Applications of metal–organic frameworks in heterog

Chemical Society Reviews 43, 6011-6061 DOI: 10.1039/c4cs00094c

Citation Report

#	Article	IF	CITATIONS
1	Perspective: Metal-organic frameworks $\hat{a} \in \ref{allow}$ Opportunities and challenges. APL Materials, 2014, 2, .	2.2	3
2	Environmentally-Friendly Designs and Syntheses of Metal-Organic Frameworks (MOFs). ACS Symposium Series, 2014, , 161-183.	0.5	12
3	A Facile and General Coating Approach to Moisture/Water-Resistant Metal–Organic Frameworks with Intact Porosity. Journal of the American Chemical Society, 2014, 136, 16978-16981.	6.6	445
5	A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Advances, 2014, 4, 52883-52886.	1.7	15
6	An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances. RSC Advances, 2014, 4, 54322-54334.	1.7	65
7	Rational construction of metal–organic frameworks for heterogeneous catalysis. Inorganic Chemistry Frontiers, 2014, 1, 721-734.	3.0	64
8	A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO ₂ Fixation and Regioselective and Enantioretentive Epoxide Activation. Journal of the American Chemical Society, 2014, 136, 15861-15864.	6.6	470
9	Two 3D photoluminescent Zn(<scp>ii</scp>) complexes constructed from 5-amino-1-H-tetrazole with aromatic polycarboxylate ligands. RSC Advances, 2014, 4, 56434-56439.	1.7	7
10	Beyond Custom Design of Organic Ligands: An Integrative Strategy for Metal-Organic Frameworks Design. Comments on Inorganic Chemistry, 2014, 34, 125-141.	3.0	12
11	A Series of Cu ^{II} –Ln ^{III} Metal–Organic Frameworks Based on 2,2′-Bipyridine-3,3′-dicarboxylic Acid: Syntheses, Structures, and Magnetic Properties. Crystal Growth and Design, 2014, 14, 6409-6420.	1.4	20
12	Ligand design for long-range magnetic order in metal–organic frameworks. Chemical Communications, 2014, 50, 13990-13993.	2.2	52
13	MOF-Derived Cobalt-Doped ZnO@C Composites as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 17067-17074.	4.0	158
14	A Systematic Study on the Stability of Porous Coordination Polymers against Ammonia. Chemistry - A European Journal, 2014, 20, 15611-15617.	1.7	73
15	A 3-D diamondoid MOF catalyst based on in situ generated [Cu(L) ₂] N-heterocyclic carbene (NHC) linkers: hydroboration of CO ₂ . Chemical Communications, 2014, 50, 11760-11763.	2.2	70
16	Coordination Polymer Flexibility Leads to Polymorphism and Enables a Crystalline Solid–Vapour Reaction: A Multiâ€ŧechnique Mechanistic Study. Chemistry - A European Journal, 2015, 21, 8799-8811.	1.7	25
17	Synthesis, structure, and luminescent properties of layered coordination polymer based on cadmium(II) 2,5-furandicarboxylate. Russian Chemical Bulletin, 2015, 64, 613-617.	0.4	2
18	Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. Small, 2015, 11, 5551-5555.	5.2	104
20	Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14696-14700.	7.2	169

ATION REDO

#	Article	IF	CITATIONS
21	Oxygenâ€Controlled Catalysis by Vitamin B ₁₂ â€TiO ₂ : Formation of Esters and Amides from Trichlorinated Organic Compounds by Photoirradiation. Angewandte Chemie - International Edition, 2015, 54, 15439-15443.	7.2	59
22	Influence of the Base on Pd@MILâ€101â€NH ₂ (Cr) as Catalyst for the Suzuki–Miyaura Crossâ€Coupling Reaction. Chemistry - A European Journal, 2015, 21, 10896-10902.	1.7	54
23	Understanding Smallâ€Molecule Interactions in Metal–Organic Frameworks: Coupling Experiment with Theory. Advanced Materials, 2015, 27, 5785-5796.	11.1	33
26	Titanium Dioxide Reinforced Metal–Organic Framework Pd Catalysts: Activity and Reusability Enhancement in Alcohol Dehydrogenation Reactions and Improved Photocatalytic Performance. ChemCatChem, 2015, 7, 3916-3922.	1.8	29
27	Monitoring and Understanding the Paraelectric–Ferroelectric Phase Transition in the Metal–Organic Framework [NH ₄][M(HCOO) ₃] by Solid‣tate NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 14348-14361.	1.7	36
28	Green Synthesis of a Microporous, Partially Fluorinated Zn ^{II} Paddlewheel Metal–Organic Framework: H ₂ /CO ₂ Adsorption Behavior and Solidâ€State Conversion to a ZnO–C Nanocomposite. European Journal of Inorganic Chemistry, 2015, 2015, 5669-5676.	1.0	28
29	Tailoring the Optical Absorption of Water‣table Zr ^{IV} ―and Hf ^{IV} â€Based Metal–Organic Framework Photocatalysts. Chemistry - an Asian Journal, 2015, 10, 2660-2668.	1.7	62
30	<i>>D</i> _{3<i>h</i>} â€Symmetric Porphyrinâ€Based Rigid Macrocyclic Ligands for Multicofacial Multinuclear Complexes in a Oneâ€Nanometerâ€Sized Cavity. Chemistry - A European Journal, 2015, 21, 11745-11756.	1.7	10
31	Postsynthesisâ€Treated Ironâ€Based Metal–Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 2015, 8, 3270-3282.	3.6	19
32	Exploiting Largeâ€Pore Metal–Organic Frameworks for Separations through Entropic Molecular Mechanisms. ChemPhysChem, 2015, 16, 2046-2067.	1.0	27
33	Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns. Advanced Materials, 2015, 27, 7293-7298.	11.1	97
35	A Flexible Photoactive Titanium Metal–Organic Framework Based on a [Ti ^{IV} ₃ (μ ₃ â€O)(O) ₂ (COO) ₆] Cluster. Angewandte Chemie - International Edition, 2015, 54, 13912-13917.	7.2	103
36	Cycloadditions to Epoxides Catalyzed by Groupâ€III–V Transitionâ€Metal Complexes. ChemCatChem, 2015, 7 1906-1917.	⁷ , 1.8	90
37	Singleâ€Crystal to Singleâ€Crystal Linker Substitution, Linker Place Exchange, and Transmetalation Reactions in Interpenetrated Pillared–Bilayer Zinc(II) Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 17422-17429.	1.7	32
38	Rational Design and Synthesis of a Highly Porous Copperâ€Based Interpenetrated Metal–Organic Framework for High CO ₂ and H ₂ Adsorption. ChemPlusChem, 2015, 80, 1259-1266.	1.3	9
39	Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes. Macromolecular Rapid Communications, 2015, 36, 1605-1611.	2.0	56
40	Metalâ€lon Metathesis and Properties of Triarylboronâ€Functionalized Metal–Organic Frameworks. Chemistry - an Asian Journal, 2015, 10, 1535-1540.	1.7	10
41	Editorial (Thematic Issue: Supramolecular Catalysis: Non-Covalent Interactions in the Organic) Tj ETQq1 1 0.7843	14 rgBT /(0.3	Overlock 10

	CITATION	Report	
#	Article	IF	CITATIONS
42	A discrete self-assembled palladium nano-cage catalyses Suzuki–Miyaura coupling heterogeneously and Heck–Mizoroki coupling homogeneously. New Journal of Chemistry, 2015, 39, 5759-5766.	1.4	13
43	Dual amplifying fluorescence anisotropy for detection of respiratory syncytial virus DNA fragments with size-control synthesized metal–organic framework MIL-101. RSC Advances, 2015, 5, 46301-46306.	1.7	27
44	A pillar-layer MOF for detection of small molecule acetone and metal ions in dilute solution. RSC Advances, 2015, 5, 48881-48884.	1.7	31
45	Auxiliary Ligand-Assisted Structural Variation of Cd(II) Metal–Organic Frameworks Showing 2D → 3D Polycatenation and Interpenetration: Synthesis, Structure, Luminescence Properties, and Selective Sensing of Trinitrophenol. Crystal Growth and Design, 2015, 15, 3356-3365.	1.4	125
46	A luminescent cadmium(<scp>ii</scp>) metal–organic framework based on a triazolate–carboxylate ligand exhibiting selective gas adsorption and guest-dependent photoluminescence properties. CrystEngComm, 2015, 17, 4787-4792.	1.3	30
47	The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. RSC Advances, 2015, 5, 48506-48515.	1.7	51
48	Integration of a semi-rigid proline ligand and 4,4′-bipyridine in the synthesis of homochiral metal–organic frameworks with helices. Dalton Transactions, 2015, 44, 11052-11056.	1.6	11
49	Nickel(ii) and copper(i,ii)-based metal-organic frameworks incorporating an extended tris-pyrazolate linker. CrystEngComm, 2015, 17, 4992-5001.	1.3	23
50	Metal organic frameworks from extended, conjugated pentiptycene-based ligands. CrystEngComm, 2015, 17, 4912-4918.	1.3	13
51	Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. Chemical Communications, 2015, 51, 10925-10928.	2.2	194
52	Controllable assemblies of Cd(II) supramolecular coordination complexes based on a versatile tripyridyltriazole ligand and halide/pseduohalide anions. Journal of Molecular Structure, 2015, 1096, 136-141.	1.8	5
53	Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances, 2015, 5, 48433-48441.	1.7	276
54	Preparation and catalytic applications of nanomaterials: a review. RSC Advances, 2015, 5, 53381-53403.	1.7	231
55	Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem, 2015, 2, 462-474.	1.7	199
56	Synthesis, structure and thermal study of a new 3-aminopyrazine-2-carboxylate based zinc(II) coordination polymer. Zeitschrift Fur Kristallographie - Crystalline Materials, 2015, 230, 413-419.	0.4	2
57	Influence of noncovalent interactions on the structures of metal–organic hybrids based on a [VO ₂ (2,6-pydc)] ^{â^`} tecton with cations of imidazole, pyridine and its derivatives. New Journal of Chemistry, 2015, 39, 4265-4277.	1.4	14
58	Effect of the functionalisation route on a Zr-MOF with an Ir–NHC complex for catalysis. Chemical Communications, 2015, 51, 10864-10867.	2.2	46
59	New Zr (IV) based metal-organic framework comprising a sulfur-containing ligand: Enhancement of CO2 and H2 storage capacity. Microporous and Mesoporous Materials, 2015, 215, 116-122.	2.2	56

		15	Cizizione
#	ARTICLE	IF	CITATIONS
60	Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 173-178.	0.9	0
61	Syntheses, structures and anion exchange properties of accommodative silver chains using a positively charged and flexible ligand. Inorganica Chimica Acta, 2015, 434, 158-171.	1.2	13
62	Modulating structural dimensionality of cadmium(II) coordination polymers by means of pyrazole, tetrazole and pyrimidine derivative ligands. Journal of Molecular Structure, 2015, 1089, 135-145.	1.8	9
63	Synthesis, crystal structures, luminescence and catalytic properties of two d10 metal coordination polymers constructed from mixed ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 139, 442-448.	2.0	33
64	Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 2015, 137, 6999-7002.	6.6	591
65	Complex three-dimensional lanthanide metal–organic frameworks with variable coordination spheres based on pyrazine-2,3,5,6-tetracarboxylate. CrystEngComm, 2015, 17, 5377-5388.	1.3	4
66	Function-led design of new porous materials. Science, 2015, 348, aaa8075.	6.0	1,272
67	Lanthanide metal–organic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption. Journal of Materials Chemistry A, 2015, 3, 12777-12785.	5.2	171
68	A 3D Cu(II) coordination polymer constructed from BIBP (BIBP=5,5′-bis(1H-imidazol-1-yl)-2,2′-bithiophene) ligand with semiconductive property. Inorganic Chemistry Communication, 2015, 58, 14-15.	1.8	5
69	A urea decorated (3,24)-connected rht-type metal–organic framework exhibiting high gas uptake capability and catalytic activity. CrystEngComm, 2015, 17, 4632-4636.	1.3	33
70	Effect of O and S heteroatom containing heterocyclic dicarboxylates in the structural diversity of cadmium(II) coordination polymers with flexible 1-substituted (1,2,4-triazole) ligand. Polyhedron, 2015, 102, 201-206.	1.0	5
71	Amine-grafted on lanthanide metal-organic frameworks: Three solid base catalysts for Knoevenagel condensation reaction. Chinese Journal of Catalysis, 2015, 36, 1949-1956.	6.9	21
72	Crystal structures of copper(II) and zinc(II) complexes derived from 3-(2-pyridyl)pyrazole. Journal of Structural Chemistry, 2015, 56, 1124-1129.	0.3	3
73	Recent progress in the synthesis of metal–organic frameworks. Science and Technology of Advanced Materials, 2015, 16, 054202.	2.8	196
74	An unprecedented twelve-connected 3D metal-organic framework based on heptanuclear cobalt cluster building blocks. Inorganic Chemistry Communication, 2015, 62, 98-102.	1.8	3
75	Construction of 0D, 1D and 2D cobalt(II) complexes containing flexible bis(benzimidazole) and dicarboxylic acid ligands. Transition Metal Chemistry, 2015, 40, 99-108.	0.7	13
76	4-(4-Carboxyphenoxy)phthalate-based coordination polymers and their application in sensing nitrobenzene. Dalton Transactions, 2015, 44, 1655-1663.	1.6	43
77	Metal cluster-based functional porous coordination polymers. Coordination Chemistry Reviews, 2015, 293-294, 263-278.	9.5	234

#	Article	IF	CITATIONS
78	A porous metal–organic framework containing multiple active Cu ²⁺ sites for highly efficient cross dehydrogenative coupling reaction. Dalton Transactions, 2015, 44, 2038-2041.	1.6	27
79	Chain, ladder and self-penetrated cobalt and nickel coordination polymers containing sterically bulky isophthalate and long-spanning dipyridylamide ligands. Inorganica Chimica Acta, 2015, 428, 65-72.	1.2	8
80	Guest-induced single-crystal-to-single-crystal transformations of a new 4-connected 3D cadmium(<scp>ii</scp>) metal–organic framework. RSC Advances, 2015, 5, 17588-17591.	1.7	42
81	Synthesis, Structure, and Electron Paramagnetic Resonance Study of a Mixed Valent Metal–Organic Framework Containing Cu ₂ Paddle-Wheel Units. Journal of Physical Chemistry C, 2015, 119, 4898-4907.	1.5	43
82	Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis. Chemical Communications, 2015, 51, 4827-4829.	2.2	33
83	Towards multicomponent MOFs via solvent-free synthesis under conventional oven and microwave assisted heating. Inorganic Chemistry Frontiers, 2015, 2, 425-433.	3.0	13
84	Polar Group and Defect Engineering in a Metal–Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion. ChemSusChem, 2015, 8, 878-885.	3.6	193
85	A metal (Co)–organic framework-based chemiluminescence system for selective detection of <scp>l</scp> -cysteine. Analyst, The, 2015, 140, 2656-2663.	1.7	79
86	Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity. Journal of Materials Chemistry A, 2015, 3, 2999-3005.	5.2	104
87	Modulated preparation and structural diversification of metal–organic frameworks based on 4,4′,4″-(1H-imidazole-2,4,5-triyl)tripyridine ligand. Inorganica Chimica Acta, 2015, 427, 240-247.	1.2	5
88	Aerobic Oxidation of Alcohols and the Synthesis of Benzoxazoles Catalyzed by a Cuprocupric Coordination Polymer (Cu ⁺ -CP) Assisted by TEMPO. Inorganic Chemistry, 2015, 54, 2088-2090.	1.9	90
89	A new self-penetrating amine-decorated microporous metal–organic framework: Crystal structure, adsorption selectivity, and luminescence properties. Inorganic Chemistry Communication, 2015, 54, 77-80.	1.8	6
90	Functionalized Defects through Solvent-Assisted Linker Exchange: Synthesis, Characterization, and Partial Postsynthesis Elaboration of a Metal–Organic Framework Containing Free Carboxylic Acid Moieties. Inorganic Chemistry, 2015, 54, 1785-1790.	1.9	58
91	Magnetically retrievable catalysts for asymmetric synthesis. Coordination Chemistry Reviews, 2015, 287, 137-156.	9.5	102
92	The copper(i) metal azolate framework showing unusual coordination mode for the 1,2,4-triazole derivative and photocatalytic activity. Dalton Transactions, 2015, 44, 3954-3958.	1.6	13
93	Open metal sites dangled on cobalt trigonal prismatic clusters within porous MOF for CO ₂ capture. Inorganic Chemistry Frontiers, 2015, 2, 369-372.	3.0	23
94	Theoretical investigation for adsorption of CO2 and CO on MIL-101 compounds with unsaturated metal sites. Computational and Theoretical Chemistry, 2015, 1055, 8-14.	1.1	15
95	Solvent Templates Induced Porous Metal–Organic Materials: Conformational Isomerism and Catalytic Activity. Inorganic Chemistry, 2015, 54, 1405-1413.	1.9	61

#	Article	IF	CITATIONS
96	Toward understanding the structure–catalyst activity relationship of new indium MOFs as catalysts for solvent-free ketone cyanosilylation. RSC Advances, 2015, 5, 7058-7065.	1.7	29
97	Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 2015, 44, 1922-1947.	18.7	348
98	Additive Effects in the Formation of Fluorescent Zinc Metal–Organic Frameworks with 5-Hydroxyisophthalate. Crystal Growth and Design, 2015, 15, 1452-1459.	1.4	17
99	Spectroscopic and Crystallographic Investigations of Novel BODIPY-Derived Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 1346-1353.	1.9	43
100	Syntheses, structures, gas adsorption and reversible iodine adsorption of two porous Cu(ii) MOFs. CrystEngComm, 2015, 17, 1583-1590.	1.3	17
101	Assembly of a Three-Dimensional Metal–Organic Framework with Copper(I) Iodide and 4-(Pyrimidin-5-yl) Benzoic Acid: Controlled Uptake and Release of Iodine. Crystal Growth and Design, 2015, 15, 915-920.	1.4	60
102	Synthesis, Structural Characterization, Properties of a Silver Coordination Polymer Based on [1,1′-Biphenyl]-2,4,4′,6-tetracarboxylic Acid (H4BPTC). Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 832-836.	1.9	3
103	A huge diamondoid metal–organic framework with a neo-mode of tenfold interpenetration. CrystEngComm, 2015, 17, 2935-2939.	1.3	12
104	A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO ₂ capture and hydrocarbon separation. Journal of Materials Chemistry A, 2015, 3, 6276-6281.	5.2	105
105	Zinc amidoisophthalate complexes and their catalytic application in the diastereoselective Henry reaction. New Journal of Chemistry, 2015, 39, 3004-3014.	1.4	26
106	Manganese- and Cobalt-Based Coordination Networks as Promising Heterogeneous Catalysts for Olefin Epoxidation Reactions. Inorganic Chemistry, 2015, 54, 2603-2615.	1.9	33
107	Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 2144-2151.	3.2	72
108	Coordination Driven Self-Assembly in Co(II) Coordination Polymers Displaying Unprecedented Topology, Water Cluster, Chirality, and Spin-Canted Magnetic Behavior. Crystal Growth and Design, 2015, 15, 2211-2222.	1.4	31
109	PdO nanoparticles enhancing the catalytic activity of Pd/carbon nanotubes for 4-nitrophenol reduction. RSC Advances, 2015, 5, 27526-27532.	1.7	71
110	Coordination assemblies of seven metal-organic frameworks based on a bent connector: structural diversity and properties. CrystEngComm, 2015, 17, 3129-3138.	1.3	21
111	Metal–Organic Framework Based upon the Synergy of a BrÃ,nsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 2015, 137, 4243-4248.	6.6	242
112	Inâ€situ Generation of Ni Nanoparticles from Metal–Organic Framework Precursors and Their Use for Biomass Hydrodeoxygenation. ChemSusChem, 2015, 8, 1703-1710.	3.6	26
113	Ultrasonic synthesis of highly dispersed Au nanoparticles supported on Ti-based metal–organic frameworks for electrocatalytic oxidation of hydrazine. Journal of Materials Chemistry A, 2015, 3, 14669-14674.	5.2	55

#	Article	IF	CITATIONS
114	Thermal energy storage in a supramolecular assembly of [C ₆ H ₁₁ NH ₃ ⁺ [CF ₃ COO] ^{â^'} (C <s< td=""><td>ub 1562 /sub</td><td>›>Hksub>11<</td></s<>	ub 1562 /sub	›>Hksub>11<
115	Solvent-Dependent Structural Variation of Zinc(II) Coordination Polymers and Their Catalytic Activity in the Knoevenagel Condensation Reaction. Crystal Growth and Design, 2015, 15, 4185-4197.	1.4	89
116	Water Structure and Dynamics in Homochiral [Zn(<i>l</i> -L)(X)] Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 18239-18247.	1.5	11
117	Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140187.	1.6	52
118	ideal. Journal of Solid State Chemistry, 2015, 230, 191-198.	1.4	5
119	Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 2015, 3, 21545-21552.	5.2	46
120	Tubular porous coordination polymer for the selective sensing of Cu2+ ions and cyclohexane in mixed suspensions of metal ions via fluorescence quenching. RSC Advances, 2015, 5, 65110-65113.	1.7	14
121	A 3D-diamond-like metal–organic framework: Crystal structure, nonlinear optical effect and high thermal stability. Inorganic Chemistry Communication, 2015, 60, 19-22.	1.8	12
122	Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal–Organic Frameworks. ACS Catalysis, 2015, 5, 5283-5291.	5.5	212
123	MOFs-Templated Co@Pd Core–Shell NPs Embedded in N-Doped Carbon Matrix with Superior Hydrogenation Activities. ACS Catalysis, 2015, 5, 5264-5271.	5.5	198
124	A Family of Capsule-Based Coordination Polymers Constructed from a New Tetrakis(1,2,4-triazol-ylmethyl)resorcin[4]arene Cavitand and Varied Dicarboxylates for Selective Metal-Ion Exchange and Luminescent Properties. Crystal Growth and Design, 2015, 15, 3822-3831.	1.4	43
125	A unique "cage-in-cage―metal–organic framework based on nested cages from interpenetrated networks. CrystEngComm, 2015, 17, 5884-5888.	1.3	15
126	Water-induced phase transformation of a Cu ^{II} coordination framework with pyridine-2,5-dicarboxylate and di-2-pyridyl ketone: synchrotron radiation analysis. CrystEngComm, 2015, 17, 6346-6354.	1.3	7
127	Gas–liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. CrystEngComm, 2015, 17, 5502-5510.	1.3	68
128	Chiral porous metal–organic frameworks containing μ-oxo-bis[Ti(salan)] units for asymmetric cyanation of aldehydes. Dalton Transactions, 2015, 44, 12999-13002.	1.6	21
129	Three-Dimensional Heterometallic Coordination Networks: Syntheses, Crystal Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth and Design, 2015, 15, 4110-4122.	1.4	23
130	Single-Crystal to Single-Crystal Mechanical Contraction of Metal–Organic Frameworks through Stereoselective Postsynthetic Bromination. Journal of the American Chemical Society, 2015, 137, 9527-9530.	6.6	110
131	Nanocrystalline ZSM-5 based bi-functional catalyst for two step and three step tandem reactions. RSC Advances, 2015, 5, 25998-26006.	1.7	18

#	Article	IF	CITATIONS
132	The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal–organic framework. Green Chemistry, 2015, 17, 4178-4182.	4.6	47
133	A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. Journal of Materials Chemistry A, 2015, 3, 17320-17331.	5.2	211
134	Ab Initio Derived Force Fields for Predicting CO ₂ Adsorption and Accessibility of Metal Sites in the Metal–Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu). Journal of Physical Chemistry C, 2015, 119, 16058-16071.	1.5	84
135	Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li–O ₂ batteries. Nanoscale, 2015, 7, 11833-11840.	2.8	69
136	BrÃ,nsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6966-6997.	23.0	477
137	Inorganic nanocarriers for platinum drug delivery. Materials Today, 2015, 18, 554-564.	8.3	122
138	Photocatalytic CO ₂ Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal–Organic Framework. Inorganic Chemistry, 2015, 54, 6821-6828.	1.9	293
139	Water stabilization of Zr ₆ -based metal–organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	3.7	102
140	Intramolecular hydrogen bonding stabilizes the nuclearity of complexes. A comparative study based on the H-carborane and Me-carborane framework. Dalton Transactions, 2015, 44, 10399-10409.	1.6	9
141	Enantiopure Peptide-Functionalized Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 9409-9416.	6.6	166
142	A functionalized graphene oxide and nano-zeolitic imidazolate framework composite as a highly active and reusable catalyst for [3 + 3] formal cycloaddition reactions. Journal of Materials Chemistry A, 2015, 3, 14779-14785.	5.2	23
143	Pt@UiO-66 Heterostructures for Highly Selective Detection of Hydrogen Peroxide with an Extended Linear Range. Analytical Chemistry, 2015, 87, 3438-3444.	3.2	173
144	Synthesis of secondary and tertiary amine-containing MOFs: C–N bond cleavage during MOF synthesis. CrystEngComm, 2015, 17, 5644-5650.	1.3	10
145	Solvent-induced generation of two cadmium-based metal–organic frameworks from 1, 3, 5-benzenetricarboxylic acid ligand. Inorganic Chemistry Communication, 2015, 57, 11-14.	1.8	7
146	Substituent-induced effects on dimensionality in cadmium isophthalate coordination polymers containing 3-pyridylisonicotinamide. Journal of Molecular Structure, 2015, 1094, 161-168.	1.8	3
147	Thermal stability of ionic nets with Cull ions coordinated to di-2-pyridyl ketone: Reversible crystal-to-crystal phase transformation. Polyhedron, 2015, 92, 117-123.	1.0	11
148	Three porous and robust metalloporphyrin frameworks exhibiting preferable gas storage. Inorganic Chemistry Communication, 2015, 55, 123-128.	1.8	8
149	Ancillary ligand-assisted assembly of C3-symmetric 4,4′,4″-nitrilotribenzoic acid with divalent Zn2+ ions: Syntheses, topological structures, and photoluminescence properties. Journal of Solid State Chemistry, 2015, 227, 155-164.	1.4	14

#	Article	IF	CITATIONS
150	Synthesis, structural features and luminescence properties of a 1-D poly(azolato)-based coordination polymer. Polyhedron, 2015, 92, 130-136.	1.0	5
151	Novel Microporous Metal–Organic Framework Exhibiting High Acetylene and Methane Storage Capacities. Inorganic Chemistry, 2015, 54, 4377-4381.	1.9	36
152	Homochiral coordination cages assembled from dinuclear paddlewheel nodes and enantiopure ditopic ligands: syntheses, structures and catalysis. Dalton Transactions, 2015, 44, 12180-12188.	1.6	26
153	Two new pH-controlled coordination polymers constructed from an asymmetrical tricarboxylate ligand and Zn-based rod-shaped SBUs. Inorganic Chemistry Communication, 2015, 56, 8-12.	1.8	10
154	Highly selective CH2Cl2 fluorescent sensor based on Cd(II) metal-organic framework. Inorganic Chemistry Communication, 2015, 56, 76-78.	1.8	15
155	Two 3D Supramolecular Cadmium(II) Coordination Polymers Derived from Semi-rigid Bis(2-methylbenzimidazole) and Different Dicarboxylate Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 772-779.	1.9	2
156	Postsynthetic Metal and Ligand Exchange in MFUâ€4 <i>l</i> : A Screening Approach toward Functional Metal–Organic Frameworks Comprising Single‣ite Active Centers. Chemistry - A European Journal, 2015, 21, 8188-8199.	1.7	70
157	Unlocking Inter―to Nonâ€Penetrating Frameworks Using Steric Influences on Spacers for CO ₂ Adsorption. Chemistry - an Asian Journal, 2015, 10, 2117-2120.	1.7	10
158	Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 2015, 145, 1600-1605.	1.4	20
159	Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands. Journal of Solid State Chemistry, 2015, 228, 199-207.	1.4	12
160	Positioning of the HKUST-1 metal–organic framework (Cu ₃ (BTC) ₂) through conversion from insoluble Cu-based precursors. Inorganic Chemistry Frontiers, 2015, 2, 434-441.	3.0	54
161	Postsynthetic Paddle-Wheel Cross-Linking and Functionalization of 1,3-Phenylenebis(azanetriyl)tetrabenzoate-Based MOFs. Chemistry of Materials, 2015, 27, 2460-2467.	3.2	49
162	Absorbate-Induced Piezochromism in a Porous Molecular Crystal. Nano Letters, 2015, 15, 2149-2154.	4.5	36
163	Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis. ACS Catalysis, 2015, 5, 2062-2069.	5.5	363
164	TiO ₂ embedded in carbon submicron-tablets: synthesis from a metal–organic framework precursor and application as a superior anode in lithium-ion batteries. Chemical Communications, 2015, 51, 11370-11373.	2.2	64
165	Mixed-metal–organic frameworks (M′MOFs) from 1D to 3D based on the "organic―connectivity and the inorganic connectivity: syntheses, structures and magnetic properties. CrystEngComm, 2015, 17, 3312-3324.	2 1.3	18
166	Novel metal–organic framework with tunable fluorescence property: supramolecular signaling platform for polynitrophenolics. Dalton Transactions, 2015, 44, 6348-6352.	1.6	29
167	Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 2015, 44, 6804-6849.	18.7	1,190

#	Article	IF	CITATIONS
168	Coordination polymers constructed from a tripodal phosphoryl carboxylate ligand: synthesis, structures and physical properties. CrystEngComm, 2015, 17, 4547-4553.	1.3	6
169	In Situ Construction of Three Anion-Dependent Cu(I) Coordination Networks as Promising Heterogeneous Catalysts for Azide–Alkyne "Click―Reactions. Inorganic Chemistry, 2015, 54, 4737-4743.	1.9	111
170	Stabilization of a highly porous metal–organic framework utilizing a carborane-based linker. Chemical Communications, 2015, 51, 6521-6523.	2.2	47
171	Designed synthesis of a series of zwitterion–polyoxometalate hybrid materials for selective scavenging and photolysis of dyes. Dalton Transactions, 2015, 44, 7862-7869.	1.6	26
172	Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses. Chemical Science, 2015, 6, 3466-3470.	3.7	118
173	Novel Coordination Polymers with (Pyrazolato)-Based Tectons: Catalytic Activity in the Peroxidative Oxidation of Alcohols and Cyclohexane. Crystal Growth and Design, 2015, 15, 2303-2317.	1.4	57
174	A family of coordination polymers assembled with a flexible hexacarboxylate ligand and auxiliary N-donor ligands: syntheses, structures, and physical properties. CrystEngComm, 2015, 17, 3181-3196.	1.3	22
175	A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 2015, 137, 13624-13631.	6.6	137
176	An azobenzene-containing metal–organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds. Chemical Communications, 2015, 51, 17132-17135.	2.2	59
177	Metal–organic framework composites with luminescent gold(<scp>iii</scp>) complexes. Strongly emissive and long-lived excited states in open air and photo-catalysis. Chemical Science, 2015, 6, 7105-7111.	3.7	51
178	Syntheses, crystal structures, andÂluminescent properties of three metal coordination polymers based on adipic acid and 2-(pyridine-3-yl)-(1 <i>H</i>)-benzimidazole. Journal of Coordination Chemistry, 2015, 68, 3918-3931.	0.8	12
179	Functionalized Ruthenium–Phosphine Metal–Organic Framework for Continuous Vapor-Phase Dehydrogenation of Formic Acid. ACS Catalysis, 2015, 5, 7099-7103.	5.5	45
180	Hydrolytic Transformation of Microporous Metal–Organic Frameworks to Hierarchical Micro―and Mesoporous MOFs. Angewandte Chemie - International Edition, 2015, 54, 13273-13278.	7.2	186
181	Delicate structural regulation and stepwise phase transformation of Cu(II) coordination assemblies directed by inorganic counterion. Inorganic Chemistry Communication, 2015, 60, 115-118.	1.8	3
182	A variety of metal–organic and supramolecular networks constructed from a new flexible multifunctional building block bearing picolinate and terephthalate functionalities: hydrothermal self-assembly, structural features, magnetic and luminescent properties. RSC Advances, 2015, 5, 87484-87495	1.7	25
183	Synthesis of Cu(II)-Organophosphonate Framework with Predefined Void Spaces. Crystal Growth and Design, 2015, 15, 5665-5669.	1.4	26
184	Co(II)-MOF: A Highly Efficient Organic Oxidation Catalyst with Open Metal Sites. Inorganic Chemistry, 2015, 54, 10865-10872.	1.9	63
185	Ammonia Adsorption and Co-adsorption with Water in HKUST-1: Spectroscopic Evidence for Cooperative Interactions. Journal of Physical Chemistry C, 2015, 119, 24781-24788.	1.5	39

#	ARTICLE	IF	CITATIONS
186	Structural diversities in Cu(<scp>i</scp>) and Ag(<scp>i</scp>) sulfonate coordination polymers and their anion exchange properties. CrystEngComm, 2015, 17, 7363-7371.	1.3	10
187	Direct Synthesis, Structural Features, and Enhanced Catalytic Activity of the Basolite F300-like Semiamorphous Fe-BTC Framework. Crystal Growth and Design, 2015, 15, 4498-4506.	1.4	98
188	Acid loaded porphyrin-based metal–organic framework for ammonia uptake. Chemical Communications, 2015, 51, 14989-14991.	2.2	63
189	Asymmetric reactions of chiral organo-magnetic nanoparticles. Applied Catalysis A: General, 2015, 506, 254-260.	2.2	13
190	Charged functional group effects on a metal–organic framework for selective organic dye adsorptions. CrystEngComm, 2015, 17, 8418-8422.	1.3	40
191	Can enantiomer ligands produce structurally distinct homochiral MOFs?. CrystEngComm, 2015, 17, 8202-8206.	1.3	18
192	In vitro biocompatibility of mesoporous metal (III; Fe, Al, Cr) trimesate MOF nanocarriers. Journal of Materials Chemistry B, 2015, 3, 8279-8292.	2.9	96
193	A Stable Polyoxometalateâ€Pillared Metal–Organic Framework for Proton onducting and Colorimetric Biosensing. Chemistry - A European Journal, 2015, 21, 11894-11898.	1.7	79
194	Heterometallic coordination polymers: syntheses, structures and heterogeneous catalytic applications. New Journal of Chemistry, 2015, 39, 9772-9781.	1.4	28
195	An lcy-topology amino acid MOF as eco-friendly catalyst for cyclic carbonate synthesis from CO ₂ : Structure-DFT corroborated study. Journal of Materials Chemistry A, 2015, 3, 22636-22647.	5.2	106
196	Recent advances in metal–organic frameworks based on pyridylbenzoate ligands: properties and applications. RSC Advances, 2015, 5, 88218-88233.	1.7	17
197	Solvent-Free Synthesis of a Pillared Three-Dimensional Coordination Polymer with Magnetic Ordering. Inorganic Chemistry, 2015, 54, 10490-10496.	1.9	19
198	A porous metal–organic cage constructed from dirhodium paddle-wheels: synthesis, structure and catalysis. Journal of Materials Chemistry A, 2015, 3, 20201-20209.	5.2	51
199	A two-dimensional cadmium(II) coordination polymer based on 5-(pyridin-4-yl)isophthalic acid: poly[[tetraaquabis[l1¼ ₃ -5-(pyridin-4-yl)isophthalato]dicadmium(II)] pentahydrate]. Acta Crystallographica Section C, Structural Chemistry, 2015, 71, 834-838.	0.2	1
200	Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal–Organic Framework with Functional Groups. Journal of the American Chemical Society, 2015, 137, 11801-11809.	6.6	83
201	A porous metal–organic framework as active catalyst for multiple C–N/C–C bond formation reactions. Inorganic Chemistry Communication, 2015, 61, 13-15.	1.8	13
202	A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. Journal of the American Chemical Society, 2015, 137, 11598-11601.	6.6	170
203	Molecular tectonics: heterometallic (Ir,Cu) grid-type coordination networks based on cyclometallated Ir(iii) chiral metallatectons. Chemical Communications, 2015, 51, 14785-14788.	2.2	8

#	Article	IF	CITATIONS
204	Metal–Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks. Inorganic Chemistry, 2015, 54, 8396-8400.	1.9	222
205	Direct synthesis of Cu-BDC frameworks on a quartz crystal microresonator and their application to studies of n-hexane adsorption. RSC Advances, 2015, 5, 67454-67458.	1.7	10
206	Two new Cul compounds with zwitterionic tetrazolate ligand: In situ synthesis, crystal structures, luminescence and photocatalytic properties. Journal of Solid State Chemistry, 2015, 232, 19-25.	1.4	15
207	A Cd(<scp>ii</scp>) based metal organic framework: a photosensitive current conductor. Dalton Transactions, 2015, 44, 16149-16155.	1.6	31
208	Urea-containing metal-organic frameworks as heterogeneous organocatalysts. Journal of Materials Chemistry A, 2015, 3, 20408-20415.	5.2	54
209	Oxidative cross-dehydrogenative coupling of amines and α-carbonyl aldehydes over heterogeneous Cu-MOF-74 catalyst: A ligand- and base-free approach. Journal of Molecular Catalysis A, 2015, 409, 110-116.	4.8	29
210	Tuning the porosity through interpenetration of azobenzene-4,4′-dicarboxylate-based metal–organic frameworks. CrystEngComm, 2015, 17, 7636-7645.	1.3	15
211	Zn(II)/Cd(II) based coordination polymers synthesized from a semi-flexible dicarboxylate ligand and their emission studies. Polyhedron, 2015, 101, 86-92.	1.0	15
212	Insight into the catalytic properties and applications of metal–organic frameworks in the cyanosilylation of aldehydes. RSC Advances, 2015, 5, 79355-79360.	1.7	65
213	New luminescent porous coordination polymers with an acylamide-decorated linker for anion recognition and reversible I ₂ accommodation. CrystEngComm, 2015, 17, 8226-8230.	1.3	13
214	A series of phenyl sulfonate metal coordination polymers as catalysts for one-pot Biginelli reactions under solvent-free conditions. Dalton Transactions, 2015, 44, 17829-17840.	1.6	35
215	Synthesis of well dispersed polymer grafted metal–organic framework nanoparticles. Chemical Communications, 2015, 51, 15566-15569.	2.2	81
216	Facile preparation and dual catalytic activity of copper(i)–metallosalen coordination polymers. Dalton Transactions, 2015, 44, 17360-17365.	1.6	17
217	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149
218	Identifying the Interactions That Allow Separation of O ₂ from N ₂ on the Open Iron Sites of Fe ₂ (dobdc). Journal of Physical Chemistry C, 2015, 119, 28499-28511.	1.5	18
219	An unprecedented anionic Ln-MOF with a cage-within-cage motif: spontaneous reduction and immobilization of ion-exchanged Pd(<scp>ii</scp>) to Pd-NPs in the framework. Journal of Materials Chemistry A, 2015, 3, 24525-24531.	5.2	27
220	Metal–Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26608-26613.	4.0	75
221	Metal–Organic Polymers Containing Discrete Single-Walled Nanotube as a Heterogeneous Catalyst for the Cycloaddition of Carbon Dioxide to Epoxides. Journal of the American Chemical Society, 2015, 137, 15066-15069.	6.6	273

#	Article	IF	CITATIONS
222	A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal–organic frameworks–hydrogen peroxide system. Analyst, The, 2015, 140, 8201-8208.	1.7	37
223	A heterogeneous mercury salt catalyst stabilized by m-carbaborane. RSC Advances, 2015, 5, 94737-94742.	1.7	6
224	An unprecedented 3D POM–MOF based on (7,8)-connected twin Wells–Dawson clusters: synthesis, structure, electrocatalytic and photocatalytic properties. Dalton Transactions, 2015, 44, 2062-2065.	1.6	33
226	Lone pairâ€"ï€ interaction-induced generation of non-interpenetrated and photochromic cuboid 3-D naphthalene diimide coordination networks. Dalton Transactions, 2015, 44, 653-658.	1.6	46
227	Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid. Nanoscale, 2015, 7, 2651-2658.	2.8	7
228	Targeted synthesis of a large triazine-based [4+6] organic molecular cage: structure, porosity and gas separation. Chemical Communications, 2015, 51, 1976-1979.	2.2	85
229	Chemical and Structural Stability of Zirconiumâ€based Metal–Organic Frameworks with Large Threeâ€Dimensional Pores by Linker Engineering. Angewandte Chemie - International Edition, 2015, 54, 221-226.	7.2	141
230	Tuning the optical properties of the zirconium–UiO-66 metal–organic framework for photocatalytic degradation of methyl orange. Inorganic Chemistry Communication, 2015, 52, 50-52.	1.8	89
231	Synthesis, structures and physical properties of mixed-ligand coordination polymers based on a V-shaped dicarboxylic ligand. CrystEngComm, 2015, 17, 1381-1388.	1.3	31
232	A 3D (3,8)-connected net based on the tetranuclear Cu4 units constructed from mixed organic ligands. Inorganic Chemistry Communication, 2015, 51, 106-109.	1.8	6
233	A Ni(<scp>ii</scp>)-MOF: reversible guest adsorption and heterogeneous catalytic properties for silylcyanation of aromatic aldehydes. Chemical Communications, 2015, 51, 839-842.	2.2	41
234	Transition metal catalysis in confined spaces. Chemical Society Reviews, 2015, 44, 433-448.	18.7	537
235	In situ solvent and counteranion-induced synthesis, structural characterization and photoluminescence properties of Pb-based MOFs. New Journal of Chemistry, 2015, 39, 431-438.	1.4	9
236	Unique 1D→3D polycatenated architecture constructing from 1D single-armed chains incorporating with two rigid aromatic coligands. Inorganic Chemistry Communication, 2015, 51, 17-20.	1.8	4
237	Structure-directing factors when introducing hydrogen bond functionality to metal–organic frameworks. CrystEngComm, 2015, 17, 299-306.	1.3	33
238	A novel [4 + 3] interpenetrated net containing 7-fold interlocking pseudo-helical chains and exceptional catenane-like motifs. Dalton Transactions, 2015, 44, 2844-2851.	1.6	6
239	Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups. Journal of Hazardous Materials, 2015, 283, 544-550.	6.5	112
240	The surface chemistry of metal–organic frameworks. Chemical Communications, 2015, 51, 5199-5217.	2.2	336

#	Article	IF	Citations
241	Kinetic Separation of Alkylbenzenes with Metal-organic Framework Compounds. Journal of the Japan Petroleum Institute, 2016, 59, 1-8.	0.4	2
242	A Family of Nitrogen-Enriched Metal Organic Frameworks with CCS Potential. Crystals, 2016, 6, 14.	1.0	12
243	Catalytic Applications of Metal-Organic Frameworks. , 0, , .		4
244	Tandem Catalysis of an Aldol-â€~Click' Reaction System within a Molecular Hydrogel. Molecules, 2016, 21, 744.	1.7	7
245	Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health, 2016, 13, 62.	1.2	320
246	Preparation of Calcined Zirconia-Carbon Composite from Metal Organic Frameworks and Its Application to Adsorption of Crystal Violet and Salicylic Acid. Materials, 2016, 9, 261.	1.3	33
247	Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC). Molecules, 2016, 21, 1174.	1.7	84
248	Catalytic Performance of a New 1D Cu(II) Coordination Polymer {Cu(NO3)(H2O)}(HTae)(4,4′-Bpy) for Knoevenagel Condensation. Molecules, 2016, 21, 1651.	1.7	3
249	A Heterobimetallic Anionic 3,6-Connected 2D Coordination Polymer Based on Nitranilate as Ligand. Polymers, 2016, 8, 89.	2.0	23
250	Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]â^'. Polymers, 2016, 8, 171.	2.0	6
251	Direct Evidence of CO ₂ Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. ChemPlusChem, 2016, 81, 850-856.	1.3	21
252	Metal–Organic Frameworks Mâ€MOFâ€74 and Mâ€MILâ€100: Comparison of Textural, Acidic, and Catalytic Properties. ChemPlusChem, 2016, 81, 828-835.	1.3	28
253	Effect of Nitrogen Donor Disposition on Topology in Cobalt Isophthalate Coordination Polymers Containing Dipyridylamide Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 785-791.	0.6	3
254	A Breathing Zirconium Metal–Organic Framework with Reversible Loss of Crystallinity by Correlated Nanodomain Formation. Chemistry - A European Journal, 2016, 22, 3264-3267.	1.7	41
255	Liquidâ€Phase Epitaxially Grown Metal–Organic Framework Thin Films for Efficient Tandem Catalysis Through Siteâ€Isolation of Catalytic Centers. ChemPlusChem, 2016, 81, 708-713.	1.3	21
256	A Multiresponsive Metal–Organic Framework: Direct Chemiluminescence, Photoluminescence, and Dual Tunable Sensing Applications. Advanced Functional Materials, 2016, 26, 393-398.	7.8	95
257	Bimetallic Metalâ€Organic Frameworks: Probing the Lewis Acid Site for CO ₂ Conversion. Small, 2016, 12, 2334-2343.	5.2	122
258	The Road to MOF-Related Functional Materials and Beyond: Desire, Design, Decoration, and Development. Chemical Record, 2016, 16, 1456-1476.	2.9	24

#	Article	IF	CITATIONS
259	Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk–Shell Metal@Zn/Co ZIF Nanostructures. Chemistry - A European Journal, 2016, 22, 3304-3311.	1.7	102
260	Switchable Roomâ€Temperature Ferroelectric Behavior, Selective Sorption and Solventâ€Exchange Studies of [H ₃ O][Co ₂ (dat)(sdba) ₂]â <h<sub>2sdbaâ<5 H_{2ChemPlusChem, 2016, 81, 733-742.}</h<sub>	$\rightarrow 0^{1}$	9
261	Thermal and Gas Dualâ€Responsive Behaviors of an Expanded UiOâ€66â€Type Porous Coordination Polymer. ChemPlusChem, 2016, 81, 817-821.	1.3	11
262	Anionic Metal–Organic Framework for Selective Dye Removal and CO ₂ Fixation. European Journal of Inorganic Chemistry, 2016, 2016, 4373-4377.	1.0	66
263	Nanoparticles. , 0, , 491-521.		2
264	Synthesis of Supported Ultrafine Nonâ€noble Subnanometerâ€6cale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2016, 55, 1080-1084.	7.2	69
265	Ligand Functionalization in Metal-Organic Frameworks for Enhanced Carbon Dioxide Adsorption. Chemical Record, 2016, 16, 1298-1310.	2.9	26
266	Functional Linkers for Catalysis. , 2016, , 345-386.		1
267	Vapochromic Luminescence of a Zirconiumâ€Based Metal–Organic Framework for Sensing Applications. European Journal of Inorganic Chemistry, 2016, 2016, 4483-4489.	1.0	39
268	Designed metal–organic framework based on metal–organic polyhedron: Drug delivery. Inorganic Chemistry Communication, 2016, 71, 32-34.	1.8	31
269	Luminescent Metal–Organic Frameworks with Anthracene Chromophores: Small-Molecule Sensing and Highly Selective Sensing for Nitro Explosives. Crystal Growth and Design, 2016, 16, 4374-4382.	1.4	91
270	Inserting CO ₂ into Aryl Câ^'H Bonds of Metal–Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie - International Edition, 2016, 55, 5472-5476.	7.2	129
271	A heterometal (Pd–Pb) organic framework: synthesis, structure and heterogeneous catalytic application. Applied Organometallic Chemistry, 2016, 30, 699-704.	1.7	7
272	Batch versus Flow Acetalization of Benzaldehyde with HKUSTâ€1: Diffusion Pathways and Performance Comparison. ChemCatChem, 2016, 8, 1293-1297.	1.8	14
273	Synthesis, Structure, and Ligandâ€Centered Catalytic Properties of M ^{II} Coordination Polymers (M=Zn ^{II} , Cd ^{II} , Hg ^{II}) with Open Pyridyl <i>N</i> â€Oxide Sites. ChemPlusChem, 2016, 81, 743-751.	1.3	3
274	Synthesis of Supported Ultrafine Nonâ€noble Subnanometerâ€6cale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie, 2016, 128, 1092-1096.	1.6	15
275	Microwave activation as an alternative production of metal-organic frameworks. Russian Chemical Bulletin, 2016, 65, 2103-2114.	0.4	30
276	Multifunctional Luminescent Eu(III)-Based Metal–Organic Framework for Sensing Methanol and Detection and Adsorption of Fe(III) Ions in Aqueous Solution. Inorganic Chemistry, 2016, 55, 12660-12668.	1.9	209

#	ARTICLE	IF	CITATIONS
277	Adsorption of Iodine Based on a Tetrazolate Framework with Microporous Cages and Mesoporous Cages. Inorganic Chemistry, 2016, 55, 13035-13038.	1.9	29
278	Elaboration of a Highly Porous Ru ^{II,II} Analogue of HKUST-1. Inorganic Chemistry, 2016, 55, 12492-12495.	1.9	15
279	Role of Anions in Assembling the Coordination Polymers of Bis–pyridyl–alkanediamides. ChemistrySelect, 2016, 1, 6641-6648.	0.7	0
280	Continuous Wave and Time-Resolved Electron Paramagnetic Resonance Study of Photoinduced Radicals in Fluoroacrylic Porous Polymer Films. Journal of Physical Chemistry C, 2016, 120, 14767-14773.	1.5	2
281	Guest molecules as a design element for metal–organic frameworks. MRS Bulletin, 2016, 41, 865-869.	1.7	26
282	A novel one-dimensional double-chain-like ZnIIcoordination polymer: poly[bis(1-benzyl-1H-imidazole-κN3)tris(μ-cyanido-κ2C:N)(cyanido-κC)disilver(I)zinc(II)]. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 960-965.	0.2	4
283	Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. Inorganic Chemistry, 2016, 55, 4006-4015.	1.9	43
284	Two 3D cupric metal–organic frameworks based on the biphenyl-2,3,3′,5′-tetracarboxylate ligand and possessing 1D nanosized channels. Inorganica Chimica Acta, 2016, 447, 6-11.	1.2	5
285	Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong BrĄ̃,nsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 2016, 28, 2659-2667.	3.2	160
286	Derivation and Decoration of Nets with Trigonal-Prismatic Nodes: A Unique Route to Reticular Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5299-5307.	6.6	84
287	Synthesis of imidazo[1,5-a]pyridines via oxidative amination of the C(sp ³)–H bond under air using metal–organic framework Cu-MOF-74 as an efficient heterogeneous catalyst. RSC Advances, 2016, 6, 36039-36049.	1.7	26
288	Multifunctional copper dimer: structure, band gap energy, catalysis, magnetism, oxygen reduction reaction and proton conductivity. RSC Advances, 2016, 6, 37515-37521.	1.7	11
289	Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods. Catalysis Reviews - Science and Engineering, 2016, 58, 209-307.	5.7	43
290	Structural diversity of Zn(<scp>ii</scp>) coordination polymers based on bis-imidazolyl ligands and 5-R-1,3-benzenedicarboxylate and their photocatalytic properties. CrystEngComm, 2016, 18, 4851-4862.	1.3	27
291	Homochiral zinc benzene-1,3,5-tricarboxylate coordination networks with a chiral nitrogen ligand or template: Spontaneous resolution of a twofold interpenetrated 2D sql (4,4) network and formation of enantiopure 3D sra (SrAl2) networks. Inorganica Chimica Acta, 2016, 450, 190-201.	1.2	10
292	A luminescent Li(I)-based metal–organic framework showing selective Fe(III) ion and nitro explosive sensing. Inorganic Chemistry Communication, 2016, 68, 29-32.	1.8	18
293	Adsorptive removal of acetic acid from water with metal-organic frameworks. Chemical Engineering Research and Design, 2016, 111, 127-137.	2.7	55
294	Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions. Journal of Solid State Chemistry, 2016, 241, 86-98.	1.4	18

#	Article	IF	CITATIONS
295	Unique microporous NbO-type CoII/ZnII MOFs from double helical chains: Sorption and luminescent properties. Journal of Solid State Chemistry, 2016, 238, 170-174.	1.4	9
296	Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction. Chemical Communications, 2016, 52, 7834-7837.	2.2	47
297	Towards metal–organic framework based field effect chemical sensors: UiO-66-NH ₂ for nerve agent detection. Chemical Science, 2016, 7, 5827-5832.	3.7	108
298	Metal–Organic Framework Based on Isonicotinate <i>N</i> -Oxide for Fast and Highly Efficient Aqueous Phase Cr(VI) Adsorption. Inorganic Chemistry, 2016, 55, 5507-5513.	1.9	104
299	Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 2016, 52, 7806-7809.	2.2	177
300	A breathing MOF: direct crystallographic observation of the site-selective C(sp ³)–H functionalization. RSC Advances, 2016, 6, 51936-51940.	1.7	9
301	A hydrogen bonded Co(ii) coordination complex and a triply interpenetrating 3-D manganese(ii) coordination polymer from diaza crown ether with dibenzoate sidearms. CrystEngComm, 2016, 18, 2425-2436.	1.3	4
302	Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences. Chemical Communications, 2016, 52, 5777-5787.	2.2	72
303	Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85, 280-307.	2.5	300
304	Assembly of a 3D chiral Cu(I) metal–organic framework based on 4,5-dicyanoimidazole: CD spectrum, luminescence and selective gas adsorption. Inorganic Chemistry Communication, 2016, 68, 17-20.	1.8	4
305	Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal, 2016, 298, 183-190.	6.6	194
306	A Carboxylate-Rich Metalloligand and Its Heterometallic Coordination Polymers: Syntheses, Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth and Design, 2016, 16, 2874-2886.	1.4	37
307	Synthesis, crystal structures and photoluminescences of silver(I) complexes with chelating carboxylic and pyrazine derivatives. Inorganic Chemistry Communication, 2016, 68, 21-28.	1.8	13
308	A microporous cobalt-organic framework constructed from mixed tripodal ligands for high CO2 adsorption capacity. Inorganic Chemistry Communication, 2016, 68, 60-62.	1.8	10
309	Cu–BTC@cotton composite: design and removal of ethion insecticide from water. RSC Advances, 2016, 6, 42324-42333.	1.7	150
310	Application of iron-based metal–organic frameworks in catalysis: oxidant-promoted formation of coumarins using Fe ₃ O(BPDC) ₃ as an efficient heterogeneous catalyst. Catalysis Science and Technology, 2016, 6, 5916-5926.	2.1	25
311	1D to 3D and Chiral to Noncentrosymmetric Metal–Organic Complexes Controlled by the Amount of DEF Solvent: Photoluminescent and NLO Properties. Inorganic Chemistry, 2016, 55, 4199-4205.	1.9	30
312	Hydrogen bond-directed encapsulation of metalloporphyrin into the microcages of zeolite imidazolate frameworks for synergistic biomimetic catalysis. Catalysis Science and Technology, 2016, 6. 5848-5855.	2.1	16

