Semiconducting Layered Blue Phosphorus: A Computat

Physical Review Letters 112, 176802 DOI: 10.1103/physrevlett.112.176802

Citation Report

			0
1	Introduction to carbon-based nanostructures. , 0, , 1-10.		0
2	Electronic properties of carbon-based nanostructures. , 0, , 11-90.		0
3	Strain driven topological phase transitions in atomically thin films of group IV and V elements in the honeycomb structures. New Journal of Physics, 2014, 16, 105018.	1.2	58
4	Electron-doped phosphorene: A potential monolayer superconductor. Europhysics Letters, 2014, 108, 67004.	0.7	91
5	Dirac fermions in blue-phosphorus. 2D Materials, 2014, 1, 031002.	2.0	34
6	Stability and properties of high-buckled two-dimensional tin and lead. Physical Review B, 2014, 90, .	1.1	80
7	Local curvature and stability of two-dimensional systems. Physical Review B, 2014, 90, .	1.1	24
8	A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. Journal of Applied Physics, 2014, 116, .	1.1	76
9	High Stability of Faceted Nanotubes and Fullerenes of Multiphase Layered Phosphorus: A Computational Study. Physical Review Letters, 2014, 113, 226801.	2.9	91
10	Tiling Phosphorene. ACS Nano, 2014, 8, 12763-12768.	7.3	122
11	Theoretical prediction of hydrogen storage on Li-decorated monolayer black phosphorus. Journal Physics D: Applied Physics, 2014, 47, 465302.	1.3	47
12	The potential application of phosphorene as an anode material in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19046-19052.	5.2	339
13	Strong Thermal Transport Anisotropy and Strain Modulation in Single-Layer Phosphorene. Journal of Physical Chemistry C, 2014, 118, 25272-25277.	1.5	250
14	Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst. Journal of Physical Chemistry C, 2014, 118, 26560-26568.	1.5	383
15	Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct <i>I</i> – <i>V</i> Response. Journal of Physical Chemistry Letters, 2014, 5, 2675-2681.	2.1	877
16	Two-Dimensional Mono-Elemental Semiconductor with Electronically Inactive Defects: The Case of Phosphorus. Nano Letters, 2014, 14, 6782-6786.	4.5	186
17	Anisotropic elastic behaviour and one-dimensional metal in phosphorene. Physica Status Solidi - Rapid Research Letters, 2014, 8, 939-942.	1.2	29
18	Strain and Orientation Modulated Bandgaps and Effective Masses of Phosphorene Nanoribbons. Nano Letters, 2014, 14, 4607-4614.	4.5	306

ITATION RED

#	Article	IF	CITATIONS
19	Phase Coexistence and Metal-Insulator Transition in Few-Layer Phosphorene: A Computational Study. Physical Review Letters, 2014, 113, 046804.	2.9	556
20	Valley-polarized quantum anomalous Hall phase and disorder-induced valley-filtered chiral edge channels. Physical Review B, 2015, 91, .	1.1	43
21	Electric field induced gap modification in ultrathin blue phosphorus. Physical Review B, 2015, 91, .	1.1	139
22	Topologically protected Dirac cones in compressed bulk black phosphorus. Physical Review B, 2015, 91,	1.1	90
23	Single-layer crystalline phases of antimony: Antimonenes. Physical Review B, 2015, 91, .	1.1	261
24	Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B, 2015, 92, .	1.1	140
25	Prediction of a two-dimensional crystalline structure of nitrogen atoms. Physical Review B, 2015, 92, .	1.1	109
26	Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Physical Review B, 2015, 92, .	1.1	152
27	Two-Dimensional Materials for Sensing: Graphene and Beyond. Electronics (Switzerland), 2015, 4, 651-687.	1.8	310
28	Modulation of electronic and mechanical properties of phosphorene through strain. Physical Review B, 2015, 91, .	1.1	172
29	Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties. Physical Review B, 2015, 91, .	1.1	58
30	Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures. Journal of Physical Chemistry C, 2015, 119, 13929-13936.	1.5	295
31	Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: insights from first-principles calculations. Journal of Physics Condensed Matter, 2015, 27, 225304.	0.7	33
32	Atomically Thin Group V Elemental Films: Theoretical Investigations of Antimonene Allotropes. ACS Applied Materials & Interfaces, 2015, 7, 11490-11496.	4.0	416
33	A first-principles study of sodium adsorption and diffusion on phosphorene. Physical Chemistry Chemical Physics, 2015, 17, 16398-16404.	1.3	75
34	A new phase of phosphorus: the missed tricycle type red phosphorene. Journal of Physics Condensed Matter, 2015, 27, 265301.	0.7	47
35	Simulated scanning tunneling microscopy images of few-layer phosphorus capped by graphene and hexagonal boron nitride monolayers. Physical Review B, 2015, 91, .	1.1	27
36	Group theory for structural analysis and lattice vibrations in phosphorene systems. Physical Review B, 2015, 91, .	1.1	82

ARTICLE IF CITATIONS A first-principles study on the magnetic properties of nonmetal atom doped phosphorene monolayers. 1.3 91 Physical Chemistry Chemical Physics, 2015, 17, 16341-16350. Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study. Journal of Physics Condensed Matter, 2015, 27, 255006. Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus 1.6 181 sheets. Scientific Reports, 2015, 5, 9961. Structures, stabilities and electronic properties of defects in monolayer black phosphorus. Scientific Reports, 2015, 5, 10848. Covalency-Dependent Vibrational Dynamics in Two-Dimensional Titanium Carbides. Journal of Physical 1.1 34 Chemistry A, 2015, 119, 12977-12984. Structural and electronic properties of atomically thin germanium selenide polymorphs. Science China Materials, 2015, 58, 929-935. 3.5 Thin-Shell Thickness of Two-Dimensional Materials. Journal of Applied Mechanics, Transactions ASME, 1.1 40 2015, 82, . The mechanical exfoliation mechanism of black phosphorus to phosphorene: A first-principles study. 28 Europhysics Letters, 2015, 112, 37003. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Materials, 2.0 77 2015, 2, 044014. Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS2: A first 1.4 principles calculation. Journal of Solid State Chemistry, 2015, 231, 64-69. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Physical 379 1.3 Chemistry Chemical Physics, 2015, 17, 4854-4858. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5, 8501. 1.6 A Stillingerâ€"Weber potential for single-layered black phosphorus, and the importance of cross-pucker interactions for a negative Poisson's ratio and edge stress-induced bending. Nanoscale, 2.8 80 2015, 7, 6059-6068. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Physical Review B, 2015, 1.1 724 Designing Isoelectronic Counterparts to Layered Group V Semiconductors. ACS Nano, 2015, 9, 7.3 128 8284-8290. Effects of stacking order, layer number and external electric field on electronic structures of few-layer C₂N-h2D. Nanoscale, 2015, 7, 14062-14070. Recent developments in black phosphorus transistors. Journal of Materials Chemistry C, 2015, 3, 2.7 146 8760-8775.

CITATION REPORT

#

37

39

41

43

44

45

47

49

51

⁵⁴Two-Dimensional Pnictogen Honeycomb Lattice: Structure, On-Site Spin-Orbit Coupling and Spin1.69354Polarization. Scientific Reports, 2015, 5, 11512.1.693

ARTICLE IF CITATIONS # Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of 55 1.1 69 Stillinger-Weber potential and molecular dynamics study. Journal of Applied Physics, 2015, 117, . Discrete differential geometry and the properties of conformal two-dimensional materials. Synthetic 2.1 Metals, 2015, 210, 32-41. Surface-engineered nanoscale diamond films enable remarkable enhancement in thermal conductivity 57 5.4 15 and anisotropy. Carbon, 2015, 94, 760-767. Parametrization of Stillinger–Weber potential based on valence force field model: application to 214 single-layer MoS₂and black phosphorus. Nanotechnology, 2015, 26, 315706. Phosphorene: Fabrication, Properties, and Applications. Journal of Physical Chemistry Letters, 2015, 6, 59 2.1680 2794-2805. Electronic Structure and Carrier Mobilities of Arsenene and Antimonene Nanoribbons: A 3.1 First-Principle Study. Nanoscale Research Letters, 2015, 10, 955. Structural, Electronic, and Magnetic Properties of Adatom Adsorptions on Black and Blue 61 1.5 196 Phosphorene: A First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 10610-10622. Nano-scale displacement sensing based on van der Waals interactions. Nanoscale, 2015, 7, 8962-8967. 2.8 Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: A 63 1.1 178 computational study. Physical Review B, 2015, 91, . Strain and the optoelectronic properties of nonplanar phosphorene monolayers. Proceedings of the 64 3.3 National Academy of Sciences of the United States of America, 2015, 112, 5888-5892. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. 227 65 1.6 Scientific Reports, 2015, 5, 8691. Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by 1.6 88 Half-Filled One Dimensional Band. Scientific Reports, 2015, 5, 8921. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United 67 3.3 1,143 States of America, 2015, 112, 4523-4530. Spin caloritronics of blue phosphorene nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 1.3 10462-10467. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in 69 1.3 29 phosphorene. Nanotechnology, 2015, 26, 215205. Interfacing graphene and related 2D materials with the 3D world. Journal of Physics Condensed 24 Matter, 2015, 27, 133203. Effects of extrinsic point defects in phosphorene: B, C, N, O, and F adatoms. Applied Physics Letters, 71 1.572 2015, 106, . Nine New Phosphorene Polymorphs with Non-Honeycomb Structures: A Much Extended Family. Nano 4.5 275 Letters, 2015, 15, 3557-3562.

#	Article	IF	CITATIONS
73	Theoretical Prediction of Anode Materials in Li-Ion Batteries on Layered Black and Blue Phosphorus. Journal of Physical Chemistry C, 2015, 119, 8662-8670.	1.5	169
74	First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons. Journal of Physical Chemistry Letters, 2015, 6, 4141-4147.	2.1	51
75	Electronic properties of monolayer and bilayer arsenene under in-plain biaxial strains. Superlattices and Microstructures, 2015, 86, 501-507.	1.4	52
76	Interface effect on structural and electronic properties of graphdiyne adsorbed on SiO ₂ and h-BN substrates: A first-principles study. Chinese Physics B, 2015, 24, 096806.	0.7	0
77	The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 27769-27776.	1.3	54
78	Stability of two-dimensional PN monolayer sheets and their electronic properties. Physical Chemistry Chemical Physics, 2015, 17, 32009-32015.	1.3	47
79	Exciton binding energies and luminescence of phosphorene under pressure. Physical Review B, 2015, 91,	1.1	48
80	Intrinsic Defects, Fluctuations of the Local Shape, and the Photo-Oxidation of Black Phosphorus. ACS Central Science, 2015, 1, 320-327.	5.3	67
81	Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons. Journal of Applied Physics, 2015, 118, 054301.	1.1	19
82	Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene. Nanoscale, 2015, 7, 18716-18724.	2.8	132
83	New Phosphorene Allotropes Containing Ridges with 2- and 4-Coordination. Journal of Physical Chemistry C, 2015, 119, 24674-24680.	1.5	37
84	Hydrogenated arsenenes as planar magnet and Dirac material. Applied Physics Letters, 2015, 107, .	1.5	137
85	Two-dimensional octagon-structure monolayer of nitrogen group elements and the related nano-structures. Computational Materials Science, 2015, 110, 109-114.	1.4	36
86	A first-principles study of light non-metallic atom substituted blue phosphorene. Applied Surface Science, 2015, 356, 110-114.	3.1	95
87	Structural Transition in Layered As _{1–<i>x</i>} P _{<i>x</i>} Compounds: A Computational Study. Nano Letters, 2015, 15, 6042-6046.	4.5	74
88	High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nature Communications, 2015, 6, 7315.	5.8	423
89	Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent Raman spectra, and electronic transport measurements. Applied Physics Letters, 2015, 107, .	1.5	44
90	Magnetism in a nonmetal-substituted blue phosphorene: A first-principles study. , 2015, , .		0

#	Article	IF	CITATIONS
91	The third principal direction besides armchair and zigzag in single-layer black phosphorus. Nanotechnology, 2015, 26, 365702.	1.3	13
92	Indirect-direct band gap transition of two-dimensional arsenic layered semiconductors—cousins of black phosphorus. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	26
93	Geometry, electronic structures and optical properties of phosphorus nanotubes. Nanotechnology, 2015, 26, 415702.	1.3	41
94	Electronic and transport properties of phosphorene nanoribbons. Physical Review B, 2015, 92, .	1.1	145
95	Strain-induced band structure and mobility modulation in graphitic blue phosphorus. Applied Surface Science, 2015, 356, 626-630.	3.1	33
96	Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chemical Society Reviews, 2015, 44, 2732-2743.	18.7	1,260
97	Optical properties of black phosphorus. Advances in Optics and Photonics, 2016, 8, 618.	12.1	203
98	Diverse Thermal Transport Properties of Two-Dimensional Materials: A Comparative Review. , O, , .		2
99	Firstâ€principles prediction of a novel hexagonal phosphorene allotrope. Physica Status Solidi - Rapid Research Letters, 2016, 10, 563-565.	1.2	28
100	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie, 2016, 128, 1698-1701.	1.6	315
101	Acute mechano-electronic responses in twisted phosphorene nanoribbons. Nanoscale, 2016, 8, 14778-14784.	2.8	8
102	Unusually Stable Helical Coil Allotrope of Phosphorus. Nano Letters, 2016, 16, 7865-7869.	4.5	29
103	Continuum approach for long-wavelength acoustic phonons in quasi-two-dimensional structures. Physical Review B, 2016, 94, .	1.1	45
104	Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning. Journal of Applied Physics, 2016, 119, .	1.1	39
105	High applicability of two-dimensional phosphorous in Kagome lattice predicted from first-principles calculations. Scientific Reports, 2016, 6, 23151.	1.6	18
106	Ballistic thermal transport in monolayer transition-metal dichalcogenides: Role of atomic mass. Applied Physics Letters, 2016, 108, .	1.5	16
107	Prediction of spin-dependent electronic structure in 3 <i>d</i> -transition-metal doped antimonene. Applied Physics Letters, 2016, 109, .	1.5	49
108	Band Gap Engineering of Two-Dimensional Nitrogene. Scientific Reports, 2016, 6, 34177.	1.6	15

#	Article	IF	CITATIONS
109	Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect. Applied Physics Letters, 2016, 109, .	1.5	26
110	Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study. Applied Physics Letters, 2016, 108, .	1.5	90
111	Absorption edges of black phosphorus: A comparative analysis. Physica Status Solidi (B): Basic Research, 2016, 253, 2509-2514.	0.7	24
112	Stable single-layer structure of group-V elements. Physical Review B, 2016, 94, .	1.1	108
113	Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure. Applied Physics Letters, 2016, 108, .	1.5	109
114	Strain engineering band gap, effective mass and anisotropic Dirac-like cone in monolayer arsenene. AIP Advances, 2016, 6, .	0.6	65
115	Electronic properties and mechanical strength of β-phosphorene nano-ribbons. AIP Conference Proceedings, 2016, , .	0.3	0
116	Diffusion quantum Monte Carlo study of martensitic phase transition energetics: The case of phosphorene. Journal of Chemical Physics, 2016, 145, 124705.	1.2	7
117	Schottky potential barrier and spin polarization at Co/antimonene interfaces. RSC Advances, 2016, 6, 38746-38752.	1.7	9
118	Blue Phosphorene/MS ₂ (M = Nb, Ta) Heterostructures As Promising Flexible Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 13449-13457.	4.0	165
119	Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. Nano Letters, 2016, 16, 3236-3241.	4.5	491
120	<i>Ab initio</i> studies of phosphorene island single electron transistor. Journal of Physics Condensed Matter, 2016, 28, 195302.	0.7	21
121	Degradation of phosphorene in air: understanding at atomic level. 2D Materials, 2016, 3, 025011.	2.0	228
122	Dynamics and Mechanisms of Exfoliated Black Phosphorus Sublimation. Journal of Physical Chemistry Letters, 2016, 7, 1667-1674.	2.1	36
123	Stability, electronic structure and magnetic properties of vacancy and nonmetallic atom-doped buckled arsenene: first-principles study. RSC Advances, 2016, 6, 43794-43801.	1.7	31
124	Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation. Solid State Communications, 2016, 242, 36-40.	0.9	72
125	Single-Layered Hittorf's Phosphorus: A Wide-Bandgap High Mobility 2D Material. Nano Letters, 2016, 16, 2975-2980.	4.5	219
126	Topological phases in two-dimensional materials: a review. Reports on Progress in Physics, 2016, 79, 066501.	8.1	385

