Animal models in burn research

Cellular and Molecular Life Sciences 71, 3241-3255 DOI: 10.1007/s00018-014-1612-5

Citation Report

#	Article	IF	CITATIONS
1	Host factors that contribute to recurrent staphylococcal skin infection. Current Opinion in Infectious Diseases, 2015, 28, 253-258.	1.3	35
2	Inhibition of Clycogen Synthase Kinase-31 ² Attenuates Organ Injury and Dysfunction Associated With Liver Ischemia-Reperfusion and Thermal Injury in the Rat. Shock, 2015, 43, 369-378.	1.0	11
3	Topical Antibiotic Ointment Versus Silver-containing Foam Dressing for Second-degree Burns in Swine. Academic Emergency Medicine, 2015, 22, 927-933.	0.8	13
4	Porcine Models of Cutaneous Wound Healing. ILAR Journal, 2015, 56, 127-138.	1.8	170
5	Pathophysiologic Response to Burns in the Elderly. EBioMedicine, 2015, 2, 1536-1548.	2.7	110
6	Erythropoietin Reduces Acute Lung Injury and Multiple Organ Failure/Dysfunction Associated to a Scald-Burn Inflammatory Injury in the Rat. Inflammation, 2015, 38, 312-326.	1.7	30
7	The future of murine sepsis and trauma research models. Journal of Leukocyte Biology, 2015, 98, 945-952.	1.5	89
8	Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1551-1573.	1.7	211
9	The immunology of the porcine skin and its value as a model for human skin. Molecular Immunology, 2015, 66, 14-21.	1.0	348
10	Biofilm models of polymicrobial infection. Future Microbiology, 2015, 10, 1997-2015.	1.0	120
11	Antiâ€inflammatory Effect of Rosmarinic Acid and an Extract of <i>Rosmarinus officinalis</i> in Rat Models of Local and Systemic Inflammation. Basic and Clinical Pharmacology and Toxicology, 2015, 116, 398-413.	1.2	193
12	Cardiovascular Dysfunction Following Burn Injury: What We Have Learned from Rat and Mouse Models. International Journal of Molecular Sciences, 2016, 17, 53.	1.8	53
13	Collagen structural alterations contribute to stiffening of tissue after splitâ€ŧhickness skin grafting. Wound Repair and Regeneration, 2016, 24, 263-274.	1.5	18
14	Preparation of Partial-Thickness Burn Wounds in Rodents Using a New Experimental Burning Device. Annals of Plastic Surgery, 2016, 76, 652-658.	0.5	8
15	Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence. MSphere, 2016, 1, .	1.3	68
16	Skin Diseases in Laboratory Mice: Approaches to Drug Target Identification and Efficacy Screening. Methods in Molecular Biology, 2016, 1438, 199-224.	0.4	2
17	Shortâ€ŧerm treatment of equine wounds with orf virus ILâ€10 and VEGF‣ dampens inflammation and promotes repair processes without accelerating closure. Wound Repair and Regeneration, 2016, 24, 966-980.	1.5	32
18	Photo-biomodulatory response of low-power laser irradiation on burn tissue repair in mice. Lasers in Medical Science, 2016, 31, 1741-1750.	1.0	35

#	Article	IF	CITATIONS
19	Quantifying the role of burn temperature, burn duration and skin thickness in an in vivo animal skin model of heat conduction. International Journal of Heat and Mass Transfer, 2016, 101, 542-549.	2.5	13
20	Impact of Isolated Burns on Major Organs. Shock, 2016, 46, 137-147.	1.0	25
21	Histological Assessment of a Combined Low-Level Laser/Light-Emitting Diode Therapy (685 nm/470 nm) for Sutured Skin Incisions in a Porcine Model: A Short Report. Photomedicine and Laser Surgery, 2016, 34, 53-55.	2.1	31
22	Progress of clinical practice on the management of burn-associated pain: Lessons from animal models. Burns, 2016, 42, 1161-1172.	1.1	24
23	Application of Hyperosmotic Nanoemulsions in Wound Healing: Partial Thickness Injury Model in Swine. Advances in Wound Care, 2017, 6, 153-165.	2.6	4
24	Burn wound healing: present concepts, treatment strategies and future directions. Journal of Wound Care, 2017, 26, 5-19.	0.5	122
25	A Surgical Device to Study the Efficacy of Bioengineered Skin Substitutes in Mice Wound Healing Models. Tissue Engineering - Part C: Methods, 2017, 23, 237-242.	1.1	17
26	A new apparatus for standardization of experimental burn models. Burns, 2017, 43, 1322-1329.	1.1	3
27	New Mouse Model for Chronic Infections by Gram-Negative Bacteria Enabling the Study of Anti-Infective Efficacy and Host-Microbe Interactions. MBio, 2017, 8, .	1.8	97
28	A model of recovery from inhalation injury and cutaneous burn in ambulatory swine. Burns, 2017, 43, 1295-1305.	1.1	7
29	Molecular mechanisms of trauma-induced acute kidney injury: Inflammatory and metabolic insights from animal models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2661-2671.	1.8	32
30	Local Administration of Thiamine Ameliorates Ongoing Pain in a Rat Model of Second-Degree Burn. Journal of Burn Care and Research, 2017, 38, e842-e850.	0.2	6
31	Laboratory Models for the Study of Normal and Pathologic Wound Healing. Plastic and Reconstructive Surgery, 2017, 139, 654-662.	0.7	30
32	Recent advances in electrospun nanofibers for wound healing. Nanomedicine, 2017, 12, 1335-1352.	1.7	282
33	A review of the evidence for threshold of burn injury. Burns, 2017, 43, 1624-1639.	1.1	67
34	Sprayable Carbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing – Development and in-vivo evaluation. European Journal of Pharmaceutical Sciences, 2017, 107, 24-31.	1.9	43
35	IL-6 Signal From the Bone Marrow is Required for the Browning of White Adipose Tissue Post Burn Injury. Shock, 2017, 47, 33-39.	1.0	49
36	Radiotherapy-Induced Skin Reactions Induce Fibrosis Mediated by TGF-β1 Cytokine. Dose-Response, 2017, 15, 155932581770501.	0.7	20

