Enhancing seismic resilience using truss girder frame s

Journal of Constructional Steel Research 94, 23-32 DOI: 10.1016/j.jcsr.2013.10.016

Citation Report

#	Article	lF	CITATIONS
1	The energy factor of systems considering multiple yielding stages during ground motions. Soil Dynamics and Earthquake Engineering, 2015, 71, 42-48.	1.9	22
2	Static and seismic experiment for bolted-welded joint in modularized prefabricated steel structure. Journal of Constructional Steel Research, 2015, 115, 417-433.	1.7	63
3	Seismic energy factor of self-centering systems subjected to near-fault earthquake ground motions. Soil Dynamics and Earthquake Engineering, 2016, 84, 169-173.	1.9	22
4	Seismic retrofit of special truss moment frames using viscous dampers. Journal of Constructional Steel Research, 2016, 123, 53-67.	1.7	21
5	Constant Ductility Energy Factors for the Near-Fault Pulse-Like Ground Motions. Journal of Earthquake Engineering, 2017, 21, 343-358.	1.4	16
6	A dual-energy-demand-indices-based evaluation procedure of damage-control frame structures with energy dissipation fuses. Soil Dynamics and Earthquake Engineering, 2017, 95, 61-82.	1.9	23
7	A performance-based damage-control design procedure of hybrid steel MRFs with EDBs. Journal of Constructional Steel Research, 2018, 143, 46-61.	1.7	28
8	Seismic performance study on slipping bolted truss-to-column connections in modularized prefabricated steel structures. Engineering Structures, 2018, 163, 241-254.	2.6	53
9	Residual displacement ratio demand of oscillators representing HSSF-EDBs subjected to near-fault earthquake ground motions. Engineering Structures, 2019, 191, 598-610.	2.6	19
10	Seismic Isolation Research on a Double-Layer lattice Structure Using Shaking Table Tests. International Journal of Steel Structures, 2019, 19, 1237-1248.	0.6	9
11	Seismic Design and Response of Framed Structures with Stiffening Bracing Systems. Journal of Earthquake Engineering, 2019, 23, 625-647.	1.4	1
12	Low cycle reciprocating tests of earthquake-resilient prefabricated column-flange beam-column joints with different connection forms. Journal of Constructional Steel Research, 2020, 164, 105771.	1.7	79
13	Quantification of Seismic Performance Factors for Ductile Vierendeel Steel Truss Moment Frames. Journal of Earthquake Engineering, 2022, 26, 4280-4301.	1.4	4
14	Seismic resilience of retrofitted RC buildings. Earthquake Engineering and Engineering Vibration, 2020, 19, 561-571.	1.1	27
15	Experimental study of earthquake-resilient prefabricated opening-web steel channel beam-column joint with double FCPs. Journal of Constructional Steel Research, 2020, 175, 106356.	1.7	3
16	Seismic performance of highâ€rise special truss moment frames with multiple Vierendeel ductile segments and high panel aspect ratios. Structural Design of Tall and Special Buildings, 2020, 29, e1810.	0.9	2
17	Constant-ductility energy factors of SDOF systems subjected to mainshock–aftershock sequences. Earthquake Spectra, 2021, 37, 1078-1107.	1.6	8
18	The lower limit of the first frequency of natural vibrations externally statically indeterminate truss: analytical solution. E3S Web of Conferences, 2021, 264, 02034.	0.2	1

#	Article	IF	CITATIONS
19	Seismic fragility of steel special truss moment frames with multiple ductile vierendeel panels. Soil Dynamics and Earthquake Engineering, 2021, 143, 106603.	1.9	8
20	Cyclic loading tests of earthquake-resilient prefabricated steel cross joints with different FCP connections. Structures, 2021, 32, 1-14.	1.7	10
21	Investigation of the Seismic Performance of a Special Truss Moment Frame with SMAs Incorporated. Ce/Papers, 2021, 4, 1910-1916.	0.1	0
22	Investigation of the seismic performance of a single story – Single bay special truss moment frame with SMAs incorporated. Structures, 2021, 33, 2374-2387.	1.7	2
23	Energy-factor-based damage-control evaluation of steel MRF systems with fuses. Steel and Composite Structures, 2016, 22, 589-611.	1.3	6
24	Seismic retrofitting of reinforced concrete frame-shear wall buildings using seismic isolation for resilient performance. Structures, 2021, 34, 4745-4757.	1.7	11
25	Improved performance-based plastic design method for post-tensioned connection systems. Engineering Structures, 2022, 255, 113931.	2.6	5
26	Special Truss Moment Frames Equipped with Steel Slit Dampers. International Journal of Steel Structures, 2022, 22, 206-224.	0.6	5
27	Steel moment resisting frames with energy-dissipation rocking columns under near-fault earthquakes: Probabilistic performance-based-plastic-design for the ultimate stage. Journal of Building Engineering, 2022, 54, 104625.	1.6	1
28	Shaking table test and numerical analysis of single-layer reticulated domes with or without three-dimensional isolation bearing. Bulletin of Earthquake Engineering, 2022, 20, 6327-6348.	2.3	1
29	Resilient Performance of Self-Centering Hybrid Rocking Columns: Theory, Experiment, and Numerical Simulation. Advances in Civil Engineering, 2022, 2022, 1-24.	0.4	0
30	Experimental study of plate-buckling type earthquake-resilient prefabricated steel beam-column joints with replaceable double flange cover plates. Structures, 2023, 50, 1100-1113.	1.7	1

CITATION REPORT