AllerTOP v.2â€"a server for in silico prediction of allerg

Journal of Molecular Modeling 20, 2278

DOI: 10.1007/s00894-014-2278-5

Citation Report

#	Article	IF	CITATIONS
1	In silico tools for exploring potential human allergy to proteins. Drug Discovery Today: Disease Models, 2015, 17-18, 3-11.	1.2	13
2	Accurate Classification of Biological Data Using Ensembles. , 2015, , .		O
3	Databases and Algorithms in Allergen Informatics. , 2016, , .		4
4	AllergenOnline: A peerâ€reviewed, curated allergen database to assess novel food proteins for potential crossâ€reactivity. Molecular Nutrition and Food Research, 2016, 60, 1183-1198.	1.5	147
5	Bioactive hydrolysates from bovine blood globulins: Generation, characterisation, and in silico prediction of toxicity and allergenicity. Journal of Functional Foods, 2016, 24, 142-155.	1.6	39
6	In-silico analysis of putative HCV epitopes against Pakistani human leukocyte antigen background: An approach towards development of future vaccines for Pakistani population. Infection, Genetics and Evolution, 2016, 43, 58-66.	1.0	9
7	Allergenome characterization of the mosquito <i>Aedes aegypti</i> Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1499-1509.	2.7	23
8	Physico-chemical, Sensory and Toxicity Characteristics of Dipeptidyl Peptidase-IV Inhibitory Peptides from Rice Bran-derived Globulin Using Computational Approaches. International Journal of Peptide Research and Therapeutics, 2017, 23, 519-529.	0.9	22
9	In silicoapproaches towards the exploration of rice bran proteins-derived angiotensin-l-converting enzyme inhibitory peptides. International Journal of Food Properties, 2017, , 1-14.	1.3	7
10	The Function of Renin and the Role of Food-Derived Peptides as Direct Renin Inhibitors. , 0, , .		5
11	Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review. Marine Drugs, 2017, 15, 42.	2.2	78
12	Proteome-scale identification of Leishmania infantum for novel vaccine candidates: A hierarchical subtractive approach. Computational Biology and Chemistry, 2018, 72, 16-25.	1.1	18
13	In silico prediction of potential vaccine candidates on capsid protein of human bocavirus $1.\mathrm{Molecular}$ Immunology, $2018, 93, 193-205.$	1.0	15
14	Immunoinformatics Approach for Epitope-Based Peptide Vaccine Design and Active Site Prediction against Polyprotein of Emerging Oropouche Virus. Journal of Immunology Research, 2018, 2018, 1-22.	0.9	102
15	Subtractive proteomics and immunoinformatics revealed novel B-cell derived T-cell epitopes against Yersinia enterocolitica: An etiological agent of Yersiniosis. Microbial Pathogenesis, 2018, 125, 336-348.	1.3	22
16	Advanced In Silico Tools for Designing of Antigenic Epitope as Potential Vaccine Candidates Against Coronavirus., 2018,, 329-357.		8
17	Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. International Journal of Biological Macromolecules, 2018, 120, 1127-1139.	3.6	63
18	In Silico Analysis of Peptide Potential Biological Functions. Russian Journal of Bioorganic Chemistry, 2018, 44, 367-385.	0.3	11

#	ARTICLE	IF	Citations
19	Exploration of rice protein hydrolysates and peptides with special reference to antioxidant potential: Computational derived approaches for bio-activity determination. Trends in Food Science and Technology, 2018, 80, 61-70.	7.8	52
20	PIP-EL: A New Ensemble Learning Method for Improved Proinflammatory Peptide Predictions. Frontiers in Immunology, 2018, 9, 1783.	2.2	100
21	Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 2019, 61, 103486.	1.6	52
22	Immunoinformatics-Aided Design and Evaluation of a Potential Multi-Epitope Vaccine against Klebsiella Pneumoniae. Vaccines, 2019, 7, 88.	2.1	81
23	Bioanalytical Aspects in Enzymatic Protein Hydrolysis of By-Products., 2019,, 225-258.		10
24	Discovery of Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Todarodes pacificus and Their Inhibitory Mechanism: In Silico and In Vitro Studies. International Journal of Molecular Sciences, 2019, 20, 4159.	1.8	15
25	Exploring T & Ex	1.3	31
26	Immunoinformatics: <i>In Silico</i> Approaches and Computational Design of a Multi-epitope, Immunogenic Protein. International Reviews of Immunology, 2019, 38, 307-322.	1.5	70
27	AllerCatProâ€"prediction of protein allergenicity potential from the protein sequence. Bioinformatics, 2019, 35, 3020-3027.	1.8	115
28	Immunoinformatics approaches for designing a novel multi epitope peptide vaccine against human norovirus (Norwalk virus). Infection, Genetics and Evolution, 2019, 74, 103936.	1.0	43
29	Vaccinomics strategy for developing a unique multi-epitope monovalent vaccine against Marburg marburgvirus. Infection, Genetics and Evolution, 2019, 70, 140-157.	1.0	49
30	A structural in silico analysis of the immunogenicity of l-asparaginase from Escherichia coli and Erwinia carotovora. Biologicals, 2019, 59, 47-55.	0.5	19
31	In-silico designÂof a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 2019, 9, 4409.	1.6	230
32	In Vitro and In Silico Approaches to Generating and Identifying Angiotensin-Converting Enzyme I Inhibitory Peptides from Green Macroalga Ulva lactuca. Marine Drugs, 2019, 17, 204.	2.2	50
33	Combating tigecycline resistant Acinetobacter baumannii: A leap forward towards multi-epitope based vaccine discovery. European Journal of Pharmaceutical Sciences, 2019, 132, 1-17.	1.9	54
34	Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma. Data, 2019, 4, 31.	1.2	4
35	Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microbial Pathogenesis, 2019, 130, 19-37.	1.3	72
36	Exploring the Papillomaviral Proteome to Identify Potential Candidates for a Chimeric Vaccine against Cervix Papilloma Using Immunomics and Computational Structural Vaccinology. Viruses, 2019, 11, 63.	1.5	30

#	ARTICLE	IF	CITATIONS
37	Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach. Scientific Reports, 2019, 9, 19780.	1.6	37
38	Title is missing!. Turkish Journal of Fisheries and Aquatic Sciences, 2019, 19, .	0.4	11
39	Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3524-3535.	2.0	84
40	Computational Design and Analysis of a Poly-Epitope Fusion Protein: A New Vaccine Candidate for Hepatitis and Poliovirus. International Journal of Peptide Research and Therapeutics, 2020, 26, 389-403.	0.9	7
41	In Silico Designing a Candidate Vaccine Against Breast Cancer. International Journal of Peptide Research and Therapeutics, 2020, 26, 369-380.	0.9	14
42	Harnessing Bioinformatic Approaches to Design Novel Multi-epitope Subunit Vaccine Against Leishmania infantum. International Journal of Peptide Research and Therapeutics, 2020, 26, 1417-1428.	0.9	18
43	Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1) Tj ETQq0 0 Dynamics, 2020, 38, 2898-2915.	0 rgBT /0 [,] 2.0	verlock 10 1 43
44	Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen <i>Elizabethkingia anophelis</i> busing immunoinformatic approaches. Journal of Biomolecular Structure and Dynamics, 2020, 38, 4850-4867.	2.0	90
45	Multiepitope Subunit Vaccine to Evoke Immune Response against Acute Encephalitis. Journal of Chemical Information and Modeling, 2020, 60, 421-433.	2.5	24
46	Exploring Lassa Virus Proteome to Design a Multi-epitope Vaccine Through Immunoinformatics and Immune Simulation Analyses. International Journal of Peptide Research and Therapeutics, 2020, 26, 2089-2107.	0.9	44
47	Pathogenesis related proteins: A defensin for plants but an allergen for humans. International Journal of Biological Macromolecules, 2020, 157, 659-672.	3.6	17
48	Evaluating in vitro dipeptidyl peptidase IV inhibition by peptides from common carp (Cyprinus carpio) roe in cell culture models. European Food Research and Technology, 2020, 246, 179-191.	1.6	9
49	Potential Challenges for Coronavirus (SARS-CoV-2) Vaccines Under Trial. Frontiers in Immunology, 2020, 11, 561851.	2.2	4
50	Design and optimization of a subunit vaccine targeting COVID-19 molecular shreds using an immunoinformatics framework. RSC Advances, 2020, 10, 35856-35872.	1.7	27
51	Exploration of surface glycoprotein to design multi-epitope vaccine for the prevention of Covid-19. Informatics in Medicine Unlocked, 2020, 21, 100438.	1.9	16
52	A SARS-CoV-2 vaccine candidate: In-silico cloning and validation. Informatics in Medicine Unlocked, 2020, 20, 100394.	1.9	55
53	Immunodominant regions prediction of nucleocapsid protein for SARS-CoV-2 early diagnosis: a bioinformatics and immunoinformatics study. Pathogens and Global Health, 2020, 114, 463-470.	1.0	20
54	Yersinia pestis Antigen F1 but Not LcrV Induced Humoral and Cellular Immune Responses in Humans Immunized with Live Plague Vaccine—Comparison of Immunoinformatic and Immunological Approaches. Vaccines, 2020, 8, 698.	2.1	9