#	ARTICLE	IF	CITATIONS
37	Thermal injury model in the rabbit ear with quantifiable burn progression and hypertrophic scar. Wound Repair and Regeneration, 2017, 25, 327-337.	1.5	31
38	Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scaldâ€burn injury. Journal of Physiology, 2017, 595, 6687-6701.	1.3	14
39	Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Scientific Reports, 2017, 7, 10291.	1.6	66
40	Comparing the reported burn conditions for different severity burns in porcine models: a systematic review. International Wound Journal, 2017, 14, 1199-1212.	1.3	13
41	Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts. American Journal of Pathology, 2017, 187, 1717-1735.	1.9	35
42	Expression of Six Proteins Causes Reprogramming of Porcine Fibroblasts Into Induced Pluripotent Stem Cells With Both Active X Chromosomes. Journal of Cellular Biochemistry, 2017, 118, 537-553.	1.2	38
43	Model Selection. , 2017, , 93-116.		0
44	Design and Testing of an Experimental Steam-Induced Burn Model in Rats. BioMed Research International, 2017, 2017, 1-10.	0.9	13
45	The response of muscle progenitor cells to cutaneous thermal injury. Stem Cell Research and Therapy, 2017, 8, 234.	2.4	10
46	Animals Models for Healing Studies After Partial Nephrectomy. , 2017, , 445-465.		0
47	Alternative animal model for studies of total skin thickness burns. Acta Cirurgica Brasileira, 2017, 32, 836-842.	0.3	6
48	Macrophageâ€derived <scp>GPNMB</scp> accelerates skin healing. Experimental Dermatology, 2018, 27, 630-635.	1.4	26
49	Delivery of Allogeneic Adipose Stem Cells in Polyethylene Glycol-Fibrin Hydrogels as an Adjunct to Meshed Autografts After Sharp Debridement of Deep Partial Thickness Burns. Stem Cells Translational Medicine, 2018, 7, 360-372.	1.6	42
50	Mammalian target of rapamycin regulates a hyperresponsive state in pulmonary neutrophils late after burn injury. Journal of Leukocyte Biology, 2018, 103, 909-918.	1.5	17
51	Balancing animal welfare and assisted reproduction: ethics of preclinical animal research for testing new reproductive technologies. Medicine, Health Care and Philosophy, 2018, 21, 537-545.	0.9	8
52	Membraneâ€active peptide <scp>PV</scp> 3 efficiently eradicates multidrugâ€resistant <i>Pseudomonas aeruginosa</i> in a mouse model of burn infection. Apmis, 2018, 126, 114-122.	0.9	20
53	Skin wound healing in humans and mice: Challenges in translational research. Journal of Dermatological Science, 2018, 90, 3-12.	1.0	292
54	Biomaterials for Skin Substitutes. Advanced Healthcare Materials, 2018, 7, 1700897.	3.9	138

#	Article	IF	Citations
55	Assessment of Ablative Fractional CO2 Laser and Er:YAG Laser to Treat Hypertrophic Scars in a Red Duroc Pig Model. Journal of Burn Care and Research, 2018, 39, 954-962.	0.2	22
56	Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Advanced Drug Delivery Reviews, 2018, 123, 135-154.	6.6	83
57	Animal models of neuroinflammation secondary to acute insults originated outside the brain. Journal of Neuroscience Research, 2018, 96, 371-378.	1.3	15
58	Burn Pain: A Systematic and Critical Review of Epidemiology, Pathophysiology, and Treatment. Pain Medicine, 2018, 19, 708-734.	0.9	61
59	The effect of low molecular weight heparin on salvaging the zone of stasis in an experimental burn model. Turkish Journal of Medical Sciences, 2018, 48, 653-660.	0.4	1
60	RUNX2 promotes epithelial differentiation of ADSCs and burn wound healing via targeting E-cadherin. Oncotarget, 2018, 9, 2646-2659.	0.8	16
61	Splenectomy modulates early immuno-inflammatory responses to trauma-hemorrhage and protects mice against secondary sepsis. Scientific Reports, 2018, 8, 14890.	1.6	16
62	PEG-Plasma Hydrogels Increase Epithelialization Using a Human Ex Vivo Skin Model. International Journal of Molecular Sciences, 2018, 19, 3156.	1.8	18
63	Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin. Frontiers in Physiology, 2018, 9, 1109.	1.3	20
64	A novel animal model for residence time evaluation of injectable hyaluronic acid-based fillers using high-frequency ultrasound-based approach. Clinical, Cosmetic and Investigational Dermatology, 2018, Volume 11, 339-346.	0.8	7
65	Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Frontiers in Pharmacology, 2018, 9, 203.	1.6	230
66	Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice. Frontiers in Physiology, 2018, 9, 441.	1.3	20
67	Accumulation of myeloid lineage cells is mapping out liver fibrosis post injury: a targetable lesion using Ketanserin. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	7
68	The Role of Serotonin during Skin Healing in Post-Thermal Injury. International Journal of Molecular Sciences, 2018, 19, 1034.	1.8	41
69	Transcriptome Analysis of Pseudomonas aeruginosa Cultured in Human Burn Wound Exudates. Frontiers in Cellular and Infection Microbiology, 2018, 8, 39.	1.8	34
70	Review: Multimodal bioactive material approaches for wound healing. APL Bioengineering, 2018, 2, 021503.	3.3	46
71	Immunomodulatory strategies for immune dysregulation following severe musculoskeletal trauma. Journal of Immunology and Regenerative Medicine, 2018, 2, 21-35.	0.2	8
72	Role of Schwann cells in cutaneous wound healing. Wound Repair and Regeneration, 2018, 26, 392-397.	1.5	29

