The emergence of perovskite solar cells

Nature Photonics 8, 506-514 DOI: 10.1038/nphoton.2014.134

Citation Report

#	ARTICLE	IF	CITATIONS
6	<pre><mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>W<mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml: b_2014_90<="" effect="" electrons_an_physical="" interaction_semicore="" of="" pre="" review="" spin-orbit=""></mml:></mml:msub></mml:mrow></mml:mi></mml:mrow></mmi:math></pre>	i> 1.1 mn>3 <td>nrow> 126 nl:mn> </td>	nrow> 126 nl:mn>
7	Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications, 2014, 5, 5757.	5.8	787
8	Lasing behaviors upon phase transition in solution-processed perovskite thin films. Applied Physics Letters, 2014, 105, .	1.5	59
9	Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites. Nature Communications, 2014, 5, 5900.	5.8	247
10	Engineering Nanostructures by Binding Single Molecules to Single-Walled Carbon Nanotubes. ACS Nano, 2014, 8, 12748-12754.	7.3	10
11	Shallow halogen vacancies in halide optoelectronic materials. Physical Review B, 2014, 90, .	1.1	119
12	Solar cell woes. Nature Photonics, 2014, 8, 665-665.	15.6	23
13	Structure and properties of complex hydride perovskite materials. Nature Communications, 2014, 5, 5706.	5.8	168
14	β-(p-Carboxyaminophenyl)porphyrin derivatives: new dyes for TiO2 dye-sensitized solar cells. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	7
15	Perovskite based solar cells: A milestone towards cheaper PV technology. , 2014, , .		1
16	Solution processed flexible planar hybrid perovskite solar cells. Proceedings of SPIE, 2014, , .	0.8	5
17	Qualifying composition dependent <i>p</i> and <i>n</i> self-doping in CH3NH3PbI3. Applied Physics Letters, 2014, 105, .	1.5	518
18	p–i–n Heterojunctions with BiFeO ₃ Perovskite Nanoparticles and p- and n-Type Oxides: Photovoltaic Properties. ACS Applied Materials & Interfaces, 2014, 6, 20479-20486.	4.0	82
19	Visible photon multiplication in Ce ³⁺ –Tb ³⁺ doped borate glasses for enhanced solar cells. Journal Physics D: Applied Physics, 2014, 47, 445101.	1.3	6
20	Morphology and Carrier Extraction Study of Organic–Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy. Journal of Physical Chemistry Letters, 2014, 5, 3849-3853.	2.1	84
21	Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. Journal of the American Chemical Society, 2014, 136, 17116-17122.	6.6	407
22	Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20454-20461.	5.2	147
23	Solid state plasmonic dye sensitized solar cells based on solution processed perovskite CsSnl ₃ as the hole transporter. RSC Advances, 2014, 4, 55658-55665.	1.7	32

#	Article	IF	Citations
24	Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Advances, 2014, 4, 62971-62977.	1.7	182
25	Intensity-Modulated Scanning Kelvin Probe Microscopy for Probing Recombination in Organic Photovoltaics. ACS Nano, 2014, 8, 10799-10807.	7.3	58
26	Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators. ACS Nano, 2014, 8, 10947-10952.	7.3	330
27	Anomalous Alloy Properties in Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2014, 5, 3625-3631.	2.1	231
28	Perovskite fever. Nature Materials, 2014, 13, 837-837.	13.3	57
29	Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics, 2014, 16, 22476-22481.	1.3	447
30	Liquid phase deposition of TiO ₂ nanolayer affords CH ₃ NH ₃ PbI ₃ /nanocarbon solar cells with high open-circuit voltage. Faraday Discussions, 2014, 176, 271-286.	1.6	54
31	Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH ₂ CHî€NH ₂ Pbl ₃ . Journal of Materials Chemistry A, 2014, 2, 17115-17121.	5.2	174
32	Materials Processing Routes to Trap-Free Halide Perovskites. Nano Letters, 2014, 14, 6281-6286.	4.5	671
33	Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1545-1551.	1.5	123
34	Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. Journal of Materials Chemistry A, 2014, 2, 19136-19140.	5.2	117
35	Preparation of Single-Phase Films of CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ with Sharp Optical Band Edges. Journal of Physical Chemistry Letters, 2014, 5, 2501-2505.	2.1	385
36	An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics. Materials Research Society Symposia Proceedings, 2015, 1771, 33-44.	0.1	1
37	Vapor-assisted solution process for perovskite materials and solar cells. MRS Bulletin, 2015, 40, 667-673.	1.7	39
38	Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Communications, 2015, 5, 265-275.	0.8	662
39	Anodized aluminum on transparent substrates as scaffold for perovskite growth. , 2015, , .		0
40	4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells. Optics Express, 2015, 23, A1700.	1.7	31
41	Charge arrier Dynamics and Mobilities in Formamidinium Lead Mixedâ€Halide Perovskites. Advanced Materials, 2015, 27, 7938-7944.	11.1	343

#	Article	IF	CITATIONS
42	Temperatureâ€Dependent Chargeâ€Carrier Dynamics in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films. Advanced Functional Materials, 2015, 25, 6218-6227.	7.8	785
43	Photocatalytic Reduction of Carbon Dioxide. , 2015, , 186-199.		1
44	Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Physical Review B, 2015, 92, .	1.1	100
45	New class of planar ferroelectric Mott insulators via first-principles design. Physical Review B, 2015, 92, .	1.1	4
46	Fröhlich Electron-Phonon Vertex from First Principles. Physical Review Letters, 2015, 115, 176401.	2.9	232
47	Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Scientific Reports, 2015, 5, 14083.	1.6	200
50	Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices. Chemistry Letters, 2015, 44, 720-729.	0.7	216
51	Substrate-induced interfacial plasmonics for photovoltaic conversion. Scientific Reports, 2015, 5, 14497.	1.6	24
52	Dipole-allowed direct band gap silicon superlattices. Scientific Reports, 2015, 5, 18086.	1.6	37
53	Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites. Applied Physics Letters, 2015, 107, .	1.5	102
54	Improving the Extraction of Photogenerated Electrons with SnO ₂ Nanocolloids for Efficient Planar Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 7200-7207.	7.8	194
55	Highâ€Quality Mixedâ€Organicâ€Cation Perovskites from a Phaseâ€Pure Nonâ€stoichiometric Intermediate (FAI) _{1â^'} <i>_x</i> â€PbI ₂ for Solar Cells. Advanced Materials, 2015, 27, 4918-4923.	11.1	140
56	Square entimeter Solutionâ€Processed Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells with Efficiency Exceeding 15%. Advanced Materials, 2015, 27, 6363-6370.	11.1	311
57	Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500615.	10.2	567
58	Lightâ€Induced Selfâ€Poling Effect on Organometal Trihalide Perovskite Solar Cells for Increased Device Efficiency and Stability. Advanced Energy Materials, 2015, 5, 1500721.	10.2	214
59	Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501066.	10.2	395
60	Copper(I) Iodide as Holeâ€Conductor in Planar Perovskite Solar Cells: Probing the Origin of <i>J</i> – <i>V</i> Hysteresis. Advanced Functional Materials, 2015, 25, 5650-5661.	7.8	260
61	Resistive Switching Behavior in Organic–Inorganic Hybrid CH ₃ NH ₃ PbI _{3<i>â^x</i>} Cl <i>_x</i> Perovskite for Resistive Random Access Memory Devices Advanced Materials 2015 27 6170-6175	11.1	469

#	Article	IF	CITATIONS
63	Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes. Advanced Energy Materials, 2015, 5, 1500569.	10.2	285
64	Tin―and Leadâ€Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective. Advanced Energy Materials, 2015, 5, 1501119.	10.2	197
65	Methylamineâ€Gasâ€Induced Defectâ€Healing Behavior of CH ₃ NH ₃ PbI ₃ Thin Films for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9705-9709.	7.2	377
66	Morphologyâ€Controlled Synthesis of Organometal Halide Perovskite Inverse Opals. Angewandte Chemie - International Edition, 2015, 54, 13806-13810.	7.2	68
67	Photoluminescence and electroluminescence imaging of perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1697-1705.	4.4	76
68	A promising unisource thermal evaporation for <i>in situ</i> fabrication of organolead halide perovskite CH ₃ NH ₃ Pbl ₃ thin film. Progress in Photovoltaics: Research and Applications, 2015, 23, 1901-1907.	4.4	28
69	Selective Deposition of Insulating Metal Oxide in Perovskite Solar Cells with Enhanced Device Performance. ChemSusChem, 2015, 8, 2625-2629.	3.6	10
70	Improving the performance of Sb ₂ Se ₃ thin film solar cells over 4% by controlled addition of oxygen during film deposition. Progress in Photovoltaics: Research and Applications, 2015, 23, 1828-1836.	4.4	120
71	Singleâ€Layer Lightâ€Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films. Advanced Materials, 2015, 27, 5196-5202.	11.1	288
72	Allâ€Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 2015, 27, 7101-7108.	11.1	1,095
75	Molecular Engineering of Organic Dyes with a Holeâ€Extending Donor Tail for Efficient Allâ€Solidâ€State Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 2529-2536.	3.6	18
76	Controlled growth of PbI ₂ nanoplates for rapid preparation of CH ₃ NH ₃ PbI ₃ in planar perovskite solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2708-2717.	0.8	63
77	Perovskite Microdisk Microlasers Selfâ€Assembled from Solution. Advanced Materials, 2015, 27, 3405-3410.	11.1	352
78	Bismuth Based Hybrid Perovskites A ₃ Bi ₂ I ₉ (A: Methylammonium or) Tj ET	Qq] 1 0.7	84314 rgB⊤ 1,017 rgB⊤
79	Lead Replacement in CH ₃ NH ₃ Pbl ₃ Perovskites. Advanced Electronic Materials, 2015, 1, 1500089.	2.6	67
80	Microemulsionâ€based Synthesis of AgSCN Nanoparticles and Its Analogues. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1510-1514.	0.6	4
81	New Research in Solar Cells: Urbach Tails and Open Circuit Voltage. Elements, 2015, 11, .	0.0	8
82	Perovskite Solar Cells: Potentials, Challenges, and Opportunities. International Journal of Photoenergy, 2015, 2015, 1-13.	1.4	65