#	ARTICLE	IF	Citations
55	Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 2022, 40, 2963-2977.	2.0	52
56	Immunoinformatic design of a COVID-19 subunit vaccine using entire structural immunogenic epitopes of SARS-CoV-2. Scientific Reports, 2020, 10, 20864.	1.6	44
57	Multiepitope Subunit Vaccine Design against COVID-19 Based on the Spike Protein of SARS-CoV-2: An In Silico Analysis. Journal of Immunology Research, 2020, 2020, 1-15.	0.9	29
58	AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes. Briefings in Bioinformatics, 2021, 22, .	3.2	128
59	Epitope-Based Potential Vaccine Candidate for Humoral and Cell-Mediated Immunity to Combat Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic. Journal of Physical Chemistry Letters, 2020, 11, 9920-9930.	2.1	12
60	Insights into functional amino acids of ULBP2 as potential immunogens against cancer. Scientific African, 2020, 10, e00581.	0.7	2
61	Blueprint of epitope-based multivalent and multipathogenic vaccines: targeted against the dengue and zika viruses. Journal of Biomolecular Structure and Dynamics, 2021, 39, 6882-6902.	2.0	7
62	<i>In silico</i> designing of multi-epitope vaccine construct against human coronavirus infections. Journal of Biomolecular Structure and Dynamics, 2021, 39, 6903-6917.	2.0	20
63	Designing Multi-Epitope Vaccines to Combat Emerging Coronavirus Disease 2019 (COVID-19) by Employing Immuno-Informatics Approach. Frontiers in Immunology, 2020, 11, 1663.	2.2	79
64	Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors. Infection, Genetics and Evolution, 2020, 85, 104474.	1.0	21
65	Immuno-Informatics based Peptides: An Approach for Vaccine Development against Outer Membrane Proteins of Pseudomonas Genus. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	1.9	1
66	Targeting the SARS-CoV2 nucleocapsid protein for potential therapeutics using immuno-informatics and structure-based drug discovery techniques. Biomedicine and Pharmacotherapy, 2020, 132, 110914.	2.5	24
67	Multi-epitope vaccine against cystic echinococcosis using immunodominant epitopes from EgA31 and EgG1Y162 antigens. Informatics in Medicine Unlocked, 2020, 21, 100464.	1.9	13
68	Genome based evolutionary lineage of SARS-CoV-2 towards the development of novel chimeric vaccine. Infection, Genetics and Evolution, 2020, 85, 104517.	1.0	17
69	Designing a multi-epitope peptide based vaccine against SARS-CoV-2. Scientific Reports, 2020, 10, 16219.	1.6	87
70	Designing an efficient multi-epitope vaccine displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19 infection. Expert Review of Vaccines, 2020, 19, 871-885.	2.0	45
71	Development of multiepitope subunit protein vaccinesÂagainst Toxoplasma gondii using an immunoinformatics approach. NAR Genomics and Bioinformatics, 2020, 2, Iqaa048.	1.5	10
72	Computational Design of a Novel VLP-Based Vaccine for Hepatitis B Virus. Frontiers in Immunology, 2020, 11, 2074.	2.2	14

#	Article	IF	CITATIONS
73	CoronaVR: A Computational Resource and Analysis of Epitopes and Therapeutics for Severe Acute Respiratory Syndrome Coronavirus-2. Frontiers in Microbiology, 2020, 11, 1858.	1.5	23
74	Vaccine design of coronavirus spike (S) glycoprotein in chicken: immunoinformatics and computational approaches. Translational Medicine Communications, 2020, 5, 13.	0.5	2
75	Comprehensive genome based analysis of Vibrio parahaemolyticus for identifying novel drug and vaccine molecules: Subtractive proteomics and vaccinomics approach. PLoS ONE, 2020, 15, e0237181.	1,1	15
76	Design of a multi-epitope subunit vaccine for immune-protection against Leishmania parasite. Pathogens and Global Health, 2020, 114, 471-481.	1.0	29
77	In silico designing of peptide based vaccine for Hepatitis viruses using reverse vaccinology approach. Infection, Genetics and Evolution, 2020, 84, 104388.	1.0	11
78	Effect of Gelatin Coating Enriched with Antioxidant Tomato By-Products on the Quality of Pork Meat. Polymers, 2020, 12, 1032.	2.0	31
79	A systematic and reverse vaccinology approach to design novel subunit vaccines against Dengue virus type-1 (DENV-1) and human Papillomavirus-16 (HPV-16). Informatics in Medicine Unlocked, 2020, 19, 100343.	1.9	16
80	Computational approaches in epitope design using DNA binding proteins as vaccine candidate in Mycobacterium tuberculosis. Infection, Genetics and Evolution, 2020, 83, 104357.	1.0	14
81	Immunoinformatics and Structural Analysis for Identification of Immunodominant Epitopes in SARS-CoV-2 as Potential Vaccine Targets. Vaccines, 2020, 8, 290.	2.1	56
82	Exploring membrane proteins of Leishmania major to design a new multi-epitope vaccine using immunoinformatics approach. European Journal of Pharmaceutical Sciences, 2020, 152, 105423.	1.9	14
83	A systematic strategy for the investigation of vaccines and drugs targeting bacteria. Computational and Structural Biotechnology Journal, 2020, 18, 1525-1538.	1.9	13
84	Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1488-1520.	5.9	48
85	In silico vaccine design against Chlamydia trachomatis infection. Network Modeling Analysis in Health Informatics and Bioinformatics, 2020, 9, 39.	1,2	9
86	Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. Journal of Food Measurement and Characterization, 2020, 14, 1865-1883.	1.6	25
87	In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS Pathogens, 2020, 16, e1008243.	2.1	23
88	Immunogenicity assessment of fungal l-asparaginases: an in silico approach. SN Applied Sciences, 2020, 2, 1.	1.5	5
89	Characterization of a novel xylanase from an extreme temperature hot spring metagenome for xylooligosaccharide production. Applied Microbiology and Biotechnology, 2020, 104, 4889-4901.	1.7	32
90	Aquatic plants as a natural source of antimicrobial and functional ingredients. , 2020, , 93-118.		4

#	ARTICLE	IF	Citations
91	Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. International Journal of Biological Macromolecules, 2020, 162, 820-837.	3.6	67
93	Molecular basis of the beta-lactamase protein using comparative modelling, drug screening and molecular dynamics studies to understand the resistance of \hat{l}^2 -lactam antibiotics. Journal of Molecular Modeling, 2020, 26, 200.	0.8	1
94	A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 2020, 10, 10895.	1.6	209
95	Utilising capsid proteins of poliovirus to design a multi-epitope based subunit vaccine by immunoinformatics approach. Molecular Simulation, 2020, 46, 419-428.	0.9	4
96	In silico Design of a Multivalent Vaccine Against Candida albicans. Scientific Reports, 2020, 10, 1066.	1.6	36
97	Identification and Design of a Next-Generation Multi Epitopes Bases Peptide Vaccine Candidate Against Prostate Cancer: An In Silico Approach. Cell Biochemistry and Biophysics, 2020, 78, 495-509.	0.9	8
98	Identification and in silico bioinformatics analysis of <scp>PR10</scp> proteins in cashew nut. Protein Science, 2020, 29, 1581-1595.	3.1	9
99	Structure-Based Immunogenicity Prediction of Uricase from Fungal (Aspergillus flavus), Bacterial (Bacillus subtillis) and Mammalian Sources Using Immunoinformatic Approach. Protein Journal, 2020, 39, 133-144.	0.7	6
100	Development of a multivalent enterovirus subunit vaccine based on immunoinformatic design principles for the prevention of HFMD. Vaccine, 2020, 38, 3671-3681.	1.7	20
101	Computer-aided designing of oncolytic viruses for overcoming translational challenges of cancer immunotherapy. Drug Discovery Today, 2020, 25, 1198-1205.	3.2	12
102	An immunoinformatic approach driven by experimental proteomics: in silico design of a subunit candidate vaccine targeting secretory proteins of Leishmania donovani amastigotes. Parasites and Vectors, 2020, 13, 196.	1.0	29
103	Designing of a multi-epitope vaccine candidate against Nipah virus by <i>in silico</i> approach: a putative prophylactic solution for the deadly virus. Journal of Biomolecular Structure and Dynamics, 2021, 39, 1461-1480.	2.0	24
104	Designing of a novel multi-epitope peptide based vaccine against Brugia malayi: An in silico approach. Infection, Genetics and Evolution, 2021, 87, 104633.	1.0	21
105	Immunoinformatics design of multiepitopes peptide-based universal cancer vaccine using matrix metalloproteinase-9 protein as a target. Immunological Medicine, 2021, 44, 35-52.	1.4	14
106	Strongyloides stercoralis proteome: A reverse approach to the identification of potential immunogenic candidates. Microbial Pathogenesis, 2021, 152, 104545.	1.3	8
107	Immunoinformatics Driven Prediction of Multiepitopic Vaccine Against Klebsiella pneumoniae and Mycobacterium tuberculosis Coinfection and Its Validation via In Silico Expression. International Journal of Peptide Research and Therapeutics, 2021, 27, 987-999.	0.9	9
108	Introducing a delivery system for melanogenesis inhibition in melanoma <scp>B16F10</scp> cells mediated by the conjugation of tyrosine ammoniaâ€lyase and a <scp>TAT</scp> â€penetrating peptide. Biotechnology Progress, 2021, 37, e3071.	1.3	14
109	Food Allergens and Related Computational Biology Approaches: A Requisite for a Healthy Life. , 2021, , 145-160.		2

#	Article	IF	CITATIONS
110	In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS. Drug Delivery, 2021, 28, 1637-1648.	2.5	13
111	In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Scientific Reports, 2021, 11, 1249.	1.6	95
112	Designing a next generation multi-epitope based peptide vaccine candidate against SARS-CoV-2 using computational approaches. 3 Biotech, 2021, 11, 47.	1.1	29
113	<i>In silico</i> design of multi-epitope-based peptide vaccine against SARS-CoV-2 using its spike protein. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5189-5202.	2.0	14
114	Construction of a multi-epitope protein for human Toxocara canis detection: Immunoinformatics approach multi-epitope construct for T. canis serodiagnosis. Informatics in Medicine Unlocked, 2021, 26, 100732.	1.9	2
115	Developing COVID-19 Vaccines byÂlnnovative Bioinformatics Approaches. EAI/Springer Innovations in Communication and Computing, 2021, , 159-184.	0.9	0
116	Computational Design and Preliminary Serological Analysis of a Novel Multi-Epitope Vaccine Candidate Against Onchocerciasis and Related Filarial Diseases. Pathogens, 2021, 10, 99.	1.2	15
117	In silico design of an epitope-based vaccine against choline binding protein A of Streptococcus pneumoniae. Informatics in Medicine Unlocked, 2021, 23, 100546.	1.9	16
119	Exploring E, NS3, and NS5 proteins to design a novel multi-epitope vaccine candidate against West Nile Virus: An in-silico approach. Informatics in Medicine Unlocked, 2021, 25, 100644.	1.9	4
120	Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches. PLoS ONE, 2021, 16, e0247396.	1.1	16
121	Structural Analysis of Avian Encephalomyelitis Virus Polyprotein for Development of Multi Epitopes Vaccine Using Immunoinformatics Approach. Journal of Pure and Applied Microbiology, 2021, 15, 262-278.	0.3	1
122	Immuno-informatics analysis and expression of a novel multi-domain antigen as a vaccine candidate against glioblastoma. International Immunopharmacology, 2021, 91, 107265.	1.7	8
123	Sequence-based Identification of Allergen Proteins Developed by Integration of PseAAC and Statistical Moments via 5-Step Rule. Current Bioinformatics, 2020, 15, 1046-1055.	0.7	41
124	In-silico Design of Multi-epitope Vaccine against Nipah Virus using Immunoinformatics Approach. Journal of Pure and Applied Microbiology, 2021, 15, 212-231.	0.3	2
125	Immunization with SP_1992 (DiiA) Protein of Streptococcus pneumoniae Reduces Nasopharyngeal Colonization and Protects against Invasive Disease in Mice. Vaccines, 2021, 9, 187.	2.1	3
126	Predicting Immunogenicity Risk in Biopharmaceuticals. Symmetry, 2021, 13, 388.	1.1	14
127	Recognition of plausible therapeutic agents to combat COVID-19: An omics data based combined approach. Gene, 2021, 771, 145368.	1.0	11
128	Structural Analysis of the Polymerase Protein for Multiepitopes Vaccine Prediction against Hepatitis B Virus. Biosciences, Biotechnology Research Asia, 2021, 18, 125-146.	0.2	0