#	Article	IF	CITATIONS
127	Two-Dimensional Phosphorus Porous Polymorphs with Tunable Band Gaps. Journal of the American Chemical Society, 2016, 138, 7091-7098.	6.6	119
128	A graphene-like Mg ₃ N ₂ monolayer: high stability, desirable direct band gap and promising carrier mobility. Physical Chemistry Chemical Physics, 2016, 18, 30379-30384.	1.3	29
129	Adsorption of CO <inf>2</inf> and CO gas on impurity-decorated phosphorenes: A first-principles study. , 2016, , .		1
130	Twisted bilayer blue phosphorene: A direct band gap semiconductor. Superlattices and Microstructures, 2016, 97, 562-568.	1.4	40
131	Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. ACS Applied Materials & Interfaces, 2016, 8, 22860-22868.	4.0	208
132	Strain-controlled fundamental gap and structure of bulk black phosphorus. Physical Review B, 2016, 94, .	1.1	40
133	Two-dimensional metallic MoS2: A DFT study. Computational Materials Science, 2016, 124, 49-53.	1.4	22
134	Promising thermoelectric properties of phosphorenes. Nanotechnology, 2016, 27, 355705.	1.3	43
135	Phosphorene: what can we know from computations?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 5-19.	6.2	128
136	Nanotubes based on monolayer blue phosphorus. Physical Review B, 2016, 94, .	1.1	28
137	Investigation of adatom adsorption on single layer buckled germanium selenide. Applied Surface Science, 2016, 390, 185-189.	3.1	4
138	Multiple unpinned Dirac points in group-Va single-layers with phosphorene structure. Npj Computational Materials, 2016, 2, .	3.5	57
139	Two-dimensional exciton properties in monolayer semiconducting phosphorus allotropes. Physical Chemistry Chemical Physics, 2016, 18, 27829-27836.	1.3	41
140	Blue Phosphorene Oxide: Strain-Tunable Quantum Phase Transitions and Novel 2D Emergent Fermions. Nano Letters, 2016, 16, 6548-6554.	4.5	114
141	Electronic Structures and Li-Diffusion Properties of Group IV–V Layered Materials: Hexagonal Germanium Phosphide and Germanium Arsenide. Journal of Physical Chemistry C, 2016, 120, 23842-23850.	1.5	41
142	Prediction of above 20 K superconductivity of blue phosphorus bilayer with metal intercalations. 2D Materials, 2016, 3, 035006.	2.0	40
143	Electronic and optical properties of bilayer blue phosphorus. Computational Materials Science, 2016, 124, 23-29.	1.4	51
144	Tunable schottky barrier in blue phosphorus–graphene heterojunction with normal strain. Japanese Journal of Applied Physics, 2016, 55, 080306.	0.8	26

#	Article	IF	CITATIONS
145	Phosphorene and Phosphoreneâ€Based Materials – Prospects for Future Applications. Advanced Materials, 2016, 28, 8586-8617.	11.1	378
146	Effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties. Physical Review B, 2016, 93, .	1.1	20
147	Direct band gaps in group IV-VI monolayer materials: Binary counterparts of phosphorene. Physical Review B, 2016, 93, .	1.1	156
148	Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain. Physical Review B, 2016, 93, .	1.1	118
149	Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review B, 2016, 94, .	1.1	347
150	Four allotropes of semiconducting layered arsenic that switch into a topological insulator via an electric field: Computational study. Physical Review B, 2016, 94, .	1.1	57
151	Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Physical Review B, 2016, 94, .	1.1	295
152	Two-Dimensional Phosphorus Carbide: Competition between sp ² and sp ³ Bonding. Nano Letters, 2016, 16, 3247-3252.	4.5	137
153	Optical Identification of Topological Defect Types in Monolayer Arsenene by First-Principles Calculation. Journal of Physical Chemistry C, 2016, 120, 24917-24924.	1.5	24
154	Tunable electronic and dielectric properties of β-phosphorene nanoflakes for optoelectronic applications. RSC Advances, 2016, 6, 101835-101845.	1.7	5
155	Hydrogen separation by porous phosphorene: A periodical DFT study. International Journal of Hydrogen Energy, 2016, 41, 23067-23074.	3.8	23
156	Stability of single-layer and multilayer arsenene and their mechanical and electronic properties. Physical Review B, 2016, 94, .	1.1	93
157	Optical properties of single-layer and bilayer arsenene phases. Physical Review B, 2016, 94, .	1.1	67
158	Disorder effect on the anisotropic resistivity of phosphorene determined by a tight-binding model. Physical Review B, 2016, 94, .	1.1	20
159	Comparative study of phonon spectrum and thermal expansion of graphene, silicene, germanene, and blue phosphorene. Physical Review B, 2016, 94, .	1.1	80
160	Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene. Physical Review B, 2016, 94, .	1.1	114
161	Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific Reports, 2016, 6, 31994.	1.6	192
162	Three-Dimensional Covalently Linked Allotropic Structures of Phosphorus. Journal of Physical Chemistry C, 2016, 120, 26453-26458.	1.5	7

#	Article	IF	CITATIONS
163	Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations. Scientific Reports, 2016, 6, 29114.	1.6	58
164	Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties. Physical Chemistry Chemical Physics, 2016, 18, 32514-32520.	1.3	85
165	Comparative study of thermal properties of group-VA monolayers with buckled and puckered honeycomb structures. Physical Review B, 2016, 94, .	1.1	56
166	Phosphorene: from theory to applications. Nature Reviews Materials, 2016, 1, .	23.3	815
167	A theoretical review on electronic, magnetic and optical properties of silicene. Reports on Progress in Physics, 2016, 79, 126501.	8.1	155
168	Strain induced topological phase transitions in monolayer honeycomb structures of group-V binary compounds. Scientific Reports, 2016, 5, 17980.	1.6	45
169	Two-dimensional hexagonal semiconductors beyond graphene. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 043001.	0.7	19
170	Phosphorene as a promising anode material for lithium-ion batteries: A first-principle study. , 2016, , .		3
171	A first-principles study on the magnetic properties of Sc, V, Cr and Mn-doped monolayer TiS ₃ . RSC Advances, 2016, 6, 55194-55202.	1.7	7
172	SiTe monolayers: Si-based analogues of phosphorene. Journal of Materials Chemistry C, 2016, 4, 6353-6361.	2.7	54
173	Ab Initio Study of the Adsorption of Small Molecules on Stanene. Journal of Physical Chemistry C, 2016, 120, 13987-13994.	1.5	149
174	Performance analysis of uniaxially strained monolayer black phosphorus and blue phosphorus n-MOSFET and p-MOSFET. Journal of Computational Electronics, 2016, 15, 919-930.	1.3	21
175	First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2098-2104.	0.9	60
176	Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study. Nanoscale Research Letters, 2016, 11, 77.	3.1	99
177	Interaction of Adatoms and Molecules with Single-Layer Arsenene Phases. Journal of Physical Chemistry C, 2016, 120, 14345-14355.	1.5	98
178	Electronic structure engineering of various structural phases of phosphorene. Physical Chemistry Chemical Physics, 2016, 18, 18312-18322.	1.3	36
179	Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus. Nano Letters, 2016, 16, 4903-4908.	4.5	609
180	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie - International Edition, 2016, 55, 1666-1669.	7.2	651

#	Article	IF	CITATIONS
181	Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus. Nano Letters, 2016, 16, 1317-1322.	4.5	37
182	Stacking dependence of carrier transport properties in multilayered black phosphorous. Journal of Physics Condensed Matter, 2016, 28, 075001.	0.7	13
183	Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Advances, 2016, 6, 10919-10929.	1.7	53
184	Mechanical strain effects on black phosphorus nanoresonators. Nanoscale, 2016, 8, 901-905.	2.8	31
185	Calcium decorated and doped phosphorene for gas adsorption. Applied Surface Science, 2016, 377, 311-323.	3.1	80
186	Pseudo-Jahn–Teller Distortion in Two-Dimensional Phosphorus: Origin of Black and Blue Phases of Phosphorene and Band Gap Modulation by Molecular Charge Transfer. Journal of Physical Chemistry Letters, 2016, 7, 1288-1297.	2.1	73
187	Carbon phosphide monolayers with superior carrier mobility. Nanoscale, 2016, 8, 8819-8825.	2.8	135
188	Electronic Structures and Carrier Mobilities of Blue Phosphorus Nanoribbons and Nanotubes: A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 4638-4646.	1.5	91
189	First-principles analysis of seven novel phases of phosphorene with chirality. RSC Advances, 2016, 6, 22277-22284.	1.7	8
190	Two-dimensional tricycle arsenene with a direct band gap. Physical Chemistry Chemical Physics, 2016, 18, 8723-8729.	1.3	27
191	Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study. Journal of Magnetism and Magnetic Materials, 2016, 408, 121-126.	1.0	43
192	Phosphorene: A new competitor for graphene. International Journal of Hydrogen Energy, 2016, 41, 4085-4095.	3.8	101
193	Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN ₂ Sheet. Journal of Physical Chemistry C, 2016, 120, 3993-3998.	1.5	167
194	Effects of adatoms and physisorbed molecules on the physical properties of antimonene. Physical Review B, 2016, 93, .	1.1	84
195	Characterization and sonochemical synthesis of black phosphorus from red phosphorus. 2D Materials, 2016, 3, 014007.	2.0	57
196	Indiene 2D monolayer: a new nanoelectronic material. RSC Advances, 2016, 6, 8006-8014.	1.7	45
197	Two-Dimensional SiS Layers with Promising Electronic and Optoelectronic Properties: Theoretical Prediction. Nano Letters, 2016, 16, 1110-1117.	4.5	149
198	First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications. Sensors and Actuators B: Chemical, 2016, 222, 492-498.	4.0	180

#	Article	IF	CITATIONS
199	Assembly of Ring‧haped Phosphorus within Carbon Nanotube Nanoreactors. Angewandte Chemie, 2017, 129, 1876-1880.	1.6	21
200	Assembly of Ringâ€Shaped Phosphorus within Carbon Nanotube Nanoreactors. Angewandte Chemie - International Edition, 2017, 56, 1850-1854.	7.2	64
201	Atomic-scale imaging of few-layer black phosphorus and its reconstructed edge. Journal Physics D: Applied Physics, 2017, 50, 084003.	1.3	42
202	Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics. RSC Advances, 2017, 7, 2992-3002.	1.7	36
203	Phosphorus quantum dots as visible-light photocatalyst for water splitting. Computational Materials Science, 2017, 130, 56-63.	1.4	53
204	Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry, 2017, 1, .	13.8	671
205	Efficient Carrier Separation in Graphitic Zinc Oxide and Blue Phosphorus van der Waals Heterostructure. Journal of Physical Chemistry C, 2017, 121, 3648-3653.	1.5	71
206	GeP ₃ : A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. Nano Letters, 2017, 17, 1833-1838.	4.5	338
207	A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups. Journal of Chemical Physics, 2017, 146, 044705.	1.2	12
208	The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials. Nanoscale, 2017, 9, 7397-7407.	2.8	131
209	Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology, 2017, 28, 175708.	1.3	81
210	Band Gap Adjustment of SiC Honeycomb Structure through Hydrogenation and Fluorination. Chinese Physics Letters, 2017, 34, 017302.	1.3	5
211	Phonon-limited carrier mobility in monolayer black phosphorus. Physical Review B, 2017, 95, .	1.1	30
212	Electronic properties of single-layer antimony: Tight-binding model, spin-orbit coupling, and the strength of effective Coulomb interactions. Physical Review B, 2017, 95, .	1.1	33
213	Half Layer By Half Layer Growth of a Blue Phosphorene Monolayer on a GaN(001) Substrate. Physical Review Letters, 2017, 118, 046101.	2.9	149
214	Functionalization of Single-Layer Nitrogene by Vacancy, Adatoms, and Molecules. Journal of Physical Chemistry C, 2017, 121, 6329-6338.	1.5	16
215	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
216	Large edge magnetism in oxidized few-layer black phosphorus nanomeshes. Nano Research, 2017, 10, 718-728.	5.8	27

#	Article	IF	CITATIONS
217	Enhanced hydrophilic and conductive properties of blue phosphorene doped with Si atom. Chemical Physics Letters, 2017, 675, 20-26.	1.2	14
218	Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study. Computational Materials Science, 2017, 135, 43-53.	1.4	26
219	Investigation of electronic properties and spin-orbit coupling effects on passivated stanene nanosheet: A first-principles study. Superlattices and Microstructures, 2017, 107, 118-126.	1.4	18
220	Tetra-silicene: A Semiconducting Allotrope of Silicene with Negative Poisson's Ratios. Journal of Physical Chemistry C, 2017, 121, 9627-9633.	1.5	57
221	Size and strain tunable band alignment of black–blue phosphorene lateral heterostructures. Physical Chemistry Chemical Physics, 2017, 19, 12466-12472.	1.3	25
222	Recent advances in synthesis, properties, and applications of phosphorene. Npj 2D Materials and Applications, 2017, 1, .	3.9	266
223	An empirical description for the hinge-like mechanism in single-layer black phosphorus: The angle–angle cross interaction. Acta Mechanica Solida Sinica, 2017, 30, 227-233.	1.0	0
224	Band offsets and metal contacts in monolayer black phosphorus. Microelectronic Engineering, 2017, 178, 108-111.	1.1	5
225	Growth of Quasi-Free-Standing Single-Layer Blue Phosphorus on Tellurium Monolayer Functionalized Au(111). ACS Nano, 2017, 11, 4943-4949.	7.3	109
226	Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion–MoS2 sandwich interfaces. Nanoscale, 2017, 9, 7429-7441.	2.8	24
227	Five low energy phosphorene allotropes constructed through gene segments recombination. Scientific Reports, 2017, 7, 46431.	1.6	31
228	Effects of hole doping and strain on magnetism in buckled phosphorene and arsenene. 2D Materials, 2017, 4, 025107.	2.0	40
229	Prediction of new group IV-V-VI monolayer semiconductors based on first principle calculation. Computational Materials Science, 2017, 135, 160-164.	1.4	19
230	Adsorption and diffusion of lithium in a graphene/blue-phosphorus heterostructure and the effect of an external electric field. Physical Chemistry Chemical Physics, 2017, 19, 267-275.	1.3	29
231	Adsorption of NO 2 molecules on armchair phosphorene nanosheet for nano sensor applications – A first-principles study. Journal of Molecular Graphics and Modelling, 2017, 75, 365-374.	1.3	46
232	Edge magnetism and electronic structure properties of zigzag nanoribbons of arsenene and antimonene. Journal of Physics and Chemistry of Solids, 2017, 110, 167-172.	1.9	29
233	The intriguing electronic and optical properties modulation in blue phosphorene/g-III-nitrides heterostructures. , 2017, , .		0
234	Prediction of twoâ€dimensional BiSb with puckered structure. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700051.	1.2	11

#	Article	IF	CITATIONS
235	Study of Alcohol and Aldehydes Interaction on the Surface of Silicane Nanosheet: Application of Density Functional Theory. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1307-1316.	1.9	16
236	Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Physical Chemistry Chemical Physics, 2017, 19, 17324-17330.	1.3	180
237	Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications. Journal of Materials Chemistry C, 2017, 5, 5365-5371.	2.7	23
238	Strain- and Fluorination-Induced Quantum Spin Hall Insulators in Blue Phosphorene: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 12945-12952.	1.5	36
239	Electronic and optical properties of strained graphene and other strained 2D materials: a review. Reports on Progress in Physics, 2017, 80, 096501.	8.1	383
240	First-principles study of the structures and fundamental electronic properties of two-dimensional P _{0.5} As _{0.5} alloy. Physica Status Solidi (B): Basic Research, 2017, 254, 1700157.	0.7	6
241	Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 221, 17-34.	1.7	195
242	Polymorphs of two dimensional phosphorus and arsenic: insight from an evolutionary search. Physical Chemistry Chemical Physics, 2017, 19, 11282-11288.	1.3	20
243	Sulfur Dioxide and Nitrogen Dioxide Gas Sensor Based on Arsenene: A First-Principle Study. IEEE Electron Device Letters, 2017, 38, 661-664.	2.2	82
244	Structural Complexity and Phonon Physics in 2D Arsenenes. Journal of Physical Chemistry Letters, 2017, 8, 1375-1380.	2.1	41
245	Two-dimensional honeycomb (A7) and zigzag sheet (ZS) type nitrogen monolayers. A first principles study of structural, electronic, spectral, and mechanical properties. Computational Materials Science, 2017, 133, 122-129.	1.4	27
246	Quartic Dispersion, Strong Singularity, Magnetic Instability, and Unique Thermoelectric Properties in Two-Dimensional Hexagonal Lattices of Group-VA Elements. Nano Letters, 2017, 17, 2589-2595.	4.5	33
247	Elemental two-dimensional nanosheets beyond graphene. Chemical Society Reviews, 2017, 46, 2127-2157.	18.7	285
248	Strain-mediated type-I/type-II transition in MXene/Blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. Journal of Materials Chemistry C, 2017, 5, 978-984.	2.7	155
249	AlN/BP Heterostructure Photocatalyst for Water Splitting. IEEE Electron Device Letters, 2017, 38, 145-148.	2.2	68
250	Snatching the Ligand or Destroying the Structure: Disruption of WW Domain by Phosphorene. Journal of Physical Chemistry C, 2017, 121, 1362-1370.	1.5	14
251	Electronic properties of layered phosphorus heterostructures. Physical Chemistry Chemical Physics, 2017, 19, 1229-1235.	1.3	10
252	CO2 adsorption and separation from natural gason phosphorene surface: Combining DFT and GCMC calculations. Applied Surface Science, 2017, 397, 206-212.	3.1	23