#	Article	IF	CITATIONS
313	An efficient combination of Zr-MOF and microwave irradiation in catalytic Lewis acid Friedel–Crafts benzoylation. Dalton Transactions, 2016, 45, 7875-7880.	1.6	49
314	A Co ^{II} -based metal–organic framework based on [Co ₆ (μ ₃ -OH) ₄] units exhibiting selective sorption of C ₂ H ₂ over CO ₂ and CH ₄ . CrystEngComm, 2016, 18, 3760-3763.	1.3	22
315	Tuning the properties of the metal–organic framework UiO-67-bpy via post-synthetic N-quaternization of pyridine sites. Dalton Transactions, 2016, 45, 8614-8621.	1.6	62
316	Assembly of two novel 3D organic–inorganic hybrids based on Keggin-type polyoxometalates: syntheses, crystal structures and properties. CrystEngComm, 2016, 18, 6370-6377.	1.3	35
317	A novel microporous zinc(II) metal-organic framework with highly selectivity adsorption of CO 2 over CH 4. Inorganic Chemistry Communication, 2016, 69, 20-23.	1.8	24
318	Anthracene-based indium metal–organic framework as a promising photosensitizer for visible-light-induced atom transfer radical polymerization. CrystEngComm, 2016, 18, 3696-3702.	1.3	38
319	A New 3D Pillar-Layered Zn(II) Coordination Polymer Constructed From the Mixed Flexible Polycarboxylate and Bis(pyridyl)-Based Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1652-1655.	0.6	1
320	Heterogeneous photoredox synthesis of N-hydroxy-oxazolidinones catalysed by metal–organic frameworks. Catalysis Science and Technology, 2016, 6, 5647-5655.	2.1	15
321	Rhodium Hydrogenation Catalysts Supported in Metal Organic Frameworks: Influence of the Framework on Catalytic Activity and Selectivity. ACS Catalysis, 2016, 6, 3569-3574.	5.5	65
322	Copper(<scp>ii</scp>) complexes with phosphorylated 1,10-phenanthrolines: from molecules to infinite supramolecular arrays. New Journal of Chemistry, 2016, 40, 5896-5905.	1.4	15
323	A dual-walled cage MOF as an efficient heterogeneous catalyst for the conversion of CO ₂ under mild and co-catalyst free conditions. Green Chemistry, 2016, 18, 4086-4091.	4.6	127
324	Systematic Study of Mutually Inclusive Influences of Temperature and Substitution on the Coordination Geometry of Co(II) in a Series of Coordination Polymers and Their Properties. Crystal Growth and Design, 2016, 16, 3170-3179.	1.4	37
325	Efficient HPLC enantiomer separation using a pillared homochiral metal–organic framework as a novel chiral stationary phase. New Journal of Chemistry, 2016, 40, 4891-4894.	1.4	31
326	Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Transactions, 2016, 45, 9565-9573.	1.6	70
327	Crystal structure of 3-((1,3,5,7-tetraoxo-6-(pyridin-3-ylmethyl)-3,3a,4,4a,5,6,7,7a,8,8a-decahydro-4,8-ethenopyrrolo[3,4- <i>f</i>]isoir hemihydrate, C ₂₄ H ₂₂ Cl ₃ CoN ₄ O _{4.5} . Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 965-966.	ndol-2(1 <i: 0.1</i: 	>H)-yl)mo 1
328	A luminescent 3D Zn(II)-organic framework showing fast, selective and reversible detection of p-nitrophenol in aqueous media. Journal of Luminescence, 2016, 180, 287-291.	1.5	10
329	Photocatalytic Metal–Organic Frameworks for Selective 2,2,2-Trifluoroethylation of Styrenes. Journal of the American Chemical Society, 2016, 138, 12320-12323.	6.6	128
330	Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds. Nano Research, 2016, 9, 3181-3208.	5.8	56

#	Article	IF	CITATIONS
331	Polymer brushes on metal–organic frameworks by UV-induced photopolymerization. Polymer Chemistry, 2016, 7, 5828-5834.	1.9	49
332	Two heterovalent copper–organic frameworks with multiple secondary building units: high performance for gas adsorption and separation and I ₂ sorption and release. Journal of Materials Chemistry A, 2016, 4, 15081-15087.	5.2	52
333	Green synthesis, optical and magnetic properties of a Mn ^{ll} metal–organic framework (MOF) that exhibits high heat of H ₂ adsorption. RSC Advances, 2016, 6, 86468-86476.	1.7	18
334	A highly stable dimethyl-functionalized Ce(<scp>iv</scp>)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm, 2016, 18, 7855-7864.	1.3	80
335	Thermal and Magnetic Diversity in the Behaviour of the Cu ^{II} â€bdcâ€bpa System: 1D, 2D and Interpenetrated 3D Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4783-4791.	1.0	2
336	A convenient synthesis of highly luminescent lanthanide 1D-zigzag coordination chains based only on 4,4′-bipyridine as connector. Polyhedron, 2016, 119, 371-376.	1.0	18
337	Variation of Desolvation Behavior in Two Isostructural Metal–Organic Frameworks Based on a Flexible, Racemic Bifunctional Organic Linker. European Journal of Inorganic Chemistry, 2016, 2016, 4430-4439.	1.0	4
338	Construction of three metal-organic frameworks based on the sterically hindered V-shaped carboxylate ligand. Mendeleev Communications, 2016, 26, 449-451.	0.6	3
339	Interpenetration in π-Rich Mixed-Ligand Coordination Polymers. Crystal Growth and Design, 2016, 16, 6294-6303.	1.4	30
340	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on Tâ€5haped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	1.7	43
341	Highly chemiluminescent metal-organic framework of type MIL-101(Cr) for detection of hydrogen peroxide and pyrophosphate ions. Mikrochimica Acta, 2016, 183, 3151-3157.	2.5	38
342	Effect of pyridyl donor disposition and ligand flexibility on dimensionality in luminescent and nitrobenzene-detecting cadmium adamantanedicarboxylate coordination polymers. Inorganica Chimica Acta, 2016, 451, 187-196.	1.2	7
343	Molecular Level Characterization of the Structure and Interactions in Peptideâ€Functionalized Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 16531-16538.	1.7	27
344	Pore Environment Effects on Catalytic Cyclohexane Oxidation in Expanded Fe ₂ (dobdc) Analogues. Journal of the American Chemical Society, 2016, 138, 14371-14379.	6.6	137
345	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 13943-13947.	1.6	24
346	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 13739-13743.	7.2	78
347	Designing Multifunctional 5-Cyanoisophthalate-Based Coordination Polymers as Single-Molecule Magnets, Adsorbents, and Luminescent Materials. Inorganic Chemistry, 2016, 55, 11230-11248.	1.9	46
348	A novel metal-organic framework using heterometallic tetranuclear cluster as secondary building block and isophthalic acid as ligand. Chemical Research in Chinese Universities, 2016, 32, 709-712.	1.3	1

#	ARTICLE	IF	CITATIONS
349	Dihydrolevoglucosenone (Cyrene) As a Green Alternative to <i>N,N</i> -Dimethylformamide (DMF) in MOF Synthesis. ACS Sustainable Chemistry and Engineering, 2016, 4, 7186-7192.	3.2	123
350	Polymorphism/pseudopolymorphism of metal–organic frameworks composed of zinc(<scp>ii</scp>) and 2-methylimidazole: synthesis, stability, and application in gas storage. RSC Advances, 2016, 6, 89148-89156.	1.7	79
351	Synthesis, structure and luminescent sensor of zinc coordination polymers based on a new functionalized bipyridyl carboxylate ligand. Inorganica Chimica Acta, 2016, 453, 771-778.	1.2	9
352	From discrete molecule, to polymer, to MOF: mapping the coordination chemistry of Cd ^{II} using ¹¹³ Cd solid-state NMR. Chemical Communications, 2016, 52, 10680-10683.	2.2	18
353	Construction of two mixed-ligand coordination polymers presenting unusual polyrotaxane-like entanglements. Inorganic Chemistry Communication, 2016, 71, 98-101.	1.8	6
354	Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 21431-21439.	4.0	205
355	Cationic Ionic Liquids Organic Ligands Based Metal–Organic Frameworks for Fabrication of Core–Shell Microspheres for Hydrophilic Interaction Liquid Chromatography. ACS Applied Materials & Interfaces, 2016, 8, 21632-21639.	4.0	45
356	Combining Ruthenium(II) Complexes with Metal–Organic Frameworks to Realize Effective Two-Photon Absorption for Singlet Oxygen Generation. ACS Applied Materials & Interfaces, 2016, 8, 21465-21471.	4.0	78
357	A Hydrophobic Metal–Organic Framework Based on Cubaneâ€Type [Co ₄ (μ ₃ â€F) ₃ (μ ₃ â€SO ₄)] ³⁺ C for Gas Storage and Adsorption Selectivity of Benzene over Cyclohexane. Chemistry - A European Journal, 2016, 22, 11283-11290.	Clusters	36
358	Synergistic Catalysis with MIL-101: Stabilized Highly Active Bimetallic NiPd and CuPd Alloy Nanoparticle Catalysts for C-C Coupling Reactions. ChemistrySelect, 2016, 1, 3223-3227.	0.7	23
359	Homocoupling Reaction of Aryl Halides Catalyzed by Metal Cations in Isostructural Coordination Polymers. Crystal Growth and Design, 2016, 16, 4926-4933.	1.4	12
360	Three novel metal–organic frameworks based on an unsymmetrical rigid carboxylate ligand for luminescence sensing of nitrobenzene derivatives and magnetic properties. CrystEngComm, 2016, 18, 7471-7477.	1.3	45
361	Surfactant-assisted ZnO processing as a versatile route to ZIF composites and hollow architectures with enhanced dye adsorption. Journal of Materials Chemistry A, 2016, 4, 13509-13518.	5.2	46
362	Photoluminescent Metal–Organic Frameworks for Gas Sensing. Advanced Science, 2016, 3, 1500434.	5.6	271
363	Carboxyl-containing microporous organic nanotube networks as a platform for Pd catalysts. RSC Advances, 2016, 6, 39933-39939.	1.7	26
364	Palladium nanoparticles supported on a nickel pyrazolate metal organic framework as a catalyst for Suzuki and carbonylative Suzuki couplings. Dalton Transactions, 2016, 45, 13525-13531.	1.6	37
365	Four new 3D metal–organic frameworks constructed by the asymmetrical pentacarboxylate: gas sorption behaviour and magnetic properties. Dalton Transactions, 2016, 45, 15473-15480.	1.6	29
366	Preparation of a Fe ₂ O ₃ /MIL-53(Fe) composite by partial thermal decomposition of MIL-53(Fe) nanorods and their photocatalytic activity. RSC Advances, 2016, 6, 80981-80985.	1.7	76

#	Article	IF	CITATIONS
367	Three-Component Coupling of Aldehyde, Alkyne, and Amine via C–H Bond Activation Using Indium-Based Metal–Organic Framework Mil-68(In) as a Recyclable Heterogeneous Catalyst. Catalysis Letters, 2016, 146, 2087-2097.	1.4	11
368	Hydrogen adsorption in azolium and metalated N-heterocyclic carbene containing MOFs. CrystEngComm, 2016, 18, 7003-7010.	1.3	17
369	A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO ₂ . Green Chemistry, 2016, 18, 6349-6356.	4.6	118
370	Synthesis of new fused heterocyclic aromatic hydrocarbons via C–S and C–C bond formation by C–H bond activation in the presence of new Pd(<scp>ii</scp>) Schiff's base complexes. RSC Advances, 2016, 6, 88321-88331.	1.7	9
371	Mono and dimetallic pyrene-imidazolylidene complexes of iridium(<scp>iii</scp>) for the deuteration of organic substrates and the C–C coupling of alcohols. Dalton Transactions, 2016, 45, 14154-14159.	1.6	20
372	A magnesium-based bifunctional MOF: Studies on proton conductivity, gas and water adsorption. Inorganica Chimica Acta, 2016, 453, 321-329.	1.2	12
373	Two porous coordination polymers containing helix-based metal-organic nanotubes based on trigonal N-donor ligand. Inorganic Chemistry Communication, 2016, 72, 65-68.	1.8	13
374	Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support. Chemistry of Materials, 2016, 28, 6753-6762.	3.2	56
375	Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 13809-13813.	5.2	147
376	A two-dimensional mixed-valence Cu ^{II} /Cu ^I coordination polymer constructed from 2-(pyridin-3-yl)-1 <i>H</i> -imidazole-4,5-dicarboxylate. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 652-657.	0.2	1
377	Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. Journal of Catalysis, 2016, 342, 151-157.	3.1	126
378	RGO/Co 3 O 4 Composites Prepared Using GO-MOFs as Precursor for Advanced Lithium-ion Batteries and Supercapacitors Electrodes. Electrochimica Acta, 2016, 215, 410-419.	2.6	109
379	Recent Advances in the Preferential Thermal-/Photo-Oxidation of Carbon Monoxide: Noble Versus Inexpensive Metals and Their Reaction Mechanisms. Catalysis Surveys From Asia, 2016, 20, 141-166.	1.0	18
380	Two metal-organic frameworks with different configurations constructed from a flexible tripodal triaromatic acid. Journal of Molecular Structure, 2016, 1125, 656-661.	1.8	4
381	Framework opperâ€Catalyzed Câ^'N Cross oupling of Arylboronic Acids with Imidazole: Convenient and Ligandâ€Free Synthesis of Nâ€Arylimidazoles. ChemCatChem, 2016, 8, 2953-2960.	1.8	34
382	Unexpected formation of imidazole-4,5-dicarboxylic acid in the oxidation of 2-substituted benzimidazoles with hydrogen peroxide. Russian Journal of Organic Chemistry, 2016, 52, 1528-1530.	0.3	4
383	New <i>rht</i> -Type Metal–Organic Frameworks Decorated with Acylamide Groups for Efficient Carbon Dioxide Capture and Chemical Fixation from Raw Power Plant Flue Gas. ACS Applied Materials & Interfaces, 2016, 8, 31746-31756.	4.0	81
384	Flexible chiral pyrazolate-based metal–organic framework containing saddle-type Cu ^I ₄ (pyrazolate) ₄ units. CrystEngComm, 2016, 18, 7883-7893.	1.3	9

#	Article	IF	CITATIONS
385	Facile Halogenation of Pyrazolateâ€Bridged Copper(I) Complexes: Synthesis, Crystal Structure, and Photoluminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1173-1177.	0.6	7
386	Construction of 3-Fold-Interpenetrated Three-Dimensional Metal–Organic Frameworks of Nickel(II) for Highly Efficient Capture and Conversion of Carbon Dioxide. Inorganic Chemistry, 2016, 55, 9757-9766.	1.9	78
387	Influence of crystal topology and interior surface functionality of metal-organic frameworks on PFOA sorption performance. Microporous and Mesoporous Materials, 2016, 236, 202-210.	2.2	51
388	The use of reduced copper metal–organic frameworks to facilitate CuAAC click chemistry. Chemical Communications, 2016, 52, 12226-12229.	2.2	44
389	Diverse structural assemblies of silver–thiophene-2,5-dicarboxylate coordination complexes contribute to different proton-conducting performances. CrystEngComm, 2016, 18, 7814-7822.	1.3	8
390	Cadmium(<scp>ii</scp>) carboxyphosphonates based on mixed ligands: syntheses, crystal structures and recognition properties toward amino acids. RSC Advances, 2016, 6, 92175-92185.	1.7	14
391	Three new complexes based on methyl-pyrimidine-2-thione: in situ transformation, crystal structures and properties. Journal of Coordination Chemistry, 2016, 69, 3072-3083.	0.8	4
392	A Zn(II) luminescent polymer as a multifunctional sensor to nitrobenzene, Fe ³⁺ and CrO ₄ ^{2â^'} ions. Journal of Coordination Chemistry, 2016, 69, 2872-2880.	0.8	8
393	A Partially Fluorinated, Water-Stable Cu(II)–MOF Derived via Transmetalation: Significant Gas Adsorption with High CO ₂ Selectivity and Catalysis of Biginelli Reactions. Inorganic Chemistry, 2016, 55, 7835-7842.	1.9	71
394	Cobaltâ€based metal coordination polymers with 4,4′â€bipyridinyl groups: highly efficient catalysis for oneâ€pot synthesis of 3,4â€dihydropyrimidinâ€2(1 <i>H</i>)â€ones under solventâ€free conditions. Applied Organometallic Chemistry, 2016, 30, 1009-1021.	1.7	18
395	A HKUST-1 MOF inclusion compound with in-situ reduced copper(I) as [Cu(NCCH3)4]+ cation complex in the octahedral A-type pore. Polyhedron, 2016, 117, 579-584.	1.0	11
396	Aromatic Substituent Effects on the Flexibility of Metal–Organic Frameworks. Inorganic Chemistry, 2016, 55, 7576-7581.	1.9	22
397	A new class of epitaxial porphyrin metal–organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. Journal of Materials Chemistry A, 2016, 4, 12739-12747.	5.2	75
398	Solvent-controlled synthesis and reversible dynamic structural conversions of a series of iron(II) coordination complexes. Inorganic Chemistry Communication, 2016, 71, 5-8.	1.8	2
399	Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals. Nanoscale, 2016, 8, 16612-16620.	2.8	22
400	Fe-pyridinedicarboxylate based coordination polymer nanorods as a heterogeneous Fenton catalyst for pollutant degradation. RSC Advances, 2016, 6, 68227-68230.	1.7	8
401	Liquid exfoliation of alkyl-ether functionalised layered metal–organic frameworks to nanosheets. Chemical Communications, 2016, 52, 10474-10477.	2.2	98
402	Four Co(II) coordination polymers based on 4,4′-bis(benzimidazol-1-ylmethyl)biphenyl and aromatic carboxylic acids co-ligands: Synthesis, structures, and photocatalytic properties. Inorganica Chimica Acta, 2016, 450, 418-425.	1.2	26

#	Article	IF	CITATIONS
403	A series of transition metal–organic frameworks: crystal structures, luminescence properties, and sensitizing for luminescent Ln(<scp>iii</scp>) ions in aqueous solution. RSC Advances, 2016, 6, 69007-69015.	1.7	9
404	Rigidifying Effect of Metal–Organic Frameworks: Protect the Conformation, Packing Mode, and Blue Fluorescence of a Soft Piezofluorochromic Compound under Pressures up to 8 MPa. Inorganic Chemistry, 2016, 55, 7311-7313.	1.9	37
405	Two highly porous single-crystalline zirconium-based metal-organic frameworks. Science China Chemistry, 2016, 59, 980-983.	4.2	14
406	Precise Modulation of the Breathing Behavior and Pore Surface in Zrâ€MOFs by Reversible Postâ€Synthetic Variableâ€Spacer Installation to Fineâ€Tune the Expansion Magnitude and Sorption Properties. Angewandte Chemie, 2016, 128, 10086-10090.	1.6	30
407	Precise Modulation of the Breathing Behavior and Pore Surface in Zrâ€MOFs by Reversible Postâ€Synthetic Variableâ€Spacer Installation to Fineâ€Tune the Expansion Magnitude and Sorption Properties. Angewandte Chemie - International Edition, 2016, 55, 9932-9936.	7.2	125
408	Chromophore-immobilized luminescent metal–organic frameworks as potential lighting phosphors and chemical sensors. Chemical Communications, 2016, 52, 10249-10252.	2.2	70
409	Zinc(II) and Copper(II) Metal-Organic Frameworks Constructed from a Terphenyl-4,4′′-dicarboxylic Acid Derivative: Synthesis, Structure, and Catalytic Application in the Cyanosilylation of Aldehydes. European Journal of Inorganic Chemistry, 2016, 2016, 5557-5567.	1.0	27
410	Four calcium(<scp>ii</scp>) coordination polymers based on 2,5-dibromoterephthalic acid and different N-donor organic species: syntheses, structures, topologies, and luminescence properties. CrystEngComm, 2016, 18, 8664-8671.	1.3	30
411	Enantioselective Diels–Alder reaction in the confined space of homochiral metal–organic frameworks. RSC Advances, 2016, 6, 111436-111439.	1.7	27
412	Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO ₂ Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 2016, 8, 33723-33731.	4.0	146
413	Synthesis, Structures, and Properties of Cadmium(II) and Nickel(II) Coordination Polymers Based on a 4,4â€2â€Biphenylâ€Containing Ligand and Aliphatic Carboxylic Acids. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1184-1190.	0.6	2
414	Metalloligands to material: design strategies and network topologies. CrystEngComm, 2016, 18, 9185-9208.	1.3	33
415	A rare twofold interpenetrating NbO mixed-ligand mesomeric network from two individual heterochiral 3D frameworks. Inorganic Chemistry Communication, 2016, 74, 86-89.	1.8	4
416	A postsynthetically modified MOF hybrid as a ratiometric fluorescent sensor for anion recognition and detection. Dalton Transactions, 2016, 45, 18668-18675.	1.6	53
417	Chemical vapour deposition of metalloporphyrins: a simple route towards the preparation of gas separation membranes. Journal of Materials Chemistry A, 2016, 4, 18144-18152.	5.2	22
418	Construction of solvent-dependent self-assembled porous Ni(<scp>ii</scp>)-coordinated frameworks as effective catalysts for chemical transformation of CO ₂ . RSC Advances, 2016, 6, 108010-108016.	1.7	6
419	The catassembled generation of naphthalene diimide coordination networks with lone pair-Ï€ interactions. Science China Chemistry, 2016, 59, 1492-1497.	4.2	7
420	Influence of functionalization of terephthalate linker on the catalytic activity of UiO-66 for epoxide ring opening. Journal of Molecular Catalysis A, 2016, 425, 332-339.	4.8	58

#	Article	IF	CITATIONS
421	NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Scientific Reports, 2016, 6, 23667.	1.6	105
422	Imparting amphiphobicity on single-crystalline porous materials. Nature Communications, 2016, 7, 13300.	5.8	126
423	Pentiptycene-Based Luminescent Cu (II) MOF Exhibiting Selective Gas Adsorption and Unprecedentedly High-Sensitivity Detection of Nitroaromatic Compounds (NACs). Scientific Reports, 2016, 6, 20672.	1.6	51
424	Efficient and recyclable copper-based MOF-catalyzed N-arylation of N-containing heterocycles with aryliodides. Organic and Biomolecular Chemistry, 2016, 14, 10861-10865.	1.5	30
425	Cu ₂ O/CuO@rGO heterostructure derived from metal–organic-frameworks as an advanced electrocatalyst for non-enzymatic electrochemical H ₂ O ₂ sensor. RSC Advances, 2016, 6, 103116-103123.	1.7	20
426	A stable europium metal–organic framework as a dual-functional luminescent sensor for quantitatively detecting temperature and humidity. Dalton Transactions, 2016, 45, 18450-18454.	1.6	54
427	A Postsynthetic Modified MOF Hybrid as Heterogeneous Photocatalyst for α-Phenethyl Alcohol and Reusable Fluorescence Sensor. Inorganic Chemistry, 2016, 55, 11831-11838.	1.9	70
428	A Multiâ€responsive Regenerable Europium–Organic Framework Luminescent Sensor for Fe ³⁺ , Cr ^{VI} Anions, and Picric Acid. Chemistry - A European Journal, 2016, 22, 18769-18776.	1.7	242
429	Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination networks based onÂN-donor ligands: synthesis, crystal structures, and sensing of nitroaromatic explosives. RSC Advances, 2016, 6, 101380-101388.	1.7	15
430	Network diversity through two-step crystal engineering of a decorated 6-connected primary molecular building block. CrystEngComm, 2016, 18, 8578-8581.	1.3	14
431	Metalâ€Organic Frameworks for CO ₂ Chemical Transformations. Small, 2016, 12, 6309-6324.	5.2	458
432	Metal–Organic Framework–Polymer Composite as a Highly Efficient Sorbent for Sulfonamide Adsorption and Desorption: Effect of Coordinatively Unsaturated Metal Site and Topology. Langmuir, 2016, 32, 11465-11473.	1.6	45
433	Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 2016, 138, 14449-14457.	6.6	210
434	Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 2016, 7, 10835.	5.8	49
435	Structure tuning in amino-functionalized coordination polymers based on different V-shaped dicarboxylate ligands. Inorganic Chemistry Communication, 2016, 73, 183-186.	1.8	0
436	Reduction in Crystal Size of Flexible Porous Coordination Polymers Built from Luminescent Ru(II)-Metalloligands. Crystal Growth and Design, 2016, 16, 7051-7057.	1.4	6
437	Metal–organic frameworks for membrane-based separations. Nature Reviews Materials, 2016, 1, .	23.3	602
438	Heterometallic molecular complex [Co2Gd(NO3)(piv)6(py)2] and coordination polymer [{CoGd(dma)2}2(bdc)5]·4DMA: the synthesis, structure, and properties. Russian Chemical Bulletin, 2016, 65, 2601-2606.	0.4	20

#	Article	IF	CITATIONS
439	Beyond Clusters: Supramolecular Networks Selfâ€Assembled from Nanosized Silver Clusters and Inorganic Anions. Chemistry - A European Journal, 2016, 22, 6830-6836.	1.7	110
440	Exchange Method Using Acidâ€Solvent Synergy for Metal–Organic Framework Synthesis (EASYâ€MOFs) Based on a Typical Pillar‣ayered Parent Structure. European Journal of Inorganic Chemistry, 2016, 2016, 1466-1469.	1.0	6
441	Inserting CO ₂ into Aryl Câ^'H Bonds of Metal–Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie, 2016, 128, 5562-5566.	1.6	41
442	Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie, 2016, 128, 7505-7509.	1.6	72
443	Metalloporphyrinâ€Based Hypercrosslinked Polymers Catalyze Heteroâ€Diels–Alder Reactions of Unactivated Aldehydes with Simple Dienes: A Fascinating Strategy for the Construction of Heterogeneous Catalysts. Chemistry - A European Journal, 2016, 22, 9919-9922.	1.7	52
444	A Highly Sensitive Luminescent Dye@MOF Composite for Probing Different Volatile Organic Compounds. ChemPlusChem, 2016, 81, 758-763.	1.3	31
445	Photocurrent Response of Two ÂMetal(II) Complexes Based on Rigid Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 322-329.	1.0	13
446	Multiple Modes of Motion: Realizing the Dynamics of CO Adsorbed in Mâ€MOFâ€74 (M = Mg, Zn) by Using Solidâ€State NMR Spectroscopy. European Journal of Inorganic Chemistry, 2016, 2016, 2017-2024.	1.0	28
447	Encapsulation of Ln ^{III} ions/Ag nanoparticles within Cd(<scp>ii</scp>) boron imidazolate frameworks for tuning luminescence emission. Chemical Communications, 2016, 52, 8577-8580.	2.2	17
448	High hydroxide conductivity in a chemically stable crystalline metal–organic framework containing a water-hydroxide supramolecular chain. Chemical Communications, 2016, 52, 8459-8462.	2.2	32
449	Solvent-mediated secondary building units (SBUs) diversification in a series of MnII-based metal-organic frameworks (MOFs). Journal of Solid State Chemistry, 2016, 241, 18-25.	1.4	18
450	Metal–Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries. Nano Letters, 2016, 16, 4335-4340.	4.5	79
451	Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. Journal of Power Sources, 2016, 325, 25-34.	4.0	81
452	An unusual (4,4)-connected 3D porous cadmium metal–organic framework as a luminescent sensor for detection of nitrobenzene. RSC Advances, 2016, 6, 56035-56041.	1.7	31
453	Metal Azolate/Carboxylate Frameworks as Catalysts in Oxidative and C–C Coupling Reactions. Inorganic Chemistry, 2016, 55, 5804-5817.	1.9	20
454	Coordination polymers and polygons using di-pyridyl-thiadiazole spacers and substituted phosphorodithioato Ni ^{II} complexes: potential and limitations for inorganic crystal engineering. CrystEngComm, 2016, 18, 5620-5629.	1.3	7
455	Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes. Journal of the American Chemical Society, 2016, 138, 8288-8300.	6.6	29
456	Luminescent sensing of a new 8-connected topological metal-organic framework. Inorganic Chemistry Communication, 2016, 70, 160-163.	1.8	19

#	Article	IF	CITATIONS
457	Adsorbent–Adsorbate Interactions in the Oxidation of HMF Catalyzed by Ni-Based MOFs: A DRIFT and FT-IR Insight. Journal of Physical Chemistry C, 2016, 120, 15310-15321.	1.5	20
458	A Clear Insight into the Distinguishing CO ₂ Capture by Two Isostructural Dy ^{III} –Carboxylate Coordination Frameworks. Inorganic Chemistry, 2016, 55, 6352-6354.	1.9	23
459	Interpenetrating Metal–Metalloporphyrin Framework for Selective CO ₂ Uptake and Chemical Transformation of CO ₂ . Inorganic Chemistry, 2016, 55, 7291-7294.	1.9	115
460	Cavity partition and functionalization of a [2+3] organic molecular cage by inserting polar Pî€O bonds. Chemical Communications, 2016, 52, 9267-9270.	2.2	14
461	Crystal structures from 1D to 3D: triggered by the different coordination morphologies of ligands in different reaction systems. CrystEngComm, 2016, 18, 5901-5909.	1.3	7
462	Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge. RSC Advances, 2016, 6, 54119-54128.	1.7	42
463	Fluorescent sensing and electrocatalytic properties of three Zn(II)/Co(II) coordination complexes containing two different dicarboxylates and two various bis(pyridyl)-bis(amide) ligands. Journal of Molecular Structure, 2016, 1119, 396-403.	1.8	14
464	Two Ag(I)/Cd(II) Coordination Polymers of 2-Fluoroisonicotinic Acid: Syntheses, Structures and Luminescent Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 799-805.	1.9	3
465	Unsubstituted and substituted copper malonate coordination polymers with isomeric dipyridylamide ligands: Chain, layer, diamondoid, and self-penetrated topologies. Inorganica Chimica Acta, 2016, 446, 176-188.	1.2	3
466	Mixed-Metal Zeolitic Imidazolate Frameworks and their Selective Capture of Wet Carbon Dioxide over Methane. Inorganic Chemistry, 2016, 55, 6201-6207.	1.9	52
467	Metal-dependent ribbon and self-penetrated topologies in nitroaromatic-sensing zinc and cadmium coordination polymers with terephthalate and dipyridylamide ligands. Polyhedron, 2016, 114, 72-79.	1.0	7
468	Interplay between hydrophobicity and basicity toward the catalytic activity of isoreticular MOF organocatalysts. New Journal of Chemistry, 2016, 40, 6970-6976.	1.4	20
469	Response Characteristics of Bisphenols on a Metal–Organic Framework-Based Tyrosinase Nanosensor. ACS Applied Materials & Interfaces, 2016, 8, 16533-16539.	4.0	72
470	Design and synthesis of squaramide-based MOFs as efficient MOF-supported hydrogen-bonding organocatalysts. Chemical Communications, 2016, 52, 8585-8588.	2.2	62
471	Structural phase transition in perovskite metal–formate frameworks: a Potts-type model with dipolar interactions. Physical Chemistry Chemical Physics, 2016, 18, 18528-18535.	1.3	40
472	Synthesis, Crystal Structure, and Thermal Analysis of a New Dy(III) Compound Based on Pyridinecarboxylate Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1792-1795.	0.6	0
473	Convergent Synthesis of a Metal–Organic Framework Supported Olefin Metathesis Catalyst. Organometallics, 2016, 35, 2149-2155.	1.1	22
474	Enhanced Hydrothermal Stability and Catalytic Performance of HKUST-1 by Incorporating Carboxyl-Functionalized Attapulgite. ACS Applied Materials & Interfaces, 2016, 8, 16457-16464.	4.0	89

#	Article	IF	CITATIONS
475	A lanthanide metal-organic framework based on a custom-designed macrocyclic ligand. Journal of Coordination Chemistry, 2016, 69, 1844-1851.	0.8	6
476	Synthesis of 1,2â€Dicarbonylâ€3â€enes by Hydroacylation of 1â€Alkynes with Glyoxal Derivatives Using Metal–Organic Framework Cu/MOFâ€74 as Heterogeneous Catalyst. ChemPlusChem, 2016, 81, 361-369.	1.3	12
477	A Threeâ€Ðimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016, 4470-4475.	1.0	20
478	Conventional and Upcoming Sulfurâ€Cleaning Technologies for Petroleum Fuel: A Review. Energy Technology, 2016, 4, 679-699.	1.8	56
479	Bis(carboxyphenyl)-1,2,4-triazole Based Metal–Organic Frameworks: Impact of Metal Ion Substitution on Adsorption Performance. Inorganic Chemistry, 2016, 55, 6938-6948.	1.9	16
480	Metalâ€Organic Frameworkâ€Based Nanomaterials for Electrocatalysis. Advanced Energy Materials, 2016, 6, 1600423.	10.2	539
481	Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie - International Edition, 2016, 55, 7379-7383.	7.2	260
482	Application of metal–organic frameworks for purification of vegetable oils. Food Chemistry, 2016, 190, 103-109.	4.2	48
483	Applications of metal-organic frameworks featuring multi-functional sites. Coordination Chemistry Reviews, 2016, 307, 106-129.	9.5	471
484	Functionalized hypercrosslinked polymers with knitted N-heterocyclic carbene–copper complexes as efficient and recyclable catalysts for organic transformations. Catalysis Science and Technology, 2016, 6, 4345-4355.	2.1	62
485	CD-MOF: A Versatile Separation Medium. Journal of the American Chemical Society, 2016, 138, 2292-2301.	6.6	269
486	Metal ion induced porous HKUST-1 nano/microcrystals with controllable morphology and size. CrystEngComm, 2016, 18, 4127-4132.	1.3	40
487	Imparting BrÃ,nsted acidity into a zeolitic imidazole framework. Inorganic Chemistry Frontiers, 2016, 3, 393-396.	3.0	19
488	Construction of two novel coordination polymers from a V-shaped bisimidazole ligand: Synthesis, characterization and properties. Inorganic Chemistry Communication, 2016, 64, 59-62.	1.8	11
489	A Robust Metal-Metalloporphyrin Framework Based upon a Secondary Building Unit of Infinite Nickel Oxide Chain. Crystal Growth and Design, 2016, 16, 1005-1009.	1.4	14
490	A nanoscale Fe(<scp>ii</scp>) metal–organic framework with a bipyridinedicarboxylate ligand as a high performance heterogeneous Fenton catalyst. RSC Advances, 2016, 6, 6756-6760.	1.7	38
491	A Comprehensive Set of High-Quality Point Charges for Simulations of Metal–Organic Frameworks. Chemistry of Materials, 2016, 28, 785-793.	3.2	140
492	Atomistic Simulation of Protein Encapsulation in Metal–Organic Frameworks. Journal of Physical Chemistry B, 2016, 120, 477-484.	1.2	35

#	Article	IF	CITATIONS
493	A novel copper(<scp>ii</scp>)–lanthanum(<scp>iii</scp>) metal organic framework as a selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catalysis Science and Technology, 2016, 6, 3727-3736.	2.1	42
494	A two-fold interpenetrating porous metal–organic framework with a large solvent-accessible volume and selective sensing of nitroaromatic explosives. Journal of Coordination Chemistry, 2016, 69, 996-1004.	0.8	4
495	Topological modulation of the porous structure of a coordination polymer constructed from a flexible building block via framework–guest interaction during self-assembly. CrystEngComm, 2016, 18, 872-876.	1.3	3
496	Metal–organic frameworks (MOFs) bring new life to hydrogen-bonding organocatalysts in confined spaces. CrystEngComm, 2016, 18, 3985-3995.	1.3	54
497	Solvent-induced construction of two zinc metal–organic frameworks for highly selective detection of nitroaromatic explosives. CrystEngComm, 2016, 18, 4102-4108.	1.3	30
498	Water-medium C–H activation over a hydrophobic perfluoroalkane-decorated metal-organic framework platform. Journal of Catalysis, 2016, 333, 1-7.	3.1	58
499	A series of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination compounds based on 4-(4H-1,2,4-triazol-4-yl)benzoic acid: synthesis, structure and photoluminescence properties. CrystEngComm, 2016, 18, 130-142.	1.3	16
500	Metal–organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm, 2016, 18, 193-206.	1.3	235
501	Cooperative effects of lanthanides when associated with palladium in novel, 3D Pd/Ln coordination polymers. Sustainable applications as water-stable, heterogeneous catalysts in carbon–carbon cross-coupling reactions. Applied Catalysis A: General, 2016, 511, 1-10.	2.2	34
502	Chemical vapour deposition of zeolitic imidazolate framework thinÂfilms. Nature Materials, 2016, 15, 304-310.	13.3	528
503	Mechanochromic Cu(<scp>i</scp>) boron imidazolate frameworks with low-dimensional structures and reducing function. Inorganic Chemistry Frontiers, 2016, 3, 263-267.	3.0	26
504	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	1.9	82
505	An effective strategy to boost the robustness of metal–organic frameworks via introduction of size-matching ligand braces. Chemical Communications, 2016, 52, 1971-1974.	2.2	33
506	Iron-based metal–organic framework, Fe(BTC): an effective dual-functional catalyst for oxidative cyclization of bisnaphthols and tandem synthesis of quinazolin-4(3H)-ones. RSC Advances, 2016, 6, 1136-1142.	1.7	55
507	Synthesis, Photoluminescence, and Gas Adsorption Properties of a New Furan-Functionalized MOF and Direct Carbonization for Synthesis of Porous Carbon. Crystal Growth and Design, 2016, 16, 475-482.	1.4	29
508	Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF. Chemical Science, 2016, 7, 2037-2050.	3.7	57
509	Multifunctional nanocatalysts for tandem reactions: A leap toward sustainability. Applied Catalysis A: General, 2016, 511, 59-77.	2.2	73
510	Mesoporous In2O3 materials prepared by solid-state thermolysis of indium-organic frameworks and their high HCHO-sensing performance. Inorganic Chemistry Communication, 2016, 63, 48-52.	1.8	37

#	Article	IF	CITATIONS
511	Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 215-224.	6.6	201
512	Metal–organic hybrid materials built with tetrachlorophthalate acid and different N-donor coligands: Structure diversity and photoluminescence. Journal of Solid State Chemistry, 2016, 234, 36-47.	1.4	14
513	1,5-Benzodiazepine synthesis via cyclocondensation of 1,2-diamines with ketones using iron-based metal–organic framework MOF-235 as an efficient heterogeneous catalyst. Journal of Catalysis, 2016, 333, 94-101.	3.1	38
514	pH dependent synthesis of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination polymers with dicarboxyl-functionalized arylhydrazone of barbituric acid: photoluminescence properties and catalysts for Knoevenagel condensation. New Journal of Chemistry, 2016, 40, 1535-1546.	1.4	66
515	Roles of anions in the structural diversity of Cd(II) complexes based on a V-shaped triazole-carboxylate ligand: Synthesis, structure and photoluminescence properties. Inorganica Chimica Acta, 2016, 446, 103-110.	1.2	9
516	De Novo Tailoring Pore Morphologies and Sizes for Different Substrates in a Urea-Containing MOFs Catalytic Platform. Chemistry of Materials, 2016, 28, 2000-2010.	3.2	63
517	Multiple-Step Humidity-Induced Single-Crystal to Single-Crystal Transformations of a Cobalt Phosphonate: Structural and Proton Conductivity Studies. Inorganic Chemistry, 2016, 55, 3706-3712.	1.9	49
518	Rational synthesis of an exceptionally stable Zn(<scp>ii</scp>) metal–organic framework for the highly selective and sensitive detection of picric acid. Chemical Communications, 2016, 52, 5734-5737.	2.2	253
519	Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones. Journal of Chemical Crystallography, 2016, 46, 170-180.	0.5	9
520	Ring opening metathesis polymerization of cyclopentene using a ruthenium catalyst confined by a branched polymer architecture. Polymer Chemistry, 2016, 7, 2923-2928.	1.9	12
521	Freestanding MOF Microsheets with Defined Size and Geometry Using Superhydrophobic–Superhydrophilic Arrays. Advanced Materials Interfaces, 2016, 3, 1500392.	1.9	32
522	Seed-Mediated Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5316-5320.	6.6	104
523	Tunable luminescence and white light emission of mixed lanthanide–organic frameworks based on polycarboxylate ligands. Journal of Materials Chemistry C, 2016, 4, 3364-3374.	2.7	116
524	Sensing-functional luminescent metal–organic frameworks. CrystEngComm, 2016, 18, 3746-3759.	1.3	160
525	Lanthanide-based coordination polymers as promising heterogeneous catalysts for ring-opening reactions. RSC Advances, 2016, 6, 21352-21361.	1.7	32
526	Control of local structures and photophysical properties of zinc porphyrin-based supramolecular assemblies structurally organized by regioselective ligand coordination. Physical Chemistry Chemical Physics, 2016, 18, 5453-5463.	1.3	15
527	Synthesis of borocarbonitride from a multifunctional Cu(<scp>i</scp>) boron imidazolate framework. Dalton Transactions, 2016, 45, 5223-5228.	1.6	5
528	Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: design, synthesis and catalysis. Inorganic Chemistry Frontiers, 2016, 3, 702-710.	3.0	30

#	Article	IF	CITATIONS
529	Synthesis, Structures, and Catalytic Properties of Two Zinc(II) Coordination Polymers Constructed from Polycarboxylate and Bis(Benzimidazole) Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 598-605.	1.9	7
530	A stable and porous iridium(<scp>iii</scp>)-porphyrin metal–organic framework: synthesis, structure and catalysis. CrystEngComm, 2016, 18, 2203-2209.	1.3	63
531	HPLC enantioseparation on a homochiral MOF–silica composite as a novel chiral stationary phase. RSC Advances, 2016, 6, 21293-21301.	1.7	61
532	Metal–Organic Frameworks with Pyridyl-Based Isophthalic Acid and Their Catalytic Applications in Microwave Assisted Peroxidative Oxidation of Alcohols and Henry Reaction. Crystal Growth and Design, 2016, 16, 1837-1849.	1.4	94
533	Minute-MOFs: Ultrafast Synthesis of M ₂ (dobpdc) Metal–Organic Frameworks from Divalent Metal Oxide Colloidal Nanocrystals. Chemistry of Materials, 2016, 28, 1581-1588.	3.2	29
534	Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation. Chemical Communications, 2016, 52, 4971-4974.	2.2	41
535	Covalent Chemistry beyond Molecules. Journal of the American Chemical Society, 2016, 138, 3255-3265.	6.6	328
536	Functional metal-organic molecules and materials derived from rigid and flexible P-N scaffolds. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 618-623.	0.8	3
537	A pillar-layer MOF used as a luminescent probe for detecting small molecules acetone. Inorganic Chemistry Communication, 2016, 66, 87-89.	1.8	14
538	Microwave assisted non-solvothermal synthesis of metal–organic frameworks. RSC Advances, 2016, 6, 25967-25974.	1.7	25
539	Adaptation of guest molecules: A simple system that amplifies the gentle perturbation of host lattices from nickel(II) to cobalt(II). Inorganica Chimica Acta, 2016, 445, 96-102.	1.2	3
540	Synthesis of indolizines through aldehyde–amine–alkyne couplings using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst. Journal of Catalysis, 2016, 337, 167-176.	3.1	57
541	1D ladder-like chain and 3-fold Borromean entanglement of silver(I) coordination polymers with different metal salts. Inorganic Chemistry Communication, 2016, 67, 17-21.	1.8	8
542	Manganese- and Lanthanide-Based 1D Chiral Coordination Polymers as an Enantioselective Catalyst for Sulfoxidation. Inorganic Chemistry, 2016, 55, 2701-2708.	1.9	50
543	Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Applied Surface Science, 2016, 369, 130-136.	3.1	305
544	A photosensitizing decatungstate-based MOF as heterogeneous photocatalyst for the selective C–H alkylation of aliphatic nitriles. Chemical Communications, 2016, 52, 4714-4717.	2.2	49
545	Multifunctional chemical sensors and luminescent thermometers based on lanthanide metal–organic framework materials. CrystEngComm, 2016, 18, 2690-2700.	1.3	68
546	Selective oxidation of alcohols by supported gold nanoparticles: recent advances. RSC Advances, 2016, 6, 28688-28727.	1.7	113

#	Article	IF	CITATIONS
547	Low-Temperature Adsorption and Diffusion of Methanol in ZIF-8 Nanoparticle Films. Langmuir, 2016, 32, 2947-2954.	1.6	26
548	Synthesis of hierarchical porous \hat{l}^2 -FeOOH catalysts in ionic liquid/water/CH2Cl2 ionogels. Chemical Communications, 2016, 52, 4687-4690.	2.2	6
549	Two isomeric Zn(<scp>ii</scp>)-based metal–organic frameworks constructed from a bifunctional triazolate–carboxylate tecton exhibiting distinct gas sorption behaviors. CrystEngComm, 2016, 18, 2579-2584.	1.3	24
550	A Cd(<scp>ii</scp>)-based metal–organic framework as a luminance sensor to nitrobenzene and Tb(<scp>iii</scp>) ion. Dalton Transactions, 2016, 45, 6983-6989.	1.6	48
551	N–H and S–H insertions over Cu(I)-zeolites as heterogeneous catalysts. Journal of Molecular Catalysis A, 2016, 417, 10-18.	4.8	20
552	Zn(<scp>ii</scp>) porphyrin based nano-/microscale metal–organic frameworks: morphology dependent sensitization and photocatalytic oxathiolane deprotection. RSC Advances, 2016, 6, 26199-26202.	1.7	15
553	Syntheses, crystal structures and third-order nonlinear optical properties of two series of Zn(II) complexes using the thiophene-based terpyridine ligands. Dyes and Pigments, 2016, 130, 216-225.	2.0	31
554	Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New Journal of Chemistry, 2016, 40, 3933-3949.	1.4	222
555	A New Set of Isoreticular, Homochiral Metal–Organic Frameworks with ucp Topology. Chemistry of Materials, 2016, 28, 519-528.	3.2	26
556	On the zeolitic imidazolate framework-8 (ZIF-8) membrane for hydrogen separation from simulated biomass-derived syngas. Microporous and Mesoporous Materials, 2016, 233, 70-77.	2.2	27
557	Catalytically active Pt nanoparticles immobilized inside the pores of metal organic framework using supercritical CO2 solutions. Microporous and Mesoporous Materials, 2016, 225, 26-32.	2.2	39
558	When CuAAC 'Click Chemistry' goes heterogeneous. Catalysis Science and Technology, 2016, 6, 923-957.	2.1	132
559	Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO ₂ . Green Chemistry, 2016, 18, 2479-2487.	4.6	174
560	Nanostructured coordination complexes/polymers derived from cardanol: "one-pot, two-step― solventless synthesis and characterization. RSC Advances, 2016, 6, 6607-6622.	1.7	28
561	Host–Guest Chirality Interplay: A Mutually Induced Formation of a Chiral ZMOF and Its Double-Helix Polymer Guests. Journal of the American Chemical Society, 2016, 138, 786-789.	6.6	125
562	Design and synthesis of nanoporous perylene bis-imide linked metalloporphyrin frameworks and their catalytic activity. Journal of Chemical Sciences, 2016, 128, 1-8.	0.7	13
563	Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. Chemical Reviews, 2016, 116, 323-421.	23.0	650
564	Understanding and solving disorder in the substitution pattern of amino functionalized MIL-47(V). Dalton Transactions, 2016, 45, 4309-4315.	1.6	5

#	Article	IF	CITATIONS
565	Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coordination Chemistry Reviews, 2016, 311, 38-52.	9.5	272
566	One pot synthesis, structure and magnetic property of a pseudo-interpenetrated 2D copper framework based on coordinated 1,1′-biphenyl-3,3′,5,5′-tetracarboxylate and synthon. Journal of Molecular Structure, 2016, 1108, 451-457.	1.8	4
567	An indirect generation of 1D M ^{II} -2,5-dihydroxybenzoquinone coordination polymers, their structural rearrangements and generation of materials with a high affinity for H ₂ , CO ₂ and CH ₄ . Dalton Transactions, 2016, 45, 1339-1344.	1.6	26
568	Palladium nanoparticles stabilized with N-doped porous carbons derived from metal–organic frameworks for selective catalysis in biofuel upgrade: the role of catalyst wettability. Green Chemistry, 2016, 18, 1212-1217.	4.6	148
569	Topology-guided design of an anionic bor-network for photocatalytic [Ru(bpy)3]2+ encapsulation. Chemical Communications, 2016, 52, 1926-1929.	2.2	62
570	TiO 2 @ZIF-8: A novel approach of modifying micro-environment for enhanced photo-catalytic dye degradation and high usability of TiO 2 nanoparticles. Materials Letters, 2016, 164, 571-574.	1.3	95
571	Metal–organic frameworks for the control and management of air quality: advances and future direction. Journal of Materials Chemistry A, 2016, 4, 345-361.	5.2	120
572	MOF-Based Catalysts for Selective Hydrogenolysis of Carbon–Oxygen Ether Bonds. ACS Catalysis, 2016, 6, 55-59.	5.5	82
573	A lead–porphyrin metal–organic framework: gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Transactions, 2016, 45, 61-65.	1.6	73
574	Iron-catalyzed domino sequences: One-pot oxidative synthesis of quinazolinones using metal–organic framework Fe 3 O(BPDC) 3 as an efficient heterogeneous catalyst. Chemical Engineering Journal, 2016, 284, 778-785.	6.6	25
575	Synthesis, structure and photoluminescent behavior of a novel pillar-layered {Zn ₃ }-based metal–organic framework. Functional Materials Letters, 2016, 09, 1650002.	0.7	3
576	Anti-poisoning core–shell metal/ZIF-8 catalyst for selective alkene hydrogenation. Catalysis Today, 2016, 265, 203-209.	2.2	13
577	MOF-like supramolecular network of Mn3 single-molecule magnets formed by extensive π–π stacking. Polyhedron, 2016, 103, 150-156.	1.0	8
578	Syntheses, Structures and Catalytic Properties of Cobalt(II) and Silver(I) Coordination Polymers Based on Flexible Bis(2-methyl benzimidazole) and Dicarboxylic Acids. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 62-68.	1.9	19
579	Highly efficient electrochemical reduction of CO ₂ to CH ₄ in an ionic liquid using a metal–organic framework cathode. Chemical Science, 2016, 7, 266-273.	3.7	225
580	Silica-supported metal acetylacetonate catalysts with a robust and flexible linker constructed by using 2-butoxy-3,4-dihydropyrans as dual anchoring reagents and ligand donors. Catalysis Science and Technology, 2016, 6, 1810-1820.	2.1	38
581	A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chemical Science, 2016, 7, 1063-1069.	3.7	114
582	A sustainable protocol for the facile synthesis of zinc-glutamate MOF: an efficient catalyst for room temperature CO ₂ fixation reactions under wet conditions. Chemical Communications, 2016. 52, 280-283.	2.2	140

#	Article	IF	CITATIONS
583	A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Applied Catalysis B: Environmental, 2016, 182, 562-569.	10.8	175
584	Photoreactivity of metal-organic frameworks in the decolorization of methylene blue in aqueous solution. Catalysis Today, 2016, 266, 136-143.	2.2	36
585	Adsorptive desulfurization and denitrogenation using metal-organic frameworks. Journal of Hazardous Materials, 2016, 301, 259-276.	6.5	365
586	Investigations on post-synthetically modified UiO-66-NH 2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous and Mesoporous Materials, 2016, 221, 238-244.	2.2	314
587	Recent Electroanalytical Studies of Metal-Organic Frameworks: A Mini-Review. Critical Reviews in Analytical Chemistry, 2016, 46, 323-331.	1.8	29
588	Diverse Structures and Physicochemical Properties of Four Zinc–Tripyridyltriazole Coordination Polymers Regulated by Counter-Ions. Australian Journal of Chemistry, 2016, 69, 33.	0.5	1
589	Metal–organic frameworks containing N-heterocyclic carbenes and their precursors. Coordination Chemistry Reviews, 2016, 307, 188-210.	9.5	107
590	Synthesis, crystal structure, and luminescent property of a new Zn(II) compound based on mixed polycarboxylate and N-donor ligands. Inorganic and Nano-Metal Chemistry, 2017, 47, 95-98.	0.9	0
591	Preparation and applications of monolithic structures containing metal–organic frameworks. Journal of Separation Science, 2017, 40, 272-287.	1.3	54
592	Biomimetic Activation of Molecular Oxygen with a Combined Metalloporphyrinic Framework and Coâ€catalyst Platform. ChemCatChem, 2017, 9, 1192-1196.	1.8	28
593	A Cryptand Metal–Organic Framework as a Platform for the Selective Uptake and Detection of Group I Metal Cations. Chemistry - A European Journal, 2017, 23, 2286-2289.	1.7	18
594	Two 3D Cd(II) Metal–Organic Frameworks Linked by Benzothiadiazole Dicarboxylates: Fantastic S@Cd ₆ Cage, Benzothiadiazole Antidimmer, and Dual Emission. Inorganic Chemistry, 2017, 56, 1696-1705.	1.9	27
595	Ethane C–H bond activation on the Fe(<scp>iv</scp>)–oxo species in a Zn-based cluster of metal–organic frameworks: a density functional theory study. Physical Chemistry Chemical Physics, 2017, 19, 3782-3791.	1.3	12
596	Strategies for the design of porous polymers as efficient heterogeneous catalysts: from co-polymerization to self-polymerization. Catalysis Science and Technology, 2017, 7, 1028-1039.	2.1	48
597	Application of metal â^' organic frameworks. Polymer International, 2017, 66, 731-744.	1.6	163
598	Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity. RSC Advances, 2017, 7, 1626-1633.	1.7	41
599	The role of non-covalent interactions in the crystal structure of two new nano coordination polymers of Cd(II) and Hg(II) based on N,Nâ€2-Bis-pyridin-4-ylmethylene-naphthalene-1,5-diamine ligand. Journal of Molecular Structure, 2017, 1135, 26-31.	1.8	7
600	Sol–Gel Processing of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 2626-2645.	3.2	116

ARTICLE IF CITATIONS Metal organic framework-derived Co₃O₄ microcubes and their catalytic 601 33 1.4 applications in CO oxidation. New Journal of Chemistry, 2017, 41, 1631-1636. Two 2-D multifunctional cobalt(<scp>ii</scp>) compounds: field-induced single-ion magnetism and 1.6 29 catalytic oxidation of benzylic C–H bonds. Dalton Transactions, 2017, 46, 2137-2145 Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and 603 1.9 157 Efficient Nanoparticle Catalysis. Inorganic Chemistry, 2017, 56, 1402-1411. Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with 604 5.0 nitroalkenes. Journal of Colloid and Interface Science, 2017, 494, 282-289. In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution 605 5.2 212 Reaction Electrocatalyst. Small, 2017, 13, 1602873. Ferromagnetic nanoparticleâ€supported copper complex: A highly efficient and reusable catalyst for threeâ€component syntheses of 1,4â€disubstituted 1,2,3â€triazoles and C–S coupling of aryl halides. Applied 1.7 Organometallic Chemistry, 2017, 31, e3714. Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High 607 4.0 129 Performance Li lon Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 5254-5262. Towards hydroxamic acid linked zirconium metal–organic frameworks. Materials Chemistry 3.2 29 Frontiers, 2017, 1, 1194-1199. A luminescent metal organic framework with high sensitivity for detecting and removing copper ions 609 72 1.6 from simulated biological fluids. Dalton Transactions, 2017, 46, 2456-2461. Pd(0) loaded Zn₂(azoBDC)₂(dabco) as a heterogeneous catalyst. 1.3 CrystEngComm, 2017, 19, 4182-4186. Fabrication of Metalâ€"Organic Framework and Infinite Coordination Polymer Nanosheets by the Spray 611 53 1.6 Technique. Langmuir, 2017, 33, 1060-1065. Synthesis, crystal structure, luminescent and magnetic properties of lanthanide coordination polymers based on a zwitterionic polycarboxylate ligand. Inorganic Chemistry Communication, 2017, 1.8 77, 1-5. Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support 613 1.6 32 hydrophilicity of metalâ€^eorganic frameworks. Faraday Discussions, 2017, 201, 317-326. Chiral Titanium Coordination Assemblies: Robust Cooperative Selfâ \in Supported Catalysts for Asymmetric Ring Opening of <i>meso</i>â \in Epoxides with Aliphatic Amines. Advanced Synthesis and Catalysis, 2017, 359, 494-505. 614 2.1 14 Sizable dynamics in small pores: CO₂location and motion in the 1±-Mg formate 615 1.3 35 metal–organic framework. Physical Chemistry Chemical Physics, 2017, 19, 6130-6141. Ultrafine Sn nanoparticles embedded in shell of N-doped hollow carbon spheres as high rate anode 3.1 for lithium-ion batteries. Applied Surface Science, 2017, 404, 342-349. The mechanism of an asymmetric ring-opening reaction of epoxide with amine catalyzed by a metalâ€"organic framework: insights from combined quantum mechanics and molecular mechanics 617 1.6 35 calculations. Dalton Transactions, 2017, 46, 3470-3481. Six new coordination compounds based on rigid 5-(3-carboxy-phenyl)-pyridine-2-carboxylic acid: synthesis, structural variations and properties. RSC Advances, 2017, 7, 7217-7226.