#	Article	IF	CITATIONS
129	Development of new vaccine target against SARS-CoV2 using envelope (E) protein: An evolutionary, molecular modeling and docking based study. International Journal of Biological Macromolecules, 2021, 172, 74-81.	3.6	12
130	A rational design of a multi-epitope vaccine against SARS-CoV-2 which accounts for the glycan shield of the spike glycoprotein. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7099-7113.	2.0	15
131	Immunoinformatics Design of Multi-Epitope Peptide-Based Vaccine Against Schistosoma mansoni Using Transmembrane Proteins as a Target. Frontiers in Immunology, 2021, 12, 621706.	2.2	67
133	d-Allulose 3-epimerase of Bacillus sp. origin manifests profuse heatâ€stability and noteworthy potential of d-fructose epimerization. Microbial Cell Factories, 2021, 20, 60.	1.9	21
134	<i>In silico</i> ii>identification of epitope-based vaccine candidates against HTLV-1. Journal of Biomolecular Structure and Dynamics, 2022, 40, 6737-6754.	2.0	7
135	Release of dipeptidyl peptidase IV inhibitory peptides from salmon (<i>Salmosalar</i>) skin collagen based on digestion–intestinal absorption <i>invitro</i> . International Journal of Food Science and Technology, 2021, 56, 3507-3518.	1.3	8
136	Probing the Rhipicephalus bursa Sialomes in Potential Anti-Tick Vaccine Candidates: A Reverse Vaccinology Approach. Biomedicines, 2021, 9, 363.	1.4	10
137	Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Immunology, 2021, 22, 22.	0.9	25
138	Epitope-based universal vaccine for Human T-lymphotropic virus-1 (HTLV-1). PLoS ONE, 2021, 16, e0248001.	1.1	20
139	A Comparative Analysis of Novel Deep Learning and Ensemble Learning Models to Predict the Allergenicity of Food Proteins. Foods, 2021, 10, 809.	1.9	12
140	A novel \hat{l}^2 -glucosidase from a hot-spring metagenome shows elevated thermal stability and tolerance to glucose and ethanol. Enzyme and Microbial Technology, 2021, 145, 109764.	1.6	23
141	Bioinformatic prediction of immunodominant regions in spike protein for early diagnosis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PeerJ, 2021, 9, e11232.	0.9	5
142	In Silico Identification of Multi-target Anti-SARS-CoV-2 Peptides from Quinoa Seed Proteins. International Journal of Peptide Research and Therapeutics, 2021, 27, 1837-1847.	0.9	15
143	In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Advanced Drug Delivery Reviews, 2021, 171, 29-47.	6.6	52
144	Designing Multi-Antigen Vaccines Against Acinetobacter baumannii Using Systemic Approaches. Frontiers in Immunology, 2021, 12, 666742.	2.2	23
145	Bioinformatics features and immunogenic epitopes of Echinococcus granulosus Myophilin as a promising target for vaccination against cystic echinococcosis. Infection, Genetics and Evolution, 2021, 89, 104714.	1.0	12
146	Are the Allergic Reactions of COVID-19 Vaccines Caused by mRNA Constructs or Nanocarriers? Immunological Insights. Interdisciplinary Sciences, Computational Life Sciences, 2021, 13, 344-347.	2,2	26
147	Exploring Onchocerca volvulus Cysteine Protease Inhibitor for Multi-epitope Subunit Vaccine Against Onchocerciasis: An Immunoinformatics Approach. International Journal of Peptide Research and Therapeutics, 2021, 27, 1953-1966.	0.9	1

#	ARTICLE	IF	CITATIONS
148	Prediction and analyses of HLAâ€I restricted Mycobacterium tuberculosis CD4 + T cell epitopes in the Chinese population. Biotechnology and Applied Biochemistry, 2021, , .	1.4	2
149	Comparative proteomic analysis to annotate the structural and functional association of the hypothetical proteins of S. maltophilia k279a and predict potential T and B cell targets for vaccination. PLoS ONE, 2021, 16, e0252295.	1.1	5
150	Immunoinformatics Approach for the Identification and Characterization of T Cell and B Cell Epitopes towards the Peptide-Based Vaccine against SARS-CoV-2. Archives of Medical Research, 2021, 52, 362-370.	1.5	24
151	Combination of highly antigenic nucleoproteins to inaugurate a cross-reactive next generation vaccine candidate against Arenaviridae family. Heliyon, 2021, 7, e07022.	1.4	9
152	An immunoinformatics approach for the design of a multi-epitope vaccine targeting super antigen TSST-1 of Staphylococcus aureus. Journal of Genetic Engineering and Biotechnology, 2021, 19, 69.	1.5	20
154	Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches. Scientific Reports, 2021, 11, 12397.	1.6	31
155	Prediction and identification of T cell epitopes of COVID-19 with balanced cytokine response for the development of peptide based vaccines. In Silico Pharmacology, 2021, 9, 40.	1.8	5
156	Designing of a chimeric protein contains StxB, intimin and EscC against toxicity and adherence of enterohemorrhagic Escherichia coli O157:H7 and evaluation of serum antibody titers against it. Molecular Immunology, 2021, 134, 218-227.	1.0	5
157	Identification of potent epitopes on hexon capsid protein and their evaluation as vaccine candidates against infections caused by members of Adenoviridae family. Vaccine, 2021, 39, 3560-3564.	1.7	8
158	An Immunoinformatics Approach for SARS-CoV-2 in Latam Populations and Multi-Epitope Vaccine Candidate Directed Towards the World's Population. Vaccines, 2021, 9, 581.	2.1	9
159	In silico investigation of the viroporin E as a vaccine target against SARS-CoV-2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1057-L1063.	1.3	2
161	Multi-Subunit SARS-CoV-2 Vaccine Design Using Evolutionarily Conserved T- and B- Cell Epitopes. Vaccines, 2021, 9, 702.	2.1	5
162	Rational design of multimeric based subunit vaccine against Mycoplasma pneumonia: Subtractive proteomics with immunoinformatics framework. Infection, Genetics and Evolution, 2021, 91, 104795.	1.0	14
163	In silico designing of vaccine candidate against Clostridium difficile. Scientific Reports, 2021, 11, 14215.	1.6	10
164	Identification of promiscuous T cell epitopes on Mayaro virus structural proteins using immunoinformatics, molecular modeling, and QM:MM approaches. Infection, Genetics and Evolution, 2021, 91, 104826.	1.0	4
165	Cross-Linking Cellular Prion Protein Induces Neuronal Type 2-Like Hypersensitivity. Frontiers in Immunology, 2021, 12, 639008.	2.2	3
166	Evaluating Peptides of <i>Picrorhiza kurroa</i> and Their Inhibitory Potential against ACE, DPP-IV, and Oxidative Stress. Journal of Proteome Research, 2021, 20, 3798-3813.	1.8	9
167	<i>In silico</i> design of epitope-based peptide vaccine against non-typhoidal <i>Salmonella</i> through immunoinformatic approaches. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10696-10714.	2.0	2

#	ARTICLE	IF	CITATIONS
168	Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and apicoplast proteins using comprehensive immunoinformatics approaches. European Journal of Pharmaceutical Sciences, 2021, 162, 105837.	1.9	10
169	Tracking the pipeline: immunoinformatics and the COVID-19 vaccine design. Briefings in Bioinformatics, 2021, 22, .	3.2	12
170	Mining the Mycobacterium tuberculosis proteome for identification of potential T-cell epitope based vaccine candidates. Microbial Pathogenesis, 2021, 157, 104996.	1.3	2
171	Design, expression, and purification of a multi-epitope vaccine against Helicobacter Pylori based on Melittin as an adjuvant. Microbial Pathogenesis, 2021, 157, 104970.	1.3	17
172	Quest for Novel Preventive and Therapeutic Options Against Multidrug-Resistant Pseudomonas aeruginosa. International Journal of Peptide Research and Therapeutics, 2021, 27, 2313-2331.	0.9	2
173	Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal (i) Salmonella (i) serovars. Journal of Biomolecular Structure and Dynamics, 2022, 40, 11809-11821.	2.0	32
174	Immunoinformatics Approach to Design Multi-Epitope- Subunit Vaccine against Bovine Ephemeral Fever Disease. Vaccines, 2021, 9, 925.	2.1	11
175	Deep survey for designing a vaccine against SARS-CoV-2 and its new mutations. Biologia (Poland), 2021, 76, 3465-3476.	0.8	6
176	A Comprehensive Computer Aided Vaccine Design Approach to Propose a Multi-Epitopes Subunit Vaccine against Genus Klebsiella Using Pan-Genomics, Reverse Vaccinology, and Biophysical Techniques. Vaccines, 2021, 9, 1087.	2.1	13
177	Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. Arabian Journal of Chemistry, 2021, 14, 103315.	2.3	48
178	Computational Elucidation of Phylogenetic, Functional and Structural Features of Methioninase from Pseudomonas, Escherichia, Clostridium and Citrobacter Strains. Recent Patents on Biotechnology, 2021, 15, 286-301.	0.4	1
180	ChAlPred: A web server for prediction of allergenicity of chemical compounds. Computers in Biology and Medicine, 2021, 136, 104746.	3.9	20
181	Immunogenic profiling and designing of a novel vaccine from capsid proteins of FMDV serotype Asia-1 through reverse vaccinology. Infection, Genetics and Evolution, 2021, 93, 104925.	1.0	0
182	Development of a Conserved Chimeric Vaccine for Induction of Strong Immune Response against Staphylococcus aureus Using Immunoinformatics Approaches. Vaccines, 2021, 9, 1038.	2.1	25
183	Proteome-Wide Mapping and Reverse Vaccinology Approaches to Design a Multi-Epitope Vaccine against Clostridium perfringens. Vaccines, 2021, 9, 1079.	2.1	13
184	Designing and development of epitope-based vaccines against <i>Helicobacter pylori</i> . Critical Reviews in Microbiology, 2022, 48, 489-512.	2.7	4
185	Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Scientific Reports, 2021, 11, 17626.	1.6	42
186	Immunoinformatics based designing and simulation of multi-epitope vaccine against multi-drug resistant Stenotrophomonas maltophilia. Journal of Molecular Liquids, 2021, 340, 116899.	2.3	5