#	Article	IF	CITATIONS
85	Amplification of light collection in solid-state dye-sensitized solar cells via the antenna effect through supramolecular assembly. Physical Chemistry Chemical Physics, 2015, 17, 9910-9918.	1.3	17
86	Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 2200-2205.	2.1	205
87	Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 2015, 9, 444-449.	15.6	916
88	Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7, 10595-10599.	2.8	294
89	Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices. APL Materials, 2015, 3, .	2.2	69
90	Controllable Sequential Deposition of Planar CH ₃ NH ₃ PbI ₃ Perovskite Films via Adjustable Volume Expansion. Nano Letters, 2015, 15, 3959-3963.	4.5	245
91	Beyond Shockley–Queisser: Molecular Approaches to High-Efficiency Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 2367-2378.	2.1	142
92	Crystal Morphologies of Organolead Trihalide in Mesoscopic/Planar Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2292-2297.	2.1	93
93	Band Gap Tuning of CH ₃ NH ₃ Pb(Br _{1–<i>x</i>} Cl _{<i>x</i>}) ₃ Hybrid Perovskite for Blue Electroluminescence. ACS Applied Materials & Interfaces, 2015, 7, 13119-13124.	4.0	339
94	Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 13659-13665.	4.0	132
95	Energy harvesting and storage devices fused into various patterns. Journal of Materials Chemistry A, 2015, 3, 14977-14984.	5.2	22
96	Advances and Recent Trends in Heterogeneous Photo(Electro)-Catalysis for Solar Fuels and Chemicals. Molecules, 2015, 20, 6739-6793.	1.7	61
97	Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic–Organic Lead Halide Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2355-2362.	2.1	64
98	The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 2015, 106, .	1.5	480
99	Elucidating the Reaction Pathways in the Synthesis of Organolead Trihalide Perovskite for High-Performance Solar Cells. Scientific Reports, 2015, 5, 10557.	1.6	48
100	Origin of the Thermal Instability in CH ₃ NH ₃ PbI ₃ Thin Films Deposited on ZnO. Chemistry of Materials, 2015, 27, 4229-4236.	3.2	548
101	C ₆₀ as an Efficient n-Type Compact Layer in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2399-2405.	2.1	324
102	Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells. Organic Electronics, 2015, 24, 106-112.	1.4	94

ARTICLE IF CITATIONS # Templated microstructural growth of perovskite thin films via colloidal monolayer lithography. 103 15.6 119 Energy and Environmental Science, 2015, 8, 2041-2047. Temperature-assisted controlling morphology and charge transport property for highly efficient 104 8.2 perovskite solar cells. Nano Energy, 2015, 15, 540-548. Observation and Mediation of the Presence of Metallic Lead in Organic–Inorganic Perovskite Films. 105 4.0 167 ACS Applied Materials & amp; Interfaces, 2015, 7, 13440-13444. Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based 133 Solar Cells. Chemistry of Materials, 2015, 27, 4814-4820. Using combined photoreflectance and photoluminescence for understanding optical transitions in 107 2 perovskites., 2015,,. General design considerations for making optimal use of new photovoltaic materials., 2015, , . 109 Future prospects of organic and perovskite based solid-state lasers., 2015, , . 1 Kesterite Cu₂ZnSnS₄ as a Low-Cost Inorganic Hole-Transporting Material for 4.0 110 147 High-Efficiency Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 28466-28473. Enhanced amplified spontaneous emission from morphology-controlled organicâe "inorganic halide 111 23 1.7 perovskite films. RSC Advances, 2015, 5, 103674-103679. High-efficiency polymer solar cells with small photon energy loss. Nature Communications, 2015, 6, 5.8 10085. Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers. Journal of the American 113 101 6.6 Chemical Society, 2015, 137, 16043-16048. Reversible Anion Exchange Reaction in Solid Halide Perovskites and Its Implication in Photovoltaics. 114 1.5 Journal of Physical Chemistry C, 2015, 119, 26883-26888. Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from 115 2.1 344 Solutions and Characterization. Journal of Physical Chemistry Letters, 2015, 6, 4827-4839. Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites. Journal of Physical 2.1 280 Chemistry Letters, 2015, 6, 4774-4785. Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. 117 2.1 335 Journal of Physical Chemistry Letters, 2015, 6, 4693-4700. Numerical investigation of capacitance frequency technique for perovskite based solar cells., 2015, , . Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. 119 3.541 Science China Materials, 2015, 58, 953-960. Numerical analysis of hybrid perovskite solar cells using inorganic hole conducting material., 2015, , .

#	Article	IF	CITATIONS
121	Illumination dependent carrier dynamics of CH ₃ NH ₃ PbBr ₃ perovskite. Proceedings of SPIE, 2015, , .	0.8	1
122	Spray deposition of exfoliated MoS2 flakes as hole transport layer in perovskite-based photovoltaics. , 2015, , .		5
123	Development of perovskite solar cells with nanophotonic front electrodes for improved light incoupling. , 2015, , .		1
124	HPbl ₃ : A New Precursor Compound for Highly Efficient Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 1120-1126.	7.8	293
125	New generation solar cells: concepts, trends and perspectives. Chemical Communications, 2015, 51, 3957-3972.	2.2	170
126	Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons, 2015, 2, 378-405.	6.4	110
127	Study of upscaling possibilities for antimony sulfide solid state sensitized solar cells. Journal of Power Sources, 2015, 278, 404-410.	4.0	9
128	Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. Journal of Physical Chemistry Letters, 2015, 6, 326-330.	2.1	472
129	Enhanced Water Vapor Blocking in Transparent Hybrid Polymer–Nanocrystal Films. ACS Macro Letters, 2015, 4, 70-74.	2.3	15
130	Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances, 2015, 5, 23810-23825.	1.7	207
131	Development of Labâ€ŧoâ€Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells. Energy Technology, 2015, 3, 293-304.	1.8	64
132	Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9020-9031.	5.2	104
133	Ultralow Absorption Coefficient and Temperature Dependence of Radiative Recombination of CH ₃ NH ₃ PbI ₃ Perovskite from Photoluminescence. Journal of Physical Chemistry Letters, 2015, 6, 767-772.	2.1	73
134	Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation. Chemistry of Materials, 2015, 27, 1720-1731.	3.2	388
135	A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices. RSC Advances, 2015, 5, 20521-20529.	1.7	73
136	Importance of Orbital Interactions in Determining Electronic Band Structures of Organo-Lead Iodide. Journal of Physical Chemistry C, 2015, 119, 4627-4634.	1.5	66
137	Insights into Planar CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells Using Impedance Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 4444-4453.	1.5	160
138	Highly Efficient Perovskite Solar Cells with Tunable Structural Color. Nano Letters, 2015, 15, 1698-1702.	4.5	289

	CITATION RI	EPORT	
#		IF	CITATIONS
139	Novel heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and application in dye-sensitized solar cells. Dalton Transactions, 2015, 44, 5369-5378.	1.6	10
140	High efficiency sequentially vapor grown n-i-p CH ₃ NH ₃ PbI ₃ perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Materials, 2015, 3, 016105.	2.2	87
141	Enhanced Photovoltaic Performance of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer. Journal of the American Chemical Society, 2015, 137, 2674-2679.	6.6	590
142	Formation of Thin Films of Organic–Inorganic Perovskites for Highâ€Efficiency Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 3240-3248.	7.2	245
143	High Quantum Efficiencies in Polymer Solar Cells at Energy Losses below 0.6 eV. Journal of the American Chemical Society, 2015, 137, 2231-2234.	6.6	365
144	Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 898-907.	2.1	266
145	Pathways for solar photovoltaics. Energy and Environmental Science, 2015, 8, 1200-1219.	15.6	385
146	Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. Journal of Physical Chemistry C, 2015, 119, 3545-3549.	1.5	223
147	Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 2015, 115, 2136-2173.	23.0	852
148	Identifying the Optimum Morphology in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401775.	10.2	67
149	Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Communications, 2015, 6, 6142.	5.8	784
150	Trap States in Lead Iodide Perovskites. Journal of the American Chemical Society, 2015, 137, 2089-2096.	6.6	813
151	Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2, 203-211.	6.4	148
152	Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. Journal of Physical Chemistry Letters, 2015, 6, 535-539.	2.1	265
153	Nanocrystals of Cesium Lead Halide Perovskites (CsPbX ₃ , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 2015, 15, 3692-3696.	4.5	6,814
154	Coâ€Adsorbents: A Key Component in Efficient and Robust Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 588-599.	3.6	52
155	NiO/MAPbI _{3-x} Cl _{<i>x</i>} /PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 4283-4289.	4.0	59
156	Trapâ€Assisted Nonâ€Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials, 2015, 27, 1837-1841.	11.1	684

		CITATION REPORT		
#	Article		IF	Citations
157	Enhanced Performance in Fluoreneâ€Free Organometal Halide Perovskite Lightâ€Emitti Tunable, Low Electron Affinity Oxide Electron Injectors. Advanced Materials, 2015, 27, 1	ng Diodes using 1414-1419.	11.1	283
158	Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared evaporated PbI ₂ /CH ₃ NH ₃ /I multilayers. Journal o Chemistry A, 2015, 3, 9223-9231.	using f Materials	5.2	82
159	Pressure-Induced Conductivity and Yellow-to-Black Piezochromism in a Layered Cu–C Perovskite. Journal of the American Chemical Society, 2015, 137, 1673-1678.	l Hybrid	6.6	185
160	Highâ€Gain and Lowâ€Drivingâ€Voltage Photodetectors Based on Organolead Triiodide Advanced Materials, 2015, 27, 1912-1918.	2 Perovskites.	11.1	560
161	Prospects of Nanoscience with Nanocrystals. ACS Nano, 2015, 9, 1012-1057.		7.3	1,005
162	Pressure-assisted CH ₃ NH ₃ PbI ₃ morphology reco improve the high performance of perovskite solar cells. Journal of Materials Chemistry A 5289-5293.	onstruction to , 2015, 3,	5.2	76
163	Theoretical limits of photovoltaics efficiency and possible improvements by intuitive applearned from photosynthesis and quantum coherence. Renewable and Sustainable Ener 2015, 43, 1073-1089.	proaches gy Reviews,	8.2	153
164	Transformation of the Excited State and Photovoltaic Efficiency of CH ₃ NH ₃ Pbl ₃ Perovskite upon Controlled Expos Air. Journal of the American Chemical Society, 2015, 137, 1530-1538.	ure to Humidified	6.6	1,160
165	Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure V Annealing. Journal of Physical Chemistry Letters, 2015, 6, 493-499.	Japor	2.1	112
166	Size-Dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Em Organic Matrix. Journal of Physical Chemistry Letters, 2015, 6, 446-450.	bedded in an	2.1	160
167	Performance and stability improvements for dye-sensitized solar cells in the presence of coatings. Journal of Power Sources, 2015, 283, 195-203.	luminescent	4.0	81
168	Structural and electronic properties of organo-halide hybrid perovskites from ab initio m dynamics. Physical Chemistry Chemical Physics, 2015, 17, 9394-9409.	nolecular	1.3	130
169	Morphology control of the perovskite films for efficient solar cells. Dalton Transactions, 10582-10593.	2015, 44,	1.6	154
170	Is the Charge Transport in Dyeâ€Sensitized Solar Cells Really Understood?. Advanced M 2447-2452.	aterials, 2015, 27,	11.1	16
171	Giant Photoluminescence Blinking of Perovskite Nanocrystals Reveals Single-Trap Contr Luminescence. Nano Letters, 2015, 15, 1603-1608.	ol of	4.5	185
172	Novel Small Molecular Materials Based on Phenoxazine Core Unit for Efficient Bulk Hete Organic Solar Cells and Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 1808-1	rojunction 814.	3.2	100
173	Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusi NH ₄ Cl. Chemistry of Materials, 2015, 27, 1448-1451.	on of	3.2	123
174	Role of morphology and crystallinity of nanorod and planar electron transport layers on performance and long term durability of perovskite solar cells. Journal of Power Sources 61-67.	the , 2015, 283,	4.0	106

