catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage. Chemical Engineering Journal, 2018, 336, 550-561.	12.7	128
159	Catalytic electrode-redox electrolyte supercapacitor system with enhanced capacitive performance. Chemical Engineering Journal, 2018, 335, 590-599.	12.7	76
160	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie, 2018, 130, 8124-8128.	2.0	67
161	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie - International Edition, 2018, 57, 7992-7996.	13.8	193
162	Acid-free synthesis of oxygen-enriched electroactive carbon with unique square pores from salted seaweed for robust supercapacitor with attractive energy density. Green Chemistry, 2018, 20, 4983-4994.	9.0	41
163	A novel porous carbon material derived from the byproducts of bean curd stick manufacture for high-performance supercapacitor use. RSC Advances, 2018, 8, 39937-39947.	3.6	40
164	Synthesis of Porous Carbons with High N-Content from Shrimp Shells for Efficient CO ₂ -Capture and Gas Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 15550-15559.	6.7	80
165	Active sites-enriched carbon matrix enables efficient triiodide reduction in dye-sensitized solar cells: An understanding of the active centers. Nano Energy, 2018, 54, 138-147.	16.0	52
166	A Geologic Architecture Systemâ€Inspired Microâ€/Nanoâ€Heterostructure Design for Highâ€Performance Energy Storage. Advanced Energy Materials, 2018, 8, 1802388.	19.5	65
167	Simple Fabrication of High-Efficiency N,O,F,P-Containing Electrodes through Host–Guest Doping for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 15764-15772.	6.7	9
168	Zwitterionic Polymer Modified Porous Carbon for High-Performance and Antifouling Capacitive Desalination. ACS Applied Materials & amp; Interfaces, 2018, 10, 33564-33573.	8.0	27

#	Article	IF	CITATIONS
170	Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon, 2018, 140, 465-476.	10.3	120
171	Recycling Antibiotic Bacterial Residues for Application in Highâ€Performance Lithiumâ^'Sulfur Batteries. ChemElectroChem, 2018, 5, 2235-2241.	3.4	8
172	Facile preparation of nitrogen-enriched hierarchical porous carbon nanofibers by Mg(OAc)2-assisted electrospinning for flexible supercapacitors. Applied Surface Science, 2018, 456, 827-834.	6.1	29
173	Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. Journal of Colloid and Interface Science, 2018, 530, 338-344.	9.4	155
174	Metal-organic coordination polymer/multi-walled carbon nanotubes composites to prepare N-doped hierarchical porous carbon for high performance supercapacitors. Electrochimica Acta, 2018, 284, 69-79.	5.2	23
175	Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15340-15347.	10.3	116
176	Isostatic pressure-assisted nanocasting preparation of zeolite templated carbon for high-performance and ultrahigh rate capability supercapacitors. Journal of Materials Chemistry A, 2018, 6, 18938-18947.	10.3	14
177	Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors. Journal of CO2 Utilization, 2018, 27, 204-216.	6.8	65
178	Enhanced cycleability of faradic CoNi2S4 electrode by reduced graphene oxide coating for efficient asymmetric supercapacitor. Electrochimica Acta, 2018, 281, 394-404.	5.2	59
179	Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode. Royal Society Open Science, 2018, 5, 172456.	2.4	14
180	Solar thermal-driven capacitance enhancement of supercapacitors. Energy and Environmental Science, 2018, 11, 2016-2024.	30.8	85
181	Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: Simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin. Journal of Power Sources, 2019, 438, 226982.	7.8	32
182	A novel synthetic approach for designing metal-free, redox-active quinoxaline-benzimidazole-based organic polymers with high energy storage capacity. New Journal of Chemistry, 2019, 43, 14806-14817.	2.8	9