#	Article	IF	CITATIONS
253	Structural, elastic, electronic, and optical properties of the tricycle-like phosphorene. Physical Chemistry Chemical Physics, 2017, 19, 2245-2251.	1.3	42
254	Electronic structure and optical properties for blue phosphorene/graphene-like GaN van der Waals heterostructures. Current Applied Physics, 2017, 17, 1714-1720.	1.1	34
255	A Novel Ultra-Sensitive Nitrogen Dioxide Sensor Based on Germanium Monosulfide Monolayer. IEEE Electron Device Letters, 2017, 38, 1590-1593.	2.2	21
256	Strain-induced Weyl and Dirac states and direct-indirect gap transitions in group-V materials. 2D Materials, 2017, 4, 045018.	2.0	22
257	Investigation on electronic properties of functionalized arsenene nanoribbon and nanotubes: A first-principles study. Chemical Physics, 2017, 495, 35-41.	0.9	29
258	Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations. 2D Materials, 2017, 4, 042002.	2.0	11
259	Point defects in buckled and asymmetric washboard phases of arsenic phosphorus: A first principles study. Computational Materials Science, 2017, 140, 290-298.	1.4	19
260	Classification of accidental band crossings and emergent semimetals in two-dimensional noncentrosymmetric systems. Physical Review B, 2017, 96, .	1.1	19
261	Prediction of Green Phosphorus with Tunable Direct Band Gap and High Mobility. Journal of Physical Chemistry Letters, 2017, 8, 4627-4632.	2.1	101
262	Interlayer Bond Formation in Black Phosphorus at High Pressure. Angewandte Chemie - International Edition, 2017, 56, 14135-14140.	7.2	36
263	The curious case of two dimensional Si2BN: A high-capacity battery anode material. Nano Energy, 2017, 41, 251-260.	8.2	121
264	Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental study. Physical Review Letters, 2017, 119, 106101.	2.9	409
265	Anisotropic plasmons, excitons, and electron energy loss spectroscopy of phosphorene. Physical Review B, 2017, 96, .	1.1	52
266	Structure and elastic properties of black phosphorus nanotubes: A first-principles study. Physica Status Solidi (B): Basic Research, 2017, 254, 1700276.	0.7	6
267	Assembling phosphorene flexagons for 2D electron-density-guided nanopatterning and nanofabrication. Nanoscale, 2017, 9, 10465-10474.	2.8	1
268	MnBx monolayers with quasi-planar hypercoordinate Mn atoms and unique magnetic and mechanical properties. FlatChem, 2017, 4, 42-47.	2.8	14
269	Chemically Functionalized Phosphorene: Two-Dimensional Multiferroics with Vertical Polarization and Mobile Magnetism. Journal of the American Chemical Society, 2017, 139, 11506-11512.	6.6	119
270	Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures. RSC Advances, 2017, 7, 34584-34590.	1.7	34

#	ARTICLE	IF	CITATIONS
271	Single-layer group IV-V and group V-IV-III-VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis. Physical Review B, 2017, 96, .	1.1	56
272	Initial Growth Mechanism of Blue Phosphorene on Au(111) Surface. Journal of Physical Chemistry C, 2017, 121, 17893-17899.	1.5	48
273	Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study. Scientific Reports, 2017, 7, 4623.	1.6	36
274	van der Waals heterostructures based on allotropes of phosphorene and MoSe ₂ . Physical Chemistry Chemical Physics, 2017, 19, 22023-22032.	1.3	36
275	Room-temperature half-metallicity in monolayer honeycomb structures of group-V binary compounds with carrier doping. Physical Review B, 2017, 96, .	1.1	45
276	First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides. Journal Physics D: Applied Physics, 2017, 50, 405301.	1.3	16
277	Strain and electric field tunable electronic structure of buckled bismuthene. RSC Advances, 2017, 7, 39546-39555.	1.7	53
278	Predictions of Single-Layer Honeycomb Structures from First Principles. , 0, , 472-484.		1
279	The effect of vacancies and the substitution of p-block atoms on single-layer buckled germanium selenide. RSC Advances, 2017, 7, 37815-37822.	1.7	20
280	Stability, electronic and phononic properties of <i>β</i> and 1T structures of SiTe _{<i>x</i>} (<i>x</i> = 1, 2) and their vertical heterostructures. Journal of Physics Condensed Matter, 2017, 29, 395504.	0.7	6
281	Computational methods for 2D materials: discovery, property characterization, and application design. Journal of Physics Condensed Matter, 2017, 29, 473001.	0.7	55
282	Carbon vacancies in Ti ₂ CT ₂ MXenes: defects or a new opportunity?. Physical Chemistry Chemical Physics, 2017, 19, 31773-31780.	1.3	81
283	Interlayer Bond Formation in Black Phosphorus at High Pressure. Angewandte Chemie, 2017, 129, 14323-14328.	1.6	8
284	Large magneto-optical effects in hole-doped blue phosphorene and gray arsenene. Nanoscale, 2017, 9, 17405-17414.	2.8	25
285	Vanishing Schottky Barriers in Blue Phosphorene/MXene Heterojunctions. Journal of Physical Chemistry C, 2017, 121, 25164-25171.	1.5	60
286	Partially planar BP ₃ with high electron mobility as a phosphorene analog. Journal of Materials Chemistry C, 2017, 5, 11267-11274.	2.7	37
287	Synthesis of Antimonene on Germanium. Nano Letters, 2017, 17, 4970-4975.	4.5	200
288	Tunnelling characteristics of Stone–Wales defects in monolayers of Sn and group-V elements. Journal of Physics Condensed Matter, 2017, 29, 395501.	0.7	12

#	Article	IF	CITATIONS
289	First-Principles Study of Nitric Oxide Sensor Based on Blue Phosphorus Monolayer. IEEE Electron Device Letters, 2017, 38, 1139-1142.	2.2	24
290	Emerging novel electronic structure in hydrogen-Arsenene-halogen nanosheets: A computational study. Scientific Reports, 2017, 7, 4773.	1.6	9
291	Twoâ€Dimensional Boron Crystals: Structural Stability, Tunable Properties, Fabrications and Applications. Advanced Functional Materials, 2017, 27, 1603300.	7.8	130
292	Two single-layer porous gallium nitride nanosheets: A first-principles study. Solid State Communications, 2017, 250, 18-22.	0.9	28
293	Recent Advances in the Study of Phosphorene and its Nanostructures. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 1-82.	6.8	130
294	Hydrogenated and halogenated blue phosphorene as Dirac materials: A first principles study. Applied Surface Science, 2017, 392, 46-50.	3.1	64
295	Physics and chemistry of oxidation of twoâ€dimensional nanomaterials by molecular oxygen. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1280.	6.2	47
296	Bandgap engineering in semiconducting one to few layers of SnS and SnSe. Physica Status Solidi (B): Basic Research, 2017, 254, 1600379.	0.7	43
297	In silico insight into ammonia adsorption on pristine and X-doped phosphorene (X = B, C, N, O, Si, and) Tj ETQqC	0 0 <u>9 rg</u> BT /	Overlock 10 21
298	First-principles study of stability, electronic structure and magnetic properties of Be 2 C nanoribbons. Applied Surface Science, 2017, 394, 315-322.	3.1	1
299	Tunable electronic and optical properties of gas molecules adsorbed monolayer graphitic ZnO: Implications for gas sensor and environment monitoring. Journal of Applied Physics, 2017, 122, .	1.1	11
300	Parameterization of Stillinger-Weber Potential for Two- Dimensional Atomic Crystals. , 0, , .		33
301	Gas sensing and capturing based on twoâ€dimensional layered materials: Overview from theoretical perspective. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1361.	6.2	101
302	The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene. Russian Journal of Physical Chemistry A, 2018, 92, 132-139.	0.1	8
303	Symmorphic Intersecting Nodal Rings in Semiconducting Layers. Physical Review Letters, 2018, 120, 106403.	2.9	42
304	Effects of Temperature and Strain Rate on Mechanical Behaviors of Stone–Wales Defective Monolayer Black Phosphorene. Journal of Physical Chemistry C, 2018, 122, 6368-6378.	1.5	17
305	Electronic and optical properties of boron phosphide/blue phosphorus heterostructures. Physical Chemistry Chemical Physics, 2018, 20, 12053-12060.	1.3	53
306	Unconventional strain-dependent conductance oscillations in pristine phosphorene. Physical Chemistry Chemical Physics, 2018, 20, 13508-13516.	1.3	26

#	Article	IF	CITATIONS
307	Electronic structure and simulated STM images of non-honeycomb phosphorene allotropes. AIP Conference Proceedings, 2018, , .	0.3	0
308	Metal-nonmetal oscillations in doped blue phosphorene: a first-principles study. Materials Research Express, 2018, 5, 055007.	0.8	6
309	Allotropes of Phosphorus with Remarkable Stability and Intrinsic Piezoelectricity. Physical Review Applied, 2018, 9, .	1.5	16
310	Epitaxial growth of highly strained antimonene on Ag(111). Frontiers of Physics, 2018, 13, 1.	2.4	52
311	Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale, 2018, 10, 8397-8403.	2.8	66
312	Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study. Journal of Computational Electronics, 2018, 17, 499-513.	1.3	37
313	Electronic structure and hydrogen storage properties of Li–decorated single layer blue phosphorus. International Journal of Hydrogen Energy, 2018, 43, 8415-8425.	3.8	18
314	Expressway to partially oxidized phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4311-4313.	3.3	7
315	Data-driven learning and prediction of inorganic crystal structures. Faraday Discussions, 2018, 211, 45-59.	1.6	66
316	Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations. Physical Chemistry Chemical Physics, 2018, 20, 7635-7642.	1.3	18
317	Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations. Applied Surface Science, 2018, 442, 368-381.	3.1	49
318	Electronic and optical properties of hydrogenated group-IV multilayer materials. Physical Chemistry Chemical Physics, 2018, 20, 8112-8118.	1.3	12
319	Electronic and optical properties of phosphorene-like arsenic phosphorus: a many-body study. Materials Research Express, 2018, 5, 036302.	0.8	13
320	Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies. Frontiers in Energy, 2018, 12, 87-96.	1.2	6
321	Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes. ACS Applied Materials & Interfaces, 2018, 10, 8630-8639.	4.0	143
322	Electronic Structure and Band Gap Engineering of Two-Dimensional Octagon-Nitrogene. Scientific Reports, 2018, 8, 1674.	1.6	23
323	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	23.0	410
324	Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes. Nanotechnology, 2018, 29, 195701.	1.3	17

# 325	ARTICLE Exploration of two-dimensional bio-functionalized phosphorene nanosheets (black phosphorous) for label free haptoglobin electro-immunosensing applications. Nanotechnology, 2018, 29, 135101.	IF 1.3	CITATIONS 33
326	Thermal Transport in Phosphorene. Small, 2018, 14, e1702465.	5.2	36
327	Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons. Nanotechnology, 2018, 29, 155701.	1.3	18
328	Electronic and magnetic properties of 3D transition-metal atom adsorbed arsenene. Nanotechnology, 2018, 29, 095203.	1.3	17
329	Electron Pair Repulsion Responsible for the Peculiar Edge Effects and Surface Chemistry of Black Phosphorus. Journal of Physical Chemistry Letters, 2018, 9, 947-953.	2.1	15
330	All-phosphorus flexible devices with non-collinear electrodes: a first principles study. Physical Chemistry Chemical Physics, 2018, 20, 7167-7172.	1.3	10
331	Significant Enhancement of the Stark Effect in Rippled Monolayer Blue Phosphorus. Journal of Physical Chemistry C, 2018, 122, 5171-5177.	1.5	9
332	Density functional theory investigation of the interactions between the buckled stanene nanosheet and XO2 gases (X = N, S, C). Computational and Theoretical Chemistry, 2018, 1125, 15-28.	1.1	27
333	Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47, 982-1021.	18.7	697
334	Large diffusion anisotropy and orientation sorting of phosphorene nanoflakes under a temperature gradient. Nanoscale, 2018, 10, 1660-1666.	2.8	14
335	Magnetic Behaviors of 3d Transition Metal-Doped Silicane: a First-Principle Study. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2789-2795.	0.8	81
336	Mechanical stability of a nanotube from monolayer black phosphorus with the [110] direction as the tube's circumference or generatrix. Physical Chemistry Chemical Physics, 2018, 20, 3465-3473.	1.3	10
337	Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Science Bulletin, 2018, 63, 159-168.	4.3	207
338	Significant band gap induced by uniaxial strain in graphene/blue phosphorene bilayer. Carbon, 2018, 130, 120-126.	5.4	31
339	Superconductivity in two-dimensional phosphorus carbide (β ₀ -PC). Physical Chemistry Chemical Physics, 2018, 20, 12362-12367.	1.3	40
340	First principles investigation of structural, vibrational and thermal properties of black and blue phosphorene. International Journal of Modern Physics B, 2018, 32, 1850151.	1.0	12
341	Blue phosphorene: Calculation of five-band k·p Hamiltonian based on group theory and infinitesimal basis transformations approach. Journal of Physics and Chemistry of Solids, 2018, 118, 1-5.	1.9	2
342	Doping-stabilized two-dimensional black phosphorus. Nanoscale, 2018, 10, 7898-7904.	2.8	20

#	Article	IF	CITATIONS
343	Thermal Stability and Flexibility of Hydrogen Terminated Phosphorene Nanoflakes. Journal of Physical Chemistry C, 2018, 122, 8535-8542.	1.5	5
344	Blue Phosphorus/Mg(OH) ₂ van der Waals Heterostructures as Promising Visible-Light Photocatalysts for Water Splitting. Journal of Physical Chemistry C, 2018, 122, 7075-7080.	1.5	115
345	Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies. Chinese Physics B, 2018, 27, 036501.	0.7	23
346	Strain-tunable charge carrier mobility of atomically thin phosphorus allotropes. Physical Review B, 2018, 97, .	1.1	23
347	A first-principles study on the adsorption of small molecules on antimonene: oxidation tendency and stability. Journal of Materials Chemistry C, 2018, 6, 4308-4317.	2.7	68
348	Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures. Journal of Materials Chemistry A, 2018, 6, 8923-8929.	5.2	197
349	Lanthanide atom substitutionally doped blue phosphorene: electronic and magnetic behaviors. Physical Chemistry Chemical Physics, 2018, 20, 11003-11012.	1.3	27
350	Exploring the effect of nanoholes on arsenene: a density functional theory study. Journal of Physics Condensed Matter, 2018, 30, 195305.	0.7	3
351	Stacking sequences of black phosphorous allotropes and the corresponding few-layer phosphorenes. Physical Chemistry Chemical Physics, 2018, 20, 10185-10192.	1.3	8
352	Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study. Solar Energy Materials and Solar Cells, 2018, 180, 253-257.	3.0	103
353	High Selective Gas Detection for small molecules based on Germanium selenide monolayer. Applied Surface Science, 2018, 433, 575-581.	3.1	68
354	Stability enhancement and electronic tunability of two-dimensional SbIV compounds via surface functionalization. Applied Surface Science, 2018, 427, 363-368.	3.1	8
355	Electrical contacts in monolayer blue phosphorene devices. Nano Research, 2018, 11, 1834-1849.	5.8	55
356	Graphene/blue-phosphorus heterostructure as potential anode materials for sodium-ion batteries. International Journal of Modern Physics B, 2018, 32, 1850010.	1.0	9
357	Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. Journal of Materials Chemistry C, 2018, 6, 83-90.	2.7	68
358	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
359	Predicting two-dimensional carbon phosphide compouds: C2P4 by the global optimization method. Computational Materials Science, 2018, 144, 70-75.	1.4	21
360	Electronic Properties of <i>h</i> â€BCN–Blue Phosphorene vanâ€derâ€Waals Heterostructures. ChemPhysChem, 2018, 19, 612-618.	1.0	14

#	Article	IF	CITATIONS
361	Metal adsorption on monolayer blue phosphorene: A first principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 205-209.	0.9	20
362	Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene. Journal of Materials Chemistry A, 2018, 6, 2018-2033.	5.2	80
363	Robust electronic and mechanical properties to layer number in 2D wide-gap X(OH) ₂ (X  =  Mg, Ca). Journal Physics D: Applied Physics, 2018, 51, 015107.	1.3	7
364	Adsorption and diffusion on a phosphorene monolayer: a DFT study. Journal of Solid State Electrochemistry, 2018, 22, 11-16.	1.2	28
365	Two dimensional allotropes of arsenene with a wide range of high and anisotropic carrier mobility. Physical Chemistry Chemical Physics, 2018, 20, 29939-29950.	1.3	86
366	Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li–S batteries. Nanoscale, 2018, 10, 21335-21352.	2.8	69
367	Huge Rashba-type spin–orbit coupling in binary hexagonal PX nanosheets (X = As, Sb, and Bi). Physical Chemistry Chemical Physics, 2018, 20, 30133-30139.	1.3	16
368	Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst. Journal of Materials Chemistry A, 2018, 6, 21087-21097.	5.2	37
369	Hexagonal M ₂ C ₃ (M = As, Sb, and Bi) monolayers: new functional materials with desirable band gaps and ultrahigh carrier mobility. Journal of Materials Chemistry C, 2018, 6, 12689-12697.	2.7	42
370	First-principle study of seven allotropes of arsenene and antimonene: thermodynamic, electronic and optical properties. Physical Chemistry Chemical Physics, 2018, 20, 30257-30266.	1.3	46
371	First-principles investigation of adsorption behaviors of small molecules on penta-graphene. Nanoscale Research Letters, 2018, 13, 264.	3.1	51
372	Extremely High Mobilities in Two-Dimensional Group-VA Binary Compounds with Large Conversion Efficiency for Solar Cells. Journal of Physical Chemistry C, 2018, 122, 27590-27596.	1.5	17
373	Mechanistic Understanding of Two-Dimensional Phosphorus, Arsenic, and Antimony High-Capacity Anodes for Fast-Charging Lithium/Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 29559-29566.	1.5	38
374	Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: a DFT + NEGF study. Physical Chemistry Chemical Physics, 2018, 20, 28777-28785.	1.3	15
375	Band Renormalization of Blue Phosphorus on Au(111). Nano Letters, 2018, 18, 6672-6678.	4.5	63
376	Hexagonal Boron Nitride/Blue Phosphorene Heterostructure as a Promising Anode Material for Li/Na-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 23329-23335.	1.5	52
377	Promise and Challenge of Phosphorus in Science, Technology, and Application. Advanced Functional Materials, 2018, 28, 1803471.	7.8	65
378	Unusual Electronic and Optical Properties of Two-Dimensional Ga ₂ O ₃ Predicted by Density Functional Theory. Journal of Physical Chemistry C, 2018, 122, 24592-24599.	1.5	58