#	Article	IF	CITATIONS
73	The <i>panniculus carnosus</i> muscle: an evolutionary enigma at the intersection of distinct research fields. Journal of Anatomy, 2018, 233, 275-288.	0.9	71
74	Overall perspective on the clinical importance of skin models. , 2018, , 39-54.		4
75	Short time insulin treatment post burn improves elastic-collagen rearrangement and reepithelization. Connective Tissue Research, 2019, 60, 230-239.	1.1	6
76	Pseudomonas aeruginosa Interstrain Dynamics and Selection of Hyperbiofilm Mutants during a Chronic Infection. MBio, 2019, 10, .	1.8	39
77	Experimental Models of Blast-Induced Neurotrauma. Neuromethods, 2019, , 77-92.	0.2	1
78	Murine models for inÂvivo evaluation of new biomaterials for skin scaffolds. , 2019, , 253-295.		0
79	Promotion of dermal regeneration using pullulan/gelatin porous skin substitute. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1965-1977.	1.3	15
80	<i>Staphylococcus epidermidis</i> role in the skin microenvironment. Journal of Cellular and Molecular Medicine, 2019, 23, 5949-5955.	1.6	29
81	Low dose radiation attenuates inflammation and promotes wound healing in a mouse burn model. Journal of Dermatological Science, 2019, 96, 81-89.	1.0	19
82	Identification of Metagenomics Structure and Function Associated With Temporal Changes in Rat (Rattus norvegicus) Skin Microbiome During Health and Cutaneous Burn. Journal of Burn Care and Research, 2019, 41, 347-358.	0.2	5
83	Cadaver models for cardiac arrest: A systematic review and perspectives. Resuscitation, 2019, 143, 68-76.	1.3	6
84	Inferior vena cava resection without reconstruction for retroperitoneal malignancies. Journal of Surgical Case Reports, 2019, 2019, rjz275.	0.2	5
85	Modeling trauma in rats: similarities to humans and potential pitfalls to consider. Journal of Translational Medicine, 2019, 17, 305.	1.8	51
86	"Three-in-One―SERS Adhesive Tape for Rapid Sampling, Release, and Detection of Wound Infectious Pathogens. ACS Applied Materials & Interfaces, 2019, 11, 36399-36408.	4.0	33
87	Geometry-Dependent Spectroscopic Contrast in Deep Tissues. IScience, 2019, 19, 965-975.	1.9	15
88	Formation of Pseudomonas aeruginosa Biofilms in Full-thickness Scald Burn Wounds in Rats. Scientific Reports, 2019, 9, 13627.	1.6	41
89	Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2019, 48, 207-217.	0.3	74
90	The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model. International Journal of Molecular Sciences, 2019, 20, 538.	1.8	56

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
91	Pig Model to Test Tissue-Engineered Skin. Methods in Molecular Biology, 2019, 1993,	239-249.	0.4	7
92	Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Burn Wounds. Pharmaceutical Research, 2019, 36, 122.	Evaluation for	1.7	10
93	A Practical Noncontact Model to Create Standardized Experimental Burn Wounds of A Blue Beam Laser Pointer for Burn Induction. Journal of Burn Care and Research, 2019,	ny Thickness: 40, 805-808.	0.2	5
95	Comparative study on the effects of heated brass bar and scald methods in experimen rat. Comparative Clinical Pathology, 2019, 28, 1381-1385.	tal skin burn in	0.3	1
96	Icariin-Loaded Polyvinyl Alcohol/Agar Hydrogel: Development, Characterization, and In Evaluation in a Full-Thickness Burn Model. International Journal of Lower Extremity Wc 323-335.	Vivo ounds, 2019, 18,	0.6	13
97	Liquid Dermal Scaffold With Adipose-Derived Stem Cells Improve Tissue Quality in a M Impaired Wound Healing. Journal of Burn Care and Research, 2019, 40, 550-557.	urine Model of	0.2	5
98	Developing a Simple Burn Model in Rats of Different Ages. Journal of Burn Care and Re 639-647.	search, 2019, 40,	0.2	3
99	Healing of Chronic Wounds: An Update of Recent Developments and Future Possibiliti Engineering - Part B: Reviews, 2019, 25, 429-444.	ies. Tissue	2.5	63
100	Preparation and evaluation of QbD based fusidic acid loaded in situ gel formulations for treatment. Journal of Drug Delivery Science and Technology, 2019, 52, 110-121.	or burn wound	1.4	29
101	One-hit wonder: Late after burn injury, granulocytes can clear one bacterial infection b control a subsequent infection. Burns, 2019, 45, 627-640.	ut cannot	1.1	10
102	A harlequin ichthyosis pig model with a novel ABCA12 mutation can be rescued by acit Journal of Molecular Cell Biology, 2019, 11, 1029-1041.	tretin treatment.	1.5	10
103	Using Bioactive Glasses in the Management of Burns. Frontiers in Bioengineering and 1 2019, 7, 62.	Biotechnology,	2.0	47
104	<i>In Vivo</i> Models for the Study of Fibrosis. Advances in Wound Care, 2019, 8, 645	5-654.	2.6	27
105	Animal Models to Study Mucormycosis. Journal of Fungi (Basel, Switzerland), 2019, 5,	27.	1.5	25
106	Wound healing models: A systematic review of animal and non-animal models. Wound 24, 8-17.	Medicine, 2019,	2.7	67
107	Novel pharmacotherapy for burn wounds: what are the advancements. Expert Opinion Pharmacotherapy, 2019, 20, 305-321.	on	0.9	26
108	Dual layered wound dressing with simultaneous temperature & antibacterial regu properties. Materials Science and Engineering C, 2019, 94, 1077-1082.	lation	3.8	13
109	Effect of a single dose of subcutaneous meloxicam before knife castration alone or con hot-iron branding on scrotal healing, inflammatory response, and behaviour in 2-mo-ol over 42Âd post procedure. Canadian Journal of Animal Science, 2019, 99, 179-190.	mbined with d beef calves	0.7	1