#	Article	IF	CITATIONS
619	Alkyne Activation by a Porous Silver Coordination Polymer for Heterogeneous Catalysis of Carbon Dioxide Cycloaddition. ACS Catalysis, 2017, 7, 2248-2256.	5.5	137
620	Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 2017, 19, 4066-4081.	1.3	205
621	Robust high-connected rare-earth MOFs as efficient heterogeneous catalysts for CO ₂ conversion. Chemical Communications, 2017, 53, 3224-3227.	2.2	79
622	Shape Controllable Preparation of Submicronic Cadmium Tetrazoleâ€Based Metal–Organic Frameworks via Solvothermal or Microwaveâ€Assisted Methods and Their Photocatalytic Studies. Chinese Journal of Chemistry, 2017, 35, 209-216.	2.6	9
623	Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science and Technology, 2017, 7, 1351-1362.	2.1	28
624	Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Advances, 2017, 7, 10592-10600.	1.7	48
625	Facile synthesis of an ultra-stable metal–organic framework with excellent acid and base resistance. Faraday Discussions, 2017, 201, 63-70.	1.6	14
626	A Stable Porphyrin-Based Porous mog Metal–Organic Framework as an Efficient Solvent-Free Catalyst for C–C Bond Formation. Inorganic Chemistry, 2017, 56, 3036-3043.	1.9	107
627	Ultrasonic synthesis of two nanostructured cadmium(II) coordination supramolecular polymers: Solvent influence, luminescence and photocatalytic properties. Ultrasonics Sonochemistry, 2017, 37, 414-423.	3.8	48
628	Polar Ketone-Functionalized Metal–Organic Framework Showing a High CO2 Adsorption Performance. Inorganic Chemistry, 2017, 56, 2363-2366.	1.9	44
629	A Water-Stable Anionic Metal–Organic Framework Constructed from Columnar Zinc-Adeninate Units for Highly Selective Light Hydrocarbon Separation and Efficient Separation of Organic Dyes. Inorganic Chemistry, 2017, 56, 2919-2925.	1.9	73
630	Solvothermal self-assembly of Cd ²⁺ coordination polymers with supramolecular networks involving N-donor ligands and aromatic dicarboxylates: synthesis, crystal structure and photoluminescence studies. Dalton Transactions, 2017, 46, 3623-3630.	1.6	50
631	Immobilisation of catalytically active proline on H2N-MIL-101(Al) accompanied with reversal in enantioselectivity. Catalysis Communications, 2017, 95, 12-15.	1.6	26
632	Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 2017, 7, 2896-2919.	5.5	184
633	A New Isomeric Porous Coordination Framework Showing Single-Crystal to Single-Crystal Structural Transformation and Preferential Adsorption of 1,3-Butadiene from C4 Hydrocarbons. Crystal Growth and Design, 2017, 17, 2166-2171.	1.4	31
634	Metal–organic framework incorporated monolithic capillary for selective enrichment of phosphopeptides. RSC Advances, 2017, 7, 15894-15902.	1.7	23
635	A porous Ca-MOF with nano-sized {Ca 11 } as building unit: Structure, drug loading and release properties. Inorganic Chemistry Communication, 2017, 78, 43-47.	1.8	21
636	Highly selective aerobic oxidation of alcohols to aldehydes over a new Cu(II)-based metal-organic framework with mixed linkers. Catalysis Communications, 2017, 95, 6-11.	1.6	31
#	Article	IF	CITATIONS
-----	---	------	-----------
637	Microwave-induced fast incorporation of titanium into UiO-66 metal–organic frameworks for enhanced photocatalytic properties. Chemical Communications, 2017, 53, 3361-3364.	2.2	121
638	A triptycene-based porous hydrogen-bonded organic framework for guest incorporation with tailored fitting. Chemical Communications, 2017, 53, 3677-3680.	2.2	69
639	MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework. Journal of Physical Chemistry C, 2017, 121, 4816-4824.	1.5	83
640	Carbon-coated Li4Ti5O12 tablets derived from metal-organic frameworks as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 708, 6-13.	2.8	21
641	Functionalized Metal–Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines. ACS Applied Materials & Interfaces, 2017, 9, 9772-9777.	4.0	37
642	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	6.6	104
643	Porous Zirconium–Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. ChemSusChem, 2017, 10, 1761-1770.	3.6	81
644	A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4. Journal of Molecular Structure, 2017, 1136, 140-143.	1.8	9
645	Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework. Nature Communications, 2017, 8, 14085.	5.8	193
646	Cargo delivery on demand from photodegradable MOF nano-cages. Dalton Transactions, 2017, 46, 4917-4922.	1.6	41
647	A multi-responsive luminescent sensor for organic small-molecule pollutants and metal ions based on a 4d–4f metal–organic framework. Dalton Transactions, 2017, 46, 3526-3534.	1.6	56
648	Incorporation of Molecular Catalysts in Metal–Organic Frameworks for Highly Efficient Heterogeneous Catalysis. Advanced Materials, 2017, 29, 1605446.	11.1	275
649	Stable Zr(IV)-Based Metal–Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(III) Ions in Water. ACS Applied Materials & Interfaces, 2017, 9, 10286-10295.	4.0	371
650	Interplaying anions in a supramolecular metallohydrogel to form metal organic frameworks. Chemical Communications, 2017, 53, 3705-3708.	2.2	20
651	Pressure inverse solubility and polymorphism of an edible γ-cyclodextrin-based metal–organic framework. Physical Chemistry Chemical Physics, 2017, 19, 9086-9091.	1.3	22
652	Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H 2 O 2 and ascorbic acid. Chinese Chemical Letters, 2017, 28, 1006-1012.	4.8	73
653	Synthesis, Structure, and Properties of New Mg(II)-Metal–Organic Framework and Its Prowess as Catalyst in the Production of 4 <i>H</i> -Pyrans. Industrial & Engineering Chemistry Research, 2017, 56, 2917-2924.	1.8	39
654	Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordination Chemistry Reviews, 2017, 337, 80-96.	9.5	282

ARTICLE IF CITATIONS Tuning Pt and Cu sites population inside functionalized UiO-67 MOF by controlling activation 655 31 1.6 conditions. Faraday Discussions, 2017, 201, 265-286. Piezochromic Topology Switch in a Coordination Polymer. Journal of Physical Chemistry Letters, 2017, 2.1 8,929-935. Formation of co-racemic uranyl chromate constructed from chiral layers of different topology. Acta 657 9 0.5Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 101-111. Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through 658 adsorption. Journal of Hazardous Materials, 2017, 335, 1-9. A heterometallic approach for enhancing the net robustness of metal-organic framework. Inorganic 659 1.8 4 Chemistry Communication, 2017, 80, 72-74. Nucleophilic trifluormethylation of aryl boronic acid under heterogeneous Cu(INA) 2 catalysis at 1.0 room temperature: The catalytic copper-based protocol. Molecular Catalysis, 2017, 436, 60-66. Significant Enhancement of C₂H₂/C₂H₄ Separation by 661 a Photochromic Diarylethene Unit: A Temperature―and Lightâ€Responsive Separation Switch. Angewandte 1.6 22 Chemie, 2017, 129, 8008-8014. Significant Enhancement of C₂H₂/C₂H₄ Separation by a Photochromic Diarylethene Unit: A Temperature―and Lightâ€Responsive Separation Switch. Angewandte Chemie - International Edition, 2017, 56, 7900-7906. 7.2 145 Synthesis, structure and gas adsorption properties of a microporous metal–organic framework 663 assembled from a semi-rigid tripodal carboxylic acid ligand. Inorganic Chemistry Communication, 2017, 3 1.8 80, 58-60. [FeFe] Hydrogenase active site model chemistry in a UiO-66 metal–organic framework. Chemical 664 2.2 Communications, 2017, 53, 5227-5230. Cyclic gas-phase heterogeneous process in a metal–organic framework involving a nickel nitrosyl 665 14 1.6 cómplex. Faraday Discussions, 2017, 201, 101-112. Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. Journal of 666 5.2 Materials Chemistry A, 2017, 5, 12322-12329. Local Deprotonation Enables Cation Exchange, Porosity Modulation, and Tunable Adsorption 667 1.4 23 Selectivity in a Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 3387-3394. DNAâ€Assembled Coreâ€Satellite Upconvertingâ€Metal–Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. Small, 2017, 13, 1700504. 5.2 114 A series of new mixed-ligand complexes based on 3,6-bis(imidazol-1-yl)pyridazine: syntheses, structures, 669 1.3 48 and catalytic activities. CrystEngComm, 2017, 19, 3124-3137. A Fluorescent Zirconiumâ€Based Metalâ€Organic Framework for Selective Detection of Nitro Explosives 670 and Metal Ions. Chinese Journal of Chemistry, 2017, 35, 1091-1097. PA-Tb-Cu MOF as luminescent nanoenzyme for catalytic assay of hydrogen peroxide. Biosensors and 671 5.389 Bioelectronics, 2017, 96, 227-232. Synthesis of Halide-Modulated Cuprous(I) Coordination Polymers with Mechanochromic and 672 Photocatalytic Properties. Inorganic Chemistry, 2017, 56, 6507-6511.

#	Article	IF	CITATIONS
673	Solventâ€Free Selfâ€Assembly to the Synthesis of Nitrogenâ€Doped Ordered Mesoporous Polymers for Highly Selective Capture and Conversion of CO ₂ . Advanced Materials, 2017, 29, 1700445.	11.1	162
674	A new methyl-embedded (3,36)-connected txt-type metal–organic framework exhibiting high H2 adsorption property. CrystEngComm, 2017, 19, 3094-3097.	1.3	0
675	Deciphering the Structural Relationships of Five Cd-Based Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 6522-6531.	1.9	41
676	Heat capacities and thermodynamic properties of Cr-MIL-101. Journal of Thermal Analysis and Calorimetry, 2017, 129, 509-514.	2.0	14
677	Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46, 3242-3285.	18.7	2,457
678	CFA-4 – a fluorinated metal–organic framework with exchangeable interchannel cations. Dalton Transactions, 2017, 46, 6745-6755.	1.6	17
679	Synthesis, characterisation and catalytic activity of 4, 5-imidazoledicarboxylate ligated Co(II) and Cd(II) metal-organic coordination complexes. Journal of Molecular Structure, 2017, 1143, 153-162.	1.8	31
680	Smart Luminescent Coordination Polymers toward Multimode Logic Gates: Time-Resolved, Tribochromic and Excitation-Dependent Fluorescence/Phosphorescence Emission. ACS Applied Materials & Interfaces, 2017, 9, 17399-17407.	4.0	102
681	Interpenetrated Metal–Organic Frameworks of Cobalt(II): Structural Diversity, Selective Capture, and Conversion of CO ₂ . Crystal Growth and Design, 2017, 17, 3295-3305.	1.4	53
682	A chemically stable europium metal-organic framework for bifunctional chemical sensor and recyclable on–off–on vapor response. Journal of Solid State Chemistry, 2017, 251, 243-247.	1.4	14
683	Picolinoyl functionalized MOF ligands for an air-promoted secondary alcohol oxidation with CuBr. New Journal of Chemistry, 2017, 41, 4400-4405.	1.4	11
684	Some basic correlations in the thermal (kinetic) stability of inclusion compounds on the basis of microporous metal–organic frameworks. Journal of Thermal Analysis and Calorimetry, 2017, 130, 335-342.	2.0	3
685	A nanoscale Cu-metal organic framework with Schiff base ligand: Synthesis, characterization and investigation catalytic activity in the oxidation of alcohols. Inorganic Chemistry Communication, 2017, 81, 37-42.	1.8	21
686	Synthesis of functionalized titanium-carboxylate molecular clusters and their catalytic activity. Journal of Industrial and Engineering Chemistry, 2017, 53, 171-176.	2.9	12
687	Carbamoylmethylphosphine Oxide-Functionalized MIL-101(Cr) as Highly Selective Uranium Adsorbent. Analytical Chemistry, 2017, 89, 5678-5682.	3.2	50
688	Predicting Product Distribution of Propene Dimerization in Nanoporous Materials. ACS Catalysis, 2017, 7, 3940-3948.	5.5	7
689	Cu3(BTC)2 catalyzed dehydrogenative coupling of dimethylphenylsilane with phenol and homocoupling of dimethylphenylsilane to disiloxane. Journal of Colloid and Interface Science, 2017, 490, 430-435.	5.0	16
690	Chemically Modulated Microwave-Assisted Synthesis of MOF-74(Ni) and Preparation of Metal–Organic Framework-Matrix Based Membranes for Removal of Metal Ions from Aqueous Media. Crystal Growth and Design, 2017, 17, 156-162.	1.4	61

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
691	A novel adenine-based zinc(II) metal-organic framework featuring the Lewis basic sites for heterogeneous catalysis. Inorganic Chemistry Communication, 2017, 79, 55-59.	1.8	28
692	Nitroaromatic explosives detection by a luminescent Cd(II) based metal organic framework. Polyhedron, 2017, 123, 217-225.	1.0	35
693	Competitive Coordination Strategy to Finely Tune Pore Environment of Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 22732-22738.	4.0	36
694	Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46, 4774-4808.	18.7	1,519
695	Stimuliâ€Responsive Metal–Organic Framework (MOF) with Chemoâ€&witchable Properties for Colorimetric Detection of CHCl ₃ . Chemistry - A European Journal, 2017, 23, 12559-12564.	1.7	68
696	Visible-light-driven photocatalysts of three nickel(II) coordination polymers with mixed ligands. Polyhedron, 2017, 134, 88-98.	1.0	11
697	Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1701139.	11.1	522
698	Two threefold Interpenetrating 3D Supramolecular Networks Based on 1D Chains and Hydrogenâ€bond Interactions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 864-869.	0.6	1
699	Synthesis and application of a MOF-derived Ni@C catalyst by the guidance from an in situ hot stage in TEM. RSC Advances, 2017, 7, 26377-26383.	1.7	27
700	Porous Molecular Solids and Liquids. ACS Central Science, 2017, 3, 544-553.	5.3	194
701	A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities. Dalton Transactions, 2017, 46, 7821-7832.	1.6	44
702	Photoluminescence and magnetic analysis of a family of lanthanide(<scp>iii</scp>) complexes based on diclofenac. New Journal of Chemistry, 2017, 41, 5467-5475.	1.4	19
703	Renewable Molecular Flasks with NADH Models: Combination of Lightâ€Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones. Angewandte Chemie - International Edition, 2017, 56, 8692-8696.	7.2	39
704	Asymmetric Supramolecular Organocatalysis: A Complementary Upgrade to Organocatalysis. European Journal of Organic Chemistry, 2017, 2017, 5460-5483.	1.2	24
705	Greening the Processes of Metal–Organic Framework Synthesis and their Use in Sustainable Catalysis. ChemSusChem, 2017, 10, 3165-3187.	3.6	132
706	Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today, 2017, 20, 191-209.	8.3	402
707	Improved catalytic performance of porous metal–organic frameworks for the ring opening of styrene oxide. CrystEngComm, 2017, 19, 4219-4226.	1.3	19
708	Lanthanide metal organic frameworks based on dicarboxyl-functionalized arylhydrazone of barbituric acid: syntheses, structures, luminescence and catalytic cyanosilylation of aldehydes. Dalton Transactions, 2017, 46, 8649-8657.	1.6	55

		Citation Ri	EPORT	
#	Article		IF	Citations
709	Synthesis and characterization of a photochromic magnesium(II) coordination polyme naphthalene diimide ligand. Acta Crystallographica Section C, Structural Chemistry, 20	r based on a 117, 73, 437-441.	0.2	1
710	Selective Catalytic Performances of Noble Metal Nanoparticle@MOF Composites: The Effect of Aperture Size and Structural Flexibility of MOF Matrices. Chemistry - A Europe 2017, 23, 11397-11403.	Concomitant ean Journal,	1.7	50
711	Multidimensional networks constructed with 2,5-dichloroterephthalate and bis(benzin co-ligands: Syntheses, structures, electrochemical and photocatalytic properties. Polyh 133, 169-178.	nidazole) Iedron, 2017,	1.0	18
712	Acid-responsive metallo-supramolecular micelles for synergistic chemo-photodynamic f European Polymer Journal, 2017, 93, 87-96.	therapy.	2.6	14
713	A rare high-connected metal-organic framework with an unusual topological net: Synth structure and magnetic properties. Inorganic Chemistry Communication, 2017, 82, 61	nesis, crystal -63.	1.8	11
714	New Zinc functionalized metal organic Framework for selective sensing of chromate io Actuators B: Chemical, 2017, 251, 644-649.	n. Sensors and	4.0	34
715	Room temperature silylation of alcohols catalyzed by metal organic frameworks. Cataly and Technology, 2017, 7, 2445-2449.	ysis Science	2.1	9
716	Synthesis and applications of MOF-derived porous nanostructures. Green Energy and E 2017, 2, 218-245.	Invironment,	4.7	301
717	A NbO type Cu(<scp>ii</scp>) metal–organic framework showing efficient catalytic FriedlÃ ¤ der and Henry reactions. Dalton Transactions, 2017, 46, 7782-7790.	activity in the	1.6	40
718	Combining Polycarboxylate and Bipyridyl-like Ligands in the Design of Luminescent Zin Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3893-390	c and Cadmium 6.	1.4	42
719	Structural, spectral and magnetic properties of Ni(<scp>ii</scp>), Co(<scp>ii</scp>) a Cd(<scp>ii</scp>) compounds with imidazole derivatives and silanethiolate ligands. Ci 2017, 19, 3506-3518.	nd _′ ystEngComm,	1.3	11
720	Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivat MIL-100(Fe) catalyst. Catalysis Science and Technology, 2017, 7, 3008-3016.	ives with	2.1	36
721	Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simul Study with Heavy-Chalcogen-Containing PCN-57 Analogues. ACS Applied Materials &a 2017, 9, 19535-19540.	ant: A Case mp; Interfaces,	4.0	63
722	Eu 3+ functionalized Sc-MOFs: Turn-on fluorescent switch for ppb-level biomarker of p pollutant polystyrene in serum and urine and on-site detection by smartphone. Biosens Bioelectronics, 2017, 97, 299-304.	astic sors and	5.3	82
723	Syntheses, structures, and photocatalytic properties of two new one-dimensional chain metal complexes with mixed N,O-donor ligands. Inorganica Chimica Acta, 2017, 466, 2	n transition 191-297.	1.2	14
724	A two-dimensional zinc Phosphonate: Synthesis, structure and photoluminescence pro Inorganic Chemistry Communication, 2017, 84, 59-62.	perties.	1.8	4
725	Tunability in Metal Coordination Sphere, Ligand Coordination Mode, Network Topolog Magnetism via Stepwise Dehydration Induced Single-Crystal to Single-Crystal Transford Growth and Design, 2017, 17, 3724-3730.	y, and mation. Crystal	1.4	12
726	Catalytic hydrogenation performance of an in situ assembled Au@g-C ₃ N ₄ –PANI nanoblend: synergistic inter-constituer boost the catalysis. New Journal of Chemistry, 2017, 41, 7123-7 <u>132.</u>	it interactions	1.4	49

#	Article	IF	CITATIONS
727	A microporous yttrium metal–organic framework of an unusual nia topology for high adsorption selectivity of C ₂ H ₂ and CO ₂ over CH ₄ at room temperature. Materials Chemistry Frontiers, 2017, 1, 1982-1988.	3.2	35
728	Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 15065-15072.	5.2	146
729	Visible-light-induced tandem reaction of o -aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy. Journal of Catalysis, 2017, 349, 156-162.	3.1	59
730	A capillary coated with a metal-organic framework for the capillary electrochromatographic determination of cephalosporins. Mikrochimica Acta, 2017, 184, 1345-1351.	2.5	22
731	One-step synthesis of porphyrinic iron-based metal-organic framework/ordered mesoporous carbon for electrochemical detection of hydrogen peroxide in living cells. Sensors and Actuators B: Chemical, 2017, 248, 207-213.	4.0	72
732	Phosphotungstic acid encapsulated in MILâ€53(Fe) as efficient visibleâ€light photocatalyst for rhodamine B degradation. Environmental Progress and Sustainable Energy, 2017, 36, 1342-1350.	1.3	13
733	Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 2017, 8, 3939-3948.	3.7	177
734	Energy Storage during Compression of Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 4667-4670.	6.6	53
735	Immobilization of AlEgens into metalâ€organic frameworks: Ligand design, emission behavior, and applications. Journal of Polymer Science Part A, 2017, 55, 1809-1817.	2.5	17
736	Porous Metalâ€organic Framework based on Stripâ€shaped Manganese(II) Chains: Synthesis, Structure, and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 548-552.	0.6	4
737	<i>In Vivo</i> Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal–Organic Frameworks Nanomaterials. ACS Nano, 2017, 11, 4315-4327.	7.3	235
738	Highly efficient metal organic framework (MOF)-based copper catalysts for the base-free aerobic oxidation of various alcohols. RSC Advances, 2017, 7, 17806-17812.	1.7	51
739	Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. Journal of Materials Chemistry A, 2017, 5, 8954-8963.	5.2	117
740	Synthesis, crystal structures and photoluminescence studies of three mixed ligand silver(I) coordination polymers. Transition Metal Chemistry, 2017, 42, 285-291.	0.7	7
741	HKUST-1 catalyzed room temperature hydrogenation of acetophenone by silanes. Catalysis Communications, 2017, 97, 74-78.	1.6	12
742	Functional Versatility of a Series of Zr Metal–Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. Journal of the American Chemical Society, 2017, 139, 6253-6260.	6.6	78
743	Synthesis, Crystal Structure and Catalytic Property of a New Cadmium Coordination Polymer. Journal of Cluster Science, 2017, 28, 1955-1962.	1.7	5
744	A pillar-layered-like metal-organic framework built from dinuclear cobalt chain and a V-shaped bis-pyridyl ligand with different coordination modes. Inorganic Chemistry Communication, 2017, 80, 15-18	1.8	2

#	Article	IF	CITATIONS
745	Heterogeneous catalysis with a coordination modulation synthesized MOF: morphology-dependent catalytic activity. New Journal of Chemistry, 2017, 41, 3957-3965.	1.4	56
746	Metalâ€Organic Framework Wears a Protective Cover for Improved Stability. Chemistry - A European Journal, 2017, 23, 7663-7666.	1.7	21
747	A new cadmium-organic framework fluorescent sensor for Al3+ and Ca2+ ions in aqueous medium. Inorganic Chemistry Communication, 2017, 79, 29-32.	1.8	23
749	Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chemical Engineering Journal, 2017, 321, 40-47.	6.6	61
750	Embedding Graphene Nanoplates into MIL-101(Cr) Pores: Synthesis, Characterization, and CO ₂ Adsorption Studies. Industrial & Engineering Chemistry Research, 2017, 56, 3895-3904.	1.8	46
751	Photoswitching storage of guest molecules in metal–organic framework for photoswitchable catalysis: exceptional product, ultrahigh photocontrol, and photomodulated size selectivity. Journal of Materials Chemistry A, 2017, 5, 7961-7967.	5.2	34
752	Lead-Based Metal–Organic Framework with Stable Lithium Anodic Performance. Inorganic Chemistry, 2017, 56, 4289-4295.	1.9	78
753	A robust metallomacrocyclic motif for the formation interpenetrated coordination polymers. CrystEngComm, 2017, 19, 2402-2412.	1.3	19
754	Synthesis of a NbO Type Homochiral Cu(II) Metal–Organic Framework: Ferroelectric Behavior and Heterogeneous Catalysis of Three-Component Coupling and Pechmann Reactions. Inorganic Chemistry, 2017, 56, 4697-4705.	1.9	42
755	Postâ€Synthetic Modification of Mesoporous Zincâ€Adeninate Framework with Tris(2,2′â€bipyridine) Ruthenium(II) Complex and its Electrochemiluminescence. Bulletin of the Korean Chemical Society, 2017, 38, 471-476.	1.0	3
756	In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N,N-diethyl-3-methylbenzamide). Journal of Porous Materials, 2017, 24, 1175-1185.	1.3	60
757	Syntheses, structures and luminescence of three copper(I) cyanide coordination polymers incorporating flexible N-donor ligands. Inorganic Chemistry Communication, 2017, 79, 25-28.	1.8	4
758	A porous the -type metal-organic framework based on [Mn 4 Cl] 7+ clusters for selective gas sorption. Inorganic Chemistry Communication, 2017, 79, 46-49.	1.8	5
759	Thermally Induced Single-Crystal-to-Single-Crystal Transformation and Heterogeneous Catalysts for Epoxidation Reaction of Co(II) Based Metal–Organic Frameworks Containing 1,4-Phenylenediacetic Acid. Crystal Growth and Design, 2017, 17, 1824-1835.	1.4	15
760	Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials, 2017, 29, 2618-2625.	3.2	718
761	Visible and near infrared light active photocatalysis based on conjugated polymers. Journal of Industrial and Engineering Chemistry, 2017, 51, 27-43.	2.9	73
762	Al-Based coordination polymer nanotubes: simple preparation, post-modification and application in Fe ³⁺ ions sensing. Dalton Transactions, 2017, 46, 5373-5383.	1.6	23
763	Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports. Faraday Discussions, 2017, 201, 287-302.	1.6	21

#	Article	IF	CITATIONS
764	Stimuliâ€Responsive DNAâ€Functionalized Metal–Organic Frameworks (MOFs). Advanced Materials, 2017, 29, 1602782.	11.1	210
765	Orderly Layered Zrâ€Benzylphosphonate Nanohybrids for Efficient Acid–Baseâ€Mediated Bifunctional/Cascade Catalysis. ChemSusChem, 2017, 10, 681-686.	3.6	77
766	Rational Syntheses of Cd ^{II} and Pb ^{II} Metalâ€Organic Frameworks for Luminescence Sensing of Nitroaromatics, Ferric and Chromate Ions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 214-219.	0.6	15
767	A Modulatorâ€Induced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie - International Edition, 2017, 56, 563-567.	7.2	486
768	Syntheses, crystal structures, properties of metal coordination polymers based on a novel semi-rigid aromatic carboxylate ligand. Polyhedron, 2017, 124, 145-155.	1.0	12
769	Probing Molecular Mechanisms of Self-Assembly in Metal–Organic Frameworks. ACS Nano, 2017, 11, 258-268.	7.3	41
770	Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 335, 28-43.	9.5	312
771	Fluorine Interactions in the 3D Packing of "Pt(IV)I ₂ ―Organometallic Molecular Materials: Structural and Computational Approaches. Crystal Growth and Design, 2017, 17, 409-413.	1.4	4
772	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	5.5	288
773	A Base-Resistant Metalloporphyrin Metal–Organic Framework for C–H Bond Halogenation. Journal of the American Chemical Society, 2017, 139, 211-217.	6.6	250
774	A Modulatorâ€Induced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie, 2017, 129, 578-582.	1.6	96
775	Concomitant Formation of Compositionally Distinct Coordination Polymers Based on a Triacid Linker: Solventâ€Mediated Metamorphosis. European Journal of Inorganic Chemistry, 2017, 2017, 1163-1170.	1.0	2
776	Anion–Cation Mediated Structural Rearrangement of an In-derived Three-Dimensional Interpenetrated Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 950-955.	1.9	6
777	Biomimetic mineralization of metal–organic frameworks around polysaccharides. Chemical Communications, 2017, 53, 1249-1252.	2.2	73
778	Ruthenium Complexes Immobilized on Functionalized Knitted Hypercrosslinked Polymers as Efficient and Recyclable Catalysts for Organic Transformations. Advanced Synthesis and Catalysis, 2017, 359, 78-88.	2.1	47
779	Composite MOF mixture as volatile organic compound sensor – A new approach to LMOF sensors. Materials Letters, 2017, 190, 33-36.	1.3	7
780	A Plasmonic Colloidal Photocatalyst Composed of a Metal–Organic Framework Core and a Gold/Anatase Shell for Visibleâ€Lightâ€Driven Wastewater Purification from Antibiotics and Hydrogen Evolution. Chemistry - A European Journal, 2017, 23, 3184-3190.	1.7	47
781	Boosting Oxidative Desulfurization of Model and Real Gasoline over Phosphotungstic Acid Encapsulated in Metal–Organic Frameworks: The Window Size Matters. ChemCatChem, 2017, 9, 971-979.	1.8	103

#	Article	IF	CITATIONS
782	Erbium-Organic Framework as Heterogeneous Lewis Acid Catalysis for Hantzsch Coupling and Tetrahydro-4H-Chromene Synthesis. Catalysis Letters, 2017, 147, 453-462.	1.4	30
783	Electronic Effects of Aromatic Rings on the Catalytic Activity of Dioxidomolybdenum(VI)–Hydrazone Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 999-1006.	1.0	51
784	Synthesis, characterization, crystal structure of magnesium compound based 3, 3′, 5, 5′-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation. Journal of Molecular Structure, 2017, 1133, 607-614.	1.8	18
785	Fullymeta-Substituted 4,4′-Biphenyldicarboxylate-Based Metal-Organic Frameworks: Synthesis, Structures, and Catalytic Activities. European Journal of Inorganic Chemistry, 2017, 2017, 1478-1487.	1.0	10
786	Two blue-light excitable yellow-emitting LMOF phosphors constructed by triangular tri(4-pyridylphenyl)amine. Dalton Transactions, 2017, 46, 956-961.	1.6	36
787	A stable 3D Cd(<scp>ii</scp>) metal–organic framework for highly sensitive detection of Cu ²⁺ ions and nitroaromatic explosives. RSC Advances, 2017, 7, 49618-49625.	1.7	24
788	Structural Diversity in Six Mixed Ligand Zn(II) Metal–Organic Frameworks Constructed by Rigid and Flexible Dicarboxylates and Different N,N′ Donor Ligands. Crystal Growth and Design, 2017, 17, 6613-6624.	1.4	43
789	Formation of Nâ€Doped Carbonâ€Coated ZnO/ZnCo ₂ O ₄ /CuCo ₂ O ₄ Derived from a Polymetallic Metal–Organic Framework: Toward Highâ€Rate and Longâ€Cycleâ€Life Lithium Storage. Small, 2017, 13, 1702150.	5.2	58
790	Highly shape- and regio-selective peroxy–trifluoromethylation of styrene by metal–organic framework Cu ₃ (BTC) ₂ . Catalysis Science and Technology, 2017, 7, 5872-5881.	2.1	17
791	Single Ni atoms and Ni4 clusters have similar catalytic activity for ethylene dimerization. Journal of Catalysis, 2017, 354, 278-286.	3.1	44
792	Spatially isolated palladium in porous organic polymers by direct knitting for versatile organic transformations. Journal of Catalysis, 2017, 355, 101-109.	3.1	40
793	Confined crystallization of a HKUST-1 metal–organic framework within mesostructured silica with enhanced structural resistance towards water. Journal of Materials Chemistry A, 2017, 5, 22305-22315.	5.2	47
794	Synergic Effect between Nucleophilic Monomers and Cu(II) Metal–Organic Framework for Visible-Light-Triggered Controlled Photopolymerization. Chemistry of Materials, 2017, 29, 9445-9455.	3.2	50
795	Novel Metal–Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment. ACS Applied Materials & Interfaces, 2017, 9, 36026-36037.	4.0	405
796	Carbon-sulphur cross coupling reactions catalyzed by nickel-based coordination polymers based on metalloligands. Dalton Transactions, 2017, 46, 15023-15031.	1.6	19
797	Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange. RSC Advances, 2017, 7, 50829-50837.	1.7	77
798	A 3D supramolecular network constructed from {Ni9} cluster and benzotriazole. Inorganic Chemistry Communication, 2017, 86, 87-89.	1.8	10
799	An Isoreticular Series of Zinc(II) Metal–Organic Frameworks Derived from Terpyridylcarboxylate Ligands. Inorganic Chemistry, 2017, 56, 12224-12231.	1.9	11

#	Article	IF	CITATIONS
800	A Ni(salen)â€Based Metal–Organic Framework: Synthesis, Structure, and Catalytic Performance for CO ₂ Cycloaddition with Epoxides. European Journal of Inorganic Chemistry, 2017, 2017, 4982-4989.	1.0	27
801	Solid-state dynamics and single-crystal to single-crystal structural transformations in octakis(3-chloropropyl)octasilsesquioxane and octavinyloctasilsesquioxane. Physical Chemistry Chemical Physics, 2017, 19, 27516-27529.	1.3	13
802	The coordination chemistry of N-heterocyclic carboxylic acid: A comparison of the coordination polymers constructed by 4,5-imidazoledicarboxylic acid and 1H-1,2,3-triazole-4,5-dicarboxylic acid. Coordination Chemistry Reviews, 2017, 352, 108-150.	9.5	104
803	Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands. Coordination Chemistry Reviews, 2017, 352, 83-107.	9.5	16
804	Supported Single-Site Ti(IV) on a Metal–Organic Framework for the Hydroboration of Carbonyl Compounds. Organometallics, 2017, 36, 3921-3930.	1.1	50
805	Visible detection of copper ions using a fluorescent probe based on red carbon dots and zirconium metal–organic frameworks. Dalton Transactions, 2017, 46, 15080-15086.	1.6	29
806	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	4.6	163
807	Recognition of harmful fused aromatic hydrocarbons via a metal-organic framework with hydrophobic pores. Inorganic Chemistry Communication, 2017, 86, 200-203.	1.8	4
808	Copper catalyzed oxidative homocoupling of terminal alkynes to 1,3-diynes: a Cu ₃ (BTC) ₂ MOF as an efficient and ligand free catalyst for Glaser–Hay coupling. Organic and Biomolecular Chemistry, 2017, 15, 9191-9199.	1.5	34
809	Synthesis and gas sorption behaviour of ZIF-90 with large pore volume. New Journal of Chemistry, 2017, 41, 13235-13239.	1.4	15
810	3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. Journal of Materials Chemistry A, 2017, 5, 23550-23558.	5.2	69
811	Preparation of RE2O2SO4 (RE=La, Pr-Lu) microspheres from rare-earth-based infinite coordination polymers. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	7
812	Designing new catalytic nanoreactors for the regioselective epoxidation of geraniol by the post-synthetic immobilization of oxovanadium(IV) complexes on a ZrIV-based metal–organic framework. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 961-981.	0.8	13
813	Photoluminescent Lanthanide-Organic Framework Based on a Tetraphosphonic Acid Linker. Crystal Growth and Design, 2017, 17, 5191-5199.	1.4	20
814	Hydroisomerization of <i>n</i> -Hexane Using Acidified Metal–Organic Framework and Platinum Nanoparticles. Journal of the American Chemical Society, 2017, 139, 12382-12385.	6.6	73
815	Functional metal-organic quadrangular macrocycle as luminescent sensor for ATP in aqueous media. Inorganic Chemistry Communication, 2017, 84, 195-199.	1.8	9
816	Mixed-Ligand LMOF Fluorosensors for Detection of Cr(VI) Oxyanions and Fe ³⁺ /Pd ²⁺ Cations in Aqueous Media. Inorganic Chemistry, 2017, 56, 10939-10949.	1.9	147
817	Waterâ€Stable Luminescent Zn(II) Metalâ€Organic Framework as Rare Multifunctional Sensor for Cr(VI) and TNP. ChemistrySelect, 2017, 2, 7465-7473.	0.7	14

#	Article	IF	CITATIONS
818	Supramolecular isomerism in cadmium (II) coordination polymers from benzene-1,3,5-tribenzoate (BTB): Syntheses, structures and luminescent properties. Journal of Solid State Chemistry, 2017, 256, 227-233.	1.4	5
819	Size-selective catalysts in five functionalized porous coordination polymers with unsaturated zinc centers. New Journal of Chemistry, 2017, 41, 12611-12616.	1.4	24
821	Stepwise engineering of pore environments and enhancement of CO ₂ /R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53, 11403-11406.	2.2	22
822	Design and fabrication of energetic metal–organic framework [Cu(ntz)]n films with high energy-density and stability. Dalton Transactions, 2017, 46, 13360-13363.	1.6	10
823	Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chemical Communications, 2017, 53, 10851-10869.	2.2	94
824	A 3D Coordination Network Built from Cu ^{II} ₄ Cl ₃ (H ₂ O) ₂ Linear Clusters and Tetrapyridyl Tetrahedral Silane Ligands: Reversible Iodine Uptake and Friedel–Crafts Alkylation Reactions Inorganic Chemistry 2017 56 11762-11767	1.9	23
825	Three Cadmium Coordination Polymers with Carboxylate and Pyridine Mixed Ligands: Luminescent Sensors for Fe ^{III} and Cr ^{VI} lons in an Aqueous Medium. Inorganic Chemistry, 2017, 56, 11768-11778.	1.9	167
826	Versatile Barium and Calcium Imidazoliumâ€Dicarboxylate Heterogeneous Catalysts in Quinoline Synthesis. European Journal of Organic Chemistry, 2017, 2017, 6375-6381.	1.2	19
827	Calcium and Strontium Coordination Polymers Based on Rigid and Flexible Aromatic Dicarboxylates: Synthesis, Structure, Photoluminescence and Dielectric Properties. ChemistrySelect, 2017, 2, 8567-8576.	0.7	13
828	Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies. Journal of Physical Chemistry C, 2017, 121, 23471-23479.	1.5	73
829	Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science. RSC Advances, 2017, 7, 42242-42288.	1.7	74
830	Long-range magnetic ordering in a metal–organic framework based on octanuclear nickel(<scp>ii</scp>) clusters. Dalton Transactions, 2017, 46, 12771-12774.	1.6	16
831	Size Controllable and Surface Tunable Zeolitic Imidazolate Framework-8–Poly(acrylic acid sodium) Tj ETQq0 0 (ACS Applied Materials & Interfaces, 2017, 9, 32990-33000.	0 rgBT /Ov 4.0	verlock 10 Tf . 69
832	Efficiently mapping structure–property relationships of gas adsorption in porous materials: application to Xe adsorption. Faraday Discussions, 2017, 201, 221-232.	1.6	5
833	ATPâ€Responsive Aptamerâ€Based Metal–Organic Framework Nanoparticles (NMOFs) for the Controlled Release of Loads and Drugs. Advanced Functional Materials, 2017, 27, 1702102.	7.8	169
834	Explosives in the Cage: Metal–Organic Frameworks for Highâ€Energy Materials Sensing and Desensitization. Advanced Materials, 2017, 29, 1701898.	11.1	127
835	Synthesis and crystal structure of Cd-based metal-organic framework for removal of methyl-orange from aqueous solution. Journal of Solid State Chemistry, 2017, 255, 157-166.	1.4	38
836	Synthesis, crystal structures and properties of three coordination polymers based on semi-rigid bis(benzimidazole-1-ylmethyl)biphenyl ligand. Journal of Molecular Structure, 2017, 1148, 247-253.	1.8	4

#	Article	IF	CITATIONS
837	Ternary Alloys Encapsulated within Different MOFs via a Selfâ€Sacrificing Template Process: A Potential Platform for the Investigation of Sizeâ€Selective Catalytic Performances. Small, 2017, 13, 1700683.	5.2	31
838	Diversityâ€Oriented Synthesis of Spirooxindoles Using Surfaceâ€Modified TiO ₂ Nanoparticles as Heterogeneous Acid Catalyst. ChemistrySelect, 2017, 2, 5933-5941.	0.7	16
839	A Cd(<scp>ii</scp>)-based MOF as a photosensitive Schottky diode: experimental and theoretical studies. Dalton Transactions, 2017, 46, 11239-11249.	1.6	66
840	Recent advances on supramolecular isomerism in metal organic frameworks. CrystEngComm, 2017, 19, 4666-4695.	1.3	66
841	Renewable Molecular Flasks with NADH Models: Combination of Lightâ€Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones. Angewandte Chemie, 2017, 129, 8818-8822.	1.6	8
842	One Pranoprofen drug-based metal coordination polymer: Synthesis, structure and properties. Polyhedron, 2017, 133, 336-342.	1.0	4
843	Structural Diversity in Zn(II) Coordination Polymers Constructed by Linear N,N′â€Đonor Linker and Different Pseudohalides: Sorption Study and Luminescent Properties. ChemistrySelect, 2017, 2, 5783-5792.	0.7	3
844	Temperature/anion-dependent self-assembly of Co(II) coordination polymers based on a heterotopic imidazole-tetrazole-bifunctional ligand: Structures and magnetic properties. Inorganic Chemistry Communication, 2017, 84, 10-14.	1.8	6
845	Anti-UV Radiation Textiles Designed by Embracing with Nano-MIL (Ti, In)–Metal Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 28034-28045.	4.0	157
846	Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release. Journal of the American Chemical Society, 2017, 139, 11610-11615.	6.6	293
847	Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks. Journal of Materials Chemistry C, 2017, 5, 7726-7731.	2.7	40
848	Molecular simulations of self-assembly processes in metal-organic frameworks: Model dependence. Journal of Chemical Physics, 2017, 147, 044702.	1.2	13
849	1-D calcium, 2-D zinc and 3-D manganese coordination polymers derived from pyrazine-2,3,5,6-tetracarboxylic acid. Inorganica Chimica Acta, 2017, 467, 163-168.	1.2	6
850	Pre-synthesized secondary building units in the rational synthesis of porous coordination polymers. Mendeleev Communications, 2017, 27, 321-331.	0.6	43
851	Introduction of Redâ€Greenâ€Blue Fluorescent Dyes into a Metal–Organic Framework for Tunable White Light Emission. Advanced Materials, 2017, 29, 1700778.	11.1	219
852	Functionalized Baseâ€Stable Metal–Organic Frameworks for Selective CO ₂ Adsorption and Proton Conduction. ChemPhysChem, 2017, 18, 3245-3252.	1.0	43
853	Synthesis of Denser Energetic Metal–Organic Frameworks via a Tandem Anion–Ligand Exchange Strategy. Inorganic Chemistry, 2017, 56, 10281-10289.	1.9	24
854	One-Step Synthesis of 2,5-Bis(chloromethyl)-1,4-dioxane from Epichlorohydrin Using ZIF-8, Taking Advantage of Structural Defects. European Journal of Inorganic Chemistry, 2017, 2017, 4947-4954.	1.0	8

#	ARTICLE	IF	CITATIONS
855	Catalytic Intramolecular Cycloaddition Reactions by Using a Discrete Molecular Architecture. Chemistry - A European Journal, 2017, 23, 15704-15712.	1.7	35
856	Porous crystalline materials: closing remarks. Faraday Discussions, 2017, 201, 395-404.	1.6	11
857	Tuning the growth of Cu-MOFs for efficient catalytic hydrolysis of carbonyl sulfide. Chinese Journal of Catalysis, 2017, 38, 1373-1381.	6.9	28
858	Transmission electron microscopy on metal–organic frameworks – a review. Journal of Materials Chemistry A, 2017, 5, 14969-14989.	5.2	108
859	A Zinc(II) Porous Metal–Organic Framework and Its Morphologically Controlled Catalytic Properties in the Knoevenagel Condensation Reaction. ChemPlusChem, 2017, 82, 1182-1187.	1.3	13
860	Structure-forming role of heterocyclic compounds in the synthesis of metal-organic frameworks based on cadmium(II). Russian Chemical Bulletin, 2017, 66, 1472-1477.	0.4	3
861	Shaping of porous metal–organic framework granules using mesoporous ϕalumina as a binder. RSC Advances, 2017, 7, 55767-55777.	1.7	81
862	Luminescent 3D Lanthanide–Cadmium Heterometal–Organic Frameworks with Chemical Stability and Selective Luminescent Sensing. Inorganic Chemistry, 2017, 56, 14850-14858.	1.9	64
863	Temperature-induced oriented growth of large area, few-layer 2D metal–organic framework nanosheets. Chemical Communications, 2017, 53, 13161-13164.	2.2	54
864	Microwave-assisted one-pot functionalization of metal–organic framework MIL-53(Al)-NH ₂ with copper(<scp>ii</scp>) complexes and its application in olefin oxidation. Catalysis Science and Technology, 2017, 7, 6069-6079.	2.1	36
865	A multifunctional Ni(<scp>ii</scp>) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst. Dalton Transactions, 2017, 46, 16911-16924.	1.6	68
866	Synthesis, Crystal Structure, and Luminescent Properties of Two Znll/Cdll Coordination Polymers Based on 1,4-Bis(pyridine-3-Ylmethoxy)benzene. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 685-692.	0.3	1
867	A novel 2D metal-organic framework with Lewis basic sites as a heterogeneous base catalysis. Inorganic Chemistry Communication, 2017, 86, 285-289.	1.8	16
868	Photocatalytic copper-catalyzed azide–alkyne cycloaddition click reaction with Cu(<scp>ii</scp>) coordination polymer. RSC Advances, 2017, 7, 52907-52913.	1.7	16
869	Metals@ZIFs: Catalytic applications and size selective catalysis. Coordination Chemistry Reviews, 2017, 353, 201-222.	9.5	83
870	Fast and scalable synthesis of uniform zirconium-, hafnium-based metal–organic framework nanocrystals. Nanoscale, 2017, 9, 19209-19215.	2.8	74
871	Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields. Journal of Physical Chemistry C, 2017, 121, 25309-25322.	1.5	34
874	Luminescent lanthanide metal–organic frameworks for chemical sensing and toxic anion detection. Dalton Transactions, 2017, 46, 9859-9867.	1.6	54

#	Article	IF	CITATIONS
875	Purification of Wastewater Using a Highly Porous Metal-Organic Framework and Graphene-like Materials—A Preliminary Study. Analytical Letters, 2017, 50, 2772-2785.	1.0	2
876	N—H Insertion Reactions Catalyzed by a Dirhodium Metalâ€Organic Cage: A Facile and Recyclable Approach for C—N Bond Formation. Chinese Journal of Chemistry, 2017, 35, 964-968.	2.6	10
877	Microporous metal–organic framework with 1D helical chain building units: Synthesis, structure and gas sorption properties. Inorganic Chemistry Communication, 2017, 83, 88-91.	1.8	32
878	A five coordination Cu(<scp>ii</scp>) cluster-based MOF and its application in the synthesis of pharmaceuticals via sp ³ C–H/N–H oxidative coupling. Catalysis Science and Technology, 2017, 7, 3453-3458.	2.1	49
879	Synthesis of Mesoporous Co ²⁺ -Doped TiO ₂ Nanodisks Derived from Metal Organic Frameworks with Improved Sodium Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 32071-32079.	4.0	64
880	Two luminescent Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) metal–organic frameworks as rare multifunctional sensors. New Journal of Chemistry, 2017, 41, 8107-8117.	1.4	58
881	Inverse relationship of dimensionality and catalytic activity in CO ₂ transformation: a systematic investigation by comparing multidimensional metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 15961-15969.	5.2	57
882	Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 24743-24752.	4.0	69
883	Metal–organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38, 1108-1126.	6.9	52
884	Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 15135-15144.	1.5	23
885	Sub-ppt Mass Spectrometric Detection of Therapeutic Drugs in Complex Biological Matrixes Using Polystyrene-Microsphere-Coated Paper Spray. Analytical Chemistry, 2017, 89, 7988-7995.	3.2	56
886	Inorganic anion-induced structural diversity and structural transformation in a metal-negative ligand system containing Cd(II) ion and naphthalene diimide ligand. Inorganic Chemistry Communication, 2017, 84, 5-9.	1.8	4
887	The first porphyrin–salen based chiral metal–organic framework for asymmetric cyanosilylation of aldehydes. Chemical Communications, 2017, 53, 8223-8226.	2.2	58
888	Coordinative integration of a metal-porphyrinic framework and TiO ₂ nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities. Journal of Materials Chemistry A, 2017, 5, 15380-15389.	5.2	91
889	Construction of three Cd(II) coordination polymers based on extended pyridyl-tetrazolyl-bifunctional ligands: Structures and luminescent properties. Inorganic Chemistry Communication, 2017, 83, 76-80.	1.8	3
890	A new set of Cd(<scp>ii</scp>)-coordination polymers with mixed ligands of dicarboxylate and pyridyl substituted diaminotriazine: selective sorption towards CO ₂ and cationic dyes. Dalton Transactions, 2017, 46, 9901-9911.	1.6	55
891	Solventâ€Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Chargeâ€Separated Layered Compound: [NH ₄][Ag ₃ (C ₉ H ₅ NO ₄ S) ₂ (C _{ Chemistry - an Asian Journal, 2017, 12, 101-109.}	1 1. 7/sub>	Hરsub>14 </td
892	Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates. Journal of Molecular Structure, 2017 1131 171-180	1.8	12

