Wnt–Notch signalling crosstalk in development and o

Cellular and Molecular Life Sciences 71, 3553-3567

DOI: 10.1007/s00018-014-1644-x

Citation Report

#	Article	IF	Citations
1	Ras-activated Dsor1 promotes Wnt signaling in Drosophila development. Journal of Cell Science, 2015, 128, 4499-511.	1.2	13
2	Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration. BMC Biology, 2015, 13, 70.	1.7	53
3	Cell Fate Decision Making through Oriented Cell Division. Journal of Developmental Biology, 2015, 3, 129-157.	0.9	34
4	Transcription Factor PAX6 (Paired Box 6) Controls Limbal Stem Cell Lineage in Development and Disease. Journal of Biological Chemistry, 2015, 290, 20448-20454.	1.6	54
5	Disinhibition of the HECT E3 ubiquitin ligase WWP2 by polymerized Dishevelled. Open Biology, 2015, 5, 150185.	1.5	37
6	C8orf4 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH2 signalling. Nature Communications, 2015, 6, 7122.	5.8	112
7	Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Reports, 2015, 16, 571-581.	2.0	148
8	Congenital Short Bowel Syndrome: from clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2352-2361.	1.8	27
9	The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. International Journal of Developmental Neuroscience, 2015, 47, 247-258.	0.7	48
10	Regulation of the nascent brain vascular network by neural progenitors. Mechanisms of Development, 2015, 138, 37-42.	1.7	11
11	Notch Signaling in Neuroendocrine Tumors. Frontiers in Oncology, 2016, 6, 94.	1.3	59
12	Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy. Frontiers in Cellular and Infection Microbiology, 2016, 6, 58.	1.8	38
13	Meta-Analysis of Genome-Wide Association Studies and Network Analysis-Based Integration with Gene Expression Data Identify New Suggestive Loci and Unravel a Wnt-Centric Network Associated with Dupuytren's Disease. PLoS ONE, 2016, 11, e0158101.	1.1	26
14	Notch signaling represses hypoxia-inducible factor- $1\hat{l}$ ±-induced activation of Wnt/ \hat{l}^2 -catenin signaling in osteoblasts under cobalt-mimicked hypoxia. Molecular Medicine Reports, 2016, 14, 689-696.	1.1	15
15	Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma. Journal of Cell Communication and Signaling, 2016, 10, 129-135.	1.8	47
16	\hat{l}^2 -Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia, 2016, 30, 2002-2010.	3.3	49
17	Notch Signaling in Cell–Cell Communication Pathways. Current Stem Cell Reports, 2016, 2, 349-355.	0.7	17
18	Notch: A multi-functional integrating system of microenvironmental signals. Developmental Biology, 2016, 418, 227-241.	0.9	77

#	ARTICLE	IF	CITATIONS
19	Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse cochlea in a spatiotemporal manner. Development (Cambridge), 2016, 143, 4003-4015.	1.2	55
20	RNA-Seq analysis of Gtf2ird1 knockout epidermal tissue provides potential insights into molecular mechanisms underpinning Williams-Beuren syndrome. BMC Genomics, 2016, 17, 450.	1.2	13
21	Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs. Development (Cambridge), 2016, 143, 4381-4393.	1.2	75
22	Applications of In Vivo Functional Testing of the Rat Tibialis Anterior for Evaluating Tissue Engineered Skeletal Muscle Repair. Journal of Visualized Experiments, 2016, , .	0.2	13
23	Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?. Orphanet Journal of Rare Diseases, 2016, 11, 149.	1.2	16
24	Merlin inhibits Wnt/ \hat{l}^2 -catenin signaling by blocking LRP6 phosphorylation. Cell Death and Differentiation, 2016, 23, 1638-1647.	5.0	32
25	Deletion of Polycomb Repressive Complex 2 From Mouse Intestine Causes Loss of Stem Cells. Gastroenterology, 2016, 151, 684-697.e12.	0.6	69
26	Arsenic inhibits stem cell differentiation by altering the interplay between the Wnt3a and Notch signaling pathways. Toxicology Reports, 2016, 3, 405-413.	1.6	23
27	Clipping the Wings of Glioblastoma: Modulation of WNT as a Novel Therapeutic Strategy. Journal of Neuropathology and Experimental Neurology, 2016, 75, 388-396.	0.9	33
28	The Amyloid β Precursor Protein and Cognitive Function in Alzheimer's Disease. , 2016, , 97-133.		2
29	The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Laboratory Investigation, 2016, 96, 116-136.	1.7	187
30	The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 303-313.	1.9	159
31	How Does p73 Cause Neuronal Defects?. Molecular Neurobiology, 2016, 53, 4509-4520.	1.9	25
32	Calcitonin geneâ€related peptide (<scp>CGRP</scp>): A novel target for Alzheimer's disease. CNS Neuroscience and Therapeutics, 2017, 23, 457-461.	1.9	69
33	A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. Journal of Biological Chemistry, 2017, 292, 9409-9419.	1.6	39
34	Role of the Notch signaling in cholangiocarcinoma. Expert Opinion on Therapeutic Targets, 2017, 21, 471-483.	1.5	27
35	Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity (Review). Oncology Letters, 2017, 14, 6327-6333.	0.8	36
36	Wnt9a Can Influence Cell Fates and Neural Connectivity across the Radial Axis of the Developing Cochlea. Journal of Neuroscience, 2017, 37, 8975-8988.	1.7	20