183	Electrospun poly(acrylonitrile- <i>co</i> -itaconic acid) as a porous carbon precursor for high performance supercapacitor: study of the porosity induced by <i>in situ</i> porogen activity of itaconic acid. Nanotechnology, 2019, 30, 435401.	2.6	12
184	Nitrogen-doped hierarchical porous carbons prepared via freeze-drying assisted carbonization for high-performance supercapacitors. Applied Surface Science, 2019, 496, 143643.	6.1	26
185	Sustainable polylysine conversion to nitrogenâ€containing porous carbon flakes: Potential application in supercapacitors. Journal of Applied Polymer Science, 2019, 136, 48214.	2.6	14
186	A Low-Cost Zn-Based Aqueous Supercapacitor with High Energy Density. ACS Applied Energy Materials, 2019, 2, 5835-5842.	5.1	80
187	Nano Carbon Produced by Advanced Mild Hydrothermal Process of Oil Palm Biomass for Supercapacitor Material. IOP Conference Series: Materials Science and Engineering, 2019, 543, 012031.	0.6	15

#	Article	IF	CITATIONS
188	3D honeycomb-like carbon foam synthesized with biomass buckwheat flour for high-performance supercapacitor electrodes. Chemical Communications, 2019, 55, 9168-9171.	4.1	54
189	Boron and Nitrogen Co-Doped Porous Carbons Synthesized from Polybenzoxazines for High-Performance Supercapacitors. Coatings, 2019, 9, 657.	2.6	17
190	Three-Dimensional Interconnected Reticular Porous Carbon From Corn Starch By a Sample Sol–Gel Method Toward High-Performance Supercapacitors With Aqueous and Ionic Liquid Electrolytes. ACS Sustainable Chemistry and Engineering, 2019, 7, 18690-18699.	6.7	34
191	Self-coupled nickel sulfide @ nickel vanadium sulfide nanostructure as a novel high capacity electrode material for supercapattery. Applied Surface Science, 2019, 497, 143778.	6.1	59
192	Which is the most effective pristine graphene electrode for energy storage devices: aerogel or xerogel?. Nanoscale, 2019, 11, 17563-17570.	5.6	20
193	Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3298-3306.	10.3	73
194	Using inorganic dynamic porogens for preparing high-surface-area capacitive carbons with tailored micropores. Journal of Materials Chemistry A, 2019, 7, 687-692.	10.3	27
195	Nontemplating Porous Carbon Material from Polyphosphamide Resin for Supercapacitors. IScience, 2019, 12, 204-215.	4.1	9
196	Mesoporous nickel selenide N-doped carbon as a robust electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 300, 93-101.	5.2	70
197	Facile Hydrothermal Synthesis and Electrochemical Properties of CaMoO ₄ Nanoparticles for Aqueous Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	9
198	Controlling synthesis of nitrogen-doped hierarchical porous graphene-like carbon with coral flower structure for high-performance supercapacitors. Ionics, 2019, 25, 5429-5443.	2.4	6
199	Polyaniline-modified renewable biocarbon composites as an efficient hybrid electrode for supercapacitors. Ionics, 2019, 25, 5459-5472.	2.4	5
200	Wettability-Driven Assembly of Electrochemical Microsupercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 20905-20914.	8.0	37
201	Multidimensionâ€Controllable Synthesis of Ant Nestâ€Structural Electrode Materials with Unique 3D Hierarchical Porous Features toward Electrochemical Applications. Advanced Functional Materials, 2019, 29, 1808994.	14.9	46
202	Hierarchically porous nanosheets-constructed 3D carbon network for ultrahigh-capacity supercapacitor and battery anode. Nanotechnology, 2019, 30, 214002.	2.6	12
203	A Chemical Blowing Strategy to Fabricate Biomassâ€Derived Carbonâ€Aerogels with Grapheneâ€Like Nanosheet Structures for Highâ€Performance Supercapacitors. ChemSusChem, 2019, 12, 2462-2470.	6.8	53
204	Calcium Chloride Activation of Mung Bean: A Lowâ€Cost, Green Route to Nâ€Đoped Porous Carbon for Supercapacitors. ChemistrySelect, 2019, 4, 3432-3439.	1.5	21
205	Oxygen-Rich Hierarchical Porous Graphene as an Excellent Electrode for Supercapacitors, Aqueous Al-Ion Battery, and Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2019, 7, 8475-8489.	6.7	44