#	Article	IF	CITATIONS
110	Parameterising continuum models of heat transfer in heterogeneous living skin using experimental data. International Journal of Heat and Mass Transfer, 2019, 128, 964-975.	2.5	7
111	Temporal shifts in the mycobiome structure and network architecture associated with a rat (Rattus) Tj ETQq1 1 C).784314 i 0.3	rg₽T /Overl○
112	Mouse models in burns research: Characterisation of the hypermetabolic response to burn injury. Burns, 2020, 46, 663-674.	1.1	30
113	Mass production of 2D materials by intermediate-assisted grinding exfoliation. National Science Review, 2020, 7, 324-332.	4.6	100
114	Animal models in chronic wound healing research. , 2020, , 197-224.		2
115	Increased oxidative phosphorylation in lymphocytes does not atone for decreased cell numbers after burn injury. Innate Immunity, 2020, 26, 403-412.	1.1	6
116	Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Research and Therapy, 2020, 11, 18.	2.4	23
117	Current status and future outlook of nanoâ€based systems for burn wound management. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1934-1952.	1.6	29
118	Beneficial Effect of Intense Pulsed Light on the Wound Healing in Diabetic Rats. Lasers in Surgery and Medicine, 2020, 52, 530-536.	1.1	11
119	Distinct Tissue Damage and Microbial Cues Drive Neutrophil and Macrophage Recruitment to Thermal Injury. IScience, 2020, 23, 101699.	1.9	13
120	Management of Thermal Injuries in Donkeys: A Case Report. Animals, 2020, 10, 2131.	1.0	0
121	Comparison of hypertrophic scarring on a red Duroc pig and a Guangxi Mini Bama pig. Scars, Burns & Healing, 2020, 6, 205951312093090.	0.6	5
122	The effects of crossâ€linking a collagenâ€elastin dermal template on scaffold bioâ€stability and degradation. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1189-1200.	1.3	6
123	Nanotechnology-Based Medical Devices for the Treatment of Chronic Skin Lesions: From Research to the Clinic. Pharmaceutics, 2020, 12, 815.	2.0	27
124	Advanced engineering of third-generation lysins and formulation strategies for clinical applications. Critical Reviews in Microbiology, 2020, 46, 548-564.	2.7	41
125	The New Pharmaceutical Compositions of Zinc Oxide Nanoparticles and Triterpenoids for the Burn Treatment. Pharmaceuticals, 2020, 13, 207.	1.7	8
126	Efficacy of <i>Lobelia alsinoides</i> Lam ethanolic extract on a thirdâ€degree burn: An experimental study on rats. Dermatologic Therapy, 2020, 33, e14242.	0.8	5
127	Activation of ER stress signalling increases mortality after a major trauma. Journal of Cellular and Molecular Medicine, 2020, 24, 9764-9773.	1.6	9

#	Article	IF	CITATIONS
128	The curative effects of the traditional Chinese herbal medicine "Jinchuang ointment―on excisional wounds. Chinese Medicine, 2020, 15, 41.	1.6	4
129	Monitoring the Progress and Healing Status of Burn Wounds Using Infrared Spectroscopy. Applied Spectroscopy, 2020, 74, 758-766.	1.2	3

Evolutionary transformation of the subcutaneous muscle in rodents of Ctenohystrica (Rodentia:) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6

131	An Invertebrate Burn Wound Model That Recapitulates the Hallmarks of Burn Trauma and Infection Seen in Mammalian Models. Frontiers in Microbiology, 2020, 11, 998.	1.5	24
132	Mesenchymal Stem Cells for Chronic Wound Healing: Current Status of Preclinical and Clinical Studies. Tissue Engineering - Part B: Reviews, 2020, 26, 555-570.	2.5	115
133	Creation of rapid and reproducible burn in animal model with a newly developed burn device. Burns, 2020, 46, 1142-1149.	1.1	7
134	Covalently Grafted 2-Methacryloyloxyethyl Phosphorylcholine Networks Inhibit Fibrous Capsule Formation around Silicone Breast Implants in a Porcine Model. ACS Applied Materials & Interfaces, 2020, 12, 30198-30212.	4.0	15
135	Geometric framework reveals that a moderate protein, high carbohydrate intake is optimal for severe burn injury in mice. British Journal of Nutrition, 2020, 123, 1056-1067.	1.2	3
136	Efficient reduction of fibrous capsule formation around silicone breast implants densely grafted with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers by heat-induced polymerization. Biomaterials Science, 2020, 8, 1580-1591.	2.6	18
137	The efficacy of a traditional medicine preparation on second-degree burn wounds in rats. Journal of Ethnopharmacology, 2020, 252, 112570.	2.0	17
138	Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Scientific Reports, 2020, 10, 1032.	1.6	33
139	Comparative Analysis of the Host Response in a Rat Model of Deep-Partial and Full-Thickness Burn Wounds With Pseudomonas aeruginosa Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 466.	1.8	14
140	Burn-Induced Cardiac Mitochondrial Dysfunction via Interruption of the PDE5A-cGMP-PKG Pathway. International Journal of Molecular Sciences, 2020, 21, 2350.	1.8	23
141	Experimental models and methods for cutaneous wound healing assessment. International Journal of Experimental Pathology, 2020, 101, 21-37.	0.6	177
142	Animal Models of Burn Wound Management. , 2020, , .		6
143	A human skin equivalent burn model to study the effect of a nanocrystalline silver dressing on wound healing. Burns, 2021, 47, 417-429.	1.1	14
144	Investigating the effects of walnut ointment on non-healing burn wounds. Burns, 2021, 47, 455-465.	1.1	6
145	Coming to Consensus: What Defines Deep Partial Thickness Burn Injuries in Porcine Models?. Journal of Burn Care and Research, 2021, 42, 98-109.	0.2	15