3

#	Article	IF	Citations
37	The Protein Phosphatase 4 complex promotes the Notch pathway and <i>wingless </i> transcription. Biology Open, 2017, 6, 1165-1173.	0.6	8
38	Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells. Cell Death and Disease, 2018, 9, 255.	2.7	36
39	Crosstalk between YAP/TAZ and Notch Signaling. Trends in Cell Biology, 2018, 28, 560-573.	3.6	104
40	Targeting cancer stem cells in the clinic: Current status and perspectives. , 2018, 187, 13-30.		61
41	Secreted AGR2 promotes invasion of colorectal cancer cells via Wnt11-mediated non-canonical Wnt signaling. Experimental Cell Research, 2018, 364, 198-207.	1.2	42
42	Niclosamide: Beyond an antihelminthic drug. Cellular Signalling, 2018, 41, 89-96.	1.7	315
43	Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treatment Reviews, 2018, 62, 50-60.	3.4	730
44	Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Development (Cambridge), 2018, 145, .	1.2	36
45	Paneth Cells Respond to Inflammation and Contribute to Tissue Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling. Cell Reports, 2018, 24, 2312-2328.e7.	2.9	166
46	Notch Pathway Regulation of Intestinal Cell Fate. , 2018, , 141-183.		1
47	Crosstalk between hepatic tumor cells and macrophages via Wnt/ \hat{l}^2 -catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death and Disease, 2018, 9, 793.	2.7	193
48	Cross-talk between blood vessels and neural progenitors in the developing brain. Neuronal Signaling, 2018, 2, NS20170139.	1.7	44
49	Differential expression of miR-let7a in hair follicle cycle of Liaoning cashmere goats and identification of its targets. Functional and Integrative Genomics, 2018, 18, 701-707.	1.4	23
50	WNT Signaling in Disease. Cells, 2019, 8, 826.	1.8	157
51	Study of the aqueous extract of Aloe vera and its two active components on the Wnt/ \hat{l}^2 -catenin and Notch signaling pathways in colorectal cancer cells. Journal of Ethnopharmacology, 2019, 243, 112092.	2.0	18
52	PLAGL2 and POFUT1 are regulated by an evolutionarily conserved bidirectional promoter and are collaboratively involved in colorectal cancer by maintaining stemness. EBioMedicine, 2019, 45, 124-138.	2.7	34
53	The Notch system during pubertal development of the bovine mammary gland. Scientific Reports, 2019, 9, 8899.	1.6	5
54	Lymphoid enhancer-binding factor-1 promotes stemness and poor differentiation of hepatocellular carcinoma by directly activating the NOTCH pathway. Oncogene, 2019, 38, 4061-4074.	2.6	31