#	Article	IF	CITATIONS
206	Metal Organic Frameworks Derived Nano Materials for Energy Storage Application. International Journal of Electrochemical Science, 2019, 14, 2345-2362.	1.3	17
207	Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 2019, 140, 54-85.	5.5	118
208	Polymer salt-derived carbon-based nanomaterials for high-performance hybrid Li-ion capacitors. Journal of Materials Science, 2019, 54, 7811-7822.	3.7	6
209	Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon, 2019, 147, 242-251.	10.3	192
210	Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Advances, 2019, 9, 2474-2483.	3.6	84
211	A novel electrochemical sensor based on microporous polymeric nanospheres for measuring peroxynitrite anion released by living cells and studying the synergistic effect of antioxidants. Analyst, The, 2019, 144, 6905-6913.	3.5	11
212	A carbonized porous aromatic framework to achieve customized nitrogen atoms for enhanced supercapacitor performance. New Journal of Chemistry, 2019, 43, 18158-18164.	2.8	12
213	Ultrafine Co _{1–<i>x</i>} S Attached to Porous Interconnected Carbon Skeleton for Sodium-Ion Batteries. Langmuir, 2019, 35, 16487-16495.	3.5	28
214	One-Step Site-Specific Activation Approach for Preparation of Hierarchical Porous Carbon Materials with High Electrochemical Performance. ACS Applied Energy Materials, 2019, 2, 8767-8782.	5.1	12
215	High performance hierarchical porous carbon derived from distinctive plant tissue for supercapacitor. Scientific Reports, 2019, 9, 17270.	3.3	28
216	A Nitrogenâ€Doped Manganese Oxide Nanoparticles/Porous Carbon Nanosheets Hybrid Material: A Highâ€Performance Anode for Lithium Ion Batteries. ChemPlusChem, 2019, 84, 1805-1815.	2.8	4
217	Novel core-shell multi-dimensional hybrid nanoarchitectures consisting of Co(OH)2 nanoparticles/Ni3S2 nanosheets grown on SiC nanowire networks for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 357, 21-32.	12.7	70
218	Selfâ€Nitrogenâ€Doped Porous Biocarbon from Watermelon Rind: A Highâ€Performance Supercapacitor Electrode and Its Improved Electrochemical Performance Using Redox Additive Electrolyte. Energy Technology, 2019, 7, 1800628.	3.8	32
219	Enhancing Capacitance of Nickel Cobalt Chalcogenide via Interface Structural Design. ACS Applied Materials & Interfaces, 2019, 11, 2082-2092.	8.0	20
220	Robust, Environmentally Benign Synthesis of Nanoporous Graphene Sheets from Biowaste for Ultrafast Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 2516-2529.	6.7	76
221	Dopamine constructing composite of Ni(HCO3)2-polydopamine-reduced graphene oxide for high performance electrode in hybrid supercapacitors. Electrochimica Acta, 2019, 296, 49-58.	5.2	23
222	Toward high-rate supercapacitor: Preparation of hierarchical porous carbon binder-free electrode with controllable texture. Applied Surface Science, 2019, 470, 573-580.	6.1	21
223	N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries. Electrochimica Acta, 2019, 296, 653-661.	5.2	135

#	Article	IF	CITATIONS
224	Fabrication of bimodal micro-mesoporous amorphous carbon-graphitic carbon-reduced graphene oxide composite microspheres prepared by pilot-scale spray drying and their application in supercapacitors. Carbon, 2019, 144, 591-600.	10.3	24
225	In-situ porous nano-Fe3O4/C composites derived from citrate precursor as anode materials for lithium-ion batteries. Materials Chemistry and Physics, 2019, 225, 379-383.	4.0	12
226	Three-Dimensional Hierarchical Porous Carbon with High Oxygen Content Derived from Organic Waste Liquid with Superior Electric Double Layer Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 4037-4046.	6.7	42
227	Scalable synthesis of Sn nanoparticles encapsulated in hierarchical porous carbon networks for high-rate reversible lithium storage. International Journal of Nanomanufacturing, 2019, 15, 105.	0.3	Ο