#	Article	IF	CITATIONS
187	Immunoinformatics analysis of antigenic epitopes and designing of a multi-epitope peptide vaccine from putative nitro-reductases of Mycobacterium tuberculosis DosR. Infection, Genetics and Evolution, 2021, 94, 105017.	1.0	10
188	Designing a therapeutic and prophylactic candidate vaccine against human papillomavirus through vaccinomics approaches. Infection, Genetics and Evolution, 2021, 95, 105084.	1.0	9
189	Multi-epitope based subunit vaccine construction against Banna virus targeting on two outer proteins (VP4 and VP9): A computational approach. Infection, Genetics and Evolution, 2021, 95, 105076.	1.0	2
190	Quantification and in silico analysis of taste dipeptides generated during dry-cured ham processing. Food Chemistry, 2022, 370, 130977.	4.2	25
191	Immunoinformatics aided design of peptide-based vaccines against ebolaviruses. Vitamins and Hormones, 2021, 117, 157-187.	0.7	1
192	Immunoinformatics approach to designing a multi-epitope vaccine against Saint Louis Encephalitis Virus. Informatics in Medicine Unlocked, 2021, 22, 100500.	1.9	18
193	Leishmanolysin gp63: Bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis. Informatics in Medicine Unlocked, 2021, 24, 100626.	1.9	13
199	Discovery of potential immune epitopes and peptide vaccine design - a prophylactic strategy against Rift Valley fever virus. F1000Research, 0, 9, 999.	0.8	17
201	A Next-Generation Vaccine Candidate Using Alternative Epitopes to Protect against Wuhan and All Significant Mutant Variants of SARS-CoV-2: An Immunoinformatics Approach., 2021, 12, 2173.		20
203	AllerScreener – A Server for Allergenicity and Cross-Reactivity Prediction. Cybernetics and Information Technologies, 2020, 20, 175-184.	0.4	2
204	Molecular docking study of L-Asparaginase I from <i>Vibrio campbellii</i> in the treatment of acute lymphoblastic leukemia (ALL). The EuroBiotech Journal, 2020, 4, 8-16.	0.5	6
205	Molecular Docking Analysis of Phytochemical Thymoquinone as a Therapeutic Agent on SARS-Cov-2 Envelope Protein. Biointerface Research in Applied Chemistry, 2020, 11, 8389-8401.	1.0	7
206	A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. BioImpacts, 2021, 11, 65-84.	0.7	39
207	Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. ELife, 2020, 9, .	2.8	42
208	Computational perspectives revealed prospective vaccine candidates from five structural proteins of novel SARS corona virus 2019 (SARS-CoV-2). Peerl, 2020, 8, e9855.	0.9	8
209	Designing a Multi-Epitope Vaccine against Chlamydia trachomatis by Employing Integrated Core Proteomics, Immuno-Informatics and In Silico Approaches. Biology, 2021, 10, 997.	1.3	30
210	Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens. Vaccines, 2021, 9, 1219.	2.1	6
211	Construction of a multiepitope vaccine candidate against <i>Fasciola hepatica</i> : an <i>in silico</i> design using various immunogenic excretory/secretory antigens. Expert Review of Vaccines, 2022, 21, 993-1006.	2.0	7

#	Article	IF	CITATIONS
212	Toxoplasma gondii Tyrosine-Rich Oocyst Wall Protein: A Closer Look through an In Silico Prism. BioMed Research International, 2021, 2021, 1-13.	0.9	4
213	Implementation of Vaccinomics and In-Silico Approaches to Construct Multimeric Based Vaccine Against Ovarian Cancer. International Journal of Peptide Research and Therapeutics, 2021, 27, 2845-2859.	0.9	5
214	Towards A Novel Multi-Epitopes Chimeric Vaccine for Simulating Strong Immune Responses and Protection against Morganella morganii. International Journal of Environmental Research and Public Health, 2021, 18, 10961.	1.2	28
215	MMV-db: vaccinomics and RNA-based therapeutics database for infectious hemorrhagic fever-causing mammarenaviruses. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	7
216	Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: a reverse vaccinology approach. Journal of Biomolecular Structure and Dynamics, 2021, , 1-16.	2.0	1
217	Immunoglobulin interface redesigning to enhance lebrikizumab mediated immunomodulation of IL-13 hyper-response. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4051-4065.	2.0	3
219	Design of a peptide-based vaccine from late stage specific immunogenic cross-reactive antigens of PE/PPE proteins of Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 2022, 168, 106051.	1.9	7
220	Rational design of chimeric Multiepitope Based Vaccine (MEBV) against human T-cell lymphotropic virus type 1: An integrated vaccine informatics and molecular docking based approach. PLoS ONE, 2021, 16, e0258443.	1.1	8
221	Immunoinformatic identification of the epitope-based vaccine candidates from Maltoporin, FepA and OmpW of Shigella Spp, with molecular docking confirmation. Infection, Genetics and Evolution, 2021, 96, 105129.	1.0	3
222	Immuno-informatics analysis predicts B and T cell consensus epitopes for designing peptide vaccine against SARS-CoV-2 with 99.82% global population coverage. Briefings in Bioinformatics, 2022, 23, .	3.2	5
223	An Alignment-Independent Platform for Allergenicity Prediction. Methods in Molecular Biology, 2020, 2131, 147-153.	0.4	3
224	In Silico T Cell Epitope Identification for SARS-CoV-2: Progress and Perspectives. SSRN Electronic Journal, O, , .	0.4	1
225	In Silico Designing of Vaccines: Methods, Tools, and Their Limitations. , 2020, , 245-277.		0
234	Shedding light on biochemical features and potential immunogenic epitopes of Neospora caninum SAG1: In silico study. Informatics in Medicine Unlocked, 2021, 27, 100785.	1.9	1
235	Immunoinformatics based designing a multiâ€epitope vaccine against pathogenic <i>Chandipura vesiculovirus</i> . Journal of Cellular Biochemistry, 2022, 123, 322-346.	1.2	4
236	Identification and design of a multi-epitope subunit vaccine against the opportunistic pathogen Staphylococcus epidermidis: An immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 2021, , 1-13.	2.0	4
238	Computational approaches for vaccine designing. , 2022, , 317-335.		2
239	Vaccine Development Through Reverse Vaccinology Using Artificial Intelligence and Machine Learning Approach. , 2022, , 33-49.		1

#	Article	IF	CITATIONS
240	Combinatorial in silico and in vivo evaluation of immune response elicitation by the affibody ZHER2. International Immunopharmacology, 2021, 101, 108368.	1.7	1
241	Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. Journal of Biomolecular Structure and Dynamics, 2023, 41, 1-15.	2.0	13
242	Prediction of suitable T and B cell epitopes for eliciting immunogenic response against SARS-CoV-2 and its mutant. Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11, 1.	1.2	10
243	Immunoinformatics-Based Designing of a Multi-Epitope Chimeric Vaccine From Multi-Domain Outer Surface Antigens of Leptospira. Frontiers in Immunology, 2021, 12, 735373.	2.2	11
244	EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes. PeerJ, 2021, 9, e12548.	0.9	4
245	Purification, Identification and Characterization of Antioxidant Peptides from Corn Silk Tryptic Hydrolysate: An Integrated In Vitro-In Silico Approach. Antioxidants, 2021, 10, 1822.	2.2	13
246	Allergic Diseases: A Comprehensive Review on Risk Factors, Immunological Mechanisms, Link with COVID-19, Potential Treatments, and Role of Allergen Bioinformatics. International Journal of Environmental Research and Public Health, 2021, 18, 12105.	1.2	23
247	Engineering a multi-epitope vaccine candidate against Leishmania infantum using comprehensive Immunoinformatics methods. Biologia (Poland), 2022, 77, 277-289.	0.8	4
248	Prothymosin \hat{l}_{\pm} and Its C-Terminal Immunoreactive Decapeptide Show no Evidence of Acute Toxicity: A Preliminary in Silico, in Vitro and in Vivo Investigation. Current Medicinal Chemistry, 2021, 28, .	1.2	1
249	In-Silico Vaccine Design Based on a Novel Vaccine Candidate Against Infections Caused by Acinetobacter baumannii. International Journal of Peptide Research and Therapeutics, 2022, 28, 16.	0.9	14
250	Design of a multi-epitope protein vaccine against herpes simplex virus, human papillomavirus and Chlamydia trachomatis as the main causes of sexually transmitted diseases. Infection, Genetics and Evolution, 2021, 96, 105136.	1.0	5
251	Exploring (i) Klebsiella pneumoniae (/i) capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 2022, 21, 569-587.	2.0	60
252	Designing of a multi-epitopes-based peptide vaccine against rift valley fever virus and its validation through integrated computational approaches. Computers in Biology and Medicine, 2022, 141, 105151.	3.9	16
253	An immunoinformatics-based designed multi-epitope candidate vaccine (mpme-VAC/STV-1) against Mycoplasma pneumoniae. Computers in Biology and Medicine, 2022, 142, 105194.	3.9	4
254	Bioengineering of Novel Non-Replicating mRNA (NRM) and Self-Amplifying mRNA (SAM) Vaccine Candidates Against SARS-CoV-2 Using Immunoinformatics Approach. Molecular Biotechnology, 2022, 64, 510-525.	1.3	15
255	CD171 Multi-epitope peptide design based on immuno-informatics approach as a cancer vaccine candidate for glioblastoma. Journal of Biomolecular Structure and Dynamics, 2023, 41, 1028-1040.	2.0	4
256	Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology. EFSA Journal, 2022, 20, e07044.	0.9	20
257	Immunoinformatics guided modeling of CCHF_GN728, an mRNA-based universal vaccine against Crimean-Congo hemorrhagic fever virus. Computers in Biology and Medicine, 2022, 140, 105098.	3.9	7

