Widespread decline of Congo rainforest greenness in th

Nature

509, 86-90

DOI: 10.1038/nature13265

Citation Report

#	Article	IF	CITATIONS
1	Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models. Remote Sensing, 2014, 6, 8945-8965.	1.8	55
2	Questions of bias in climate models. Nature Climate Change, 2014, 4, 741-742.	8.1	4
3	Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16041-16046.	3.3	259
5	Development of a remotely sensing seasonal vegetationâ€based Palmer Drought Severity Index and its application of global drought monitoring over 1982–2011. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9419-9440.	1.2	20
6	Drought in the Congo Basin. Nature, 2014, 509, 36-37.	13.7	8
7	Ever-wet tropical forests as biodiversity refuges. Nature Climate Change, 2014, 4, 740-741.	8.1	16
8	A conceptual model for assessing rainfall and vegetation trends in subâ€Saharan Africa from satellite data. International Journal of Climatology, 2015, 35, 3582-3592.	1.5	43
9	Quantifying renewable groundwater stress with <scp>GRACE</scp> . Water Resources Research, 2015, 51, 5217-5238.	1.7	588
10	Wavelet correlations to reveal multiscale coupling in geophysical systems. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7555-7572.	1.2	26
12	Drought onset mechanisms revealed by satellite solarâ€induced chlorophyll fluorescence: Insights from two contrasting extreme events. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2427-2440.	1.3	224
13	Changes in Growing Season Vegetation and Their Associated Driving Forces in China during 2001–2012. Remote Sensing, 2015, 7, 15517-15535.	1.8	49
14	Long Tree-Ring Chronologies Provide Evidence of Recent Tree Growth Decrease in a Central African Tropical Forest. PLoS ONE, 2015, 10, e0120962.	1.1	53
15	Evolution and Conservation of Central African Biodiversity: Priorities for Future Research and Education in the Congo Basin and Gulf of Guinea. Biotropica, 2015, 47, 6-17.	0.8	13
16	Global satellite monitoring of climate-induced vegetation disturbances. Trends in Plant Science, 2015, 20, 114-123.	4.3	183
17	Characterizing Congo Basin Rainfall and Climate Using Tropical Rainfall Measuring Mission (TRMM) Satellite Data and Limited Rain Gauge Ground Observations. Journal of Applied Meteorology and Climatology, 2015, 54, 541-555.	0.6	38
18	Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 2015, 8, 284-289.	5.4	337
19	A comparison of plotâ€based satellite and Earth system model estimates of tropical forest net primary production. Global Biogeochemical Cycles, 2015, 29, 626-644.	1.9	55
20	Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part II assessment results and management implications. Forest Ecology and Management, 2015, 353, 269-279.	1.4	60

#	Article	IF	Citations
21	Codominant water control on global interannual variability and trends in land surface phenology and greenness. Global Change Biology, 2015, 21, 3414-3435.	4.2	165
22	Global warming-accelerated drying in the tropics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3593-3594.	3.3	52
23	Longâ€ŧerm changes in liana loads and tree dynamics in a Malaysian forest. Ecology, 2015, 96, 2748-2757.	1.5	46
24	Time″ag effects of global vegetation responses to climate change. Global Change Biology, 2015, 21, 3520-3531.	4.2	672
25	A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD). Remote Sensing of Environment, 2015, 169, 375-389.	4.6	71
26	On underestimation of global vulnerability to tree mortality and forest dieâ€off from hotter drought in the Anthropocene. Ecosphere, 2015, 6, 1-55.	1.0	1,739
27	Monitoring the impact of aerosol contamination on the drought-induced decline of gross primary productivity. International Journal of Applied Earth Observation and Geoinformation, 2015, 36, 30-40.	1.4	3
28	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
30	Annual South American forest loss estimates based on passive microwave remote sensing (1990–2010). Biogeosciences, 2016, 13, 609-624.	1.3	28
31	Satellite Climate Data Records: Development, Applications, and Societal Benefits. Remote Sensing, 2016, 8, 331.	1.8	26
32	Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products. Biogeosciences, 2016, 13, 625-639.	1.3	29
33	Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth System Dynamics, 2016, 7, 627-647.	2.7	46
34	Opportunities for hydrologic research in the Congo Basin. Reviews of Geophysics, 2016, 54, 378-409.	9.0	145
35	A new paradigm of quantifying ecosystem stress through chemical signatures. Ecosphere, 2016, 7, e01559.	1.0	16
36	Possible causes of the Central Equatorial African long-term drought. Environmental Research Letters, 2016, 11, 124002.	2,2	100
37	Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sensing of Environment, 2016, 185, 243-257.	4.6	183
38	Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agricultural and Forest Meteorology, 2016, 224, 1-10.	1.9	63
39	Plants on Plants – The Biology of Vascular Epiphytes. Fascinating Life Sciences, 2016, , .	0.5	173