#	Article	IF	CITATIONS
893	Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46, 126-157.	18.7	1,554
894	The effect of carboxylate position on the structure of a metal organic framework derived from cyclotriveratrylene. CrystEngComm, 2017, 19, 603-607.	1.3	10
895	A highly efficient and recyclable Pd(II) metallogel catalyst: A new scaffold for Suzuki-Miyaura coupling. Catalysis Communications, 2017, 89, 100-105.	1.6	28
896	Syntheses, crystal structures and luminescent properties of three metal coordination polymers based on aromatic carboxylic acids and 2-(pyridine-4-yl)-(1H)-benzoimidazole. Polyhedron, 2017, 121, 252-263.	1.0	25
897	Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation. Journal of Chromatography A, 2017, 1498, 56-63.	1.8	17
898	Synthesis, structure and properties of a 3D acentric coordination polymer with noninterpenetrated (10,3)-d topology. Journal of Molecular Structure, 2017, 1127, 662-667.	1.8	3
899	A Hybrid Catalyst for Lightâ€Ðriven Green Molecular Transformations. ChemPlusChem, 2017, 82, 18-29.	1.3	27
900	Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si–H insertion chemoselectivity. Chemical Science, 2017, 8, 775-780.	3.7	82
901	MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 2017, 19, 4092-4117.	1.3	166
902	Synthetic porous materials applied in hydrogenation reactions. Microporous and Mesoporous Materials, 2017, 237, 246-259.	2.2	40
903	Oxidized gâ€C ₃ N ₄ Nanospheres as Catalytically Photoactive Linkers in MOF/g ₃ N ₄ Composite of Hierarchical Pore Structure. Small, 2017, 13, 1601758.	5.2	109
904	Luminescent sensing of Fe ³⁺ and K ⁺ by three novel imidazole dicarboxylate-based MOFs. Supramolecular Chemistry, 2017, 29, 193-204.	1.5	10
905	Superior Activity of Isomorphously Substituted MOFs with MILâ€100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. ChemPlusChem, 2017, 82, 152-159.	1.3	26
906	Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Applied Catalysis B: Environmental, 2017, 200, 448-457.	10.8	433
907	Coordination frameworks containing compounds as catalysts. Inorganic Chemistry Frontiers, 2017, 4, 202-233.	3.0	36
908	A Hirshfeld surface analysis, crystal structure and physicochemical studies of a new Cd(II) complex with the 2-amino-4-methylpyrimidine ligand. Journal of Molecular Structure, 2017, 1128, 378-384.	1.8	11
909	Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. Journal of Alloys and Compounds, 2017, 690, 640-646.	2.8	71
910	A New Threeâ€Ðimensional Cd(II) Metalâ€Organic Framework for Highly Selective Sensing of Fe ³⁺ as well as Nitroaromatic Compounds. ChemistrySelect, 2017, 2, 12046-12050.	0.7	24

#	ARTICLE	IF	CITATIONS
911	Sorption and catalysis by robust microporous metalloporphyrin framework solids. Journal of Porphyrins and Phthalocyanines, 2017, 21, 857-869.	0.4	1
912	Crystal Structure of Two V-shaped Ligands with N-Heterocycles. Crystallography Reports, 2017, 62, 1113-1117.	0.1	5
913	Study of Adsorption and Desorption Performances of Zr-Based Metal–Organic Frameworks Using Paper Spray Mass Spectrometry. Materials, 2017, 10, 769.	1.3	10
914	Self-Assembly with 2,6-Bis(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)pyridine: Silver(I) and Iron(II) Complexes. Molecules, 2017, 22, 1762.	1.7	9
915	Breathing 3D Frameworks with T-Shaped Connecting Ligand Exhibiting Solvent Induction, Metal Ions Effect and Luminescent Properties. Crystals, 2017, 7, 311.	1.0	2
916	New Composites LnBDC@AC and CB[6]@AC: From Design toward Selective Adsorption of Methylene Blue or Methyl Orange. PLoS ONE, 2017, 12, e0170026.	1.1	7
917	Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction. Polymers, 2017, 9, 498.	2.0	29
918	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 4632-4636.	7.2	275
919	Enhancement of the photocatalytic performance and thermal stability of an iron based metal–organic-framework functionalised by Ag/Ag ₃ PO ₄ . Materials Chemistry Frontiers, 2018, 2, 942-951.	3.2	31
920	Preparation of Cu x O/C composite derived from Cu-MOFs as Fenton-like catalyst by two-step calcination strategy. Advanced Powder Technology, 2018, 29, 1331-1338.	2.0	32
921	Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization. Journal of Catalysis, 2018, 360, 160-167.	3.1	44
922	Zinc-coordinated MOFs complexes regulated by hydrogen bonds: Synthesis, structure and luminescence study toward broadband white-light emission. Journal of Solid State Chemistry, 2018, 260, 159-164.	1.4	6
923	Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 2018, 362, 1-23.	9.5	737
924	Tetracarboxylate Linker-Based Flexible Cu ^{II} Frameworks: Efficient Separation of CO ₂ from CO ₂ /N ₂ and C ₂ H ₂ from C ₂ H ₂ /C ₂ H ₄ Mixtures. ACS Omega, 2018, 3, 2018-2026.	1.6	18
925	Aerogels and metal–organic frameworks for environmental remediation and energy production. Environmental Chemistry Letters, 2018, 16, 797-820.	8.3	57
926	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie - International Edition, 2018, 57, 4926-4930.	7.2	73
927	Combined Experimental and Computational Study on Catalytic Cyclocoupling of Epoxides and CO2 Using Porphyrin-Based Cu(II) Metal-Organic Frameworks with 2D Coordination Networks. Bulletin of the Chemical Society of Japan, 2018, 91, 383-390.	2.0	5
928	Exploring the Photodynamics of a New 2D-MOF Composite: Nile Red@Al–ITQ-HB. ACS Omega, 2018, 3, 1600-1608.	1.6	11

#	Article	IF	CITATIONS
929	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie, 2018, 130, 5020-5024.	1.6	30
930	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 4722-4726.	1.6	86
931	Straightforward Synthesis of Single-Crystalline and Redox-Active Cr(II)-carboxylate MOFs. Inorganic Chemistry, 2018, 57, 4803-4806.	1.9	21
932	Non-platinum metal-organic framework based electro-catalyst for promoting oxygen reduction reaction. AIP Conference Proceedings, 2018, , .	0.3	1
933	Incorporation of In ₂ S ₃ Nanoparticles into a Metal–Organic Framework for Ultrafast Removal of Hg from Water. Inorganic Chemistry, 2018, 57, 4891-4897.	1.9	67
934	Lanthanide(Tb3+, Eu3+)-functionalized a new one dimensional Zn-MOF composite as luminescent probe for highly selectively sensing Fe3+. Polyhedron, 2018, 148, 178-183.	1.0	22
935	Polyoxometalate-Based Metal–Organic Frameworks as Visible-Light-Induced Photocatalysts. Inorganic Chemistry, 2018, 57, 5030-5037.	1.9	130
936	Mild direct amination of benzoxazoles using interpenetrating Cobalt(II)-based metal-organic framework as an efficient heterogeneous catalyst. Molecular Catalysis, 2018, 450, 104-111.	1.0	24
937	Highly efficient Fenton and enzyme-mimetic activities of NH2-MIL-88B(Fe) metal organic framework for methylene blue degradation. Scientific Reports, 2018, 8, 5159.	1.6	103
938	A new polyoxovanadate-based metal–organic framework: synthesis, structure and photo-/electro-catalytic properties. New Journal of Chemistry, 2018, 42, 7247-7253.	1.4	26
939	Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine. Environmental Science & Technology, 2018, 52, 5367-5377.	4.6	410
940	Bimetallic Fe/Tiâ€Based Metal–Organic Framework for Persulfateâ€Assisted Visible Light Photocatalytic Degradation of Orange II. ChemistrySelect, 2018, 3, 3664-3674.	0.7	54
941	Mitochondria-targeted zirconium metal–organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors. Biomaterials Science, 2018, 6, 1535-1545.	2.6	52
942	Design and synthesis of functionalized coordination polymers as recyclable heterogeneous photocatalysts. Dalton Transactions, 2018, 47, 6470-6478.	1.6	15
943	Synthesis tricyanovinyl derivatives via one-pot tandem reactions with heterogeneous catalyst Au@Cu(II)-MOF. Catalysis Communications, 2018, 111, 84-89.	1.6	8
944	Homochiral metal–organic frameworks as heterogeneous catalysts. Inorganic Chemistry Frontiers, 2018, 5, 1512-1523.	3.0	44
945	Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nature Communications, 2018, 9, 1378.	5.8	136
946	Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nature Communications, 2018, 9, 1429.	5.8	146

#	Article	IF	CITATIONS
947	Luminescent detection by coordination polymers derived from a pre-organized heterometallic carboxylic building unit. Polyhedron, 2018, 145, 147-153.	1.0	23
948	Tuning a layer to a three-dimensional cobalt-tris(4′-carboxybiphenyl)amine framework by introducing potassium ions. Inorganic Chemistry Communication, 2018, 90, 65-68.	1.8	5
949	Singlet and triplet energy transfer dynamics in self-assembled axial porphyrin–anthracene complexes: towards supra-molecular structures for photon upconversion. Physical Chemistry Chemical Physics, 2018, 20, 7549-7558.	1.3	23
950	Ni2(BDC)2(DABCO) metal–organic framework for cyclic carbonate synthesis from CO2 and epoxides (BDCÂ=Â1,4-benzendicarboxylic acid, DABCOÂ=Â1,4-diazabicyclo[2.2.2]octane). Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 335-346.	0.8	15
951	Three coordination polymers based on tris(p-carboxyphenyl) phosphane oxide with luminescent sensing acetone, nitrobenzene derivatives and Fe3+ ion. Inorganic Chemistry Communication, 2018, 89, 83-88.	1.8	16
952	Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal–organic framework nanoparticles. Nanoscale, 2018, 10, 4650-4657.	2.8	70
953	Engineering a Zirconium MOF through Tandem "Click―Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface. Inorganic Chemistry, 2018, 57, 2288-2295.	1.9	28
954	Ultra-Small Face-Centered-Cubic Ru Nanoparticles Confined within a Porous Coordination Cage for Dehydrogenation. CheM, 2018, 4, 555-563.	5.8	116
955	Azamacrocyclic-based metal organic frameworks: Design strategies and applications. Polyhedron, 2018, 145, 154-165.	1.0	43
956	Unusual Missing Linkers in an Organosulfonate-Based Primitive–Cubic (pcu)-Type Metal–Organic Framework for CO ₂ Capture and Conversion under Ambient Conditions. ACS Catalysis, 2018, 8, 2519-2525.	5.5	125
957	Light-enhanced acid catalysis over a metal–organic framework. Chemical Communications, 2018, 54, 2498-2501.	2.2	21
958	A Dual-Functional Luminescent MOF Sensor for Phenylmethanol Molecule and Tb ³⁺ Cation. Inorganic Chemistry, 2018, 57, 2654-2662.	1.9	52
959	Carbene insertion into N–H bonds with size-selectivity induced by a microporous ruthenium–porphyrin metal–organic framework. Dalton Transactions, 2018, 47, 3940-3946.	1.6	21
960	A high-activity cobalt-based MOF catalyst for [2Â+ 2 + 2] cycloaddition of diynes and alkynes: insights into alkyne affinity and selectivity control. RSC Advances, 2018, 8, 4895-4899.	1.7	11
961	Modulatorâ€Controlled Synthesis of Microporous STAâ€26, an Interpenetrated 8,3â€Connected Zirconium MOF with the <i>theâ€i</i> Topology, and its Reversible Lattice Shift. Chemistry - A European Journal, 2018, 24, 6115-6126.	1.7	23
962	High Efficiency and Fast Removal of Trace Pb(II) from Aqueous Solution by Carbomethoxy-Functionalized Metal–Organic Framework. Crystal Growth and Design, 2018, 18, 1474-1482.	1.4	50
963	Pillar-Assisted Construction of a Three-Dimensional Framework from a Two-Dimensional Bilayer Based on a Zn/Cd Heterometal Cluster: Pore Tuning and Gas Adsorption. Crystal Growth and Design, 2018, 18, 1826-1833.	1.4	6
964	Thermal Transport in Interpenetrated Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 2281-2286.	3.2	40

#	Article	IF	CITATIONS
965	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	9.5	246
966	Metal–Organic Framework Modified Glass Substrate for Analysis of Highly Volatile Chemical Warfare Agents by Paper Spray Mass Spectrometry. ACS Applied Materials & Interfaces, 2018, 10, 8359-8365.	4.0	33
967	A gel-like/freeze-drying strategy to construct hierarchically porous polyoxometalate-based metal–organic framework catalysts. Journal of Materials Chemistry A, 2018, 6, 4678-4685.	5.2	30
968	Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO ₂ : the role of the morphology effect. Journal of Materials Chemistry A, 2018, 6, 4768-4775.	5.2	236
969	Efficient Solventâ€Free Carbon Dioxide Fixation Reactions with Epoxides Under Mild Conditions by Mixedâ€Ligand Zinc(II) Metal–Organic Frameworks. ChemCatChem, 2018, 10, 2401-2408.	1.8	60
970	Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal–Organic Frameworks for Transformation of CO ₂ into Cyclic Carbonates. Inorganic Chemistry, 2018, 57, 2584-2593.	1.9	153
971	A highly porous acylamide decorated MOF-505 analogue exhibiting high and selective CO ₂ gas uptake capability. CrystEngComm, 2018, 20, 1874-1881.	1.3	40
972	Coordination Polymers Containing Metal Chelate Units. Springer Series in Materials Science, 2018, , 633-759.	0.4	2
973	Mechanochemical Reactions of Metal-Organic Frameworks. Advances in Inorganic Chemistry, 2018, , 403-434.	0.4	17
974	Substrate-Independent Epitaxial Growth of the Metal–Organic Framework MOF-508a. ACS Applied Materials & Interfaces, 2018, 10, 4057-4065.	4.0	29
975	Highly selective luminescent sensor for CCl ₄ vapor and pollutional anions/cations based on a multi-responsive MOF. Journal of Materials Chemistry C, 2018, 6, 2010-2018.	2.7	31
976	Synthesis, structure and magnetic property of a two-dimensional coordination polymer decorated with sine wave-like 1D double chain. Journal of Molecular Structure, 2018, 1157, 602-606.	1.8	0
977	Syntheses, crystal structures and knoevenagel condensation reactions of three coordination polymers assembled with Lewis basic ligand. Polyhedron, 2018, 144, 6-10.	1.0	7
978	Characterization and application of a lanthanideâ€based metal–organic framework in the development and validation of a matrix solidâ€phase dispersion procedure for pesticide extraction on peppers <i>(Capsicum annuum L.)</i> with gas chromatography–mass spectrometry. Journal of Separation Science, 2018, 41, 1593-1599	1.3	18
979	A novel metal-organic framework as a heterogeneous catalysis for the solvent-free conversion of CO2 and epoxides into cyclic carbonate. Inorganic Chemistry Communication, 2018, 88, 56-59.	1.8	13
980	Confinement of polysulfides within bi-functional metal–organic frameworks for high performance lithium–sulfur batteries. Nanoscale, 2018, 10, 2774-2780.	2.8	98
981	Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis. Korean Journal of Chemical Engineering, 2018, 35, 438-444.	1.2	19
982	A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO ₂ Adsorption and Chemical Fixation. Journal of the American Chemical Society, 2018, 140, 993-1003.	6.6	176

#	Article	IF	CITATIONS
983	Nanocoating of Hydrophobic Mesoporous Silica around MIL-101Cr for Enhanced Catalytic Activity and Stability. Inorganic Chemistry, 2018, 57, 899-902.	1.9	47
984	Hammett Parameter in Microporous Solids as Macroligands for Heterogenized Photocatalysts. ACS Catalysis, 2018, 8, 1653-1661.	5.5	50
985	Synthesis and Investigations of Chiral NNO Type Copper(II) Coordination Polymers. ChemistrySelect, 2018, 3, 653-656.	0.7	7
986	Bifunctional Pyridiniumâ€Based Ionicâ€Liquidâ€Immobilized Diindium Tris(diphenic acid) Bis(1,10â€phenanthroline) for CO ₂ Fixation. ChemSusChem, 2018, 11, 924-932.	3.6	32
987	A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives. Journal of Solid State Chemistry, 2018, 258, 781-785.	1.4	19
988	Development of Isostructural Porphyrin–Salen Chiral Metal–Organic Frameworks through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation. Inorganic Chemistry, 2018, 57, 1203-1212.	1.9	57
989	Structure activity relationships in metal–organic framework catalysts for the continuous flow synthesis of propylene carbonate from CO ₂ and propylene oxide. RSC Advances, 2018, 8, 2132-2137.	1.7	32
990	Metal–organic frameworks in proteomics/peptidomics-A review. Analytica Chimica Acta, 2018, 1027, 9-21.	2.6	48
991	Tailor-Made Pyrazolide-Based Metal–Organic Frameworks for Selective Catalysis. Journal of the American Chemical Society, 2018, 140, 6383-6390.	6.6	124
992	Two new Co ^{II} coordination polymers with multifunctional 5-amino-2,4,6-tribromoisophthalic acid and flexible isomeric bis(imidazole) ligands: preparation, crystal structure and characterization. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 504-512	0.2	0
993	Bismuth as a versatile cation for luminescence in coordination polymers from BiX ₃ /4,4′-bipy: understanding of photophysics by quantum chemical calculations and structural parallels to lanthanides. Dalton Transactions, 2018, 47, 7669-7681.	1.6	43
994	Structural and luminescent properties of a new 1D Cadmium(II) coordination polymer: A combined effort with experiment & amp; theory. Journal of Molecular Structure, 2018, 1167, 187-193.	1.8	14
995	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	9.5	105
996	A novel 3D MOF with rich lewis basic sites as a base catalysis toward knoevenagel condensation reaction. Journal of Molecular Structure, 2018, 1167, 11-15.	1.8	29
997	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	2.2	42
998	Bulky substituent and solvent-induced alternative nodes for layered Cd–isophthalate/acylhydrazone frameworks. CrystEngComm, 2018, 20, 2841-2849.	1.3	11
999	Flexible and rigid dicarboxylic acids enable the assembly of achiral and chiral 3D Co(<scp>ii</scp>) metal–organic frameworks. Dalton Transactions, 2018, 47, 6917-6923.	1.6	20
1000	A porous Zn(II)-based metal–organic framework for highly selective and sensitive Fe3+ ion detection in water. Polyhedron, 2018, 147, 80-85.	1.0	72

#	Article	IF	CITATIONS
1001	Crystallization of Two 1-D Coordination Polymers Building by 5-Sulfoisophthalic Acid and Lanthanide Ions by Partial Hydrolysis of Collagen. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 978-989.	1.9	2
1002	Metal-Organic Frameworks: An Advanced Class of Anion-Exchange Materials. Series on Chemistry, Energy and the Environment, 2018, , 325-375.	0.3	2
1003	Metal-Organic Frameworks as Solid Acid Catalysts for Heterogeneous Catalysis. Series on Chemistry, Energy and the Environment, 2018, , 441-493.	0.3	0
1004	Metal-Organic Frameworks Based Heterogeneous Catalysts for Biomass Conversion. Series on Chemistry, Energy and the Environment, 2018, , 495-518.	0.3	1
1005	Electrically Conductive Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 655-686.	0.3	8
1006	Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 4623-4631.	6.6	555
1007	Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage. Journal of the American Chemical Society, 2018, 140, 5248-5256.	6.6	60
1008	PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light. Journal of Catalysis, 2018, 361, 248-254.	3.1	79
1009	Electrolyte Effect on Electrocatalytic Hydrogen Evolution Performance of One-Dimensional Cobalt–Dithiolene Metal–Organic Frameworks: A Theoretical Perspective. ACS Applied Energy Materials, 2018, 1, 1688-1694.	2.5	27
1010	Effective elimination of As(<scp>iii</scp>) <i>via</i> simultaneous photocatalytic oxidation and adsorption by a bifunctional cake-like TiO ₂ derived from MIL-125(Ti). Catalysis Science and Technology, 2018, 8, 1936-1944.	2.1	53
1011	Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coordination Chemistry Reviews, 2018, 364, 33-50.	9.5	105
1013	The development of MOFs-based nanomaterials in heterogeneous organocatalysis. Science Bulletin, 2018, 63, 502-524.	4.3	61
1014	Growth-modulating agents for the synthesis of Al-MOF-type materials based on assembled 1D structural subdomains. Dalton Transactions, 2018, 47, 5492-5502.	1.6	8
1015	La-Metal-Organic Framework incorporating Fe3O4 nanoparticles, post-synthetically modified with Schiff base and Pd. A highly active, magnetically recoverable, recyclable catalyst for C C cross-couplings at low Pd loadings. Journal of Catalysis, 2018, 361, 116-125.	3.1	75
1016	A dual-functional luminescent Tb(<scp>iii</scp>) metal–organic framework for the selective sensing of acetone and TNP in water. RSC Advances, 2018, 8, 10746-10755.	1.7	35
1017	Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy and Environment, 2018, 3, 191-228.	4.7	158
1018	An unusual (3,10)-coordinated 3D network coordination polymer as a potential luminescent sensor for detection of nitroaromatics and ferric ion. Journal of Luminescence, 2018, 199, 126-132.	1.5	23
1019	Efficient Encapsulation of Small S ₂₋₄ Molecules in MOF-Derived Flowerlike Nitrogen-Doped Microporous Carbon Nanosheets for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2018, 10, 9435-9443.	4.0	90

#	Article	IF	CITATIONS
1020	Water-Soluble Redox-Active Cage Hosting Polyoxometalates for Selective Desulfurization Catalysis. Journal of the American Chemical Society, 2018, 140, 4869-4876.	6.6	241
1021	New strategies based on microfluidics for the synthesis of metal–organic frameworks and their membranes. Journal of Materials Chemistry A, 2018, 6, 5485-5506.	5.2	56
1022	Structures, luminescence and photocatalytic properties of two nanostructured cadmium(II) coordination polymers synthesized by sonochemical process. Ultrasonics Sonochemistry, 2018, 40, 68-77.	3.8	35
1023	Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous and Mesoporous Materials, 2018, 256, 111-127.	2.2	255
1024	A visible-light driven Bi ₂ S ₃ @ZIF-8 core–shell heterostructure and synergistic photocatalysis mechanism. Dalton Transactions, 2018, 47, 684-692.	1.6	83
1025	Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Applied Catalysis B: Environmental, 2018, 224, 46-52.	10.8	81
1026	Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection. Journal of Hazardous Materials, 2018, 344, 283-290.	6.5	129
1027	Hierarchical 3D ordered meso-/macroporous metal-organic framework produced through a facile template-free self-assembly. Journal of Solid State Chemistry, 2018, 258, 220-224.	1.4	27
1028	Nanofluidics: A New Arena for Materials Science. Advanced Materials, 2018, 30, 1702419.	11.1	78
1029	Luminescent metal–organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coordination Chemistry Reviews, 2018, 373, 116-147.	9.5	169
1030	A water-stable Tb(<scp>iii</scp>)-based metal–organic gel (MOG) for detection of antibiotics and explosives. Inorganic Chemistry Frontiers, 2018, 5, 120-126.	3.0	248
1031	A readily available urea based MOF that act as a highly active heterogeneous catalyst for Friedel-Crafts reaction of indoles and nitrostryenes. Catalysis Communications, 2018, 104, 123-127.	1.6	43
1032	Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coordination Chemistry Reviews, 2018, 373, 199-232.	9.5	113
1033	Copper-based 2D-coordination polymer as catalyst for allylation of aldehydes. Journal of Molecular Structure, 2018, 1155, 530-535.	1.8	11
1034	A new (4, 6)-connected Cu(I) coordination polymer based on rare tetranuclear [Cu 4I2] clusters: Synthesis, crystal structure, luminescent and photocatalytic properties. Journal of Molecular Structure, 2018, 1155, 7-10.	1.8	3
1035	Development of photoluminescence metal-organic framework sensors consisting of dual-emission centers. Chinese Chemical Letters, 2018, 29, 823-826.	4.8	21
1036	Unravelling the Redoxâ€catalytic Behavior of Ce ⁴⁺ Metal–Organic Frameworks by Xâ€ray Absorption Spectroscopy. ChemPhysChem, 2018, 19, 373-378.	1.0	89
1037	Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20, 86-107.	4.6	107

#	Article	IF	Citations
1038	Specific anion effects on the stability of zeolitic imidazolate framework-8 in aqueous solution. Microporous and Mesoporous Materials, 2018, 259, 171-177.	2.2	50
1039	Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373, 83-115.	9.5	146
1040	Crystallographic investigation into the self-assembly, guest binding, and flexibility of urea functionalised metal-organic frameworks. Supramolecular Chemistry, 2018, 30, 732-741.	1.5	13
1041	Multi-functional sites catalysts based on post-synthetic modification of metal-organic frameworks. Chinese Chemical Letters, 2018, 29, 827-830.	4.8	39
1042	<i>In situ</i> biobutanol recovery from clostridial fermentations: a critical review. Critical Reviews in Biotechnology, 2018, 38, 469-482.	5.1	41
1043	Metal–organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2018, 373, 22-48.	9.5	360
1044	1D and 3D coordination polymers based on the Cu 3 (μ 3 -OH)(μ -pz) 3 and Cu(Hpz) 3 SBUs connected by the flexible glutarate dianion. Inorganica Chimica Acta, 2018, 470, 385-392.	1.2	7
1045	Cu(II) coordination polymers constructed by tetrafluoroterephthalic acid and varied imidazole-containing ligands: Syntheses, structures and properties. Journal of Solid State Chemistry, 2018, 258, 24-31.	1.4	25
1046	Construction of nine non-covalently-bonded zinc(II) and cadmium(II) supramolecules containing the mixed-ligands of 3,5-dimethylpyrazole and carboxylates: Their synthesis and characterization. Polyhedron, 2018, 139, 17-32.	1.0	10
1047	Metal–Organic Frameworks as Platforms for Catalytic Applications. Advanced Materials, 2018, 30, e1703663.	11.1	1,210
1048	Recent advances in gas storage and separation using metal–organic frameworks. Materials Today, 2018, 21, 108-121.	8.3	1,167
1049	A Metal–Organic Framework with Exceptional Activity for Câ~'H Bond Amination. Angewandte Chemie, 2018, 130, 520-524.	1.6	8
1050	Design of a calix[4]arene-functionalized metal-organic framework probe for highly sensitive and selective monitor of hippuric acid for indexing toluene exposure. Analytica Chimica Acta, 2018, 1001, 134-142.	2.6	29
1051	Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO ₂ to Epoxides under Ambient Conditions. ACS Catalysis, 2018, 8, 419-450.	5.5	548
1052	Novel double layer lanthanide metal–organic networks for sensing applications. Dalton Transactions, 2018, 47, 465-474.	1.6	14
1053	How Does CO ₂ React with Styrene Oxide in Co-MOF-74 and Mg-MOF-74? Catalytic Mechanisms Proposed by QM/MM Calculations. Journal of Physical Chemistry C, 2018, 122, 503-514.	1.5	25
1054	Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Mikrochimica Acta, 2018, 185, 47.	2.5	77
1055	Suspending ionic single-atom catalysts in porphyrinic frameworks for highly efficient aerobic oxidation at room temperature. Journal of Catalysis, 2018, 358, 43-49.	3.1	24

#	Article	IF	CITATIONS
1056	Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 1181-1187.	5.2	44
1057	An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes. Chemical Engineering Journal, 2018, 336, 510-517.	6.6	36
1058	Structures and properties of five metal–organic frameworks based on 3,3′,5,5′-azoxybenzenetetracarboxylic acid and different secondary building units. Inorganica Chimica Acta, 2018, 471, 459-466.	1.2	2
1059	A highly porous polyhedron-based metal-organic framework exhibiting large C2H2 storage capability. Inorganic Chemistry Communication, 2018, 87, 17-19.	1.8	4
1060	K ₂ MnII2(H ₂ O) ₂ C ₂ O ₄ (HPO ₃) _{ a new 2D manganese(<scp>ii</scp>) oxalatophosphite with double-layered honeycomb sheets stabilized by potassium ions. CrystEngComm, 2018, 20, 301-311.}	>2: 1.3	11
1061	Cu ²⁺ â€Modified Metal–Organic Framework Nanoparticles: A Peroxidaseâ€Mimicking Nanoenzyme. Small, 2018, 14, 1703149.	5.2	131
1062	Heterobimetallic Mg–Ag coordination polymer with luminescence and 2,4,6-Trinitrophenol sensing properties. Polyhedron, 2018, 139, 262-266.	1.0	13
1063	A precursor method for the synthesis of new Ce(<scp>iv</scp>) MOFs with reactive tetracarboxylate linkers. Chemical Communications, 2018, 54, 876-879.	2.2	60
1064	Reversible crystal-to-amorphous structural transformations and magnetic variations in single end-on azide-bridged M ^{II} (M = Mn, Ni) coordination polymers. Dalton Transactions, 2018, 47, 845-851.	1.6	24
1065	A Metal–Organic Framework with Exceptional Activity for Câ^'H Bond Amination. Angewandte Chemie - International Edition, 2018, 57, 511-515.	7.2	47
1066	An imidazolium-functionalized mesoporous cationic metal–organic framework for cooperative CO ₂ fixation into cyclic carbonate. Chemical Communications, 2018, 54, 342-345.	2.2	142
1067	A 3D supramolecular network as highly selective and sensitive luminescent sensor for PO 4 3â^ and Cu 2+ ions in aqueous media. Dyes and Pigments, 2018, 150, 36-43.	2.0	46
1068	Heterobimetallic metal–organic framework nanocages as highly efficient catalysts for CO ₂ conversion under mild conditions. Journal of Materials Chemistry A, 2018, 6, 2964-2973.	5.2	73
1069	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	5.2	133
1070	Copper based coordination polymers based on metalloligands: utilization as heterogeneous oxidation catalysts. Dalton Transactions, 2018, 47, 16985-16994.	1.6	15
1071	<i>In situ</i> synthesis of Cu ₂ O–CuO–C supported on copper foam as a superior binder-free anode for long-cycle lithium-ion batteries. Materials Chemistry Frontiers, 2018, 2, 2254-2262.	3.2	33
1072	Tunability of fluorescent metal–organic frameworks through dynamic spacer installation with multivariate fluorophores. Chemical Communications, 2018, 54, 13666-13669.	2.2	22
1073	Controllable synthesis of isoreticular pillared-layer MOFs based on N-rich triangular prism building units: gas adsorption and luminescent properties. New Journal of Chemistry, 2018, 42, 20056-20060.	1.4	10

#	Article	IF	CITATIONS
1074	Cooperative effects of metal cations and coordination modes on luminescent s-block metal–organic complexes constructed from V-shaped 4,4′-sulfonyldiphenol. CrystEngComm, 2018, 20, 7513-7525.	1.3	11
1075	Novel metal–organic frameworks with high stability for selectively sensing nitroaromatics. Dalton Transactions, 2018, 47, 15399-15404.	1.6	24
1076	(1/1), C30H36N12O10S2Zn2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 1053-1055.	0.1	0
1077	Crystal structure of poly{[μ2-(E)-1,4-bis(1H-benzo[d]imidazol-1-yl)but-2-ene-κ2N:Nâ€2][μ3–cyclohexane-1,4-dicarboxylato-κ4C C26H26CdN4O4. Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 447-448.), Oâ £12:Oâ	€² ô €²:O′
1078	A Scandium Arylsulfonate-based Coordination Polymer as a Heterogeneous Catalyst for the Friedel–Crafts Reaction of Indoles with Aldehydes. Journal of Oleo Science, 2018, 67, 1473-1481.	0.6	3
1079	Two New MOFs Based on Cu ₂ Paddlewheel Units and Biphenyltetracarboxylate Ligands with a Different Degree of Fluorination. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1908-1914.	0.6	5
1080	Expanding the Horizon of Multicomponent Oxidative Coupling Reaction via the Design of a Unique, 3D Copper Isophthalate MOF-Based Catalyst Decorated with Mixed Spinel CoFe ₂ O ₄ Nanoparticles. ACS Omega, 2018, 3, 15100-15111.	1.6	29
1081	Aptamerâ€modified magnetic metalâ€organic framework MILâ€101 for highly efficient and selective enrichment of ochratoxin A. Journal of Separation Science, 2019, 42, 716-724.	1.3	27
1082	Effect of the Support and Its Surface Modifications in Cobalt-Based Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2018, 57, 16137-16161.	1.8	53
1083	Selective and Sensitive Sensing of Hydrogen Peroxide by a Boronic Acid Functionalized Metal–Organic Framework and Its Application in Live-Cell Imaging. Inorganic Chemistry, 2018, 57, 14574-14581.	1.9	49
1084	Control of Metal–Organic Framework Crystallization by Metastable Intermediate Preâ€equilibrium Species. Angewandte Chemie, 2019, 131, 576-581.	1.6	3
1085	Metal-Organic Framework Catalytic Membranes for Environmental Management. IOP Conference Series: Earth and Environmental Science, 2018, 170, 032075.	0.2	1
1086	Preparation of Well-Dispersed Nanosilver in MIL-101(Cr) Using Double-Solvent Radiation Method for Catalysis. Nano, 2018, 13, 1850145.	0.5	4
1087	Synthesis and Structural Characterization of a Cobalt Coordination Polymer with Bis(4-(1H-imidazol-1-yl)phenyl)methanone and 4-Nitrophthalate. Crystallography Reports, 2018, 63, 1124-1128.	0.1	1
1088	Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials, 2018, 8, 1042.	1.9	35
1089	Structure and Photocatalytic Properties of a 3D Zinc(II) Triazolate Coordination Polymer Combining Hydroxyl and Formate Anions as the Auxiliary Coligands. Journal of Structural Chemistry, 2018, 59, 1450-1455.	0.3	2
1090	A new potassiumâ€based coordination polymer with hydrogen bonding and zigzag metallophilic interactions. Applied Organometallic Chemistry, 2018, 32, e4613.	1.7	9
1091	Self-assembly of POSS-Containing Materials. Springer Series on Polymer and Composite Materials, 2018, , 45-128.	0.5	3

#	Article	IF	CITATIONS
1092	Rare earth phosphors based on spherical infinite coordination polymers. New Journal of Chemistry, 2018, 42, 19070-19075.	1.4	6
1093	A Potassium Metal-Organic Framework based on Perylene-3,4,9,10-tetracarboxylate as Sensing Layer for Humidity Actuators. Scientific Reports, 2018, 8, 14414.	1.6	27
1094	Solvent-Driven Selectivity Control to Either Anilines or Dicyclohexylamines in Hydrogenation of Nitroarenes over a Bifunctional Pd/MIL-101 Catalyst. ACS Catalysis, 2018, 8, 10641-10648.	5.5	51
1095	A luminescent 2D zinc(II) metal–organic framework for selective sensing of Fe(III) ions and adsorption of organic dyes. Polyhedron, 2018, 156, 208-217.	1.0	21
1096	Metal-Organic Framework Anchored with a Lewis Pair as a New Paradigm for Catalysis. CheM, 2018, 4, 2587-2599.	5.8	120
1097	Polymer nanoparticles grafted zinc-containing ionic liquids: A highly efficient and recyclable catalyst for cooperative cycloaddition of CO2 with epoxides. Journal of CO2 Utilization, 2018, 28, 96-106.	3.3	32
1098	Robustness, Selective Gas Separation, and Nitrobenzene Sensing on Two Isomers of Cadmium Metal–Organic Frameworks Containing Various Metal–O–Metal Chains. Inorganic Chemistry, 2018, 57, 12961-12968.	1.9	87
1099	Homochiral Metal Organic Frameworks and Their Usage for the Enantioâ€Purification of Racemic Drugs. ChemistrySelect, 2018, 3, 10434-10438.	0.7	6
1100	A one-step structure-switching electrochemical sensor for transcription factor detection enhanced with synergistic catalysis of PtNi@MIL-101 and Exo III-assisted cycling amplification. Chemical Communications, 2018, 54, 11901-11904.	2.2	23
1101	Bottom-Up Assembly of a Highly Efficient Metal–Organic Framework for Cooperative Catalysis. Inorganic Chemistry, 2018, 57, 13912-13919.	1.9	22
1102	Surface Morphology and Electrical Properties of Cu ₃ BTC ₂ Thin Films Before and After Reaction with TCNQ. ACS Applied Materials & amp; Interfaces, 2018, 10, 39400-39410.	4.0	30
1103	Organic Linker Effect on the Growth and Diffusion of Cu Clusters in a Metal–Organic Framework. Journal of Physical Chemistry C, 2018, 122, 26987-26997.	1.5	13
1104	A Novel Tb@Sr-MOF as Self-Calibrating Luminescent Sensor for Nutritional Antioxidant. Nanomaterials, 2018, 8, 796.	1.9	14
1105	Covalent-Organic Frameworks Composed of Rhenium Bipyridine and Metal Porphyrins: Designing Heterobimetallic Frameworks with Two Distinct Metal Sites. ACS Applied Materials & Interfaces, 2018, 10, 37919-37927.	4.0	112
1106	Lignosulfonate/Dicationic Ionic Liquid Composite as a Task-Specific Catalyst Support for Enabling Efficient Synthesis of Unsymmetrical 1,3-Diynes with A Low Substrate Ratio. ACS Sustainable Chemistry and Engineering, 2018, 6, 17076-17086.	3.2	27
1107	Construction of Anti-Ultraviolet "Shielding Clothes―on Poly(<i>p</i> -phenylene benzobisoxazole) Fibers: Metal Organic Framework-Mediated Absorption Strategy. ACS Applied Materials & Interfaces, 2018, 10, 43262-43274.	4.0	51
1108	Chirality in bare and ligand-protected metal nanoclusters. Advances in Physics: X, 2018, 3, 1509727.	1.5	21
1109	Heterogenization of manganese porphyrin via hydrogen bond in zeolite imidazolate framework-8 matrix, a host–guest interaction, as catalytic system for olefin epoxidation. Journal of Porphyrins and Phthalocyanines, 2018, 22, 972-980	0.4	6

#	Article	IF	CITATIONS
1110	Multicomponent metal–organic framework membranes for advanced functional composites. Chemical Science, 2018, 9, 8842-8849.	3.7	54
1111	Metal–Organic Frameworks-Based Catalysts for Biomass Processing. Catalysts, 2018, 8, 368.	1.6	40
1112	Coordination supramolecules with oxazoline-containing ligands. CrystEngComm, 2018, 20, 6109-6121.	1.3	7
1113	Robust heterometallic MOF catalysts for the cyanosilylation of aldehydes. Inorganic Chemistry Frontiers, 2018, 5, 2772-2776.	3.0	44
1114	A 2D water-stable metal–organic framework for fluorescent detection of nitroaromatics. Polyhedron, 2018, 155, 457-463.	1.0	28
1115	Synthesis and Luminescence Properties of New Metal-Organic Frameworks Based on Zinc(II) Ions and 2,5-Thiophendicarboxylate Ligands. Crystals, 2018, 8, 7.	1.0	9
1116	Controlled polymerizations using metal–organic frameworks. Chemical Communications, 2018, 54, 11843-11856.	2.2	81
1117	An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosensors and Bioelectronics, 2018, 122, 168-174.	5.3	78
1118	Syntheses, characterization, and luminescent properties of Ca-based metal–organic frameworks based on 1, 4‑naphthalene dicarboxylate. Inorganic Chemistry Communication, 2018, 97, 69-73.	1.8	7
1119	Probing mesoporous Zr-MOF as drug delivery system for carboxylate functionalized molecules. Polyhedron, 2018, 156, 131-137.	1.0	29
1120	Zinc/itaconate coordination polymers as first examples with long-lasting phosphorescence based on acyclic ligands. Journal of Materials Chemistry C, 2018, 6, 10870-10880.	2.7	10
1121	A porous BrÃ,nsted superacid as an efficient and durable solid catalyst. Journal of Materials Chemistry A, 2018, 6, 18712-18719.	5.2	24
1122	Facile synthesis of Fe3O4@MOF-100(Fe) magnetic microspheres for the adsorption of diclofenac sodium in aqueous solution. Environmental Science and Pollution Research, 2018, 25, 31705-31717.	2.7	53
1123	Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society, 2018, 140, 12545-12552.	6.6	42
1124	Enhanced Activity and Enantioselectivity of Henry Reaction by the Postsynthetic Reduction Modification for a Chiral Cu(salen)-Based Metal–Organic Framework. Inorganic Chemistry, 2018, 57, 11986-11994.	1.9	50
1125	Crystal structures and investigation of the third-order nonlinear optical properties of four coordination polymers by using the Z-scan technique. CrystEngComm, 2018, 20, 5833-5843.	1.3	8
1126	Hierarchically Porous Single Nanocrystals of Bimetallic Metal–Organic Framework for Nanoreactors with Enhanced Conversion. Chemistry of Materials, 2018, 30, 6458-6468.	3.2	24
1127	A room-temperature growth of gold nanoparticles on MOF-199 and its transformation into the [Cu2(OH)(BTC)(H2O)] phase. Polyhedron, 2018, 154, 357-363.	1.0	13

ARTICLE IF CITATIONS Investigating the crystal engineering of the pillared paddlewheel metal–organic framework 1128 1.3 3 Zn2(NH2BDC)2DABCO. CrystEngComm, 2018, 20, 6082-6087. Rational Design of a 3D Mn^{II}â€Metal–Organic Framework Based on a Nonmetallated Porphyrin Linker for Selective Capture of CO₂ and Oneâ€Pot Synthesis of Styrene 1.7 Carbonates. Chemistry - A European Journal, 2018, 24, 16662-16669. Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angewandte 1131 9 1.6 Chemie, 2018, 130, 14088-14092. Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angewandte 44 Chemie - International Edition, 2018, 57, 13892-13896. Anionic Lanthanide Metalâ€"Organic Frameworks: Selective Separation of Cationic Dyes, Solvatochromic Behavior, and Luminescent Sensing of Co(II) Ion. Inorganic Chemistry, 2018, 57, 1133 1.9 88 11463-11473. Host–Guest Interaction Optimization through Cavity Functionalization for Ultra-Fast and Efficient Water Purification by a Metal–Organic Framework. Ínorganic Chemistry, 2018, 57, 11578-11587. Unraveling Competitive Electron and Energy-Transfer Events at the Interfaces of a 2D MOF and Nile 1135 Red Composites: Effect of the Length and Structure of the Linker. ACS Applied Materials & amp; 4.0 11 Interfaces, 2018, 10, 32885-32894. Two new cobalt(II) rhodamine 6G hydrazone complexes: structure, fluorescence and magnetism. Acta 0.2 Crystallographica Section C, Structural Chemistry, 2018, 74, 1622-1628. Synthesis, structures and characterization of two cobalt(II) coordination polymers with 1137 2,5-dichloroterephthalic acid and flexible bis(benzimidazole) ligands. Transition Metal Chemistry, 0.7 3 2018, 43, 563-570. CuOx/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction. 2.2 Applied Catalysis A: General, 2018, 562, 28-36. Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade 1139 324 6.6 organic pollutants. Chemical Engineering Journal, 2018, 349, 766-774. A <i>usf</i> Zinc(II) Metal–Organic Framework as a Highly Selective Luminescence Probe for Acetylacetone Detection and Its Postsynthetic Cation Exchange. Crystal Growth and Design, 2018, 18, 1.4 3997-4003. Recent progress in the syntheses of mesoporous metalâ€"organic framework materials. Coordination 1141 9.5 137 Chemistry Reviews, 2018, 369, 76-90. Synthesis, structure and characterization of a new highly porous zirconium-based metal-organic frameworks. Inorganica Chimica Acta, 2018, 480, 173-176. 1142 1.2 How Does the Surface of Alâ€"ITQ-HB 2D-MOF Condition the Intermolecular Interactions of an 1143 4.0 6 Adsorbed Organic Molecule?. ACS Applied Materials & amp; Interfaces, 2018, 10, 20159-20169. Amine-functionalized Zn(<scp>ii</scp>) MOF as an efficient multifunctional catalyst for 1144 64 CO₂ utilization and sulfoxidation reaction. Dalton Transactions, 2018, 47, 8041-8051. Catalytic Space Engineering of Porphyrin Metalâ€"Organic Frameworks for Combined CO₂ 1145 3.6 48 Capture and Conversion at a Low Concentration. ChemSusChem, 2018, 11, 2340-2347. Keggin type of polyoxometalate templated assembly of a silver-organic framework with silver-organic 1146 1.8 cages and helical structures. Inorganic Chemistry Communication, 2018, 93, 153-159.

#	Article	IF	CITATIONS
1147	Three novel coordination polymers based on tris(p-carboxyphenyl)phosphane oxide: Syntheses, structural characterization and magnetic properties. Journal of Solid State Chemistry, 2018, 261, 37-42.	1.4	4
1148	Highly enantioselective Friedel–Crafts alkylation of N,N-dialkylanilines with trans-β-nitrostyrene catalyzed by a homochiral metal–organic framework. Chemical Communications, 2018, 54, 6328-6331.	2.2	41
1149	Openâ€ŧubular capillary electrochromatographic determination of ten sulfonamides in tap water and milk by a metalâ€organic frameworkâ€coated capillary column. Electrophoresis, 2018, 39, 2236-2245.	1.3	16
1150	Synthesis, structure and luminescence property of a cadmium-organic framework based on 6-connected paddle-wheel building units and btc ligands. Inorganic Chemistry Communication, 2018, 93, 83-86.	1.8	4
1151	A mesoporous metal-organic framework based on T-shape ligand with Ca2+ release behavior under simulated physiological conditions and praisable biocompatibility. Inorganic Chemistry Communication, 2018, 94, 1-4.	1.8	2
1152	Synthesis, structure and effective peroxidase-like activity of a stable polyoxometalate-pillared metal‑organic framework with multinuclear cycles. Polyhedron, 2018, 151, 206-212.	1.0	16
1153	A porous metal–organic aerogel based on dirhodium paddle-wheels as an efficient and stable heterogeneous catalyst towards the reduction reaction of aldehydes and ketones. New Journal of Chemistry, 2018, 42, 11358-11363.	1.4	12
1154	Tailoring the structure, pH sensitivity and catalytic performance in Suzuki–Miyaura cross-couplings of Ln/Pd MOFs based on the 1,1′-di(<i>p</i> -carboxybenzyl)-2,2′-diimidazole linker. Dalton Transactions, 2018, 47, 8755-8763.	1.6	22
1155	Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 10107-10111.	7.2	166
1156	Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renewable and Sustainable Energy Reviews, 2018, 91, 793-801.	8.2	178
1157	Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 10264-10268.	1.6	33
1158	A porous Zn-based metal-organic framework with an expanded tricarboxylic acid ligand for effective CO2 capture and CO2/CH4 separation. Inorganic Chemistry Communication, 2018, 94, 39-42.	1.8	7
1159	A metalloligand appended with benzimidazole rings: tetranuclear [CoZn ₃] and [CoCd ₃] complexes and their catalytic applications. New Journal of Chemistry, 2018, 42, 9847-9856.	1.4	18
1160	Tuning the Photoinduced Electron Transfer in a Zrâ€MOF: Toward Solidâ€State Fluorescent Molecular Switch and Turnâ€On Sensor. Advanced Materials, 2018, 30, e1802329.	11.1	120
1161	A Bifunctional MOF Catalyst Containing Metal–Phosphine and Lewis Acidic Active Sites. Chemistry - A European Journal, 2018, 24, 15309-15318.	1.7	40
1162	l-proline modulated zirconium metal organic frameworks: Simple chiral catalysts for the aldol addition reaction. Journal of Catalysis, 2018, 365, 36-42.	3.1	65
1163	Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta, 2018, 189, 254-261.	2.9	157
1164	Guest-Induced Switchable Breathing Behavior in a Flexible Metal–Organic Framework with Pronounced Negative Gas Pressure. Inorganic Chemistry, 2018, 57, 8627-8633.	1.9	54

#	Article	IF	CITATIONS
1165	Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Advanced Materials, 2018, 30, e1707634.	11.1	504
1166	Cu-MOF: an efficient heterogeneous catalyst for the synthesis of symmetric anhydrides <i>via</i> the C–H bond activation of aldehydes. RSC Advances, 2018, 8, 24203-24208.	1.7	18
1167	Controllable synthesis and magnetic properties of two stable cobalt-organic frameworks based on 5-(4-carboxybenzyloxy)isophthalic acid. Inorganic Chemistry Communication, 2018, 95, 27-31.	1.8	3
1168	Porous 10- and 12-vertex (bi)-p-dicarba-closo-boranedicarboxylates of cobalt and their gas adsorptive properties. Microporous and Mesoporous Materials, 2018, 271, 284-294.	2.2	8
1169	Controlled RAFT polymerization facilitated by a nanostructured enzyme mimic. Polymer Chemistry, 2018, 9, 4448-4454.	1.9	20
1170	Selfâ€Assembly of a 3D DNA Crystal Structure with Rationally Designed Sixâ€Fold Symmetry. Angewandte Chemie - International Edition, 2018, 57, 12504-12507.	7.2	43
1171	From Zn(II) to Cu(II) framework via single-crystal to single-crystal metathesis with superior gas uptake and heterogeneous catalytic properties. Inorganica Chimica Acta, 2018, 482, 925-934.	1.2	8
1172	Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH2 as heterogeneous catalyst for oxidation reactions. Journal of Colloid and Interface Science, 2018, 532, 700-710.	5.0	44
1173	A novel sensitive fluorescent probe of S ₂ O ₈ ^{2â^'} and Fe ³⁺ based on covalent post-functionalization of a zirconium(<scp>iv</scp>) metal–organic framework. Dalton Transactions, 2018, 47, 11586-11592.	1.6	63
1174	An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.	3.0	62
1175	Synthesis and characterization of two one-dimensional Cd ^{II} coordination polymers (CPs) with 5-amino-2,4,6-tribromoisophthalic acid and flexible N-donor bipyridyl ligands. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 951-960.	0.2	3
1176	Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nature Catalysis, 2018, 1, 689-695.	16.1	494
1177	Asymmetric ring-opening reaction of <i>meso</i> -epoxides with aromatic amines using homochiral metal–organic frameworks as recyclable heterogeneous catalysts. RSC Advances, 2018, 8, 28139-28146.	1.7	13
1178	Squaramideâ€IRMOFâ€16 Analogue for Catalysis of Solventâ€Free, Epoxide Ringâ€Opening Tandem and Multicomponent Reactions. ChemCatChem, 2018, 10, 3995-3998.	1.8	13
1179	An unsymmetrical tritopic pyrazole carboxylate ligand based porous Cd(II) MOF sensor for acetone molecule. Inorganic Chemistry Communication, 2018, 96, 16-19.	1.8	9
1180	Heterometallic Coordination Polymers with Pyrazine 2,6â€Dicarboxamide: Sequential Metallation of Co(III) and Ag(I). ChemistrySelect, 2018, 3, 8051-8055.	0.7	1
1181	Influence of nanoscale structuralisation on the catalytic performance of ZIF-8: a cautionary surface catalysis study. CrystEngComm, 2018, 20, 4926-4934.	1.3	38
1182	Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment. International Journal of Pharmaceutics, 2018, 549, 31-49.	2.6	79

#	Article	IF	CITATIONS
1183	Tuning Lewis Acidity of Metal–Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies. Journal of the American Chemical Society, 2018, 140, 10553-10561.	6.6	121
1184	Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal–Organic Framework DUT-67. Crystal Growth and Design, 2018, 18, 5492-5500.	1.4	29
1185	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
1186	Two new alkaline earth metal organic frameworks with the diamino derivative of biphenyl-4,4′-dicarboxylate as bridging ligand: Structures, fluorescence and quenching by gas phase aldehydes. Polyhedron, 2018, 153, 173-180.	1.0	8
1187	Study on the copper(II)-doped MIL-101(Cr) and its performance in VOCs adsorption. Environmental Science and Pollution Research, 2018, 25, 28109-28119.	2.7	51
1188	Welcoming Gallium- and Indium-Fumarate MOFs to the Family: Synthesis, Comprehensive Characterization, Observation of Porous Hydrophobicity, and CO ₂ Dynamics. ACS Applied Materials & amp; Interfaces, 2018, 10, 28582-28596.	4.0	30
1189	Selfâ€Assembly of a 3D DNA Crystal Structure with Rationally Designed Sixâ€Fold Symmetry. Angewandte Chemie, 2018, 130, 12684-12687.	1.6	11
1190	Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Advanced Materials, 2018, 30, e1705146.	11.1	376
1191	Area negative thermal expansion in a mixed metal mixed organic MOF: "elevator-platform―mechanism induced by O–Hâ<⁻O hydrogen bonding. CrystEngComm, 2018, 20, 4719-4723.	1.3	13
1192	Salts and Co-Crystalline Assemblies of Tetra(4-Pyridyl)Ethylene with Di-Carboxylic Acids. Crystals, 2018, 8, 41.	1.0	1
1193	Alkaline-earth metal based MOFs with second scale long-lasting phosphor behavior. CrystEngComm, 2018, 20, 4793-4803.	1.3	29
1194	Mil-100(Fe) nanoparticles supported on urchin like Bi2S3 structure for improving photocatalytic degradation of rhodamine-B dye under visible light irradiation. Journal of Solid State Chemistry, 2018, 266, 54-62.	1.4	53
1195	Molecular Nitrogen–Carbon Catalysts, Solid Metal Organic Framework Catalysts, and Solid Metal/Nitrogenâ€Doped Carbon (MNC) Catalysts for the Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2018, 8, 1703614.	10.2	157
1196	High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4275-4281.	2.1	9
1197	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
1198	Rational assembly of functional Co-MOFs <i>via</i> a mixed-ligand strategy: synthesis, structure, topological variation, photodegradation properties and dye adsorption. CrystEngComm, 2018, 20, 4973-4988.	1.3	35
1199	Self-Assembly in Polyoxometalate and Metal Coordination-Based Systems: Synthetic Approaches and Developments. Inorganics, 2018, 6, 71.	1.2	11
1200	A Biocompatible Zinc(II)â€based Metalâ€organic Framework for pH Responsive Drug Delivery and Anti‣ung Cancer Activity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 877-882.	0.6	9