#	Article	IF	CITATIONS
55	PAK4 Phosphorylates Fumarase and Blocks $TGF\hat{l}^2$ -Induced Cell Growth Arrest in Lung Cancer Cells. Cancer Research, 2019, 79, 1383-1397.	0.4	24
56	The MMTV-Wnt1 murine model produces two phenotypically distinct subtypes of mammary tumors with unique therapeutic responses to an EGFR inhibitor. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	8
57	Activated Signaling Pathways and Targeted Therapies in Desmoid-Type Fibromatosis: A Literature Review. Frontiers in Oncology, 2019, 9, 397.	1.3	31
58	The evolution of transcriptional repressors in the Notch signaling pathway: a computational analysis. Hereditas, 2019, 156, 5.	0.5	14
59	Health benefits of resveratrol: Evidence from clinical studies. Medicinal Research Reviews, 2019, 39, 1851-1891.	5.0	307
60	Transcriptome Characterization of Reverse Development in <i>Turritopsis dohrnii</i> (Hydrozoa,) Tj ETQq1 1 0.7	84314 rgl	BT /Overlock
61	Evodiamine Eliminates Colon Cancer Stem Cells via Suppressing Notch and Wnt Signaling. Molecules, 2019, 24, 4520.	1.7	32
62	SNHG20: A vital IncRNA in multiple human cancers. Journal of Cellular Physiology, 2019, 234, 14519-14525.	2.0	51
63	<scp>ZFAS</scp> 1: A novel vital oncogenic lnc <scp>RNA</scp> in multiple human cancers. Cell Proliferation, 2019, 52, e12513.	2.4	52
64	Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165432.	1.8	104
65	Wnt-Notch Signaling Interactions During Neural and Astroglial Patterning of Human Stem Cells. Tissue Engineering - Part A, 2020, 26, 419-431.	1.6	22
66	Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/ \hat{l}^2 -catenin signaling pathways. Microbial Pathogenesis, 2020, 139, 103829.	1.3	32
67	The acquisition of positional information across the radial axis of the cochlea. Developmental Dynamics, 2020, 249, 281-297.	0.8	17
68	A computational guided, functional validation of a novel therapeutic antibody proposes Notch signaling as a clinical relevant and druggable target in glioma. Scientific Reports, 2020, 10, 16218.	1.6	15
69	Systems Biology and Experimental Model Systems of Cancer. Journal of Personalized Medicine, 2020, 10, 180.	1.1	15
70	From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	22
71	Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses, 2020, 12, 823.	1.5	4
72	The Role of MicroRNAs in Epidermal Barrier. International Journal of Molecular Sciences, 2020, 21, 5781.	1.8	14

#	Article	IF	CITATIONS
73	Transcriptional Profiling Reveals the Regulatory Role of DNER in Promoting Pancreatic Neuroendocrine Neoplasms. Frontiers in Genetics, 2020, 11, 587402.	1.1	5
74	Gene Expression Analysis of Human Papillomavirus-Associated Colorectal Carcinoma. BioMed Research International, 2020, 2020, 1-14.	0.9	10
75	Top Notch Targeting Strategies in Cancer: A Detailed Overview of Recent Insights and Current Perspectives. Cells, 2020, 9, 1503.	1.8	92
76	Notch and Delta Control the Switch and Formation of Camouflage Patterns in Caterpillars. IScience, 2020, 23, 101315.	1.9	7
77	Making sense out of missense mutations: Mechanistic dissection of Notch receptors through structureâ€function studies in ⟨i⟩Drosophila⟨/i⟩. Development Growth and Differentiation, 2020, 62, 15-34.	0.6	14
78	Shaping of the Tumor Microenvironment by Notch Signaling. Advances in Experimental Medicine and Biology, 2020, 1223, 1-16.	0.8	10
80	A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and \hat{l}^2 -Catenin Axes. Cancer Discovery, 2021, 11, 1138-1157.	7.7	88
81	Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. International Journal of Molecular Sciences, 2021, 22, 1603.	1.8	14
82	Spatial regulation and generation of diversity in signaling pathways. Journal of Biosciences, 2021, 46, 1.	0.5	2
84	Inhibition of Wnt signalling by Notch via two distinct mechanisms. Scientific Reports, 2021, 11, 9096.	1.6	23
85	Prolactin synergizes with canonical Wnt signals to drive development of ER+ mammary tumors via activation of the Notch pathway. Cancer Letters, 2021, 503, 231-239.	3.2	8
86	The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Frontiers in Cell and Developmental Biology, 2021, 9, 650772.	1.8	81
87	The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. Cell Regeneration, 2021, 10, 11.	1.1	20
88	Balanced Notch-Wnt signaling interplay is required for mouse embryo and fetal development. Reproduction, 2021, 161, 385-398.	1.1	7
89	Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Seminars in Cell and Developmental Biology, 2022, 121, 99-113.	2.3	11
90	Targeting Signaling Pathway Networks in Several Malignant Tumors: Progresses and Challenges. Frontiers in Pharmacology, 2021, 12, 675675.	1.6	11
91	Wnt $\hat{\Pi}^2$ -catenin signaling pathway in uterine leiomyoma: role in tumor biology and targeting opportunities. Molecular and Cellular Biochemistry, 2021, 476, 3513-3536.	1.4	18
92	Notch-ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway. Journal of Biomedical Science, 2021, 28, 36.	2.6	33