#	Article	IF	Citations
40	Epiphytes and Humans. Fascinating Life Sciences, 2016, , 245-265.	0.5	2
41	Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2422-2444.	1.3	60
42	Influence of droughts on <i>Nothofagus pumilio</i> forest decline across northern Patagonia, Argentina. Ecosphere, 2016, 7, e01390.	1.0	42
43	Ecosystem resilience to the Millennium drought in southeast Australia (2001–2009). Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2312-2327.	1.3	17
44	The broad footprint of climate change from genes to biomes to people. Science, 2016, 354, .	6.0	883
45	African hydroclimatic variability during the last 2000 years. Quaternary Science Reviews, 2016, 154, 1-22.	1.4	83
46	Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 2016, 7, 13428.	5.8	305
47	Environmental Issues in Central Africa. Annual Review of Environment and Resources, 2016, 41, 1-33.	5 . 6	56
48	Effects of long-term rainfall decline on the structure and functioning of Hawaiian forests. Environmental Research Letters, 2016, 12, 094002.	2.2	9
49	Remarkable levels of avian louse (Insecta: Phthiraptera) diversity in the Congo Basin. Zoologica Scripta, 2016, 45, 538-551.	0.7	11
50	On the relationships between satellite-based drought index and gross primary production in the North Korean croplands, 2000–2012. Remote Sensing Letters, 2016, 7, 790-799.	0.6	11
51	Analysis of the diurnal cycles for a better understanding of the mean annual cycle of forests greenness in Central Africa. Agricultural and Forest Meteorology, 2016, 223, 81-94.	1.9	19
52	A systematic review of vegetation phenology in Africa. Ecological Informatics, 2016, 34, 117-128.	2.3	72
53	Vegetation dynamics in Qinling-Daba Mountains in relation to climate factors between 2000 and 2014. Journal of Chinese Geography, 2016, 26, 45-58.	1.5	38
54	Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resources Research, 2016, 52, 1160-1175.	1.7	171
55	Digital thermal monitoring of the Amazon forest: an intercomparison of satellite and reanalysis products. International Journal of Digital Earth, 2016, 9, 477-498.	1.6	15
56	Large divergence of satellite and Earth system model estimates of global terrestrial CO2Âfertilization. Nature Climate Change, 2016, 6, 306-310.	8.1	309
57	A Field Verification of an Algorithm for Retrieving Vegetation Water Content From Passive Microwave Observations. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 2082-2095.	2.7	24

#	ARTICLE	IF	CITATIONS
58	Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations. Remote Sensing of Environment, 2016, 172, 178-189.	4.6	171
59	The Congo Basin Walker circulation: dynamics and connections to precipitation. Climate Dynamics, 2016, 47, 697-717.	1.7	49
60	Natural disasters and economic development drive forest dynamics and transition in China. Forest Policy and Economics, 2017, 76, 56-64.	1.5	49
61	Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?. Remote Sensing of Environment, 2017, 191, 145-155.	4.6	258
62	Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 2017, 542, 86-90.	13.7	428
63	Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nature Ecology and Evolution, 2017, 1, 81.	3.4	156
64	Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 278-287.	1.4	14
65	ENSO elicits opposing responses of semi-arid vegetation between Hemispheres. Scientific Reports, 2017, 7, 42281.	1.6	15
66	An investigation into the freshwater variability in West Africa during 1979â€2010. International Journal of Climatology, 2017, 37, 333-349.	1.5	28
67	The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophysical Research Letters, 2017, 44, 3209-3218.	1.5	58
68	Moistureâ€induced greening of the South Asia over the past three decades. Global Change Biology, 2017, 23, 4995-5005.	4.2	55
69	Plant measurements on African tropical Maesopsis eminii seedlings contradict pioneering water use behaviour. Environmental and Experimental Botany, 2017, 135, 27-37.	2.0	10
70	Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 2017, 12, 094013.	2.2	129
71	Regional contribution to variability and trends of global gross primary productivity. Environmental Research Letters, 2017, 12, 105005.	2.2	65
72	Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Scientific Reports, 2017, 7, 14963.	1.6	30
73	Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 2017, 358, 230-234.	6.0	539
74	Vegetation anomalies caused by antecedent precipitation in most of the world. Environmental Research Letters, 2017, 12, 074016.	2.2	123
75	Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6882-6898.	1.2	95

#	Article	IF	CITATIONS
76	Fusing Microwave and Optical Satellite Observations to Simultaneously Retrieve Surface Soil Moisture, Vegetation Water Content, and Surface Soil Roughness. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 6195-6206.	2.7	13
77	Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE. Journal of Hydrology, 2017, 553, 105-118.	2.3	90
78	Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century. Scientific Reports, 2017, 7, 41256.	1.6	15
79	Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age. Chemical Geology, 2017, 466, 454-465.	1.4	28
80	The study of vegetation greenness patterns through time series clustering of remotely sensed data. , 2017, , .		0
81	Characterizing Land Cover Impacts on the Responses of Land Surface Phenology to the Rainy Season in the Congo Basin. Remote Sensing, 2017, 9, 461.	1.8	14
82	Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015. Remote Sensing, 2017, 9, 5.	1.8	26
83	Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Remote Sensing, 2017, 9, 698.	1.8	20
84	Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities. PLoS ONE, 2017, 12, e0170615.	1.1	35
85	A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth System Dynamics, 2017, 8, 653-675.	2.7	52
86	Ground Truth of Passive Microwave Radiative Transfer on Vegetated Land Surfaces. Remote Sensing, 2017, 9, 655.	1.8	5
87	Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations. Biogeosciences, 2017, 14, 3685-3703.	1.3	58
88	Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts. Remote Sensing of Environment, 2018, 211, 26-37.	4.6	33
89	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
90	Microrefugia and Climate Change Adaptation: A Practical Guide for Wildland Managers. , 2018, , 289-300.		0
91	Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biology, 2018, 24, 1919-1934.	4.2	145
92	Changes in hydro-meteorological conditions over tropical West Africa (1980–2015) and links to global climate. Global and Planetary Change, 2018, 162, 321-341.	1.6	51
93	Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytologist, 2018, 217, 1507-1520.	3.5	66