#	Article	IF	Citations
258	In silico Design and Characterization of Multi-epitopes Vaccine for SARS-CoV2 from Its Spike Protein. International Journal of Peptide Research and Therapeutics, 2022, 28, 37.	0.9	2
259	Design of a multi-epitope vaccine against SARS-CoV-2: immunoinformatic and computational methods. RSC Advances, 2022, 12, 4288-4310.	1.7	16
260	Molecular Docking and Dynamics Studies to Explore Effective Inhibitory Peptides Against the Spike Receptor Binding Domain of SARS-CoV-2. Frontiers in Molecular Biosciences, 2021, 8, 791642.	1.6	14
261	Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infection, Genetics and Evolution, 2022, 98, 105237.	1.0	21
262	Immunoinformatic Screening of Marburgvirus Epitopes and Computational Investigations of Epitope-Allele Complexes. SSRN Electronic Journal, 0, , .	0.4	0
263	COVIDâ€19: A systematic review and update on prevention, diagnosis, and treatment. MedComm, 2022, 3, e115.	3.1	30
264	Novel In Silico mRNA vaccine design exploiting proteins of M. tuberculosis that modulates host immune responses by inducing epigenetic modifications. Scientific Reports, 2022, 12, 4645.	1.6	26
265	A Systematic Immuno-Informatic Approach to Design a Multiepitope-Based Vaccine Against Emerging Multiple Drug Resistant Serratia marcescens. Frontiers in Immunology, 2022, 13, 768569.	2.2	6
266	Echinococcus granulosus cyclophilin: Immunoinformatics analysis to provide insights into the biochemical properties and immunogenic epitopes. Informatics in Medicine Unlocked, 2022, 30, 100925.	1.9	1
267	Computational vaccinology guided design of multi-epitope subunit vaccine against a neglected arbovirus of the Americas. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3321-3338.	2.0	4
268	Potential Immunogenic Activity of Computationally Designed mRNA- and Peptide-Based Prophylactic Vaccines against MERS, SARS-CoV, and SARS-CoV-2: A Reverse Vaccinology Approach. Molecules, 2022, 27, 2375.	1.7	10
269	In silico vaccine design: A tutorial in immunoinformatics. Healthcare Analytics, 2022, 2, 100044.	2.6	18
270	Structural and functional characterization of a hypothetical protein in the RD7 region in clinical isolates of Mycobacterium tuberculosis — an in silico approach to candidate vaccines. Journal of Genetic Engineering and Biotechnology, 2022, 20, 55.	1.5	6
271	ldentification of Potential Immunogenic Epitopes against SARS-CoV-2 using In-Silico Method: An Immunoinformatics Study. Current Proteomics, 2022, 19, .	0.1	0
272	Development of multivalent vaccine targeting M segment of Crimean Congo Hemorrhagic Fever Virus (CCHFV) using immunoinformatic approaches. Saudi Journal of Biological Sciences, 2022, 29, 2372-2388.	1.8	8
273	<i>In Silico</i> Vaccine Design Tools. , 0, , .		1
274	Rational design of bioactive chimeric construct by exploring archaeal antimicrobial peptides: an in silico approach. , 0 , , 1 .		0
275	Neospora caninum SRS2 Protein: Essential Vaccination Targets and Biochemical Features for Next-Generation Vaccine Design. BioMed Research International, 2022, 2022, 1-13.	0.9	6

#	Article	IF	CITATIONS
276	Designing a multi-epitope vaccine against Chlamydia pneumoniae by integrating the core proteomics, subtractive proteomics and reverse vaccinology-based immunoinformatics approaches. Computers in Biology and Medicine, 2022, 145, 105507.	3.9	12
277	In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. Journal of Immunological Methods, 2022, 504, 113264.	0.6	1
278	In silico proteolysis and molecular interaction of tilapia (Oreochromis niloticus) skin collagen-derived peptides for environmental remediation. Environmental Research, 2022, 212, 113002.	3.7	10
279	Artificial Intelligence applications addressing different aspects of the Covid-19 crisis and key technological solutions for future epidemics control., 2021,,.		1
280	In Silico Design of a New Multi-Epitope Peptide-Based Vaccine Candidate Against Q Fever. Molecular Biology, 2021, 55, 950-960.	0.4	1
281	In silico design of recombinant multi-epitope vaccine against influenza A virus. BMC Bioinformatics, 2021, 22, 617.	1.2	17
282	AllerHybrid: A Hybrid System to Predict the Allergen Using K-mer and Physicochemical Properties. , 2021, , .		1
283	Immunoinformatics Approach to Design a Novel Subunit Vaccine Against Visceral Leishmaniasis. International Journal of Peptide Research and Therapeutics, 2022, 28, 34.	0.9	7
284	Computational Screening for the Anticancer Potential of Seed-Derived Antioxidant Peptides: A Cheminformatic Approach. Molecules, 2021, 26, 7396.	1.7	12
285	Design of an Epitope-Based Peptide Vaccine Against Dengue Virus Isolate from Eastern Uttar Pradesh, India. International Journal of Peptide Research and Therapeutics, 2022, 28, 91.	0.9	2
286	A Sporothrix spp. enolase derived multi-epitope vaccine confers protective response in BALB/c mice challenged with Sporothrix brasiliensis. Microbial Pathogenesis, 2022, 166, 105539.	1.3	1
287	Immunoinformatics and Biophysics Approaches to Design a Novel Multi-Epitopes Vaccine Design against Staphylococcus auricularis. Vaccines, 2022, 10, 637.	2.1	O
294	Design of a Novel Recombinant Multi-Epitope Vaccine against Triple-Negative Breast Cancer. Iranian Biomedical Journal, 2022, 26, 160-74.	0.4	4
295	AllerCatPro 2.0: a web server for predicting protein allergenicity potential. Nucleic Acids Research, 2022, 50, W36-W43.	6.5	30
296	Computational Drug Shifting towards Drug-Drug Conjugates and Monoclonal Antibody Conjugates in the Contradictory Excursion of Asthma. Letters in Drug Design and Discovery, 2022, 19, .	0.4	1
298	Proteome Exploration of Human Coronaviruses for Identifying Novel Vaccine Candidate: A Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Recent Patents on Biotechnology, 2023, 17, 163-175.	0.4	1
299	Development of epitope-based chimeric protein as a vaccine against Lujo virus by utilizing immunoinformatic tools. Future Virology, 0, , .	0.9	0
300	Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathogens and Global Health, 2023, 117, 134-151.	1.0	2

#	Article	IF	CITATIONS
301	Novel ACE inhibitory peptides derived from whey protein hydrolysates: Identification and molecular docking analysis. Food Bioscience, 2022, 48, 101737.	2.0	33
302	Reverse vaccinology-based prediction of a multi-epitope SARS-CoV-2 vaccine and its tailoring to new coronavirus variants. Journal of Biomolecular Structure and Dynamics, 2022, , 1-22.	2.0	4
303	Inhibition of SARS-CoV-2 pathogenesis by potent peptides designed by the mutation of ACE2 binding region. Computers in Biology and Medicine, 2022, 146, 105625.	3.9	5
304	Resveratrol Attenuates Mast Cell Mediated Allergic Reactions: Potential for Use as a Nutraceutical in Allergic Diseases?. Molecular Nutrition and Food Research, 2022, 66, .	1.5	7
305	Characterization of proteome wide antigenic epitopes to design proteins specific and proteome-wide ensemble vaccines against heartland virus using structural vaccinology and immune simulation approaches. Microbial Pathogenesis, 2022, 168, 105592.	1.3	6
306	Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens, 2022, 14, .	1.6	48
308	Immunoinformatics Approach Toward the Introduction of a Novel Multi-Epitope Vaccine Against Clostridium difficile. Frontiers in Immunology, 2022, 13, .	2.2	7
309	Immunoinformatics guided design of a next generation epitope-based vaccine against Kaposi Sarcoma. Informatics in Medicine Unlocked, 2022, , 100986.	1.9	0
311	Introducing B Cell Epitopes of Newcastle Disease Virus Obtained from Domestic Pigeons (Columba) Tj ETQq0 0 0 Research Journal of Pharmacy and Technology, 2022, , 2059-2064.	rgBT /Ove 0.2	rlock 10 Tf 5 0
312	Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation. Molecules, 2022, 27, 3864.	1.7	4
313	In silico multi-epitope Bunyumwera virus vaccine to target virus nucleocapsid N protein. Journal of Genetic Engineering and Biotechnology, 2022, 20, 89.	1.5	2
314	In silico enzymatic hydrolysis of soy sauce cake glycinin G4 to reveal the bioactive peptides as potential food ingredients. Journal of Food Measurement and Characterization, 2022, 16, 3477-3487.	1.6	3
315	First Data on Ornithodoros moubata Aquaporins: Structural, Phylogenetic and Immunogenic Characterisation as Vaccine Targets. Pathogens, 2022, 11, 694.	1.2	2
316	Computer-Aided Multi-Epitope Vaccine Design against Enterobacter xiangfangensis. International Journal of Environmental Research and Public Health, 2022, 19, 7723.	1.2	14
317	Use of Integrated Core Proteomics, Immuno-Informatics, and In Silico Approaches to Design a Multiepitope Vaccine against Zoonotic Pathogen Edwardsiella tarda. Applied Microbiology, 2022, 2, 414-437.	0.7	1
318	A structural vaccinology approach for in silico designing of a potential self-assembled nanovaccine against Leishmania infantum. Experimental Parasitology, 2022, 239, 108295.	0.5	3
319	Towards the First Multiepitope Vaccine Candidate against Neospora caninum in Mouse Model: Immunoinformatic Standpoint. BioMed Research International, 2022, 2022, 1-15.	0.9	4
320	Immunoinformatics- and Bioinformatics-Assisted Computational Designing of a Novel Multiepitopes Vaccine Against Cancer-Causing Merkel Cell Polyomavirus. Frontiers in Microbiology, 0, 13, .	1.5	3