#	Article	IF	CITATIONS
175	Electroluminescence from Organometallic Lead Halide Perovskiteâ€Conjugated Polymer Diodes. Advanced Electronic Materials, 2015, 1, 1500008.	2.6	62
176	Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices. Electrochimica Acta, 2015, 175, 151-161.	2.6	89
177	Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of CH3NH3PbI3â [°] 'xClx layer. Organic Electronics, 2015, 21, 19-26.	1.4	56
178	Roles of Fullereneâ€Based Interlayers in Enhancing the Performance of Organometal Perovskite Thinâ€Film Solar Cells. Advanced Energy Materials, 2015, 5, 1402321.	10.2	289
179	Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 2015, 3, 9032-9050.	5.2	392
180	Room temperature optical properties of organic–inorganic lead halide perovskites. Solar Energy Materials and Solar Cells, 2015, 137, 253-257.	3.0	96
181	Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Materials Chemistry A, 2015, 3, 8178-8184.	5.2	385
182	Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective. Solar Energy Materials and Solar Cells, 2015, 137, 303-310.	3.0	195
183	Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate. Journal of Materials Chemistry A, 2015, 3, 8882-8889.	5.2	19
184	Magnetic field effects in hybrid perovskite devices. Nature Physics, 2015, 11, 427-434.	6.5	227
185	Degradation observations of encapsulated planar CH ₃ NH ₃ PbI ₃ perovskite solar cells at high temperatures and humidity. Journal of Materials Chemistry A, 2015, 3, 8139-8147.	5.2	874
186	Excitonic Many-Body Interactions in Two-Dimensional Lead Iodide Perovskite Quantum Wells. Journal of Physical Chemistry C, 2015, 119, 14714-14721.	1.5	198
187	Charge carrier mobility in hybrid halide perovskites. Scientific Reports, 2015, 5, 12746.	1.6	294
188	Modification of surface chemistry by lattice Sn doping in BiFeO ₃ nanofibers. Europhysics Letters, 2015, 111, 18005.	0.7	9
189	Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society, 2015, 137, 10399-10405.	6.6	347
190	Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells. Journal of Solid State Chemistry, 2015, 231, 20-24.	1.4	30
191	Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano, 2015, 9, 9340-9346.	7.3	254
192	Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature Communications, 2015, 6, 7747.	5.8	1,336

#	Article	IF	CITATIONS
193	Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Letters, 2015, 15, 6095-6101.	4.5	461
194	First-Principles Design and Analysis of an Efficient, Pb-Free Ferroelectric Photovoltaic Absorber Derived from ZnSnO ₃ . Chemistry of Materials, 2015, 27, 5899-5906.	3.2	24
195	Highly Polarizable Triiodide Anions (I ₃ [–]) as Cross-Linkers for Coordination Polymers: Closing the Semiconductive Band Gap. Inorganic Chemistry, 2015, 54, 6087-6089.	1.9	14
196	Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer. Journal of Materials Chemistry A, 2015, 3, 16860-16866.	5.2	92
197	Assessing the Use of BiCuOS for Photovoltaic Application: From DFT to Macroscopic Simulation. Journal of Physical Chemistry C, 2015, 119, 17585-17595.	1.5	31
198	Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 2015, 6, 7497.	5.8	2,154
199	Heterogeneous Charge Carrier Dynamics in Organic–Inorganic Hybrid Materials: Nanoscale Lateral and Depth-Dependent Variation of Recombination Rates in Methylammonium Lead Halide Perovskite Thin Films. Nano Letters, 2015, 15, 4799-4807.	4.5	128
200	Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. Journal of Materials Chemistry A, 2015, 3, 19310-19313.	5.2	70
201	Thin-Film Preparation and Characterization of Cs ₃ Sb ₂ I ₉ : A Lead-Free Layered Perovskite Semiconductor. Chemistry of Materials, 2015, 27, 5622-5632.	3.2	653
202	Controlling CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 16330-16337.	4.0	86
203	Lead iodide perovskite light-emitting field-effect transistor. Nature Communications, 2015, 6, 7383.	5.8	641
204	Absorption Enhancement in Organic–Inorganic Halide Perovskite Films with Embedded Plasmonic Gold Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 18635-18640.	1.5	105
205	Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX ₃ , X = Cl, Br, I). Nano Letters, 2015, 15, 5635-5640.	4.5	1,938
206	Vertical TiO ₂ Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano, 2015, 9, 8420-8429.	7.3	174
207	Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices. Japanese Journal of Applied Physics, 2015, 54, 08KD04.	0.8	45
208	Study of planar heterojunction perovskite photovoltaic cells using compact titanium oxide by chemical bath deposition. Japanese Journal of Applied Physics, 2015, 54, 08KF02.	0.8	9
209	A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nature Communications, 2015, 6, 7730.	5.8	67
210	Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A, 2015, 3, 18809-18828.	5.2	232

#	Article	IF	CITATIONS
211	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
212	Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Letters, 2015, 15, 4935-4941.	4.5	117
213	Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S) ₂ Four Terminal Tandem Solar Cells. ACS Nano, 2015, 9, 7714-7721.	7.3	157
214	The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 2015, 6, 7269.	5.8	404
215	Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. Nano Letters, 2015, 15, 4644-4649.	4.5	108
216	High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 5122-5130.	3.2	203
217	Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells. Nano Energy, 2015, 16, 47-53.	8.2	36
218	Colored, see-through perovskite solar cells employing an optical cavity. Journal of Materials Chemistry C, 2015, 3, 5377-5382.	2.7	89
219	Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots. Nanoscale, 2015, 7, 9902-9907.	2.8	73
220	A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 11940-11947.	5.2	213
221	Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 14674-14684.	1.3	141
222	Efficient tool flow for 3D photovoltaic modelling. Computer Physics Communications, 2015, 193, 124-130.	3.0	8
223	Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale, 2015, 7, 9443-9447.	2.8	179
224	Highâ€Performance Fully Printable Perovskite Solar Cells via Bladeâ€Coating Technique under the Ambient Condition. Advanced Energy Materials, 2015, 5, 1500328.	10.2	294
225	Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348, 683-686.	6.0	1,833
226	Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications. Journal of the American Chemical Society, 2015, 137, 5810-5818.	6.6	368
227	A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy and Environmental Science, 2015, 8, 1986-1991.	15.6	206
228	Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules. IEEE Journal of Photovoltaics, 2015, 5, 1087-1092.	1.5	109

#	Article	IF	CITATIONS
229	Non-aggregated Zn(<scp>ii</scp>)octa(2,6-diphenylphenoxy) phthalocyanine as a hole transporting material for efficient perovskite solar cells. Dalton Transactions, 2015, 44, 10847-10851.	1.6	83
230	High-performance and high-durability perovskite photovoltaic devices prepared using ethylammonium iodide as an additive. Journal of Materials Chemistry A, 2015, 3, 9271-9277.	5.2	87
231	Magnetoâ€Optical Studies on Spinâ€Dependent Charge Recombination and Dissociation in Perovskite Solar Cells. Advanced Materials, 2015, 27, 2899-2906.	11.1	109
232	Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 2015, 3, 1389-1396.	3.6	240
233	Recent Progress on Holeâ€Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500213.	10.2	418
234	Sprayed P25 scaffolds for high-efficiency mesoscopic perovskite solar cells. Chemical Communications, 2015, 51, 10306-10309.	2.2	13
235	A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy and Environmental Science, 2015, 8, 1816-1823.	15.6	202
236	Lower threshold for nanowire lasers. Nature Materials, 2015, 14, 557-558.	13.3	74
237	Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites. Chemistry of Materials, 2015, 27, 4612-4619.	3.2	212
238	Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chemical Communications, 2015, 51, 10038-10041.	2.2	49
239	Post-synthetic halide conversion and selective halogen capture in hybrid perovskites. Chemical Science, 2015, 6, 4054-4059.	3.7	110
240	Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Advanced Materials, 2015, 27, 3632-3638.	11.1	456
241	Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy and Environmental Science, 2015, 8, 1544-1550.	15.6	606
242	Resolving Weak Light of Subâ€picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction. Advanced Materials, 2015, 27, 2804-2810.	11.1	481
243	Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 9308-9316.	5.2	85
244	High intrinsic carrier mobility and photon absorption in the perovskite CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2015, 17, 11516-11520.	1.3	182
245	CH ₃ NH ₃ PbI ₃ from non-iodide lead salts for perovskite solar cells via the formation of PbI ₂ . Physical Chemistry Chemical Physics, 2015, 17, 10369-10372.	1.3	27
246	Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nature Communications, 2015, 6, 7081.	5.8	948