228	Polymerâ€Based Synthetic Routes to Carbonâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1804626.	21.0	41
229	Micelles directed preparation of ternary cobalt hydroxide carbonate-nickel hydroxide-reduced graphene oxide composite porous nanowire arrays with superior faradic capacitance performance. Journal of Colloid and Interface Science, 2019, 534, 563-573.	9.4	25
230	Residue metals and intrinsic moisture in excess sludge improve pore formation during its carbonization process. Carbon, 2020, 156, 320-328.	10.3	30
231	Three dimensional graphene/carbonized metal-organic frameworks based high-performance supercapacitor. Carbon, 2020, 157, 55-63.	10.3	62
232	Recycle of industrial waste: a new method of applying the paint residue to supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 274-285.	2.2	2
233	Nitrogen-doped mesoporous graphene with fine-tuned pore size in a few nanometer-scale for supercapacitor applications. Microporous and Mesoporous Materials, 2020, 293, 109794.	4.4	20
234	Flexible all-solid-state supercapacitors based on an integrated electrode of hollow N-doped carbon nanofibers embedded with graphene nanosheets. Electrochimica Acta, 2020, 332, 135398.	5.2	28
235	Pressure-induced monolithic carbon aerogel from metal-organic framework. Energy Storage Materials, 2020, 28, 393-400.	18.0	27
236	Pseudocapacitance induced candle soot derived carbon for high energy density electrochemical supercapacitors: Non-aqueous approach. Journal of Energy Storage, 2020, 27, 101114.	8.1	44
237	Sustainable N-doped hierarchical porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes. Journal of CO2 Utilization, 2020, 42, 101326.	6.8	84
238	Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers. Beilstein Journal of Nanotechnology, 2020, 11, 1280-1290.	2.8	6
239	Electrostaticâ€Assembled MXene@NiAl‣DHs Electrodes with 3D Interconnected Networks Architectures for Highâ€Performance Pseudocapacitor Storage. Advanced Materials Interfaces, 2020, 7, 2000831.	3.7	18
240	Hierarchically structured carbon electrodes derived from intrinsically microporous Tröger's base polymers for high-performance supercapacitors. Applied Surface Science, 2020, 530, 147146.	6.1	12
241	Binder-free hierarchical porous N-doped graphene directly anchored on carbon fiber cloth for high-performance electrochemical energy storage. Journal of Energy Storage, 2020, 31, 101682.	8.1	11

		CITATION REPORT		
#	Article		IF	CITATIONS
242	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chemical Reviews, 2020, 120, 9	363-9419.	47.7	492
243	Reinforced supercapacitive behavior of O3-type layer-structured Na3Ni2BiO6 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) electrolyte. Journal of Materials Scie Materials in Electronics, 2020, 31, 16688-16700.	nce:	2.2	2
244	Highly Thermal Stable Phenolic Resin Based on Double-Decker-Shaped POSS Nanocomposites f Supercapacitors. Polymers, 2020, 12, 2151.	or	4.5	17
245	Vertically Aligned and Ordered Arrays of 2D MCo ₂ S ₄ @Metal with Ulion/Electron Transport for Thickness-Independent Pseudocapacitive Energy Storage. ACS Nano, 14, 12719-12731.	trafast , 2020,	14.6	52
246	Supercapacitor performance of porous nickel cobaltite nanosheets. Scientific Reports, 2020, 10	0, 18956.	3.3	24
247	Reduced CoNi2S4 nanosheets decorated by sulfur vacancies with enhanced electrochemical performance for asymmetric supercapacitors. Science China Materials, 2020, 63, 1216-1226.		6.3	56
248	High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chemical Engineering Journal 2020, 399, 125671.	l,	12.7	85
249	Co3O4@Ni3S4 heterostructure composite constructed by low dimensional components as eff battery electrode for hybrid supercapacitor. Electrochimica Acta, 2020, 353, 136501.	icient	5.2	29
250	Preparation of Foam-like Network Structure of Polypyrrole/Graphene Composite Particles Based Cellulose Nanofibrils as Electrode Material. ACS Omega, 2020, 5, 4778-4786.	d on	3.5	12