#	Article	IF	CITATIONS
94	Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 2018, 1, 44-50.	11.5	460
95	Potential climate effect of mineral aerosols over West Africa: Part IIâ€"contribution of dust and land cover to future climate change. Climate Dynamics, 2018, 50, 2335-2353.	1.7	13
96	Understanding the Central Equatorial African long-term drought using AMIP-type simulations. Climate Dynamics, 2018, 50, 1115-1128.	1.7	44
97	An Anthropological Perspective on the Timeline of Humanitarian Interventions. , 2018, , 385-394.		0
98	Thermal Anomalies Detect Critical Global Land Surface Changes. Journal of Applied Meteorology and Climatology, 2018, 57, 391-411.	0.6	41
99	Rainfall over the African continent from the 19th through the 21st century. Global and Planetary Change, 2018, 165, 114-127.	1.6	184
100	Late Holocene forest contraction and fragmentation in central Africa. Quaternary Research, 2018, 89, 43-59.	1.0	53
101	Assessment of MODIS-derived indices (2001–2013) to drought across Taiwan's forests. International Journal of Biometeorology, 2018, 62, 809-822.	1.3	17
102	Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agricultural and Forest Meteorology, 2018, 248, 408-417.	1.9	134
103	Changes in global vegetation activity and its driving factors during 1982–2013. Agricultural and Forest Meteorology, 2018, 249, 198-209.	1.9	151
104	Renewable energy alternatives to mega hydropower: a case study of Inga 3 for Southern Africa. Environmental Research Letters, 2018, 13, 064020.	2.2	18
105	A significant increase in the normalized difference vegetation index during the rapid economic development in the Pearl River Delta of China. Land Degradation and Development, 2019, 30, 359-370.	1.8	59
106	Broad Consistency Between Satellite and Vegetation Model Estimates of Net Primary Productivity Across Global and Regional Scales. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3603-3616.	1.3	26
107	Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing, 2018, 10, 2038.	1.8	95
108	Moisture pulse-reserve in the soil-plant continuum observed across biomes. Nature Plants, 2018, 4, 1026-1033.	4.7	75
109	Earlier Seasonal Onset of Intense Mesoscale Convective Systems in the Congo Basin Since 1999. Geophysical Research Letters, 2018, 45, 13,458.	1.5	33
110	Remote sensing restores predictability of ectotherm body temperature in the world's forests. Global Ecology and Biogeography, 2018, 27, 1412-1425.	2.7	7
111	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	1.7	160

#	Article	IF	CITATIONS
112	Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 2018, 214, 59-72.	4.6	322
113	Vegetation dynamic trends and the main drivers detected using the ensemble empirical mode decomposition method in East Africa. Land Degradation and Development, 2018, 29, 2542-2553.	1.8	27
114	Current issues in tropical phenology: a synthesis. Biotropica, 2018, 50, 477-482.	0.8	61
115	Increasing extent and intensity of thunderstorms observed over the Congo Basin from 1982 to 2016. Atmospheric Research, 2018, 213, 17-26.	1.8	34
116	Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica, 2018, 50, 418-430.	0.8	48
117	Drought Effects on Photosynthesis and Implications of Photoassimilate Distribution in 11C-Labeled Leaves in the African Tropical Tree Species Maesopsis eminii Engl Forests, 2018, 9, 109.	0.9	9
118	Determining the Start of the Growing Season from MODIS Data in the Indian Monsoon Region: Identifying Available Data in the Rainy Season and Modeling the Varied Vegetation Growth Trajectories. Remote Sensing, 2018, 10, 122.	1.8	9
119	Temporal Variability of MODIS Phenological Indices in the Temperate Rainforest of Northern Patagonia. Remote Sensing, 2018, 10, 956.	1.8	13
120	Major trends in the land surface phenology (LSP) of Africa, controlling for land-cover change. International Journal of Remote Sensing, 2018, 39, 8060-8075.	1.3	6
121	Deriving pattern from complexity in the processes underlying tropical forest drought impacts. New Phytologist, 2018, 219, 841-844.	3.5	11
122	New Rainfall Datasets for the Congo Basin and Surrounding Regions. Journal of Hydrometeorology, 2018, 19, 1379-1396.	0.7	28
123	Freshwater megafauna diversity: Patterns, status and threats. Diversity and Distributions, 2018, 24, 1395-1404.	1.9	59
124	Exploring evapotranspiration dynamics over Sub-Sahara Africa (2000–2014). Environmental Monitoring and Assessment, 2018, 190, 400.	1.3	27
125	Climate Change in the Tropics: Ecological and Evolutionary Responses at Low Latitudes. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 303-333.	3.8	82
126	Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence. Science of the Total Environment, 2019, 693, 133627.	3.9	64
127	Elucidating observed land surface feedbacks across sub-Saharan Africa. Climate Dynamics, 2019, 53, 1741-1763.	1.7	10
128	Current and future potential distributions of three Dracaena Vand. ex L. species under two contrasting climate change scenarios in Africa. Ecology and Evolution, 2019, 9, 6833-6848.	0.8	11
129	Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environmental Research Letters, 2019, 14, 085007.	2.2	62