#	Article	IF	CITATIONS
247	Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. Journal of Materials Chemistry A, 2015, 3, 11631-11640.	5.2	188
248	Perovskite cells charge forward. Nature Materials, 2015, 14, 559-561.	13.3	78
249	Fundamental physics behind high-efficiency organo-metal halide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15372-15385.	5.2	120
251	Single phased MnZnO3 solid solution thin films for solar energy harvesting applications. Solar Energy Materials and Solar Cells, 2015, 137, 258-264.	3.0	24
252	Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. Journal of Physical Chemistry Letters, 2015, 6, 1911-1916.	2.1	358
253	Nanophotonic front electrodes for perovskite solar cells. Applied Physics Letters, 2015, 106, .	1.5	52
254	Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Communications, 2015, 5, 297-301.	0.8	135
255	Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. Journal of Materials Chemistry A, 2015, 3, 12133-12138.	5.2	86
256	Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 2015, 10, 391-402.	15.6	2,604
257	Solid-State Physics Perspective on Hybrid Perovskite Semiconductors. Journal of Physical Chemistry C, 2015, 119, 10161-10177.	1.5	205
258	Editorial for the ACS Select Virtual Issue on Inorganic Chemistry Driving the Energy Sciences. Inorganic Chemistry, 2015, 54, 3079-3083.	1.9	5
259	The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications, 2015, 5, 7-26.	0.8	132
260	Density Functional Calculations of Native Defects in CH ₃ NH ₃ Pbl ₃ : Effects of Spin–Orbit Coupling and Self-Interaction Error. Journal of Physical Chemistry Letters, 2015, 6, 1461-1466.	2.1	301
261	Alkali-Templated Surface Nanopatterning of Chalcogenide Thin Films: A Novel Approach Toward Solar Cells with Enhanced Efficiency. Nano Letters, 2015, 15, 3334-3340.	4.5	108
262	Toward Highâ€Efficiency Solutionâ€Processed Planar Heterojunction Sb ₂ S ₃ Solar Cells. Advanced Science, 2015, 2, 1500059.	5.6	102
263	Interface band structure engineering by ferroelectric polarization in perovskite solar cells. Nano Energy, 2015, 13, 582-591.	8.2	109
264	Enhanced Organo-Metal Halide Perovskite Photoluminescence from Nanosized Defect-Free Crystallites and Emitting Sites. Journal of Physical Chemistry Letters, 2015, 6, 4171-4177.	2.1	163
265	Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Journal of the American Chemical Society, 2015, 137, 13130-13137.	6.6	394

		CITATION REPORT		
#	Article		IF	Citations
266	Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349, 1518-152	21.	6.0	1,159
267	Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode. Optics Express, 2015, 23, A83.		1.7	53
268	Enhanced Performance and Stability of Semitransparent Perovskite Solar Cells Using Solution-Processed Thiol-Functionalized Cationic Surfactant as Cathode Buffer Layer. Chemistry of Materials, 2015, 27, 7119-7127.		3.2	78
269	Colour-selective photodiodes. Nature Photonics, 2015, 9, 634-636.		15.6	37
270	An electron beam evaporated TiO ₂ layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A, 2015, 3, 22824-22829.		5.2	116
271	Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer. Chemical Communications, 2015, 51, 17413-17416.		2.2	76
272	Micron-scale rod-like scattering particles for light trapping in nanostructured thin film solar cells. RSC Advances, 2015, 5, 86050-86055.		1.7	12
273	Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 17343-17349.		2.8	64
274	A novel phenoxazine-based hole transport material for efficient perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 698-706.		7.1	22
275	Vibrational Properties of the Organic–Inorganic Halide Perovskite CH ₃ NH ₃ PbI ₃ from Theory and Experiment: Factor Group Ana First-Principles Calculations, and Low-Temperature Infrared Spectra. Journal of Physical Chemistry C, 2015, 119, 25703-25718.	alysis,	1.5	276
276	NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24121-24127.		5.2	91
277	A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy, 2015, 18, 165-175.		8.2	92
278	Flexible and Semitransparent Organolead Triiodide Perovskite Network Photodetector Arrays with High Stability. Nano Letters, 2015, 15, 7963-7969.		4.5	293
279	Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method. Applied Surface Science, 2015, 359, 560-566.		3.1	39
280	Goldschmidt's Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory Preliminary Experiments on CH ₃ NH ₃ Srl ₃ . Journal of Physical Chemistry C, 2015, 119, 25673-25683.	and	1.5	211
281	Investigation of the Interaction between Perovskite Films with Moisture via in Situ Electrical Resistance Measurement. ACS Applied Materials & amp; Interfaces, 2015, 7, 25113-25120.		4.0	70
282	Intrinsic femtosecond charge generation dynamics in single crystal CH ₃ NH ₃ PbI ₃ . Energy and Environmental Science, 2015, 8, 3	700-3707.	15.6	203
283	High-performance perovskite solar cells fabricated by vapor deposition with optimized Pbl ₂ precursor films. RSC Advances, 2015, 5, 95847-95853.		1.7	18

#	Article	IF	CITATIONS
284	Modulating Charge Recombination and Structural Dynamics in Isolated Organometal Halide Perovskite Crystals by External Electric Fields. Journal of Physical Chemistry Letters, 2015, 6, 4560-4565.	2.1	14
285	(CH ₃ NH ₃) ₂ Pb(SCN) ₂ I ₂ : A More Stable Structural Motif for Hybrid Halide Photovoltaics?. Journal of Physical Chemistry Letters, 2015, 6, 4594-4598.	2.1	117
286	Efficient Perovskite Solar Cells by Temperature Control in Single and Mixed Halide Precursor Solutions and Films. Journal of Physical Chemistry C, 2015, 119, 25747-25753.	1.5	55
287	Improved photovoltaic performance in perovskite solar cells based on CH ₃ NH ₃ Pbl ₃ films fabricated under controlled relative humidity. RSC Advances, 2015, 5, 93957-93963.	1.7	29
288	Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets. ACS Applied Materials & amp; Interfaces, 2015, 7, 25227-25236.	4.0	93
289	Neutral-Color Semitransparent Organic Solar Cells with All-Graphene Electrodes. ACS Nano, 2015, 9, 12026-12034.	7.3	132
290	Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO ₄ Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. ACS Nano, 2015, 9, 11820-11829.	7.3	219
291	Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl6. Journal of Applied Physics, 2015, 117, .	1.1	8
292	Exciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases. Journal of Physical Chemistry C, 2015, 119, 19590-19595.	1.5	65
293	Metallonaphthalocyanines as triplet sensitizers for near-infrared photon upconversion beyond 850 nm. Physical Chemistry Chemical Physics, 2015, 17, 22557-22560.	1.3	31
294	Subphthalocyanine as hole transporting material for perovskite solar cells. RSC Advances, 2015, 5, 69813-69818.	1.7	56
295	Formation of BaSi2 heterojunction solar cells using transparent MoO <i>x</i> hole transport layers. Applied Physics Letters, 2015, 106, .	1.5	19
296	Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Applied Physics Letters, 2015, 106, .	1.5	152
297	<i>GW</i> Band Structures and Carrier Effective Masses of CH ₃ NH ₃ Pbl ₃ and Hypothetical Perovskites of the Type APbl ₃ : A = NH ₄ , PH ₄ , AsH ₄ , and SbH ₄ . Journal of Physical Chemistry C. 2015, 119, 25209-25219.	1.5	144
298	Chlorine Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead Acetate Precursor. ACS Applied Materials & amp; Interfaces, 2015, 7, 23110-23116.	4.0	118
299	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Science Advances, 2015, 1, e1500613.	4.7	265
300	Probing Photocurrent Generation, Charge Transport, and Recombination Mechanisms in Mesostructured Hybrid Perovskite through Photoconductivity Measurements. Journal of Physical Chemistry Letters, 2015, 6, 4259-4264.	2.1	28
301	Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 2015, 7, 18956-18963.	2.8	80

#	Article	IF	CITATIONS
302	Electronic Structure and Optical Properties of α-CH ₃ NH ₃ PbBr ₃ Perovskite Single Crystal. Journal of Physical Chemistry Letters, 2015, 6, 4304-4308.	2.1	136
303	Interplay of Octahedral Rotations and Lone Pair Ferroelectricity in CsPbF ₃ . Inorganic Chemistry, 2015, 54, 8536-8543.	1.9	54
304	Pseudohalide (SCN [–])-Doped MAPbI ₃ Perovskites: A Few Surprises. Journal of Physical Chemistry Letters, 2015, 6, 3483-3489.	2.1	108
305	Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 19986-19993.	4.0	279
306	Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. Journal of the American Chemical Society, 2015, 137, 11144-11149.	6.6	303
307	Efficient charge-transport in hybrid lead iodide perovskite solar cells. Dalton Transactions, 2015, 44, 16914-16922.	1.6	20
308	Technical and economic assessment of perovskite solar cells for large scale manufacturing. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	41
309	Tracking the formation of methylammonium lead triiodide perovskite. Applied Physics Letters, 2015, 107,	1.5	73
310	Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. ACS Nano, 2015, 9, 10386-10393.	7.3	459
311	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686.	15.6	1,201
311 312	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056.	15.6 5.8	1,201 1,278
311 312 313	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056. A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1389-1394.	15.6 5.8 1.5	1,201 1,278 79
311 312 313 314	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056. A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1389-1394. Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin–orbital-coupling. Nanoscale, 2015, 7, 15168-15174.	15.6 5.8 1.5 2.8	1,201 1,278 79 80
 311 312 313 314 315 	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056. A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1389-1394. Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin–orbital-coupling. Nanoscale, 2015, 7, 15168-15174. Highly efficient planar perovskite solar cells with a TiO ₂ /ZnO electron transport bilayer. Journal of Materials Chemistry A, 2015, 3, 19288-19293.	15.6 5.8 1.5 2.8 5.2	1,201 1,278 79 80 145
 311 312 313 314 315 316 	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056. A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1389-1394. Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin–orbital-coupling. Nanoscale, 2015, 7, 15168-15174. Highly efficient planar perovskite solar cells with a TiO ₂ /ZnO electron transport bilayer. Journal of Materials Chemistry A, 2015, 3, 19288-19293. Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J〓V hysteresis. Nano Energy, 2015, 17, 269-278.	15.6 5.8 1.5 2.8 5.2 8.2	1,201 1,278 79 80 145 148
 311 312 313 314 315 316 317 	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056. A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1389-1394. Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spina€"orbital-coupling. Nanoscale, 2015, 7, 15168-15174. Highly efficient planar perovskite solar cells with a TiO ₂ /ZnO electron transport bilayer. Journal of Materials Chemistry A, 2015, 3, 19288-19293. Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small Ja€"V hysteresis. Nano Energy, 2015, 17, 269-278. Elastic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 21070-21076.	15.6 5.8 1.5 2.8 5.2 8.2 5.2	1,201 1,278 79 80 145 148 24
 311 312 313 314 315 316 317 318 	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056. A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1389-1394. Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spina€" orbital-coupling. Nanoscale, 2015, 7, 15168-15174. Highly efficient planar perovskite solar cells with a TiO ₂ /ZnO electron transport bilayer. Journal of Materials Chemistry A, 2015, 3, 19288-19293. Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 21070-21076. Elastic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 21070-21076. Synthesis and optical properties of tetragonal CH3NH3PblxBr3â^'x thin films. Materials Letters, 2015, 161, 484487.	15.6 5.8 1.5 2.8 5.2 8.2 5.2 5.2 1.3	1,201 1,278 79 80 145 148 148 74