251	Co-etching effect to convert waste polyethylene terephthalate into hierarchical porous carbon toward excellent capacitive energy storage. Science of the Total Environment, 2020, 723, 1380)55.	8.0	55
252	Ultrahigh rate capability supercapacitors based on tremella-like nitrogen and phosphorus co-do graphene. Materials Chemistry Frontiers, 2020, 4, 2704-2715.	ped	5.9	24
253	Cotton fabrics-derived flexible nitrogen-doped activated carbon cloth for high-performance supercapacitors in organic electrolyte. Electrochimica Acta, 2020, 354, 136717.		5.2	44
254	Recent advances in carbon-based supercapacitors. Materials Advances, 2020, 1, 945-966.		5.4	207
255	Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapac Journal of Colloid and Interface Science, 2020, 569, 332-345.	itor.	9.4	61
256	Porous Carbons: Structureâ€Oriented Design and Versatile Applications. Advanced Functional Materials, 2020, 30, 1909265.		14.9	316
257	Porous Doped Carbons from Anthracite for High-Performance Supercapacitors. Applied Science (Switzerland), 2020, 10, 1081.	2S	2.5	10
258	N, S-Doped porous carbons for persulfate activation to remove tetracycline: Nonradical mechar Journal of Hazardous Materials, 2020, 391, 122055.	1ism.	12.4	121
259	Flower-like MnO2 on layered carbon derived from sisal hemp for asymmetric supercapacitor wit enhanced energy density. Journal of Alloys and Compounds, 2020, 826, 154133.	:h	5.5	50

#	Article	IF	CITATIONS
260	Cassava- and bamboo-derived carbons with higher degree of graphitization for energy storage. Nanomaterials and Energy, 2020, 9, 54-65.	0.2	11
261	Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Materials, 2020, 27, 212-225.	18.0	235
262	Self-propelled nanoemulsion assembly of organosilane to the synthesis of high-surface-area hollow carbon spheres for enhanced energy storage. Chemical Engineering Journal, 2020, 400, 124973.	12.7	15
263	3D N,O-Codoped Egg-Box-Like Carbons with Tuned Channels for High Areal Capacitance Supercapacitors. Nano-Micro Letters, 2020, 12, 82.	27.0	78
264	Hierarchical poly(vinylidene fluoride)/active carbon composite membrane with self-confining functional carbon nanotube layer for intractable wastewater remediation. Journal of Membrane Science, 2020, 603, 118041.	8.2	32
265	Constructing N, O-Containing micro/mesoporous covalent triazine-based frameworks toward a detailed analysis of the combined effect of N, O heteroatoms on electrochemical performance. Nano Energy, 2020, 74, 104789.	16.0	18
266	Investigation of the microstructure on the nanoporous carbon based capacitive performance. Microporous and Mesoporous Materials, 2021, 310, 110629.	4.4	6
267	Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors. Applied Surface Science, 2021, 537, 147914.	6.1	33
268	More Sustainable Chemical Activation Strategies for the Production of Porous Carbons. ChemSusChem, 2021, 14, 94-117.	6.8	137
269	Highly Efficient Polyaniline Trapping and Covalent Grafting within a Three-Dimensional Porous Graphene Oxide/Helical Carbon Nanotube Skeleton for High-Performance Flexible Supercapacitors. ACS Applied Energy Materials, 2021, 4, 523-534.	5.1	18
270	A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors. Energy, 2021, 216, 119227.	8.8	89
271	Ultrathin NiAl layered double hydroxide-reduced graphene oxide composite nanosheets array with high battery performances for hybrid supercapacitor and hybrid battery. Applied Surface Science, 2021, 538, 148106.	6.1	20
272	Pore-structure regulation of biomass-derived carbon materials for an enhanced supercapacitor performance. Nanoscale, 2021, 13, 10051-10060.	5.6	47
273	Solid-state integrated micro-supercapacitor array construction with low-cost porous biochar. Materials Chemistry Frontiers, 2021, 5, 4772-4779.	5.9	5
274	Template-free synthesis of lignin-derived 3D hierarchical porous carbon for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 7009-7018.	2.2	12