#	Article	IF	CITATIONS
146	Modeling early thermal injury using an ex vivo human skin model of contact burns. Burns, 2021, 47, 611-620.	1.1	12
147	The use of human ex vivo models in burn research – Developments and perspectives. Burns, 2021, 47, 966-968.	1.1	1
148	The contradictory role of androgens in cutaneous and major burn wound healing. Burns and Trauma, 2021, 9, tkaa046.	2.3	5
149	Nanophyto-gel against multi-drug resistant <i>Pseudomonas aeruginosa</i> burn wound infection. Drug Delivery, 2021, 28, 463-477.	2.5	19
150	Preclinical models of elbow injury and pathology. Annals of Joint, 0, 6, 12-12.	1.0	1
151	A novel human ex vivo skin model to study early local responses to burn injuries. Scientific Reports, 2021, 11, 364.	1.6	26
152	Applications of Decellularized Materials for Tissue Repair. , 2021, , 181-251.		0
153	Skin regeneration is accelerated by a lower dose of multipotent mesenchymal stromal/stem cells—a paradigm change. Stem Cell Research and Therapy, 2021, 12, 82.	2.4	15
154	Persistent Systemic Inflammation in Patients With Severe Burn Injury Is Accompanied by Influx of Immature Neutrophils and Shifts in T Cell Subsets and Cytokine Profiles. Frontiers in Immunology, 2020, 11, 621222.	2.2	41
155	Improving the Inhibitory Effect of Phages against Pseudomonas aeruginosa Isolated from a Burn Patient Using a Combination of Phages and Antibiotics. Viruses, 2021, 13, 334.	1.5	25
156	Establishment of a longâ€ŧerm hypertrophic scar model by injection of anhydrous alcohol: A rabbit model. International Journal of Experimental Pathology, 2021, 102, 105-112.	0.6	6
157	Interleukinâ€6 blockade, a potential adjunct therapy for postâ€burn hypermetabolism. FASEB Journal, 2021, 35, e21596.	0.2	12
158	Evaluation and HPLC characterisation of a new herbal ointment for the treatment of full-thickness burns in rats. Journal of Taibah University Medical Sciences, 2021, 16, 152-161.	0.5	2
159	Carbon dot-based materials for wound healing applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 025006.	0.7	9
160	Serum-derived exosomes accelerate scald wound healing in mice by optimizing cellular functions and promoting Akt phosphorylation. Biotechnology Letters, 2021, 43, 1675-1684.	1.1	5
161	Development of an Experimental Ex Vivo Wound Model to Evaluate Antimicrobial Efficacy of Topical Formulations. International Journal of Molecular Sciences, 2021, 22, 5045.	1.8	23
162	Evaluation of <i>Pseudomonas aeruginosa</i> pathogenesis and therapeutics in militaryâ€relevant animal infection models. Apmis, 2022, 130, 436-457.	0.9	16
163	Non-Thermal Atmospheric Pressure Argon-Sourced Plasma Flux Promotes Wound Healing of Burn Wounds and Burn Wounds with Infection in Mice through the Anti-Inflammatory Macrophages. Applied Sciences (Switzerland), 2021, 11, 5343.	1.3	6

#	Article	IF	Citations
π 164	Recent Advances in Experimental Burn Models. Biology, 2021, 10, 526.	1.3	4
104	Recent Advances in Experimental burn woders. biology, 2021, 10, 520.	1.5	4
165	Promoting effect of pomegranate peel extract on second-degree burn wound-healing through VEGF-A and TGF-β1 regulation. Burns, 2022, 48, 639-648.	1.1	12
166	Histological Studies on a Newly Isolated Bacillus subtilis D10 Protease in the Debridement of Burn Wound Eschars Using Mouse Model. Pharmaceutics, 2021, 13, 923.	2.0	6
167	Tendinopathy and tendon material response to load: What we can learn from small animal studies. Acta Biomaterialia, 2021, 134, 43-56.	4.1	12
168	Evaluation of Wound Healing Activity of Methanolic Crude Extract and Solvent Fractions of the Leaves of Vernonia auriculifera Hiern (Asteraceae) in Mice. Journal of Experimental Pharmacology, 2021, Volume 13, 677-692.	1.5	17
169	The Need for Basic, Translational, and Clinical Research in the Field of Hypertrophic Scars. , 0, , .		0
170	CD14 Involvement in Third-degree Skin Burn-induced Myocardial Injury via the MAPK Signaling Pathway. Cell Biochemistry and Biophysics, 2021, , 1.	0.9	1
171	Adipose browning response to burn trauma is impaired with aging. JCI Insight, 2021, 6, .	2.3	4
172	A sandwich structure composite wound dressing with firmly anchored silver nanoparticles for severe burn wound healing in a porcine model. International Journal of Energy Production and Management, 2021, 8, rbab037.	1.9	14
173	A pilot study to establish an ovalbumin-induced atopic dermatitis minipig model. Journal of Veterinary Research (Poland), 2021, 65, 307-313.	0.3	4
174	IGF-1-Expressing Placenta-Derived Mesenchymal Stem Cells Promote Scalding Wound Healing. Journal of Surgical Research, 2021, 265, 100-113.	0.8	11
175	Burns and biofilms: priority pathogens and in vivo models. Npj Biofilms and Microbiomes, 2021, 7, 73.	2.9	44
176	A 3D In Vitro Model for Burn Wounds: Monitoring of Regeneration on the Epidermal Level. Biomedicines, 2021, 9, 1153.	1.4	5
177	A Nonlethal Murine Flame Burn Model Leads to a Transient Reduction in Host Defenses and Enhanced Susceptibility to Lethal Pseudomonas aeruginosa Infection. Infection and Immunity, 2021, 89, e0009121.	1.0	4
178	Carotid smooth muscle contractility changes after severe burn. Scientific Reports, 2021, 11, 18094.	1.6	1
179	Senescence in a cell culture model for burn wounds. Experimental and Molecular Pathology, 2021, 122, 104674.	0.9	3
180	Human organoid biofilm model for assessing antibiofilm activity of novel agents. Npj Biofilms and Microbiomes, 2021, 7, 8.	2.9	33
181	Underlying mechanisms of sarcopenic obesity. , 2021, , 231-248.		0