#	Article	IF	CITATIONS
320	Organic–inorganic hybrid perovskites ABI ₃ (A = CH ₃ NH ₃ ,) Tj ETQq0 0 0 functional evaluation. RSC Advances, 2015, 5, 78701-78707.	rgBT /Ove 1.7	erlock 10 Tf 5 69
321	An organic–inorganic hybrid perovskite logic gate for better computing. Journal of Materials Chemistry C, 2015, 3, 10793-10798.	2.7	77
322	Rashba and Dresselhaus Effects in Hybrid Organic–Inorganic Perovskites: From Basics to Devices. ACS Nano, 2015, 9, 11557-11567.	7.3	304
323	Filterless narrowband visible photodetectors. Nature Photonics, 2015, 9, 687-694.	15.6	445
324	Photonic crystals for sensitized solar cells: fabrication, properties, and applications. Journal of Materials Chemistry C, 2015, 3, 10665-10686.	2.7	41
325	Ab Initio Study of Interaction of Water, Hydroxyl Radicals, and Hydroxide Ions with CH ₃ NH ₃ PbI ₃ and CH ₃ NH ₃ PbBr ₃ Surfaces. Journal of Physical Chemistry C, 2015, 119, 22370-22378.	1.5	122
326	Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	49
327	Plasmon-Enhanced Electron Injection in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 22640-22645.	1.5	18
328	High performance planar <i>p-i-n</i> perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers. Applied Physics Letters, 2015, 107, .	1.5	42
329	Stability of organometal perovskites with organic overlayers. AIP Advances, 2015, 5, 087185.	0.6	11
330	Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 3663-3669.	2.1	322
331	Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?. Journal of Physical Chemistry Letters, 2015, 6, 3466-3470.	2.1	92
332	Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Letters, 2015, 15, 6521-6527.	4.5	785
333	Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. Physical Chemistry Chemical Physics, 2015, 17, 24978-24987.	1.3	325
334	Simple fabrication of perovskite solar cells using lead acetate as lead source at low temperature. Organic Electronics, 2015, 27, 12-17.	1.4	37
335	Four-Terminal Tandem Solar Cells Using CH ₃ NH ₃ PbBr ₃ by Spectrum Splitting. Journal of Physical Chemistry Letters, 2015, 6, 3931-3934.	2.1	77
336	Strain Tuning of Tin–Halide and Lead–Halide Perovskites: A First-Principles Atomic and Electronic Structure Study. Journal of Physical Chemistry C, 2015, 119, 22832-22837.	1.5	129
337	Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 21760-21771.	5.2	96

#	Article	IF	CITATIONS
338	Monitoring the stability of organometallic perovskite thin films. Journal of Materials Chemistry A, 2015, 3, 21940-21945.	5.2	13
339	Phonon–Electron Scattering Limits Free Charge Mobility in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 4991-4996.	2.1	186
340	Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study. Journal of Physical Chemistry Letters, 2015, 6, 4730-4735.	2.1	14
341	Sustainability Using Solar Energy: Present and Future. ACS Symposium Series, 2015, , 119-143.	0.5	3
342	Ultrafast Charge Generation Pathways in Photovoltaic Blends Based on Novel Starâ€ S haped Conjugated Molecules. Advanced Energy Materials, 2015, 5, 1401657.	10.2	35
343	High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. Journal of Materials Chemistry A, 2015, 3, 9098-9102.	5.2	192
344	Effect of Carrier Thermalization Dynamics on Light Emission and Amplification in Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 153-158.	2.1	101
345	Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. Journal of Power Sources, 2015, 278, 325-331.	4.0	89
346	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	3.2	233
347	First-Principles Calculation of the Bulk Photovoltaic Effect in CH ₃ NH ₃ PbI ₃ and CH ₃ NH ₃ PbI _{3–<i>x</i>} CI _{<i>x</i>} . Journal of Physical Chemistry Letters. 2015. 6. 31-37.	2.1	177
348	Integrated Perovskite/Bulk-Heterojunction toward Efficient Solar Cells. Nano Letters, 2015, 15, 662-668.	4.5	145
349	Complex Refractive Index Spectra of CH ₃ NH ₃ PbI ₃ Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. Journal of Physical Chemistry Letters, 2015, 6, 66-71.	2.1	491
350	Highly efficient photochemical upconversion in a quasi-solid organogel. Journal of Materials Chemistry C, 2015, 3, 616-622.	2.7	72
351	Electronic properties of PbX ₃ CH ₃ NH ₃ (X = Cl, Br, I) compounds for photovoltaic and photocatalytic applications. Physical Chemistry Chemical Physics, 2015, 17, 2199-2209.	1.3	52
352	Three-step sequential solution deposition of Pbl ₂ -free CH ₃ NH ₃ Pbl ₃ perovskite. Journal of Materials Chemistry A, 2015, 3, 9086-9091.	5.2	100
353	CdS-sensitized 1-D single-crystalline anatase TiO2 nanowire arrays for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 863-869.	3.8	18
354	Perovskite Thin Films via Atomic Layer Deposition. Advanced Materials, 2015, 27, 53-58.	11.1	204
355	Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 8981-8991.	5.2	109

#	Article	IF	CITATIONS
356	Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science, 2015, 6, 613-617.	3.7	1,682
357	p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Transactions, 2015, 44, 3967-3973.	1.6	138
358	Effects of spectral coupling on perovskite solar cells under diverse climatic conditions. Solar Energy Materials and Solar Cells, 2015, 133, 92-98.	3.0	47
359	Efficient photovoltaic and electroluminescent perovskite devices. Chemical Communications, 2015, 51, 569-571.	2.2	110
360	Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Physical Chemistry Chemical Physics, 2015, 17, 1619-1629.	1.3	308
361	Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015, 3, 8926-8942.	5.2	1,114
362	A2B′B″O6 perovskites: A review. Progress in Solid State Chemistry, 2015, 43, 1-36.	3.9	904
363	Optical Absorption, Charge Separation and Recombination Dynamics in Pb and Sn/Pb Cocktail Perovskite Solar Cells and Their Relationships to the Photovoltaic Properties. , 2016, , .		0
364	Structural and Quantitative Investigation of Perovskite Pore Filling in Mesoporous Metal Oxides. Crystals, 2016, 6, 149.	1.0	8
365	Fabrication and Characterization of Organic–Inorganic Hybrid Perovskite Devices with External Doping. , 0, , .		8
366	Emerging Photovoltaics: Organic, Copper Zinc Tin Sulphide, and Perovskite-Based Solar Cells. Hindawi Journal of Chemistry, 2016, 2016, 1-12.	1.6	21
367	Polymer-Based LEDs and Solar Cells. , 2016, , .		1
368	Perovskite Solar Cells: Progress and Advancements. Energies, 2016, 9, 861.	1.6	106
369	Ï€-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells. Metals, 2016, 6, 21.	1.0	39
370	Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells. Molecules, 2016, 21, 475.	1.7	56
371	Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Optics Express, 2016, 24, 23677.	1.7	80
372	Recent Advances in Fabrication Techniques of Perovskite Solar Cells: A Review. American Journal of Applied Sciences, 2016, 13, 1290-1314.	0.1	3
373	Perovskite Nanomaterials $\hat{a} \in \mathcal{C}$ Synthesis, Characterization, and Applications. , 0, , .		48

#	Article	IF	CITATIONS
374	Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications. Chinese Chemical Letters, 2016, 27, 1124-1130.	4.8	65
375	Spongy carbon film deposited on a separated substrate as counter electrode for perovskite-based solar cell. Materials Letters, 2016, 182, 248-252.	1.3	29
376	Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 2016, 6, 1600457.	10.2	387
377	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	10.2	139
378	Dopantâ€Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600502.	10.2	156
379	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 9145-9149.	1.6	19
380	Cubic Polyhedral Oligomeric Silsesquioxane Based Functional Materials: Synthesis, Assembly, and Applications. Chemistry - an Asian Journal, 2016, 11, 1322-1337.	1.7	142
381	Stabilization of Organic–Inorganic Perovskite Layers by Partial Substitution of lodide by Bromide in Methylammonium Lead lodide. ChemPhysChem, 2016, 17, 1505-1511.	1.0	49
382	Stability issues of the next generation solar cells. Physica Status Solidi - Rapid Research Letters, 2016, 10, 281-299.	1.2	69
383	Effect of mobility and band structure of hole transport layer in planar heterojunction perovskite solar cells using 2D TCAD simulation. Journal of Computational Electronics, 2016, 15, 1110-1118.	1.3	33
384	Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells. Advanced Materials, 2016, 28, 2446-2454.	11.1	449
385	Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes. Advanced Materials, 2016, 28, 917-922.	11.1	288
386	Understanding Interface Engineering for Highâ€Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501606.	10.2	180
387	Temperatureâ€Dependent Bias Poling and Hysteresis in Planar Organoâ€Metal Halide Perovskite Photovoltaic Cells. Advanced Energy Materials, 2016, 6, 1501994.	10.2	36
388	Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices. ACS Applied Materials & Interfaces, 2016, 8, 18309-18320.	4.0	24
389	Theory of materials for solar energy conversion. Journal of Physics Condensed Matter, 2016, 28, 070301.	0.7	4
390	Organic Cationâ€Dependent Degradation Mechanism of Organotin Halide Perovskites. Advanced Functional Materials, 2016, 26, 3417-3423.	7.8	229
391	Dopantâ€Free Spiroâ€Triphenylamine/Fluorene as Holeâ€Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability. Advanced Functional Materials, 2016, 26, 1375-1381.	7.8	226