275	Biomassâ€Derived Activated Carbon for Highâ€Performance Supercapacitor Electrode Applications. Chemical Engineering and Technology, 2021, 44, 844-851.	1.5	22
276	High-performance 2.5 V aqueous asymmetric supercapacitor based on MnO ₂ nanowire/hierarchical porous carbon composite. Materials Technology, 2022, 37, 780-788.	3.0	3
277	New environmental selective micro-mesoporous carbonaceous sorbent for eliminating tobacco specific nitrosamines and lead ion. Microporous and Mesoporous Materials, 2021, 318, 111037.	4.4	4

#	ARTICLE	IF	CITATIONS
278	Poly(vinyl alcohol)â€assisted preparation of melamine resinâ€derived thick plateâ€like porous carbon for highâ€performance allâ€solidâ€state supercapacitors. Journal of Applied Polymer Science, 2021, 138, 50826.	2.6	1
279	Organic salt-assisted pyrolysis for preparation of porous carbon from cellulose, hemicellulose and lignin: New insight from structure evolution. Fuel, 2021, 291, 120185.	6.4	36
280	Diesel Soot as a Supercapacitor Electrode Material. Journal of the Electrochemical Society, 2021, 168, 050551.	2.9	3
281	Fluorine/Nitrogen Co-Doped Porous Carbons Derived from Covalent Triazine Frameworks for High-Performance Supercapacitors. ACS Applied Energy Materials, 2021, 4, 4519-4529.	5.1	21
282	Enhanced faradic activity by construction of p-n junction within reduced graphene oxide@cobalt nickel sulfide@nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor. Journal of Colloid and Interface Science, 2021, 590, 114-124.	9.4	53
283	Multiwall carbon nanotubes derived from plastic packaging waste as a highâ€performance electrode material for supercapacitors. International Journal of Energy Research, 2021, 45, 19611-19622.	4.5	26
284	Leaf-derived porous carbon synthesized by carbothermic reduction. Renewable Energy, 2021, 171, 116-123.	8.9	4
285	Designing Ultrasmall Carbon Nanospheres with Tailored Sizes and Textural Properties for High-Rate High-Energy Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 32916-32929.	8.0	16
286	Preparation of Cotton Fiber-derived Porous-carbon Materials and Their Application as High-performance Supercapacitors. Journal of Natural Fibers, 0, , 1-8.	3.1	1
287	Design of hard carbon anode with low specific surface area and low porosity in sodium ion battery. IOP Conference Series: Earth and Environmental Science, 2021, 804, 032025.	0.3	1
288	Enhanced specific capacity and cycle stability of hybrid supercapacitors using carbonized polyphosphazene-based nanocomposites. Electrochimica Acta, 2021, 397, 139297.	5.2	5
289	Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renewable Energy, 2021, 179, 1826-1835.	8.9	48
290	Bamboo-like SiO /C nanotubes with carbon coating as a durable and high-performance anode for lithium-ion battery. Chemical Engineering Journal, 2022, 428, 131060.	12.7	20
291	Insights of Heteroatoms Dopingâ€Enhanced Bifunctionalities on Carbon Based Energy Storage and Conversion. Advanced Functional Materials, 2021, 31, 2009109.	14.9	58
292	Activated Carbon as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 113-144.	0.6	19
293	Synthesis of dense but microporous graphene by Na+ ions intercalation toward high volumetric performance supercapacitors. Applied Surface Science, 2020, 526, 146728.	6.1	11
294	Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application. Carbohydrate Polymers, 2017, 170, 107-116.	10.2	52
295	Synergistic effect of ionic liquid intercalation and multiwalled carbon nanotube spacers with improved supercapacitor performance. Journal of Power Sources, 2017, 363, 54-60.	7.8	16