#	Article	IF	CITATIONS
130	Widespread increase of boreal summer dry season length over the Congo rainforest. Nature Climate Change, 2019, 9, 617-622.	8.1	70
131	High ecosystem stability of evergreen broadleaf forests under severe droughts. Global Change Biology, 2019, 25, 3494-3503.	4.2	89
	Variations in dissolved greenhouse gases (CO ₂ ,) Tj ETQq0 0 0 rgBT /C		
132	River network overwhelmingly driven by fluvial-wetland connectivity. Biogeosciences, 2019, 16, 3801-3834.	1.3	93
133	Revisiting assessments of ecosystem drought recovery. Environmental Research Letters, 2019, 14, 114028.	2.2	24
134	Deep Convection over Africa: Annual Cycle, ENSO, and Trends in the Hotspots. Journal of Climate, 2019, 32, 8791-8811.	1.2	22
135	Climatic forcing for recent significant terrestrial drying and wetting. Advances in Water Resources, 2019, 133, 103425.	1.7	24
136	Evaluating the Performance of Satellite-Derived Vegetation Indices for Estimating Gross Primary Productivity Using FLUXNET Observations across the Globe. Remote Sensing, 2019, 11, 1823.	1.8	58
137	Impacts of increased urbanization on surface temperature, vegetation, and aerosols over Bengaluru, India. Remote Sensing Applications: Society and Environment, 2019, 16, 100261.	0.8	23
138	Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China. Environmental Science and Pollution Research, 2019, 26, 32866-32879.	2.7	52
139	Satellite L–band vegetation optical depth is directly proportional to crop water in the US Corn Belt. Remote Sensing of Environment, 2019, 233, 111378.	4.6	24
140	Greenness trends and carbon stocks of mangroves across Mexico. Environmental Research Letters, 2019, 14, 075010.	2.2	23
141	Detecting hotspots of interactions between vegetation greenness and terrestrial water storage using satellite observations. Remote Sensing of Environment, 2019, 231, 111259.	4.6	61
142	Characterization and evaluation of AIRS-based estimates of the deuterium content of water vapor. Atmospheric Measurement Techniques, 2019, 12, 2331-2339.	1.2	18
143	Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure. Remote Sensing of Environment, 2019, 231, 111233.	4.6	45
144	Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annual Review of Earth and Planetary Sciences, 2019, 47, 555-581.	4.6	131
145	Widespread Decline in Vegetation Photosynthesis in Southeast Asia Due to the Prolonged Drought During the 2015/2016 El Niño. Remote Sensing, 2019, 11, 910.	1.8	23
146	Contemporary Climate Change of the African Monsoon Systems. Current Climate Change Reports, 2019, 5, 145-159.	2.8	23
147	African dryland ecosystem changes controlled by soil water. Land Degradation and Development, 2019, 30, 1564-1573.	1.8	18

#	Article	IF	CITATIONS
148	Evaluation of remotely sensed rainfall products over Central Africa. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2115-2138.	1.0	54
149	Hydrological controls on surface vegetation dynamics over West and Central Africa. Ecological Indicators, 2019, 103, 494-508.	2.6	32
150	Validation of Satellite Precipitation Estimates over the Congo Basin. Journal of Hydrometeorology, 2019, 20, 631-656.	0.7	49
151	Ecosystem Productivity and Water Stress in Tropical East Africa: A Case Study of the 2010–2011 Drought. Land, 2019, 8, 52.	1.2	9
152	Can We Detect the Brownness or Greenness of the Congo Rainforest Using Satellite-Derived Surface Albedo? A Study on the Role of Aerosol Uncertainties. Sustainability, 2019, 11, 1410.	1.6	7
153	Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environmental Research Letters, 2019, 14, 044002.	2.2	12
154	A new and flexible rainy season definition: Validation for the Greater Horn of Africa and application to rainfall trends. International Journal of Climatology, 2019, 39, 989-1012.	1.5	30
155	Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015. Sustainability, 2019, 11, 696.	1.6	16
156	The variation of vegetation productivity and its relationship to temperature and precipitation based on the GLASS-LAI of different African ecosystems from 1982 to 2013. International Journal of Biometeorology, 2019, 63, 847-860.	1.3	14
157	The water resources of tropical West Africa: problems, progress, and prospects. Acta Geophysica, 2019, 67, 621-649.	1.0	45
158	A new global database of meteorological drought events from 1951 to 2016. Journal of Hydrology: Regional Studies, 2019, 22, 100593.	1.0	178
159	Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia. International Journal of Climatology, 2019, 39, 1571-1588.	1.5	41
160	Trends in Tropical Wave Activity from the 1980s to 2016. Journal of Climate, 2019, 32, 1661-1676.	1.2	19
161	Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Scientific Reports, 2019, 9, 16865.	1.6	116
162	Assessing reanalysis data for understanding rainfall climatology and variability over Central Equatorial Africa. Climate Dynamics, 2019, 53, 651-669.	1.7	61
163	Warming trends in Patagonian subantartic forest. International Journal of Applied Earth Observation and Geoinformation, 2019, 76, 51-65.	1.4	18
164	Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sensing of Environment, 2019, 222, 183-194.	4.6	393
165	Modelling the impacts of global multi-scale climatic drivers on hydro-climatic extremes (1901–2014) over the Congo basin. Science of the Total Environment, 2019, 651, 1569-1587.	3.9	49