#	ARTICLE	IF	CITATIONS
321	In Silico Designed Multi-Epitope Immunogen "Tpme-VAC/LGCM-2022―May Induce Both Cellular and Humoral Immunity against Treponema pallidum Infection. Vaccines, 2022, 10, 1019.	2.1	3
322	In silico Analysis of Peptide-Based Biomarkers for the Diagnosis and Prevention of Latent Tuberculosis Infection. Frontiers in Microbiology, 0, 13 , .	1.5	19
323	In silico and experimental validation of a new modified arginine-rich cell penetrating peptide for plasmid DNA delivery. International Journal of Pharmaceutics, 2022, 624, 122005.	2.6	7
324	A multi-epitope vaccine designed against blood-stage of malaria: an immunoinformatic and structural approach. Scientific Reports, 2022, 12, .	1.6	7
325	Pan-Genome Analysis of Oral Bacterial Pathogens to Predict a Potential Novel Multi-Epitopes Vaccine Candidate. International Journal of Environmental Research and Public Health, 2022, 19, 8408.	1.2	16
326	Proteome Exploration of <i>Legionella pneumophila</i> To Identify Novel Therapeutics: a Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Microbiology Spectrum, 2022, 10, .	1.2	3
327	An In-Silico Investigation to Design a Multi-Epitopes Vaccine against Multi-Drug Resistant Hafnia alvei. Vaccines, 2022, 10, 1127.	2.1	3
328	Bioinformatics, Computational Informatics, and Modeling Approaches to the Design of mRNA COVID-19 Vaccine Candidates. Computation, 2022, 10, 117.	1.0	10
329	Combing Immunoinformatics with Pangenome Analysis To Design a Multiepitope Subunit Vaccine against Klebsiella pneumoniae K1, K2, K47, and K64. Microbiology Spectrum, 2022, 10, .	1.2	4
330	Immunoinformatic Approach to Contrive a Next Generation Multi-Epitope Vaccine Against Achromobacter xylosoxidans Infections. Frontiers in Medicine, 0, 9, .	1.2	2
331	Anaphylaxis and Related Events Following COVIDâ€19 Vaccination: A Systematic Review. Journal of Clinical Pharmacology, 2022, 62, 1335-1349.	1.0	4
332	A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Computers in Biology and Medicine, 2022, 148, 105856.	3.9	9
333	Multiepitopeâ€based vaccine design by exploring antigenic potential among leptospiral lipoproteins using comprehensive immunoinformatics and structureâ€based approaches. Biotechnology and Applied Biochemistry, 2023, 70, 670-687.	1.4	2
334	Designing ferritin nanocage based vaccine candidates for SARS-CoV-2 by <i>in silico</i> engineering of its HLA I and HLA II epitope peptides. Journal of Biomolecular Structure and Dynamics, 0, , 1-13.	2.0	0
335	Vaccinomics strategy to design an epitope peptide vaccine against Helicobacter pylori. Process Biochemistry, 2022, 121, 380-395.	1.8	2
336	Development of a Multiepitope Vaccine Against SARS-CoV-2: Immunoinformatics Study. JMIR Bioinformatics and Biotechnology, 2022, 3, e36100.	0.4	4
337	Dissection of Capsid Protein HPV 52 to Rationalize Vaccine Designs Using Computational Approaches Immunoinformatics and Molecular Docking. Asian Pacific Journal of Cancer Prevention, 2022, 23, 2243-2253.	0.5	2
338	Exploratory Algorithm of a Multi-epitope-based Subunit Vaccine Candidate Against Cryptosporidium hominis: Reverse Vaccinology-Based Immunoinformatic Approach. International Journal of Peptide Research and Therapeutics, 2022, 28, .	0.9	6

#	Article	IF	CITATIONS
339	Insight into the first multi-epitope-based peptide subunit vaccine against avian influenza A virus (H5N6): An immunoinformatics approach. Infection, Genetics and Evolution, 2022, 104, 105355.	1.0	5
340	<i>In silico</i> based multi-epitope vaccine design against norovirus. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5696-5706.	2.0	3
341	Immunoinformatics-Aided Analysis of RSV Fusion and Attachment Glycoproteins to Design a Potent Multi-Epitope Vaccine. Vaccines, 2022, 10, 1381.	2.1	5
342	Multi Epitope-Based Vaccine Design for Protection Against Mycobacterium tuberculosis and SARS-CoV-2 Coinfection. Advances and Applications in Bioinformatics and Chemistry, 0, Volume 15, 43-57.	1.6	5
343	Identification and construction of a multi-epitopes vaccine design against Klebsiella aerogenes: molecular modeling study. Scientific Reports, 2022, 12, .	1.6	9
344	ProAll-D: protein allergen detection using long short term memory - a deep learning approach. ADMET and DMPK, 0, , .	1.1	2
345	Structure based design of effective HtpG-derived vaccine antigens against M. tuberculosis. Frontiers in Molecular Biosciences, $0, 9, .$	1.6	3
346	Immunoinformatics-Based Proteome Mining to Develop a Next-Generation Vaccine Design against Borrelia burgdorferi: The Cause of Lyme Borreliosis. Vaccines, 2022, 10, 1239.	2.1	2
348	Modeling of MT. P495, an mRNA-based vaccine against the phosphate-binding protein PstS1 of Mycobacterium tuberculosis. Molecular Diversity, 2023, 27, 1613-1632.	2.1	4
349	Considering epitopes conservity in targeting SARS-CoV-2 mutations in variants: a novel immunoinformatics approach to vaccine design. Scientific Reports, 2022, 12, .	1.6	6
350	Critical overview of biorefinery approaches for valorization of protein rich tree nut oil industry by-product. Bioresource Technology, 2022, 362, 127775.	4.8	7
351	Immunoinformatic screening of Marburgvirus epitopes and computational investigations of epitope-allele complexes. International Immunopharmacology, 2022, 111, 109109.	1.7	1
352	Exploiting reverse vaccinology approach for the design of a multiepitope subunit vaccine against the major SARS-CoV-2 variants. Computational Biology and Chemistry, 2022, 101, 107754.	1.1	7
353	Structural and Functional Annotation and Molecular Docking Analysis of a Hypothetical Protein from Neisseria gonorrhoeae: An In-Silico Approach. BioMed Research International, 2022, 2022, 1-12.	0.9	6
354	Bioinformatics analysis of Muscovy duck parvovirus REP and VP1 proteins. Journal of Biomolecular Structure and Dynamics, 2023, 41, 7174-7189.	2.0	1
355	mRNA Vaccine Designing Using Chikungunya Virus E Glycoprotein through Immunoinformatics-Guided Approaches. Vaccines, 2022, 10, 1476.	2.1	4
356	In-silico designing of a multi-epitope vaccine against SARS-CoV2 and studying the interaction of the vaccine with Alpha, Beta, Delta, and Omicron variants of concern. Current Drug Discovery Technologies, 2022, 19, .	0.6	0
357	Designing a vaccine-based therapy against Epstein-Barr virus-associated tumors using immunoinformatics approach. Computers in Biology and Medicine, 2022, 150, 106128.	3.9	4

#	Article	IF	Citations
358	Immunogenicity assessment of antileukemic agent glutaminase from Escherichia coli, Pseudomonas sp., and Bacillus sp Biomedical and Biotechnology Research Journal, 2022, 6, 138.	0.3	1
359	Computational design and characterization of a multiepitope vaccine against carbapenemase-producing Klebsiella pneumoniae strains, derived from antigens identified through reverse vaccinology. Computational and Structural Biotechnology Journal, 2022, 20, 4446-4463.	1.9	6
360	Designing a novel in-silico multi-epitope vaccine against penicillin-binding protein 2A in Staphylococcus aureus. Informatics in Medicine Unlocked, 2022, 33, 101080.	1.9	3
361	Proteome Wide Screening of Potential Vaccine Targets Against BrucellaÂMelitensis. SSRN Electronic Journal, 0, , .	0.4	0
363	Novel Chimeric Vaccine Candidate Development against Leptotrichia buccalis. International Journal of Environmental Research and Public Health, 2022, 19, 10742.	1.2	2
364	Anti-IL-10 Antibody Humanization by SDR Grafting with Enhanced Affinity to Neutralize the Adverse Response of Interleukin-10. International Journal of Peptide Research and Therapeutics, 2022, 28, .	0.9	8
365	In silico designing of a novel epitope-based candidate vaccine against Streptococcus pneumoniae with introduction of a new domain of PepO as adjuvant. Journal of Translational Medicine, 2022, 20, .	1.8	6
366	Immunoinformatics approach to epitope-based vaccine design against the SARS-CoV-2 in Bangladeshi patients. Journal of Genetic Engineering and Biotechnology, 2022, 20, 136.	1.5	7
368	Helicobacter pylori l-asparaginase: a study of immunogenicity from an in silico approach. 3 Biotech, 2022, 12, .	1.1	1
369	Novel multi epitope-based vaccine against monkeypox virus: vaccinomic approach. Scientific Reports, 2022, 12, .	1.6	33
370	Virtual Screening for SARS-CoV-2 Main Protease Inhibitory Peptides from the Putative Hydrolyzed Peptidome of Rice Bran. Antibiotics, 2022, 11, 1318.	1.5	8
371	Computational Based Designing of a Multi-Epitopes Vaccine against Burkholderia mallei. Vaccines, 2022, 10, 1580.	2.1	4
372	Evaluation of calpain T-cell epitopes as vaccine candidates against experimental Leishmania major infection: a pilot study. Parasitology Research, 2022, 121, 3275-3285.	0.6	2
373	In Silico Prediction of Anti-Infective and Cell-Penetrating Peptides from Thalassophryne nattereri Natterin Toxins. Pharmaceuticals, 2022, 15, 1141.	1.7	7
374	Bioinformatics-based SARS-CoV-2 epitopes design and the impact of Spike protein mutants on epitope humoral immunities. Immunobiology, 2022, , 152287.	0.8	2
376	Designing multi-epitope-based vaccine targeting surface immunogenic protein of Streptococcus agalactiae using immunoinformatics to control mastitis in dairy cattle. BMC Veterinary Research, 2022, 18, .	0.7	13
377	Designing multi-epitope based peptide vaccine targeting spike protein SARS-CoV-2 B1.1.529 (Omicron) variant using computational approaches. Structural Chemistry, 2022, 33, 2243-2260.	1.0	6
378	Draft Genome Sequence of Streptococcus agalactiae KALRO-LC1 Strain Isolated from a Mastitis-Infected Camel in Laikipia County, Kenya. Microbiology Resource Announcements, 0, , .	0.3	0