#	Article	IF	CITATIONS
1201	Construction of heterometallic M2Pd3 supramolecular cages via a metalloligand strategy as heterogeneous catalyst for Suzuki–Miyaura coupling reaction. Inorganica Chimica Acta, 2018, 482, 605-611.	1.2	14
1202	Highly Selective and Sharp Volcano-type Synergistic Ni ₂ Pt@ZIF-8-Catalyzed Hydrogen Evolution from Ammonia Borane Hydrolysis. Journal of the American Chemical Society, 2018, 140, 10034-10042.	6.6	306
1203	Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chemical Communications, 2018, 54, 7873-7891.	2.2	373
1204	Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47, 8134-8172.	18.7	1,119
1205	Supramolecular Ag(I) coordination polymer directed by argentophilic interactions: Synthesis, crystal structure, luminescent and catalytic properties. Journal of Molecular Structure, 2018, 1173, 833-836.	1.8	5
1206	Ag-Based Coordination Polymers Based on Metalloligands and Their Catalytic Performance in Multicomponent A ³ -Coupling Reactions. Crystal Growth and Design, 2018, 18, 5501-5511.	1.4	25
1207	Nitroâ€Functionalized Bis(pyrazolate) Metal–Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 13170-13180.	1.7	29
1208	Organoarsine Metal–Organic Framework with <i>cis</i> -Diarsine Pockets for the Installation of Uniquely Confined Metal Complexes. Journal of the American Chemical Society, 2018, 140, 9806-9809.	6.6	29
1209	Unraveling reaction networks behind the catalytic oxidation of methane with H ₂ O ₂ over a mixed-metal MIL-53(Al,Fe) MOF catalyst. Chemical Science, 2018, 9, 6765-6773.	3.7	67
1210	A 3D supramolecular assembly of Co(II) MOF constructed with 2,5-pyridinedicarboxylate strut and its catalytic activity towards synthesis of tetrahydrobiphenylene-1,3-dicarbonitriles. Inorganica Chimica Acta, 2018, 482, 830-837.	1.2	11
1211	A series of porous interpenetrating metal–organic frameworks based on fluorescent ligands for nitroaromatic explosive detection. Inorganic Chemistry Frontiers, 2018, 5, 1622-1632.	3.0	51
1212	Recent advancement in metal–organic framework: Synthesis, activation, functionalisation, and bulk production. Materials Science and Technology, 2018, 34, 1025-1045.	0.8	47
1213	Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis. ACS Catalysis, 2018, 8, 5637-5656.	5.5	58
1214	Impact of Higherâ€Order Structuralization on the Adsorptive Properties of Metal–Organic Frameworks. Chemistry - an Asian Journal, 2018, 13, 1979-1991.	1.7	6
1215	Preparation of liquid marbles using an azobenzene-based metal-organic framework particles. Molecular Crystals and Liquid Crystals, 2018, 660, 90-97.	0.4	1
1216	Trace water accelerating the CO ₂ cycloaddition reaction catalyzed by an indium–organic framework. Inorganic Chemistry Frontiers, 2018, 5, 1694-1699.	3.0	24
1217	Treatment of cadmium(II) and zinc(II) with N2-donor linkages in presence of β-diketone ligand; supported by structural, spectral, theoretical and docking studies. Inorganica Chimica Acta, 2018, 482, 717-725.	1.2	35
1218	Synthesis, crystal structure and photocatalytic properties of a Mn (II) metal-organic framework based on a thiophene-functionalized dicarboxylate ligand. Inorganic Chemistry Communication, 2018, 96, 124-127	1.8	16

#	Article	IF	CITATIONS
1219	Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66. Journal of CO2 Utilization, 2018, 27, 272-282.	3.3	55
1220	Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption. Polyhedron, 2018, 154, 457-464.	1.0	44
1221	Metal–organic frameworks for dye sorption: structure–property relationships and scalable deposition of the membrane adsorber. CrystEngComm, 2018, 20, 5465-5474.	1.3	30
1222	The effect of topology in Lewis pair functionalized metal organic frameworks on CO ₂ adsorption and hydrogenation. Catalysis Science and Technology, 2018, 8, 4609-4617.	2.1	14
1223	Engineering a Nanoscale Primary Amide-Functionalized 2D Coordination Polymer as an Efficient and Recyclable Heterogeneous Catalyst for the Knoevenagel Condensation Reaction. ACS Applied Nano Materials, 2018, 1, 5226-5236.	2.4	37
1224	Comparison of Surface-Bound and Free-Standing Variations of HKUST-1 MOFs: Effect of Activation and Ammonia Exposure on Morphology, Crystallinity, and Composition. Nanomaterials, 2018, 8, 650.	1.9	13
1225	Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.	9.5	174
1226	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
1227	A water-stable lanthanide coordination polymer as a multiresponsive luminescent sensor for Fe ³⁺ , Cr(<scp>vi</scp>) and 4-nitrophenol. Dalton Transactions, 2018, 47, 13543-13549.	1.6	55
1228	Time modulation of defects in UiO-66 and application in oxidative desulfurization. CrystEngComm, 2018, 20, 5658-5662.	1.3	43
1229	Three Co(II) metal-organic frameworks based on a substituted thiophene carboxylic acid ligand with semiconductive properties. Journal of Solid State Chemistry, 2018, 267, 68-75.	1.4	5
1230	A series of 3D lanthanide coordination polymers decorated with a rigid 3,5-pyridinedicarboxylic acid linker: syntheses, structural diversity, DFT study, Hirshfeld surface analysis, luminescence and magnetic properties. Dalton Transactions, 2018, 47, 12318-12336.	1.6	54
1231	Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods, 2018, 2, 1800173.	4.6	288
1232	A multifunctional Co-based metal–organic framework: heterogeneous catalysis, chemiluminescence sensing and moisture-dependent solvatochromism. Dalton Transactions, 2018, 47, 12406-12413.	1.6	7
1233	Base-Free and Acceptorless Dehydrogenation of Alcohols Catalyzed by an Iridium Complex Stabilized by a <i>N</i> , <i>N</i> , <i>N</i>)Osmaligand. Organometallics, 2018, 37, 2732-2740.	1.1	22
1234	Construction of d ¹⁰ metal coordination polymers based on <i>in situ</i> formed 3,5-di(1 <i>H</i> -1,2,4-triazol-1-yl)benzoic acid from different precursors: influence of <i>in situ</i> hydrolysis reactions on assembly process. CrystEngComm, 2018, 20, 5531-5543.	1.3	6
1235	A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry A, 2018, 6, 17698-17705.	5.2	102
1236	Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 2018, 148, 2201-2222.	1.4	33

#	Article	IF	CITATIONS
1237	A new anionic metal-organic framework based on tetranuclear zinc clusters: Selective absorption of CO2 and luminescent response to lanthanide (III) ions. Inorganica Chimica Acta, 2018, 482, 154-159.	1.2	5
1238	Heterometallic In(III)–Pd(II) Porous Metal–Organic Framework with Square-Octahedron Topology Displaying High CO ₂ Uptake and Selectivity toward CH ₄ and N ₂ . Inorganic Chemistry, 2018, 57, 7244-7251.	1.9	37
1239	A Porous Framework as a Variable Chemosensor: From the Response of a Specific Carcinogenic Alkylâ€Aromatic to Selective Detection of Explosive Nitroaromatics. Chemistry - A European Journal, 2018, 24, 11033-11041.	1.7	19
1240	Anchored Aluminum Catalyzed Meerwein–Ponndorf–Verley Reduction at the Metal Nodes of Robust MOFs. Inorganic Chemistry, 2018, 57, 6825-6832.	1.9	12
1241	Influence of different metal ions on the assembly, structures, and properties of two complexes based on the semi-rigid bis(pyridyl)-bis(amide) ligand and 4,4â€2-oxybis(benzoic acid). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2018, 73, 359-368.	0.3	3
1242	Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. Coordination Chemistry Reviews, 2018, 372, 1-30.	9.5	74
1243	Crystal Structure of Tris- (2,3,5,6-Tetrafluorobenzoato)Scandium [Sc(C6F4HCO2)3]. Journal of Structural Chemistry, 2018, 59, 494-496.	0.3	8
1244	Diverse cobalt(<scp>ii</scp>) coordination polymers for water/ethanol separation and luminescence for water sensing applications. CrystEngComm, 2018, 20, 3891-3897.	1.3	15
1245	Enhanced catalytic activity of MnCo-MOF-74 for highly selective aerobic oxidation of substituted toluene. Inorganic Chemistry Frontiers, 2018, 5, 1923-1932.	3.0	36
1246	Immobilization of polyoxometalate in a cage-based metal–organic framework towards enhanced stability and highly effective dye degradation. Polyhedron, 2018, 152, 108-113.	1.0	32
1247	C–C to C conversion within a supramolecular framework of tetrathiafulvalene: a confinement effect and an oxygen related dehydrogenation. Chemical Communications, 2018, 54, 7334-7337.	2.2	5
1248	Copper-catalyzed oxidative coupling of arylboronic acids with aryl carboxylic acids: Cu ₃ (BTC) ₂ MOF as a sustainable catalyst to access aryl esters. Organic Chemistry Frontiers, 2018, 5, 2322-2331.	2.3	19
1249	Metal–Organicâ€Frameworkâ€Based Catalysts for Photoreduction of CO ₂ . Advanced Materials, 2018, 30, e1705512.	11.1	415
1250	Crystal Structure of Coordination Polymers Based on A Heterometallic Carboxylate Complex. Journal of Structural Chemistry, 2018, 59, 487-493.	0.3	10
1251	Sol–Gel Synthesis of Metal–Phenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie, 2018, 130, 9986-9991.	1.6	39
1252	Sol–Gel Synthesis of Metal–Phenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie - International Edition, 2018, 57, 9838-9843.	7.2	127
1253	Ln(III)-Functionalized Metal–Organic Frameworks Hybrid System: Luminescence Properties and Sensor for <i>trans</i> , <i>trans</i> -Muconic Acid as a Biomarker of Benzene. Inorganic Chemistry, 2018, 57, 7815-7824.	1.9	76
1254	Microporous 2D indium metal–organic frameworks for selective CO ₂ capture and their application in the catalytic CO ₂ -cycloaddition of epoxides. Dalton Transactions, 2018, 47, 9474-9481.	1.6	42

#	Article	IF	CITATIONS
1255	Noncovalent-bonded 2D–3D Zn ²⁺ , Cd ²⁺ , and Cu ²⁺ supramolecular coordination complexes with 2,2′-bipyridine and carboxylates: their synthesis and characterization. Journal of Coordination Chemistry, 2018, 71, 2465-2486.	0.8	4
1256	A Discrete Selfâ€Assembled Pd ₁₂ Triangular Orthobicupola Cage and its Use for Intramolecular Cycloaddition. Chemistry - A European Journal, 2018, 24, 13938-13946.	1.7	32
1257	Lanthanide-benzophenone-3,3â€2-disulfonyl-4,4â€2-dicarboxylate Frameworks: Temperature and 1-Hydroxypyren Luminescence Sensing and Proton Conduction. Inorganic Chemistry, 2018, 57, 7805-7814.	1.9	58
1258	An Acid Stable Metalâ€Organic Framework as an Efficient and Recyclable Catalyst for the Oâ^'H Insertion Reaction of Carboxylic Acids. ChemCatChem, 2018, 10, 3901-3906.	1.8	17
1259	Regulation of the surface area and surface charge property of MOFs by multivariate strategy: Synthesis, characterization, selective dye adsorption and separation. Microporous and Mesoporous Materials, 2018, 272, 101-108.	2.2	112
1260	Coordination driven self-assembly of [2 + 2 + 2] molecular squares: synthesis, crystal structures, catalytic and luminescence properties. Dalton Transactions, 2018, 47, 9742-9754.	1.6	11
1261	Efficient oxidative dehydrogenation of ethanol by VOx@MIL-101: On par with VOx/ZrO2 and much better than MIL-47(V). Catalysis Today, 2019, 324, 106-114.	2.2	9
1262	Density Functional Theory Analysis of Host–Guest Interactions in Cu(II)-Based Metal–Organic Frameworks for Pesticide Detection. ACS Applied Nano Materials, 2019, 2, 5469-5474.	2.4	18
1263	Double-Helical Ag–S Rod-Based Porous Coordination Polymers with Double Activation: σ-Active and Ï€-Active Functions. ACS Omega, 2019, 4, 10828-10833.	1.6	11
1264	The cube-like porous ZnO/C composites derived from metal organic framework-5 as anodic material with high electrochemical performance for Ni–Zn rechargeable battery. Journal of Power Sources, 2019, 438, 226986.	4.0	40
1265	Bipyridyl-Containing Cadmium–Organic Frameworks for Efficient Photocatalytic Oxidation of Benzylamine. ACS Applied Materials & Interfaces, 2019, 11, 30953-30958.	4.0	42
1266	An N-heterocyclic carbene-functionalised covalent organic framework with atomically dispersed palladium for coupling reactions under mild conditions. Green Chemistry, 2019, 21, 5267-5273.	4.6	50
1267	Mechanistic Study on the Origin of the <i>Trans</i> Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics, 2019, 38, 3466-3473.	1.1	16
1268	A KCl-assisted pyrolysis strategy to fabricate nitrogen-doped carbon nanotube hollow polyhedra for efficient bifunctional oxygen electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 20310-20316.	5.2	49
1269	Enhanced Visible-Light-Driven H2 Production via UiO-66 Nanospheres Attached to Flower-Shaped ZnIn2S4 Microspheres. Bulletin of the Chemical Society of Japan, 2019, 92, 1047-1052.	2.0	9
1270	Tailoring the pore size and shape of the one-dimensional channels in iron-based MOFs for enhancing the methane storage capacity. Inorganic Chemistry Frontiers, 2019, 6, 2441-2447.	3.0	18
1271	Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coordination Chemistry Reviews, 2019, 398, 213016.	9.5	414
1272	Adenine-Based Zn(II)/Cd(II) Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO ₂ Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorganic Chemistry, 2019, 58, 11389-11403.	1.9	92

.

#	Article	IF	CITATIONS
1273	Green synthesis of nanoscale cobalt(<scp>ii</scp>)-based MOFs: highly efficient photo-induced green catalysts for the degradation of industrially used dyes. Dalton Transactions, 2019, 48, 13869-13879.	1.6	33
1274	Facile synthesis of rGO@In2S3@UiO-66 ternary composite with enhanced visible-light photodegradation activity for methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112025.	2.0	42
1275	Facile and Rapid Preparation of Ag@ZIF-8 for Carboxylation of Terminal Alkynes with CO ₂ in Mild Conditions. ACS Applied Materials & Interfaces, 2019, 11, 28858-28867.	4.0	68
1276	Cycloaddition of CO ₂ with an Epoxide-Bearing Oxindole Scaffold by a Metal–Organic Framework-Based Heterogeneous Catalyst under Ambient Conditions. Inorganic Chemistry, 2019, 58, 10084-10096.	1.9	65
1277	Two scandium coordination polymers: rapid synthesis and catalytic properties. CrystEngComm, 2019, 21, 5261-5268.	1.3	7
1278	Bio-inspired creation of heterogeneous reaction vessels via polymerization of supramolecular ion pair. Nature Communications, 2019, 10, 3059.	5.8	19
1279	Tuning the C2/C1 Hydrocarbon Separation Performance in a BioMOF by Surface Functionalization. European Journal of Inorganic Chemistry, 2019, 2019, 4205-4210.	1.0	21
1280	Progress on Catalyst Development for Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol. Chemistry Africa, 2019, 2, 533-549.	1.2	11
1281	Enhanced performance of well-dispersed Co species incorporated on porous carbon derived from metal-organic frameworks in 1,3-butadiene hydrogenation. Microporous and Mesoporous Materials, 2019, 288, 109557.	2.2	12
1282	Target-Architecture Engineering of a Novel Two-dimensional Metal–Organic Framework for High Catalytic Performance. Crystal Growth and Design, 2019, 19, 4239-4245.	1.4	14
1283	Effective luminescence sensing of Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} , MnO ₄ ^{â^'} and 4-nitrophenol by lanthanide metal–organic frameworks with a new topology type. Dalton Transactions, 2019, 48, 12287-12295.	1.6	88
1284	Development of Sensor Based on Copper(II) Thiocyanate Pyridine Polymeric Complex for Detection of Catechol. IEEE Sensors Journal, 2019, 19, 10198-10206.	2.4	2
1285	Shapeâ€Defined Hollow Structural Coâ€MOFâ€74 and Metal Nanoparticles@Coâ€MOFâ€74 Composite through Transformation Strategy for Enhanced Photocatalysis Performance. Small, 2019, 15, e1902287.	a _{5.2}	106
1286	Engineering Metal–Organic Framework Catalysts for Câ^'C and Câ^'X Coupling Reactions: Advances in Reticular Approaches from 2014–2018. Chemistry - A European Journal, 2019, 25, 16451-16505.	1.7	25
1287	A very fast photodegradation of dyes in the presence of new Schiff's base N4-macrocyclic Ag-doped Pd(II) complexes under visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111975.	2.0	7
1288	Recent Progress in Metal–Organic Framework (MOF) Based Luminescent Chemodosimeters. Nanomaterials, 2019, 9, 974.	1.9	52
1289	Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges. Nano-Micro Letters, 2019, 11, 54.	14.4	87
1290	A Controlled Synthesis Strategy To Enhance the CO ₂ Adsorption Capacity of MIL-88B Type MOF Crystallites by the Crucial Role of Narrow Micropores. Industrial & Engineering Chemistry Research, 2019, 58, 14058-14072.	1.8	26
#	Article	IF	CITATIONS
------	--	------	-----------
1291	Biopolymer@Metal-Organic Framework Hybrid Materials: A Critical Survey. Progress in Materials Science, 2019, 106, 100579.	16.0	63
1292	Metal-Organic Framework Composites for Catalysis. Matter, 2019, 1, 57-89.	5.0	308
1293	Template-Directed Synthesis of Photocatalyst-Encapsulating Metal–Organic Frameworks with Boosted Photocatalytic Activity. ACS Catalysis, 2019, 9, 7486-7493.	5.5	50
1294	Tuning Packing, Structural Flexibility, and Porosity in 2D Metal–Organic Frameworks by Metal Node Choice. Australian Journal of Chemistry, 2019, 72, 797.	0.5	4
1295	Bifunctional Gyroidal MOFs: Highly Efficient Lewis Base and Lewis Acid Catalysts. Chemistry - an Asian Journal, 2019, 14, 3682-3687.	1.7	13
1296	p-Terphenyl-2,2″,5″,5‴-tetracarboxylate acid based bifunctional 1D Zinc(II) metal-organic platform for luminescent sensing and gas adsorption. Inorganic Chemistry Communication, 2019, 107, 107463.	1.8	5
1297	Heterogenization of Photochemical Molecular Devices: Embedding a Metal–Organic Cage into a ZIF-8-Derived Matrix To Promote Proton and Electron Transfer. Journal of the American Chemical Society, 2019, 141, 13057-13065.	6.6	64
1298	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	6.6	58
1299	A Waterâ€Stable Terbium(III)–Organic Framework as a Chemosensor for Inorganic Ions, Nitroâ€Containing Compounds and Antibiotics in Aqueous Solutions. Chemistry - an Asian Journal, 2019, 14, 3694-3701.	1.7	163
1300	Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy. Scientific Reports, 2019, 9, 10887.	1.6	37
1301	Luminescent transition metal–organic frameworks: An emerging sensor for detecting biologically essential metal ions. Nano Structures Nano Objects, 2019, 19, 100364.	1.9	83
1302	Advances in hydrophilic nanomaterials for glycoproteomics. Chemical Communications, 2019, 55, 10359-10375.	2.2	62
1303	Influence of MOF ligands on the electrochemical and interfacial properties of PEO-based electrolytes for all-solid- state lithium batteries. Electrochimica Acta, 2019, 319, 189-200.	2.6	64
1304	Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem, 2019, 1, 100005.	10.1	289
1305	A supermolecular building block approach for construction of chiral metal–organic frameworks. Chemical Communications, 2019, 55, 8639-8642.	2.2	11
1306	A double basic Sr-amino containing MOF as a highly stable heterogeneous catalyst. Dalton Transactions, 2019, 48, 11556-11564.	1.6	16
1307	A facile method to introduce iron secondary metal centers into metal–organic frameworks. Journal of Organometallic Chemistry, 2019, 897, 114-119.	0.8	5
1308	Synthesis of boron imidazolate frameworks with cobalt clusters for efficient visible-light driven CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 17272-17276.	5.2	40

#	Article	IF	CITATIONS
1309	Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS Applied Materials & Interfaces, 2019, 11, 26956-26969.	4.0	28
1310	1,10â€Phenanthroline Carboxylic Acids for Preparation of Functionalized Metalâ€Organic Frameworks. Asian Journal of Organic Chemistry, 2019, 8, 2128-2142.	1.3	8
1311	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie - International Edition, 2019, 58, 17033-17040.	7.2	71
1312	Phytotoxic Diterpenoids from Plants and Microorganisms. Chemistry and Biodiversity, 2019, 16, e1900398.	1.0	6
1313	An Americium ontaining Metal–Organic Framework: A Platform for Studying Transplutonium Elements. Angewandte Chemie - International Edition, 2019, 58, 16508-16511.	7.2	20
1314	Silver phosphate supported on metal–organic framework (Ag ₃ PO ₄ @MOFâ€5) as a novel heterogeneous catalyst for green synthesis of indenoquinolinediones. Applied Organometallic Chemistry, 2019, 33, e5176.	1.7	15
1315	Fast Cyclohexane Oxidation Under Mild Reaction Conditions Through a Controlled Creation of Redoxâ€Active Fe(II/III) Sites in a Metalâ^'Organic Framework. ChemCatChem, 2019, 11, 5650-5656.	1.8	21
1316	Engineering Structural Dynamics of Zirconium Metal–Organic Frameworks Based on Natural C4 Linkers. Journal of the American Chemical Society, 2019, 141, 17207-17216.	6.6	54
1317	Cyclometalated Ir–Zr Metal–Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water. ACS Applied Materials & Interfaces, 2019, 11, 41448-41457.	4.0	64
1318	White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu ³⁺ and Tb ³⁺ . Crystal Growth and Design, 2019, 19, 6339-6350.	1.4	35
1319	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie, 2019, 131, 17189-17196.	1.6	21
1320	Retrofitting metal-organic frameworks. Nature Communications, 2019, 10, 4921.	5.8	30
1321	On the Use of MOFs and ALD Layers as Nanomembranes for the Enhancement of Gas Sensors Selectivity. Nanomaterials, 2019, 9, 1552.	1.9	11
1322	Fixing Flexible Arms of Core-Shared Ligands to Enhance the Stability of Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 15909-15916.	1.9	14
1323	Continuous UiO-66-Type Metal–Organic Framework Thin Film on Polymeric Support for Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 2019, 11, 45290-45300.	4.0	49
1324	Metal organic frameworks (MOFs): Current trends and challenges in control and management of air quality. Korean Journal of Chemical Engineering, 2019, 36, 1839-1853.	1.2	22
1325	Confined Catalysis: Progress and Prospects in Energy Conversion. Advanced Energy Materials, 2019, 9, 1902307.	10.2	79
1326	An Americium ontaining Metal–Organic Framework: A Platform for Studying Transplutonium Elements. Angewandte Chemie, 2019, 131, 16660-16663.	1.6	4

#	Article	IF	CITATIONS
1327	Potential Utilization of Metal–Organic Frameworks in Heterogeneous Catalysis: A Case Study of Hydrogenâ€Bond Donating and Single‧ite Catalysis. Chemistry - an Asian Journal, 2019, 14, 4087-4102.	1.7	25
1328	Pd Nanoparticle Fabricated Tetrahydroharmanâ€3â€carboxylic Acid Analog Immobilized CoFe 2 O 4 Catalyzed Fast and Expedient C–C Cross and C–S Coupling. ChemistrySelect, 2019, 4, 10953-10959.	0.7	9
1329	Function–Structure Relationship in Metal–Organic Frameworks for Mild, Green, and Fast Catalytic C–C Bond Formation. Inorganic Chemistry, 2019, 58, 14429-14439.	1.9	25
1330	Synthesis, crystal structure, and catalytic property of a new Co(II) coordination polymer based on 1,3,5-benzenetricarboxylate ligand. Inorganic and Nano-Metal Chemistry, 2019, 49, 443-447.	0.9	3
1331	Recent Advances in Emerging 2D Materialâ€Based Gas Sensors: Potential in Disease Diagnosis. Advanced Materials Interfaces, 2019, 6, 1901329.	1.9	169
1332	Metal-organic framework nanosheets: a class of glamorous low-dimensional materials with distinct structural and chemical natures. Science China Chemistry, 2019, 62, 1561-1575.	4.2	31
1333	Antimicrobial cellulosic textiles based on organic compounds. 3 Biotech, 2019, 9, 29.	1.1	60
1334	TraffickStop: Detecting and Measuring Illicit Traffic Monetization Through Large-Scale DNS Analysis. , 2019, , .		3
1335	Theoretical Understanding of Electrocatalytic Hydrogen Production Performance by Low-Dimensional Metal–Organic Frameworks on the Basis of Resonant Charge-Transfer Mechanisms. Journal of Physical Chemistry Letters, 2019, 10, 6955-6961.	2.1	15
1336	Syntheses and characterization of dinuclear and tetranuclear Ag ^I supramolecular complexes generated from symmetric and asymmetric molecular clips containing oxadiazole rings. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1327-1335.	0.2	2
1337	Encapsulation of Metal Nanoparticles within Metal–Organic Frameworks for the Reduction of Nitro Compounds. Molecules, 2019, 24, 3050.	1.7	17
1338	Dynamic Interplay between Defective UiOâ€66 and Protic Solvents in Activated Processes. Chemistry - A European Journal, 2019, 25, 15315-15325.	1.7	13
1339	Azide-Based High-Energy Metal–Organic Frameworks with Enhanced Thermal Stability. ACS Omega, 2019, 4, 14398-14403.	1.6	10
1340	Magnetic, luminescence, topological and theoretical studies of structurally diverse supramolecular lanthanide coordination polymers with flexible glutaric acid as a linker. New Journal of Chemistry, 2019, 43, 14546-14564.	1.4	29
1341	Heterogenization of Trinuclear Palladium Complex into an Anionic Metal–Organic Framework through Postsynthetic Cation Exchange. Organometallics, 2019, 38, 3460-3465.	1.1	23
1342	Lanthanide(III)-organic extended frameworks based on cubic [Ln4(μ3-OH)4] clusters: Syntheses, structures and application as fluorescent sensor. Inorganic Chemistry Communication, 2019, 108, 107536.	1.8	1
1343	High-efficiency photo-oxidation of thioethers over C ₆₀ @PCN-222 under air. Journal of Materials Chemistry A, 2019, 7, 22084-22091.	5.2	50
1344	Linker functionalized metal-organic frameworks. Coordination Chemistry Reviews, 2019, 399, 213023.	9.5	170

#	Article	IF	CITATIONS
1345	Co ^{II} immobilized on an aminated magnetic metal–organic framework catalyzed C–N and C–S bond forming reactions: a journey for the mild and efficient synthesis of arylamines and arylsulfides. New Journal of Chemistry, 2019, 43, 15525-15538.	1.4	25
1346	Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts. Applied Catalysis A: General, 2019, 586, 117214.	2.2	96
1347	Exploiting Microwave Chemistry for Activation of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 35155-35161.	4.0	43
1348	UiO-type metal–organic frameworks with NHC or metal–NHC functionalities for <i>N</i> -methylation using CO ₂ as the carbon source. Chemical Communications, 2019, 55, 11928-11931.	2.2	28
1349	Assembly of Metal–Organic Frameworks of SiF ₆ ^{2–} in Situ Formed from Borosilicate Glass. Inorganic Chemistry, 2019, 58, 12501-12505.	1.9	5
1350	Electrocatalytic Hydrogen Evolution from a Cobaloxime-Based Metal–Organic Framework Thin Film. Journal of the American Chemical Society, 2019, 141, 15942-15950.	6.6	135
1351	Tuning the net topology of a ternary Ag(i)-1,2,4,5-tetra(4-pyridyl)benzene-carboxylate framework: structures and photoluminescence. CrystEngComm, 2019, 21, 6446-6451.	1.3	9
1352	Influence of UiO-66(Zr) Preparation Strategies in Its Catalytic Efficiency for Desulfurization Process. Materials, 2019, 12, 3009.	1.3	25
1353	Host–Guest Interaction between Methanol and Metal–Organic Framework Cu _{3–<i>x</i>} Zn _{<i>x</i>} (btc) ₂ as Revealed by Solid-State NMR. Journal of Physical Chemistry C, 2019, 123, 24062-24070.	1.5	12
1354	Recent progress in the synthesis, structural diversity and emerging applications of cyclodextrin-based metal–organic frameworks. Journal of Materials Chemistry B, 2019, 7, 5602-5619.	2.9	53
1355	Ligand Excess "Inverse-Defected―Zr ₆ Tetrahedral Tetracarboxylate Framework and Its Thermal Transformation. Inorganic Chemistry, 2019, 58, 12786-12797.	1.9	3
1356	Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal–organic frameworks: synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Chemical Science, 2019, 10, 10577-10585.	3.7	87
1357	Two 2D isostructural coordination polymers: Syntheses, structure analysis and effective detection of Cr(VI) and Fe(III) ions in water. Inorganic Chemistry Communication, 2019, 110, 107575.	1.8	4
1358	Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nature Communications, 2019, 10, 4362.	5.8	91
1359	Effect of pH on the construction of zinc coordination polymers based on carboxylate functionalized triazole derivative ligand. Journal of Molecular Structure, 2019, 1198, 126905.	1.8	4
1360	Synthesis, structure, and catalytic properties of a copper(II) coordination polymer material constructed from 5-nitro-1,2,3-benzenetricarboxylic acid and bis(4-pyridylformyl)piperazine mixed ligands. Journal of Solid State Chemistry, 2019, 278, 120908.	1.4	10
1361	A novel photosensitizing decatungstate-based MOF: Synthesis and photocatalytic oxidation of cyclohexane with molecular oxygen. Inorganic Chemistry Communication, 2019, 100, 125-128.	1.8	18
1362	A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO ₂ capture. Dalton Transactions, 2019, 48, 415-425.	1.6	20

ARTICLE IF CITATIONS Rare metal-ion metathesis of a tetrahedral Zn(<scp>ii</scp>) core of a noncentrosymmetric 1363 7 1.6 (3,4)-connected 3D MOF. Dalton Transactions, 2019, 48, 1950-1954. A thermo-responsive polymer-tethered and Pd NP loaded UiO-66 NMOF for biphasic CB dechlorination. 1364 4.6 Green Chemistry, 2019, 21, 1625-1634. Synthesis of bimetallic 4-PySI-Pd@Cu(BDC) via open metal site Cu-MOF: Effect of metal and support of 1366 1.0 88 Pd@Cu-MOFs in H2 generation from formic acid. Molecular Catalysis, 2019, 467, 30-37. Metal-organic framework-derived hollow Co3O4/carbon as efficient catalyst for peroxymonosulfate 229 activation. Chemical Engineering Journal, 2019, 363, 234-246. A Quantitative and Rapid Knoevenagel Condensation Catalyzed by Recyclable Zeolite Imidazole 1368 0.7 8 Frameworks. ChemistrySelect, 2019, 4, 1188-1194. Anion-directed structures and luminescences of two Cu(I) coordination polymers based on 1.8 bipyrazole. Inorganic Chemistry Communication, 2019, 101, 121-124. Synthesis and structural characterizations of nine non-covalent-bonded Zn2+, and Cd2+ 1370 1.0 17 supramolecules based on 3,5-dimethylpyrazole and carboxylates. Polyhedron, 2019, 159, 408-425. New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of 1371 1.6 56 Porous Carbons. Catalysts, 2019, 9, 133. Microwave-assisted synthesis of urea-containing zirconium metal–organic frameworks for 1372 1.3 28 heterogeneous catalysis of Henry reactions. CrystEngComm, 2019, 21, 1358-1362. Nanomaterials for luminescent detection of water and humidity. Analyst, The, 2019, 144, 388-395. 1.7 A highly active and stable Zn@C/HZSM-5 catalyst using Zn@C derived from ZIF-8 as a template for 1374 2.1 23 conversion of glycerol to aromatics. Catalysis Science and Technology, 2019, 9, 739-752. Post-synthetic diamine-functionalization of MOF-74 type frameworks for effective carbon dioxide 1.6 50 separátion. Dalton Transactions, 2019, 48, 2263-2270 Construction of a 3D porous Co(<scp>ii</scp>) metalâ€"organic framework (MOF) with Lewis acidic 1376 metal sites exhibiting selective CO₂ capture and conversion under mild conditions. New 1.4 35 Journal of Chemistry, 2019, 43, 2163-2170. Cobalt-bridged secondary building units in a titanium metal–organic framework catalyze cascade reduction of N-heteroarenes. Chemical Science, 2019, 10, 2193-2198. Efficient catalytic conversion of terminal/internal epoxides to cyclic carbonates by porous 1378 Co(<scp>ii</scp>) MOF under ambient conditions: structureâé "property correlation and computational 5.296 studies. Journal of Materials Chemistry A, 2019, 7, 2884-2894. A novel homochiral metal–organic framework with an expanded open cage based on 1379 (<i>R</i>)-3,3â€²-bis(6-carboxy-2-naphthyl)-2,2â€²-dihydroxy-1,1â€²-binaphthyl: synthesis, X-ray structure and 1.3 efficient HPLC enantiomer separation. CrystEngComm, 2019, 21, 487-493. A stable anionic metal–organic framework with open coordinated sites: selective separation toward 1380 1.342 cationic dyes and sensing properties. CrystEngComm, 2019, 21, 1159-1167. Four new Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination polymers using two amide-like aromatic multi-carboxylate ligands: synthesis, structures and lithium–selenium batteries application. RSC Advances, 2019, 9, 14750-14757.

#	Article	IF	CITATIONS
1382	Ultrasonicâ€Assisted Linker Exchange (USALE): A Novel Postâ€6ynthesis Method for Controlling the Functionality, Porosity, and Morphology of MOFs. Chemistry - A European Journal, 2019, 25, 10876-10885.	1.7	24
1383	Suspending Ion Electrocatalysts in Charged Metal–Organic Frameworks to Improve the Conductivity and Selectivity in Electroorganic Synthesis. Chemistry - an Asian Journal, 2019, 14, 3627-3634.	1.7	9
1384	Homochiral BINAPDA-Zr-MOF for Heterogeneous Asymmetric Cyanosilylation of Aldehydes. Inorganic Chemistry, 2019, 58, 9253-9259.	1.9	29
1385	Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness. Nature Communications, 2019, 10, 2779.	5.8	89
1386	Engineering Metal–Organic Frameworks for the Electrochemical Reduction of CO ₂ : A Minireview. Chemistry - an Asian Journal, 2019, 14, 3452-3461.	1.7	52
1387	Hierarchically Porous and Water-Tolerant Metal–Organic Frameworks for Enzyme Encapsulation. Industrial & Engineering Chemistry Research, 2019, 58, 12835-12844.	1.8	32
1388	Enhanced catalytic activity over MIL-100(Fe) with coordinatively unsaturated Fe2+/Fe3+ sites for selective oxidation of H2S to sulfur. Chemical Engineering Journal, 2019, 374, 793-801.	6.6	114
1389	Ligand Rigidification for Enhancing the Stability of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10283-10293.	6.6	172
1390	Post-synthetic modification of a Tb-based metal–organic framework for highly selective and sensitive detection of metal ions in aqueous solution. New Journal of Chemistry, 2019, 43, 10232-10236.	1.4	13
1391	Controlling Size, Defectiveness, and Fluorescence in Nanoparticle UiO-66 through Water and Ligand Modulation. Chemistry of Materials, 2019, 31, 4831-4839.	3.2	41
1392	Porous polymers and metallic nanoparticles: A hybrid wedding as a robust method toward efficient supported catalytic systems. Progress in Polymer Science, 2019, 96, 21-42.	11.8	43
1393	Exclusive Recognition of Acetone in a Luminescent BioMOF through Multiple Hydrogen-Bonding Interactions. Inorganic Chemistry, 2019, 58, 7667-7671.	1.9	39
1394	Hierarchical Structure with Highly Ordered Macroporous-Mesoporous Metal-Organic Frameworks as Dual Function for CO2 Fixation. IScience, 2019, 15, 514-523.	1.9	56
1395	Alkaline-earth metal based coordination polymers assembled from two different V-shaped ligands: Synthesis, structure, and dielectric properties. Inorganica Chimica Acta, 2019, 495, 118940.	1.2	8
1396	Ti-Based nanoMOF as an Efficient Oral Therapeutic Agent. ACS Applied Materials & Interfaces, 2019, 11, 22188-22193.	4.0	32
1397	A novel multi-purpose Zn-MOF fluorescent sensor for 2,4-dinitrophenylhydrazine, picric acid, La3+ and Ca2+: Synthesis, structure, selectivity, sensitivity and recyclability. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117207.	2.0	22
1398	Oneâ€Pot Synthesis of Heterobimetallic Metal–Organic Frameworks (MOFs) for Multifunctional Catalysis. Chemistry - A European Journal, 2019, 25, 10490-10498.	1.7	99
1399	Recent applications of metal–organic frameworks in matrix-assisted laser desorption/ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 4509-4522.	1.9	12

#	Article	IF	CITATIONS
1400	Syntheses, crystal structures and photocatalytic properties of transition metal complexes based on 9,10-anthraquinone-1,3-dicarboxylate. Transition Metal Chemistry, 2019, 44, 475-482.	0.7	1
1401	A three-dimensional Cd(<scp>ii</scp>) metal–organic framework: a bifunctional luminescence sensor for benzaldehyde and Fe ²⁺ ions. New Journal of Chemistry, 2019, 43, 10575-10582.	1.4	12
1402	Formation of Pores and π-Stacked Columns in Benzothienobenzothiophene-based Linear Coordination Polymers. Chemistry Letters, 2019, 48, 756-759.	0.7	2
1403	Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications. Coordination Chemistry Reviews, 2019, 395, 86-129.	9.5	80
1404	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	2.6	28
1405	Structural variation of transition metal–organic frameworks using deep eutectic solvents with different hydrogen bond donors. Dalton Transactions, 2019, 48, 10199-10209.	1.6	57
1406	Metal-Organic Frameworks-Based Electrochemical Sensors and Biosensors. International Journal of Electrochemical Science, 2019, 14, 5287-5304.	0.5	42
1407	Directing Gold Nanoparticles into Freeâ€Standing Honeycombâ€Like Ordered Mesoporous Superstructures. Small, 2019, 15, e1901304.	5.2	8
1408	Synthesis of substituted imidazole-4,5-dicarboxylic acids. Russian Chemical Bulletin, 2019, 68, 671-680.	0.4	3
1409	Construction of a porous Cu(II)-coordinated framework for the catalytic properties of cycloaddition of carbon dioxide to epoxides. Inorganic Chemistry Communication, 2019, 106, 22-26.	1.8	4
1410	Ultrathin 2D Cu-porphyrin MOF nanosheets as a heterogeneous catalyst for styrene oxidation. Materials Chemistry Frontiers, 2019, 3, 1580-1585.	3.2	45
1411	Zr and Hf-metal-organic frameworks: Efficient and recyclable heterogeneous catalysts for the synthesis of 2-arylbenzoxazole via ring open pathway acylation reaction. Journal of Catalysis, 2019, 374, 110-117.	3.1	27
1412	Metal-organic framework containing BrÃ,nsted acidity and Lewis acidity for efficient conversion glucose to levulinic acid. Fuel Processing Technology, 2019, 193, 1-6.	3.7	45
1413	A copper-amidocarboxylate based metal organic macrocycle and framework: synthesis, structure and catalytic activities towards microwave assisted alcohol oxidation and Knoevenagel reactions. New Journal of Chemistry, 2019, 43, 9843-9854.	1.4	16
1414	Ab Initio Flexible Force Field for Metal–Organic Frameworks Using Dummy Model Coordination Bonds. Journal of Chemical Theory and Computation, 2019, 15, 3666-3677.	2.3	9
1415	Photoluminescent organisms: how to make fungi glow through biointegration with lanthanide metal-organic frameworks. Scientific Reports, 2019, 9, 7302.	1.6	17
1416	Crystal Structures of Compounds Obtained in Reactions of Heterometallic Pivalate Complexes With Dicarboxylic Acids. Journal of Structural Chemistry, 2019, 60, 609-616.	0.3	8
1417	A Titanium(IV)â€Based Metal–Organic Framework Featuring Defectâ€Rich Tiâ€O Sheets as an Oxidative Desulfurization Catalyst. Angewandte Chemie, 2019, 131, 9258-9263.	1.6	37

#	Article	IF	CITATIONS
1418	Photochromism of four 1D coordination polymers based on 1-(2-carboxyethyl)-4,4′-bipyridinium ligand. Dyes and Pigments, 2019, 170, 107552.	2.0	11
1419	Structural Transformations in the Thermal Dehydration of [Cu2(bpa)(btec)(H2O)4]n Coordination Polymer. Molecules, 2019, 24, 1840.	1.7	2
1420	Cooperative catalysis at the metal–MOF interface: hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF. Dalton Transactions, 2019, 48, 8573-8577.	1.6	44
1421	Syntheses, structures, fluorescence sensing properties and white-light emission of lanthanide coordination polymers assembled from imidazophenanthroline derivative and isophthalate ligands. Journal of Solid State Chemistry, 2019, 276, 6-18.	1.4	10
1422	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	5.6	214
1423	Surfactants as promising media in the field of metal-organic frameworks. Coordination Chemistry Reviews, 2019, 391, 30-43.	9.5	296
1424	Fabrication of Photoactuators: Macroscopic Photomechanical Responses of Metal–Organic Frameworks to Irradiation by UV Light. Angewandte Chemie, 2019, 131, 9553-9558.	1.6	22
1425	A Titanium(IV)â€Based Metal–Organic Framework Featuring Defectâ€Rich Tiâ€O Sheets as an Oxidative Desulfurization Catalyst. Angewandte Chemie - International Edition, 2019, 58, 9160-9165.	7.2	99
1426	Fabrication of Photoactuators: Macroscopic Photomechanical Responses of Metal–Organic Frameworks to Irradiation by UV Light. Angewandte Chemie - International Edition, 2019, 58, 9453-9458.	7.2	132
1427	Synthesis, Crystal Structures, and Magnetic Properties of Three Cobalt(II) Coordination Polymers Constructed from 3,5-Pyridinedicarboxylic Acid or 3,4-Pyridinedicarboxylic Acid Ligands. Crystals, 2019, 9, 166.	1.0	7
1428	Cobalt imine–pyridine–carbonyl complex functionalized metal–organic frameworks as catalysts for alkene epoxidation. Transition Metal Chemistry, 2019, 44, 595-602.	0.7	7
1429	Promising application of MOF as composite solid electrolytes via clathrates of ionic liquid. Inorganica Chimica Acta, 2019, 491, 128-131.	1.2	10
1430	Salting-in species induced self-assembly of stable MOFs. Chemical Science, 2019, 10, 5743-5748.	3.7	36
1431	Structural tuning of zinc–porphyrin frameworks <i>via</i> auxiliary nitrogen-containing ligands towards selective adsorption of cationic dyes. Chemical Communications, 2019, 55, 6527-6530.	2.2	23
1432	Sorption and Transport of Vapors in ZIF-11: Adsorption, Diffusion, and Linker Flexibility. Journal of Physical Chemistry C, 2019, , .	1.5	16
1433	Strontium arboxylateâ€Based Coordination Polymers: Synthesis, Structure and Dielectric Properties. ChemistrySelect, 2019, 4, 4756-4766.	0.7	8
1434	A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous and Mesoporous Materials, 2019, 284, 459-467.	2.2	47
1435	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828	18.7	1,685

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1436	Peptide-based capsules with chirality-controlled functionalized interiors $\hat{a} \in \hat{a}$ rational de amplification from dynamic combinatorial libraries. Chemical Science, 2019, 10, 4412-	sign and 4421.	3.7	17
1437	Thermal decomposition of inclusion compounds and metal–organic frameworks on t heterometallic complex [Li2Zn2(bpdc)3]. Journal of Thermal Analysis and Calorimetry, 4453-4461.	he basis of 2019, 138,	2.0	3
1438	Electrochemical performance of MOF-5 derived carbon nanocomposites with 1D, 2D as structures. Electrochimica Acta, 2019, 307, 582-594.	nd 3D carbon	2.6	29
1439	A new cationic silver(I)/melamine coordination polymer, [Ag2(melamine)]2+: Synthesis characterization and potential use for aqueous contaminant anion exchange. Journal o Chemistry, 2019, 274, 168-175.	, f Solid State	1.4	21
1440	The effect of the coordination orientation of N atoms on polymeric structures: synthes characterization of one- and two-dimensional Cu ^{II} coordination polymers 4-amino-3-(pyridin-2-yl)-5-[(pyridin-3-ylmethyl)sulfanyl]-1,2,4-triazole. Acta Crystallogra Structural Chemistry, 2019, 75, 443-450.	is and based on phica Section C,	0.2	0
1441	Density Functional Theory Studies of Catalytic Sites in Metal- Organic Frameworks. , 0,			3
1442	Efficient Conversion of CO ₂ via Grafting Urea Group into a [Cu ₂ (COO) ₄]-Based Metal–Organic Framework with Hiera Inorganic Chemistry, 2019, 58, 4385-4393.	archical Porosity.	1.9	43
1443	Supramolecular strategy for smart windows. Chemical Communications, 2019, 55, 413	37-4149.	2.2	85
1444	A mild and efficient method for the synthesis of pyrroles using MIL-53(Al) as a catalyst solvent-free sonication. RSC Advances, 2019, 9, 9093-9098.	under	1.7	21
1445	Rapid, Roomâ€Temperature and Templateâ€Free Synthesis of Metalâ€Organic Framew Alcohol. ChemCatChem, 2019, 11, 2058-2062.	vork Nanowires in	1.8	16
1446	Label-free electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene sensitive detection of monensin in milk. Sensors and Actuators B: Chemical, 2019, 288	composites for 3, 571-578.	4.0	50
1447	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Che 7, 2398-2420.	mistry B, 2019,	2.9	34
1448	Supramolecular Chemistry and Self-Organization: A Veritable Playground for Catalysis. 2019, 9, 163.	Catalysts,	1.6	22
1449	Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of Coordination Chemistry Reviews, 2019, 388, 63-78.	photocatalyst.	9.5	235
1450	Syntheses, Structures, and Magnetic Properties of Mixed-ligand Complexes of Co(II) Ba N-Heterocyclic and Different Carboxylate Ligands. Journal of Chemical Crystallography, 267-274.	ased on 2019, 49,	0.5	0
1451	Construction of bifunctional 2-fold interpenetrated Zn(<scp>ii</scp>) MOFs exhibiting CO ₂ adsorption and aqueous-phase sensing of 2,4,6-trinitrophenol. Inorga Frontiers, 2019, 6, 1058-1067.	selective anic Chemistry	3.0	48
1452	Oxidative amidation of benzyl alcohol, benzaldhyde, benzoic acid styrene and phenyl a catalyzed by ordered mesoporous HKUSTâ€1â€Cu: Effect of surface area on oxidative Applied Organometallic Chemistry, 2019, 33, e4822.	cetylene amidation reaction.	1.7	17
1453	Ultrasound-assisted synthesis of UiO-66-NHSO3H via post-synthetic modification as a BrÃ,nsted acid catalyst. Polyhedron, 2019, 165, 152-161.	heterogeneous	1.0	22

#	Article	IF	CITATIONS
1454	MIL-101-SO ₃ H metal–organic framework as a BrÃุnsted acid catalyst in Hantzsch reaction: an efficient and sustainable methodology for one-pot synthesis of 1,4-dihydropyridine. New Journal of Chemistry, 2019, 43, 6806-6814.	1.4	25
1455	Four Novel Coordination Polymers Based on Flexible 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene Ligand: Synthesis, Structure, Luminescence and Magnetic Properties. Journal of Cluster Science, 2019, 30, 777-787.	1.7	5
1456	Postfunctionalized Metalloligand-Based Catenated Coordination Polymers: Syntheses, Structures, and Effect of Labile Sites on Catalysis. Crystal Growth and Design, 2019, 19, 2723-2735.	1.4	7
1457	A Critical Review of Solid Materials for Low-Temperature Thermochemical Storage of Solar Energy Based on Solid-Vapour Adsorption in View of Space Heating Uses. Molecules, 2019, 24, 945.	1.7	35
1458	Humidityâ€Resistive Triboelectric Nanogenerator Fabricated Using Metal Organic Framework Composite. Advanced Functional Materials, 2019, 29, 1807655.	7.8	189
1459	Design and development of novel Coâ€MOF nanostructures as an excellent catalyst for alcohol oxidation and Henry reaction, with a potential antibacterial activity. Applied Organometallic Chemistry, 2019, 33, e4820.	1.7	16
1460	Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies. Chemical Engineering Science, 2019, 201, 288-297.	1.9	38
1461	Flexible and Transferable ab Initio Force Field for Zeolitic Imidazolate Frameworks: ZIF-FF. Journal of Physical Chemistry A, 2019, 123, 3000-3012.	1.1	34
1462	Synthesis, crystal structures and dye removal properties of a series of metal-organic frameworks based on N-heterocyclic carboxylic acid ligands. Microporous and Mesoporous Materials, 2019, 282, 82-90.	2.2	21
1463	Design of Novel Oligomeric Mixed Ligand Complexes: Preparation, Biological Applications and the First Example of Their Nanosized Scale. International Journal of Molecular Sciences, 2019, 20, 743.	1.8	11
1464	Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 388, 268-292.	9.5	242
1465	A zinc(II) coordination polymer material with Lewis basic pyridyl sites: Structure, photoluminescence, and heterogeneous catalysis. Journal of Solid State Chemistry, 2019, 274, 81-85.	1.4	43
1466	A novel photochromic metal–organic framework with good anion and amine sensing. Dalton Transactions, 2019, 48, 6558-6563.	1.6	57
1467	Metal-organic framework (MOF-5) coated SERS active gold gratings: A platform for the selective detection of organic contaminants in soil. Analytica Chimica Acta, 2019, 1068, 70-79.	2.6	77
1468	A novel route for the generation of Co/CoZn/CoNi layered double hydroxides at ambient temperature. Inorganic Chemistry Frontiers, 2019, 6, 1415-1421.	3.0	12
1469	Two Cd(II) coordination polymers based on a tetra-imidazole ligand: Syntheses, structures and photoluminescence. Inorganica Chimica Acta, 2019, 492, 60-65.	1.2	11
1470	A Thorium Metalâ€Organic Framework with Outstanding Thermal and Chemical Stability. Chemistry - A European Journal, 2019, 25, 7114-7118.	1.7	39
1471	Lipase Immobilized Metalâ€Organic Frameworks as Remarkably Biocatalyst for Ester Hydrolysis: A One Step Approach for Lipase Immobilization. ChemistrySelect, 2019, 4, 3745-3751.	0.7	6

#	Article	IF	CITATIONS
1472	A Water Stable Cd ^{II} â€based Metalâ€Organic Framework as a Multifunctional Sensor for Selective Detection of Cu ²⁺ and Cr ₂ O ₇ ^{2–} lons. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 484-489.	0.6	10
1473	Application of Fe-MOFs in advanced oxidation processes. Research on Chemical Intermediates, 2019, 45, 3777-3793.	1.3	30
1474	pH-Modulated luminescence switching in a Eu-MOF: rapid detection of acidic amino acids. Journal of Materials Chemistry A, 2019, 7, 11127-11133.	5.2	108
1475	Cyclohexene Oxidation with H2O2 over Metal-Organic Framework MIL-125(Ti): The Effect of Protons on Reactivity. Catalysts, 2019, 9, 324.	1.6	15
1476	Selective, sensitive, and recyclable sensing of ascorbic acid in water based on a water-stable Zn (II) coordination polymer. Inorganic Chemistry Communication, 2019, 104, 129-133.	1.8	9
1477	A bifunctional luminescent Zn(II)-organic framework: Ionothermal synthesis, selective Fe(III) detection and cationic dye adsorption. Inorganic Chemistry Communication, 2019, 102, 215-220.	1.8	17
1478	A novel 2D Cu(II)-MOF as a heterogeneous catalyst for the cycloaddition reaction of epoxides and CO2 into cyclic carbonates. Journal of Molecular Structure, 2019, 1184, 557-561.	1.8	22
1479	Post-synthetic Modification of Metal-Organic Framework through Urethane Formation. Chemistry Letters, 2019, 48, 285-287.	0.7	4
1480	Boosting photocatalytic activity under visible-light by creation of PCN-222/g-C3N4 heterojunctions. Chemical Engineering Journal, 2019, 368, 165-174.	6.6	74
1481	Asymmetric Catalysis within the Chiral Confined Space of Metal–Organic Architectures. Small, 2019, 15, e1804770.	5.2	51
1482	Covalently hooked EOSIN-Y in a Zr(IV) framework as visible-light mediated, heterogeneous photocatalyst for efficient C H functionalization of tertiary amines. Journal of Catalysis, 2019, 371, 298-304.	3.1	42
1483	A Mn(II)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides. Microporous and Mesoporous Materials, 2019, 280, 372-378.	2.2	69
1484	Studies on catalytic activity of MIL-53(Al) and structure analogue DUT-5(Al) using bdc- and bpdc-ligands functionalized with l-proline in a solid-solution mixed-linker approach. Molecular Catalysis, 2019, 467, 70-77.	1.0	18
1485	In Situ Synthesis of a Sandwich-like Graphene@ZIF-67 Heterostructure for Highly Sensitive Nonenzymatic Glucose Sensing in Human Serums. ACS Applied Materials & Interfaces, 2019, 11, 9374-9384.	4.0	141
1486	Design of Nitrile Rubber with High Strength and Recycling Ability Based on Fe ³⁺ –Catechol Group Coordination. Industrial & Engineering Chemistry Research, 2019, 58, 3912-3920.	1.8	31
1487	Adaptive and Guest Responsive Supramolecular Porous Framework: Solvent Modulated Energy Transfer toward Fingerprint Sensing. Crystal Growth and Design, 2019, 19, 1514-1517.	1.4	7
1488	Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO ₂ at Mild Conditions Using Dual-Walled Nitrogen-Rich Three-Dimensional Porous Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 3925-3936.	1.9	111
1490	Amino functionalized Zn/Cd-metal–organic frameworks for selective CO ₂ adsorption and Knoevenagel condensation reactions. Dalton Transactions, 2019, 48, 4007-4014.	1.6	47