#	Article	IF	CITATIONS
379	Epitaxial Synthesis of Blue Phosphorene. Small, 2018, 14, e1804066.	5.2	114
380	Strain-Induced Band Structure Modulation in Hexagonal Boron Phosphide/Blue Phosphorene vdW Heterostructure. Journal of Physical Chemistry C, 2018, 122, 26120-26129.	1.5	28
381	A First Principles Study of Blue Phosphorene as A Superior Media for Gas Sensor. , 2018, , .		3
383	Tunable electronic properties and carrier mobility in binary pnictogen nanosheets, PX (X = As, Sb, and) T	j ETQq1	1 0.784314 r
384	Perspectives on Thermoelectricity in Layered and 2D Materials. Advanced Electronic Materials, 2018, 4, 1800248.	2.6	77
385	Pressure-induced phase transitions and superconductivity in a black phosphorus single crystal. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9935-9940.	3.3	47
386	Electronic Band Engineering in Elemental 2D Materials. Advanced Materials Interfaces, 2018, 5, 1800749.	1.9	16
387	Enhanced doping effect on tuning structural phases of monolayer antimony. Applied Physics Letters, 2018, 112, 213104.	1.5	13
388	Synthesis of Black Phosphorus Quantum Dots with High Quantum Yield by Pulsed Laser Ablation for Cell Bioimaging. Chemistry - an Asian Journal, 2018, 13, 1842-1846.	1.7	28
389	Electronic band structure and magnetic properties of I vacancy and nonmetallic atoms doped single layer PbI2. Journal of Magnetism and Magnetic Materials, 2018, 463, 36-43.	1.0	8
390	Monolayer AsTe ₂ : Stable Robust Metal in 2D, 1D and 0D. ChemPhysChem, 2018, 19, 2176-2182.	1.0	3
391	Lattice-matched heterojunctions between blue phosphorene and MXene Y2CX2 (X = F, O, and Y = Zr, ⊦ Computational Materials Science, 2018, 152, 256-261.	lf) _{1.4}	6
392	Red phosphorus in its two-dimensional limit: novel clathrates with varying band gaps and superior chemical stabilities. Nanoscale, 2018, 10, 13969-13975.	2.8	7
393	Electro/mechanical mutable properties of black phosphorene by electric field and strain engineering. Materials Research Express, 2018, 5, 066307.	0.8	3
394	Gas sensing properties of two-dimensional penta-BP5: A first-principle study. Chemical Physics Letters, 2018, 706, 355-359.	1.2	16
395	Silicene, silicene derivatives, and their device applications. Chemical Society Reviews, 2018, 47, 6370-6387.	18.7	261
396	Passively Q-switched Nd ³⁺ solid-state lasers with antimonene as saturable absorber. Optics Express, 2018, 26, 4085.	1.7	38
397	Modeling of Electron Devices Based on 2-D Materials. IEEE Transactions on Electron Devices, 2018, 65, 4167-4179.	1.6	32

#	Article	IF	CITATIONS
398	Band gap reduction in van der Waals layered 2D materials <i>via</i> a de-charge transfer mechanism. Nanoscale, 2018, 10, 16759-16764.	2.8	25
399	Effects of substrate and environmental adsorbates on the electronic properties and structural stability of antimonene. Journal of Materials Science, 2018, 53, 15559-15568.	1.7	11
400	Structural, vibrational, and electronic properties of single-layer hexagonal crystals of group IV and V elements. Physical Review B, 2018, 98, .	1.1	102
401	Energy-loss function for monolayer phosphorene. Journal of Materials Science, 2018, 53, 15541-15548.	1.7	4
402	Band offsets in new BN/BX (X = P, As, Sb) lateral heterostructures based on bond-orbital theory. Nanoscale, 2018, 10, 15918-15925.	2.8	18
403	Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 21105-21112.	1.3	18
404	Hydrogenated black phosphorus single layer. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 333-339.	1.3	5
405	Band Gap Modulated by Electronic Superlattice in Blue Phosphorene. ACS Nano, 2018, 12, 5059-5065.	7.3	92
406	Theoretical discovery of novel two-dimensional V ^A -N binary compounds with auxiticity. Physical Chemistry Chemical Physics, 2018, 20, 22027-22037.	1.3	52
407	2D Phosphorene: Epitaxial Growth and Interface Engineering for Electronic Devices. Advanced Materials, 2018, 30, e1802207.	11.1	58
408	Phase stability and interlayer interaction of blue phosphorene. Physical Review B, 2018, 98, .	1.1	19
409	Strain-induced effects in zigzag-edged blue phosphorene nanoribbons with edge sulfur passivation. Journal of Physics Condensed Matter, 2018, 30, 395303.	0.7	7
410	First-principles study of thermoelectric properties of blue phosphorene. Applied Physics Letters, 2018, 113, 063903.	1.5	12
411	Tuning the Electronic Structures and Transport Properties of Zigzag Blue Phosphorene Nanoribbons. IEEE Transactions on Electron Devices, 2018, 65, 4646-4651.	1.6	38
412	The p-sc structure in phosphorus: bringing order to the high pressure phases of group 15 elements. Chemical Communications, 2018, 54, 10554-10557.	2.2	15
413	Electronic properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures under in-plane biaxial strains. Journal of Solid State Chemistry, 2018, 265, 257-265.	1.4	20
414	Strain and defect engineering on phase transition of monolayer black phosphorene. Physical Chemistry Chemical Physics, 2018, 20, 21832-21843.	1.3	8
415	Finite temperature stability of single-layer black and blue phosphorus adsorbed on Au(1 1 1): a first-principles study. 2D Materials, 2018, 5, 035044.	2.0	14

#	Article	IF	CITATIONS
416	Two-dimensional materials for gas sensors: from first discovery to future possibilities. Surface Innovations, 2018, 6, 205-230.	1.4	25
417	Black Arsenic: A Layered Semiconductor with Extreme Inâ€Plane Anisotropy. Advanced Materials, 2018, 30, e1800754.	11.1	161
418	Adsorption Induced Indirect-to-Direct Band Gap Transition in Monolayer Blue Phosphorus. Journal of Physical Chemistry C, 2018, 122, 15792-15798.	1.5	10
419	Layer-dependent band alignment of few layers of blue phosphorus and their van der Waals heterostructures with graphene. Physical Review B, 2018, 97, .	1.1	45
420	Superior mechanical flexibility and strained-engineered direct-indirect band gap transition of green phosphorene. Applied Physics Letters, 2018, 112, .	1.5	25
421	Electronic and magnetic properties of 5d transition metal atoms doped blue phosphorene: First-principles study. Journal of Magnetism and Magnetic Materials, 2019, 469, 236-244.	1.0	24
422	The adsorption of sulfur trioxide and ozone molecules on stanene nanosheets investigated by DFT: Applications to gas sensor devices. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 382-390.	1.3	66
423	DFT study of structural, elastic, electronic and dielectric properties of blue phosphorus nanotubes. Scientific Reports, 2019, 9, 11264.	1.6	13
424	Interplay between in-plane and flexural phonons in electronic transport of two-dimensional semiconductors. Physical Review B, 2019, 100, .	1.1	11
425	2D Crystal–Based Fibers: Status and Challenges. Small, 2019, 15, e1902691.	5.2	35
426	Modeling of Si–B–N Sheets and Derivatives as a Potential Sorbent Material for the Adsorption of Li ⁺ Ion and CO ₂ Gas Molecule. ACS Omega, 2019, 4, 13808-13823.	1.6	14
427	Strain tunable spin reorientation of an individual Fe atom on 2D blue phosphorous. Journal of Physics Condensed Matter, 2019, 31, 485802.	0.7	3
428	Effect of Uniaxial Strain on Properties of Blue Phosphorene-CNT Heterojunction. , 2019, , .		0
429	On the elasticity and piezoelectricity of black(blue) phosphorus/ZnO van der Waals heterostructures. Computational Materials Science, 2019, 169, 109134.	1.4	12
430	A simple descriptor for binding and charge transfer at blue phosphorene-metal interfaces. Applied Surface Science, 2019, 492, 16-22.	3.1	5
431	Reversible Oxidation of Blue Phosphorus Monolayer on Au(111). Nano Letters, 2019, 19, 5340-5346.	4.5	27
432	Ultrahigh carrier mobilities and high thermoelectric performance at room temperature optimized by strain-engineering to two-dimensional aw-antimonene. Nano Energy, 2019, 63, 103870.	8.2	38
433	Puckered arsenene single-walled nanotubes: Stability, geometry, and electronic properties. Computational Materials Science, 2019, 169, 109108.	1.4	5

#	Article	IF	CITATIONS
434	Electronic and magnetic properties of 3d transition-metal atom adsorbed vacancy-defected arsenene: A first-principles study. Journal of Magnetism and Magnetic Materials, 2019, 491, 165613.	1.0	9
435	Hydrogen Isotope Separation via Ion Penetration through Group-IV Monolayer Materials in Electrochemical Environment. Journal of Physical Chemistry Letters, 2019, 10, 4618-4624.	2.1	5
436	Effective thickness and mechanical properties of β-phases of two-dimensional pnictogen nanosheets. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	4
437	Adsorption of Common Transition Metal Atoms on Arsenene: A First-Principles Study. Russian Journal of Physical Chemistry A, 2019, 93, 1088-1092.	0.1	3
438	Towards a simplified description of thermoelectric materials: accuracy of approximate density functional theory for phonon dispersions. Journal of Physics Condensed Matter, 2019, 31, 395901.	0.7	6
439	Enhancing electronic and optical properties of monolayer MoSe ₂ <i>via</i> a MoSe ₂ /blue phosphorene heterobilayer. Physical Chemistry Chemical Physics, 2019, 21, 15760-15766.	1.3	68
440	Environmental stability of bismuthene: oxidation mechanism and structural stability of 2D pnictogens. Journal of Materials Chemistry C, 2019, 7, 9195-9202.	2.7	40
441	Gate voltage controllable device based on black phosphorus/blue phosphorus heterostructure. Journal Physics D: Applied Physics, 2019, 52, 505111.	1.3	2
442	Information theoretic analysis of Landau levels in monolayer phosphorene under magnetic and electric fields. Materials Research Express, 2019, 6, 106316.	0.8	4
443	Temperature-dependent mechanical properties of black and blue phosphorene by molecular dynamics simulations. Materials Research Express, 2019, 6, 115043.	0.8	4
444	Noncovalent Functionalization of Pnictogen Surfaces: From Small Molecules to 2D Heterostructures. Small, 2019, 15, e1903495.	5.2	11
445	Investigation of electronic property modulation driven by strain in monolayer tellurium. Chinese Journal of Physics, 2019, 62, 172-178.	2.0	6
446	Two-Dimensional Phosphorene, Arsenene, and Antimonene Quantum Dots: Anomalous Size-Dependent Behaviors of Optical Properties. Journal of Physical Chemistry C, 2019, 123, 25775-25780.	1.5	18
447	Van der Waals heterostructures of blue phosphorene and scandium-based MXenes monolayers. Journal of Applied Physics, 2019, 126, .	1.1	14
448	Blue phosphorene/graphene heterostructure as a promising anode for lithium-ion batteries: a first-principles study with vibrational analysis techniques. Journal of Materials Chemistry A, 2019, 7, 611-620.	5.2	93
449	Structural, electronic, and electromechanical properties of MoSSe/blue phosphorene heterobilayer. AIP Advances, 2019, 9, 115302.	0.6	19
450	Boron Phosphide van der Waals <i>p-n</i> Junction via Molecular Adsorption. Physical Review Applied, 2019, 12, .	1.5	10
451	Low-Energy Phases of Bi Monolayer Predicted by Structure Search in Two Dimensions. Journal of Physical Chemistry Letters, 2019, 10, 7324-7332.	2.1	18

#	Article	IF	Citations
452	Strong Electron-Phonon Coupling and its Influence on the Transport and Optical Properties of Hole-Doped Single-Layer InSe. Physical Review Letters, 2019, 123, 176401.	2.9	37
453	First principle study of In/Ga-doped phosphorene. AIP Conference Proceedings, 2019, , .	0.3	0
454	The transport and optical sensing properties of blue phosphorene: A first-principles study. , 2019, , .		2
455	Phosphorene: A promising candidate for H2 storage at room temperature. International Journal of Hydrogen Energy, 2019, 44, 24829-24838.	3.8	23
456	Tuning Electronic Properties of Blue Phosphorene/Graphene-Like GaN van der Waals Heterostructures by Vertical External Electric Field. Nanoscale Research Letters, 2019, 14, 174.	3.1	16
457	Imaging and Dynamics of Water Hexamer Confined in Nanopores. ACS Nano, 2019, 13, 10622-10630.	7.3	10
458	Deformed octagon-hexagon-square structure of group-IV and group-V elements and III-V compounds. Physical Review B, 2019, 100, .	1.1	7
459	Point Defects in Blue Phosphorene. Chemistry of Materials, 2019, 31, 8129-8135.	3.2	86
460	A nonlinear hyperelasticity model for single layer blue phosphorus based on <i>ab initio</i> calculations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190149.	1.0	4
461	Stacking-dependent excitonic properties of bilayer blue phosphorene. Physical Review B, 2019, 100, .	1.1	17
462	Electronic Properties of a New Family of Layered Materials from Groups 14 and 15: First-Principles Simulations. Journal of Physical Chemistry C, 2019, 123, 25470-25476.	1.5	13
463	Tunable electronic structures in BP/MoSSe van der Waals heterostructures by external electric field and strain. Applied Surface Science, 2019, 497, 143809.	3.1	71
464	Vicinal metal surfaces as potential catalysts for phosphorene epitaxial growth. Applied Physics Letters, 2019, 115, .	1.5	1
465	Enhanced photocatalytic activity for water splitting of blue-phase GeS and GeSe monolayers <i>via</i> biaxial straining. Nanoscale, 2019, 11, 2335-2342.	2.8	80
466	Probing cyanogen chloride gas molecules using blue phosphorene nanosheets based on adsorption properties: A first-principles study. Computational and Theoretical Chemistry, 2019, 1150, 63-70.	1.1	33
467	Modulating Blue Phosphorene by Synergetic Codoping: Indirect to Direct Gap Transition and Strong Bandgap Bowing. Advanced Functional Materials, 2019, 29, 1808721.	7.8	6
468	Planar penta-transition metal phosphide and arsenide as narrow-gap semiconductors with ultrahigh carrier mobility. Journal of Materials Science, 2019, 54, 7035-7047.	1.7	20
469	Strain Enhanced Visible–Ultraviolet Absorption of Blue Phosphorene/MoX 2 (X = S,Se) Heterolayers. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800659.	1.2	5

#	Article	IF	CITATIONS
470	Stabilities and novel electronic structures of three carbon nitride bilayers. Scientific Reports, 2019, 9, 1025.	1.6	13
471	Robust two-dimensional topological insulators in derivatives of group-VA oxides with large band gap: Tunable quantum spin Hall states. Applied Materials Today, 2019, 15, 163-170.	2.3	13
472	Monitoring the crystal orientation of black-arsenic via vibrational spectra. Journal of Materials Chemistry C, 2019, 7, 1228-1236.	2.7	13
473	β-As Monolayer: Vibrational Properties and Raman Spectra. ACS Omega, 2019, 4, 10171-10175.	1.6	13
474	Why are most 2D lattices hexagonal? The stability of 2D lattices predicted by a simple mechanics model. Extreme Mechanics Letters, 2019, 32, 100507. xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline"	2.0	14
475	overflow="scroll"> <mml:mrow><mml:mi>Cr</mml:mi><mml:mi mathvariant="normal">N</mml:mi </mml:mrow> / <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"</mml:math 	1.5	37
476	Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons. Chinese Physics Letters, 2019, 36, 067503.	1.3	0
477	The study of the electron transport characteristics of bilayer blue phosphorus with different stacking by first principles. Journal Physics D: Applied Physics, 2019, 52, 385103.	1.3	2
478	Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Progress in Materials Science, 2019, 106, 100573.	16.0	160
479	A new phase of monolayer group-V binary compounds with direct bandgap and giant piezoelectric properties. Journal of Applied Physics, 2019, 125, .	1.1	13
480	Anisotropic thermal expansion and thermodynamic properties of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi> -Te. Physical Review B, 2019, 99, .</mml:math 	1.1	25
481	Effect of point defects on electronic and magnetic properties of single-layer SiO. Philosophical Magazine, 2019, 99, 2340-2353.	0.7	3
482	Modulating the electronic structures of blue phosphorene towards spintronics. Physical Chemistry Chemical Physics, 2019, 21, 11755-11763.	1.3	19
483	First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons. Superlattices and Microstructures, 2019, 130, 401-408.	1.4	4
484	2D Elemental Nanomaterials Beyond Graphene. ChemNanoMat, 2019, 5, 1062-1091.	1.5	64
485	Interlayer decoupling in twisted bilayers of β-phosphorus and arsenic: A computational study. FlatChem, 2019, 16, 100112.	2.8	3
486	Blue phosphorene monolayers as potential nano sensors for volatile organic compounds under point defects. Applied Surface Science, 2019, 486, 52-57.	3.1	87
487	Chemical and structural stability of 2D layered materials. 2D Materials, 2019, 6, 042001.	2.0	94