#	ARTICLE	IF	Citations
93	Inactivation of Wnt-LRP5 signaling suppresses the proliferation and migration of ovarian cancer cells. Translational Cancer Research, 2021, 10, 2277-2285.	0.4	2
94	Molecular docking-aided identification of small molecule inhibitors targeting \hat{l}^2 -catenin-TCF4 interaction. IScience, 2021, 24, 102544.	1.9	6
95	Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cellular Signalling, 2021, 82, 109937.	1.7	9
96	The development of a functional human small intestinal epithelium model for drug absorption. Science Advances, 2021, 7, .	4.7	28
97	Precise regulation of presenilin expression is required for sea urchin early development. Journal of Cell Science, 2021, 134, .	1.2	2
98	Wnt/ \hat{l}^2 -catenin signaling in cancers and targeted therapies. Signal Transduction and Targeted Therapy, 2021, 6, 307.	7.1	186
99	Potential crosstalk between sonic hedgehogâ€WNT signaling and neurovascular molecules: Implications for blood–brain barrier integrity in autism spectrum disorder. Journal of Neurochemistry, 2021, 159, 15-28.	2.1	15
100	Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nature Communications, 2021, 12, 5238.	5.8	8
101	Wnt signaling: A prospective therapeutic target for chronic pain. , 2022, 231, 107984.		15
102	GSK-3 \hat{l}^2 inhibitor TWS119 alleviates hypoxic-ischemic brain damage via a crosstalk with Wnt and Notch signaling pathways in neonatal rats. Brain Research, 2021, 1768, 147588.	1.1	9
103	Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle?. Cells, 2021, 10, 59.	1.8	5
104	Targeting a Lipid Desaturation Enzyme, SCD1, Selectively Eliminates Colon Cancer Stem Cells through the Suppression of Wnt and NOTCH Signaling. Cells, 2021, 10, 106.	1.8	28
105	Notch Pathway: A Journey from Notching Phenotypes to Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2021, 1287, 201-222.	0.8	17
106	Dynamical states, possibilities and propagation of stress signal. Scientific Reports, 2017, 7, 40596.	1.6	11
107	Epithelial barrier repair and prevention of allergy. Journal of Clinical Investigation, 2019, 129, 1463-1474.	3.9	137
108	Replicative and radiation-induced aging: a comparison of gene expression profiles. Aging, 2019, 11, 2378-2387.	1.4	13
109	The role of Notch signaling in gastric carcinoma: molecular pathogenesis and novel therapeutic targets. Oncotarget, 2017, 8, 53839-53853.	0.8	37
110	High casein kinase 1 epsilon levels are correlated with better prognosis in subsets of patients with breast cancer. Oncotarget, 2015, 6, 30343-30356.	0.8	6