#	Article	IF	CITATIONS
1491	Functional Macroâ€Microporous Metal–Organic Frameworks for Improving the Catalytic Performance. Small Methods, 2019, 3, 1800547.	4.6	35
1492	Investigation of crystallographic structure, in vitro cytotoxicity and DNA interaction of two La(III) and Ce(IV) complexes containing dipicolinic acid and 4-dimethylaminopyridine. Polyhedron, 2019, 163, 20-32.	1.0	19
1493	Oneâ€5tep Construction of Hydrophobic MOFs@COFs Core–Shell Composites for Heterogeneous Selective Catalysis. Advanced Science, 2019, 6, 1802365.	5.6	134
1494	Integration of Metal Nanoparticles into Metal–Organic Frameworks for Composite Catalysts: Design and Synthetic Strategy. Small, 2019, 15, e1804849.	5.2	67
1495	Syntheses, structures, magnetism and electrocatalytic oxygen evolution for four cobalt, manganese and copper complexes with dinuclear, 1D and 3D structures. Dalton Transactions, 2019, 48, 3467-3475.	1.6	8
1496	Cerium Based Metal–Organic Frameworks as an Efficient Separator Coating Catalyzing the Conversion of Polysulfides for High Performance Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 1923-1931.	7.3	184
1497	Plasmon induced interfacial charge transfer across Zr-based metal-organic framework coupled Ag2WO4 heterojunction functionalized by Ag NPs: Efficient visible light photocatalyst. Chemical Physics Letters, 2019, 720, 7-14.	1.2	19
1498	Rational synthesis and dimensionality tuning of MOFs from preorganized heterometallic molecular complexes. Dalton Transactions, 2019, 48, 3676-3686.	1.6	28
1499	Microwaveâ€Assisted Synthesis as an Efficient Method to Enhance the Catalytic Activity of Zrâ€Based Metal Organic Framework UiOâ€66 in a Heterocyclization Reaction. Asian Journal of Organic Chemistry, 2019, 8, 2276-2281.	1.3	38
1500	Deep-Permeation Nanocomposite Structure of ZIF-8 inside Porous Poly(tetrafluoroethylene) by Flow Synergistic Synthesis. Industrial & Engineering Chemistry Research, 2019, 58, 23083-23092.	1.8	11
1501	Six new lanthanide metal–organic frameworks as luminescent sensors for the detection of 1-N, TDGA, UA, and HA in urine. Journal of Coordination Chemistry, 2019, 72, 3526-3543.	0.8	7
1502	A highly sensitive and selective "turn-on―fluorescent probe for detection of fleroxacin in human serum and urine based on a lanthanide functionalized metal–organic framework. Dalton Transactions, 2019, 48, 17945-17952.	1.6	38
1503	A Thiophene-2-carboxamide-Functionalized Zr(IV) Organic Framework as a Prolific and Recyclable Heterogeneous Catalyst for Regioselective Ring Opening of Epoxides. Inorganic Chemistry, 2019, 58, 16581-16591.	1.9	16
1504	A Versatile Porous Silver-Coordinated Material for the Heterogeneous Catalysis of Chemical Conversion with Propargylic Alcohols and CO2. Nanomaterials, 2019, 9, 1566.	1.9	15
1505	Three Ag ^I , Cu ^I and Cd ^{II} coordination polymers based on the new asymmetrical ligand 2-{4-[(1 <i>H</i> -imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole: syntheses, characterization and emission properties. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1690-1697.	0.2	0
1506	Structure of Metal Organic Frameworks and the Periodicity of Their Properties. Russian Journal of Physical Chemistry A, 2019, 93, 2331-2339.	0.1	1
1507	Network Coordination Polymers Based on Thieno[3,2-b]Thiophene-2,5-Dicarboxylic Acid. Journal of Structural Chemistry, 2019, 60, 1468-1473.	0.3	6
1508	Metal Organic Frameworks as Desulfurization Adsorbents of DBT and 4,6-DMDBT from Fuels. Molecules, 2019, 24, 4525.	1.7	61

#	Article	IF	CITATIONS
1509	Building MOF Nanocomposites with Oxidized Graphitic Carbon Nitride Nanospheres: The Effect of Framework Geometry on the Structural Heterogeneity. Molecules, 2019, 24, 4529.	1.7	14
1510	Band gap, sorption properties and fluorescence sensing behaviour of a novel 1D→2D cathenane-like cobalt(II)–organic framework. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1593-1604.	0.2	3
1511	Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. Journal of the American Chemical Society, 2019, 141, 20016-20021.	6.6	106
1512	Unusual adsorption behaviours and responsive structural dynamics <i>via</i> selective gate effects of an hourglass porous metal–organic framework. RSC Advances, 2019, 9, 37222-37231.	1.7	3
1513	The effects of active site and support on hydrogen elimination over transition-metal-functionalized yttria-decorated metal–organic frameworks. Catalysis Science and Technology, 2019, 9, 7003-7015.	2.1	5
1514	Construction of homochiral alkaline–lanthanide heteronuclear helicates with Na ⁺ -selective bonding in the self-assembly process. Dalton Transactions, 2019, 48, 14595-14599.	1.6	9
1515	Water-soluble lanthanide coordination polymers particles with white-light emission and color tuning. RSC Advances, 2019, 9, 32137-32140.	1.7	10
1516	A novel fluorescence phenomenon caused by amine induced ion-exchange between Cd2+ and Fe3+ ions. RSC Advances, 2019, 9, 39854-39857.	1.7	0
1517	A Zn(<scp>ii</scp>) metal–organic framework based on bimetallic paddle wheels as a luminescence indicator for carcinogenic organic pollutants: phthalate esters. RSC Advances, 2019, 9, 37101-37108.	1.7	5
1518	A low cytotoxic porous zinc-adeninate metal-organic framework carrier: pH-triggered drug release and anti-breast cancer study. Journal of the Iranian Chemical Society, 2019, 16, 65-71.	1.2	8
1519	Metal-organic framework thin films from copper hydroxide nano-assemblies. Journal of Sol-Gel Science and Technology, 2019, 89, 128-134.	1.1	7
1520	Three 1D coordination polymers based on bipyridinium carboxylate ligands: Photochromism. Dyes and Pigments, 2019, 160, 476-482.	2.0	21
1521	Dramatic Synergy in CoPt Nanocatalysts Stabilized by "Click―Dendrimers for Evolution of Hydrogen from Hydrolysis of Ammonia Borane. ACS Catalysis, 2019, 9, 1110-1119.	5.5	157
1522	Highly selective functional luminescent sensor toward Cr(VI)/Fe(III) ion and nitrobenzene based on metal–organic frameworks: Synthesis, structures, and properties. Journal of Solid State Chemistry, 2019, 270, 651-665.	1.4	24
1523	A Flexible Cu-MOF as Crystalline Sponge for Guests Determination. Inorganic Chemistry, 2019, 58, 61-64.	1.9	22
1524	Efficient MOF-Sensitized Solar Cells Featuring Solvothermally Grown [100]-Oriented Pillared Porphyrin Framework-11 Films on ZnO/FTO Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 3196-3206.	4.0	38
1525	Zr-Metal–Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols. ACS Applied Materials & Interfaces, 2019, 11, 3034-3043.	4.0	40
1526	Complex Phase Behaviour and Structural Transformations of Metalâ€Organic Frameworks with Mixed Rigid and Flexible Bridging Ligands. Chemistry - A European Journal, 2019, 25, 1353-1362.	1.7	2

#	Article	IF	CITATIONS
1527	New Bifunctional Metal–Organic Frameworks and Their Utilization in One-Pot Tandem Catalytic Reactions. Crystal Growth and Design, 2019, 19, 747-755.	1.4	45
1528	Enzymeâ€Driven Release of Loads from Nucleic Acid–Capped Metal–Organic Framework Nanoparticles. Advanced Functional Materials, 2019, 29, 1805341.	7.8	41
1529	Direct synthesis of metal-organic frameworks catalysts with tunable acid–base strength for glucose dehydration to 5-hydroxymethylfurfural. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 93-103.	2.7	34
1530	Linker Competition within a Metal–Organic Framework for Topological Insights. Inorganic Chemistry, 2019, 58, 1513-1517.	1.9	29
1531	In Situ Generation of an Nâ€Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 2844-2849.	7.2	73
1532	Metal–Organic Framework (MOF) Template Based Efficient Pt/ZrO ₂ @C Catalysts for Selective Catalytic Reduction of H ₂ Below 90 °C. Chemistry - an Asian Journal, 2019, 14, 416-421.	1.7	19
1533	Determination of heat capacities and thermodynamic properties of Al4(OH)2(OCH3)4(H2N-BDC)3. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3233-3239.	2.0	1
1534	Metal–Organic Frameworks Constructed from Group 1 Metals (Li, Na) and Silicon-Centered Linkers. Crystal Growth and Design, 2019, 19, 487-497.	1.4	12
1535	In Operando Analysis of Diffusion in Porous Metalâ€Organic Framework Catalysts. Chemistry - A European Journal, 2019, 25, 3465-3476.	1.7	42
1536	An Amineâ€Functionalized Zirconium Metal–Organic Polyhedron Photocatalyst with High Visible‣ight Activity for Hydrogen Production. Chemistry - A European Journal, 2019, 25, 2824-2830.	1.7	53
1537	Functionalized Mn(II)-MOF based on host-guest interaction for selective and rapid capture of Congo red from water. Journal of Solid State Chemistry, 2019, 270, 697-704.	1.4	24
1538	Tuning acidity in zirconium-based metal organic frameworks catalysts for enhanced production of butyl butyrate. Applied Catalysis A: General, 2019, 570, 31-41.	2.2	36
1539	Promoted Glycerol Oxidation Reaction in an Interfaceâ€Confined Hierarchically Structured Catalyst. Advanced Materials, 2019, 31, e1804763.	11.1	40
1540	Metal Organic Frameworks (MOFs) and ultrasound: A review. Ultrasonics Sonochemistry, 2019, 52, 106-119.	3.8	213
1541	Selective uptake of cationic organic dyes in a series of isostructural Co2+/Cd2+ metal-doped metal–organic frameworks. Journal of Solid State Chemistry, 2019, 270, 180-186.	1.4	6
1542	A Versatile Metalloporphyrinic Framework Platform for Highly Efficient Bioinspired, Photo―and Asymmetric Catalysis. Angewandte Chemie - International Edition, 2019, 58, 168-172.	7.2	25
1543	Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches. Catalysis Today, 2019, 336, 3-21.	2.2	70
1544	A Versatile Metalloporphyrinic Framework Platform for Highly Efficient Bioinspired, Photo―and Asymmetric Catalysis. Angewandte Chemie, 2019, 131, 174-178.	1.6	4

		CITATION REPORT		
#	Article		IF	Citations
1545	Metal–organic frameworks: Structures and functional applications. Materials Today, 2	019, 27, 43-68.	8.3	627
1546	Metal–organic frameworks (MOFs) for the removal of emerging contaminants from ac environments. Coordination Chemistry Reviews, 2019, 380, 330-352.	quatic	9.5	447
1547	Functionâ€Oriented: The Construction of Lanthanide MOF Luminescent Sensors Contain Dualâ€Function Urea Hydrogenâ€Bond Sites for Efficient Detection of Picric Acid. Chem Journal, 2019, 25, 1090-1097.	ning istry - A European	1.7	64
1548	A water stable metal–organic framework with 1D nanotube pores for 5-fluorouracil de anti-brain tumor activity. Journal of the Iranian Chemical Society, 2019, 16, 757-763.	livery and	1.2	1
1549	A bifunctional metal–organic framework platform for catalytic applications. Polyhedro 382-386.	n, 2019, 159,	1.0	3
1550	Lanthanide-2,3,5,6-Tetrabromoterephthalic Acid Metal–Organic Frameworks: Evolutio Halogen··Ĥalogen Interactions across the Lanthanide Series and Their Potential as S Bifunctional Sensors for the Detection of Fe ³⁺ , Cu ²⁺ , and Nit Crystal Growth and Design 2019 19 305-319	h of elective roaromatics.	1.4	86
1551	Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Researc Catalysis, 2019, 9, 1779-1798.	h. ACS	5.5	622
1552	Functionalization of a Metal-Organic Framework Semiconductor for Tuned Band Structu Catalytic Activity. Journal of the Electrochemical Society, 2019, 166, H3029-H3034.	re and	1.3	44
1553	Coll Complexes with a Tripyridine Ligand, Containing a 2,6-Di-tert-butylphenolic Fragmer Structure, and Formation of Stable Radicals. ACS Omega, 2019, 4, 203-213.	ıt: Synthesis,	1.6	3
1554	In Situ Generation of an Nâ€Heterocyclic Carbene Functionalized Metal–Organic Fram Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO 2. Angewar 2019, 131, 2870-2875.	ework by ndte Chemie,	1.6	25
1555	Mesoporous SBA-15/PIDA as a Dendrimer Zwitterionic Amino Acid-Type Organocatalyst Three-Component Indazolophtalazine Synthesis. Catalysis Letters, 2019, 149, 591-600.	for	1.4	21
1556	Acid and light stimuli-responsive mesoporous silica nanoparticles for controlled release. J Materials Science, 2019, 54, 6199-6211.	ournal of	1.7	38
1557	Perovskite Oxide Catalysts for Liquid-Phase Organic Reactions. Bulletin of the Chemical S Japan, 2019, 92, 133-151.	Society of	2.0	46
1558	Photosensitizing single-site metalâ~'organic framework enabling visible-light-driven CO2 syngas production. Applied Catalysis B: Environmental, 2019, 245, 496-501.	reduction for	10.8	119
1559	Flexible and breathing metal–organic framework with high and selective carbon dioxid versus nitrogen. Polyhedron, 2019, 161, 56-62.	e storage	1.0	16
1561	Catalysis through Dynamic Spacer Installation of Multivariate Functionalities in Metalâ€ Frameworks. Journal of the American Chemical Society, 2019, 141, 2589-2593.	'Organic	6.6	98
1562	Effect of the support morphology on the performance of Co nanoparticles deposited on metal–organic framework MIL-53(AI) in Fischer–Tropsch synthesis. Polyhedron, 201	9, 157, 389-395.	1.0	17
1563	Ultrahigh Catalytic Activity of <scp>l</scp> â€Prolineâ€Functionalized Rh Nanoparticles of Ammonia Borane. ChemSusChem, 2019, 12, 535-541.	for Methanolysis	3.6	48

* Arrice If Cranese 1844				Cr	ΓΑΤΙΟΝ	Repo	ORT	
	#	Article				I	F	CITATIONS
	1564							

#	Article	IF	CITATIONS
1582	A competent green methodology for the synthesis of aryl thioethers and 1H-tetrazole over magnetically retrievable novel CoFe2O4@l-asparagine anchored Cu, Ni nanocatalyst. Materials Science and Engineering C, 2020, 107, 110260.	3.8	40
1583	Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications. Advanced Powder Technology, 2020, 31, 104-120.	2.0	28
1584	Optimization of the transfer hydrogenation reaction of acetophenone on Ni@MOF-5 nanoparticles using response surface methodology. Research on Chemical Intermediates, 2020, 46, 445-458.	1.3	10
1585	β-CD-SO3H: Synthesis, Characterization and Its Application for the Synthesis of Benzylpyrazolyl Naphthoquinone and Pyrazolo Pyranopyrimidine Derivatives in Water. Catalysis Letters, 2020, 150, 127-137.	1.4	15
1586	Mechanical properties and decomposition performance of peelable coating containing UiO-66 catalyst and waterborne silane-terminated polyurethane dispersions. Journal of Materials Science, 2020, 55, 2604-2617.	1.7	13
1587	Mixed-ligand strategy affording two 6-connected 3-fold interpenetrated metal-organic frameworks with binuclear Coll2/Nill2 subunits: Synthesis, crystal structures and magnetic properties. Inorganic Chemistry Communication, 2020, 111, 107624.	1.8	8
1588	Novel construction of nanostructured carbon materials as sulfur hosts for advanced lithiumâ€sulfur batteries. International Journal of Energy Research, 2020, 44, 70-91.	2.2	25
1589	A urea-containing metal-organic framework as a multifunctional heterogeneous hydrogen bond-donating catalyst. Catalysis Communications, 2020, 135, 105837.	1.6	19
1590	Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Materials Horizons, 2020, 7, 32-53.	6.4	61
1591	Selective hydrogenolysis of lignin-derived aryl ethers over Co/C@N catalysts. Renewable Energy, 2020, 148, 729-738.	4.3	42
1592	A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution. Dyes and Pigments, 2020, 173, 107993.	2.0	94
1593	Using Supercritical CO2 in the Preparation of Metal-Organic Frameworks: Investigating Effects on Crystallisation. Crystals, 2020, 10, 17.	1.0	9
1594	The Advent of Electrically Conducting Double-Helical Metal–Organic Frameworks Featuring Butterfly-Shaped Electron-Rich ï€-Extended Tetrathiafulvalene Ligands. ACS Applied Materials & Interfaces, 2020, 12, 12955-12961.	4.0	38
1595	Construction of a bifunctional Zn(<scp>ii</scp>)–organic framework containing a basic amine functionality for selective capture and room temperature fixation of CO ₂ . Inorganic Chemistry Frontiers, 2020, 7, 72-81.	3.0	46
1596	Fluorescent nanosensor for <i>in situ</i> detection of phosphate and alkaline phosphatase in mice with parathyroid dysfunction. Chemical Communications, 2020, 56, 2431-2434.	2.2	18
1597	Synthesis of novel mesoporous sulfated zirconia nanosheets derived from Zr-based metal–organic frameworks. CrystEngComm, 2020, 22, 44-51.	1.3	8
1598	Chemical fixation of CO ₂ into cyclic carbonates catalyzed by bimetal mixed MOFs: the role of the interaction between Co and Zn. Dalton Transactions, 2020, 49, 312-321.	1.6	52
1599	The synthesis and applications of chiral pyrrolidine functionalized metal–organic frameworks and covalent-organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 1319-1333.	3.0	14

#	Article	IF	CITATIONS
1600	Free-standing 3D nitrogen–carbon anchored Cu nanorod arrays: <i>in situ</i> derivation from a metal–organic framework and strategy to stabilize lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 1425-1431.	5.2	17
1601	Temperature/Solvent-Induced Two Magnetic Nickel Coordination Compounds with 5-Aminodiacetic Isophthalate. Journal of Cluster Science, 2020, 31, 1199-1206.	1.7	0
1602	Temperature-induced Sn(II) supramolecular isomeric frameworks as promising heterogeneous catalysts for cyanosilylation of aldehydes. Science China Chemistry, 2020, 63, 182-186.	4.2	38
1603	Tuning Lewis acidity of MIL-88B-Fe with mix-valence coordinatively unsaturated iron centers on ultrathin Ti3C2 nanosheets for efficient photo-Fenton reaction. Applied Catalysis B: Environmental, 2020, 264, 118534.	10.8	102
1604	Nitrogen precursor-mediated construction of N-doped hierarchically porous carbon-supported Pd catalysts with controllable morphology and composition. Carbon, 2020, 159, 451-460.	5.4	50
1605	Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coordination Chemistry Reviews, 2020, 406, 213145.	9.5	366
1606	A unique 6-connected three dimensional cobalt (II) coordination compound: Preparation, structure and magnetic properties. Inorganic Chemistry Communication, 2020, 112, 107732.	1.8	2
1607	Tunable morphology and the changeable catalytic property of layered scandium coordination polymer. Journal of Solid State Chemistry, 2020, 283, 121151.	1.4	3
1608	Synthesis and Catalytic Properties of Porous Metal Silica Materials Templated and Functionalized by Extended Coordination Cages. Inorganic Chemistry, 2020, 59, 767-776.	1.9	16
1609	In Silico Investigation into H ₂ Uptake in MOFs: Combined Text/Data Mining and Structural Calculations. Langmuir, 2020, 36, 119-129.	1.6	6
1610	Strategies to Improve Electrical and Ionic Conductivities of Metal–Organic Frameworks. Comments on Inorganic Chemistry, 2020, 40, 86-106.	3.0	9
1611	Structure and Thermodynamic Stability of Zeolitic Imidazolate Framework Surfaces. Journal of Physical Chemistry C, 2020, 124, 1458-1468.	1.5	9
1612	Polynuclear and coordination polymers of copper(II) complexes assembled by flexible polyamines and bridging rigid N-heterocyclic multicarboxylates. Inorganica Chimica Acta, 2020, 500, 119240.	1.2	5
1613	Two novel 3D MOFs based on the flexible (E)-1,4-di(1H-imidazol-1-yl)but-2-ene and multi-carboxylate ligands: Synthesis, structural diversity and luminescence property. Inorganic Chemistry Communication, 2020, 111, 107641.	1.8	4
1614	Structural transformation of two copper coordination polymers and their enhanced benzene vapor selective detection. Inorganica Chimica Acta, 2020, 501, 119241.	1.2	4
1615	Two zinc metal–organic framework isomers based on pyrazine tetracarboxylic acid and dipyridinylbenzene for adsorption and separation of CO ₂ and light hydrocarbons. Dalton Transactions, 2020, 49, 1135-1142.	1.6	25
1616	Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts. IScience, 2020, 23, 100793.	1.9	16
1617	Creation of Redoxâ€Active PdS <i>_x</i> Nanoparticles Inside the Defect Pores of MOF UiOâ€66 with Unique Semihydrogenation Catalytic Properties. Advanced Functional Materials, 2020, 30, 1908519.	7.8	24

#	Article	IF	CITATIONS
1618	A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angewandte Chemie, 2020, 132, 3933-3937.	1.6	10
1619	CO2 fixation by cycloaddition of mono/disubstituted epoxides using acyl amide decorated Co(II) MOF as a synergistic heterogeneous catalyst. Applied Catalysis A: General, 2020, 590, 117375.	2.2	42
1620	A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angewandte Chemie - International Edition, 2020, 59, 3905-3909.	7.2	63
1621	Scrutinizing the Pore Chemistry and the Importance of Cu(I) Defects in TCNQ-Loaded Cu ₃ (BTC) ₂ by a Multitechnique Spectroscopic Approach. ACS Applied Materials & Interfaces, 2020, 12, 1024-1035.	4.0	17
1622	Zn0.5Cd0.5S/MIL-125-NH2(Ti) nanocomposites: Highly efficient and stable photocatalyst for hydrogen production under visible light. Inorganic Chemistry Communication, 2020, 112, 107714.	1.8	14
1623	Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications. Advanced Science, 2020, 7, 1902590.	5.6	199
1624	Metal-organic framework-based nanomaterials for biomedical applications. Chinese Chemical Letters, 2020, 31, 1060-1070.	4.8	88
1625	Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. ACS Applied Materials & Interfaces, 2020, 12, 14678-14689.	4.0	44
1626	Novel Antibacterial Azelaic Acid BioMOFs. Crystal Growth and Design, 2020, 20, 370-382.	1.4	37
1627	Metal–Organic Framework Based on Heptanuclear Cu–O Clusters and Its Application as a Recyclable Photocatalyst for Stepwise Selective Catalysis. Inorganic Chemistry, 2020, 59, 254-263.	1.9	13
1628	Two three-dimensional Sc(III)-MOFs: Synthesis, crystal structure and catalytic property. Inorganica Chimica Acta, 2020, 501, 119304.	1.2	7
1629	Self-assembly of two Ag(I) metal-organic frameworks based on tri(pyridin-4-yl)amine: Crystal structures, anion-directed effect, and Cr2O72â^' capture behaviour. Inorganic Chemistry Communication, 2020, 112, 107733.	1.8	5
1630	Tough, Stretchable, Compressive Double Network Hydrogel Using Natural Glycyrrhizic Acid Tailored Low-Molecular-Weight Gelator Strategy: In Situ Spontaneous Formation of Au Nanoparticles To Generate a Continuous Flow Reactor. ACS Applied Materials & Interfaces, 2020, 12, 4927-4933.	4.0	20
1631	Product Control in Conversion of Ethanol on MILâ€101(Cr) with Adjustable BrÃ,nsted Acid Density. ChemCatChem, 2020, 12, 6234-6240.	1.8	2
1632	Functionalized separator for next-generation batteries. Materials Today, 2020, 41, 143-155.	8.3	87
1633	Non-noble metal catalysts for transfer hydrogenation of levulinic acid: The role of surface morphology and acid-base pairs. Materials Today Energy, 2020, 18, 100501.	2.5	13
1634	A highly stable polyoxovanadate-based Cu(<scp>i</scp>)–MOF for the carboxylative cyclization of CO ₂ with propargylic alcohols at room temperature. Green Chemistry, 2020, 22, 7513-7520.	4.6	37
1635	Exciton Coupling and Conformational Changes Impacting the Excited State Properties of Metal Organic Frameworks. Molecules, 2020, 25, 4230.	1.7	9

#	Article	IF	CITATIONS
1636	Synthesis and Characterization of 2D Metal-Organic Frameworks for Adsorption of Carbon Dioxide and Hydrogen. Frontiers in Chemistry, 2020, 8, 581226.	1.8	5
1637	The chemistry of Ce-based metal–organic frameworks. Dalton Transactions, 2020, 49, 16551-16586.	1.6	76
1638	Bismuth-based metal–organic framework prepared by pulsed laser ablation method in liquid. Journal of Theoretical and Applied Physics, 2020, 14, 1-8.	1.4	5
1639	PtNi bimetallic structure supported on UiO-67 metal-organic framework (MOF) during CO oxidation. Journal of Catalysis, 2020, 391, 522-529.	3.1	7
1640	A Ligandâ€Ðoped Silver Triazolate MOF on the Removal of Diclofenac Sodium via Anion Exchange. ChemistrySelect, 2020, 5, 11948-11954.	0.7	8
1641	Rare-earth metal–organic frameworks as advanced catalytic platforms for organic synthesis. Coordination Chemistry Reviews, 2020, 425, 213543.	9.5	49
1642	Metal-organic frameworks for flame retardant polymers application: A critical review. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106113.	3.8	80
1643	A Flexible–Robust Copper(II) Metal–Organic Framework Constructed from a Fluorinated Ligand for CO ₂ /R22 Capture. Inorganic Chemistry, 2020, 59, 14856-14860.	1.9	14
1644	Synthetic strategies to incorporate Ru-terpyridyl water oxidation catalysts into MOFs: direct synthesis <i>vs.</i> post-synthetic approach. Dalton Transactions, 2020, 49, 13753-13759.	1.6	7
1645	Modulating Magnetic and Photoluminescence Properties in 2â€Aminonicotinateâ€Based Bifunctional Coordination Polymers by Merging 3d Metal Ions. Chemistry - A European Journal, 2020, 26, 13484-13498.	1.7	8
1646	Polar Sulfone-Functionalized Oxygen-Rich Metal–Organic Frameworks for Highly Selective CO ₂ Capture and Sensitive Detection of Acetylacetone at ppb Level. ACS Applied Materials & Interfaces, 2020, 12, 11724-11736.	4.0	53
1647	Growth of Crystalline Bimetallic Metal–Organic Framework Films via Transmetalation. Langmuir, 2020, 36, 9900-9908.	1.6	6
1648	The synthesis of metal–organic frameworks with template strategies. Dalton Transactions, 2020, 49, 11467-11479.	1.6	38
1649	Spatially Nanoconfined Architectures: A Promising Design for Selective Catalytic Reduction of NO _x . ChemCatChem, 2020, 12, 5599-5610.	1.8	15
1650	ZIFâ€8 Catalysed Efficient Synthesis of Dicyano Alkyl Quinoline Derivatives in Aqueous Medium. ChemistrySelect, 2020, 5, 8218-8220.	0.7	0
1651	Structural variability, topology and luminescent properties of three new cadmium (II) coordination polymers based on 4′,4′,4′-[(trimethylamino)]-tris[(1,1′-biphenyl)-2-carboxylate]. Journal of Molecular Structure, 2020, 1217, 128411.	1.8	7
1652	Three Different Co(II) Metal–Organic Frameworks Based on 4,4′-Bis(imidazolyl)diphenyl Ether: Syntheses, Crystal Structure and Photocatalytic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 5148-5156.	1.9	30
1653	Metal organic framework (MOF) modified with carbon black for boosting the ORR activity in alkaline electrolyte. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	CITATIONS
1654	MOFs Derived Catalysts Prepared by Pyrolysis for Hydrogenation of Bioâ€Based Furfural: A Miniâ€Review. ChemistrySelect, 2020, 5, 13681-13689.	0.7	10
1655	Efficient Calculation of Small Molecule Binding in Metal–Organic Frameworks and Porous Organic Cages. Journal of Physical Chemistry C, 2020, 124, 27529-27541.	1.5	32
1656	Influence of Missing Linker Defects on the Thermal Conductivity of Metal–Organic Framework HKUST-1. ACS Applied Materials & Interfaces, 2020, 12, 56172-56177.	4.0	25
1657	Nanoscale Hierarchically Micro- and Mesoporous Metal–Organic Frameworks for High-Resolution and High-Efficiency Capillary Electrochromatographic Separation. Analytical Chemistry, 2020, 92, 15655-15662.	3.2	20
1658	Flocculent Cu Caused by the Jahn–Teller Effect Improved the Performance of Mg-MOF-74 as an Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52864-52872.	4.0	50
1659	Recent Progress in Heavy Metal Ion Decontamination Based on Metal–Organic Frameworks. Nanomaterials, 2020, 10, 1481.	1.9	37
1660	Palladium nanoparticles anchored polydopamine-coated graphene oxide/Fe3O4 nanoparticles (GO/Fe3O4@PDA/Pd) as a novel recyclable heterogeneous catalyst in the facile cyanation of haloarenes using K4[Fe(CN)6] as cyanide source. Journal of Industrial and Engineering Chemistry, 2020, 90, 379-388.	2.9	43
1661	Construction of Multifunctional Luminescent Lanthanide MOFs by Hydrogen Bond Functionalization for Picric Acid Detection and Fluorescent Dyes Encapsulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13497-13506.	3.2	57
1662	2D lanthanide coordination polymers constructed from a semi-rigid tricarboxylic acid ligand: crystal structure, luminescence sensing and color tuning. CrystEngComm, 2020, 22, 6161-6169.	1.3	10
1663	Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chemistry, 2020, 22, 5902-5936.	4.6	75
1664	Luminescent metal–organic frameworks and their potential applications. Journal of Chemical Sciences, 2020, 132, 1.	0.7	34
1665	Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 424, 213488.	9.5	137
1666	Proton-Conductive Coordination Polymers Based on Diphenylsulfone-3,3′-disulfo-4,4′-dicarboxylate with Well-Defined Hydrogen Bonding Networks. Inorganic Chemistry, 2020, 59, 12314-12321.	1.9	12
1668	Anchoring Zn-phthalocyanines in the pore matrices of UiO-67 to improve highly the photocatalytic oxidation efficiency. Applied Catalysis B: Environmental, 2020, 279, 119350.	10.8	21
1669	Application of Ni-based metal-organic framework as heterogeneous catalyst for disulfide addition to acetylene. Catalysis Communications, 2020, 146, 106119.	1.6	8
1670	On-Chip Template-Directed Conversion of Metal Hydroxides to Metal–Organic Framework Films with Enhanced Adhesion. ACS Applied Materials & Interfaces, 2020, 12, 36715-36722.	4.0	11
1671	Engineering Porphyrin Metal–Organic Framework Composites as Multifunctional Platforms for CO ₂ Adsorption and Activation. Journal of the American Chemical Society, 2020, 142, 14548-14556.	6.6	54
1672	A new imidazole-functionalized 3D-cobalt metal-organic framework as a high efficiency heterogeneous catalyst for Knoevenagel condensation reaction of furfural. Journal of Molecular Structure, 2020, 1221, 128744.	1.8	5

#	Article	IF	CITATIONS
1673	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	5.2	93
1674	Microwave Assisted Surfactant-Thermal Synthesis of Metal-Organic Framework Materials. Applied Sciences (Switzerland), 2020, 10, 4563.	1.3	21
1675	Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chemical Society Reviews, 2020, 49, 6224-6247.	18.7	61
1676	Chiral covalent organic frameworks: design, synthesis and property. Chemical Society Reviews, 2020, 49, 6248-6272.	18.7	211
1677	Effect of Fe(<scp>iii</scp>)-based MOFs on the catalytic efficiency of the tandem cyclooxidative reaction between 2-aminobenzamide and alcohols. New Journal of Chemistry, 2020, 44, 14529-14535.	1.4	20
1678	A Mixedâ€Metal Porphyrinic Framework Promoting Gasâ€Phase CO ₂ Photoreduction without Organic Sacrificial Agents. ChemSusChem, 2020, 13, 6273-6277.	3.6	26
1679	Polycrystalline zirconium metal-organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration. Journal of Membrane Science, 2020, 615, 118551.	4.1	31
1680	Exploration of advanced porous organic polymers as a platform for biomimetic catalysis and molecular recognition. Chemical Communications, 2020, 56, 10631-10641.	2.2	29
1681	A visible-light responsive metal–organic framework as an eco-friendly photocatalyst under ambient air at room temperature. Inorganic Chemistry Frontiers, 2020, 7, 3541-3547.	3.0	8
1682	Facile Synthesis of Metal–Organic Framework (ZIFâ€11) and Ag NPs Encapsulatedâ€ZIFâ€11 Composite as an Effective Heterogeneous Catalyst for Photodegradation of Methylene Blue. Applied Organometallic Chemistry, 2020, 34, e5951.	1.7	14
1683	All-inorganic open frameworks based on gigantic four-shell Ln@W8@Ln8@(SiW12)6 clusters. Chemical Communications, 2020, 56, 10305-10308.	2.2	27
1684	Triethylamine as a tuning agent of the MIL-125 particle morphology and its effect on the photocatalytic activity. SN Applied Sciences, 2020, 2, 1.	1.5	5
1685	Highly stable Zn-MOF with Lewis basic nitrogen sites for selective sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2â^} ions in aqueous systems. Journal of Coordination Chemistry, 2020, 73, 2718-2727.	0.8	17
1686	Mild-temperature hydrogenation of carbonyls over Co-ZIF-9 derived Co-ZIF-x nanoparticle catalyst. Molecular Catalysis, 2020, 495, 111149.	1.0	3
1687	Structural evolution of ZIF-67-derived catalysts for furfural hydrogenation. Journal of Catalysis, 2020, 392, 302-312.	3.1	25
1688	A covalent deprotection strategy for assembling supramolecular coordination polymers from metal–organic cages. Chemical Communications, 2020, 56, 12969-12972.	2.2	20
1689	Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Transactions, 2020, 49, 14723-14730.	1.6	31
1690	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	18.7	367

#	Article	IF	Citations
1691	Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials. Chemistry of Materials, 2020, 32, 7822-7831.	3.2	27
1692	Metal phosphonates incorporating metalloligands: assembly, structures and properties. Chemical Communications, 2020, 56, 12090-12108.	2.2	36
1693	Multifunctional metal-organic frameworks in oil spills and associated organic pollutant remediation. Environmental Science and Pollution Research, 2020, 27, 42346-42368.	2.7	14
1694	Porphyrinic Metalâ€Organic Frameworks Derived Carbonâ€Based Nanomaterials for Hydrogen Evolution Reaction. ChemistrySelect, 2020, 5, 10988-10995.	0.7	5
1695	Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu ₃ (BTC) ₂ Transmetalated with Rh ²⁺ Ions. Journal of Physical Chemistry Letters, 2020, 11, 8138-8144.	2.1	16
1696	Insights into the Structure and Dynamics of Metal–Organic Frameworks via Transmission Electron Microscopy. Journal of the American Chemical Society, 2020, 142, 17224-17235.	6.6	57
1697	Construction of Zn(II) Linear Trinuclear Secondary Building Units from A Coordination Polymer Based on α-Acetamidocinnamic Acid and 4-Phenylpyridine. Molecules, 2020, 25, 3615.	1.7	9
1698	On-Surface Synthesis of Nitrogen-Substituted Gold-Phosphorus Porous Network. Chemistry of Materials, 2020, 32, 8561-8566.	3.2	3
1699	Steric Effect of a Capping Ligand on the Formation of Supramolecular Coordination Networks of Ni(II): Solid-State Entrapment of Cyclic Water Dimer. ACS Omega, 2020, 5, 21873-21882.	1.6	5
1700	Highly efficient visible-light-driven reduction of Cr(<scp>vi</scp>) from water by porphyrin-based metal–organic frameworks: effect of band gap engineering on the photocatalytic activity. Catalysis Science and Technology, 2020, 10, 7724-7733.	2.1	41
1701	Optical absorption properties of metal–organic frameworks: solid state <i>versus</i> molecular perspective. Physical Chemistry Chemical Physics, 2020, 22, 19512-19521.	1.3	14
1702	Ultrasonic Synthesis and Characterization of 2D and 3D Metal–Organic Frameworks and Their Application in the Oxidative Amidation Reaction. ACS Omega, 2020, 5, 21412-21419.	1.6	15
1703	Engineering micromechanics of soft porous crystals for negative gas adsorption. Chemical Science, 2020, 11, 9468-9479.	3.7	30
1704	Synthesis, Fluorescence, and Antifungal Activity of a Bifunctional Lead(<scp>II</scp>) Coordination Polymer Based on Multidentate Acylhydrazone Ligand. Bulletin of the Korean Chemical Society, 2020, 41, 1124-1127.	1.0	1
1705	Strategies for Controlling Through-Space Charge Transport in Metal-Organic Frameworks via Structural Modifications. Nanomaterials, 2020, 10, 2372.	1.9	4
1706	Electrostatic Design of Polar Metal–Organic Framework Thin Films. Nanomaterials, 2020, 10, 2420.	1.9	4
1707	Luminescent Metal–Organic Frameworks for White LEDs. Advanced Optical Materials, 2021, 9, 2001817.	3.6	71
1708	Application of MOF-based materials in electrochemical sensing. Dalton Transactions, 2020, 49, 17121-17129.	1.6	66

#	Article	IF	Citations
1709	<p>ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 10029-10043.	3.3	26
1710	Hybrid nanomaterials for asymmetric purposes: green enantioselective C–C bond formation by chiralization and multi-functionalization approaches. Catalysis Science and Technology, 2020, 10, 8240-8253	2.1	13
1711	Amine-functionalized metal–organic framework-based Pd nanoparticles: highly efficient multifunctional catalysts for base-free aerobic oxidation of different alcohols. New Journal of Chemistry, 2020, 44, 19113-19121.	1.4	3
1712	Zwitterionic hybrid aerobeads of binary metal organic frameworks and cellulose nanofibers for removal anionic pollutants. Materials and Design, 2020, 196, 109106.	3.3	29
1713	A Lanthanide-Containing Coordination Polymer Using Tetraphenylethene-Based Linkers with Selective Fe ³⁺ Sensing and Efficient Iodine Adsorption Activities. Inorganic Chemistry, 2020, 59, 16644-16653.	1.9	38
1714	Alkaline earth-organic frameworks with amino derivatives of 2,6-naphthalene dicarboxylates: structural studies and fluorescence properties. Dalton Transactions, 2020, 49, 16736-16744.	1.6	3
1715	The role of defects in the properties of functional coordination polymers. Advances in Inorganic Chemistry, 2020, 76, 73-119.	0.4	6
1716	Influence of thermally induced structural transformations on the magnetic and luminescence properties of tartrate-based chiral lanthanide organic-frameworks. Journal of Materials Chemistry C, 2020, 8, 8243-8256.	2.7	21
1717	Hexnuclear Cadmium(II) Cluster Constructed from Tris(2-methylpyridyl)amine (TPA) and Azides. Crystals, 2020, 10, 317.	1.0	7
1718	Construction of NH2-MIL-125(Ti) nanoplates modified Bi2WO6 microspheres with boosted visible-light photocatalytic activity. Research on Chemical Intermediates, 2020, 46, 3311-3326.	1.3	20
1719	Novel metal–organic framework of UTSA-16 (Zn) synthesized by a microwave method: Outstanding performance for CO2 capture with improved stability to acid gases. Journal of Industrial and Engineering Chemistry, 2020, 87, 250-263.	2.9	27
1720	Two d 10 metal–organic frameworks based on a novel semiâ€rigid aromatic biscarboxylate ligand: Syntheses, structures and luminescent properties. Applied Organometallic Chemistry, 2020, 34, e5654.	1.7	9
1721	Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chemistry - A European Journal, 2020, 26, 13523-13531.	1.7	8
1722	Sonochemical synthesis, crystal structure, and DFT calculation of an innovative nanosized Pb(II)-azido metal–organic coordination polymer as a precursor for preparation of PbO nanorod. Chemical Papers, 2020, 74, 3651-3660.	1.0	3
1723	Dual-fixations of europium cations and TEMPO species on metal–organic frameworks for the aerobic oxidation of alcohols. Dalton Transactions, 2020, 49, 8060-8066.	1.6	12
1724	Interfacial Engineering of PdAg/TiO ₂ with a Metal–Organic Framework to Promote the Hydrogenation of CO ₂ to Formic Acid. Journal of Physical Chemistry C, 2020, 124, 11499-11505.	1.5	22
1725	Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination. ACS Applied Materials & amp; Interfaces, 2020, 12, 25037-25041.	4.0	86
1726	Effect of additives on the growth of HKUST-1 crystals synthesized by microfluidic chips with concentration gradient. Biomicrofluidics, 2020, 14, 034110.	1.2	4

#	Article	IF	CITATIONS
1727	Heterometallic Cu(II)-M(II) (M = Mg, Ca and Sr) complexes with a N,O-donor ligand in situ generated from topiroxostat. Journal of Coordination Chemistry, 2020, 73, 439-452.	0.8	3
1728	Nano-sized metal-organic frameworks: Synthesis and applications. Coordination Chemistry Reviews, 2020, 417, 213366.	9.5	174
1729	London Dispersion Governs the Interaction Mechanism of Small Polar and Nonpolar Molecules in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 11985-11989.	1.5	7
1730	Coupled acid and base UiO-66-type MOFs supported on g-C3N4 as a bi-functional catalyst for one-pot production of 5-HMF from glucose. Microporous and Mesoporous Materials, 2020, 305, 110328.	2.2	40
1731	Incorporation of a dioxo-molybdenum (VI) complex into a titanium-functionalized Zr(IV)-Based metal-organic framework. Microporous and Mesoporous Materials, 2020, 305, 110359.	2.2	12
1732	Cobalt(II) Bipyrazolate Metal–Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity. Inorganic Chemistry, 2020, 59, 8161-8172.	1.9	29
1733	Mechanochemical defect engineering of HKUST-1 and impact of the resulting defects on carbon dioxide sorption and catalytic cyclopropanation. RSC Advances, 2020, 10, 19822-19831.	1.7	20
1734	Highly efficient Cu(<scp>ii</scp>)-pyrazoledicarboxylate heterogeneous catalysts for a base-free aerobic oxidation of benzylic alcohol to benzaldehyde with hydrogen peroxide as the oxidant. Dalton Transactions, 2020, 49, 7758-7765.	1.6	10
1735	A novel 3D cobalt(II) metal–organic framework to activate peroxymonosulfate for degradation of organic dyes in water. Journal of Solid State Chemistry, 2020, 289, 121443.	1.4	22
1736	Harnessing the Untapped Catalytic Potential of a CoFe ₂ O ₄ /Mn-BDC Hybrid MOF Composite for Obtaining a Multitude of 1,4-Disubstituted 1,2,3-Triazole Scaffolds. Inorganic Chemistry, 2020, 59, 8334-8344.	1.9	23
1737	Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets. Nanoscale, 2020, 12, 12767-12772.	2.8	40
1738	Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>)-based metal–organic frameworks: crystal structures, Ln(<scp>iii</scp>)-functionalized luminescence and chemical sensing of dichloroaniline as a pesticide biomarker. Journal of Materials Chemistry C, 2020, 8, 9427-9439.	2.7	43
1739	Ultrastable and Highly Catalytically Active Nâ€Heterocyclicâ€Carbeneâ€Stabilized Gold Nanoparticles in Confined Spaces. Angewandte Chemie, 2020, 132, 16826.	1.6	17
1740	Microwave-assisted continuous flow synthesis of mesoporous metal-organic framework MIL-100 (Fe) and its application to Cu(I)-loaded adsorbent for CO/CO2 separation. Materials Chemistry and Physics, 2020, 253, 123278.	2.0	36
1741	A three-dimensional metal–organic framework with high performance of dual cation sensing synthesized <i>via</i> single-crystal transformation. New Journal of Chemistry, 2020, 44, 11829-11834.	1.4	8
1742	Recent progress of two-dimensional materials and metal–organic framework-based taste sensors. Journal of the Korean Ceramic Society, 2020, 57, 353-367.	1.1	25
1743	Structural and Morphological Transformation of Two-Dimensional Metal–Organic Frameworks Accompanied by Controlled Preparation Using the Spray Method. Langmuir, 2020, 36, 7392-7399.	1.6	7
1744	Fabrication of ZnS/CdS Heterojunction by Using Bimetallic MOFs Template for Photocatalytic Hydrogen Generation. Chemical Research in Chinese Universities, 2020, 36, 1032-1038.	1.3	28

#	Article	IF	CITATIONS
1745	Au@Pt Nanotubes within CoZn-Based Metal-Organic Framework for Highly Efficient Semi-hydrogenation of Acetylene. IScience, 2020, 23, 101233.	1.9	12
1746	Synthesis, Crystal Structures and Luminescence Properties of Three New Cadmium 3D Coordination Polymers. Molecules, 2020, 25, 2465.	1.7	4
1747	Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater. Materials Chemistry and Physics, 2020, 253, 123246.	2.0	56
1748	A new 1D Zn(II) coordination polymer containing 2-amino-4,6-dimethoxypyrimidine ligand: crystal structure, Hirshfeld surface analysis, and physicochemical studies. Journal of Molecular Structure, 2020, 1216, 128309.	1.8	2
1749	Ultrastable and Highly Catalytically Active Nâ€Heterocyclicâ€Carbeneâ€Stabilized Gold Nanoparticles in Confined Spaces. Angewandte Chemie - International Edition, 2020, 59, 16683-16689.	7.2	92
1750	Solvent Templating and Structural Dynamics of Fluorinated 2D Cu-Carboxylate MOFs Derived from the Diffusion-Controlled Process. Inorganic Chemistry, 2020, 59, 4389-4396.	1.9	17
1751	Design and Construction of a Luminescent and Highly Stable 3D Metal–Organic Framework with a [Zn ₄ (μ ₃ -OH) ₂] ⁶⁺ Core. Inorganic Chemistry, 2020, 59, 4588-4600.	1.9	58
1752	Two 1,2,4,5-tetra(4-pyridyl)benzene-based Zn(II)-organic frameworks: Structures and luminescence sensing property. Polyhedron, 2020, 182, 114484.	1.0	2
1753	A Cu-BTC metal–organic framework (MOF) as an efficient heterogeneous catalyst for the aerobic oxidative synthesis of imines from primary amines under solvent free conditions. New Journal of Chemistry, 2020, 44, 5972-5979.	1.4	51
1754	Synthesis and Crystal Structures of Alkali and Alkaline Earth Metal Complexes of 3,5â€Dinitropyrazolylâ€4â€carboxylate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 368-375.	0.6	2
1755	Ultrasensitive Fluorescent miRNA Biosensor Based on a "Sandwich―Oligonucleotide Hybridization and Fluorescence Resonance Energy Transfer Process Using an Ln(III)-MOF and Ag Nanoparticles for Early Cancer Diagnosis: Application of Central Composite Design. ACS Applied Materials & Interfaces, 2020, 12, 16076-16087.	4.0	100
1756	A periodic table of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 414, 213295.	9.5	84
1757	Strongly visible light-absorbing metal–organic frameworks functionalized by cyclometalated ruthenium(<scp>ii</scp>) complexes. RSC Advances, 2020, 10, 9052-9062.	1.7	6
1758	An Exceptionally Stable Metal–Organic Framework Constructed from Chelate-Based Metal–Organic Polyhedra. Journal of the American Chemical Society, 2020, 142, 6907-6912.	6.6	58
1759	Water-stable Ln ^{III} -based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. New Journal of Chemistry, 2020, 44, 6747-6759.	1.4	15
1760	N-heterocyclic carbene-functionalized metal–organic frameworks for the chemical fixation of CO2. Dalton Transactions, 2020, 49, 6548-6552.	1.6	10
1761	Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. Journal of Materials Chemistry A, 2020, 8, 7474-7494.	5.2	122
1762	Engineering the valence state of ZIF-67 by Cu ₂ O for efficient nonenzymatic glucose detection. Journal of Materials Chemistry B, 2020, 8, 2856-2861.	2.9	38

#	Article	IF	CITATIONS
1763	Coordination polymers with a pyridyl–salen ligand for photocatalytic carbon dioxide reduction. Chemical Communications, 2020, 56, 4110-4113.	2.2	26
1764	Dynamic Coordination Chemistry of Fluorinated Zrâ€MOFs: Synthetic Control and Reassembly/Disassembly Beyond de Novo Synthesis to Tune the Structure and Property. Chemistry - A European Journal, 2020, 26, 8254-8261.	1.7	16
1765	A lanthanide MOF immobilized in PMMA transparent films as a selective fluorescence sensor for nitroaromatic explosive vapours. Journal of Materials Chemistry C, 2020, 8, 3626-3630.	2.7	39
1766	Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications. Journal of Materials Chemistry A, 2020, 8, 14356-14383.	5.2	33
1767	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie, 2020, 132, 18381-18385.	1.6	7
1768	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18224-18228.	7.2	44
1769	Postsynthetic Modification: An Enabling Technology for the Advancement of Metal–Organic Frameworks. ACS Central Science, 2020, 6, 1046-1057.	5.3	285
1770	Two isostructural Ln3+-based heterometallic MOFs for the detection of nitro-aromatics and Cr2O72â^'. New Journal of Chemistry, 2020, 44, 12748-12754.	1.4	12
1771	A facile microwave-assisted Knoevenagel condensation of various aldehydes and ketones using amine-functionalized metal organic frameworks. Inorganic Chemistry Communication, 2020, 119, 108092.	1.8	12
1772	Construction of highly water-stable fluorinated 2D coordination polymers with various N, N'-donors: Syntheses, crystal structures and photoluminescence properties. Journal of Solid State Chemistry, 2020, 290, 121560.	1.4	4
1773	Synthesis, characterization, and crystal structure analysis of Zn(II) and Cd(II) coordination compounds containing 4-((pyridin-4-ylmethylene)amino)phenol Schiff-base ligand. Journal of Molecular Structure, 2020, 1221, 128846.	1.8	2
1774	Highly Active Heterogeneous PdCl 2 /MOF Catalyst for Suzuki–Miyaura Cross oupling Reactions of Aryl Chloride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1336-1341.	0.6	9
1775	Highly Efficient Fixation of Carbon Dioxide at RT and Atmospheric Pressure Conditions: Influence of Polar Functionality on Selective Capture and Conversion of CO ₂ . Inorganic Chemistry, 2020, 59, 9765-9773.	1.9	49
1776	A new 3D four-fold interpenetrated dia-like luminescent Zn(<scp>ii</scp>)-based metal–organic framework: the sensitive detection of Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} , and CrO ₄ ^{2â^'} in water, and nitrobenzene in ethanol. New Journal of Chemistry, 2020, 44, 4011-4022.	1.4	29
1777	Energy-based descriptors for photo-catalytically active metal–organic framework discovery. Journal of Materials Chemistry A, 2020, 8, 4473-4482.	5.2	24
1778	Ultrafine Rh nanoparticles confined by nitrogen-rich covalent organic frameworks for methanolysis of ammonia borane. Inorganic Chemistry Frontiers, 2020, 7, 1298-1306.	3.0	59
1779	Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation. Nature Communications, 2020, 11, 1059.	5.8	40
1780	Surfaceâ€Deactivated Core–Shell Metal–Organic Framework by Simple Ligand Exchange for Enhanced Size Discrimination in Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2020, 26, 7568-7572.	1.7	34