#	Article	IF	CITATIONS
392	A Selfâ€Powered and Stable Allâ€Perovskite Photodetector–Solar Cell Nanosystem. Advanced Functional Materials, 2016, 26, 1296-1302.	7.8	203
393	Impact of Film Stoichiometry on the Ionization Energy and Electronic Structure of CH ₃ NH ₃ PbI ₃ Perovskites. Advanced Materials, 2016, 28, 553-559.	11.1	148
394	Bright Lightâ€Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets. Advanced Materials, 2016, 28, 305-311.	11.1	463
395	Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO ₂ Nanocrystals as the Robust Electronâ€Transporting Layer. Advanced Materials, 2016, 28, 6478-6484.	11.1	447
396	Thin Insulating Tunneling Contacts for Efficient and Waterâ€Resistant Perovskite Solar Cells. Advanced Materials, 2016, 28, 6734-6739.	11.1	533
397	Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH ₃ NH ₃ PbI ₃ Perovskite. Advanced Energy Materials, 2016, 6, 1502472.	10.2	196
398	Bipolar Membraneâ€Assisted Solar Water Splitting in Optimal pH. Advanced Energy Materials, 2016, 6, 1600100.	10.2	156
399	Recent advances in Iowâ€ŧoxic leadâ€free metal halide perovskite materials for solar cell application. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 392-398.	0.8	26
400	N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap materials for dopant-free hole transporting layer of perovskite solar cell. Organic Electronics, 2016, 37, 134-140.	1.4	36
401	Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study. Journal of Physical Chemistry Letters, 2016, 7, 2722-2729.	2.1	333
402	Improved photovoltaic performance of mesoporous perovskite solar cells with hydrogenated TiO ₂ : prolonged photoelectron lifetime and high separation efficiency of photoinduced charge. RSC Advances, 2016, 6, 65125-65135.	1.7	15
403	The ultimate efficiency of organolead halide perovskite solar cells limited by Auger processes. Journal of Materials Research, 2016, 31, 2197-2203.	1.2	6
404	CH ₃ NH ₃ Cal ₃ Perovskite: Synthesis, Characterization, and First-Principles Studies. Journal of Physical Chemistry C, 2016, 120, 16393-16398.	1.5	67
405	Reversible Structural Swell–Shrink and Recoverable Optical Properties in Hybrid Inorganic–Organic Perovskite. ACS Nano, 2016, 10, 7031-7038.	7.3	68
406	Hexaazatrinaphthylene Derivatives: Efficient Electron‶ransporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 8999-9003.	7.2	118
407	Green hydroelectrical energy source based on water dissociation by nanoporous ferrite. International Journal of Energy Research, 2016, 40, 1652-1661.	2.2	65
408	A Solutionâ€Processed Organometal Halide Perovskite Hole Transport Layer for Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2016, 2, 1600165.	2.6	25
409	Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501534.	10.2	278

#	Article	IF	CITATIONS
410	Laser Crystallization of Organic–Inorganic Hybrid Perovskite Solar Cells. ACS Nano, 2016, 10, 7907-7914.	7.3	123
411	Effective control of crystal grain size in CH ₃ NH ₃ PbI ₃ perovskite solar cells with a pseudohalide Pb(SCN) ₂ additive. CrystEngComm, 2016, 18, 6090-6095.	1.3	87
412	Triangular lasing modes in hexagonal perovskite microplates with balanced gain and loss. RSC Advances, 2016, 6, 64589-64594.	1.7	5
413	Perovskite as a Cathode Material: A Review of its Role in Solidâ€Oxide Fuel Cell Technology. ChemElectroChem, 2016, 3, 511-530.	1.7	197
414	Lateralâ€Structure Singleâ€Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling. Advanced Materials, 2016, 28, 2816-2821.	11.1	144
415	A Flexible UV–Vis–NIR Photodetector based on a Perovskite/Conjugatedâ€Polymer Composite. Advanced Materials, 2016, 28, 5969-5974.	11.1	329
416	Perovskite Materials for Lightâ€Emitting Diodes and Lasers. Advanced Materials, 2016, 28, 6804-6834.	11.1	1,188
417	Electrohydrodynamically Assisted Deposition of Efficient Perovskite Photovoltaics. Advanced Materials Interfaces, 2016, 3, 1500762.	1.9	21
418	Bismuth Iodide Perovskite Materials for Solar Cell Applications: Electronic Structure, Optical Transitions, and Directional Charge Transport. Journal of Physical Chemistry C, 2016, 120, 29039-29046.	1.5	134
419	Role of Intrinsic Ion Accumulation in the Photocurrent and Photocapacitive Responses of MAPbBr ₃ Photodetectors. ACS Applied Materials & Interfaces, 2016, 8, 35447-35453.	4.0	15
420	UV Degradation and Recovery of Perovskite Solar Cells. Scientific Reports, 2016, 6, 38150.	1.6	269
421	Parameters extraction for perovskite solar cells based on Lambert W-function. MATEC Web of Conferences, 2016, 59, 03003.	0.1	4
422	Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond. Npj Computational Materials, 2016, 2, .	3.5	246
423	Synergistic Effects of Water and Oxygen Molecule Co-adsorption on (001) Surfaces of Tetragonal CH ₃ NH ₃ Pbl ₃ : A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 28448-28455.	1.5	47
424	Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes. Journal of Physical Chemistry Letters, 2016, 7, 5168-5175.	2.1	225
425	Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films. Nano Letters, 2016, 16, 7925-7929.	4.5	50
426	Research Update: Behind the high efficiency of hybrid perovskite solar cells. APL Materials, 2016, 4, .	2.2	47
427	Abnormal thin film structures in vapor-phase deposited methylammonium lead iodide perovskite. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	7

#	Article	IF	CITATIONS
428	Color Change Effect in an Organic–Inorganic Hybrid Material Based on a Porphyrin Diacid. Journal of Physical Chemistry C, 2016, 120, 28363-28373.	1.5	34
429	Degradation mechanism for planar heterojunction perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 04ES07.	0.8	10
430	Investigation on the nucleation and growth mechanisms of perovskite formation in the two-step solution process. , 2016, , .		6
431	Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells. Applied Physics Letters, 2016, 108, .	1.5	59
432	<i>Ab initio</i> modeling of 2D layered organohalide lead perovskites. Journal of Chemical Physics, 2016, 144, 164701.	1.2	37
433	Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. Journal of Applied Physics, 2016, 120, .	1.1	105
434	Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications, 2016, 7, 13941.	5.8	427
435	Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature. Applied Physics Letters, 2016, 108, .	1.5	47
436	Electronic transport in organometallic perovskite CH ₃ NH ₃ PbI ₃ : The role of organic cation orientations. Applied Physics Letters, 2016, 108, 053901.	1.5	28
437	Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing. APL Materials, 2016, 4, .	2.2	49
438	High Performance Perovskite Solar Cells through Surface Modification, Mixed Solvent Engineering and Nanobowl-Assisted Light Harvesting. MRS Advances, 2016, 1, 3175-3184.	0.5	9
439	The presence of CH3NH2 neutral species in organometal halide perovskite films. Applied Physics Letters, 2016, 108, .	1.5	50
440	Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH4)3Bi2I9. APL Materials, 2016, 4, .	2.2	106
441	Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry. Applied Physics Letters, 2016, 108, .	1.5	68
442	Interface electronic properties of co-evaporated MAPbI3 on ZnO(0001): <i>In situ</i> X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study. Applied Physics Letters, 2016, 108, .	1.5	37
443	High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers. ACS Applied Materials & Interfaces, 2016, 8, 34482-34489.	4.0	85
444	Different emissive states in the bulk and at the surface of methylammonium lead bromide perovskite revealed by two-photon micro-spectroscopy and lifetime measurements. APL Photonics, 2016, 1, .	3.0	39
445	Atomic partial charges on CH3NH3PbI3 from first-principles electronic structure calculations. Journal of Applied Physics, 2016, 119, .	1.1	20

#	Article	IF	CITATIONS
446	Performance of planar heterojunction perovskite solar cells under light concentration. AIP Advances, 2016, 6, .	0.6	20
447	Nanometer-scale electrical potential profiling across perovskite solar cells. , 2016, , .		3
448	Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells. Journal of Applied Physics, 2016, 120, .	1.1	27
449	Equivalent circuit representation of hysteresis in solar cells that considers interface charge accumulation: Potential cause of hysteresis in perovskite solar cells. Applied Physics Letters, 2016, 109,	1.5	23
450	lodine and Chlorine Element Evolution in CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 2742-2749.	3.2	48
451	Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Research, 2016, 9, 1570-1577.	5.8	88
452	Fabrication of Cd-Doped TiO2 Nanorod Arrays and Photovoltaic Property in Perovskite Solar Cell. Electrochimica Acta, 2016, 200, 29-36.	2.6	57
453	Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy, 2016, 23, 138-144.	8.2	253
454	Hybrid organic–inorganic solar cells based on bismuth iodide and 1,6-hexanediammonium dication. Journal of Materials Chemistry A, 2016, 4, 6837-6841.	5.2	104
455	Understanding the Role of the Mesoporous Layer in the Thermal Crystallization of a Meso-Superstructured Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 8559-8567.	1.5	10
456	Polymeric materials for longâ€ŧerm durability of photovoltaic systems. Journal of Applied Polymer Science, 2016, 133, .	1.3	36
457	Laser Processing in the Manufacture of Dyeâ€Sensitized and Perovskite Solar Cell Technologies. ChemElectroChem, 2016, 3, 9-30.	1.7	67
458	Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites. Chemistry of Materials, 2016, 28, 4259-4266.	3.2	211
459	A comparison of copper indium sulfide-polymer nanocomposite solar cells in inverted and regular device architecture. Synthetic Metals, 2016, 222, 115-123.	2.1	13
460	Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells. Chemical Communications, 2016, 52, 8099-8102.	2.2	71
461	Low thermal budget, photonic-cured compact TiO ₂ layers for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 9685-9690.	5.2	46
462	Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano, 2016, 10, 5999-6007.	7.3	276
463	Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Advances, 2016, 6, 60643-60656.	1.7	47