#	Article	IF	CITATIONS
488	Band engineering realized by chemical combination in 2D group VA–VA materials. Nanoscale Horizons, 2019, 4, 1145-1152.	4.1	15
489	Two-dimensional pnictogens: A review of recent progresses and future research directions. Applied Physics Reviews, 2019, 6, .	5.5	143
490	Performance of Monolayer Blue Phosphorene Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Interfaces, 2019, 11, 20956-20964.	4.0	39
491	Tunable gap in stable arsenene nanoribbons opens the door to electronic applications. RSC Advances, 2019, 9, 11818-11823.	1.7	3
492	Defect Generation and Surface Functionalization on Epitaxial Blue Phosphorene by C60 Adsorption. Journal of Physical Chemistry C, 2019, , .	1.5	13
493	Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study. Nanotechnology, 2019, 30, 335710.	1.3	10
494	Designing a Novel Monolayer β-CSe for High Performance Photovoltaic Device: An Isoelectronic Counterpart of Blue Phosphorene. Nanomaterials, 2019, 9, 598.	1.9	7
495	Two-dimensional innovative materials for photovoltaics. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 49-56.	3.2	6
496	First-principles prediction of a new ground state for surface-oxidized phosphorene with remarkable piezoelectricity. Journal Physics D: Applied Physics, 2019, 52, 295301.	1.3	1
497	Highâ€Performance Fieldâ€Effect Transistors Based on αP and βP. Advanced Materials, 2019, 31, 1807810.	11.1	9
498	Two-dimensional ferroelastic semiconductors in single-layer indium oxygen halide InOY (Y = Cl/Br). Physical Chemistry Chemical Physics, 2019, 21, 7440-7446.	1.3	26
499	Highly stable phosphorene isomers based on a buckled honeycomb lattice. Nanoscale, 2019, 11, 7135-7139.	2.8	18
500	First-Principles Investigation of the Adsorption Behaviors of CH2O on BN, AlN, GaN, InN, BP, and P Monolayers. Materials, 2019, 12, 676.	1.3	27
501	Functionalization of monolayer AsP phases by adatoms: a first-principles study. Materials Research Express, 2019, 6, 065032.	0.8	5
502	The potential application of black and blue phosphorene as cathode materials in rechargeable aluminum batteries: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 7021-7028.	1.3	24
503	Van der Waals heterostructures of P, BSe, and SiC monolayers. Journal of Applied Physics, 2019, 125, .	1.1	57
504	Structural and Electronic Properties of Double-Walled Black Phosphorene Nanotubes: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 7217-7224.	1.5	12
505	Electronic Structural and Optical Properties of Multilayer Blue Phosphorus: A First-Principle Study. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	8

ARTICLE IF CITATIONS # Electronic transport properties of phosphorene/graphene(silicene/germanene) bilayer 506 2.3 15 heterostructures: A first-principles exploration. Ceramics International, 2019, 45, 11584-11590. Control of superconducting pairing symmetries in monolayer black phosphorus. Physical Review B, 1.1 2019,99,. Efficiency and Quality Issues in the Production of Black Phosphorus by Mechanochemical Synthesis: A 508 2.5 18 Multi-Technique Approach. ACS Applied Energy Materials, 2019, 2, 2794-2802. Stress-sign-tunable Poisson's ratio in monolayer blue phosphorus oxide. Journal of Physics 509 Condensed Matter, 2019, 31, 295702. New Phosphorene by Phase Combination with Tunable Electronic and Mechanical Properties. Journal 510 1.5 13 of Physical Chemistry C, 2019, 123, 10788-10794. Electric field tunable electronic properties of P-ZnO and SiC-ZnO van der Waals heterostructures. Computational Materials Science, 2019, 164, 166-170. 1.4 Strain effects on the mechanical properties of Group-V monolayers with buckled honeycomb 512 1.3 20 structures. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 59-65. Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility 2.8 70 show promising high-performance photovoltaic properties. Nanoscale, 2019, 11, 8260-8269. Proximity-Induced Colossal Conductivity Modulation in Phosphorene. Physical Review Applied, 2019, 11, 514 1.5 21 Strong selective oxidization on two-dimensional GaN: a first principles study. Physical Chemistry 1.3 Chemical Physics, 2019, 21, 6224-6228. Strain-enhanced properties of van der Waals heterostructure based on blue phosphorus and g-GaN as 516 1.7 86 a visible-light-driven photocatalyst for water splitting. RSC Advances, 2019, 9, 4816-4823. Electron-phonon properties, structural stability, and superconductivity of doped antimonene. 1.1 Physical Review B, 2019, 99, . Recent progress in 2D group IV–IV monochalcogenides: synthesis, properties and applications. 518 1.3 104 Nanotechnology, 2019, 30, 252001. Tuneable Schottky barrier in van der Waals graphene-blue phosphorus heterojunction. Physica B: 1.3 Condensed Matter, 2019, 560, 75-80. 520 Strained 2D Layered Materials and Heterojunctions. Annalen Der Physik, 2019, 531, 1800465. 0.9 20 Phosphorene-based van der Waals heterojunction for solar water splitting. Chinese Journal of Chemical Physics, 2019, 32, 431-436. Insight into Two-Dimensional Borophene: Five-Center Bond and Phonon-Mediated Superconductivity. 522 4.0 14 ACS Applied Materials & amp; Interfaces, 2019, 11, 47279-47288. Two-dimensional Dirac fermions on oxidized black phosphorus. Physical Chemistry Chemical Physics, 1.3 2019, 21, 24206-24211.

#	Article	IF	CITATIONS
524	Structural transition induced by compression and stretching of puckered arsenene nanotubes. Physical Chemistry Chemical Physics, 2019, 21, 22467-22474.	1.3	6
525	Boosting the intrinsic carrier mobility of two-dimensional pnictogen nanosheets by 1000 times <i>via</i> hydrogenation. Journal of Materials Chemistry C, 2019, 7, 13080-13087.	2.7	2
526	Oxidized Silicon Sulfide: Stability and Electronic Properties of a Novel Two-Dimensional Material. Journal of Physical Chemistry C, 2019, 123, 29986-29993.	1.5	2
527	Synthesis of Red and Black Phosphorus Nanomaterials. ACS Symposium Series, 2019, , 1-25.	0.5	2
528	Physical and Chemical Properties of Phosphorus. ACS Symposium Series, 2019, , 61-77.	0.5	1
529	Embedding epitaxial (blue) phosphorene in between device-compatible functional layers. Nanoscale, 2019, 11, 18232-18237.	2.8	15
530	Theoretical investigation of various aspects of two dimensional holey boroxine, B ₃ O ₃ . RSC Advances, 2019, 9, 37526-37536.	1.7	21
531	Blue-Green-Black phosphorene allotropes conversion: Energetically easy and potentially promising. Chemical Physics, 2019, 516, 103-107.	0.9	9
532	Adsorption of the NH3, NO, NO2, CO2, and CO gas molecules on blue phosphorene: A first-principles study. Applied Surface Science, 2019, 464, 153-161.	3.1	93
533	First-principles prediction of two atomic-thin phosphorene allotropes with potentials for sun-light-driven water splitting. Journal of Physics Condensed Matter, 2019, 31, 075702.	0.7	7
534	A Firstâ€Principles Study on the Adsorption of Small Molecules on Arsenene: Comparison of Oxidation Kinetics in Arsenene, Antimonene, Phosphorene, and InSe. ChemPhysChem, 2019, 20, 575-580.	1.0	42
535	Energy Gap-Modulated Blue Phosphorene as Flexible Anodes for Lithium- and Sodium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 2808-2819.	1.5	29
536	Adsorption of dimethyl sulfoxide on blue phosphorene. Surface Science, 2019, 680, 88-94.	0.8	10
537	Topological construction of phosphorus and carbon composite and its application in energy storage. Energy Storage Materials, 2019, 20, 343-372.	9.5	43
538	Fibrous phosphorus: A promising candidate as anode for lithium-ion batteries. Electrochimica Acta, 2019, 295, 230-236.	2.6	45
539	First-principles study of thermal expansion and thermomechanics of group-V monolayers: blue phosphorene, arsenene, and antimonene. Journal of Physics Condensed Matter, 2019, 31, 065302.	0.7	11
540	Strain engineering of electronic, elastic, and piezoelectric responses in oxygen-decorated phosphorene. Superlattices and Microstructures, 2019, 126, 186-192.	1.4	5
541	A Perspective on Recent Advances in Phosphorene Functionalization and Its Applications in Devices. European Journal of Inorganic Chemistry, 2019, 2019, 1476-1494.	1.0	49

#	Article	IF	CITATIONS
542	Tuning electronic and magnetic properties of single-layer PN phases by point defects. Journal of Physics and Chemistry of Solids, 2019, 125, 80-89.	1.9	3
543	Effect of C and O dopant atoms on the electronic properties of black phosphorus nanotubes. Computational Materials Science, 2019, 156, 292-300.	1.4	13
544	First-principles Study of Strain-Induced Magnetism in Defective Arsenene. Journal of Superconductivity and Novel Magnetism, 2019, 32, 1735-1740.	0.8	1
545	An easy route to synthesize high-quality black phosphorus from amorphous red phosphorus. Materials Letters, 2019, 236, 56-59.	1.3	36
546	Hydrogen adsorption on alkali metal decorated blue phosphorene nanosheets. Applied Surface Science, 2019, 465, 440-449.	3.1	28
547	First-Principles Study of Black Phosphorus as Anode Material for Rechargeable Potassium-Ion Batteries. Electronic Materials Letters, 2020, 16, 89-98.	1.0	30
548	Optoâ€electronic properties of blue phosphorene oxide with and without oxygen vacancies. International Journal of Quantum Chemistry, 2020, 120, e26075.	1.0	5
549	The Xenes Generations: A Taxonomy of Epitaxial Singleâ€Element 2D Materials. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900439.	1.2	42
550	The electric-field and strain inducing electronic and optical properties of the blue phosphorene/ZnO heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113650.	1.3	6
551	Two-Dimensional Metal-Phosphorus Network. Matter, 2020, 2, 111-118.	5.0	39
552	Molecular doping of blue phosphorene: a first-principles investigation. Journal of Physics Condensed Matter, 2020, 32, 055501.	0.7	14
553	Emerging Applications of Elemental 2D Materials. Advanced Materials, 2020, 32, e1904302.	11.1	336
554	Optical absorption and excitation spectra of monolayer blue phosphorene. Journal of Physics Condensed Matter, 2020, 32, 095702.	0.7	2
555	Combination of black phosphorus nanosheets and MCNTs via phosphorus carbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. Journal of Hazardous Materials, 2020, 383, 121069.	6.5	122
557	Buckling of blue phosphorus nanotubes under axial compression: Insights from molecular dynamics simulations. Journal of Applied Physics, 2020, 127, 014301.	1.1	3
558	Introduction to Carbon-Based Nanostructures. , 2020, , 1-10.		0
559	The New Family of Two-Dimensional Materials and van der Waals Heterostructures. , 2020, , 70-91.		0
560	Ouantum Transport: General Concepts. , 2020, , 92-119.		0 _

#	Article	IF	CITATIONS
561	Klein Tunneling and Ballistic Transport in Graphene and Related Materials. , 2020, , 120-144.		0
562	Quantum Transport in Disordered Graphene-Based Materials. , 2020, , 145-209.		0
563	Structure of Blue Phosphorus Grown on Au(111) Surface Revisited. Journal of Physical Chemistry C, 2020, 124, 2024-2029.	1.5	31
564	Changing the Phosphorus Allotrope from a Square Columnar Structure to a Planar Zigzag Nanoribbon by Increasing the Diameter of Carbon Nanotube Nanoreactors. Nano Letters, 2020, 20, 1280-1285.	4.5	29
565	Strain-engineered BlueP–MoS2 van der Waals heterostructure with improved lithiation/sodiation for LIBs and SIBs. Physical Chemistry Chemical Physics, 2020, 22, 1701-1714.	1.3	19
568	Electronic Properties of Carbon-Based Nanostructures. , 2020, , 11-69.		0
569	Quantum Hall Effects in Graphene. , 2020, , 210-236.		0
570	Spin-Related Phenomena. , 2020, , 237-277.		0
571	Ab Initio and Multiscale Quantum Transport in Graphene-Based Materials. , 2020, , 293-353.		0
575	Parameterization of a COMPASS force field for single layer blue phosphorene. Nanotechnology, 2020, 31, 145702.	1.3	1
576	Electronic and transport properties of blue phosphorene in presence of point defects: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113938.	1.3	16
577	C ₂ N/BlueP van der Waals hetero-structure: an efficient photocatalytic water splitting 2D material. Physical Chemistry Chemical Physics, 2020, 22, 1485-1492.	1.3	34
578	Thickness of elemental and binary single atomic monolayers. Nanoscale Horizons, 2020, 5, 385-399.	4.1	21
579	First-principles study of defects in blue phosphorene. Materials Research Express, 2020, 7, 015005.	0.8	6
580	Adsorption of small molecules on a Pmma CO monolayer. Journal of Physics and Chemistry of Solids, 2020, 139, 109300.	1.9	0
581	Toxicants in cigarette smoke adsorbed on red phosphorene nanosheet: A first-principles insight. Chemical Physics, 2020, 530, 110604.	0.9	19
582	Quasi-bonding driven abnormal isotropic thermal transport in intrinsically anisotropic nanostructure: a case of study of a phosphorus nanotube array. Nanotechnology, 2020, 31, 095704.	1.3	3
583	Kagome-like group-VA monolayers with indirect–direct band gap transition and anisotropic mobility. Journal of Materials Chemistry C, 2020, 8, 2732-2740.	2.7	14

ARTICLE IF CITATIONS # Electronic, elastic, optical and thermal transport properties of penta-PdAs2 monolayer: 584 0.9 8 First-principles study. Solid State Communications, 2020, 307, 113802. Elastic anisotropy measure for two-dimensional crystals. Extreme Mechanics Letters, 2020, 34, 100615. 54 Expedition on surface adsorption of N-nitrosodiethylamine from rubber fumes on blue phosphorene 586 0.8 11 sheets – a first-principles insight. Molecular Physics, 2020, 118, e1699184. Graphene-like C3N/blue phosphorene heterostructure as a potential anode material for Li/Na-ion 587 batteries: A first principles study. Solid State Ionics, 2020, 345, 115160. Exploring adsorption behavior of ethylene dichloride and dibromide vapors on blue phosphorene 588 22 1.3nanosheets: A first-principles acumens. Journal of Molecular Graphics and Modelling, 2020, 95, 107505. The effect of dopants on electronic and magnetic properties of symmetric washboard phase bismuthene: A DFT study. Journal of Magnetism and Magnetic Materials, 2020, 516, 167325. 1.0 Tunable charge density wave in a lateral black/blue phosphorene heterostructure: A first-principles 590 1.1 5 calculation. Physical Review B, 2020, 102, . Molecular adsorption studies of diethyl sulfide and ethyl methyl sulfide vapors on Îq-phosphorene 3.1 nanoribbon – Å first-principles insight. Applied Surface Science, 2020, 534, 147597. Highly anisotropic and tunable charge carrier of monolayer phosphorus allotropes by bi-axial strain. 592 0.9 0 Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126896. Two-dimensional van der Waals heterostructure CdO/PtSe₂: promising visible light 1.3 photocatalyst for overall water splitting. Physical Chemistry Chemical Physics, 2020, 22, 24662-24668. Thermal transport properties of novel two-dimensional CSe. Physical Chemistry Chemical Physics, 594 1.3 10 2020, 22, 17833-17841. Structural and mechanical properties characterization of arsenene nanosheets under doping effect of transition metals: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 1.3 28 114349. Strain and electronic properties at the van der Waals interface of phosphorus/boron nitride 596 1.1 1 heterobilayers. Physical Review B, 2020, 102, . Kinetics-Limited Two-Step Growth of van der Waals Puckered Honeycomb Sb Monolayer. ACS Nano, 2020, 14, 16755-16760. Electric field tuning of the properties of monolayer hexagonal boron phosphide. Journal of Applied 598 1.1 22 Physics, 2020, 128, . Optoelectronic properties of pristine antimonene, phosphorene and their binary compound. 599 Computational Condensed Matter, 2020, 24, e00488. No-monotonic strain effect on the thermal conductivity of blue phosphorene: A first-principles study. 600 1.33 Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114341. First-principles study of a substitutionally doped phosphorene as anode material for Na-ion batteries. 3.1 Applied Surface Science, 2020, 532, 147377.