ARTICLE IF CITATIONS Carbon Nanosheets Decorated Activated Carbon Derived from Borassus Flabellifer Fruit Skin for High 296 2.9 10 Performance Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 140508. Electrolytes for Electrochemical Supercapacitors., 0,,. 44 Microwave Assisted Chemical Modification of Graphite Oxide for Supercapacitor Application. Asian 298 0.3 0 Journal of Chemistry, 2021, 33, 2621-2625. High-Performance Supercapacitors Fabricated with Activated Carbon Derived from Lotus Calyx Biowaste. SSRN Electronic Journal, 0, , . Yuba-like porous carbon microrods derived from celosia cristata for high-performance supercapacitors and efficient oxygen reduction electrocatalysts. International Journal of Hydrogen 300 7.1 3 Energy, 2021, 46, 36824-36835. Waste tire-derived porous nitrogen-doped carbon black as an electrode material for supercapacitors. 3.3 Sustainable Chemistry and Pharmacy, 2021, 24, 100535. Synergistic oxytetracycline adsorption and peroxydisulfate-driven oxidation on nitrogen and sulfur 302 12.4 36 co-doped porous carbon spheres. Journal of Hazardous Materials, 2022, 424, 127444. Facile synthesis of porous helical activated carbon fibers from waste tea and their electrochemical 2.4 energy storage. lonics, 2022, 28, 1129-1141. Modulating the porosity of carbons for improved adsorption of hydrogen, carbon dioxide, and 304 5.4 21 methane: a review. Materials Advances, 2022, 3, 1905-1930. Enhanced electrochemical hydrogen peroxide production from surface state modified mesoporous 4.5 tin oxide catalysts. International Journal of Energy Research, 2022, 46, 9150-9165. High-performance supercapacitors fabricated with activated carbon derived from lotus calyx 306 49 8.9 biowaste. Renewable Energy, 2022, 189, 587-600. Sustainable synthesis of heteroatom-doped porous carbon skeleton from Acacia auriculiformis bark 308 5.2 for high-performance symmetric supercapacitor device. Electrochimica Acta, 2022, 414, 140205. Ag nanoparticles-decorated hierarchical porous carbon from cornstalk for high-performance 309 8.1 12 supercapacitor. Journal of Energy Storage, 2022, 51, 104364. Sustainable production of lignin-derived porous carbons for high-voltage electrochemical 3.8 capacitors. Chemical Engineering Science, 2022, 255, 117672 Hierarchical porous carbon for high-performance capacitor derived from sewage sludge by KHCO3 311 8.1 11 activation. Journal of Energy Storage, 2022, 50, 104644. <i>In situ</i> fabrication of cobalt sulfide-decorated N,S co-doped mesoporous carbon and its application as an electrocatalyst for efficient oxygen reduction reaction. New Journal of Chemistry, 2022, 46, 10700-10709. Progress in the use of organic potassium salts for the synthesis of porous carbon nanomaterials: 313 5.6 67 microstructure engineering for advanced supercapacitors. Nanoscale, 2022, 14, 8216-8244. N-Doped Two-Dimensional Carbon Nanosheets with Micropore-Dominant Porosity for 314 High-Performance Supercapacitor. SSRN Electronic Journal, 0, , .

#	Article	IF	CITATIONS
315	CaMoO ₄ Nanoparticle-Doped Graphene Oxide as Electrodes for High-Performance Supercapacitors. Nano, 2022, 17, .	1.0	4
316	Cashew Nut Shell Derived Porous Activated Carbon Electrodes for "Waterâ€inâ€Salt―Electrolyte Based Symmetric Supercapacitor. ChemistrySelect, 2022, 7, .	1.5	4
317	Cross-linked copolymer derived nitrogen-doped hierarchical porous carbon with high-performance lithium storage capability. Materials Advances, 0, , .	5.4	0
318	Study on the formation mechanism of hydrothermal prefabricated activated carbon and its adsorption capacity for malachite green. Colloid and Polymer Science, 2022, 300, 973-988.	2.1	3
319	Biowaste assisted preparation of self-nitrogen-doped nanoflakes carbon framework for highly efficient solid-state supercapacitor application. Journal of Energy Storage, 2022, 54, 105210.	8.1	19
320	Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—A review. Journal of Energy Storage, 2022, 54, 105290.	8.1	79
321	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	14.9	32
322	Preparation of renewable porous carbons for CO2 capture – A review. Fuel Processing Technology, 2022, 236, 107437.	7.2	38