#	Article	IF	CITATIONS
166	Assessment of the impacts of climate variability on total water storage across Africa: implications for groundwater resources management. Hydrogeology Journal, 2019, 27, 493-512.	0.9	28
167	Constraining estimates of terrestrial carbon uptake: new opportunities using longâ€ŧerm satellite observations and data assimilation. New Phytologist, 2020, 225, 105-112.	3.5	44
168	Congo Basin drying associated with poleward shifts of the African thermal lows. Climate Dynamics, 2020, 54, 863-883.	1.7	20
169	Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India. International Journal of Applied Earth Observation and Geoinformation, 2020, 86, 102027.	1.4	30
170	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	12.2	889
171	Satellite observed reversal in trends of tropical and subtropical water availability. International Journal of Applied Earth Observation and Geoinformation, 2020, 86, 102015.	1.4	5
172	Greening and browning of the coastal areas in mainland China: Spatial heterogeneity, seasonal variation and its influential factors. Ecological Indicators, 2020, 110, 105888.	2.6	23
173	Deep Convective Evolution From Shallow Clouds Over the Amazon and Congo Rainforests. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030962.	1.2	10
174	The Carbon Cycle of Terrestrial Ecosystems. , 2020, , 141-182.		4
175	The Global Carbon and Oxygen Cycles. , 2020, , 453-481.		1
176	Isotopic and microbotanical insights into Iron Age agricultural reliance in the Central African rainforest. Communications Biology, 2020, 3, 619.	2.0	17
177	Centuryâ€long apparent decrease in intrinsic waterâ€use efficiency with no evidence of progressive nutrient limitation in African tropical forests. Global Change Biology, 2020, 26, 4449-4461.	4.2	20
178	Assessing extreme climatic changes on a monthly scale and their implications for vegetation in Central Asia. Journal of Cleaner Production, 2020, 271, 122396.	4.6	57
179	Plant-Fire Interactions. Managing Forest Ecosystems, 2020, , .	0.4	20
180	Global Change, Pyrophysiology, and Wildfires. Managing Forest Ecosystems, 2020, , 177-197.	0.4	0
181	Understanding spatiotemporal patterns of global forest NPP using a data-driven method based on GEE. PLoS ONE, 2020, 15, e0230098.	1.1	10
182	Liana species decline in Congo basin contrasts with global patterns. Ecology, 2020, 101, e03004.	1.5	21
183	Below-surface water mediates the response of African forests to reduced rainfall. Environmental Research Letters, 2020, 15, 034063.	2.2	18

#	Article	IF	Citations
184	The MJO's impact on rainfall trends over the Congo rainforest. Climate Dynamics, 2020, 54, 2683-2695.	1.7	12
185	Forest browning trends in response to drought in a highly threatened mediterranean landscape of South America. Ecological Indicators, 2020, 115, 106401.	2.6	39
186	The Tropical Easterly Jet over Africa, its representation in six reanalysis products, and its association with Sahel rainfall. International Journal of Climatology, 2021, 41, 328-347.	1.5	7
187	Monsoons Climate Change Assessment. Bulletin of the American Meteorological Society, 2021, 102, E1-E19.	1.7	133
188	Analyzing intensifying thunderstorms over the Congo Basin using the Gálvez-Davison index from 1983–2018. Climate Dynamics, 2021, 56, 949-967.	1.7	8
189	Historical and future contributions of inland waters to the Congo Basin carbon balance. Earth System Dynamics, 2021, 12, 37-62.	2.7	13
190	Responses of Forest Carbon Cycle to Drought and Elevated CO2. Atmosphere, 2021, 12, 212.	1.0	5
191	Satellite Observations of the Tropical Terrestrial Carbon Balance and Interactions With the Water Cycle During the 21st Century. Reviews of Geophysics, 2021, 59, e2020RG000711.	9.0	13
192	Exploring Short-Term Climate Change Effects on Rangelands and Broad-Leaved Forests by Free Satellite Data in Aosta Valley (Northwest Italy). Climate, 2021, 9, 47.	1.2	35
193	Relationship between multi-scale climate factors and performance of ecological engineering on the Loess Plateau, China. Journal of Forestry Research, 2022, 33, 789-800.	1.7	6
194	Unveiling African rainforest composition and vulnerability to global change. Nature, 2021, 593, 90-94.	13.7	53
195	Increasing Influence of Indian Ocean Dipole on Precipitation Over Central Equatorial Africa. Geophysical Research Letters, 2021, 48, e2020GL092370.	1.5	11
196	Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sensing of Environment, 2021, 256, 112313.	4.6	114
198	Woody-biomass projections and drivers of change in sub-Saharan Africa. Nature Climate Change, 2021, 11, 449-455.	8.1	23
199	Local climate and biodiversity affect the stability of China's grasslands in response to drought. Science of the Total Environment, 2021, 768, 145482.	3.9	23
200	Weakened seasonality of the African rainforest precipitation in boreal winter and spring driven by tropical SST variabilities. Geoscience Letters, 2021, 8, .	1.3	2
201	Assessing Freshwater Changes over Southern and Central Africa (2002–2017). Remote Sensing, 2021, 13, 2543.	1.8	18
202	Forest Canopy Changes in the Southern Amazon during the 2019 Fire Season Based on Passive Microwave and Optical Satellite Observations. Remote Sensing, 2021, 13, 2238.	1.8	7