#	Article	IF	CITATIONS
464	Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium,) Tj ETQq0 2016, 240, 55-60.	0 0 rgBT 1.4	/Overlock 10 73
465	Nanostructured Materials for High Efficiency Perovskite Solar Cells. Nanoscience and Technology, 2016, , 1-39.	1.5	3
466	Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy, 2016, 26, 139-147.	8.2	97
467	Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells. Renewable and Sustainable Energy Reviews, 2016, 62, 1012-1031.	8.2	111
468	Unidirectional Lasing Emissions from CH ₃ NH ₃ PbBr ₃ Perovskite Microdisks. ACS Photonics, 2016, 3, 1125-1130.	3.2	106
469	Stability of solution-processed MAPbI ₃ and FAPbI ₃ layers. Physical Chemistry Chemical Physics, 2016, 18, 13413-13422.	1.3	208
470	Molecular Origins of Defects in Organohalide Perovskites and Their Influence on Charge Carrier Dynamics. Journal of Physical Chemistry C, 2016, 120, 12392-12402.	1.5	89
471	Highly reproducible perovskite solar cells with excellent CH ₃ NH ₃ Pbl _{3â^'x} Cl _x film morphology fabricated via high precursor concentration. RSC Advances, 2016, 6, 51279-51285.	1.7	9
472	In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy and Environmental Science, 2016, 9, 2372-2382.	15.6	79
473	An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale, 2016, 8, 11403-11412.	2.8	307
474	Increased vis-to-UV upconversion performance by energy level matching between a TADF donor and high triplet energy acceptors. Journal of Materials Chemistry C, 2016, 4, 6447-6451.	2.7	100
475	High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties. ACS Central Science, 2016, 2, 201-209.	5.3	357
476	Single Step Solution Processed GaAs Thin Films from GaMe3andtBuAsH2under Ambient Pressure. Journal of Physical Chemistry C, 2016, 120, 7013-7019.	1.5	12
477	A re-evaluation of transparent conductor requirements for thin-film solar cells. Journal of Materials Chemistry A, 2016, 4, 4490-4496.	5.2	42
478	Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews, 2016, 116, 4558-4596.	23.0	2,147
479	Orientation of Organic Cations in Hybrid Inorganic–Organic Perovskite CH ₃ NH ₃ PbI ₃ from Subatomic Resolution Single Crystal Neutron Diffraction Structural Studies. Crystal Growth and Design, 2016, 16, 2945-2951.	1.4	82
480	Mechanism of biphasic charge recombination and accumulation in TiO ₂ mesoporous structured perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 12128-12134.	1.3	28
481	A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. Journal of Power Sources, 2016, 317, 120-132.	4.0	133

#	Article	IF	CITATIONS
482	Spectral dependence of direct and trap-mediated recombination processes in lead halide perovskites using time resolved microwave conductivity. Physical Chemistry Chemical Physics, 2016, 18, 12043-12049.	1.3	21
483	Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials, 2016, 28, 2852-2867.	3.2	1,607
484	Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell. Chemistry of Materials, 2016, 28, 3131-3138.	3.2	174
485	Well-Organized Mesoporous TiO ₂ Photoanode by Using Amphiphilic Graft Copolymer for Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2016, 120, 9619-9627.	1.5	43
486	Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016, 6, 022001.	0.8	218
487	A perovskite based plug and play AC photovoltaic device with ionic liquid induced transient opto-electronic conversion. Journal of Materials Chemistry A, 2016, 4, 9019-9028.	5.2	12
488	Promising photovoltaic application of multi-walled carbon nanotubes in perovskites solar cells for retarding recombination. RSC Advances, 2016, 6, 42413-42420.	1.7	27
489	Over 75% incident-photon-to-current efficiency without solid electrodes. Physical Chemistry Chemical Physics, 2016, 18, 12428-12433.	1.3	7
490	Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Solar Energy Materials and Solar Cells, 2016, 156, 157-169.	3.0	168
491	Using Perovskite Nanoparticles as Halide Reservoirs in Catalysis and as Spectrochemical Probes of Ions in Solution. ACS Nano, 2016, 10, 5864-5872.	7.3	43
492	Computer calculations across time and length scales in photovoltaic solar cells. Energy and Environmental Science, 2016, 9, 2197-2218.	15.6	27
493	Light induced metastable modification of optical properties in CH3NH3PbI3â^'xBrx perovskite films: Two-step mechanism. Organic Electronics, 2016, 34, 79-83.	1.4	73
494	Perovskite photonic sources. Nature Photonics, 2016, 10, 295-302.	15.6	1,369
495	State and prospects of solar cells based on perovskites. Applied Solar Energy (English Translation of) Tj ETQq1 1 C).784314 i 0.2	rg&T /Over <mark>l</mark> o
496	Comparative investigation on temperature-dependent photoluminescence of CH ₃ NH ₃ PbBr ₃ and CH(NH ₂) ₂ PbBr ₃ microstructures. Journal of Materials Chemistry C, 2016, 4, 4408-4413.	2.7	109
497	Low temperature photoluminescence spectroscopy studies on sputter deposited CdS/CdTe junctions and solar cells. Journal of Materials Research, 2016, 31, 186-194.	1.2	6
498	Integrated Photoelectrolysis of Water Implemented On Organic Metal Halide Perovskite Photoelectrode. ACS Applied Materials & Interfaces, 2016, 8, 11904-11909.	4.0	72
499	Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light: Science and Applications, 2016, 5, e16056-e16056.	7.7	194

#	Article	IF	CITATIONS
500	Absorption enhancement in CH ₃ NH ₃ Pbl ₃ solar cell using a TiO ₂ /MoS ₂ nanocomposite electron selective contact. Materials Research Express, 2016, 3, 045022.	0.8	20
501	Highly stable perovskite solar cells with an all-carbon hole transport layer. Nanoscale, 2016, 8, 11882-11888.	2.8	107
502	New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells. Nano Energy, 2016, 26, 7-15.	8.2	89
503	Red-to-Black Piezochromism in a Compressible Pb–I–SCN Layered Perovskite. Chemistry of Materials, 2016, 28, 3241-3244.	3.2	93
504	Nucleation and Growth Control of HC(NH2)2PbI3 for Planar Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 11262-11267.	1.5	80
505	Mechanistic Insight into the Attachment of Fullerene Derivatives on Crystal Faces of Methylammonium Lead Iodide Based Perovskites. Journal of Physical Chemistry C, 2016, 120, 22426-22432.	1.5	20
506	Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices. ACS Energy Letters, 2016, 1, 757-763.	8.8	317
507	Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 25489-25495.	4.0	38
508	Electric field induced reversible and irreversible photoluminescence responses in methylammonium lead iodide perovskite. Journal of Materials Chemistry C, 2016, 4, 9060-9068.	2.7	77
509	Hole-conductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays. Physical Chemistry Chemical Physics, 2016, 18, 27078-27082.	1.3	30
510	Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy, 2016, 28, 462-468.	8.2	115
511	Influence of molecular structure on the performance of low V _{oc} loss polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 15232-15239.	5.2	15
512	Translational Science for Energy and Beyond. Inorganic Chemistry, 2016, 55, 9131-9143.	1.9	11
513	Progress, challenges and perspectives in flexible perovskite solar cells. Energy and Environmental Science, 2016, 9, 3007-3035.	15.6	345
514	Printable Solar Cells from Advanced Solution-Processible Materials. CheM, 2016, 1, 197-219.	5.8	68
515	Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18, 30484-30490.	1.3	322
516	Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH ₃ NH ₃ Pbl ₃ . Journal of Materials Chemistry A, 2016, 4, 16975-16981.	5.2	67
517	A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17, 650-658.	2.8	41

#	Article	IF	CITATIONS
518	The 2016 oxide electronic materials and oxide interfaces roadmap. Journal Physics D: Applied Physics, 2016, 49, 433001.	1.3	266
519	An EBIC Model for TCAD Simulation to Determine the Surface Recombination Rate in Semiconductor Devices. IEEE Transactions on Electron Devices, 2016, 63, 4395-4401.	1.6	4
520	Engineering TiO ₂ /Perovskite Planar Heterojunction for Hysteresis‣ess Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600493.	1.9	24
521	Magnetic Manipulation of Spontaneous Emission from Inorganic CsPbBr ₃ Perovskites Nanocrystals. Advanced Optical Materials, 2016, 4, 2004-2008.	3.6	14
522	Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 2016, 30, 162-172.	8.2	258
523	Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling Highâ€Efficiency and Air‣table Photovoltaic Cells. Advanced Materials, 2016, 28, 9986-9992.	11.1	532
524	Evolution in surface coverage of CH ₃ NH ₃ PbI _{3â^'X} Cl _X via heat assisted solvent vapour treatment and their effects on photovoltaic performance of devices. RSC Advances, 2016, 6, 94731-94738.	1.7	10
525	Influence of halide composition on the structural, electronic, and optical properties of mixed <mml:math< td=""><td></td><td></td></mml:math<>		

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
536	Role of Organic Counterion in Lead- and Tin-Based Two-Dimensional Semiconducting lodide Perovskites and Application in Planar Solar Cells. Chemistry of Materials, 2016, 28, 7781-7792.	3.2	228
537	Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC ₇₁ BM in planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 18776-18782.	5.2	26
538	The Additive Coordination Effect on Hybrids Perovskite Crystallization and Highâ€Performance Solar Cell. Advanced Materials, 2016, 28, 9862-9868.	11.1	270
539	Comparing the Effect of Mesoporous and Planar Metal Oxides on the Stability of Methylammonium Lead lodide Thin Films. Chemistry of Materials, 2016, 28, 7344-7352.	3.2	45
540	Starke Lumineszenz in Nanokristallen aus Caesiumbleihalogenid―Perowskit mit durchstimmbarer Zusammensetzung und Dicke mittels Ultraschalldispersion. Angewandte Chemie, 2016, 128, 14091-14096.	1.6	54
541	Ionic liquid-assisted perovskite crystal film growth for high performance planar heterojunction perovskite solar cells. RSC Advances, 2016, 6, 97848-97852.	1.7	41
542	Addictive-assisted construction of all-inorganic CsSnIBr ₂ mesoscopic perovskite solar cells with superior thermal stability up to 473 K. Journal of Materials Chemistry A, 2016, 4, 17104-17110.	5.2	250
543	Distinctive excitonic recombination in solution-processed layered organic–inorganic hybrid two-dimensional perovskites. Journal of Materials Chemistry C, 2016, 4, 10198-10204.	2.7	25
544	Hybrid perovskites: Approaches towards light-emitting devices. , 2016, , .		0
545	A Novel Photoelectric Conversion Yarn by Integrating Photomechanical Actuation and the Electrostatic Effect. Advanced Materials, 2016, 28, 10744-10749.	11.1	31
546	Modulating Hysteresis of Perovskite Solar Cells by a Poling Voltage. Journal of Physical Chemistry C, 2016, 120, 22784-22792.	1.5	28
547	Interfacial Electronic Structure of Methylammonium Lead Iodide Grown on a Mesoporous TiO ₂ Layer on F-Doped Tin Oxide Substrate. Journal of Physical Chemistry C, 2016, 120, 22460-22465.	1.5	11
548	Tolerance Factors Revisited: Geometrically Designing the Ideal Environment for Perovskite Dopants. Journal of Physical Chemistry C, 2016, 120, 23293-23298.	1.5	20
549	Ambient air-processed mixed-ion perovskites for high-efficiency solar cells. Journal of Materials Chemistry A, 2016, 4, 16536-16545.	5.2	55
550	Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. Energy and Environmental Science, 2016, 9, 3642-3649.	15.6	47
551	Performance Improvement of Perovskite Solar Cells Based on PCBM-Modified ZnO-Nanorod Arrays. IEEE Journal of Photovoltaics, 2016, 6, 1530-1536.	1.5	20
552	Promoting crystalline grain growth and healing pinholes by water vapor modulated post-annealing for enhancing the efficiency of planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 13458-13467.	5.2	58
553	Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr ₃ Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano, 2016, 10, 7943-7954.	7.3	713