#	Article	IF	CITATIONS
602	Two-dimensional BP/ <i>β</i> -AsP van der Waals heterostructures as promising photocatalyst for water splitting. Applied Physics Letters, 2020, 117, .	1.5	47
603	The preparation of black phosphorus in RP/Sn/l2 system: its nucleation agent and relatively optimal temperature program. Journal of Materials Science: Materials in Electronics, 2020, 31, 19093-19105.	1.1	4
604	Blue Phosphorene Bilayer is a Two-Dimensional Metal and an Unambiguous Classification Scheme for Buckled Hexagonal Bilayers. Physical Review Letters, 2020, 125, 196401.	2.9	28
605	Recent progress in 2D group-V elemental monolayers: fabrications and properties. Journal of Semiconductors, 2020, 41, 081003.	2.0	11
606	Monolayer Bi2C3: A promising sensor for environmentally toxic NCGs with high sensitivity and selectivity. Applied Surface Science, 2020, 534, 147609.	3.1	23
607	Strain and electric-field induced tunable electronic properties of blue phosphorus-GeS/SnS/SnSe (orthorhombic) vdW heterostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126829.	0.9	6
608	Blue phosphorus nanoscrolls. Physical Review B, 2020, 102, .	1.1	5
609	Intriguing electronic structure and photocatalytic performance of blueP–SMSe and blueP–SeMS (M =) Tj ET	Qq1_1 0.78	34314 rgBT
610	Interactions of selected organic molecules with a blue phosphorene monolayer: self-assembly, solvent effect, enhanced binding and fixation through coadsorbed gold clusters. Physical Chemistry Chemical Physics, 2020, 22, 26552-26561.	1.3	6
611	Prediction of ï•-P and ïƒ-P: Two New Strain-Interconvertible Phosphorene Allotropes. Journal of Physical Chemistry C, 2020, 124, 21207-21214.	1.5	13
612	Physical vapor deposited 2D bismuth for CMOS technology. Journal of Semiconductors, 2020, 41, 081001.	2.0	7
613	Phosphorus Pentamers: Floating Nanoflowers form a 2D Network. Advanced Functional Materials, 2020, 30, 2004531.	7.8	12
614	Strain-induced band modulation and excellent stability, transport and optical properties of penta-MP ₂ (M = Ni, Pd, and Pt) monolayers. Nanoscale Advances, 2020, 2, 4566-4580.	2.2	10
615	Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111). Chinese Physics Letters, 2020, 37, 096803.	1.3	17
616	Photo- and Nanoelectronics Based on Two-Dimensional Materials. Part I. Two-Dimensional Materials: Properties and Synthesis. Journal of Communications Technology and Electronics, 2020, 65, 1062-1104.	0.2	9
617	A type-II blue phosphorus/MoSe ₂ van der Waals heterostructure: improved electronic and optical properties <i>via</i> vertical electric field. Materials Advances, 2020, 1, 1849-1857.	2.6	16
618	Tunable Electronic Structure of Two-Dimensional MoX ₂ (X = S, Se)/SnS ₂ van der Waals Heterostructures. Journal of Physical Chemistry C, 2020, 124, 21357-21365.	1.5	16
619	Blue phosphorene/Sc ₂ CX ₂ (X = O, F) van der Waals heterostructures as suitable candidates for water-splitting photocatalysts and solar cells. Sustainable Energy and Fuels, 2020, 4, 5277-5283.	2.5	23

#	Article	IF	CITATIONS
620	A First Principles Study of Electric Structures of Heterostructures Built with Blue Phosphorene. Journal of Physics: Conference Series, 2020, 1676, 012239.	0.3	0
621	Semiconducting two-dimensional group VA–VA haeckelite compounds with superior carrier mobility. Physical Chemistry Chemical Physics, 2020, 22, 12260-12266.	1.3	7
622	Two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CP<mml:mn>3</mml:mn></mml:mi </mml:msub></mml:math> monolayer and its fluorinated derivative with promising electronic and optical properties: A theoretical study. Physical Review B, 2020, 101, .	1.1	27
623	Above Room Temperature Ferromagnetism in Gd ₂ B ₂ Monolayer with High Magnetic Anisotropy. Journal of Physical Chemistry C, 2020, 124, 12816-12823.	1.5	25
624	Theoretical anchoring effect of new phosphorus allotropes for lithium–sulfur batteries. Nanoscale, 2020, 12, 11095-11111.	2.8	10
625	Adjustable electronic and optical properties of BlueP/MoS2 van der Waals heterostructure by external strain: a first-principles study. Nanotechnology, 2020, 31, 375706.	1.3	11
626	Hexagonal layered group IV–VI semiconductors and derivatives: fresh blood of the 2D family. Nanoscale, 2020, 12, 13450-13459.	2.8	20
627	Adsorption of single alkali-metal atoms (Li, Na, K) over the edge-passivated zigzag blue phosphorene nanoribbons. Journal of Physics and Chemistry of Solids, 2020, 146, 109623.	1.9	11
628	Designing Kagome Lattice from Potassium Atoms on Phosphorus–Gold Surface Alloy. Nano Letters, 2020, 20, 5583-5589.	4.5	20
629	Tunable magnetism through edge functionalization in zigzag green phosphorene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126672.	0.9	0
630	A super stable assembled P nanowire with variant structural and magnetic/electronic properties <i>via</i> transition metal adsorption. Nanoscale, 2020, 12, 12454-12461.	2.8	8
631	The strain induced type-II band re-alignment of blue phosphorus-GeX (X = C/H/Se) heterostructures. EPJ Applied Physics, 2020, 89, 10103.	0.3	0
632	Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus–Graphene Architecture. Sensors, 2020, 20, 3326.	2.1	13
633	New Polymorphs of 2D Indium Selenide with Enhanced Electronic Properties. Advanced Functional Materials, 2020, 30, 2001920.	7.8	33
634	Two-dimensional O-phase group III monochalcogenides for photocatalytic water splitting. Journal of Physics Condensed Matter, 2020, 32, 065501.	0.7	6
635	First-principle investigation of the elastic and plastic properties of the bismuthene: Effect of the external electric field. Superlattices and Microstructures, 2020, 140, 106476.	1.4	7
636	Monolayer diboron dinitride: Direct band-gap semiconductor with high absorption in the visible range. Physical Review B, 2020, 101, .	1.1	20
637	Pseudo Jahn–Teller Origin of Buckling Deformation of Two-dimensional Group-IV-Based Triphosphides as an Anode of Sodium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 7699-7707.	1.5	0

#	Article	IF	CITATIONS
638	Surface Adsorption and Vacancy in Tuning the Properties of Tellurene. ACS Applied Materials & Interfaces, 2020, 12, 19110-19115.	4.0	20
639	Topology and ferroelectricity in group-V monolayers*. Chinese Physics B, 2020, 29, 057304.	0.7	31
640	Synthesis of Monolayer Blue Phosphorus Enabled by Silicon Intercalation. ACS Nano, 2020, 14, 3687-3695.	7.3	52
641	Two-dimensional Xenes and their device concepts for future micro- and nanoelectronics and energy applications. , 2020, , 181-219.		1
642	Reversible Potassium Intercalation in Blue Phosphorene–Au Network Driven by an Electric Field. Journal of Physical Chemistry Letters, 2020, 11, 5584-5590.	2.1	5
643	High-Sensitivity Goos-HÃ ¤ chen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure. Sensors, 2020, 20, 3605.	2.1	19
644	Indium doped phosphorene as a potential gas sensor: a study using density functional theory. Electronic Structure, 2020, 2, 035001.	1.0	3
645	Electronic and optoelectronic properties of van der Waals heterostructure based on graphene-like GaN, blue phosphorene, SiC, and ZnO: A first principles study. Journal of Applied Physics, 2020, 127, .	1.1	19
646	Van der Waals heterostructures of SiC and Janus MSSe (M = Mo, W) monolayers: a first principles study. RSC Advances, 2020, 10, 25801-25807.	1.7	22
647	First-principles study of CO and NO adsorption on pristine and transition metal doped blue phosphorene. Vacuum, 2020, 179, 109503.	1.6	28
648	Electronic properties of two-dimensional materials. , 2020, , 77-109.		11
649	High exothermic dissociation in van der Waals like hexagonal two dimensional nitrogene from first–principles molecular dynamics. Applied Surface Science, 2020, 529, 146552.	3.1	11
650	Comparative investigation of the thermal transport properties of Janus SnSSe and SnS ₂ monolayers. Physical Chemistry Chemical Physics, 2020, 22, 16796-16803.	1.3	19
651	Epitaxial Growth of Flat, Metallic Monolayer Phosphorene on Metal Oxide. ACS Nano, 2020, 14, 2385-2394.	7.3	27
652	Band alignment control in a blue phosphorus/C ₂ N van der Waals heterojunction using an electric field. Physical Chemistry Chemical Physics, 2020, 22, 5873-5881.	1.3	29
653	A first-principles study of nitrogene with monovacancy and light-atom substituted doping. Nanotechnology, 2020, 31, 205202.	1.3	3
654	Effects of single vacancy on electronic properties of blue-phosphorene nanotubes. Materials Research Express, 2020, 7, 015042.	0.8	29
655	Effects of short-range order and interfacial interactions on the electronic structure of two-dimensional antimony-arsenic alloys. Journal of Applied Physics, 2020, 127, 025305.	1.1	1

#	Article	IF	CITATIONS
656	Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning*. Chinese Physics B, 2020, 29, 046101.	0.7	17
657	The electron–phonon scattering and carrier mobility in monolayer AsSb. Physical Chemistry Chemical Physics, 2020, 22, 5688-5692.	1.3	1
658	InTel: a novel wide-bandgap 2D material with desirable stability and highly anisotropic carrier mobility. Nanoscale, 2020, 12, 5888-5897.	2.8	39
659	The investigation of optoelectronic, magnetic and dynamical properties of Ce and Ti doped 2D blue phosphorene: A dispersion corrected DFT study. Journal of Alloys and Compounds, 2020, 827, 154255.	2.8	28
660	Exploration of the strain and thermoelectric properties of hexagonal SiX (X = N, P, As, Sb, and Bi) monolayers. Physical Chemistry Chemical Physics, 2020, 22, 3990-3998.	1.3	39
661	dc and ac transport in few-layer black phosphorus. Journal of Applied Physics, 2020, 127, 044302.	1.1	2
662	Quantum confinement and edge effects on electronic properties of zigzag green phosphorene nanoribbons. Journal of Physics Condensed Matter, 2020, 32, 175301.	0.7	3
663	Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts*. Chinese Physics B, 2020, 29, 037305.	0.7	6
664	Quantum Transport beyond DC. , 2020, , 278-292.		0
666	Structural and mechanical properties of pristine and adsorbed puckered arsenene nanostructures: A DFT study. Superlattices and Microstructures, 2020, 139, 106414.	1.4	26
667	Electronic and photocatalytic performance of boron phosphide-blue phosphorene vdW heterostructures. Applied Surface Science, 2020, 523, 146483.	3.1	77
668	A handle on the scandal: Data driven approaches to structure prediction. APL Materials, 2020, 8, 040903.	2.2	4
669	Magnetic modification of transition-metal-atom–adsorbed blue phosphorus monolayer: A first-principles study. Europhysics Letters, 2020, 129, 47003.	0.7	0
670	Epitaxial Growth of Main Group Monoelemental 2D Materials. Advanced Functional Materials, 2021, 31, 2006997.	7.8	37
671	Structural, electronic, optical, thermoelectric and photocatalytic properties of SiS/MXenes van der Waals heterostructures. Materials Today Communications, 2021, 26, 101702.	0.9	12
672	Blue Phosphorus-MoX2 (X=S/Se/Te) heterobilayers with strain enhanced photovoltaic properties: A first-principle study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 125, 114414.	1.3	2
673	Phonon dispersions and electronic structures of two-dimensional IV-V compounds. Carbon, 2021, 172, 345-352.	5.4	9
674	W-N3 center supported on blue phosphorus as a promising efficient electrocatalyst with ultra-low limiting potential for nitrogen fixation. Applied Surface Science, 2021, 536, 147706.	3.1	13

#	Article	IF	CITATIONS
675	Two-dimensional phosphorus supercapacitors. Journal of Energy Storage, 2021, 33, 102062.	3.9	8
676	Ultrahigh carrier mobility and light-harvesting performance of 2D penta-PdX2 monolayer. Journal of Materials Science, 2021, 56, 3846-3860.	1.7	24
677	Tailoring the electronic and optical properties of layered blue phosphorene/ XC (X=Ge, Si) vdW heterostructures by strain engineering. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114460.	1.3	7
678	First-Principles Calculations of the Effects of Edge Functionalization and Size on the Band Gap of Be ₃ N ₂ Nanoribbons: Implications for Nanoelectronic Devices. ACS Applied Nano Materials, 2021, 4, 493-502.	2.4	6
679	Quantum spin Hall insulators and topological Rashba-splitting edge states in two-dimensional CX ₃ (X = Sb, Bi). Physical Chemistry Chemical Physics, 2021, 23, 2134-2140.	1.3	7
680	Electron-phonon (de)coupling in 2D. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114468.	1.3	1
681	Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes. Advanced Functional Materials, 2021, 31, .	7.8	33
682	Analogies between the topological insulator phase of 2D Dirac materials and the superradiant phase of atomâ€field systems. International Journal of Quantum Chemistry, 2021, 121, e26464.	1.0	3
683	Enhanced photocatalytic properties of a chemically modified blue phosphorene. RSC Advances, 2021, 11, 13348-13358.	1.7	6
684	Metallic VS ₂ /graphene heterostructure as an ultra-high rate and high-specific capacity anode material for Li/Na-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 18784-18793.	1.3	20
685	Two-dimensional C3N/blue phosphorene vdW heterostructure for Li, Na and K-ion batteries. New Journal of Chemistry, 2021, 45, 12647-12654.	1.4	7
686	Quasiparticle energies and significant exciton effects of monolayered blue arsenic phosphorus conformers. Physical Chemistry Chemical Physics, 2021, 23, 23808-23817.	1.3	11
687	Metastable piezoelectric group-IV monochalcogenide monolayers with a buckled honeycomb structure. Physical Review B, 2021, 103, .	1.1	23
688	The synthesis of greenish phosphorus on carbon substrates. Chemical Communications, 2021, 57, 3975-3978.	2.2	8
689	Evolutionary structure prediction-assisted design of anode materials for Ca-ion battery based on phosphorene. Physical Chemistry Chemical Physics, 2021, 23, 9466-9475.	1.3	13
690	First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers. RSC Advances, 2021, 11, 14263-14268.	1.7	14
691	Blue-AsP monolayer as a promising anode material for lithium- and sodium-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2021, 23, 5143-5151.	1.3	28
692	Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50, 10983-11031.	18.7	170

#	Article	IF	CITATIONS
693	Thermoelectric effect and devices on <scp>IVA</scp> and <scp>VA</scp> Xenes. InformaÄnÃ-Materiály, 2021, 3, 271-292.	8.5	17
694	Tunable electronic structure and optical properties of BlueP/ <i>X</i> Te ₂ (<i>X</i> = Mo, W) van der Waals heterostructures by strain. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 067101.	0.2	2
695	Research progress of puckered honeycomb monolayers. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 148101.	0.2	7
696	A first principles study of p-type doping in two dimensional GaN. Physical Chemistry Chemical Physics, 2021, 23, 20901-20908.	1.3	6
697	The exceptionally high thermal conductivity after †alloying' two-dimensional gallium nitride (GaN) and aluminum nitride (AlN). Nanotechnology, 2021, 32, 135401.	1.3	22
698	Exploring edge functionalised blue phosphorene nanoribbons as novel photocatalysts for water splitting. New Journal of Chemistry, 2021, 45, 3570-3580.	1.4	11
699	Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). Materials Chemistry Frontiers, 2021, 5, 6333-6391.	3.2	18
700	First-principles explorations on P ₈ and N ₂ assembled nanowire and nanosheet. Nano Express, 2021, 2, 010004.	1.2	3
701	3D/2D Bi ₂ S ₃ /SnS ₂ heterostructures: superior charge separation and enhanced solar light-driven photocatalytic performance. CrystEngComm, 2021, 23, 2276-2288.	1.3	7
702	Tuning of the Optical Properties of Monolayer Blue Phosphorene. Plasmonics, 2021, 16, 1213-1221.	1.8	4
703	High capacity lithium-ion battery anode using silicon-doped blue phosphorene. Superlattices and Microstructures, 2021, 150, 106800.	1.4	7
704	Adsorption and diffusion of Li/Na atom on blue phosphorene with defects by first-principles calculations. Canadian Journal of Physics, 0, , 1-8.	0.4	1
705	Electronic, magnetic and optical properties of blue phosphorene doped with Y, Zr, Nb and Mo: A first-principles study. Thin Solid Films, 2021, 720, 138523.	0.8	12
706	Li interaction-induced phase transition from black to blue phosphorene. Physical Review Materials, 2021, 5, .	0.9	11
707	First-principles study of two-dimensional puckered and buckled honeycomb-like carbon sulfur systems. Journal of Computational Electronics, 2021, 20, 759-774.	1.3	3
708	Unusual Strain Dependence of Quasiparticle Electronic Structure, Exciton, and Optical Properties in Blue Phosphorene. Physical Review Applied, 2021, 15, .	1.5	9
709	Polymorphism in Post-Dichalcogenide Two-Dimensional Materials. Chemical Reviews, 2021, 121, 2713-2775.	23.0	64
710	Spin Transport and Spin Thermoelectric Transport in 2D Mn-Doped Blue Phosphorene with High Curie Temperature and Half-Metallicity. Journal of Physical Chemistry C, 2021, 125, 6341-6350.	1.5	15