#	Article	IF	CITATIONS
203	Evaluating the grassland NPP dynamics in response to climate change in Tanzania. Ecological Indicators, 2021, 125, 107600.	2.6	26
204	Combining gradual and abrupt analysis to detect variation of vegetation greenness on the loess areas of China. Frontiers of Earth Science, 2022, 16, 368-380.	0.9	4
205	Water availability surpasses warmth in controlling global vegetation trends in recent decade: revealed by satellite time series. Environmental Research Letters, 2021, 16, 074028.	2.2	11
206	Patterns of postâ€drought recovery are strongly influenced by drought duration, frequency, postâ€drought wetness, and bioclimatic setting. Global Change Biology, 2021, 27, 4630-4643.	4.2	37
207	Detecting vulnerability of humid tropical forests to multiple stressors. One Earth, 2021, 4, 988-1003.	3.6	41
208	Bidirectional droughtâ€related canopy dynamics across pantropical forests: a satelliteâ€based statistical analysis. Remote Sensing in Ecology and Conservation, 2022, 8, 72-91.	2.2	6
209	Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening Earth. Science Bulletin, 2021, 66, 1462-1471.	4.3	46
210	Where Does Moisture Come From Over the Congo Basin?. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006024.	1.3	15
211	On the role of aerosol radiative effect in the wet season onset timing over the Congo rainforest during boreal autumn. Atmospheric Chemistry and Physics, 2021, 21, 12855-12866.	1.9	3
212	The Dynamic of Vegetation Growth with Regular Climate and Climatic Fluctuations in a Subtropical Mountainous Island, Taiwan. Remote Sensing, 2021, 13, 3298.	1.8	6
213	Assessing the Reliability of Satellite and Reanalysis Estimates of Rainfall in Equatorial Africa. Remote Sensing, 2021, 13, 3609.	1.8	13
215	Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO ₂ . Biogeosciences, 2021, 18, 4985-5010.	1.3	49
216	Global Change in Terrestrial Ecosystem Detected by Fusion of Microwave and Optical Satellite Observations. Remote Sensing, 2021, 13, 3756.	1.8	0
217	Stability of tropical forest tree carbonâ€water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Global Change Biology, 2021, 27, 6454-6466.	4.2	17
218	Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecological Indicators, 2021, 129, 107912.	2.6	22
219	Is satellite Sun-Induced Chlorophyll Fluorescence more indicative than vegetation indices under drought condition?. Science of the Total Environment, 2021, 792, 148396.	3.9	17
220	Inconsistent changes in NPP and LAI determined from the parabolic LAI versus NPP relationship. Ecological Indicators, 2021, 131, 108134.	2.6	24
221	A shift in the diurnal timing and intensity of deep convection over the Congo Basin during the past 40Âyears. Atmospheric Research, 2021, 264, 105869.	1.8	4