#	Article	IF	CITATIONS
379	Development of Multi-Epitopes Vaccine against Human Papilloma Virus16 Using the L1 and L2 Proteins as Immunogens. Biosciences, Biotechnology Research Asia, 2022, 19, 797-813.	0.2	0
380	Design, construction and in vivo functional assessment of a hinge truncated sFLT01. Gene Therapy, 0, , .	2.3	0
381	Computational design for identification of human anti-MUC1 heteroclitic peptides in treatment of HER2-positive breast cancer through neural network training and monomeric based design. Current Cancer Drug Targets, 2022, 22, .	0.8	0
382	Designing mRNA- and Peptide-Based Vaccine Construct against Emerging Multidrug-Resistant Citrobacter freundii: A Computational-Based Subtractive Proteomics Approach. Medicina (Lithuania), 2022, 58, 1356.	0.8	4
383	A novel strategy for developing vaccine candidate against Jaagsiekte sheep retrovirus from the envelope and gag proteins: an in-silico approach. BMC Veterinary Research, 2022, 18, .	0.7	3
385	Designing of Peptide Based Multi-Epitope Vaccine Construct against Gallbladder Cancer Using Immunoinformatics and Computational Approaches. Vaccines, 2022, 10, 1850.	2.1	0
386	Approaches for evaluation of novel CPP-based cargo delivery systems. Frontiers in Pharmacology, 0, 13, .	1.6	5
387	Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Frontiers in Immunology, $0,13,.$	2.2	17
388	Structural analysis of PpSP15 and PsSP9 sand fly salivary proteins designed with a self-cleavable linker as a live vaccine candidate against cutaneous leishmaniasis. Parasites and Vectors, 2022, 15, .	1.0	1
389	Core Proteomics and Immunoinformatic Approaches to Design a Multiepitope Reverse Vaccine Candidate against Chagas Disease. Vaccines, 2022, 10, 1669.	2.1	0
390	Epitope vaccine design for Toxoplasma gondii based on a genome-wide database of membrane proteins. Parasites and Vectors, 2022, 15, .	1.0	2
391	Designing a novel SOX9 based multi-epitope vaccine to combat metastatic triple-negative breast cancer using immunoinformatics approach. Molecular Diversity, 2023, 27, 1829-1842.	2.1	7
392	Computational Clues of Immunogenic Hotspots in Plasmodium falciparum Erythrocytic Stage Vaccine Candidate Antigens: In Silico Approach. BioMed Research International, 2022, 2022, 1-21.	0.9	0
393	Candidate Multi-Epitope Vaccine against Corona B.1.617 Lineage: In Silico Approach. Life, 2022, 12, 1715.	1.1	2
394	Design of a Chimeric Multi-Epitope Vaccine (CMEV) against Both Leishmania martiniquensis and Leishmania orientalis Parasites Using Immunoinformatic Approaches. Biology, 2022, 11, 1460.	1.3	1
395	Peptides as Potentially Anticarcinogenic Agent from Functional Canned Meat Product with Willow Extract. Molecules, 2022, 27, 6936.	1.7	0
396	Designing, characterization, and immune stimulation of a novel multi-epitopic peptide-based potential vaccine candidate against monkeypox virus through screening its whole genome encoded proteins: An immunoinformatics approach. Travel Medicine and Infectious Disease, 2022, 50, 102481.	1.5	18
397	ALLERDET: A novel web app for prediction of protein allergenicity. Journal of Biomedical Informatics, 2022, 135, 104217.	2.5	3

#	Article	IF	CITATIONS
399	A reverse vaccinology approach identifies putative vaccination targets in the zoonotic nematode Ascaris. Frontiers in Veterinary Science, 0, 9, .	0.9	4
400	Evaluation of the consistence between the results of immunoinformatics predictions and real-world animal experiments of a new tuberculosis vaccine MP3RT. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	8
401	Rational design of a novel multi-epitope peptide-based vaccine against Onchocerca volvulus using transmembrane proteins. Frontiers in Tropical Diseases, $0, 3, .$	0.5	0
402	SARS-CoV-2 Omicron (BA.1 and BA.2) specific novel CD8+ and CD4+ T cell epitopes targeting spike protein. ImmunoInformatics, 2022, 8, 100020.	1.2	2
403	Risk-based approaches in food allergy. , 2023, , 697-719.		0
404	In-silico Designing of Immunogenic Construct Based on Peptide Epitopes Using Immuno-informatics Tools Against Tuberculosis. Iranian Journal of Medical Microbiology, 2022, 16, 506-519.	0.1	0
405	Identification of potential candidate vaccines against Mycobacterium ulcerans based on the major facilitator superfamily transporter protein. Frontiers in Immunology, $0,13,1$	2.2	6
406	DPP-IV Inhibitory Peptides GPF, IGL, and GGGW Obtained from Chicken Blood Hydrolysates. International Journal of Molecular Sciences, 2022, 23, 14140.	1.8	4
407	Prediction of Potential Drug Targets and Vaccine Candidates Against Antibiotic-Resistant Pseudomonas aeruginosa. International Journal of Peptide Research and Therapeutics, 2022, 28, .	0.9	2
408	Design of novel disturbing peptides against ACE2 SARS-CoV-2 spike-binding region by computational approaches. Frontiers in Pharmacology, 0, 13, .	1.6	2
409	Integrative subtractive proteomics, immunoinformatics, docking, and simulation approaches reveal candidate vaccine against Sin Nombre orthohantavirus. Frontiers in Immunology, 0, 13 , .	2.2	0
410	Design of a novel multiple epitope-based vaccine: an immunoinformatics approach to combat monkeypox. Journal of Biomolecular Structure and Dynamics, 2023, 41, 9344-9355.	2.0	14
412	Multi-Bioactivity of Protein Digests and Peptides from Oat (Avena sativa L.) Kernels in the Prevention of the Cardiometabolic Syndrome. Molecules, 2022, 27, 7907.	1.7	10
413	Bioinformatics approach for the construction of multiple epitope vaccine against omicron variant of SARS-CoV-2. Scientific Reports, 2022, 12, .	1.6	7
414	An <i>In silico</i> study of derivative of Newcastle disease virus epitopes based vaccine against Hemagglutunin neuraminidase protein. Journal of Animal Science, 0, , .	0.2	0
415	Designing a multi-epitope vaccine against coxsackievirus B based on immunoinformatics approaches. Frontiers in Immunology, 0, 13, .	2.2	5
416	Immunoinformatic analysis of proteins from DNA replication, repair, recombination, and restriction/modification pathway of Mycobacterium tuberculosis revealed the diagnostic potential of Rv0054 and Rv3644c. Journal of Applied Biotechnology & Bioengineering, 2022, 9, 190-201.	0.0	0
417	Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. Journal of Infection and Public Health, 2023, 16, 107-116.	1.9	16

#	Article	IF	CITATIONS
418	Drug and Anti-Viral Peptide Design to Inhibit the Monkeypox Virus by Restricting A36R Protein. Bioinformatics and Biology Insights, 2022, 16, 117793222211411.	1.0	2
419	Multi-Epitope Vaccine Design against Monkeypox Virus via Reverse Vaccinology Method Exploiting Immunoinformatic and Bioinformatic Approaches. Vaccines, 2022, 10, 2010.	2.1	12
420	Vaccine Development for Newcastle Disease Virus in Poultry: Vaccine Development for NDV., 2022,,.		0
421	Development of a novel circular mRNA vaccine of six protein combinations against <i>Staphylococcus aureus</i> . Journal of Biomolecular Structure and Dynamics, 2023, 41, 10525-10545.	2.0	4
422	Multi Epitopic Peptide Based Vaccine Development Targeting Immobilization Antigen of Ichthyophthirius multifiliis: A Computational Approach. International Journal of Peptide Research and Therapeutics, 2023, 29, .	0.9	3
423	Computer-Aided Screening for Potential Coronavirus 3-Chymotrypsin-like Protease (3CLpro) Inhibitory Peptides from Putative Hemp Seed Trypsinized Peptidome. Molecules, 2023, 28, 50.	1.7	4
424	Computational study to investigate <i>Proteus mirabilis</i> proteomes for multi-epitope vaccine construct design. Journal of Biomolecular Structure and Dynamics, 2023, 41, 10190-10201.	2.0	8
425	Bioinformatics Designing and Molecular Modelling of a Universal mRNA Vaccine for SARS-CoV-2 Infection. Vaccines, 2022, 10, 2107.	2.1	6
427	Prediction of Conformational and Linear B-Cell Epitopes on Envelop Protein of Zika Virus Using Immunoinformatics Approach. International Journal of Peptide Research and Therapeutics, 2023, 29, .	0.9	0
429	MODELING, BINDING SITE, AND IMMUNOGENICITY ANALYSIS OF GENES ENCODING L-ASPARAGINASE FROM ARTHROSPIRA PLATENSIS NIES 39. International Journal of Applied Pharmaceutics, 0, , 98-103.	0.3	O
430	A multiepitope vaccine candidate against infectious bursal disease virus using immunoinformatics-based reverse vaccinology approach. Frontiers in Veterinary Science, 0, 9, .	0.9	3
431	Identification of peptides sequence and conformation contributed to potential allergenicity of main allergens in yogurts. Frontiers in Nutrition, 0, 9, .	1.6	4
433	An immunoinformatic approach towards development of a potent and effective multi-epitope vaccine against monkeypox virus (MPXV). Journal of Biomolecular Structure and Dynamics, 2023, 41, 11714-11727.	2.0	2
434	Design of a multiâ€epitopeâ€based vaccine consisted of immunodominant epitopes of structural proteins of SARSâ€CoVâ€2 using immunoinformatics approach. Biotechnology and Applied Biochemistry, 2023, 70, 1189-1205.	1.4	1
435	Multi epitope vaccine candidate design against <i>Streptococcus pneumonia</i> . Journal of Biomolecular Structure and Dynamics, 2023, 41, 12654-12667.	2.0	0
436	Immunoinformatic-Based Multi-Epitope Vaccine Design for Co-Infection of Mycobacterium tuberculosis and SARS-CoV-2. Journal of Personalized Medicine, 2023, 13, 116.	1.1	9
437	A Structural View at Vaccine Development against M. tuberculosis. Cells, 2023, 12, 317.	1.8	7
438	Reverse vaccinology assisted design of a novel multi-epitope vaccine to target Wuchereria bancrofti cystatin: An immunoinformatics approach. International Immunopharmacology, 2023, 115, 109639.	1.7	8