323	Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon, 2023, 201, 49-59.	10.3	26
324	Molecular engineering toward sustainable development of multiple-doped hierarchical porous carbons for superior zinc ion storage. Science China Materials, 2023, 66, 541-555.	6.3	7
325	Animal- and Human-Inspired Nanostructures as Supercapacitor Electrode Materials: A Review. Nano-Micro Letters, 2022, 14, .	27.0	23
326	N-Doped Two-Dimensional Carbon Nanosheets with Micropore-Dominant Porosity for High-Performance Supercapacitors. Energy & Fuels, 2022, 36, 13246-13255.	5.1	5
327	Intrinsically active capsaicin non-covalently modified nitrogen doped graphene for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2023, 929, 117131.	3.8	1
328	High-yield preparation of B/N co-doped porous carbon nanosheets from a cross-linked boronate polymer for supercapacitor applications. Journal of Energy Storage, 2023, 59, 106498.	8.1	13
329	Self-template activated carbons for aqueous supercapacitors. Sustainable Materials and Technologies, 2023, 36, e00582.	3.3	6
330	Litchi seed biowaste-derived activated carbon supporting matrix for efficient symmetric and asymmetric supercapacitors. Carbon, 2023, 208, 277-289.	10.3	23
331	A Peachâ€Kernelâ€Derived Ultramicroporous Carbon with Extremely High CO ₂ â€Capture Ability. ChemistrySelect, 2023, 8, .	1.5	4
332	Preparation of hierarchical porous carbon through one-step KOH activation of coconut shell biomass for high-performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	7

#	Article	IF	CITATIONS
333	Novel interconnected hierarchical porous carbon derived from biomass for enhanced supercapacitor application. Journal of Electroanalytical Chemistry, 2023, 935, 117355.	3.8	12
335	Biomass-derived metal-free porous carbon electrocatalyst for efficient oxygen reduction reactions. Journal of the Taiwan Institute of Chemical Engineers, 2023, 147, 104905.	5.3	11
336	A dual-template strategy assisted synthesis of porous coal-based carbon nanofibers for supercapacitors. Diamond and Related Materials, 2023, 137, 110140.	3.9	3
337	Edge-N-Dominated Nanoporous Carbon as Electrode Materials for Enhanced Performance in Aqueous Supercapacitors. ACS Applied Nano Materials, 0, , .	5.0	1
338	Elimination of organic contaminants from water by microporous carbon fiber aerogel obtained from cotton. Polymer Bulletin, 2024, 81, 4477-4498.	3.3	0
339	Tridoped Mesoporous Carbon as a Metal-Free Catalyst for Ammoxidation of (Hetero)Aromatic Alcohols to Nitriles. ACS Applied Nano Materials, 2023, 6, 15193-15203.	5.0	3
340	Demystifying the influence of design parameters of nature-inspired materials for supercapacitors. Journal of Energy Storage, 2023, 72, 108670.	8.1	6
341	Augmenting the supercapacitive performance of candle soot-derived activated carbon electrodes in aqueous and non-aqueous electrolytes. Journal of Energy Storage, 2023, 73, 109162.	8.1	Ο
342	Wet-Chemistry Synthesis of Carbon Nanostructures. , 2023, , 1-27.		0
343	Morphology-Dependent Covalent Organic Polymers Exhibit Tunable Charge Storage Performance in Supercapacitor Application. ACS Applied Energy Materials, 2023, 6, 11890-11896.	5.1	1
344	High-rate electrochimcal supercapacitor with attractive energy density assembling from infused-undaria-pinnatifida-based activated carbon. Journal of Energy Storage, 2024, 80, 110362.	8.1	0
345	Construction of Phosphorusâ€Functionalized Multichannel Carbon Interlayers for Dendriteâ€Free Metallic Zn Anodes. Energy and Environmental Materials, 0, , .	12.8	0
346	Charge Storage and Magnetic Properties Nitrogen-Containing Nanoporous Bio-Carbon. Energies, 2024, 17, 903.	3.1	0
347	Heterostructured and multi-dimensional Ni-Co tellurides/NiTe with enhanced reaction kinetics for hybrid supercapacitors. Journal of Energy Storage, 2024, 86, 111158.	8.1	0
348	Sp3-rich porous carbon for doublet layer supercapacitors. Journal of Porous Materials, 0, , .	2.6	0