#	Article	IF	CITATIONS
222	Can Landsat 7 preserve its science capability with a drifting orbit?. Science of Remote Sensing, 2021, 4, 100026.	2.2	9
223	Three-dimensional dynamic characteristics of vegetation and its response to climatic factors in the Qilian Mountains. Catena, 2022, 208, 105694.	2.2	54
224	Transitioning from Vulnerability to Resilience Building: Climate Change in Africa., 2021, , 1-27.		0
225	Evaluation of Evaporation Climatology for the Congo Basin Wet Seasons in 11 Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030619.	1.2	13
226	Observed changes in fire patterns and possible drivers over Central Africa. Environmental Research Letters, 2020, 15, 0940b8.	2.2	18
227	Spatial priorities for conserving the most intact biodiverse forests within Central Africa. Environmental Research Letters, 2020, 15, 0940b5.	2.2	18
228	Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions. Environmental Research Letters, 2020, 15, 124021.	2.2	28
229	The Effect of Explicit Convection on Couplings between Rainfall, Humidity, and Ascent over Africa under Climate Change. Journal of Climate, 2020, 33, 8315-8337.	1.2	14
230	Gap models across micro- to mega-scales of time and space: examples of Tansley's ecosystem concept. Forest Ecosystems, 2020, 7, .	1.3	12
231	Hydrological Control of Vegetation Greenness Dynamics in Africa: A Multivariate Analysis Using Satellite Observed Soil Moisture, Terrestrial Water Storage and Precipitation. Land, 2020, 9, 15.	1.2	13
232	Implicaciones del filtrado de calidad del \tilde{A} ndice de vegetaci \tilde{A}^3 n EVI para el seguimiento funcional de ecosistemas. Revista De Teledeteccion, 2015, , 11.	0.6	6
233	Summarizing the state of the terrestrial biosphere in few dimensions. Biogeosciences, 2020, 17, 2397-2424.	1.3	12
235	Data-driven estimates of evapotranspiration and its controls in the Congo Basin. Hydrology and Earth System Sciences, 2020, 24, 4189-4211.	1.9	20
236	Human disturbance caused stronger influences on global vegetation change than climate change. Peerl, 2019, 7, e7763.	0.9	20
237	Rare ground data confirm significant warming and drying in western equatorial Africa. Peerl, 2020, 8, e8732.	0.9	19
238	Microrefugia and Climate Change Adaptation: A Practical Guide for Wildland Managers. , 2015, , .		0
240	Analysis of Drought Factors Affecting the Economy. , 2017, , 643-655.		2
242	Understanding Climate-Vegetation Interactions in Global Rainforests Through a GP-Tree Analysis. Lecture Notes in Computer Science, 2018, , 525-536.	1.0	0

#	Article	IF	Citations
243	Role in Ecosystem and Global Processes: Ecophysiological Controls., 2019,, 677-698.		2
244	Analysis of Multi-time Series Vegetation Greening in the Korean Peninsula. Journal of Climate Change Research, 2019, 10, 479-489.	0.1	0
245	Inter-annual Climate Variability and Vegetation Dynamic in the Upper Amur (Heilongjiang) River Basin in Northeast Asia. Environmental Research Communications, 2020, 2, 061003.	0.9	3
246	Weather, Climatic and Ecological Impacts of Onshore Wind Farms. , 2022, , 165-188.		0
249	Transitioning from Vulnerability to Resilience Building: Climate Change in Africa., 2021,, 3329-3354.		0
251	Emissivity-based vegetation indices to monitor deforestation and forest degradation in the Congo basin rainforest. , 2020, , .		4
252	Seasonal and long-term variations in leaf area of Congolese rainforest. Remote Sensing of Environment, 2022, 268, 112762.	4.6	10
253	Climate Change and Ecological Projects Jointly Promote Vegetation Restoration in Three-River Source Region of China. Chinese Geographical Science, 2021, 31, 1108-1122.	1.2	17
254	Mechanisms of Rainfall Biases in Two CORDEX-CORE Regional Climate Models at Rainfall Peaks over Central Equatorial Africa. Journal of Climate, 2022, 35, 639-668.	1.2	18
255	Variabilité saisonniÃ"re et intra-saisonniÃ"re de la pluviométrie en milieu forestier dans le Sud-ouest centrafricain. Proceedings of the International Association of Hydrological Sciences, 0, 384, 367-373.	1.0	1
256	Hydrodynamics of regional and seasonal variations in Congo Basin precipitation. Climate Dynamics, 2022, 59, 1775-1797.	1.7	6
257	Key challenges for tropospheric chemistry in the Southern Hemisphere. Elementa, 2022, 10, .	1.1	7
258	Quantifying Drought Resistance of Drylands in Northern China from 1982 to 2015: Regional Disparity in Drought Resistance. Forests, 2022, 13, 100.	0.9	5
259	Hydroclimatic adaptation critical to the resilience of tropical forests. Global Change Biology, 2022, 28, 2930-2939.	4.2	9
260	Congolian Coastal Forest: It's Threat, Values and Future. , 2022, , .		0
270	Characterization of Sunshine Duration in Western Equatorial Africa: In Situ Measurements versus SARAH-2 Satellite Estimates. Journal of Applied Meteorology and Climatology, 2022, 61, 185-201.	0.6	3
274	Recent rainfall conditions in the Congo Basin. Environmental Research Letters, 2022, 17, 054052.	2.2	1
275	Orographic enhancement of rainfall over the Congo Basin. Atmospheric Science Letters, 2022, 23, .	0.8	2