#	Article	IF	CITATIONS
711	Adsorption of small pollutant molecules on monolayer blue phosphorus. Materials Today Communications, 2021, 26, 102123.	0.9	2
712	Phonon Properties of Bulk Violet Phosphorus Single Crystals: Temperature and Pressure Evolution. ACS Applied Electronic Materials, 2021, 3, 1043-1049.	2.0	41
713	Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	113
714	Arsenene, antimonene and bismuthene as anchoring materials for lithiumâ€sulfur batteries: A computational study. International Journal of Quantum Chemistry, 2021, 121, 26661.	1.0	9
715	Columnar antiferromagnetic order of a MBene monolayer. Physical Review B, 2021, 103, .	1.1	10
716	Strain-Induced Tunable Band Offsets in Blue Phosphorus and WSe2 van der Waals Heterostructure. Crystals, 2021, 11, 470.	1.0	4
717	Density functional study of blue phosphorene–metal interface. European Physical Journal B, 2021, 94, 1.	0.6	3
718	Theoretical insights into strong intrinsic piezoelectricity of blue-phosphorus-like group-IV monochalcogenides. Nano Research, 2022, 15, 209-216.	5.8	17
719	Molecular interaction of oxytetracycline and sulfapyridine on blue phosphorene nanotubes: A first-principles insight. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 394, 127198.	0.9	16
720	Effects of temperature on strain engineering and transition-metal adatom magnetization in phosphorene: Ab initio molecular dynamics studies. Physical Review B, 2021, 103, .	1.1	4
721	Two-Dimensional Graphene/BlueP/MoS ₂ van der Waals Multilayer Heterostructure as a High-Performance Anode Material for LIBs. Journal of Physical Chemistry C, 2021, 125, 8980-8992.	1.5	8
722	Adsorption of [<scp>BF₄</scp>] ^{â[~]} anionâ€based ionic liquids on phosphorene, arsenene, and antimonene: A density functional theory study. International Journal of Quantum Chemistry, 2021, 121, e26668.	1.0	3
723	Modeling the aluminum-doped and single vacancy blue phosphorene interactions with molecules: a density functional theory study. Journal of Molecular Modeling, 2021, 27, 141.	0.8	4
724	Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment. Reports on Progress in Physics, 2021, 84, 056501.	8.1	97
725	Atomically Thin Quantum Spin Hall Insulators. Advanced Materials, 2021, 33, e2008029.	11.1	28
726	Small Polarons in Two-Dimensional Pnictogens: A First-Principles Study. Journal of Physical Chemistry Letters, 2021, 12, 4674-4680.	2.1	7
727	Structural, Electronic, and Optical Properties of Hexagonal XC 6 (X=N, P, As, and Sb) Monolayers. ChemPhysChem, 2021, 22, 1124-1133.	1.0	0
728	Effects of different edge contacts on the photocatalytic and optical properties of blue phosphorene/arsenene lateral heterostructures. Semiconductor Science and Technology, 0, , .	1.0	0

#	Article	IF	CITATIONS
729	Polaronic signatures in pristine phosphorene. Physical Review Materials, 2021, 5, .	0.9	1
730	Arsenic carbide allotropes prediction: An efficient platform for hole-conductions, optical and photocatalysis applications. Applied Surface Science, 2021, 562, 150109.	3.1	2
731	Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coordination Chemistry Reviews, 2021, 435, 213826.	9.5	29
732	Comparison of the sensitivity by SPR inmetals-ITO-BlueP/TMDCs structure. Applied Optics, 2021, 60, 5161-5168.	0.9	3
733	γ-GeSe: A New Hexagonal Polymorph from Group IV–VI Monochalcogenides. Nano Letters, 2021, 21, 4305-4313.	4.5	52
734	In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms. Journal of Molecular Modeling, 2021, 27, 171.	0.8	3
735	Computational study of H2S adsorption on the pristine and transitional metal-doped phosphorene. Journal of Molecular Modeling, 2021, 27, 181.	0.8	7
736	Atomic mechanism of the phase transition in monolayer bismuthene on copper oxide. Physical Review Materials, 2021, 5, .	0.9	4
737	Stability of Stone–Wales defect in two-dimensional honeycomb crystals. Journal of Physics Condensed Matter, 2021, 33, 335001.	0.7	0
738	Tuning the electronic and optical properties of Blue P/MoSeS and Blue P/MoSSe van der Waals heterostructure via biaxial strain. Chemical Physics Letters, 2021, 773, 138622.	1.2	4
739	Fracture of 28 buckled two-dimensional hexagonal sheets. Mechanics of Advanced Materials and Structures, 2022, 29, 4993-5005.	1.5	5
740	Modulation of electronic structure properties in bilayer phosphorene nanoribbons by transition metal atoms. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114530.	1.3	5
741	Theoretical Insights on Bandgap Engineering for Nanoribbons of the 2D Materials Family with Co-Adatoms. Journal of Electronic Materials, 2021, 50, 5244.	1.0	4
742	Blue phosphorene nanosheets with point defects: Electronic structure and hydrogen storage capability. Applied Surface Science, 2021, 551, 149363.	3.1	13
743	How Oxygen Absorption Affects the Al 2 O 3 â€Encapsulated Blue Phosphorene–Au Alloy. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100217.	1.2	1
744	New honeycomb-like M-based (MÂ=ÂC, Si, Ge and Sn) monochalcogenides polymorphs: An extended family as isoelectronic photocatalysts of Group-VA for water splitting. Applied Surface Science, 2021, 554, 149644.	3.1	10
745	Electron-phonon coupling, spin-polarized Zeeman field, and exchange field effects on the electronic properties of monolayer h-BP. Journal Physics D: Applied Physics, 2021, 54, 385301.	1.3	2
746	Superior Sensitivity and Optical Response of Blue Phosphorene and Its Doped Systems for Gas Sensing Applications. ACS Omega, 2021, 6, 18770-18781.	1.6	3

#	Article	IF	CITATIONS
747	Molecular adsorption studies of formaldehyde and methanol on novel twisted bilayer beta phosphorene sheets – a first-principles investigation. Molecular Physics, 2021, 119, .	0.8	10
748	Novel thermoelectric performance of 2D 1T- Se ₂ Te and SeTe ₂ with ultralow lattice thermal conductivity but high carrier mobility. Nanotechnology, 2021, 32, 455401.	1.3	18
749	DFT Investigations on the Boron–Phosphorus Assembled Nanowires. Journal of Cluster Science, 0, , 1.	1.7	1
750	Strain-driven modulation of the electronic, optical and thermoelectric properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e158" altimg="si13.svg"><mml:mi>l²</mml:mi>-antimonene monolayer: A hybrid functional study. Materials Science in Semiconductor Processing, 2021, 131, 105878.</mml:math 	1.9	5
751	Modulated electronic and optical properties of bilayer/trilayer Blue Phosphorene/MoX2 (X=S, Se) van der Waals heterostructures. Surfaces and Interfaces, 2021, 25, 101228.	1.5	5
752	Flat epitaxial quasi-1D phosphorene chains. Nature Communications, 2021, 12, 5160.	5.8	22
753	Wide Band Gap P ₃ S Monolayer with Anisotropic and Ultrahigh Carrier Mobility. Journal of Physical Chemistry Letters, 2021, 12, 8481-8488.	2.1	10
754	Gas sensing properties of defective tellurene on the nitrogen oxides: A first-principles study. Sensors and Actuators A: Physical, 2021, 328, 112766.	2.0	16
755	Sub-10Ânm two-dimensional transistors: Theory and experiment. Physics Reports, 2021, 938, 1-72.	10.3	80
756	An alternative route towards the fabrication of 2D blue phosphorene. Journal of Physics Condensed Matter, 2021, 33, 485002.	0.7	4
757	Strong electron–phonon coupling influences carrier transport and thermoelectric performances in group-IV/V elemental monolayers. Npj Computational Materials, 2021, 7, .	3.5	19
758	Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications. Progress in Solid State Chemistry, 2021, 63, 100326.	3.9	20
759	New Two-Dimensional Wide Band Gap Hydrocarbon Insulator by Hydrogenation of a Biphenylene Sheet. Journal of Physical Chemistry Letters, 2021, 12, 8889-8896.	2.1	26
760	The influence of heteroatom doping on local properties of phosphorene monolayer. Scientific Reports, 2021, 11, 18494.	1.6	6
761	Large contribution of quasi-acoustic shear phonon modes to thermal conductivity in novel monolayer Ga2O3. Journal of Applied Physics, 2021, 130, .	1.1	5
762	High uptake and fixation ability of BC monolayer for CO and NO toxic gases: a computational analysis. Journal of Materials Science, 2021, 56, 18566-18580.	1.7	0
763	Photoluminescence as a probe of phosphorene properties. Npj 2D Materials and Applications, 2021, 5, .	3.9	11
764	2D ternary nitrides XNY (X=Ti, Zr, Hf; Y F, Cl, Br) with applications as photoelectric and photocatalytic materials featuring mechanical and optical anisotropy: A DFT study. Journal of Solid State Chemistry, 2021, 303, 122517.	1.4	12

#	Article	IF	CITATIONS
765	The elemental 2D materials beyond graphene potentially used as hazardous gas sensors for environmental protection. Journal of Hazardous Materials, 2022, 423, 127148.	6.5	27
766	Electronic and optical properties of two-dimensional GaN/ZnO heterojunction tuned by different stacking configurations. Journal of Colloid and Interface Science, 2022, 607, 913-921.	5.0	31
767	First-principles study of pristine and metal decorated blue phosphorene for sensing toxic H2S, SO2 and NO2 molecules. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
768	Multiscale numerical simulation of in-plane mechanical properties of two-dimensional monolayers. RSC Advances, 2021, 11, 20232-20247.	1.7	8
769	Antiferromagnetic spin ordering in two-dimensional honeycomb lattice of SiP ₃ . Nanoscale Advances, 2021, 3, 2217-2221.	2.2	6
770	Stability and superconductivity of Ca-intercalated bilayer blue phosphorene. Physical Chemistry Chemical Physics, 2021, 23, 2846-2852.	1.3	5
771	O <mml:math <br="" display="inline" id="d1e362" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si73.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> adsorption on defective Penta-Graphene lattices: A DFT study. Chemical Physics Letters, 2021, 763, 138229.	1.2	12
772	Black phosphorene/blue phosphorene van der Waals heterostructure: a potential anode material for lithium-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 17392-17401.	1.3	6
773	Low in-plane atomic density phosphorene anodes for lithium-/sodium-ion batteries. Journal of Materials Chemistry C, 2021, 9, 6802-6814.	2.7	8
774	Giant and anisotropic second harmonic generation of V–V binary phosphorene derivative with permanent dipole. Journal of Materials Chemistry C, 2021, 9, 6544-6552.	2.7	5
775	Simulated Raman spectra of bulk and low-dimensional phosphorus allotropes. Physical Chemistry Chemical Physics, 2021, 23, 16611-16622.	1.3	14
776	The effects of vacancy and heteroatoms-doping on the stability, electronic and magnetic properties of blue phosphorene. Nanotechnology, 2021, 32, 135702.	1.3	5
777	Chemistry of Black Phosphorus. Engineering Materials, 2020, , 59-72.	0.3	12
778	Vacancy defected blue and black phosphorene nanoribbons as gas sensor of NOx and SOx molecules. Applied Surface Science, 2020, 526, 146692.	3.1	22
779	A theoretical study of Ti–MoSe2 as a noninvasive type-1 diabetes diagnosis material for detecting acetone from exhaled breath. Vacuum, 2020, 182, 109729.	1.6	13
781	Blue Phosphorus Growth on Different Noble Metal Surfaces: From a 2D Alloy Network to an Extended Monolayer. Journal of Physical Chemistry C, 2021, 125, 675-679.	1.5	13
782	Nitrophosphorene: A 2D Semiconductor with Both Large Direct Gap and Superior Mobility. Journal of Physical Chemistry C, 2017, 121, 28520-28526.	1.5	34
783	Vacancy and Doping States in Monolayer and bulk Black Phosphorus. Scientific Reports, 2015, 5, 14165.	1.6	55

#	Article	IF	CITATIONS
784	The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures. Physical Chemistry Chemical Physics, 2017, 19, 17210-17215.	1.3	25
785	Blue phosphorene reactivity on the Au(111) surface. Nanotechnology, 2020, 31, 495602.	1.3	4
786	Mechanical properties of 2D blue phosphorus and temperature effect. Nanotechnology, 2021, 32, 085702.	1.3	2
787	A MoSSe/blue phosphorene vdw heterostructure with energy conversion efficiency of 19.9% for photocatalytic water splitting. Semiconductor Science and Technology, 2020, 35, 125008.	1.0	56
788	Stable carbon monosulfide nanostructures: Chain arrays and monolayers. Physical Review Materials, 2017, 1, .	0.9	7
789	One-dimensional phosphorus chain and two-dimensional blue phosphorene grown on Au(111) by molecular-beam epitaxy. Physical Review Materials, 2017, 1, .	0.9	89
790	External-strain-induced semimetallic and metallic phase of chlorographene. Physical Review Materials, 2018, 2, .	0.9	4
791	Large phosphorene in-plane contraction induced by interlayer interactions in graphene-phosphorene heterostructures. Physical Review Materials, 2018, 2, .	0.9	11
792	Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Mg </mml:mi> <mml:r mathvariant="normal">C </mml:r </mml:msub></mml:mrow> : Negative Poisson's ratio and unconventional two-dimensional emergent fermions. Physical Review Materials, 2018, 2, .</mml:math 	nn>20.9	nl:mu>
793	Two-dimensional nodal-loop half-metal in monolayer MnN. Physical Review Materials, 2019, 3, .	0.9	55
794	Spatially indirect excitons in black and blue phosphorene double layers. Physical Review Materials, 2020, 4, .	0.9	6
795	Low-symmetry two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>BNP</mml:mi> <mml:mn>2and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mr< td=""><td>0.9</td><td>5</td></mml:mr<></mml:msub></mml:mrow></mml:math </mml:mn></mml:msub></mml:math 	0.9	5
796	Structures with high and anisotropic canier mobilities. Physical Review Materials, 2020, 4, . Anisotropic exciton excitations and optical properties of Hittorf's phosphorene. Physical Review Research, 2020, 2, .	1.3	10
797	Theoretical investigation of an enhanced Goos–Hächen shift sensor based on a BlueP/TMDC/graphene hybrid. Applied Optics, 2020, 59, 8355.	0.9	6
798	Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Applied Optics, 2019, 58, 9411.	0.9	26
799	Black Phosphorus as Multifaceted Advanced Material Nanoplatforms for Potential Biomedical Applications. Nanomaterials, 2021, 11, 13.	1.9	33
800	Two-Dimensional Pnictogen for Field-Effect Transistors. Research, 2019, 2019, 1046329.	2.8	34
801	Constructing a new 2D Janus black phosphorus/SMoSe heterostructure for spontaneous wide-spectral-responsive photocatalytic overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 39183-39194.	3.8	17

#	Article	IF	CITATIONS
802	Emerging Yttrium Phosphides with Tetrahedron Phosphorus and Superconductivity under High Pressures. Chemistry - A European Journal, 2021, 27, 17420-17427.	1.7	5
803	Sistemas cristalinos bidimensionales. Revista De InvestigaciÓn De FÃsica, 2014, 17, 1-12.	0.1	2
804	Topological transition in monolayer blue phosphorene with transition-metal adatom under strain. Chinese Journal of Chemical Physics, 2020, 33, 443-449.	0.6	1
805	Tunable band alignment in boron carbon nitride and blue phosphorene van der Waals heterostructure. Nano Express, 2020, 1, 020021.	1.2	2
806	From amorphous red phosphorus to black phosphorus crystal: An optimization, controllable and highest yield synthesis process. Journal of Crystal Growth, 2022, 577, 126408.	0.7	5
807	First-principles study on the influence of biaxial strain on the electronic and magnetic properties of defective blue phosphorene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126853.	0.9	1
808	Various polymorphs of group III–VI (GaSe, InSe, GaTe) monolayers with quasi-degenerate energies: facile phase transformations, high-strain plastic deformation, and ferroelastic switching. Materials Today Physics, 2020, 15, 100229.	2.9	4
809	The Effects of Boron-Doping on the Electronic Properties of Blue Phosphorene. Graphene, 2021, 10, 41-47.	0.3	0
810	Fracture and strength of single-atom-thick hexagonal materials. Computational Materials Science, 2022, 201, 110854.	1.4	5
811	The Family of Two-dimensional Transition Metal Chalcogenides Materials. RSC Smart Materials, 2020, , 226-240.	0.1	0
812	Haeckelite phosphorus: an emerging 2D allotrope of phosphorus for potential use in LIBs/SIBs. Physical Chemistry Chemical Physics, 2021, 23, 26547-26560.	1.3	5
813	Ab initio simulations of black and blue phosphorene functionalised with chemical groups for biomolecule anchoring. Journal of Molecular Modeling, 2021, 27, 349.	0.8	1
814	Metastable Metallic Phase of a Bilayer Blue Phosphorene Induced by Interlayer Bonding and Intralayer Charge Redistributions. Journal of Physical Chemistry Letters, 2021, 12, 10981-10986.	2.1	4
815	Two-dimensional hexagonal manganese carbide monolayer with intrinsic ferromagnetism and half-metallicity. New Journal of Physics, 2020, 22, 103049.	1.2	19
816	Quantum transport: general concepts. , 0, , 91-117.		1
817	Perfect spin filtering effect, tunnel magnetoresistance and thermoelectric effect in metals-adsorbed blue phosphorene nanoribbons. Physica B: Condensed Matter, 2022, 626, 413580.	1.3	7
818	DFT study on the adsorption properties of aldrin and dieldrin molecules on blue phosphorene nanotubes. Physica B: Condensed Matter, 2022, 626, 413545.	1.3	13
819	Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2022, 122, 1127-1207.	23.0	103