#	Article	IF	CITATIONS
439	Bionics design of affinity peptide inhibitors for SARS-CoV-2 RBD to block SARS-CoV-2 RBD-ACE2 interactions. Heliyon, 2023, 9, e12890.	1.4	1
440	Developing a multiepitope vaccine for the prevention of SARS-CoV-2 and monkeypox virus co-infection: A reverse vaccinology analysis. International Immunopharmacology, 2023, 115, 109728.	1.7	14
441	Employing an immunoinformatics approach revealed potent multi-epitope based subunit vaccine for lymphocytic choriomeningitis virus. Journal of Infection and Public Health, 2023, 16, 214-232.	1.9	5
442	Design of multiepitope vaccine candidate from a major capsid protein of the African swine fever virus. , 2023, 2, 100013.		2
443	Design of a multi-epitope vaccine against Haemophilus parasuis based on pan-genome and immunoinformatics approaches. Frontiers in Veterinary Science, 0, 9, .	0.9	1
444	Identification of a Potential Vaccine against Treponema pallidum Using Subtractive Proteomics and Reverse-Vaccinology Approaches. Vaccines, 2023, 11, 72.	2.1	3
445	In silico Design of Multi-epitope Vaccines Targeting Iron-regulated lipoproteins of Staphylococcus aureus Using Immunoinformactics. Journal of Bacteriology and Virology, 2022, 52, 170-183.	0.0	0
446	In silico design and evaluation of a novel mRNA vaccine against BK virus: a reverse vaccinology approach. Immunologic Research, 2023, 71, 422-441.	1.3	4
447	Current Update on Rotavirus in-Silico Multiepitope Vaccine Design. ACS Omega, 2023, 8, 190-207.	1.6	5
448	Herbivory-inducible lipid-transfer proteins (LTPs) of <i>Cicer arietinum</i> as potential human allergens. Journal of Biomolecular Structure and Dynamics, 2023, 41, 12863-12879.	2.0	0
449	Immunoinformatics Approach to Design a Multi-Epitope Nanovaccine against Leishmania Parasite: Elicitation of Cellular Immune Responses. Vaccines, 2023, 11, 304.	2.1	6
450	Genomics, metagenomics, and pan-genomics approaches in COVID-19., 2023, , 23-39.		0
451	Bioinformatics analysis and consistency verification of a novel tuberculosis vaccine candidate HP13138PB. Frontiers in Immunology, 0, 14, .	2.2	12
452	An immunoinformatics and structural vaccinology study to design a multiâ€epitope vaccine against <i>Staphylococcus aureus</i> infection. Journal of Molecular Recognition, 2023, 36, .	1.1	7
453	Immunoinformatics design of multivalent epitope vaccine against monkeypox virus and its variants using membrane-bound, enveloped, and extracellular proteins as targets. Frontiers in Immunology, 0, 14, .	2.2	10
454	In silico discovery of antioxidant peptides from the sea grass Posidonia australis. , 2023, , 197-213.		1
455	Secrets behind Protein Sequences: Unveiling the Potential Reasons for Varying Allergenicity Caused by Caseins from Cows, Goats, Camels, and Mares Based on Bioinformatics Analyses. International Journal of Molecular Sciences, 2023, 24, 2481.	1.8	2
456	Design of a potential Sema4A-based multi-epitope vaccine to combat triple-negative breast cancer: an immunoinformatic approach. , 2023, 40, .		3

#	Article	IF	CITATIONS
457	Immunogenic multi-epitope-based vaccine development to combat cyclosporiasis of immunocompromised patients applying computational biology method. Experimental Parasitology, 2023, 248, 108497.	0.5	0
458	Bioinformatics and immunoinformatics approach to develop potent multi-peptide vaccine for coxsackievirus B3 capable of eliciting cellular and humoral immune response. International Journal of Biological Macromolecules, 2023, 239, 124320.	3.6	4
459	Impact of thermal treatments and simulated gastrointestinal digestion on the \hat{l}_{\pm} -amylase inhibitory activity of different legumes. Food Chemistry, 2023, 418, 135884.	4.2	4
460	Synthesis, modification and application of fish skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide. International Journal of Biological Macromolecules, 2023, 231, 123248.	3. 6	7
461	Vaccine Omics: role of bioinformatics in vaccinology. , 2022, , 33-54.		0
462	In silico formulation of a next-generation multiepitope vaccine for use as a prophylactic candidate against Crimean-Congo hemorrhagic fever. BMC Medicine, 2023, 21, .	2.3	4
463	HPV and molecular mimicry in systemic lupus erythematosus and an impact of compiling B-cell epitopes and MHC-class II binding profiles with <i>in silico</i> evidence. Journal of Biomolecular Structure and Dynamics, 0, , 1-9.	2.0	0
464	A study on the design of an <i>in silico</i> self-amplifying mRNA vaccine against Nipah virus using immunoinformatics. Journal of Biomolecular Structure and Dynamics, 2023, 41, 12777-12788.	2.0	1
465	Design of a multi-epitope vaccine against six Nocardia species based on reverse vaccinology combined with immunoinformatics. Frontiers in Immunology, 0, 14 , .	2.2	4
466	Immunoinformatics Study: Multi-Epitope Based Vaccine Design from SARS-CoV-2 Spike Glycoprotein. Vaccines, 2023, 11, 399.	2.1	1
467	Integration of immunoinformatics and cheminformatics to design and evaluate a multitope vaccine against Klebsiella pneumoniae and Pseudomonas aeruginosa coinfection. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
468	In silico designed mRNA vaccines targeting CA-125 neoantigen in breast and ovarian cancer. Vaccine, 2023, 41, 2073-2083.	1.7	7
469	A guide to current methodology and usage of reverse vaccinology towards <i>in silico</i> vaccine discovery. FEMS Microbiology Reviews, 2023, 47, .	3.9	14
470	Aggregation Limiting Cell-Penetrating Peptides Derived from Protein Signal Sequences. International Journal of Molecular Sciences, 2023, 24, 4277.	1.8	2
471	Identification of B and T Cell Epitopes to Design an Epitope-Based Peptide Vaccine against the Cell Surface Binding Protein of Monkeypox Virus: An Immunoinformatics Study. Journal of Immunology Research, 2023, 2023, 1-14.	0.9	0
472	Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach. Vaccines, 2023, 11, 525.	2.1	12
473	Designing multi-epitope vaccine against important colorectal cancer (CRC) associated pathogens based on immunoinformatics approach. BMC Bioinformatics, 2023, 24, .	1.2	3
474	Immunoinformatics-aided design of a new multi-epitope vaccine adjuvanted with domain 4 of pneumolysin against Streptococcus pneumoniae strains. BMC Bioinformatics, 2023, 24, .	1.2	9

#	Article	IF	CITATIONS
475	Designing a Next-Generation Multiepitope-Based Vaccine against Staphylococcus aureus Using Reverse Vaccinology Approaches. Pathogens, 2023, 12, 376.	1.2	17
476	A Molecular Docking Study Reveals That Short Peptides Induce Conformational Changes in the Structure of Human Tubulin Isotypes αβI, αβII, αβIII and αβIV. Journal of Functional Biomaterials, 2023, 14, 135	1.8	1
478	In silico design of a polypeptide as a vaccine candidate against ascariasis. Scientific Reports, 2023, 13, .	1.6	2
479	Potential of <i>Onchocerca ochengi</i> inosine-5′-monophosphate dehydrogenase (IMPDH) and guanosine-5′-monophosphate oxidoreductase (GMPR) as druggable and vaccine candidates: immunoinformatics screening. Journal of Biomolecular Structure and Dynamics, 0, , 1-17.	2.0	0
480	Design and In Silico Validation of a Novel MZF-1-Based Multi-Epitope Vaccine to Combat Metastatic Triple Negative Breast Cancer. Vaccines, 2023, 11, 577.	2.1	3
482	Immunoselective progression of a multi-epitope-based subunit vaccine candidate to convey protection against the parasite Onchocerca lupi. Informatics in Medicine Unlocked, 2023, 38, 101209.	1.9	1
483	In Silico Exploration of Metabolically Active Peptides as Potential Therapeutic Agents against Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2023, 24, 5828.	1.8	2
484	Construction and validation of a multi-epitope in silico vaccine model for lymphatic filariasis by targeting Brugia malayi: a reverse vaccinology approach. Bulletin of the National Research Centre, 2023, 47, .	0.7	6
485	In silico designing of a novel polyvalent multi-subunit peptide vaccine leveraging cross-immunity against human visceral and cutaneous leishmaniasis: an immunoinformatics-based approach. Journal of Molecular Modeling, 2023, 29, .	0.8	4
486	In silico design of a novel peptide-based vaccine against the ubiquitous apicomplexan Toxoplasma gondii using surface antigens. In Silico Pharmacology, 2023, 11 , .	1.8	O
487	Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches. Marine Drugs, 2023, 21, 206.	2.2	2
488	Vaccinomics Approach for Multi-Epitope Vaccine Design against Group A Rotavirus Using VP4 and VP7 Proteins. Vaccines, 2023, 11, 726.	2.1	1
490	Computational and <i>inÂvitro</i> analyses to identify the anticoagulant regions of Echicetin, a snake venom anticoagulant C-type lectin (snaclec): possibility to develop anticoagulant peptide therapeutics?. Journal of Biomolecular Structure and Dynamics, 0, , 1-15.	2.0	0
491	Proteomics-based vaccine targets annotation and design of subunit and mRNA-based vaccines for Monkeypox virus (MPXV) against the recent outbreak. Computers in Biology and Medicine, 2023, 159, 106893.	3.9	8
492	Allergenicity evaluation of five types of commercial food-derived oligopeptide products. Food and Function, 0 , , .	2.1	0
493	PP19128R, a Multiepitope Vaccine Designed to Prevent Latent Tuberculosis Infection, Induced Immune Responses In Silico and In Vitro Assays. Vaccines, 2023, 11, 856.	2.1	9
494	An in silico approach to unveil peptides from Acheta domesticus with potential bioactivity against hypertension, diabetes, cardiac and pulmonary fibrosis. Food Research International, 2023, 169, 112847.	2.9	4
495	In Silico Design of a Chimeric Humanized L-asparaginase. International Journal of Molecular Sciences, 2023, 24, 7550.	1.8	1

#	Article	IF	CITATIONS
496	Designing a multi-epitope chimeric protein from different potential targets: A potential vaccine candidate against Plasmodium. Molecular and Biochemical Parasitology, 2023, , 111560.	0.5	0
497	Novel machine learning method allerStat identifies statistically significant allergen-specific patterns in protein sequences. Journal of Biological Chemistry, 2023, 299, 104733.	1.6	1
498	Protective Efficacy of Multiple Epitope-Based Vaccine against Hyalomma anatolicum, Vector of Theileria annulata and Crimean–Congo Hemorrhagic Fever Virus. Vaccines, 2023, 11, 881.	2.1	1
514	A Sample Guideline for Reverse Vaccinology Approach for the Development of Subunit Vaccine Using Varicella Zoster as a Model Disease. Methods in Molecular Biology, 2023, , 453-474.	0.4	0
515	Computational Vaccine Design for Poxviridae Family Viruses. Methods in Molecular Biology, 2023, , 475-485.	0.4	0
516	Reverse Vaccinology for Influenza A Virus: From Genome Sequencing to Vaccine Design. Methods in Molecular Biology, 2023, , 401-410.	0.4	1
531	Advances in Computational and Bioinformatics Tools and Databases for Designing and Developing a Multi-Epitope-Based Peptide Vaccine. International Journal of Peptide Research and Therapeutics, 2023, 29, .	0.9	6
565	Characterization of T-Cell Epitopes in Food Allergens by Bioinformatic Tools. Methods in Molecular Biology, 2024, , 77-99.	0.4	0
647	Bioinformatics and bioactive peptides from foods: Do they work together?. Advances in Food and Nutrition Research, 2024, , 35-111.	1.5	0
649	Allergenic potential of novel plant-derived ingredients., 2024,,.		0