ARTICLE

1

182 Sex Hormones and Immunosenescence. , 2018, , 1-58.

183	Sex Hormones and Immunosenescence. , 2019, , 1457-1514.		3
184	Noninvasive intratumoral thermal dose determination during <i>inÂvivo</i> magnetic nanoparticle hyperthermia: combining surface temperature measurements and computer simulations. International Journal of Hyperthermia, 2020, 37, 120-140.	1.1	12
185	High Versus Low Volume Fluid Resuscitation Strategies in a Porcine Model (Sus scrofa) of Combined Thermal and Traumatic Brain Injury. Shock, 2021, 55, 536-544.	1.0	3
186	Development of a reproducible in vivo laser-induced scar model for wound healing study and management. Biomedical Optics Express, 2019, 10, 1965.	1.5	7
187	Differentiation of burn wounds in an in vivo porcine model using terahertz spectroscopy. Biomedical Optics Express, 2020, 11, 6528.	1.5	28
188	Development of a Consistent and Reproducible Porcine Scald Burn Model. PLoS ONE, 2016, 11, e0162888.	1.1	26
189	Initial Characterization of the Pig Skin Bacteriome and Its Effect on In Vitro Models of Wound Healing. PLoS ONE, 2016, 11, e0166176.	1.1	35
190	Generation of DKK1 transgenic Tibet minipigs by somatic cell nuclear transfer (SCNT). Oncotarget, 2017, 8, 74331-74339.	0.8	4
191	Geometry-Dependent Spectroscopic Contrast in Deep Tissues. SSRN Electronic Journal, 0, , .	0.4	1
192	Effects of Hair Follicle Stem Cells on Partial-Thickness Burn Wound Healing and Tensile Strength. Iranian Biomedical Journal, 2020, 24, 99-109.	0.4	28
193	A Study on the Effects of Perovskia abrotanoides Karel on Experimental Skin Burn in Male Rat: in-vivo and in-vitro Findings. Majallah-i 'ilmi Pizhuhishi-i Danishgah-i 'Ulum-i Pizishki Va Khadamat-i Bihdashti-i Darmani-i Zanjan, 2019, 27, 17-22.	0.1	2
195	Destructive and Reparative Processes in Rat's Skin After Burn in Presence of Stem and Progenitor Cell Bioregulators. Problems of Cryobiology and Cryomedicine, 2018, 28, 024-028.	0.3	0
197	Influence of solution of lactoprotein with sorbitol on ultrastructural changes in lungs of rats in the condition of burn shock. Regulatory Mechanisms in Biosystems, 2018, 9, 440-445.	0.5	0
198	Role of AhR and Foxo1 in skin inflammation in burn animal model via MAPK signaling pathway. Cellular and Molecular Biology, 2020, 66, 53.	0.3	1
199	Design and Evaluation of a Scalding Animal Model by the Boiling Water Method. Medical Lasers, 2020, 9, 51-57.	0.2	2
201	Structural transformations of thermal burn wounds in rats under the influence of Semax and Selank neuropeptides. Farmatsiya I Farmakologiya, 2020, 7, 321-331.	0.2	0
202	Effects of Fibroblast Growth Factor 2 on Burn Injury and Repair Process: Analysis Using a Refined Mouse Model. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e2757.	0.3	3

#	Article	IF	CITATIONS
203	A database on differentially expressed microRNAs during rodent bladder healing. Scientific Reports, 2021, 11, 21881.	1.6	2
204	Murine Model of Thermal Burn Injury for Evaluating Protein Therapeutics Derived from Viruses. Methods in Molecular Biology, 2021, 2225, 93-105.	0.4	0
205	Comparison of systemic inflammation response and vital organ damage induced by severe burns in different area. International Journal of Clinical and Experimental Pathology, 2015, 8, 6367-76.	0.5	14
206	To Treat or Not to Treat: The Effects of Pain on Experimental Parameters. Comparative Medicine, 2017, 67, 469-482.	0.4	37
207	Standardization of deep partial-thickness scald burns in C57BL/6 mice. International Journal of Burns and Trauma, 2018, 8, 26-33.	0.2	12
208	Evaluating a Variable Porosity Wound Dressing With Anti-Scar Properties in a Porcine Model of Wound Healing. Eplasty, 2018, 18, e20.	0.4	0
209	In Vitro Characterization of Variable Porosity Wound Dressing With Anti-Scar Properties. Eplasty, 2018, 18, e21.	0.4	2
210	An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival. American Journal of Translational Research (discontinued), 2018, 10, 1600-1610.	0.0	4
211	Interference of with in the treatment of infected burns in Wistar rats. Iranian Journal of Basic Medical Sciences, 2021, 24, 143-149.	1.0	3
212	A Modified Method To Create A Porcine Deep Dermal Burn Model. Annals of Burns and Fire Disasters, 2021, 34, 187-191.	0.3	1
213	VEGETABLE CELLULOSE NANOFIBER DRESSING AIDS IN THE HEALING PROCESS OF THIRD-DEGREE BURNS? STUDY ON RATS. Arquivos Brasileiros De Cirurgia Digestiva: ABCD = Brazilian Archives of Digestive Surgery, 2021, 34, e1586.	0.5	0
214	Comparison of Thermal Burn-Induced and Excisional-Induced Scarring in Animal Models: A Review of the Literature. Advances in Wound Care, 2022, 11, 150-162.	2.6	0
215	A regenerative approach to the pharmacological management of hard-to-heal wounds. Biochimie, 2022, 194, 67-78.	1.3	3
216	Third-degree burn mouse treatment using recombinant human fibroblast growth factor 2. Growth Factors, 2020, 38, 282-290.	0.5	5
217	VEGETABLE CELLULOSE NANOFIBER DRESSING AIDS IN THE HEALING PROCESS OF THIRD-DEGREE BURNS? STUDY ON RATS. Arquivos Brasileiros De Cirurgia Digestiva: ABCD = Brazilian Archives of Digestive Surgery, 2021, 34, e1586.	0.5	3
218	Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. Tissue Engineering - Part B: Reviews, 2022, 28, 1151-1167.	2.5	29
219	Large animal models of thermal injury. Methods in Cell Biology, 2022, 168, 191-219.	0.5	0
220	History of controlled trials in medicine: real priorities are little-known. Report 3. Quasi-randomized and randomized trials in humans and animals. Farmakoekonomika, 2022, 14, 593-631.	0.4	1