#	Article	IF	CITATIONS
1781	Exploring the Aggregative Growth of Nanoporous Zeolitic Imidazolate Framework ZIF-8. Crystal Growth and Design, 2020, 20, 2305-2312.	1.4	26
1782	A Set of phenyl sulfonate metal coordination complexes triggered Biginelli reaction for the high efficient synthesis of 3,4â€dihydropyrimidinâ€2(1 <i>H</i>)â€ones under solventâ€free conditions. Applied Organometallic Chemistry, 2020, 34, e5542.	1.7	13
1783	Construction of a functionalized hierarchical pore metal–organic framework <i>via</i> a palladium-reduction induced strategy. Nanoscale, 2020, 12, 6250-6255.	2.8	13
1784	Synthesis of ionic-liquid-functionalized UiO-66 framework by post-synthetic ligand exchange for the ultra-deep desulfurization. Fuel, 2020, 268, 117336.	3.4	35
1785	Catalytic transformation of CO ₂ into C1 chemicals using hydrosilanes as a reducing agent. Green Chemistry, 2020, 22, 1800-1820.	4.6	111
1786	A novel viologen-based coordination polymer with multi-stimuli responsive chromic properties: photochromism, thermochromism, chemochromism and electrochromism. Dalton Transactions, 2020, 49, 3228-3233.	1.6	51
1787	Multistep Engineering of Synergistic Catalysts in a Metal–Organic Framework for Tandem C–O Bond Cleavage. Journal of the American Chemical Society, 2020, 142, 4872-4882.	6.6	48
1788	Preparation of novel hybrid catalyst with an hierarchical micro-/mesoporous structure by direct growth of the HKUST-1 nanoparticles inside mesoporous silica matrix (MMS). Microporous and Mesoporous Materials, 2020, 300, 110136.	2.2	22
1789	Exchange coupled Co(<scp>ii</scp>) based layered and porous metal–organic frameworks: structural diversity, gas adsorption, and magnetic properties. Dalton Transactions, 2020, 49, 4012-4021.	1.6	18
1790	Uranyl Ion Complexes of Polycarboxylates: Steps towards Isolated Photoactive Cavities. Chemistry, 2020, 2, 63-79.	0.9	10
1791	Development of a hydrophilic magnetic amino-functionalized metal-organic framework for the highly efficient enrichment of trace bisphenols in river water samples. Talanta, 2020, 211, 120713.	2.9	35
1792	Metal–Organic Layers for Synergistic Lewis Acid and Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 1746-1751.	6.6	57
1793	MOF Materials for the Capture of Highly Toxic H ₂ S and SO ₂ . Organometallics, 2020, 39, 883-915.	1.1	122
1794	Zinc-coordination Polymers Based on a Donor-acceptor Mix-ligand System: Syntheses, Crystal Structures and Photophysical Properties. Chemical Research in Chinese Universities, 2020, 36, 74-80.	1.3	6
1795	Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges. Applied Materials Today, 2020, 19, 100564.	2.3	57
1796	Construction of a heterometallic organic framework based on cuprous-halide clusters and lanthanide clusters with CO2 storage and transformation. Inorganic Chemistry Communication, 2020, 113, 107796.	1.8	6
1797	Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Advances in Colloid and Interface Science, 2020, 277, 102108.	7.0	34
1798	Synthesis of a biocompatible nanoporous zeolitic imidazolate framework-8 in the presence of Gum Arabic inspired by the biomineralization process. CrystEngComm, 2020, 22, 1875-1884.	1.3	5

#	Article	IF	CITATIONS
1799	Zirconium-Based Metal–Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14702-14720.	4.0	175
1800	A Discrete Tetrahedral Indium Cage as an Efficient Heterogeneous Catalyst for the Fixation of CO ₂ and the Strecker Reaction of Ketones. Inorganic Chemistry, 2020, 59, 1653-1659.	1.9	31
1801	Metal–Organic Framework-Derived MgO/Mg(OH)2@Nanoporous Carbon for High Thermal Energy Release. ACS Applied Nano Materials, 2020, 3, 2207-2213.	2.4	5
1802	A Robust Aluminum Metal-Organic Framework with Temperature-Induced Breathing Effect. , 2020, 2, 220-226.		13
1803	Metal-directed supramolecular architectures based on the bifunctional ligand 2,5-bis(1 <i>H</i> -1,2,4-triazol-1-yl)terephthalic acid. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 118-124.	0.2	1
1804	Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coordination Chemistry Reviews, 2020, 408, 213173.	9.5	272
1805	Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: Synergic boost to hydrogen production from formic acid. Journal of Colloid and Interface Science, 2020, 567, 126-135.	5.0	153
1806	Cobalt-Iron mixed-metal-organic framework (Co3Fe-MMOF) as peroxidase mimic for highly sensitive enzyme-linked immunosorbent assay (ELISA) detection of Aeromonas hydrophila. Microchemical Journal, 2020, 154, 104591.	2.3	16
1807	CdSe/ZIF-8- <i>x</i> : synthesis and photocatalytic CO ₂ reduction performance. RSC Advances, 2020, 10, 551-555.	1.7	19
1808	Ultra-fast catalytic detoxification of organophosphates by nano-zeolitic imidazolate frameworks. Molecular Catalysis, 2020, 490, 110965.	1.0	3
1809	Crystalâ€toâ€Crystal Synthesis of Photocatalytic Metal–Organic Frameworks for Visibleâ€Light Reductive Coupling and Mechanistic Investigations. ChemSusChem, 2020, 13, 3418-3428.	3.6	2
1810	Open metal site (OMS) and Lewis basic site (LBS)-functionalized copper–organic framework with high CO ₂ uptake performance and highly selective CO ₂ /N ₂ and CO ₂ /CH ₄ separation. CrystEngComm, 2020, 22, 3378-3384.	1.3	6
1811	High iodine adsorption performances under off-gas conditions by bismuth-modified ZnAl-LDH layered double hydroxide. RSC Advances, 2020, 10, 14360-14367.	1.7	24
1812	Construction of 3D lanthanide based MOFs with pores decorated with basic imidazole groups for selective capture and chemical fixation of CO ₂ . New Journal of Chemistry, 2020, 44, 9090-9096.	1.4	15
1813	Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020, 12, 103.	14.4	363
1814	Surface modification of metal-organic frameworks for biomedical applications. , 2020, , 111-139.		0
1815	Electrochemical synthesis of MOFs. , 2020, , 177-195.		5
1816	Characterizations of MOFs for biomedical application. , 2020, , 277-295.		4

# 1817	ARTICLE State-of-the-art and future perspectives of MOFs in medicine. , 2020, , 525-551.	IF	CITATIONS
1818	Kinetic modeling of oleic acid esterification with UiO-66: from intrinsic experimental data to kinetics via elementary reaction steps. Chemical Engineering Journal, 2020, 394, 124816.	6.6	18
1819	Structural diversity of metal–organic frameworks based on a chalcone dicarboxylic acid ligand. Dalton Transactions, 2020, 49, 5783-5786.	1.6	4
1820	Palladium(II) Immobilized on Metal–Organic Frameworks for Catalytic Conversion of Carbon Dioxide to Formate. Inorganic Chemistry, 2020, 59, 6717-6728.	1.9	24
1821	Synthesis of Pt@MAF-6 as a Steric Effect Catalyst for Selective Hydrogenation of Cinnamaldehyde. Catalysis Letters, 2020, 150, 3234-3242.	1.4	12
1822	Syntheses, crystal structures and properties of four metal coordination complexes constructed from aromatic carboxylate and benzimidazole-based ligands. Transition Metal Chemistry, 2020, 45, 353-362.	0.7	3
1823	Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage. Nano Energy, 2020, 73, 104758.	8.2	31
1824	Phosphoric acid enhancement in a Pt-encapsulated Metal-Organic Framework (MOF) bifunctional catalyst for efficient hydro-deoxygenation of oleic acid from biomass. Journal of Catalysis, 2020, 386, 19-29.	3.1	32
1825	Efficient and Accurate Charge Assignments via a Multilayer Connectivity-Based Atom Contribution (m-CBAC) Approach. Journal of Physical Chemistry C, 2020, 124, 11428-11437.	1.5	21
1826	Encapsulation of metal oxide nanoparticles inside metal-organic frameworks via surfactant-assisted nanoconfined space. Nanotechnology, 2020, 31, 255604.	1.3	5
1827	NMR-Enhanced Crystallography Aids Open Metal–Organic Framework Discovery Using Solvent-Free Accelerated Aging. Chemistry of Materials, 2020, 32, 4273-4281.	3.2	19
1828	Highly Uniform Alkali Doped Cobalt Oxide Derived from Anionic Metal-Organic Framework: Improving Activity and Water Tolerance for CO Oxidation. Chemical Research in Chinese Universities, 2020, 36, 946-954.	1.3	6
1829	Tunable Thiolate Coordination Networks on Metal Surfaces. ChemNanoMat, 2020, 6, 1479-1484.	1.5	14
1830	Metal-based nanocontainers for drug delivery in tumor therapy. , 2020, , 195-215.		3
1831	Conversion of Cu2+-polluted biomass into Cu2+-based metal-organic frameworks antibacterial material to achieve recycling of pollutants. Journal of Cleaner Production, 2020, 261, 121235.	4.6	11
1832	Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society, 2020, 24, 461-473.	2.4	75
1833	Fabrication of mesoporous MOF nanosheets via surfactant-template method for C–S coupling reactions. Microporous and Mesoporous Materials, 2020, 303, 110254.	2.2	19
1834	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived</i> and <i>Related</i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	23.0	149

# 1835	ARTICLE Benzothiazolium-functionalized NU-1000: a versatile material for carbon dioxide adsorption and cyanide luminescence sensing. Journal of Materials Chemistry C, 2020, 8, 7492-7500.	IF 2.7	CITATIONS 22
1836	Metal-Organic Framework-Based Engineered Materials—Fundamentals and Applications. Molecules, 2020, 25, 1598.	1.7	75
1837	Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide. Nano Research, 2021, 14, 458-465.	5.8	12
1838	Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor. Catalysis Today, 2021, 368, 66-77.	2.2	27
1839	Nitrogen-rich metal-organic framework mediated Cu–N–C composite catalysts for the electrochemical reduction of CO2. Journal of Energy Chemistry, 2021, 54, 555-563.	7.1	36
1840	Catalysis within coordination cages. Coordination Chemistry Reviews, 2021, 430, 213656.	9.5	88
1841	Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coordination Chemistry Reviews, 2021, 430, 213665.	9.5	65
1842	Inorganic–Organic Nanocomposites Based on Aggregationâ€Induced Emission Luminogens. Advanced Functional Materials, 2021, 31, 2006952.	7.8	31
1843	PAA@ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2.5 capture. Chemical Engineering Journal, 2021, 405, 126584.	6.6	50
1844	Effect of pyridyl donors from organic ligands <i>versus</i> metalloligands on material design. Inorganic Chemistry Frontiers, 2021, 8, 1334-1373.	3.0	18
1845	Solvothermal synthesis of Co-substituted phosphomolybdate acid encapsulated in the UiO-66 framework for catalytic application in olefin epoxidation. Chinese Journal of Catalysis, 2021, 42, 356-366.	6.9	30
1846	Applications of metal–organic framework composites in CO2 capture and conversion. Chinese Chemical Letters, 2021, 32, 649-659.	4.8	60
1847	Coumarin-encapsulated MOF luminescence sensor for detection of picric acid in water environment. Dyes and Pigments, 2021, 184, 108794.	2.0	24
1848	Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Research, 2021, 14, 444-449.	5.8	36
1849	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
1850	Metal nanoparticles encapsulated within charge tunable porous coordination cages for hydrogen generation reaction. Catalysis Today, 2021, 374, 12-19.	2.2	4
1851	MOF-Derived Mesoporous g-C3N4/TiO2 Heterojunction with Enhanced Photocatalytic Activity. Catalysis Letters, 2021, 151, 1961-1975.	1.4	14
1852	A new metal–organic framework based on 4,4′-bibenzoic acid-2,2′-sulfone: synthesis, crystal structure and magnetic property. Journal of Porous Materials, 2021, 28, 481-486.	1.3	1

#	Article	IF	CITATIONS
1853	Ru-zirconia catalyst derived from MIL140C for carbon dioxide conversion to methane. Catalysis Today, 2021, 371, 120-133.	2.2	11
1854	Lowâ€Cost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications. Advanced Functional Materials, 2021, 31, 2008265.	7.8	77
1855	A novel penta-nuclear cobalt cluster exhibiting slow magnetic relaxation behavior. Journal of Molecular Structure, 2021, 1223, 129220.	1.8	5
1856	Metal-organic framework-derived porous carbon templates for catalysis. , 2021, , 73-121.		0
1857	High quantum-yield carbon dots embedded metal-organic frameworks for selective and sensitive detection of dopamine. Microchemical Journal, 2021, 160, 105718.	2.3	24
1858	Efficient hydrolytic cleavage of phosphodiester with a lanthanide-based metal-organic framework. Journal of Solid State Chemistry, 2021, 293, 121820.	1.4	5
1859	Phenolic nitroaromatics detection by fluorinated metal-organic frameworks: Barrier elimination for selective sensing of specific group of nitroaromatics. Journal of Hazardous Materials, 2021, 406, 124501.	6.5	65
1860	Preparation and activity of ruthenium catalyst based on β-cyclodextrin for ring-opening metathesis polymerization. Tetrahedron Letters, 2021, 63, 152712.	0.7	3
1861	Multi-stimulus linear negative expansion of a breathing M(O ₂ CR) ₄ -node MOF. Faraday Discussions, 2021, 225, 133-151.	1.6	2
1862	A hydrolytically stable cage-based metal–organic framework containing two types of building blocks for the adsorption of iodine and dyes. Inorganic Chemistry Frontiers, 2021, 8, 1083-1092.	3.0	55
1863	8-Hydroxyquinoline and Eu ³⁺ Incorporated Metal–Organic Framework Nanosystems with Tunable Emissions for White Light and Anticounterfeiting Applications. ACS Applied Nano Materials, 2021, 4, 313-321.	2.4	10
1864	Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications. Inorganic Chemistry Frontiers, 2021, 8, 590-619.	3.0	74
1865	A robust heterogeneous Co-MOF catalyst in azide–alkyne cycloaddition and Friedel–Crafts reactions as well as hydrosilylation of alkynes. New Journal of Chemistry, 2021, 45, 872-880.	1.4	12
1866	Deciphering supramolecular isomerization in coordination polymers: connected molecular squares <i>vs.</i> fused hexagons. Dalton Transactions, 2021, 50, 2221-2232.	1.6	4
1867	Anion-Dependent Catalytic C–C Bond Cleavage of a Lignin Model within a Cationic Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 688-695.	4.0	9
1868	Synthesis, structure, and properties of two coordination polymers constructed from 5-(isonicotinamido)isophthalic acid. Transition Metal Chemistry, 2021, 46, 159-166.	0.7	1
1869	Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C. Journal of Physical Chemistry Letters, 2021, 12, 177-184.	2.1	7
1870	Controlled synthesis of a PS/Au/ZIF-8 hybrid structure as a SERS substrate for ultrasensitive detection. New Journal of Chemistry, 2021, 45, 1355-1362.	1.4	9

#	Article	IF	CITATIONS
1871	Visible Light–Initiated Synergistic/Cascade Reactions over Metal–Organic Frameworks. Solar Rrl, 2021, 5, 2000454.	3.1	24
1872	A unique 3D microporous MOF constructed by cross-linking 1D coordination polymer chains for effectively selective separation of CO2/CH4 and C2H2/CH4. Chinese Chemical Letters, 2021, 32, 1153-1156.	4.8	28
1873	Core-shell Co-MOF-74@Mn-MOF-74 catalysts with Controllable shell thickness and their enhanced catalytic activity for toluene oxidation. Journal of Solid State Chemistry, 2021, 294, 121803.	1.4	15
1874	Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. Comments on Inorganic Chemistry, 2021, 41, 1-66.	3.0	33
1875	Facilely controllable synthesis of copper-benzothiadiazole complexes <i>via</i> solvothermal reactions: exploring the customized synthetic approach by experiments. Dalton Transactions, 2021, 50, 1816-1823.	1.6	4
1876	Titanium-based metal-organic frameworks for photocatalytic applications. , 2021, , 37-63.		2
1877	A window-space-directed assembly strategy for the construction of supertetrahedron-based zeolitic mesoporous metal–organic frameworks with ultramicroporous apertures for selective gas adsorption. Chemical Science, 2021, 12, 5767-5773.	3.7	15
1878	Enhanced degradation of norfloxacin by Ce-mediated Fe-MIL-101: catalytic mechanism, degradation pathways, and potential applications in wastewater treatment. Environmental Science: Nano, 2021, 8, 2347-2359.	2.2	26
1879	A quinoxaline-based porous organic polymer containing copper nanoparticles CuNPs@Q-POP as a robust nanocatalyst toward C–N coupling reaction. RSC Advances, 2021, 11, 3655-3665.	1.7	12
1880	Magnetic metal–organic framework composites: structurally advanced catalytic materials for organic transformations. Materials Advances, 2021, 2, 2153-2187.	2.6	42
1881	Chapter 11. Stabilising and Characterising Homogeneous Catalysts in MOFs. Monographs in Supramolecular Chemistry, 2021, , 340-369.	0.2	0
1882	MnO ₂ â€Based Materials for Environmental Applications. Advanced Materials, 2021, 33, e2004862.	11.1	252
1883	A luminescent metal–organic framework with tetragonal nanochannels as an efficient chemosensor for nitroaromatic explosives detection. CrystEngComm, 2021, 23, 3901-3906.	1.3	14
1884	Noble metal-free Cu(<scp>i</scp>)-anchored NHC-based MOF for highly recyclable fixation of CO ₂ under RT and atmospheric pressure conditions. Green Chemistry, 2021, 23, 5195-5204.	4.6	57
1885	Amino and triazole-containing metal–organic frameworks for highly efficient CO ₂ fixation. Chemical Communications, 2021, 57, 10803-10806.	2.2	9
1886	Recent advances in NMR crystallography and polymorphism. Annual Reports on NMR Spectroscopy, 2021, 102, 1-80.	0.7	11
1887	Anion and solvent controlled growth of crystalline and amorphous zinc(<scp>ii</scp>) coordination polymers and a molecular complex. Dalton Transactions, 2021, 50, 3979-3989.	1.6	2
1888	A direct solvent-free conversion approach to prepare mixed-metal metal–organic frameworks from doped metal oxides. Chemical Communications, 2021, 57, 3587-3590.	2.2	8

		ITATION RE	PORT	
#	Article		IF	Citations
1889	Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catalysis Science and Technology, 2021, 11, 5734-5771.		2.1	35
1890	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.		18.7	331
1891	Metal-organic framework nanocomposite based adsorbents. , 2021, , 483-512.			2
1892	Robust and Environmentally Friendly MOFs. , 2021, , 1-31.			0
1893	Synthesis, structure, and fluorescence properties of coordination polymers of 3,5-bis(1′,2′,4′-triazol-1′-yl) pyridine. CrystEngComm, 2021, 23, 1744-1755.		1.3	5
1894	Construction of a series of metal-directed MOFs to explore their physical and chemical properties. New Journal of Chemistry, 2021, 45, 6438-6449.		1.4	2
1895	Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1107-1118.		6.6	70
1896	Nanowire-based sensor electronics for chemical and biological applications. Analyst, The, 2021, 146, 6684-6725.		1.7	16
1897	A selective detection of nanomolar-range noxious anions in water by a luminescent metal–organic framework. Materials Advances, 2021, 2, 985-995.		2.6	14
1898	Metal-Organic Frameworks for Catalytic Applications. , 2021, , 228-259.			2
1899	Response of a Zn(<scp>ii</scp>)-based metal–organic coordination polymer towards trivalent me ions (Al ³⁺ , Fe ³⁺ and Cr ³⁺) probed by spectroscopic method Dalton Transactions, 2021, 50, 7388-7399.	tal s.	1.6	26
1900	Fractional metric dimension of metal-organic frameworks. Main Group Metal Chemistry, 2021, 44, 92-102.		0.6	7
1901	A turn-on fluorescence sensing strategy for rapid detection of flumequine in water environments using covalent-coordination functionalized MOFs. CrystEngComm, 2021, 23, 5345-5352.		1.3	6
1902	Wettability control of metal-organic frameworks. , 2021, , 131-166.			2
1903	Metal Oxides for Removal of Arsenic Contaminants from Water. Environmental Chemistry for A Sustainable World, 2021, , 147-194.		0.3	1
1904	Thermally stable and robust gadolinium-based metal-organic framework: Synthesis, structure and heterogeneous catalytic O-arylation reaction. Polyhedron, 2021, 194, 114934.		1.0	2
1905	Preparation, Characterization of Novel Cadmium-Based Metal-Organic Framework for Using as a Highly Selective and Sensitive Modified Carbon Paste Electrode in Determination of Cu(II) Ion. Comments on Inorganic Chemistry, 2021, 41, 189-212.		3.0	16
1906	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.		3.7	43

#	Article	IF	CITATIONS
1907	Metal–organic framework. Interface Science and Technology, 2021, , 279-387.	1.6	13
1908	Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts, 2021, 11, 283.	1.6	34
1909	A porous amide-functionalized <i>pto</i> -type MOF exhibiting selective capture and separation of cationic MB dye. Journal of Coordination Chemistry, 2021, 74, 241-251.	0.8	3
1910	Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. Journal of Chemical Theory and Computation, 2021, 17, 1701-1714.	2.3	49
1912	Coordination Polymers in Dicyanamido-Cadmium(II) with Diverse Network Dimensionalities. Crystals, 2021, 11, 181.	1.0	6
1913	Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. TrAC - Trends in Analytical Chemistry, 2021, 135, 116163.	5.8	77
1914	Self-Assembly Mechanism in Nucleation Processes of Molecular Crystalline Materials. Bulletin of the Chemical Society of Japan, 2021, 94, 463-472.	2.0	32
1915	Encapsulation of Luminescent Guests to Construct Luminescent Metal–Organic Frameworks for Chemical Sensing. ACS Sensors, 2021, 6, 641-658.	4.0	184
1916	Mechanochemical control of solvent content in a 1D coordination polymer. Journal of Coordination Chemistry, 2021, 74, 190-199.	0.8	1
1917	Bio-inspired synthesis of palladium nanoparticles fabricated magnetic Fe3O4 nanocomposite over Fritillaria imperialis flower extract as an efficient recyclable catalyst for the reduction of nitroarenes. Scientific Reports, 2021, 11, 4515.	1.6	45
1918	Metal–Oxide Nanowire Molecular Sensors and Their Promises. Chemosensors, 2021, 9, 41.	1.8	30
1919	Recent Advances in Catalytic Confinement Effect within Micro/Mesoâ€Porous Crystalline Materials. Small, 2021, 17, e2005334.	5.2	62
1920	Spatioâ€Chemical Heterogeneity of Defectâ€Engineered Metal–Organic Framework Crystals Revealed by Fullâ€Field Tomographic Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2021, 133, 10120-10127.	1.6	1
1921	New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu2+ Cation. Polymers, 2021, 13, 829.	2.0	9
1922	Spatioâ€Chemical Heterogeneity of Defectâ€Engineered Metal–Organic Framework Crystals Revealed by Fullâ€Field Tomographic Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 10032-10039.	7.2	13
1923	Synthesis of Au/UiO-66-NH2/Graphene composites as efficient visible-light photocatalysts to convert CO2. International Journal of Hydrogen Energy, 2021, 46, 11621-11635.	3.8	29
1924	Engineering Nanoscale Metalâ€Organic Frameworks for Heterogeneous Catalysis. Small Structures, 2021, 2, 2000141.	6.9	28
1925	Computing Bounds of Fractional Metric Dimension of Metal Organic Graphs. Journal of Chemistry, 2021, 2021, 1-12.	0.9	5

#	Article	IF	CITATIONS
1926	Synergistic effect of copper nanocrystals-nanoparticles incorporated in a porous organic polymer for the Ullmann C-O coupling r eaction. Molecular Catalysis, 2021, 504, 111460.	1.0	6
1927	Ultrasound assisted synthesis of Pd NPs decorated chitosan-starch functionalized Fe3O4 nanocomposite catalyst towards Suzuki-Miyaura coupling and reduction of 4-nitrophenol. International Journal of Biological Macromolecules, 2021, 172, 104-113.	3.6	85
1928	A stable terbium(III) metal-organic framework as a dual luminescent sensor for MnO4â^' ions and nitroaromatic explosives. Journal of Solid State Chemistry, 2021, 295, 121924.	1.4	11
1931	High Pressure In Situ Singleâ€Crystal Xâ€Ray Diffraction Reveals Turnstile Linker Rotation Upon Roomâ€Temperature Stepped Uptake of Alkanes. Angewandte Chemie - International Edition, 2021, 60, 13430-13435.	7.2	18
1932	Construction of five non-covalent-fabricated Zn2+/Cd2+ supramolecules from 3,5-dimethylpyrazole: Their synthesis and features. Journal of Molecular Structure, 2021, 1230, 129818.	1.8	3
1933	Aqueous-Phase Nanomolar Detection of Dichromate by a Recyclable Cd(II) Metal–Organic Framework. Crystal Growth and Design, 2021, 21, 2680-2689.	1.4	19
1934	Green-synthesized MIL-100(Fe) modified with palladium as a selective catalyst in the hydrogenation of citronellal to citronellol. Materials Research Express, 2021, 8, 045504.	0.8	3
1937	High Pressure In Situ Singleâ€Crystal Xâ€Ray Diffraction Reveals Turnstile Linker Rotation Upon Roomâ€Temperature Stepped Uptake of Alkanes. Angewandte Chemie, 2021, 133, 13542-13547.	1.6	Ο
1938	Metal-Organic Framework and Carbon Black supported MOFs as dynamic electrocatalyst for oxygen reduction reaction in an alkaline electrolyte. Journal of Chemical Sciences, 2021, 133, 1.	0.7	8
1939	Colossal Trellislike Single-Crystal to Single-Crystal Structural Transformations in Two 1D Coordination Polymers. Crystal Growth and Design, 2021, 21, 3056-3062.	1.4	1
1940	Design and application of photocatalysts using porous materials. Catalysis Reviews - Science and Engineering, 2021, 63, 165-233.	5.7	21
1941	Insights into the Mechanochemical Synthesis of MOF-74. Crystal Growth and Design, 2021, 21, 3047-3055.	1.4	51
1942	Photoluminescent Metallaprisms with (p â€Cymene)Ruâ€Corners and Bis(βâ€diketone) Pillars. European Journal of Inorganic Chemistry, 2021, 2021, 1701-1704.	1.0	2
1943	H-Bond-Mediated Selectivity Control of Formate versus CO during CO ₂ Photoreduction with Two Cooperative Cu/X Sites. Journal of the American Chemical Society, 2021, 143, 6114-6122.	6.6	105
1944	Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordination Chemistry Reviews, 2021, 434, 213709.	9.5	141
1945	Dimensional Reduction of Lewis Acidic Metal–Organic Frameworks for Multicomponent Reactions. Journal of the American Chemical Society, 2021, 143, 8184-8192.	6.6	59
1946	HKUST-1 Metal Organic Framework as an Efficient Dual-Function Catalyst: Aziridination and One-Pot Ring-Opening Transformation for Formation of β-Aryl Sulfonamides with C–C, C–N, C–S, and C–O Bonds. Inorganic Chemistry, 2021, 60, 7794-7802.	1.9	19
1947	Microwaveâ€essisted fabrication of a mixedâ€ligand [Cu ₄ (μ ₃ â€OH) ₂]â€clusterâ€based metal–organic framework with coordinatively unsaturated metal sites for carboxylation of terminal alkynes with carbon dioxide. Applied Organometallic Chemistry, 2021, 35, e6288.	1.7	6
#	Article	IF	CITATIONS
------	--	------	-----------
1948	Nanostructured covalent organic frameworks with elevated crystallization for (electro)photocatalysis and energy storage devices. Journal of Materials Science, 2021, 56, 13875-13924.	1.7	8
1949	2Dâ€Coordination Polymers Constituted from Indium Halides and Dipyridyl Nâ€Donor Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1227-1233.	0.6	5
1950	Formation of a potassium coordination polymer based on a novel 2-sulfono-benzene-1,3,5-tricarboxylic acid: Synthesis, characterization, and application of the organocatalyst in CO2 cycloaddition reaction. Journal of Molecular Structure, 2021, 1232, 130045.	1.8	7
1951	Solutionâ€Processable Metal–Organic Framework Nanosheets with Variable Functionalities. Advanced Materials, 2021, 33, e2101257.	11.1	33
1952	Metal organic framework derived Ni/CeO2 catalyst with highly dispersed ultra-fine Ni nanoparticles: Impregnation synthesis and the application in CO2 methanation. Ceramics International, 2021, 47, 12366-12374.	2.3	33
1953	Assembly of a Metal–Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecular‣evel Control Over Heterogeneous CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13535-13541.	1.6	8
1954	Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coordination Chemistry Reviews, 2021, 435, 213793.	9.5	90
1955	2D Porphyrinic Metal-Organic Frameworks Featuring Rod-Shaped Secondary Building Units. Molecules, 2021, 26, 2955.	1.7	5
1956	Real time imaging of photocatalytic active site formation during H2 evolution by in-situ TEM. Applied Catalysis B: Environmental, 2021, 284, 119743.	10.8	19
1957	Synthesis of a tetraphenylethylene-based metal-organic framework as the luminescent sensor for selective sensing of Cr2O72â'' in aqueous solution. Inorganic Chemistry Communication, 2021, 127, 108550.	1.8	5
1958	Solketal Production via Solvent-Free Acetalization of Glycerol over Triphosphonic-Lanthanide Coordination Polymers. Catalysts, 2021, 11, 598.	1.6	11
1959	Assembly of a Metal–Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecular‣evel Control Over Heterogeneous CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13423-13429.	7.2	48
1960	Dualâ€Functional Mesoporous Copper(II) Metalâ€Organic Frameworks for the Remediation of Organic Dyes. Chemistry - A European Journal, 2021, 27, 9174-9179.	1.7	12
1961	Speciality Grand Challenges in Organometallic Catalysis. Frontiers in Catalysis, 2021, 1, .	1.8	2
1962	Luminescent, Helical and Highly Stable Zn(II) and Cd(II) Coordination Polymers: Structural Diversity and Selective Sensing of 4â€Nitroaniline in Water. European Journal of Inorganic Chemistry, 2021, 2021, 2595-2605.	1.0	5
1963	Homodinuclear Complexes of [Cu(dppf)] + or [Ru(bpy) 2] 2+ with 1,4â€Bis(camphorquinoneimino)benzene (bcqb) as a Redoxâ€Active Bridging Ligand. European Journal of Inorganic Chemistry, 2021, 2021, 2976-2985.	1.0	1
1964	Pd(II)-Metalated and l-Proline-Decorated Multivariate UiO-67 as Bifunctional Catalyst for Asymmetric Sequential Reactions. Catalysis Letters, 2022, 152, 1160-1169.	1.4	6
1965	Construction of Peroxidase-like Metal–Organic Frameworks in TiO ₂ Nanochannels: Robust Free-Standing Membranes for Diverse Target Sensing. Analytical Chemistry, 2021, 93, 9486-9494.	3.2	32

# 1966	ARTICLE Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal–Organic Framework. Research on Chemical Intermediates, 2021, 47, 4227-4244.	IF 1.3	Citations 9
1967	Metal-organic frameworks functionalized smart textiles for adsorptive removal of hazardous aromatic pollutants from ambient air. Journal of Hazardous Materials, 2021, 411, 125056.	6.5	31
1968	An Electrochemical Sensor for H ₂ O ₂ Based on Au Nanoparticles Embedded in UiO-66 Metal–Organic Framework Films. ACS Applied Nano Materials, 2021, 4, 6103-6110.	2.4	39
1969	Solventâ€Free CO ₂ Fixation Reaction Catalyzed by MOFs Composites Containing Polycarboxylic Acid Ligands. ChemistrySelect, 2021, 6, 5350-5355.	0.7	4
1970	Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade. Transactions of Tianjin University, 2021, 27, 434-449.	3.3	18
1971	Preparation of Superhydrophobic Metal–Organic Framework/Polymer Composites as Stable and Efficient Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 32175-32183.	4.0	12
1972	Bimetal-organic frameworks with coordinatively unsaturated metal sites for highly efficient Fenton-like catalysis. Chemical Engineering Journal, 2021, 414, 128669.	6.6	83
1973	Tuning Chromophore-Based LMOF Dimensionality to Enhance Detection Sensitivity for Fe ³⁺ lons. ACS Omega, 2021, 6, 16498-16506.	1.6	10
1974	In situ decoration of Au NPs over polydopamine encapsulated GO/Fe3O4 nanoparticles as a recyclable nanocatalyst for the reduction of nitroarenes. Scientific Reports, 2021, 11, 12362.	1.6	47
1975	Tuning photoactive metal–organic frameworks for luminescence and photocatalytic applications. Coordination Chemistry Reviews, 2021, 437, 213757.	9.5	88
1976	Energy related ion transports in coordination polymers. Nano Select, 0, , .	1.9	6
1977	Pb2+-Containing Metal-Organic Rotaxane Frameworks (MORFs). Molecules, 2021, 26, 4241.	1.7	3
1978	Highly efficient photocatalytic CO2 reduction with an organic dye as photosensitizer. Inorganic Chemistry Communication, 2021, 129, 108617.	1.8	2
1979	Maximizing the Carrier Mobilities of Metal–Organic Frameworks Comprising Stacked Pentacene Units. Journal of Physical Chemistry Letters, 2021, 12, 7002-7009.	2.1	6
1980	Mechanically Strong, Liquid-Resistant Photothermal Bioplastic Constructed from Cellulose and Metal-Organic Framework for Light-Driven Mechanical Motion. Molecules, 2021, 26, 4449.	1.7	2
1981	Engineering Bimetallic Centers in Porous Metal Silicate Materials for Hydrogenation of Furfural at Lower Temperature. , 2021, 3, 1249-1257.		9
1982	Biopolymeric-Inorganic Composites for Drug Delivery Applications. Advances in Material Research and Technology, 2022, , 271-298.	0.3	0
1983	MOFs with acs and Nbo topologies using flexible diisophthalate ligands: Influence of dihedral angle between phenyl rings on the crystal structure. Inorganic Chemistry Communication, 2021, 129, 108657.	1.8	0

#	Article	IF	CITATIONS
1984	Interwrapping Distinct Metal-Organic Frameworks in Dual-MOFs for the Creation of Unique Composite Catalysts. Research, 2021, 2021, 9835935.	2.8	12
1985	Double-Layer Nitrogen-Rich Two-Dimensional Anionic Uranyl–Organic Framework for Cation Dye Capture and Catalytic Fixation of Carbon Dioxide. Inorganic Chemistry, 2021, 60, 11485-11495.	1.9	12
1986	Zr-MOF@Polyaniline as an efficient platform for nickel deposition: Application to methanol electro-oxidation. Fuel, 2021, 296, 120677.	3.4	22
1987	Lanthanide complexes based on an anthraquinone derivative ligand and applications as photocatalysts for visible-light driving photooxidation reactions. Journal of Molecular Structure, 2021, 1236, 130289.	1.8	1
1988	Nano-Metal Organic Framework for Enhanced Mechanical, Flame Retardant and Ultraviolet-Blue Light Shielding Properties of Transparent Cellulose-Based Bioplastics. Polymers, 2021, 13, 2433.	2.0	11
1989	A review of material aspects in developing direct Z-scheme photocatalysts. Materials Today, 2021, 47, 75-107.	8.3	188
1990	ZnO@zeolitic imidazolate frameworks derived porous hybrid hollow carbon shell as an efficient electrocatalyst for oxygen reduction. Journal of Materials Science, 2021, 56, 14989-15003.	1.7	4
1991	A Multifunctional 3D Supermolecular Co Coordination Polymer With Potential for CO2 Adsorption, Antibacterial Activity, and Selective Sensing of Fe3+/Cr3+ lons and TNP. Frontiers in Chemistry, 2021, 9, 678993.	1.8	5
1992	The Highly Effective Cobalt Based Metal–Organic Frameworks Catalyst for One Pot Oxidative Esterification Under Mild Conditions. Catalysis Letters, 2022, 152, 1639-1650.	1.4	7
1993	Ultrasensitive ethanol sensor based on nano-Ag&ZIF-8 co-modified SiNWs with enhanced moisture resistance. Sensors and Actuators B: Chemical, 2021, 340, 129959.	4.0	32
1994	Versatility, Cost Analysis, and Scale-up in Fluoride and Arsenic Removal Using Metal-organic Framework-based Adsorbents. Separation and Purification Reviews, 2022, 51, 408-426.	2.8	15
1995	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
1996	Effect of amino-defective-MOF materials on the selective hydrodeoxygenation of fatty acid over Pt-based catalysts. Journal of Catalysis, 2021, 400, 283-293.	3.1	18
1997	γ-Valerolactone synthesis from α-angelica lactone and levulinic acid over biobased multifunctional nanohybrid catalysts. Catalysis Today, 2022, 394-396, 268-281.	2.2	7
1998	A Reusable Efficient Green Catalyst of 2D Cu-MOF for the Click and Knoevenagel Reaction. Molecules, 2021, 26, 5296.	1.7	10
1999	Four Novel d10 Metal-Organic Frameworks Incorporating Amino-Functionalized Carboxylate Ligands: Synthesis, Structures, and Fluorescence Properties. Frontiers in Chemistry, 2021, 9, 708314.	1.8	3
2000	Water-Stable Two-Dimensional Metal–Organic Framework Nanostructures for Fe ³⁺ lons Detection. Crystal Growth and Design, 2021, 21, 5275-5282.	1.4	16
2001	Amino Group Functionalized Hfâ€Based Metalâ€Organic Framework for Knoevenagelâ€Doebner Condensation. European Journal of Inorganic Chemistry, 2021, 2021, 3396-3403.	1.0	8

#	Article	IF	CITATIONS
2002	Hierarchical mesoporous hollow Ce-MOF nanosphere as oxidase mimic for highly sensitive colorimetric detection of ascorbic acid. Chemical Physics Letters, 2021, 777, 138749.	1.2	18
2003	A hydrolytically stable Zn(II) coordination polymer based on a new imidazolyl-pyrazolyl heterotopic ligand as a scavenger of MnO4â^ and a luminescent sensor for MnO4â^ and Cr2O72â^. Inorganic Chemistry Communication, 2021, 130, 108720.	1.8	3
2004	Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chimica Acta, 2021, 523, 120381.	1.2	50
2005	Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. Chemosphere, 2021, 276, 130177.	4.2	182
2006	Enhancing photocatalytic performance of metal-organic frameworks for CO2 reduction by a bimetallic strategy. Chinese Chemical Letters, 2022, 33, 2065-2068.	4.8	64
2007	Metal–Organic Framework Photonic Balls: Single Object Analysis for Local Thermal Probing. Advanced Materials, 2021, 33, e2104450.	11.1	29
2008	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
2009	Modelling adsorption based on an isoreticular <scp>MOF</scp> â€series of <scp>IFPs</scp> –Part <scp>I</scp> : Collection of physical properties and single component equilibria. Canadian Journal of Chemical Engineering, 2022, 100, 1884-1901.	0.9	4
2010	The adsorption properties of defect controlled metal-organic frameworks of UiO-66. Separation and Purification Technology, 2021, 270, 118842.	3.9	35
2011	Solid solution approach to the design of copper mixed-triazolate multivariate-MOFs for the efficient adsorption of triclosan. Microporous and Mesoporous Materials, 2021, 324, 111297.	2.2	7
2012	Metal-organic frameworks-derived CoMOF-D@Si@C core-shell structure for high-performance lithium-ion battery anode. Electrochimica Acta, 2021, 390, 138814.	2.6	19
2013	Fe-N/C single-atom catalysts with high density of Fe-Nx sites toward peroxymonosulfate activation for high-efficient oxidation of bisphenol A: Electron-transfer mechanism. Chemical Engineering Journal, 2021, 419, 129590.	6.6	130
2014	Fabrication of a MOF/Aerogel Composite via a Mild and Green One-Pot Method. Bulletin of the Chemical Society of Japan, 2021, 94, 2477-2483.	2.0	5
2015	A 3D supramolecular Ag(I)-based coordination polymer as stable photocatalyst for dye degradation. Inorganic Chemistry Communication, 2021, 131, 108805.	1.8	7
2016	Present and Perspectives of Photoactive Porous Composites Based on Semiconductor Nanocrystals and Metal-Organic Frameworks. Molecules, 2021, 26, 5620.	1.7	6
2017	Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. Journal of Colloid and Interface Science, 2021, 600, 503-512.	5.0	27
2018	Bifunctional Metal–Organic Layers for Tandem Catalytic Transformations Using Molecular Oxygen and Carbon Dioxide. Journal of the American Chemical Society, 2021, 143, 16718-16724.	6.6	28
2019	Mechanistic Insight into the Synergetic Interaction of Ammonia Borane and Water on ZIF-67-Derived Co@Porous Carbon for Controlled Generation of Dihydrogen. ACS Applied Materials & Interfaces, 2021, 13, 47465-47477.	4.0	15

#	Article	IF	CITATIONS
2020	A metal-organic framework MIL-53(Fe) containing sliver ions with antibacterial property. Journal of Solid State Chemistry, 2021, 302, 122442.	1.4	13
2021	A New Electrically Conducting Metal–Organic Framework Featuring U-Shaped cis-Dipyridyl Tetrathiafulvalene Ligands. Frontiers in Chemistry, 2021, 9, 726544.	1.8	4
2022	Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels. Journal of Energy Chemistry, 2021, 61, 304-318.	7.1	50
2023	Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chinese Journal of Catalysis, 2021, 42, 1790-1797.	6.9	20
2024	Metal-organic frameworks-derived CoO/C penetrated with self-supporting graphene enabling accelerated polysulfide conversion for lithium-sulfur batteries. Electrochimica Acta, 2021, 398, 139311.	2.6	9
2025	The substituent effect on the luminescent properties of a set of 4-amino-4-1,2,4-triazole: Syntheses, crystal structures and Hirshfeld analyses. Journal of Molecular Structure, 2021, 1243, 130893.	1.8	11
2026	Sono-synthesis of basic metal-organic framework for reusable catalysis of organic reactions in the eco-friendly conditions. Journal of Solid State Chemistry, 2021, 303, 122525.	1.4	8
2027	A novel rare-earth luminescent coordination polymer showing potential semiconductor characteristic constructed by anthracene-based dicarboxylic acid ligand (H2L). Journal of Molecular Structure, 2021, 1243, 130788.	1.8	5
2028	Solvent mediated photoluminescence responses over mixed-linker cadmium (II) based metal–organic frameworks. Polyhedron, 2021, 208, 115444.	1.0	1
2029	Hot-electron leading-out strategy for constructing photostable HOF catalysts with outstanding H2 evolution activity. Applied Catalysis B: Environmental, 2021, 296, 120337.	10.8	28
2030	Molecular approaches to heterogeneous catalysis. Coordination Chemistry Reviews, 2021, 448, 214179.	9.5	29
2031	Rational design of ionic V-MOF with confined Mo species for highly efficient oxidative desulfurization. Applied Catalysis B: Environmental, 2021, 298, 120594.	10.8	40
2032	Natural gas dehydration by adsorption using MOFs and silicas: A review. Separation and Purification Technology, 2021, 276, 119409.	3.9	33
2033	Post-synthetic anchoring Fe(III) into a fcu-type Zr-MOF for the catalyzed hydrolysis of 5-hydroxylmethoxyfurfural. Microporous and Mesoporous Materials, 2021, 328, 111449.	2.2	5
2034	Controlled hydrodeoxygenation of lignin-derived anisole over supported Pt on UiO-66 based-catalysts through defect engineering approach. Fuel Processing Technology, 2021, 224, 107001.	3.7	11
2035	In2S3 nanoparticles coupled to In-MOF nanorods: The structural and electronic modulation for synergetic photocatalytic degradation of Rhodamine B. Environmental Research, 2022, 203, 111874.	3.7	28
2036	{Cu ₂ SiW ₁₂ O ₄₀ }@HKUST-1 synthesized by a one-step solution method with efficient bifunctional activity for supercapacitors and the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 13161-13169.	5.2	34
2037	Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50, 5366-5396.	18.7	130

#	Article	IF	CITATIONS
2038	Heterogeneous nanozymatic activity of Hf oxo-clusters embedded in a metal–organic framework towards peptide bond hydrolysis. Nanoscale, 2021, 13, 12298-12305.	2.8	8
2039	Accelerating the redox kinetics by catalytic activation of "dead sulfur―in lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 13442-13458.	5.2	30
2040	<i>In situ</i> cleavage and rearrangement synthesis of an easy-to-obtain and highly stable Cu(<scp>ii</scp>)-based MOF for efficient heterogeneous catalysis of carbon dioxide conversion. CrystEngComm, 2021, 23, 6307-6314.	1.3	9
2041	Constructions of seven noncovalent-bonded supramolecules from reactions of Cu(II)/Cd(II)/Zn(II) with isonicotinamide and carboxylates. Inorganic and Nano-Metal Chemistry, 2021, 51, 1842-1859.	0.9	3
2042	Synthesis, DFT and Bio-Potential Activities of Mn(II) and Hg(II) Complexes with Bidentate (E)-N′[(E)-3-Phenylallylidene]benzene-1,2-diamine. Asian Journal of Chemistry, 2021, 33, 1222-1228.	0.1	2
2043	Targeted synthesis of covalently linked Ni-MOFs nanosheets/graphene for oxygen evolution reaction by computational screening of anchoring primers. Nano Energy, 2021, 79, 105418.	8.2	25
2044	Controllable selfâ€assembly from homonuclear Mn (II)â€MOF to heteronuclear Mn (II)â€K(I)â€MOF by alkaliâ€regulation: A novel mode of structural and luminescent regulation for off–on sensing ascorbic acid. Applied Organometallic Chemistry, 2021, 35, e6160.	1.7	0
2045	Two Cd(II) Coordination Compounds Based on the Flexible N-Bridging Ligands: Syntheses, Crystal Structures and Luminescent Properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 75-80.	0.3	0
2046	<i>In situ</i> growth of ZIF-8 on gold nanoparticles/magnetic carbon nanotubes for the electrochemical detection of bisphenol A. Analytical Methods, 2021, 13, 2338-2344.	1.3	14
2047	Towards correlating dimensionality and topology in luminescent MOFs based on terephthalato and bispyridyl-like ligands. Dalton Transactions, 2021, 50, 9269-9282.	1.6	5
2048	Heterogeneous photocatalysts based on iso- and heteropolytungstates. , 2021, , 301-318.		0
2049	The role of metal–organic porous frameworks in dual catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3618-3658.	3.0	30
2050	Development of Au–Pd@UiO-66-on-ZIF-L/CC as a self-supported electrochemical sensor for <i>in situ</i> monitoring of cellular hydrogen peroxide. Journal of Materials Chemistry B, 2021, 9, 9031-9040.	2.9	14
2051	The Amazing Chemistry of Metal-Organic Frameworks. , 2017, , 339-369.		3
2052	Assembling latter d-block heterometal coordination polymers: Synthetic strategies and structural outcomes. Coordination Chemistry Reviews, 2017, 348, 121-170.	9.5	17
2053	Manganese-organic framework assembled by 5-((4′-(tetrazol-5″-yl)benzyl)oxy)isophthalic acid: A solvent-free catalyst for the formation of carbon–carbon bond. Inorganica Chimica Acta, 2020, 510, 119735.	1.2	10
2054	Room-temperature preparation of MIL-68 and its derivative In2S3 for enhanced photocatalytic Cr(VI) reduction and organic pollutant degradation under visible light. Journal of Alloys and Compounds, 2020, 837, 155567.	2.8	32
2055	Ruthenium Complex-Incorporated Two-Dimensional Metal–Organic Frameworks for Cocatalyst-Free Photocatalytic Proton Reduction from Water. Inorganic Chemistry, 2020, 59, 2379-2386.	1.9	24

ARTICLE IF CITATIONS Defect-Engineered Metalâ€"Organic Frameworks: A Thorough Characterization of Active Sites Using CO 2056 1.5 15 as a Probe Molecule. Journal of Physical Chemistry C, 2021, 125, 593-601. Application of Metal–Organic Frameworks in CO2 Capture and Conversion. RSC Catalysis Series, 2019, , 455-478. 0.1 Two d¹⁰ luminescent metalâ€"organic frameworks as dual functional luminescent sensors for (Fe³⁺,Cu²⁺) and 2,4,6-trinitrophenol (TNP) with high selectivity and 2058 1.7 13 sensitivity. RSC Advances, 2020, 10, 4817-4824. Size and function influence study on enhanced catalytic performance of a cooperative MOF for mild, green and fast C–C bond formation. Dalton Transactions, 2020, 49, 3234-3242. Architectural and catalytic aspects of designer materials built using metalloligands of 2060 1.6 14 pyridine-2,6-dicarboxamide based ligands. Dalton Transactions, 2020, 49, 14731-14748. A mixed-valent metal–organic ladder linked by pyrazine. Journal of Physics Condensed Matter, 2021, 33, 034002. Structures of substituted pyridine <i>N</i>-oxide with manganese(II) acetate. Acta Crystallographica 2062 0.2 5 Section E: Crystallographic Communications, 2018, 74, 1405-1410. Molecular design of heterogeneous electrocatalysts using tannic acid-derived metal–phenolic 2063 2.8 networks. Nanoscale, 2021, 13, 20374-20386. Uranyl-MOF for Thioether Oxidation Processes Under Visible Light Conditions. Catalysis Letters, 2021, 2064 1.4 4 151, 2982-2989. Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy 10.1 applications. EnergyChem, 2021, 3, 100065. A simple route to prepare supramolecular block copolymers using telechelic 2066 9 1.6 polystyrene/polydimethylsiloxane pairs. Polymer International, 2022, 71, 470-477. Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catalysis, 2067 5.5 121 2021, 11, 13374-13396. State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic 2068 6.5 71 frameworks. Journal of Hazardous Materials, 2022, 424, 127558. Understanding the Anisotropic Elastic Properties of Metal–Organic Frameworks at the Nanoscale: 2069 1.5 The Instructive Example of MOF-74. Journal of Physical Chemistry C, 2021, 125, 24728-24745. A Three-Dimensional Cd(II)-Coordination Polymer: Crystal Structure, Electrochemiluminescent 2070 1.9 0 Property and Novel Topology. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1. Janus Metal–Organic Frameworks/Wood Aerogel Composites for Boosting Catalytic Performance by 2071 14 Le Ch¢telier's Principle. ACS Applied Materials & Interfaces, 2021, 13, 51039-51047. A review on recent developments in N-methylation using CO2. Journal of CO2 Utilization, 2021, 54, 2072 3.3 19 101759.