#	Article	IF	CITATIONS
820	Impressive Thermoelectric Figure of Merit in Two-Dimensional Tetragonal Pnictogens: a Combined First-Principles and Machine-Learning Approach. ACS Applied Materials & Interfaces, 2021, 13, 59092-59103.	4.0	24
821	Quasiparticle band structure, exciton, and optical properties of few-layer blue phosphorus. Physical Review B, 2021, 104, .	1.1	3
822	Blue and black phosphorene on metal substrates: a density functional theory study. Journal of Physics Condensed Matter, 2022, 34, 084001.	0.7	1
823	A highly sensitive surface plasmon resonance biosensor using SnSe allotrope and heterostructure of BlueP/MoS2 for cancerous cell detection. Optik, 2022, 252, 168506.	1.4	27
824	Recent advances in arsenene nanostructures towards prediction, properties, synthesis and applications. Surfaces and Interfaces, 2022, 28, 101610.	1.5	8
825	Structural asymmetry in few-layer blue phosphorene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 426, 127877.	0.9	2
826	The structural, electronic, magnetic and optical properties of 4d transition metal adatoms (Tc, Ru, Rh) Tj ETQq0 0 Nanostructures, 2022, 138, 115116.	0 rgBT /0 1.3	verlock 10 T 4
827	Prediction of new phase 2D <i>C</i> _{2h} group III monochalcogenides with direct bandgaps and highly anisotropic carrier mobilities. Materials Advances, 2022, 3, 2213-2221.	2.6	7
828	Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies. IScience, 2022, 25, 103832.	1.9	35
829	Sensitivity Improvement of Surface Plasmon Resonance Biosensors with GeS-Metal Layers. Electronics (Switzerland), 2022, 11, 332.	1.8	9
830	Two-dimensional SiP3 monolayer as promising anode with Record-high capacity and fast diffusion for Alkali-ion battery. Applied Surface Science, 2022, 586, 152510.	3.1	17
831	Electronic characteristics of SbBi binary nanoflakes. Computational Condensed Matter, 2022, 30, e00639.	0.9	1
832	Stacking effect on electronic properties of InSe/blue phosphorene and GaSe/blue phosphorene heterostructures from first-principles. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115115.	1.3	3
833	Construction of novel two-dimensional materials and heterostructures in ultra-high vacuum. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
834	Interfacial electrical properties and transport properties of monolayer black AsP alloy in contact with metal. Materials Today Communications, 2022, 31, 103262.	0.9	2
835	Topological edge and corner states and fractional corner charges in blue phosphorene. Physical Review B, 2022, 105, .	1.1	11
836	Semi-oxided phosphorene under uniaxial strain. Materials Today: Proceedings, 2022, , .	0.9	0
837	Modulation of the electronic properties of blue phosphorene/stanene heterostructures by electric field and interlayer distance. Results in Physics, 2022, 34, 105252.	2.0	6

#	Article	IF	CITATIONS
838	Semiconductor-to-metal transition from monolayer to bilayer blue phosphorous induced by extremely strong interlayer coupling: a first-principles study. Nanoscale, 2022, 14, 4082-4088.	2.8	3
839	Defects in two-dimensional elemental materials beyond graphene. , 2022, , 43-88.		1
840	Two-Dimensional Layered Green Phosphorus as an Anode Material for Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 2184-2191.	2.5	6
841	Multi-reward Reinforcement Learning Based Bond-Order Potential to Study Strain-Assisted Phase Transitions in Phosphorene. Journal of Physical Chemistry Letters, 2022, 13, 1886-1893.	2.1	9
842	A direct Z-scheme MoSi ₂ N ₄ /BlueP vdW heterostructure for photocatalytic overall water splitting. Journal Physics D: Applied Physics, 2022, 55, 215502.	1.3	29
843	"Missing―One-Dimensional Red-Phosphorus Chains Encapsulated within Single-Walled Carbon Nanotubes. ACS Nano, 2022, 16, 6002-6012.	7.3	14
844	Enhanced Li Adsorption in Singleâ€Walled Blue Phosphorus Nanotubes by B, C, N, and Siâ€Đoping. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	1
845	Theoretical study of stability, epitaxial formation, and phase transformations of two-dimensional pnictogen allotropes. Physical Review B, 2021, 104, .	1.1	3
846	SiCP ₄ Monolayer with a Direct Band Gap and High Carrier Mobility for Photocatalytic Water Splitting. Journal of Physical Chemistry Letters, 2022, 13, 190-197.	2.1	16
847	High-performance thermoelectric properties of strained two-dimensional tellurium. Physical Review Materials, 2021, 5, .	0.9	5
848	Spin–Orbit Coupling in 2D Semiconductors: A Theoretical Perspective. Journal of Physical Chemistry Letters, 2021, 12, 12256-12268.	2.1	22
849	Epitaxial growth of black phosphorene enabled on black-phosphorene-like group IV-VI substrates. Physical Review B, 2021, 104, .	1.1	3
850	Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chemical Reviews, 2022, 122, 3879-3965.	23.0	58
851	Stabilities of Isomers of Phosphorus on Transition Metal Substrates. Chemistry of Materials, 2021, 33, 9447-9453.	3.2	7
852	Electric metal contacts to monolayer blue phosphorus: electronic and chemical properties. Applied Surface Science, 2022, 593, 153450.	3.1	1
853	The Influence of Ionic Liquids Adsorption on the Electronic and Optical Properties of Phosphorene and Arsenene with Different Phases: A Computational Study. Molecules, 2022, 27, 2518.	1.7	3
854	Structural modification enhances the optoelectronic properties of defect blue phosphorene thin films. Journal of Physics Condensed Matter, 2022, 34, 285702.	0.7	2
855	Effects of Bond Strength on the Electronic Structure and Thermoelectric Properties of βâ€VA Monolayers (Sb, As, and P). ChemNanoMat, 2022, 8, .	1.5	3

#	Article	IF	CITATIONS
856	Sensing properties of nonmetal doped blue phosphorene toward <scp>NO</scp> and <scp>NO₂</scp> molecules: A firstâ€principles study. International Journal of Quantum Chemistry, 2022, 122, .	1.0	4
857	Klein tunneling and ballistic transport in graphene and related materials. , 0, , 118-142.		0
858	Quantum transport in disordered graphene-based materials. , 0, , 143-218.		0
859	Ab initio and multiscale quantum transport in graphene-based materials. , 0, , 232-299.		0
860	Electronic structure calculations: the density functional theory (DFT). , 0, , 314-331.		0
861	Electronic structure calculations: the many-body perturbation theory (MBPT). , 0, , 332-337.		0
862	Green's functions and ab initio quantum transport in the Landauer–Büttiker formalism. , 0, , 338-357.		0
863	2D GeP ₃ and blue P: promising thermoelectric materials for room- and high-temperature applications. Materials Advances, 0, , .	2.6	2
864	Gauche Effect on 2D Phosphorus Allotropes' Energetics. Journal of Physical Chemistry C, 2022, 126, 8883-8888.	1.5	1
865	Methane gas adsorption and detection using the metal-decorated blue phosphorene. Applied Surface Science, 2022, 596, 153511.	3.1	11
866	Two-dimensional ZnO/BlueP van der Waals heterostructure used for visible-light driven water splitting: A first-principles study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121359.	2.0	9
867	Atomic-scale friction of black phosphorus from first-principles calculations: Insensitivity of friction under the high-load. Tribology International, 2022, 172, 107590.	3.0	14
868	First-principles insights of electronic properties of Blue Phosphorus/MoSi2N4 van der Waals heterostructure via vertical electric field and biaxial strain. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115321.	1.3	5
869	Synthesis, modification, and application of black phosphorus, few-layer black phosphorus (FLBP), and phosphorene: a detailed review. Materials Advances, 2022, 3, 5557-5574.	2.6	23
870	Enhanced DFT insights of doped phosphorene: Structural and electronic considerations. Computational and Theoretical Chemistry, 2022, 1214, 113754.	1.1	0
872	Metal-phosphorus network on Pt(111). 2D Materials, 2022, 9, 045002.	2.0	6
873	Impact of different structural defects on fundamental properties of blue phosphorene nanotubes. Computational Condensed Matter, 2022, 32, e00701.	0.9	10
874	Phosphorene. , 2022, , 121-148.		1

#	Article	IF	CITATIONS
875	The structural and electronic richness of buckled honeycomb AsP bilayers. Nanoscale, 2022, 14, 10136-10142.	2.8	3
876	Integration paths for Xenes. , 2022, , 405-438.		1
877	Two-dimensional diamonds from sp2-to-sp3 phase transitions. Nature Reviews Materials, 2022, 7, 814-832.	23.3	28
878	Single-Element 2D Materials beyond Graphene: Methods of Epitaxial Synthesis. Nanomaterials, 2022, 12, 2221.	1.9	15
879	Straightforward strategy for selecting and tuning substrates for two-dimensional material epitaxy. Physical Review Materials, 2022, 6, .	0.9	3
880	Electronic, Magnetic, and Optical Properties of Metal Adsorbed g-ZnO Systems. Frontiers in Chemistry, 0, 10, .	1.8	6
881	Strain Effects on the Electronic and Optical Properties of Blue Phosphorene. Frontiers in Chemistry, 0, 10, .	1.8	0
882	Effects of the Tc, Ru, Rh and Cd substitution doping on the structural, electronic, magnetic and optical properties of blue P monolayer. Thin Solid Films, 2022, 756, 139386.	0.8	2
883	Mechanical strain and electric field tunable electronic structure of black/violet phosphorene van der Waals heterostructure: From type I to Z-scheme system. Journal of Physics and Chemistry of Solids, 2022, 169, 110863.	1.9	3
884	Atomically Sharp, Closed Bilayer Phosphorene Edges by Self-Passivation. ACS Nano, 2022, 16, 12822-12830.	7.3	8
885	An Investigation of Monolayer As _{1â^'} <i>_x</i> P <i>_x</i> Solid Solutions: From a Theoretical Perspective. Advanced Materials Interfaces, 2022, 9, .	1.9	0
886	Theoretical Progress of 2D Sixâ€Memberedâ€Ring Inorganic Materials as Anodes for Nonâ€Lithiumâ€Ion Batteries. Small, 2022, 18, .	5.2	6
887	Strong Optical Excitation and High Thermoelectric Performance in 2D Holeyâ€Phosphorene Monolayer. Energy Technology, 0, , 2200400.	1.8	2
888	First principles study of biaxially deformed hexagonal buckled XS (X=Ge and Si) monolayers with light absorption in the visible region. Thin Solid Films, 2022, 759, 139457.	0.8	4
889	Effect of different dielectrics on performance of sub-5.1Ânm blue phosphorus Schottky barrier field-effect transistor from quantum transport simulation. Current Applied Physics, 2022, 43, 29-35.	1.1	1
890	A new phosphorene allotrope: the assembly of phosphorene nanoribbons and chains. Physical Chemistry Chemical Physics, 2022, 24, 22572-22579.	1.3	4
891	Black or red phosphorus yields the same blue phosphorus film. Nanoscale, 2022, 14, 16256-16261.	2.8	3
892	Design and Analysis of GO Coated High Sensitive Tunable SPR Sensor for OATR Spectroscopic Biosensing Applications. IEEE Access, 2022, 10, 103496-103508.	2.6	9

#	Article	IF	CITATIONS
893	Carbon-based monochalcogenides for efficient solar and heat energy harvesting. Applied Surface Science, 2023, 608, 155121.	3.1	4
894	Chemical vapor deposition: a potential tool for wafer scale growth of two-dimensional layered materials. Journal Physics D: Applied Physics, 2022, 55, 473001.	1.3	15
895	Phosphorus Chains and Pentamers: The Precursors of Blue Phosphorene on the Ag(111) Substrate. Chemistry of Materials, 2022, 34, 8230-8236.	3.2	2
896	Superconducting properties of doped blue phosphorene: effects of non-adiabatic approach. 2D Materials, 2022, 9, 045029.	2.0	6
897	First-principles investigation of aluminum intercalation in bilayer blue phosphorene for Al-ion battery. Surface Science, 2023, 728, 122195.	0.8	5
898	Phosphorus based hybrid materials for green fuel generation. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	1.9	0
899	2D Layers of Group VA Semiconductors: Fundamental Properties and Potential Applications. Advanced Science, 2023, 10, .	5.6	10
900	The SWSe-BP vdW Heterostructure as a Promising Photocatalyst for Water Splitting with Power Conversion Efficiency of 19.4%. ACS Omega, 2022, 7, 37061-37069.	1.6	4
901	Formation of One-Dimensional van der Waals Heterostructures via Self-Assembly of Blue Phosphorene Nanoribbons to Carbon Nanotubes. Acta Mechanica Solida Sinica, 2022, 35, 913-921.	1.0	1
902	The Structural, Electronic and Optical Properties of the AlAs/InP/CdS Heterotrilayer: A First-Principles Study. Journal of Electronic Materials, 2022, 51, 7297-7303.	1.0	1
903	Tunable Electronic Property and Robust Type-II Feature in Blue Phosphorene/MoSi2N4 Bilayer Heterostructure. Crystals, 2022, 12, 1407.	1.0	2
904	Theoretical insight into the electronic, optical, and photocatalytic properties and quantum capacitance of Sc2CT2 (T = F, P, Cl, Se, Br, O, Si, S, OH) MXenes. Vacuum, 2023, 207, 111615.	1.6	15
905	Topological defects and their induced metallicity in monolayer semiconducting γ-phase group IV monochalcogenides. Science China Materials, 0, , .	3.5	0
906	Evolution of Low-Dimensional Phosphorus Allotropes on Ag(111). Chemistry of Materials, 2022, 34, 10651-10658.	3.2	3
907	Tuning electronic and optical properties of BlueP/MoSe2 van der Waals heterostructures by strain and external electric field. Results in Physics, 2023, 44, 106135.	2.0	4
908	A novel black-P/blue-P heterostructure for the photovoltaic applications. Chemical Physics Letters, 2023, 812, 140242.	1.2	1
909	Variable thermal transport in black, blue, and violet phosphorene from extensive atomistic simulations with a neuroevolution potential. International Journal of Heat and Mass Transfer, 2023, 202, 123681.	2.5	5
910	Strain-induced ultrahigh power conversion efficiency in BP-MoSe ₂ vdW heterostructure. Nanotechnology, 2023, 34, 085403.	1.3	1

#	Article	IF	CITATIONS
912	High-performance junction-free field-effect transistor based on blue phosphorene. Npj 2D Materials and Applications, 2022, 6, .	3.9	5
913	Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene. Scientific Reports, 2022, 12, .	1.6	4
914	Blue phosphorene/graphdiyne heterostructure as a potential anode for advanced lithium-ion batteries: First-principle investigation. Applied Surface Science, 2023, 614, 156169.	3.1	3
915	Unique low-energy line defects and lateral heterostructures in phosphorene. Physica Scripta, 2023, 98, 015815.	1.2	1
916	Zero to Three Dimension Structure Evolution from Carbon Allotropes to Phosphorus Allotropes. Advanced Materials Interfaces, 2023, 10, .	1.9	7
917	Prediction of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Fe</mml:mi><mml:msub><mml:mi mathvariant="normal">P<mml:mn>4</mml:mn></mml:mi </mml:msub></mml:mrow> with intrinsic half-metal ferrimagnetism above room temperature. Physical Review B. 2023. 107.</mml:math 	1.1	10
918	Preparation and characterization of SbAs nanorods for opto-electronics applications. Bulletin of Materials Science, 2023, 46, .	0.8	0
919	Impact of single Pt atom adsorption on fundamental properties of blue phosphorene and its activity toward hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 12321-12332.	3.8	5
920	A BC ₂ N/blue phosphorene heterostructure as an anode material for high-performance sodium-ion batteries: first principles insights. Physical Chemistry Chemical Physics, 2023, 25, 3160-3174.	1.3	5
921	Stable Multifunctional Aluminum Phosphides at High Pressures. Physical Chemistry Chemical Physics, 0, , .	1.3	0
922	Direct bandgaps, Weyl fermions, and strong light absorption ability in Janus Ti2OFCl MOene. Applied Physics Letters, 2023, 122, .	1.5	3
923	Exploring the oxidation mechanisms of black phosphorus: a review. Journal of Materials Science, 2023, 58, 2068-2086.	1.7	6
924	Exploration of thermal conductivity and optical properties of \hat{l}^2 - and \hat{l}^3 -nitrogene. Modern Physics Letters B, 2023, 37, .	1.0	1
925	Subâ€5 nm 2D Semiconductorâ€Based Monolayer Fieldâ€Effect Transistor: Status and Prospects. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	1
926	Surface symmetry effect on the charge transfer at the black, blue, and green phosphorene/graphene interfaces. Surface Science, 2023, 733, 122286.	0.8	0
927	Prediction of superconductivity in Li, K, Ca, and Sr-intercalated blue phosphorene bilayer using first-principle calculations. Journal of Physics Condensed Matter, 2023, 35, 135601.	0.7	1
928	Theoretical study on spin-dependent zigzag-direction thermoelectric transport properties of Mn-doped blue phosphorene. Journal of Applied Physics, 2023, 133, .	1.1	3
929	Exact first-principles calculation reveals universal moiré potential in twisted two-dimensional materials. Physical Review B, 2023, 107, .	1.1	2

	CHAHON	REPORT	
#	Article	IF	CITATIONS
930	Dirac Fermions in Blue Phosphorene Monolayer. Advanced Functional Materials, 2023, 33, .	7.8	9
931	Optical Absorption and Secondâ€Harmonic Generation in VioletÂPhosphorene: Experimental and Theoretical Aspects. Advanced Optical Materials, 2023, 11, .	3.6	5
932	Step-guided epitaxial growth of blue phosphorene on vicinal Ag(111). Physical Review Materials, 2023, 7,	0.9	3
933	Electro-osmotic flow in different phosphorus nanochannels. Physics of Fluids, 2023, 35, .	1.6	6
934	High-mobility transport symmetry and effect of strain on electronic and optical properties in few-layer blue phosphorus. Computational Materials Science, 2023, 224, 112177.	1.4	2
935	Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Materials, 2023, 59, 102780.	9.5	12
943	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	18.7	9
956	Growth and stability of blue phosphorene on copper substrates: a molecular dynamics study. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	0
967	Characteristics, Strategies and Applications of Layered Materials: An Introduction. Engineering Materials, 2023, , 1-16.	0.3	0