#	Article	IF	CITATIONS
221	Effects of mesenchymal stem cell culture on radio sterilized human amnion or radio sterilized pig skin in burn wound healing. Cell and Tissue Banking, 2024, 25, 255-267.	0.5	4
222	Amnion bilayer for dressing and graft replacement for delayed grafting of full-thickness burns; A study in a rat model. PLoS ONE, 2022, 17, e0262007.	1.1	1
223	A regenerative approach to the pharmacological management of hard-to-heal wounds. Biochimie, 2022, 196, 131-142.	1.3	9
224	Deep neural network classification of in vivo burn injuries with different etiologies using terahertz time-domain spectral imaging. Biomedical Optics Express, 2022, 13, 1855.	1.5	11
225	<i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> Approaches for Investigation of Skin Scarring: Human and Animal Models. Advances in Wound Care, 2023, 12, 97-116.	2.6	6
226	Stem Cell-Based Tissue Engineering for the Treatment of Burn Wounds: A Systematic Review of Preclinical Studies. Stem Cell Reviews and Reports, 2022, 18, 1926-1955.	1.7	9
228	Small animal models of thermal injury. Methods in Cell Biology, 2022, 168, 161-189.	0.5	5
229	The Australian 2019/2020 Black Summer Bushfires: Analysis of the Pathology, Treatment Strategies and Decision Making About Burnt Livestock. Frontiers in Veterinary Science, 2022, 9, 790556.	0.9	9
230	The panniculus carnosus muscle: a missing link in the chronicity of heel pressure ulcers?. Journal of the Royal Society Interface, 2022, 19, 20210631.	1.5	4
231	Exposure of Skin Homografts from Related Living Donors to Radiotherapy and Its Effects on Acute Rejection and Wound Healing in Children with Deep Burns: A Randomized Controlled Trial. Indian Journal of Plastic Surgery, 2022, 55, 81-86.	0.2	0
232	Tổng quan môhình nghiên cứu vết thương thá»±c nghiệm và phưÆ;ng pháp đánh giá quá † phương pháp đánh giá quá trình liá»n vết thương. , 2022, , 7-17.	trình liá»	n yá⁰;t thÆ
233	Thermally damaged porcine skin is not a surrogate mechanical model of human skin. Scientific Reports, 2022, 12, 4565.	1.6	4
234	Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacological Reviews, 2022, 74, 387-438.	7.1	30
235	Genome Sequencing of <i>Pseudomonas aeruginosa</i> strain M2 illuminates traits of an opportunistic pathogen of burn wounds. G3: Genes, Genomes, Genetics, 2022, , .	0.8	4
236	A Modified Burn Comb Model With a New Dorsal Frame That Allows for Local Treatment in Partial-Thickness Burns in Rats. Journal of Burn Care and Research, 2022, , .	0.2	1
237	Comparative Transcriptome Analysis of Superficial and Deep Partial-Thickness Burn Wounds in Yorkshire vs Red Duroc Pigs. Journal of Burn Care and Research, 2022, 43, 1299-1311.	0.2	4
238	Vitamin C enhances porcine cloned embryo development and improves the derivation of embryonic stem-like cells. Reproductive Biology, 2022, 22, 100632.	0.9	6
239	Tổng quan môhình nghiên cứu váºįt thưÆjng thá»±c nghiệm và phưÆjng phÃjp ÄʻÃjnh giÃj quÃj quan vổmá»™t số môhình nghiên cứu liá»n váºįt thưÆjng trên Äʻá»™ng váºt. , 2021, , 58-69.	trình liá»	n yá⁰;t th∕∃

ARTICLE IF CITATIONS Experimental Modeling of Sepsis. Biology Bulletin Reviews, 2021, 11, 65-77. 0.3 0 240 Evaluation of Safety and Efficacy of an Ayurvedic Ointment against Acute Burn Injury in Wistar Rats. 241 0.2 Research Journal of Pharmacy and Technology, 2022, , 1201-1210. Aging Impairs the Cellular Interplay between Myeloid Cells and Mesenchymal Cells during Skin Healing 253 4 in Mice. , 2022, 13, 540. Oral glutamine dipeptide or oral glutamine free amino acid reduces burned injury progression in rats. 254 0.4 Brazilian Journal of Biology, 2021, 84, e250936. Effect of Manual Acupuncture and Laser Acupuncture on Wound Closure in Rat with Deep Partial 255 0.3 4 Thickness Burn Injury. Medical Acupuncture, 2022, 34, 240-250. Wound contraction rate in excised and unexcised burn wounds with laser photobiomodulation: 1.1 Systematic review and meta-analysis of preclinical studies. Burns, 2023, 49, 261-274. Tie-Over Bolster Pressure Dressing Improves Outcomes of Skin Substitutes Xenografts on Athymic 257 1.8 2 Mice. International Journal of Molecular Sciences, 2022, 23, 5507. Burn-Induced Local and Systemic Immune Response: Systematic Review and Meta-Analysis of Animal 258 0.3 Studies. Journal of Investigative Dermatology, 2022, 142, 3093-3109.e15. Relation Between Gender and Concomitant Medications With Erythropoietin-Treatment on Wound 259 Healing in Burn Patients. Post Hoc Subgroup-Analysis of the Randomized, Placebo-Controlled Clinical 2 1.6 Trial "EPO in Burns― Frontiers in Pharmacology, 0, 13, . Advantages and Disadvantages of Using Small and Large Animals in Burn Research: Proceedings of the 0.2 2021 Research Special Interest Group. Journal of Burn Care and Research, 2022, 43, 1032-1041. Pentoxifylline/Valsartan co-delivery in liposomal gel alters the inflammatory HMGB-1/ TLR pathway and promotes faster healing in burn wounds: A promising repurposed approach. International Journal of 262 4 2.6 Pharmaceutics, 2022, 625, 122129. Current understanding of thermo(dys)regulation in severe burn injury and the pathophysiological influence of hypermetabolism, adrenergic stress and hypothalamic regulationâ€"a systematic review. 2.3 Burns and Trauma, 2022, 10, . Systemic anti-inflammatory effects of mesenchymal stem cells in burn: A systematic review of animal 264 0.3 2 studies. Journal of Clinical and Translational Research, 0, , . Chloroquine alleviates the heat-induced to injure via autophagy and apoptosis mechanisms in skin cell and mouse models. PLoS ONE, 2022, 17, e0272797. 1.1 An automated high-throughput platform for experimental study of burn injuries - in vitro and ex vivo. 266 1.1 0 Burns, 2022, , . An Evaluation of the Treatment of Full-Thickness Wounds Using Adipose Micro-Fragments within a Liquid Dermal Scaffold. European Journal of Burn Care, 2022, 3, 457-471. Study of the Effectiveness of Drugs Based on Molecular Complexes of Adenosine-polymer on the 268 0.2 2 Modél of Thermal Burn. Drug Development and Registration, 2022, 11, 209-219. Effects and Progress of Photo-Crosslinking Hydrogels in Wound Healing Improvement. Gels, 2022, 8, 269 2.1