2073	Facile synthesis of hierarchical porous ZIF-8@TiO2 for simultaneous adsorption and photocatalytic decomposition of crystal violet. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100598.	1.7	9
------	---	-----	---

	Сітатіо	n Report	
#	Article	IF	CITATIONS
2074	Manganese(II) chloride complexes with pyridine <i>N</i> -oxide (PNO) derivatives and their solid-state structures. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1434-1438.	0.2	5
2075	Benzimidazole synthesis via oxidative condensation of 1,2-diaminoarenes with primary amines using MOF-235 as an effective heterogeneous catalyst. Tap Chi Khoa Hoc = Journal of Science, 2018, 54(8), 88.	0.1	0
2076	Application of Metal-Organic Frameworks for Purification of Colored Waste Water of Food Industry. Ecology and Industry of Russia, 2019, 23, 15-19.	0.2	1
2077	Polymeric poly[[decaaquabis(μ ₆ -1,8-disulfonato-9 <i>H</i> -carbazole-3,6-dicarboxylato)di-μ _{3decahydrate]. IUCrData, 2019, 4, .}	ub>-hy dr.a xy-po	entazinc]
2079	Fabrication of Metal-organic Framework (MOF) Thin Films from Copper Hydroxide Nano-assemblies. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 132-139.	0.1	0
2081	Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers, 2021, 13, 3712.	2.0	9
2082	Assembly, photocatalytic and fluorescence properties of three new coordination complexes of zinc(II) and nickel(II) with two kinds of flexible bis(pyridyl)-bis(amide) ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 55-63.	0.3	0
2083	Metal-Organic Frameworks (MOFs). Engineering Materials, 2021, , 105-146.	0.3	0
2084	Dual-Metal <i>N</i> -Heterocyclic Carbene Complex (M = Au and Pd)-Functionalized UiO-67 MOF for Alkyne Hydration–Suzuki Coupling Tandem Reaction. Journal of Organic Chemistry, 2021, 86, 1818-1826.	1.7	15
2085	Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications. , 0, , .		3
2086	A two-dimensional manganese coordination polymer: Crystal structure, proton conductivity and catalytic property. Inorganica Chimica Acta, 2022, 529, 120658.	1.2	1
2087	Fabrication of high loading V2O5/TiO2 catalysts derived from metal-organic framework with excellent activity for chlorobenzene decomposition. Applied Surface Science, 2022, 572, 151511.	3.1	16
2088	Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives. Coordination Chemistry Reviews, 2022, 451, 214259.	9.5	40
2089	Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coordination Chemistry Reviews, 2022, 450, 214237.	9.5	66
2090	Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordination Chemistry Reviews, 2022, 451, 214262.	9.5	253
2091	Luminescent properties of activated forms of rigid ligand Cd(II)-coordination polymers sustained by hydrogen bond. Inorganica Chimica Acta, 2022, 529, 120660.	1.2	4
2092	Covalent Assemblies of Metal Nanoparticles—Strategies for Synthesis and Catalytic Applications. Molecular Catalysis, 2020, , 129-197.	1.3	0
2093	Acidic metal–organic framework empowered precise hydrodeoxygenation of bio-based furan compounds and cyclic ethers for sustainable fuels. Green Chemistry, 2021, 23, 9974-9981.	4.6	9

#	Article	IF	CITATIONS
2097	Pd immobilization biguanidine modified Zr-UiO-66 MOF as a reusable heterogeneous catalyst in Suzuki–Miyaura coupling. Scientific Reports, 2021, 11, 21883.	1.6	32
2098	Improved efficiency in dye sensitized solar cell (DSSC) by <i>nano</i> -MIL-101(Cr) impregnated photoanode. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77, 93-104.	0.7	4
2099	A Substrate-Binding Metal–Organic Layer Selectively Catalyzes Photoredox Ene-Carbonyl Reductive Coupling Reactions. Journal of the American Chemical Society, 2021, 143, 18871-18876.	6.6	16
2100	Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2020, 75, 545-552.	0.3	0
2101	Harnessing host–guest interactions to control structure at the nanoscale. Pure and Applied Chemistry, 2020, 92, 1895-1900.	0.9	1
2102	Catalytic Wet Air Oxidation of Sewage Sludge: A Review. Current Organocatalysis, 2020, 7, 199-211.	0.3	11
2103	Optimizing the metal ion release and antibacterial activity of ZnO@ZIF-8 by modulating its synthesis method. New Journal of Chemistry, 2021, 45, 22924-22931.	1.4	20
2104	pH dependent sensitization of europium in a hydrogen bonded three-dimensional metal–organic compound with (4 ⁹ 6 ⁶) ₂ (4 ⁴ 6 ^{2)₃ topology: luminescence titration and time-resolved studies. Materials Advances, 2022, 3, 1182-1190}	2.6	3
2105	Porous porphyrin-based metal-organic frameworks: synthesis, structure, sorption properties and application prospects. Russian Chemical Reviews, 2022, 91, .	2.5	12
2106	Amino acid-assisted ferrite/MOF composite formation for visible-light induced photocatalytic cascade C=C aerobic oxidative cleavage functionalization. Molecular Catalysis, 2021, 516, 111949.	1.0	2
2107	UiO-66-NH-(AO) MOFs with a New Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Interfaces, 2021, 13, 57831-57840.	4.0	40
2108	DNAzymeâ€Functionalized Nanomaterials: Recent Preparation, Current Applications, and Future Challenges. Small, 2021, 17, e2105439.	5.2	20
2109	Synthesis and Mechanical Properties of sub 5â€Âµm PolyUiOâ€66 Thin Films on Gold Surfaces. ChemPhysChem, 2021, , .	1.0	1
2110	Low-dose electron microscopy of nanoporous materials. , 2021, , .		0
2111	Recovery of MOF-5 from Extreme High-Pressure Conditions Facilitated by a Modern Pressure Transmitting Medium. Chemistry of Materials, 0, , .	3.2	6
2111 2112	Recovery of MOF-5 from Extreme High-Pressure Conditions Facilitated by a Modern Pressure Transmitting Medium. Chemistry of Materials, 0, , . Porphyrin framework-derived N-doped porous carbon-confined Ru for NH ₃ BH ₃ Materials Chemistry A, 2021, 10, 326-336.	3.2 5.2	6 53
2111 2112 2113	Recovery of MOF-5 from Extreme High-Pressure Conditions Facilitated by a Modern Pressure Transmitting Medium. Chemistry of Materials, 0, , . Porphyrin framework-derived N-doped porous carbon-confined Ru for NH ₃ BH ₃ BH ₃ methanolysis: the more pyridinic-N, the better. Journal of Materials Chemistry A, 2021, 10, 326-336. Metal-organic frameworks based on heterocyclic ligands and some transition metals as effective carbon steel corrosion inhibitors in aqueous environment. Journal of Molecular Liquids, 2022, 348, 118402.	3.2 5.2 2.3	6 53 11

#	Article	IF	Citations
2115	Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. Science of the Total Environment, 2022, 810, 152279.	3.9	28
2116	Metal-organic frameworks based hybrid nanocomposites as state-of–the-art analytical tools for electrochemical sensing applications. Biosensors and Bioelectronics, 2022, 199, 113867.	5.3	77
2117	Revealing the performance of bio-MOFs for adsorption-based uremic toxin separation using molecular simulations. Chemical Engineering Journal, 2022, 431, 134263.	6.6	13
2118	Efficient visible light initiated one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd@NH2-UiO-66(Zr). Applied Catalysis B: Environmental, 2022, 305, 121031.	10.8	20
2119	Green Synthesis of Symmetric Dimaleamic Acids from Dianilines and Maleic Anhydride: Behind New Bidentate Ligands for MOFs. Chemistry Proceedings, 2020, 3, .	0.1	0
2120	Aqueous Medium Fluoride Anion Sensing by Fluorophore Encapsulated UiO-66 Type Zirconium Metal–Organic Framework. , 2021, 5, .		1
2121	Au NPs fabricated on biguanidine-modified Zr-UiO-66 MOFs: a competent reusable heterogeneous nanocatalyst in the green synthesis of propargylamines. New Journal of Chemistry, 2022, 46, 2829-2836.	1.4	6
2122	Halogen bonding in cadmium(<scp>ii</scp>) MOFs: its influence on the structure and on the nitroaldol reaction in aqueous medium. Dalton Transactions, 2022, 51, 1019-1031.	1.6	22
2123	Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nature Communications, 2022, 13, 282.	5.8	83
2124	Highly efficient functionalized MOF-LIC-1 for extraction of U(<scp>vi</scp>) and Th(<scp>iv</scp>) from aqueous solution: experimental and theoretical studies. Dalton Transactions, 2022, 51, 3557-3571.	1.6	12
2125	An X-ray Photoelectron Spectroscopy Study of Postsynthetic Exchange in UiO-66. Langmuir, 2022, 38, 1589-1599.	1.6	4
2126	Adsorption and photocatalytic properties of porphyrin loaded MIL-101 (Cr) in methylene blue degradation. Environmental Science and Pollution Research, 2022, 29, 34406-34418.	2.7	6
2127	Embedding in-plane aligned MOF nanoflakes in silk fibroin for highly enhanced output performance of triboelectric nanogenerators. Journal of Materials Chemistry A, 2022, 10, 799-807.	5.2	28
2128	Modified Metalâ^'Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3, .	6.9	20
2129	Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review. Journal of Environmental Sciences, 2023, 125, 290-308.	3.2	39
2130	A review of recent progress in modified metal–organic frameworks as photocatalysts. Journal of Materials Science: Materials in Electronics, 2022, 33, 4737-4754.	1.1	5
2131	Temperature-Induced Structural Transformations of Lanthanide Coordination Polymers Based on a Semirigid Tricarboxylic Acid Ligand: Crystal Structures and Luminescence Properties. Crystal Growth and Design, 2022, 22, 1583-1593.	1.4	17
2132	Metal Organic Frameworks Based Nanomaterial: Synthesis and Applications; Removal of Heavy Metal Ions from Waste Water. Energy, Environment, and Sustainability, 2022, , 377-392.	0.6	1

#	Article	IF	CITATIONS
2133	Conductive metal and covalent organic frameworks for electrocatalysis: design principles, recent progress and perspective. Nanoscale, 2022, 14, 277-288.	2.8	17
2135	Reversible One―to Two―to Threeâ€Dimensional Transformation in Cu ^{II} Coordination Polymer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
2136	Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications. Accounts of Chemical Research, 2022, 55, 579-591.	7.6	145
2137	Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals. Beilstein Journal of Nanotechnology, 2022, 13, 160-171.	1.5	5
2138	Vanadiumâ€based metalâ€organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat, 2022, 3, 384-416.	6.4	51
2139	1D/2D/3D Reversible Dimensional Transformation in Cu(II) Coordination Polymer. Angewandte Chemie, 0, , .	1.6	0
2140	Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coordination Chemistry Reviews, 2022, 457, 214389.	9.5	46
2141	Atomic-Level Structure of Mesoporous Hexagonal Boron Nitride Determined by High-Resolution Solid-State Multinuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations. Chemistry of Materials, 0, , .	3.2	5
2142	Reversible Dissociation for Effective Storage of Diborane Gas within the UiO-66-NH2 Metal–Organic Framework. ACS Applied Materials & Interfaces, 2022, , .	4.0	4
2143	A fluorescence zinc metal-organic framework for the effective detection of Fe3+ and Fe2+ in water. Inorganic Chemistry Communication, 2022, 138, 109282.	1.8	6
2144	Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. Science China Materials, 2022, 65, 298-320.	3.5	36
2145	Feeding Carbonylation with CO ₂ via the Synergy of Single-Site/Nanocluster Catalysts in a Photosensitizing MOF. Journal of the American Chemical Society, 2021, 143, 20792-20801.	6.6	91
2146	Peroxymonosulfate Activation for Efficient Tetracycline Hydrochloride Degradation ByÂRecyclable Mil-88a-Chitosan Beads: Kinetics, Mechanism AndÂEnlightenment for Pratical Application. SSRN Electronic Journal, 0, , .	0.4	0
2147	A multifunctional anionic metal–organic framework for high proton conductivity and photoreduction of CO ₂ induced by cation exchange. Dalton Transactions, 2022, 51, 4798-4805.	1.6	7
2148	Advances in porous inorganic nanomaterials for bone regeneration. , 2022, 1, 9130005.		6
2149	Pd(/Fe ₃ O ₄)-on-ZIFs: nanoparticle deposition on (nano-)MOFs from ionic liquids. Journal of Materials Chemistry A, 2022, 10, 11955-11970.	5.2	4
2150	Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker. Materials Advances, 2022, 3, 4227-4234.	2.6	3
2151	Selective luminescent sensing of metal ions and nitroaromatics over a porous mixed-linker cadmium(<scp>ii</scp>) based metal–organic framework. New Journal of Chemistry, 2022, 46, 8523-8533.	1.4	6

#	Article	IF	CITATIONS
2152	Synthesis and Structure of Gold Complexes [Ph3PR][Au(CN)2Cl2] (R = CH2CH=CHCH3, CH2CN) and Ph3PC(H)(CN)Au(CN)2Cl. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 26-32.	0.3	1
2154	A New V-Based Metal–Organic Framework Synthesized from Pyrene-Based Linker. , 2022, , 11-17.		1
2155	State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. Nano-Micro Letters, 2022, 14, 68.	14.4	117
2156	Covalent organic frameworkâ€supported Pd nanoparticles: An efficient and reusable heterogeneous catalyst for Suzuki–Miyaura coupling reactions. Applied Organometallic Chemistry, 2022, 36, .	1.7	10
2157	Two 3D Cd(II) coordination polymers pillared by linear ligand: synthesis, structure and luminescent properties. Inorganic and Nano-Metal Chemistry, 0, , 1-7.	0.9	2
2158	MOF-Derived Cu@N-C Catalyst for 1,3-Dipolar Cycloaddition Reaction. Nanomaterials, 2022, 12, 1070.	1.9	13
2159	Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 4, 246-281.		48
2160	Heterobimetallic Ln(III)â€Containing Materials Based on Oneâ€Dimensional Aurophilic Chains of Gold(I) Dithiolate Dimers and Their Vapochromic Response to DMF. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	3
2161	Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Science China Chemistry, 2022, 65, 650-677.	4.2	23
2162	Recent developments in MIL-101 metal organic framework for heterogeneous catalysis. Reviews in Chemical Engineering, 2023, 39, 707-728.	2.3	6
2163	Chiral Metal–Organic Frameworks. Chemical Reviews, 2022, 122, 9078-9144.	23.0	175
2164	Kinetic Probes of the Origin of Activity in MOF-Based C–H Oxidation Catalysis. ACS Catalysis, 2022, 12, 3858-3867.	5.5	12
2165	Rational Design of Metal–Organic Frameworkâ€Based Materials for Photocatalytic CO ₂ Reduction. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	23
2166	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
2167	Structures and Catalytic Properties of two New Squaramideâ€decorated Cdâ€MOFs. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0
2168	PtCu@Ir-PCN-222: Synergistic Catalysis of Bimetallic PtCu Nanowires in Hydrosilane-Concentrated Interspaces of an Iridium(III)–Porphyrin-Based Metal–Organic Framework. ACS Catalysis, 2022, 12, 3604-3614.	5.5	22
2169	Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2564-2580.	1.1	3
2170	Metal-based nanoparticles for cardiovascular disease diagnosis and therapy. Particuology, 2023, 72, 94-111.	2.0	7

#	Article	IF	CITATIONS
2171	Role of Benzene-1,3,5-Tricarboxylate Ligand in CuO–CeO2 Catalysts Derived from Metal–Organic Frameworks for Carbon Monoxide Oxidation. Catalysis Letters, 2023, 153, 219-229.	1.4	1
2172	Impregnation Synthesized Cu@MILâ€101(Cr) Catalyzes the Oxidation of Styrene to Benzaldehyde with TBHP**. ChemistrySelect, 2022, 7, .	0.7	0
2173	Anchoring nanosized MOFs at the interface of porous millimeter beads and their enhanced adsorption mechanism for VOCs. Journal of Cleaner Production, 2022, 353, 131631.	4.6	13
2174	Colossal Linear NTE and PTE in Two-Fold Interpenetrated Network of a MOF Induced by Hinge-like Motion. Crystal Growth and Design, 2022, 22, 3479-3484.	1.4	4
2175	Rapid Generation of Metal–Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 6674-6680.	6.6	10
2176	Understanding the Origin of the Particularly Small and Anisotropic Thermal Expansion of MOFâ€74. Advanced Theory and Simulations, 2022, 5, .	1.3	5
2177	Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. Journal of Membrane Science, 2022, 648, 120369.	4.1	15
2178	The structural arrangement of the ligand-metal complex with centered zinc and nickel atoms and their optical features. Journal of Molecular Structure, 2022, 1262, 133010.	1.8	5
2179	Miscellaneous dimensional coordination polymers and luminescence emission properties of cadmium(II)-pseudohalide complexes. Inorganica Chimica Acta, 2022, 535, 120871.	1.2	1
2180	Nitrogen-rich dual linker MOF catalyst for room temperature fixation of CO2 via cyclic carbonate synthesis: DFT assisted mechanistic study. Journal of CO2 Utilization, 2022, 59, 101951.	3.3	11
2181	A metal-organic framework based on Co(II) and 3-aminoisonicotinate showing specific and reversible colourimetric response to solvent exchange with variable magnet behaviour. Materials Today Chemistry, 2022, 24, 100794.	1.7	6
2183	Cu-Based Metal–Organic Framework Nanosheets Synthesized via a Three-Layer Bottom-Up Method for the Catalytic Conversion of <i>S</i> -Nitrosoglutathione to Nitric Oxide. ACS Applied Nano Materials, 2022, 5, 486-496.	2.4	2
2184	Metalâ€Organic Framework Based Gas Sensors. Advanced Science, 2022, 9, e2104374.	5.6	142
2185	Metal Organic Frameworks: Desulfurization Process by Engineered Novel Adsorbents. ChemistrySelect, 2021, 6, 13918-13930.	0.7	4
2186	Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS Applied Materials & Interfaces, 2021, 13, 60715-60735.	4.0	86
2187	Design of Bifunctional Zinc(II)–Organic Framework for Efficient Coupling of CO ₂ with Terminal/Internal Epoxides under Mild Conditions. Crystal Growth and Design, 2022, 22, 598-607.	1.4	28
2188	Metal–organic frameworks in pursuit of size: the development of macroscopic single crystals. Dalton Transactions, 2022, 51, 7775-7782.	1.6	4
2189	Ligand-regulated metal–organic frameworks for synergistic photoredox and nickel catalysis. Inorganic Chemistry Frontiers, 2022, 9, 3116-3129.	3.0	3

#	Article	IF	CITATIONS
2190	Strategic design of a bifunctional Ag(<scp>i</scp>)-grafted NHC-MOF for efficient chemical fixation of CO ₂ from a dilute gas under ambient conditions. Inorganic Chemistry Frontiers, 2022, 9, 2583-2593.	3.0	26
2191	Biofunctionalized metal–organic frameworks and host–guest interactions for advanced biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7194-7205.	2.9	11
2192	A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors. Physical Chemistry Chemical Physics, 2022, 24, 11882-11897.	1.3	8
2193	Metal-organic frameworks as a good platform for the fabrication of multi-metal nanomaterials: design strategies, electrocatalytic applications and prospective. Advances in Colloid and Interface Science, 2022, 304, 102668.	7.0	16
2194	Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chemical Reviews, 2022, 122, 12244-12307.	23.0	119
2195	2D Cd(II)-MOF of Pyridyl-Imidazoquinazoline: Structure, Luminescence, and Selective Detection of TNP and Fabrication of Semiconducting Devices. Crystal Growth and Design, 2022, 22, 3138-3147.	1.4	18
2196	Room temperature synthesis of new isoreticular 2D metal-organic frameworks of Co(II) and Ni(II) comprised of dual semiflexible neutral and anionic linkers, and their conversion to metal oxide nanomaterials. Inorganica Chimica Acta, 2022, , 120966.	1.2	0
2197	A Bispidine Based Cu ^{II} /Zn ^{II} Heterobimetallic Coordination Polymer. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
2198	Green and efficient Knoevenagel condensation catalyzed by pristine Zn-MOFs of amino acid derivatives. Inorganica Chimica Acta, 2022, 538, 120970.	1.2	3
2199	Cyclodextrin metal–organic framework by ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial application. Ultrasonics Sonochemistry, 2022, 86, 106003.	3.8	29
2200	A luminescent Eu3+-functionalized MOF for sensitive and rapid detection of tetracycline antibiotics in swine wastewater and pig kidney. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 277, 121252.	2.0	21
2202	MOF-based electrocatalysts for oxygen evolution reactions. , 2022, , 107-134.		3
2203	Supramolecular Effects and Systems in Catalysis. A Review. Doklady Chemistry, 2022, 502, 1-27.	0.2	3
2204	Recent advancement in bimetallic metal organic frameworks (M′MOFs): synthetic challenges and applications. Inorganic Chemistry Frontiers, 2022, 9, 3003-3033.	3.0	18
2205	Oxygen-Sulfur Dual-Vacancy Engineering on La Nanosheets Synergistically Promote the Catalytic Transfer Hydrogenation of Biomass-Derived Furfural at Low Temperature. SSRN Electronic Journal, 0, ,	0.4	0
2206	The pioneering role of metal–organic framework-5 in ever-growing contemporary applications – a review. RSC Advances, 2022, 12, 14282-14298.	1.7	18
2207	The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review. Chinese Chemical Letters, 2023, 34, 107478.	4.8	13
2208	Switching of support materials for the hydrogenation of nitroarenes: A review. Catalysis Reviews - Science and Engineering, 2024, 66, 259-342.	5.7	2

#	Article	IF	CITATIONS
2209	Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets Based on a Halogenâ€Substituted Porphyrin Ligand: Synthesis and Catalytic Application in CO ₂ Reductive Amination. Chemistry - A European Journal, 2022, 28, .	1.7	11
2210	A Dihydrotetrazine-Functionalized Metal–Organic Framework as a Highly Selective Luminescent Host–Guest Sensor for Detection of 2,4,6-Trinitrophenol. Inorganic Chemistry, 2022, 61, 7820-7834.	1.9	26
2211	Recent advances in the tuning of the organic framework materials – The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	5.0	7
2212	Pt@MIL-101(Fe) for efficient visible light initiated coproduction of benzimidazoles and hydrogen from the reaction between o-Phenylenediamines and alcohols. Journal of Catalysis, 2022, 410, 156-163.	3.1	22
2213	Mixed-Metal Cu-Mn iminodiacetate coordination polymer as heterogeneous catalyst for Morita-Baylis-Hillman reactions. Journal of Molecular Structure, 2022, 1263, 133133.	1.8	5
2214	CoP nanorods anchored on Ni ₂ P-NiCoP nanosheets with abundant heterogeneous interfaces boosting the electrocatalytic oxidation of 5-hydroxymethyl-furfural. Catalysis Science and Technology, 2022, 12, 4288-4297.	2.1	11
2215	Adsorptive removal of ibuprofen to binary and amine-functionalized UiO-66 in the aquatic environment: synergistic/antagonistic evaluation. Environmental Science and Pollution Research, 2022, 29, 69502-69516.	2.7	10
2216	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
2217	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	5
2218	Construction of FRET-based metallacycles with efficient photosensitization efficiency and photocatalytic activity. Chinese Chemical Letters, 2023, 34, 107511.	4.8	8
2219	Universal Strategy to Efficiently Coat Zeolitic Imidazolate Frameworks onto Diverse Substrates. ACS Omega, 2022, 7, 17765-17773.	1.6	1
2220	Metadynamics molecular dynamics and isothermal Brownian-type molecular dynamics simulations for the chiralcluster Au ₁₈ . Journal of Physics Condensed Matter, 2022, , .	0.7	0
2221	Single-Chain Polymer Nanoparticles-Encapsulated Chiral Bifunctional Metal-Organic Frameworks for Asymmetric Sequential Reactions. Inorganic Chemistry Communication, 2022, , 109577.	1.8	5
2222	基于é",æ—金属奒啉的金属-有机框架的ç"究进展. Scientia Sinica Chimica, 2022, , .	0.2	0
2223	Synthesis of MIL-101(Cr)/Sulfasalazine (Cr-TA@SSZ) hybrid and its use as a novel adsorbent for adsorptive removal of organic pollutants from wastewaters. Journal of Porous Materials, 0, , .	1.3	4
2224	Activated carbon (AC)-metal-organic framework (MOF) composite: Synthesis, characterization and dye removal. Korean Journal of Chemical Engineering, 2022, 39, 2394-2404.	1.2	5
2225	Bimetallic Fe–Cu metal organic frameworks for room temperature catalysis. Applied Organometallic Chemistry, 2022, 36, .	1.7	15
2226	MOF-253 immobilized Pd and Cu as recyclable and efficient green catalysts for Sonogashira reaction. Arabian Journal of Chemistry, 2022, 15, 103962.	2.3	5

\sim	 	D	
		RE	דעהנ
		NLI	

#	Article	IF	CITATIONS
2227	Azobenzene modified metal-organic framework: For solar energy storage. Journal of Energy Storage, 2022, 52, 104971.	3.9	2
2228	Sulfate-functionalized hafnium-organic frameworks as a highly effective chemiresistive sensor for low-temperature detection of hazardous NH3 gas. Sensors and Actuators B: Chemical, 2022, 367, 132094.	4.0	12
2229	Postsynthetic Modification (PSM) in Metalâ ''Organic Frameworks (MOFs): Icing on the Cake. ACS Symposium Series, 0, , 83-115.	0.5	3
2230	Metal–Organic Frameworks for Water Decontamination and Reuse. ACS Symposium Series, 0, , 193-215.	0.5	2
2231	MOF-Based Chemical Fixation of Carbon Dioxide into Value-Added Fine Chemicals. ACS Symposium Series, 0, , 239-267.	0.5	0
2232	Role of Metalâ^'Organic Frameworks for Removal of Toxic Ions. ACS Symposium Series, 0, , 53-76.	0.5	1
2233	Zinc-Based Metalâ^'Organic Framework for Heavy Metal Sensing. ACS Symposium Series, 0, , 177-201.	0.5	0
2234	Stabilization of CO ₂ as zwitterionic carbamate within a coordination polymer (CP): synthesis, structure and anion sensing behaviour of a Tb-CP composite. CrystEngComm, 2022, 24, 5890-5899.	1.3	1
2235	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	18.7	147
2236	Chapter 8. Nanocatalysis With Sustainability. RSC Nanoscience and Nanotechnology, 2022, , 220-254.	0.2	1
2237	The impact of MOFs in pH-dependent drug delivery systems: progress in the last decade. Dalton Transactions, 2022, 51, 9950-9965.	1.6	15
2238	Pseudomorphic Replacement in the Transformation between Metal–Organic Frameworks toward Three-Dimensional Hierarchical Nanostructures. Chemistry of Materials, 2022, 34, 5356-5365.	3.2	11
2239	Metalâ€Organic Frameworks with Lowâ€Valent Metal Nodes. Angewandte Chemie, 0, , .	1.6	0
2240	Metal–Organic Frameworks with Lowâ€Valent Metal Nodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
2241	Anthraquinone-Based Metal–Organic Frameworks as a Bifunctional Photocatalyst for C–H Activation. Inorganic Chemistry, 2022, 61, 9493-9503.	1.9	19
2242	Zirconium Metal Organic Framework-Based Hybrid Sensors with Chiral and Luminescent Centers Fabricated by Postsynthetic Modification for the Detection and Recognition of Tryptophan Enantiomers. Inorganic Chemistry, 2022, 61, 9615-9622.	1.9	22
2243	Selective adsorption of the cationic dye rhodamine-6G from aqueous solution by phosphotungstic acid@MOF-199 composites. Journal of the Indian Chemical Society, 2022, 99, 100579.	1.3	9
2244	Recent Development in Coordination Compounds as a Sensor for Cyanide lons in Biological and Environmental Segments. Critical Reviews in Analytical Chemistry, 0, , 1-21.	1.8	12

#	Article	IF	CITATIONS
2245	Heterogeneous catalytic carboxylation of terminal alkynes with CO2 over a copper(II)-based metal-organic framework catalyst. Catalysis Communications, 2022, 169, 106472.	1.6	3
2246	Petal-Like Hierarchical Co3o4/N-Doped Porous Carbon Derived from Co-Mof for Enhanced Peroxymonosulfate Activation to Remove Tetracycline Hydrochloride. SSRN Electronic Journal, 0, , .	0.4	0
2247	Selective detection of sulfasalazine antibiotic and its controllable photodegradation into 5-aminosalicylic acid by visible-light-responsive metal–organic framework. Dalton Transactions, 2022, 51, 11730-11736.	1.6	1
2248	Transformation of metal–organic frameworks with retained networks. Chemical Communications, 2022, 58, 8602-8613.	2.2	11
2249	Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982.	2.1	8
2250	Metal-Organic Hybrids Base on [Vo2(L)]- Tecton with Cations of Imidazole and its Derivative: Synthesis, Single-Crystal Structures and Antidiabetic Propertiesmetal-Organic Hybrids Base on [Vo2(L)]- Tecton with Cations of Imidazole and its Derivative: Synthesis, Single-Crystal Structures and Antidiabetic Properties SSRN Electronic Journal O	0.4	0
2251	ZINC(II) AND CADMIUM(II) METAL-ORGANIC FRAMEWORKS BASED ON THE AMIDE- FUNCTIONALIZED TETRACARBOXYLATE LIGAND: SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENT PROPERTIES. Journal of Structural Chemistry, 2022, 63, 378-387.	0.3	9
2252	Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nature Communications, 2022, 13, .	5.8	22
2253	Porous Adsorption Materials for Carbon Dioxide Capture in Industrial Flue Gas. Frontiers in Chemistry, 0, 10, .	1.8	20
2254	Ligand Tailoring Strategy of a Metal–Organic Framework for Optimizing Methane Storage Working Capacities. Inorganic Chemistry, 2022, 61, 10417-10424.	1.9	5
2255	<scp>Ultralowâ€Energyâ€Barrier H₂O₂</scp> Dissociation on Coordinatively Unsaturated Metal Centers in Binary <scp>Ceâ€Fe</scp> Prussian Blue Analogue for Efficient and Stable <scp>Photoâ€Fenton</scp> Catalysis. Energy and Environmental Materials, 2023, 6, .	7.3	3
2256	A europium metal–organic framework for dual Fe3+ ion and pH sensing. Scientific Reports, 2022, 12, .	1.6	14
2257	Ag Nanoparticle-Modified Polyoxometalate-Based Metal–Organic Framework for Enhanced CO ₂ Photoreduction. Inorganic Chemistry, 2022, 61, 11359-11365.	1.9	11
2258	Oneâ€pot Economic Synthesis to the Functional Copper Mixedâ€triazolate MOF Materials Towards an Enhanced Adsorptive Removal of Diclofenac Sodium. ChemistrySelect, 2022, 7, .	0.7	1
2259	Efficient conversion of glycerol to aromatics over stable nanosized x-ZF/ZM-y catalysts using ZIF-8 as a template. Applied Catalysis A: General, 2022, 643, 118761.	2.2	4
2260	Metal–Organic Framework: An Emergent Catalyst in C–N Cross-Coupling Reactions. Coordination Chemistry Reviews, 2022, 469, 214667.	9.5	23
2261	Bimetallicâ€Catalyzed Oxidative Esterification Reaction Forming <i>α</i> â€Acyloxy Ether. Chemical Engineering and Technology, 2022, 45, 1785-1794.	0.9	1
2262	Experimental and DFT Study of Transition Metal Doping in a Zn-BDC MOF to Improve Electrical and Visible Light Absorption Properties. Journal of Physical Chemistry C, 2022, 126, 12348-12360.	1.5	10

#	ARTICLE Ce-MOF Nanosphere as Colorimetric Sensor with High Oxidase Mimicking Activity for Sensitive	IF	Citations
2263	Detection of H2O2. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3595-3600.	1.9	6
2264	RSM optimization of biodiesel production by a novel composite of Fe(ΙΙΙ)-based MOF and phosphomolybdic acid. Research on Chemical Intermediates, 2022, 48, 3773-3793.	1.3	5
2265	PtNi@ZIF-8 nanocatalyzed high efficiency and complete hydrogen generation from hydrazine borane: origin and mechanistic insight. Journal of Materials Chemistry A, 2022, 10, 17614-17623.	5.2	12
2266	Hierarchically Structured and Highly Active Palladium-Loaded Al-Mil-53-Linked Hybrid Periodic Mesoporous Silica Catalysts for Suzuki-Miyaura Cross-Coupling Reaction. SSRN Electronic Journal, 0, , .	0.4	0
2267	Mixed-Metal and Mixed-Ligand Lanthanide Metal–Organic Frameworks Based on 2,6-Naphthalenedicarboxylate: Thermally Activated Sensitization and White-Light Emission. Inorganic Chemistry, 2022, 61, 11959-11972.	1.9	4
2268	Preparation of Redoxâ€Active Metal–Organic Frameworks via Postâ€Synthetic Modification of Organic Selenium for In Situ Confinement of Metal Nanoparticles. Advanced Materials Interfaces, 2022, 9, .	1.9	3
2269	Morphological Anisotropy in Metal–Organic Framework Micro/Nanostructures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
2270	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	7.8	46
2271	Metal–organic frameworks in chiral separation of pharmaceuticals. Chirality, 2022, 34, 1419-1436.	1.3	12
2272	The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation. Journal of Environmental Sciences, 2023, 128, 181-202.	3.2	19
2273	CatalyticÂsynthesis of newÂpyrazolo [3,4-b] pyridineÂviaÂa cooperativeÂvinylogousÂanomeric-based oxidation. Scientific Reports, 2022, 12, .	1.6	20
2274	Morphological Anisotropy in Metal–Organic Framework Micro/Nanostructures. Angewandte Chemie, 2022, 134, .	1.6	3
2275	Novel sulfur vacancies featured MIL-88A(Fe)@CuS rods activated peroxymonosulfate for coumarin degradation: Different reactive oxygen species generation routes under acidic and alkaline pH. Chemical Engineering Research and Design, 2022, 166, 11-22.	2.7	13
2276	Schiff base compounds as artificial metalloenzymes. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112727.	2.5	15
2277	"Caught in the Act―@ disruption of A-ET-E process in the recognition of Fâ^' by a lamellar EuIII-MOF in heterogeneous manner with logic gate construction: From protagonist idea to implementation world. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 283, 121764.	2.0	3
2278	Synthesis and structure of a 3D supramolecular layered Bi-MOF and its application in photocatalytic degradation of dyes. Journal of Molecular Structure, 2022, 1270, 133895.	1.8	11
2279	Recent advancements in the synthesis and electrocatalytic activity of two-dimensional metal–organic framework with bimetallic nodes for energy-related applications. Coordination Chemistry Reviews, 2022, 472, 214782.	9.5	12
2280	Metal-organic frameworks for pharmaceutical and biomedical applications. Journal of Pharmaceutical and Biomedical Analysis, 2022, 221, 115026.	1.4	13

#	Article	IF	CITATIONS
2281	Metal-organic hybrids based on [VO2(L)]â^' tecton with cations of imidazole and its derivative: Synthesis, single-crystal structures and molecular docking studies. Polyhedron, 2022, 227, 116125.	1.0	2
2282	Oxidized thin aluminum films used as the polarized liquid-liquid interface support for norcocaine detection. Sensors and Actuators B: Chemical, 2022, 373, 132651.	4.0	2
2283	Optimization of operating conditions for anisole hydrodeoxygenation reaction over Zr-based metal–organic framework supported Pt catalyst. Fuel Processing Technology, 2022, 238, 107477.	3.7	5
2284	A Zn/Co bimetal zeolitic imidazolate framework material as a catalyst to activate persulfates to degrade tylosin in aqueous solutions. New Journal of Chemistry, 2022, 46, 18917-18925.	1.4	2
2285	Analysing the role of anions in the synthesis of catalytically active urea-based MOFs. Dalton Transactions, 2022, 51, 16316-16324.	1.6	3
2286	3D micro–meso-structured iron-based hybrid for peroxymonosulfate activation: performance, mechanism and comprehensive practical application potential evaluation. Environmental Science: Water Research and Technology, 2022, 8, 2602-2613.	1.2	2
2287	Unraveling the timescale of the structural photo-response within oriented metal–organic framework films. Chemical Science, 2022, 13, 11869-11877.	3.7	9
2288	A mesoporous metal–organic framework used to sustainably release copper(<scp>ii</scp>) into reducing aqueous media to promote the CuAAC click reaction. RSC Advances, 2022, 12, 26825-26833.	1.7	3
2289	MOF/POM hybrids as catalysts for organic transformations. Dalton Transactions, 2022, 51, 11952-11986.	1.6	21
2290	Catalytic Organic Reactions in Liquid Phase by Perovskite Oxides: A Review. Asian Journal of Chemistry, 2022, 34, 2489-2498.	0.1	1
2291	Post-synthetically modified metal–porphyrin framework GaTCPP for carbon dioxide adsorption and energy storage in Li–S batteries. RSC Advances, 2022, 12, 23989-24002.	1.7	5
2292	Stable terbium metal–organic framework with turn-on and blue-shift fluorescence sensing for acidic amino acids (<scp>l</scp> -aspartate and <scp>l</scp> -glutamine) and cations (Al ³⁺ and) Tj ETQq1	1 167 8431	l 47rgBT /Ove
2293	Rational synthesis of a pyridyl-imidazoquinazoline based multifunctional 3D Zn(<scp>ii</scp>)-MOF: structure, luminescence, selective and sensitive detection of Al ³⁺ and TNP, and its semiconducting device application. Dalton Transactions, 2022, 51, 13749-13761.	1.6	11
2294	Demonstration of High-Throughput Building Block and Composition Analysis of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 4672-4679.	2.5	3
2295	Review on Hydrogen Production from Catalytic Ammonia Borane Methanolysis: Advances and Perspectives. Energy & Fuels, 2022, 36, 11745-11759.	2.5	11
2296	The use of metal-organic frameworks as heterogeneous catalysts. Reviews in Inorganic Chemistry, 2023, 43, 437-463.	1.8	2
2297	Effects of Acid Modulators on the Microwave-Assisted Synthesis of Cr/Sn Metal-Organic Frameworks. Polymers, 2022, 14, 3826.	2.0	5
2298	A Review on Zeolite: Application, Synthesis and Effect of Synthesis Parameters on Product Properties.	1.2	6

#	Article	IF	CITATIONS
2299	Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Critical Reviews in Analytical Chemistry, 0, , 1-22.	1.8	9
2300	Hierarchical Metal–Organic Aerogel as a Highly Selective and Sustainable CO ₂ Adsorbent. ACS Applied Materials & Interfaces, 2022, 14, 46682-46694.	4.0	0
2301	Petal-like hierarchical Co3O4/N-doped porous carbon derived from Co-MOF for enhanced peroxymonosulfate activation to remove tetracycline hydrochloride. Chemical Engineering Journal, 2023, 452, 139545.	6.6	39
2302	Structures, luminescent properties, and volatile iodine detection of Zn(II) based zigzag coordination chains. Journal of Solid State Chemistry, 2022, 316, 123612.	1.4	1
2303	Cu2+-encapsulated ZIF-8 as a facile catalyst for the synthesis of kojic acid derivatives in aqueous medium: A green approach. Results in Chemistry, 2022, 4, 100604.	0.9	1
2304	Hydroxyl-Imidazolium Ionic Liquid-Functionalized MIL-101(Cr): A Bifunctional and Highly Efficient Catalyst for the Conversion of CO ₂ to Styrene Carbonate. Inorganic Chemistry, 2022, 61, 17438-17447.	1.9	6
2305	Regulating the Porosity and Iodine Adsorption Properties of Metal–Organic Framework Glass via an Ammonia-Immersion Approach. Inorganic Chemistry, 2022, 61, 16981-16985.	1.9	7
2306	Regulation of Chiral Phosphoric Acid Catalyzed Asymmetric Reaction through Crown Ether Based Host–Guest Chemistry. Organic Letters, 2022, 24, 7955-7960.	2.4	5
2307	Tuning the Properties of Metalâ€Organic Cages through Platinum Nanoparticle Encapsulation. ChemistrySelect, 2022, 7, .	0.7	0
2308	Recent Advances in Semiconductor Heterojunctions and Z-Schemes for Photocatalytic Hydrogen Generation. Topics in Current Chemistry, 2022, 380, .	3.0	18
2309	Transforming an Insulating Metal–Organic Framework (MOF) into Semiconducting MOF/Gold Nanoparticle (AuNP) and MOF/Polymer/AuNP Composites to Gain Electrical Conductivity. ACS Applied Nano Materials, 2022, 5, 13912-13920.	2.4	16
2310	Synthesis of {P2W18}-based coated structured nano materials with supercapacitors and H2O2 sensing. Journal of Energy Storage, 2022, 56, 105991.	3.9	9
2311	A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Separation and Purification Technology, 2023, 305, 122416.	3.9	32
2312	Catalytic application of a novel melamine–naphthalene-1,3-disulfonic acid metal–organic framework in the synthesis of β-acetamido ketones. New Journal of Chemistry, 2022, 46, 23394-23403.	1.4	11
2313	Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chemical Engineering Journal, 2023, 454, 140447.	6.6	50
2314	Influence of Tartrate Ligand Coordination over Luminescence Properties of Chiral Lanthanide-Based Metal–Organic Frameworks. Nanomaterials, 2022, 12, 3999.	1.9	0
2315	Lanthanide(III) Ions and 5-Methylisophthalate Ligand Based Coordination Polymers: An Insight into Their Photoluminescence Emission and Chemosensing for Nitroaromatic Molecules. Nanomaterials, 2022, 12, 3977.	1.9	2
2316	Construction of ZIF-67-On-UiO-66 Catalysts as a Platform for Efficient Overall Water Splitting. Inorganic Chemistry, 2022, 61, 18424-18433.	1.9	8

#	Article	IF	CITATIONS
2317	Hierarchically structured and highly active palladium-loaded Al-MIL-53-linked hybrid periodic mesoporous silica catalysts for Suzuki-Miyaura cross-coupling reaction. Microporous and Mesoporous Materials, 2022, 346, 112329.	2.2	4
2318	Construction of Acylamide-functionalized MOFs for efficient catalysis on the conversion of CO2. Molecular Catalysis, 2022, 533, 112786.	1.0	2
2319	Two-Dimensional (2D) TM-Tetrahydroxyquinone Metal–Organic Framework for Selective CO2 Electrocatalysis: A DFT Investigation. Nanomaterials, 2022, 12, 4049.	1.9	4
2320	Porous metal–organic framework nanoscale carriers as a potential platform for drug delivery. , 2023, , 153-176.		0
2321	An eco-friendly metal-less tanning process: Zr-based metal-organic frameworks as novel chrome-free tanning agent. Journal of Cleaner Production, 2023, 382, 135263.	4.6	15
2322	Triboelectric behaviour of selected MOFs in contact with metals. RSC Advances, 2022, 13, 41-46.	1.7	1
2323	Emerging applications of metal-organic frameworks and derivatives in solar cells: Recent advances and challenges. Materials Science and Engineering Reports, 2023, 152, 100714.	14.8	12
2324	Rapid synthesis of bismuth-organic frameworks as selective antimicrobial materials against microbial biofilms. Materials Today Bio, 2023, 18, 100507.	2.6	7
2325	Metal-organic framework membranes for proton exchange membrane fuel cells: A mini-review. Inorganica Chimica Acta, 2023, 546, 121304.	1.2	7
2326	N-Heterocyclic Carbene Silver Complex Modified Polyacrylonitrile Fiber/MIL-101(Cr) Composite as Efficient Chiral Catalyst for Three-Component Coupling Reaction. Nanomaterials, 2022, 12, 4175.	1.9	1
2327	Multiscale Computational Approaches toward the Understanding of Materials. Advanced Theory and Simulations, 2023, 6, .	1.3	4
2328	Metal–Organic Frameworks as Intelligent Drug Nanocarriers for Cancer Therapy. Pharmaceutics, 2022, 14, 2641.	2.0	5
2329	Cobalt-Based Cocatalysts for Photocatalytic CO2 Reduction. Transactions of Tianjin University, 2022, 28, 506-532.	3.3	9
2330	Engineering Single-Atom Sites into Pore-Confined Nanospaces of Porphyrinic Metal–Organic Frameworks for the Highly Efficient Photocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2022, 144, 22747-22758.	6.6	53
2331	Ultrathin two-dimensional porphyrinic metal-organic framework nanosheets induced by the axial aryl substituent. Chinese Chemical Letters, 2023, 34, 108052.	4.8	3
2332	Targeted in vitro gene silencing of E2 and nsP1 genes of chikungunya virus by biocompatible zeolitic imidazolate framework. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
2333	Optimizing Acetylene Sorption through Inducedâ€fit Transformations in a Chemically Stable Microporous Framework. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
2334	A monolithic gold nanoparticle@metal-organic framework composite as CO2 photoreduction catalyst. Materials Today Nano, 2023, 21, 100293.	2.3	4

#	Article	IF	CITATIONS
2335	N-doped ZnC composites with gelatin coating as enhanced lithium-storage anode materials. Journal of Materials Science, 2022, 57, 21996-22005.	1.7	2
2336	Construction of ZIF-67/MIL-88(Fe, Ni) catalysts as a novel platform for efficient overall water splitting. International Journal of Hydrogen Energy, 2023, 48, 7170-7180.	3.8	10
2337	Oxidation of <i>N</i> â€Alkyl(iso)quinolinium Salts Over TEMPO@Metalâ€Organic Framework Heterogeneous Photocatalyst ^{â€} . ChemSusChem, 2023, 16, .	3.6	2
2338	Optimizing Acetylene Sorption through Inducedâ€fit Transformations in a Chemically Stable Microporous Framework. Angewandte Chemie, 0, , .	1.6	0
2339	Tailoring and Identifying BrÃ,nsted Acid Sites on Metal Oxo-Clusters of Metal–Organic Frameworks for Catalytic Transformation. ACS Central Science, 2023, 9, 27-35.	5.3	6
2340	Two pillared-layer metal–organic frameworks based on the pinwheel trinuclear carboxylate-clusters of Zn(<scp>ii</scp>) and Co(<scp>ii</scp>): synthesis, crystal structures, magnetic study, and Lewis acid catalysis. Dalton Transactions, 0, , .	1.6	1
2341	Synthesis of unsymmetrical NH-pyrroles from biomass feedstock in the confined space of metal–organic frameworks. Green Chemistry, 2023, 25, 915-921.	4.6	3
2343	Piezoelectric Metalâ€Organic Frameworks Mediated Mechanoredox Borylation and Arylation Reactions by Ball Milling. Chemistry - A European Journal, 2023, 29, .	1.7	6
2344	Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers. Chemical Science, 2023, 14, 1742-1751.	3.7	16
2345	Enhanced Catalytic Activity of TEMPO-Mediated Aerobic Oxidation of Alcohols via Redox-Active Metal–Organic Framework Nodes. Molecules, 2023, 28, 593.	1.7	2
2346	Tailoring stability, catalytic activity and selectivity of covalent metal–organic frameworks <i>via</i> steric modification of metal nodes. Journal of Materials Chemistry A, 2023, 11, 12777-12783.	5.2	8
2347	Anodic electrodeposition of continuous metal-organic framework films with robust adhesion by pre-anchored strategy. Microporous and Mesoporous Materials, 2023, 350, 112443.	2.2	7
2348	Metal-organic frameworks for catalysis: Fundamentals and future prospects. Chinese Journal of Catalysis, 2023, 45, 1-5.	6.9	48
2349	Two isostructural Ln-MOFs containing triazole groups as luminescent probes for efficient sensing of NACs and Fe3+. Inorganica Chimica Acta, 2023, 547, 121376.	1.2	6
2350	Exploring degradation properties and mechanisms of emerging contaminants via enhanced directional electron transfer by polarized electric fields regulation in Fe-N4-Cx. Journal of Hazardous Materials, 2023, 446, 130698.	6.5	7
2351	Bovine serum albumin-derived poly-l-glutamic acid-functionalized graphene quantum dots embedded UiO-66-NH2 MOFs as a fluorescence †On-Off-On' magic gate for para-aminohippuric acid sensing. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438, 114532.	2.0	5
2352	Rise of supramolecular nanozymes: Next-generation peroxidase enzyme-mimetic materials. , 2023, , 329-387.		2
2353	A Zn(II)–Metal–Organic Framework Based on 4-(4-Carboxy phenoxy) Phthalate Acid as Luminescent Sensor for Detection of Acetone and Tetracycline. Molecules, 2023, 28, 999.	1.7	2

#	Article	IF	CITATIONS
2354	High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity. Npj Computational Materials, 2023, 9, .	3.5	18
2355	Influence of hydrophobic moieties on the crystallization of amphiphilic DNA nanostructures. Journal of Chemical Physics, 0, , .	1.2	1
2356	Ionic Liquid Functionalized Metal–Organic Framework ([DEIm][PF ₆]@MOF-5): Synthesis, Characterization, and Catalytic Application in the Reduction of 4-Nitrophenol. ACS Omega, 2023, 8, 3785-3797.	1.6	1
2357	Advance of design and application in self-healing anticorrosive coating: a review. Journal of Coatings Technology Research, 2023, 20, 819-841.	1.2	8
2358	Multifunctional Metal–Organic Framework (MOF)-Based Nanoplatforms for Crop Protection and Growth Promotion. Journal of Agricultural and Food Chemistry, 0, , .	2.4	6
2359	Design strategies for coordination polymers as electrodes and electrolytes in rechargeable lithium batteries. Coordination Chemistry Reviews, 2023, 483, 215084.	9.5	8
2360	Hydrolytically stabilized 5-hydroxyisophthalate appended Tb-MOF as a twofold chemosensor for discerning detection of 2,4,6-trinitrophenol and ferric ion: Structural, topological and mechanistic sensing exploration via experimental and computational studies. Inorganica Chimica Acta, 2023, 552, 121488.	1.2	1
2361	Flexible 3,5-bis(3,4-dicarboxyphenoxy) benzoic acid based coordination polymers as photocatalysts for the sensitive photodegradation of methylene blue. Polyhedron, 2023, 237, 116393.	1.0	2
2362	Fabrication of a pyridyl appended linear Co(II) based coordination polymer: Structural insights and molecular docking. Inorganica Chimica Acta, 2023, 552, 121493.	1.2	0
2363	Copper(II) and zinc(II) complexes bridged by benzenoid aromatic oxocarbon and dicarboxylate dianions. Polyhedron, 2023, 234, 116327.	1.0	1
2364	Explosive and pollutant nitroaromatic sensing through a Cd(II) based ladder shaped 1D coordination polymer. Heliyon, 2023, 9, e13504.	1.4	4
2365	Metalâ€Organic Frameworkâ€Based Colloidal Particle Synthesis, Assembly, and Application. ChemPlusChem, 2023, 88, .	1.3	2
2366	Lipase-based MIL-100(Fe) biocomposites as chiral stationary phase for high-efficiency capillary electrochromatographic enantioseparation. Mikrochimica Acta, 2023, 190, .	2.5	5
2367	A Bimetal Sulfide Nanocomposites Displaying Photocatalytic Performance Based on a MOFs Template Method. Russian Journal of General Chemistry, 2022, 92, 2763-2769.	0.3	2
2368	Photothermal catalysis without solvent for fixing CO2 to cyclic carbonate. Molecular Catalysis, 2023, 538, 112971.	1.0	2
2369	Amide Functionalized Mesoporous MOF LOCOM-1 as a Stable Highly Active Basic Catalyst for Knoevenagel Condensation Reaction. ACS Omega, 2023, 8, 6638-6649.	1.6	0
2370	Modulating the Energetics of C–H Bond Activation in Methane by Utilizing Metalated Porphyrinic Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2023, 14, 1832-1839.	2.1	4
2371	Coordination polymers of perylenetetracarboxylate with Cs(I) ions: 3D structures with 2D inorganic layers or triple coordination nets. Polyhedron, 2023, 234, 116338.	1.0	0

#	Article	IF	CITATIONS
2372	Efficient catalysts of surface hydrophobic Cu-BTC with coordinatively unsaturated Cu(I) sites for the direct oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
2373	Impacts of host–guest assembly on the photophysical and photocatalytic properties of heterogenized molecular photosensitizer and catalysts. Journal of Materials Chemistry A, 2023, 11, 6646-6658.	5.2	3
2375	Porous Carbon-Based Sensors and Their Applications. Materials Horizons, 2023, , 381-404.	0.3	0
2376	Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environmental Chemistry Letters, 2023, 21, 1315-1379.	8.3	27
2377	Modification of micro/nanoscaled manganese dioxide-based materials and their electrocatalytic applications toward oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 6688-6746.	5.2	13
2378	Solubilizing Metal–Organic Frameworks for an <i>In Situ</i> IR-SEC Study of a CO ₂ Reduction Catalyst. ACS Applied Materials & Interfaces, 2023, 15, 16593-16597.	4.0	5
2379	Catalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid by Co-based MOFs. Applied Catalysis A: General, 2023, 657, 119147.	2.2	7
2380	Role of molecular modelling in the development of metal-organic framework for gas adsorption applications. Journal of Chemical Sciences, 2023, 135, .	0.7	4
2381	A Coordination Polymer of Vaska's Complex as a Heterogeneous Catalyst for the Reductive Formation of Enamines from Amides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
2382	A Coordination Polymer of Vaska's Complex as a Heterogeneous Catalyst for the Reductive Formation of Enamines from Amides. Angewandte Chemie, 0, , .	1.6	0
2383	Fluorescence "ON–OFF–ON―response in the formation of a tetrahedral anionocage and encapsulation of halogenated hydrocarbons. Chemical Communications, 0, , .	2.2	1
2384	ZIF-8 thin films by a vapor-phase process: limits to growth. Nanoscale, 2023, 15, 7115-7125.	2.8	1
2385	Heteropoly Ionic Liquid Functionalized MOF-Fe: Synthesis, Characterization, and Catalytic Application in Selective Acetalization of Glycerol to Solketal as a Fuel Additive at Room Temperature, Solvent-Free Conditions. , 0, , .		0
2386	A Phosphateâ€based Organic Polymer Nanocontainer Efficiently Hosts Ag/Ru Nanoparticles for Heterogeneous Catalytic Reduction of Nitroaromatics and Oxidation of Benzyl Alcohols. ChemNanoMat, 2023, 9, .	1.5	6
2387	Self-adaptive Metal–Organic Framework Assembles Di-iron Active Sites to Mimic Monooxygenases. Journal of the American Chemical Society, 0, , .	6.6	2
2388	Composite Eu-MOF@CQDs "off & on―ratiometric luminescent probe for highly sensitive chiral detection of l-lysine and 2-methoxybenzaldehyde. Chinese Chemical Letters, 2023, 34, 108426.	4.8	1
2389	Benzenesulfonic acid-grafted UIO-66 with improved hydrophobicity as a stable BrÃ,nsted acid catalyst. Frontiers of Chemical Science and Engineering, 0, , .	2.3	0
2390	Porous Salts as Platforms for Heterogeneous Catalysis. Small, 2023, 19, .	5.2	2

	C	itation Repor	ет	
#	Article	IF		CITATIONS
2391	Yb(OTf) ₃ Anchored on Crosslinked Chitosan Microsphere: A Green Heterogenized Cata for the Synthesis of Bispiroâ€Fused Heterocycles. European Journal of Organic Chemistry, 2023, 26,	yst 1.2	2 :	2
2392	Synthesis and modification methods of metal-organic frameworks and their application in modification of polymeric ultrafiltration membranes: A review. Journal of Environmental Chemical Engineering, 2023, 11, 109954.	3.8	В	10
2393	Two novel metal-organic frameworks constructed by pyridinyl-derived and carboxylate mixed ligands for photocatalytic dye degradation. New Journal of Chemistry, 0, , .	1.4	1	0
2394	Exploring Functional Photonic Devices made from a Chiral Metal–Organic Framework Material by a Multiscale Computational Method. Advanced Functional Materials, 0, , .	7.8	8	5
2406	Metal–organic frameworks (an overview). , 2023, , 1-38.			0
2407	Role of metal–organic frameworks in catalysis. , 2023, , 163-182.			Ο
2417	MOFganic Chemistry: Challenges and Opportunities for Metal–Organic Frameworks in Synthetic Organic Chemistry. Chemistry of Materials, 2023, 35, 4883-4896.	3.2	2 .	4
2448	Covalent connections between metal–organic frameworks and polymers including covalent organi frameworks. Chemical Society Reviews, 2023, 52, 6379-6416.	c 18	.7	7
2452	Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. RSC Advances, 2023, 13, 24393-24411.	1.7	7	2
2479	Microwave-assisted synthesis of metal–organic frameworks. , 2024, , 51-72.			0
2483	Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal–organic frameworks. Chemical Society Reviews, 2023, 52, 8059-8076.	18	.7	1
2490	Manipulation of interfacial charge dynamics for metal–organic frameworks toward advanced photocatalytic applications. Nanoscale Advances, 2024, 6, 1039-1058.	2.2	2	1
2514	Cellular and Neurological Effects of Lead (Pb) Toxicity. Environmental Contamination Remediation and Management, 2024, , 125-145.	0.8	5	0
2536	Metal-organic frameworks as adsorbents for removal of pharmaceutical and personal care products (PPCPs). , 2024, , 141-147.			0