#	Article	IF	CITATIONS
276	Relationships between intense convection, lightning, and rainfall over the interior Congo Basin using TRMM data. Atmospheric Research, 2022, 273, 106164.	1.8	2
277	Heterogeneous Trends of Precipitation Extremes in Recent Two Decades over East Africa. Journal of Meteorological Research, 2021, 35, 1057-1073.	0.9	8
278	Representation of Spatial Variability of the Water Fluxes over the Congo Basin Region. Sensors, 2022, 22, 84.	2.1	0
279	Spatial patterns of lightâ€demanding tree species in the Yangambi rainforest (Democratic Republic of) Tj ETQq1 1	0.784314	rgBT /Ove
280	Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau. Remote Sensing, 2021, 13, 4952.	1.8	25
281	A Stepwise-Clustered Simulation Approach for Projecting Future Heat Wave Over Guangdong Province. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
282	Differential signal of change among multiple components of West African rainfall. Theoretical and Applied Climatology, 2022, 149, 379-399.	1.3	1
284	Remote sensing of phenology: Towards the comprehensive indicators of plant community dynamics from species to regional scales. Journal of Ecology, 2022, 110, 1460-1484.	1.9	32
285	Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (<i>Coffea canephora</i>). Global Change Biology, 2022, 28, 4124-4142.	4.2	15
286	Human and natural resource exposure to extreme drought at 1.0 °C–4.0 °C warming levels. Environmental Research Letters, 2022, 17, 064005.	2.2	5
287	Semiarid ecosystems., 2022,, 311-335.		0
288	Understanding process controls on groundwater recharge variability across Africa through recharge landscapes. Journal of Hydrology, 2022, 612, 127967.	2.3	6
291	Remote Sensing of Surface Vegetation. , 2022, , 131-176.		3
292	Hotspots of ÂClimatic Influence. , 2022, , 629-688.		2
294	Changes in extreme daily precipitation over Africa: Insights from a non-asymptotic statistical approach. Journal of Hydrology X, 2022, 16, 100130.	0.8	7
295	Evaluating the performance of multiple satellite-based precipitation products in the Congo River Basin using the SWAT model. Journal of Hydrology: Regional Studies, 2022, 42, 101168.	1.0	7
296	Climatic and edaphicâ€based predictors of normalized difference vegetation index in tropical dry landscapes: A pantropical analysis. Global Ecology and Biogeography, 0, , .	2.7	2
297	Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nature Communications, 2022, 13, .	5.8	70

#	Article	IF	CITATIONS
298	High resistance of deciduous forests and high recovery rate of evergreen forests under moderate droughts in China. Ecological Indicators, 2022, 144, 109469.	2.6	3
299	Multifaceted characteristics of aridity changes and causal mechanisms in Chinese drylands. Progress in Physical Geography, 0, , 030913332211298.	1.4	1
300	Early-onset trend in European summer caused by Greenland topographic effect. Environmental Research Letters, 2022, 17, 104039.	2.2	0
301	Opposite eco-hydrological processes in flood and drought years caused comparable anomaly in dry-season canopy growth over southern Amazon. Environmental Research Letters, 2022, 17, 114001.	2.2	1
302	Not Just Carbon: Capturing All the Benefits of Forests for Stabilizing the Climate from Local to Global Scales. , 0 , , .		5
303	Spatiotemporal Variation in Vegetation Growth Status and Its Response to Climate in the Three-River Headwaters Region, China. Remote Sensing, 2022, 14, 5041.	1.8	5
304	Processes and mechanisms of vegetation ecosystem responding to climate and ecological restoration in China. Frontiers in Plant Science, $0,13,.$	1.7	6
305	Analysis of desertification combating needs based on potential vegetation NDVlâ€"A case in the Hotan Oasis. Frontiers in Plant Science, 0, 13, .	1.7	3
306	Decadal spatio-temporal dynamics of drought in semi-arid farming regions of Zimbabwe between 1990 and 2020: a case of Mberengwa and Zvishavane districts. Theoretical and Applied Climatology, 2023, 151, 1283-1299.	1.3	1
307	Response of Photosynthetic Efficiency to Extreme Drought and Its Influencing Factors in Southwest China. Sustainability, 2023, 15, 1095.	1.6	1
308	Competition between biogeochemical drivers and land-cover changes determines urban greening or browning. Remote Sensing of Environment, 2023, 287, 113481.	4.6	15
309	Assessing vegetation restoration prospects under different environmental elements in cold and arid mountainous region of China. Catena, 2023, 226, 107055.	2.2	8
310	Identifying impacts of global climate teleconnection patterns on land water storage using machine learning. Journal of Hydrology: Regional Studies, 2023, 46, 101346.	1.0	1
311	Meta-analysis of the impact of future climate change on the area of woody plant habitats in China. Frontiers in Plant Science, 0, 14, .	1.7	0
312	The carbon sink of secondary and degraded humid tropical forests. Nature, 2023, 615, 436-442.	13.7	19
313	Global reanalysis products cannot reproduce seasonal and diurnal cycles of tropospheric ozone in the Congo Basin. Atmospheric Environment, 2023, , 119773.	1.9	0
314	Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions. Ecology and Evolution, 2023, 13, .	0.8	0
315	Vegetation browning: global drivers, impacts, and feedbacks. Trends in Plant Science, 2023, 28, 1014-1032.	4.3	5

#	ARTICLE	IF	CITATIONS
322	Evidence and attribution of the enhanced land carbon sink. Nature Reviews Earth & Environment, 2023, 4, 518-534.	12.2	18
331	Drought Characteristics and Impacts in the Anthropocene. Springer Climate, 2023, , 385-413.	0.3	0
339	Current and Projected Climate Changes in African Subregions. , 2023, , 21-52.		0
346	Using PlanetScope imagery and GEOBIA to map urban green spaces. , 2024, , 155-169.		O