#	Article	IF	CITATIONS
270	The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
271	Effect of All-trans Retinoic Acid on Panniculus Carnosus Muscle Regeneration in Fetal Mouse Wound Healing. Plastic and Reconstructive Surgery - Global Open, 2022, 10, e4533.	0.3	1
272	S100A9‑containing serum exosomes obtained from patients with burn injuries promote myocardial cell pyroptosis through NLRP3. Experimental and Therapeutic Medicine, 2022, 24, .	0.8	0
273	Effectiveness of four topical treatment methods in a rat model of superficial partial-thickness burn injury: the advantages of combining zinc-hyaluronan gel with silver foam dressing. Injury, 2022, 53, 3912-3919.	0.7	3
274	Soluble chitosan derivative treats wound infections and promotes wound healing in a novel MRSA-infected porcine partial-thickness burn wound model. PLoS ONE, 2022, 17, e0274455.	1.1	2
275	The role and therapeutic potential of gut microbiome in severe burn. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
276	Wound Healing and Anti-Inflammatory Effects of a Newly Developed Ointment Containing Jujube Leaves Extract. Life, 2022, 12, 1947.	1.1	2
277	A Bioluminescence-Based Ex Vivo Burn Wound Model for Real-Time Assessment of Novel Phage-Inspired Enzybiotics. Pharmaceutics, 2022, 14, 2553.	2.0	0
278	Hydroxychloroquine repairs burn damage through the Wnt/β-catenin pathway. Chemico-Biological Interactions, 2022, , 110309.	1.7	0
279	Neutrophil phenotypes implicated in the pathophysiology of post-traumatic sepsis. Frontiers in Medicine, 0, 9, .	1.2	1
280	C188-9, a specific inhibitor of STAT3 signaling, prevents thermal burn-induced skeletal muscle wasting in mice. Frontiers in Pharmacology, 0, 13, .	1.6	1
281	Preliminary Study on Human Adipose Stem Cells Promoting Skin Wound Healing through Notch Signaling Pathway. Current Stem Cell Research and Therapy, 2023, 18, 699-711.	0.6	0
282	Full Skin Equivalent Models for Simulation of Burn Wound Healing, Exploring Skin Regeneration and Cytokine Response. Journal of Functional Biomaterials, 2023, 14, 29.	1.8	1
283	Modulation of Burn Hypermetabolism in Preclinical Models. Cureus, 2023, , .	0.2	1
285	Fully Guided Tooth Bud Ablation in Pigs Results in Complete Tooth Bud Removal and Molar Agenesis. Journal of Oral and Maxillofacial Surgery, 2023, 81, 456-466.	0.5	1
286	Skin 11β-hydroxysteroid dehydrogenase type 1 enzyme expression regulates burn wound healing and can be targeted to modify scar characteristics. Burns and Trauma, 2023, 11, .	2.3	2
287	Laser-Induced Porcine Model of Experimental Retinal Vein Occlusion: An Optimized Reproducible Approach. Medicina (Lithuania), 2023, 59, 243.	0.8	2
288	Murine scald models characterize the role of neutrophils and neutrophil extracellular traps in severe burns. Frontiers in Immunology, 0, 14, .	2.2	2

#	Article	IF	CITATIONS
289	Heating pretreatment of the recipient site enhances survival of transplanted fat in a mouse model. Plastic and Reconstructive Surgery, 0, Publish Ahead of Print, .	0.7	0
290	Estudo pré-clÃnico de queimaduras experimentais tratadas com fotobiomodulação e membrana amniótica humana, isoladas e associadas. Revista Latino-Americana De Enfermagem, 0, 31, .	0.4	0
291	Estudio preclÃnico de quemaduras experimentales tratadas con fotobiomodulación y membrana amniótica humana, solas y combinadas. Revista Latino-Americana De Enfermagem, 0, 31, .	0.4	0
292	Preclinical study of experimental burns treated with photobiomodulation and Human Amniotic Membrane, both isolated and associated. Revista Latino-Americana De Enfermagem, 0, 31, .	0.4	Ο
293	The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn—A Review. Pharmaceutics, 2023, 15, 633.	2.0	5
294	Multilayer In Vitro Human Skin Tissue Platforms for Quantitative Burn Injury Investigation. Bioengineering, 2023, 10, 265.	1.6	1
295	Role and Mechanism of Endoplasmic Reticulum Stress in Mice Pancreatic Islet Dysfunction After Severe Burns. Journal of Burn Care and Research, 0, , .	0.2	0
296	Experimentally Induced Burns in Rats Treated with Innovative Polymeric Films Type Therapies. Biomedicines, 2023, 11, 852.	1.4	2
297	Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines, 2023, 11, 1056.	1.4	11
301	An Integrative Model for Endophenotypes Relevant to Posttraumatic Stress Disorder (PTSD): Detailed Methodology for Inescapable Tail Shock Stress (IS) and Juvenile Social Exploration (JSE). Neuromethods, 2023, , 135-168.	0.2	0
304	Mesenchymal stem cell-derived exosomes: versatile nanomaterials for skin wound treatment. Nano Research, 0, , .	5.8	1