#	Article	IF	CITATIONS
111	The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through $\hat{l}\pm\nu\hat{l}^23$ integrin interaction. Oncotarget, 2016, 7, 1516-1528.	0.8	41
112	Rnf25/AO7 positively regulates wnt signaling via disrupting Nkd1-Axin inhibitory complex independent of its ubiquitin ligase activity. Oncotarget, 2016, 7, 23850-23859.	0.8	4
113	The signaling pathway involved in the proliferation of corneal endothelial cells. Journal of Receptor and Signal Transduction Research, 2015, 35, 585-91.	1.3	6
114	Orchestrating stem cell fate: Novel tools for regenerative medicine. World Journal of Stem Cells, 2019, 11, 464-475.	1.3	17
115	EDA and EDAR expression at different stages of hair follicle development in cashmere goats and effects on expression of related genes. Archives Animal Breeding, 2020, 63, 461-470.	0.5	11
116	Ordered patterning of the sensory system is susceptible to stochastic features of gene expression. ELife, 2020, 9, .	2.8	14
118	Mini-review: Does Notch promote or suppress cancer? New findings and old controversies. American Journal of Clinical and Experimental Urology, 2015, 3, 24-7.	0.4	7
119	Signaling pathways and their potential therapeutic utility in esophageal squamous cell carcinoma. Clinical and Translational Oncology, 2022, 24, 1014-1032.	1.2	8
120	Engineering tissue morphogenesis: taking it up a Notch. Trends in Biotechnology, 2022, 40, 945-957.	4.9	7
121	Knockout of Stearoyl-CoA Desaturase 1 Decreased Milk Fat and Unsaturated Fatty Acid Contents of the Goat Model Generated by CRISPR/Cas9. Journal of Agricultural and Food Chemistry, 2022, 70, 4030-4043.	2.4	6
122	<i>Notch</i> is an alternative splicing gene in brown planthopper, <i>Nilaparvata lugens</i> Archives of Insect Biochemistry and Physiology, 2022, 110, e21894.	0.6	3
123	Measurement of activity of developmental signal transduction pathways to quantify stem cell pluripotency and phenotypically characterize differentiated cells. Stem Cell Research, 2022, 61, 102748.	0.3	2
124	Paneth cells and intestinal health. World Chinese Journal of Digestology, 2021, 29, 1362-1372.	0.0	0
125	NSG-70, a new glioblastoma cell line with mixed proneural-mesenchymal features, associates NOTCH1-WNT5A signaling with stem cell maintenance and angiogenesis. Journal of Neuro-Oncology, 2022, 157, 575-591.	1.4	0
134	TRIM24 promotes colorectal cancer cell progression via the Wnt/ \hat{l}^2 -catenin signaling pathway activation American Journal of Translational Research (discontinued), 2022, 14, 831-848.	0.0	0
135	A Data Science Approach for the Identification of Molecular Signatures of Aggressive Cancers. Cancers, 2022, 14, 2325.	1.7	3
136	Wnt Signaling in the Breast: From Development to Disease. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	10
137	SFRP1 Negatively Modulates Pyroptosis of Fibroblastâ€Like Synoviocytes in Rheumatoid Arthritis: A Review. Frontiers in Immunology, 0, 13, .	2.2	12

#	Article	IF	CITATIONS
138	Regulation of the <code><scp> <i>THRA</i> </scp> gene, encoding the thyroid hormone nuclear receptor $TR\hat{l}\pm 1$, in intestinal lesions. Molecular Oncology, 0, , .</code>	2.1	0
139	Wnt/ \hat{l}^2 -catenin signaling stimulates the self-renewal of conjunctival stem cells and promotes corneal conjunctivalization. Experimental and Molecular Medicine, 2022, 54, 1156-1164.	3.2	3
140	Molecular pathogenesis of desmoid tumor and the role of \hat{l}^3 -secretase inhibition. Npj Precision Oncology, 2022, 6, .	2.3	16
142	Brain endothelial cells acquire blood-brain barrier properties in the absence of Vegf-dependent CNS angiogenesis. Developmental Biology, 2023, 494, 46-59.	0.9	5
143	Notch signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer, 2022, 22, .	1.1	10
144	Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	27
145	Notch Signaling Pathway in Tooth Shape Variations throughout Evolution. Cells, 2023, 12, 761.	1.8	2