#	Article	IF	CITATIONS
554	Optical constants of CH_3NH_3PbBr_3 perovskite thin films measured by spectroscopic ellipsometry. Optics Express, 2016, 24, 16586.	1.7	108
555	Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 3284-3289.	2.1	30
556	Ambient Engineering for High-Performance Organic–Inorganic Perovskite Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 21505-21511.	4.0	25
557	Three-Dimensionally Homoconjugated Carbon-Bridged Oligophenylenevinylene for Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 10897-10904.	6.6	34
558	Ultrafast Spectroscopy of Photoexcitations in Organometal Trihalide Perovskites. Advanced Functional Materials, 2016, 26, 1617-1627.	7.8	35
559	Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 2016, 27, 561-568.	8.2	14
560	Complex impedance, dielectric properties and electrical conduction mechanism of La _{0.5} Ba _{0.5} FeO _{3â~δ} perovskite oxides. RSC Advances, 2016, 6, 76659-76665.	1.7	57
561	20â€mmâ€Large Singleâ€Crystalline Formamidiniumâ€Perovskite Wafer for Mass Production of Integrated Photodetectors. Advanced Optical Materials, 2016, 4, 1829-1837.	3.6	316
562	Human‣ike Sensing and Reflexes of Grapheneâ€Based Films. Advanced Science, 2016, 3, 1600130.	5.6	37
563	Enhanced Structural Stability and Photo Responsiveness of CH ₃ NH ₃ SnI ₃ Perovskite via Pressureâ€Induced Amorphization and Recrystallization. Advanced Materials, 2016, 28, 8663-8668.	11.1	176
564	Integrating Perovskite Photovoltaics and Noble-Metal-Free Catalysts toward Efficient Solar Energy Conversion and H ₂ S Splitting. ACS Catalysis, 2016, 6, 6198-6206.	5.5	40
565	Novel exciton dissociation behavior in tin-lead organohalide perovskites. Nano Energy, 2016, 27, 638-646.	8.2	28
566	Hysteresis in organic-inorganic hybrid perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 476-509.	3.0	146
567	Quantum Confinement Effects in Organic Lead Tribromide Perovskite Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 18333-18339.	1.5	30
568	2D materials and van der Waals heterostructures. Science, 2016, 353, aac9439.	6.0	4,958
569	High Performance Perovskite Solar Cells. Advanced Science, 2016, 3, 1500201.	5.6	105
570	Exceptionally Stable CH ₃ NH ₃ PbI ₃ Films in Moderate Humid Environmental Condition. Advanced Science, 2016, 3, 1500262.	5.6	50
571	A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance. Advanced Science, 2016, 3, 1500353.	5.6	67

ARTICLE IF CITATIONS Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene 572 5.6 86 Cathode Interlayer. Advanced Science, 2016, 3, 1600027. First-Principles Modeling of Organohalide Thin Films and Interfaces., 2016, , 19-52. 573 APbI3 (AÂ=ÂCH3NH3 and HC(NH2)2) Perovskite Solar Cells: From Sensitization to Planar Heterojunction., 574 3 2016, , 223-253. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. 199 Nano Energy, 2016, 27, 352-358. Hexagonal Î²-NaYF₄:Yb³⁺, Er³⁺ Nanoprism-Incorporated Upconverting Layer in Perovskite Solar Cells for Near-Infrared Sunlight Harvesting. ACS Applied 576 4.0 109 Materials & amp; Interfaces, 2016, 8, 19847-19852. <i>l–V</i> hysteresis of methylammonium lead halide perovskite films on microstructured electrode arrays: Dependence on preparation route and voltage scale. Physica Status Solidi (A) Applications and 0.8 Materials Science, 2016, 213, 38-45. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide 578 466 7.3 Composition. ACS Nano, 2016, 10, 7830-7839. Improved performance and air stability of planar perovskite solar cells via interfacial engineering 579 8.2 74 using a fullerene amine interlayer. Nano Energy, 2016, 28, 330-337. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials. Accounts of Chemical 580 43 7.6 Research, 2016, 49, 1769-1776. Solvothermal derived crystalline NiOx nanoparticles for high performance perovskite solar cells. Journal of Power Sources, 2016, 329, 398-405. Interplay of structural and compositional effects on carrier recombination in mixed-halide 582 1.7 20 perovskites. RSC Advances, 2016, 6, 86947-86954. A balanced cation exchange reaction toward highly uniform and pure phase FA_{1â[^]x}MA_xPbl₃ perovskite films. Journal of Materials Chemistry A, 5.2 64 2016, 4, 14437-14443. A mesoporous–planar hybrid architecture of methylammonium lead iodide perovskite based solar 584 5.2 17 cells. Journal of Materials Ćhemistry A, 2016, 4, 14423-14429. Nonradiative Relaxation in Real-Time Electronic Dynamics OSCF2: Organolead Triiodide Perovskite. 1.1 Journal of Physical Chemistry A, 2016, 120, 6880-6887. Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for 586 178 6.6 Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 11833-11839. Multinuclear NMR as a tool for studying local order and dynamics in CH₃NH₃PbX₃(X = Cl, Br, I) hybrid perovskites. Physical Chemistry 587 1.3 Chemical Physics, 2016, 18, 27133-27142. Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant. ChemSusChem, 2016, 9, 588 3.6 62 2708-2714. Impact of Conformality and Crystallinity for Ultrathin 4 nm Compact TiO₂ Layers in 589 19 Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600580.

#	Article	IF	CITATIONS
590	Surface Electronic Structure of Hybrid Organo Lead Bromide Perovskite Single Crystals. Journal of Physical Chemistry C, 2016, 120, 21710-21715.	1.5	58
591	Limits of Carrier Diffusion in <i>n</i> -Type and <i>p</i> -Type CH ₃ NH ₃ Pbl ₃ Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 3510-3518.	2.1	86
592	Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI ₃ . Journal of Materials Chemistry A, 2016, 4, 13852-13858.	5.2	148
593	Near-infrared random lasing realized in a perovskite CH ₃ NH ₃ PbI ₃ thin film. Journal of Materials Chemistry C, 2016, 4, 8373-8379.	2.7	57
594	CsPblBr ₂ Perovskite Solar Cell by Spray-Assisted Deposition. ACS Energy Letters, 2016, 1, 573-577.	8.8	230
595	Room-temperature fabrication of multi-deformable perovskite solar cells made in a three-dimensional gel framework. RSC Advances, 2016, 6, 82933-82940.	1.7	7
596	Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3467-3471.	2.1	203
597	A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition. Scientific Reports, 2016, 6, 37693.	1.6	126
598	Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application. Journal of Physical Chemistry Letters, 2016, 7, 5028-5035.	2.1	224
599	Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites. Scientific Reports, 2016, 6, 28618. Electronic structure and stability of the complimath	1.6	234
600	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi mathvariant="normal">C < mml:msub> < mml:mi mathvariant="normal">H < mml:mn>3 < mml:mi mathvariant="normal">N < mml:msub> < mml:mi	1.1	49
601	mathvariant="normal">H <mml:mn>3</mml:mn> <mml:mi>PbB</mml:mi> <mml:msub>Near infrared photodetectors based on subâ€gap absorption in organohalide perovskite single crystals. Laser and Photonics Reviews, 2016, 10, 1047-1053.</mml:msub>	mml:mi 4.4	64
602	Flame-made ultra-porous TiO ₂ layers for perovskite solar cells. Nanotechnology, 2016, 27, 505403.	1.3	11
603	Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency. ACS Nano, 2016, 10, 10921-10928.	7.3	168
604	Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 5114-5120.	2.1	22
605	Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating. Nano Letters, 2016, 16, 7829-7835.	4.5	123
606	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	3.6	163
607	Theoretical study on the PbIn (n=1–6) series molecules. Computational and Theoretical Chemistry, 2016, 1094, 23-31.	1.1	2

#	Article	IF	CITATIONS
608	Room Temperature Phase Transition in Methylammonium Lead Iodide Perovskite Thin Films Induced by Hydrohalic Acid Additives. ChemSusChem, 2016, 9, 2656-2665.	3.6	47
609	Barrier-Layer-Mediated Electron Transfer from Semiconductor Electrodes to Molecules in Solution: Sensitivity of Mechanism to Barrier-Layer Thickness. Journal of Physical Chemistry C, 2016, 120, 20922-20928.	1.5	9
610	Tandem Architecture of Perovskite and Cu(In,Ga)(S,Se) ₂ Created by Solution Processes for Solar Cells. Advanced Optical Materials, 2016, 4, 2102-2108.	3.6	14
611	Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances, 2016, 6, 90248-90254.	1.7	114
612	Photon energy storage materials with high energy densities based on diacetylene–azobenzene derivatives. Journal of Materials Chemistry A, 2016, 4, 16157-16165.	5.2	86
613	Single layer PbI2: hydrogenation-driven reconstructions. RSC Advances, 2016, 6, 89708-89714.	1.7	10
614	Influence of TiO ₂ Blocking Layer Morphology on Planar Heterojunction Perovskite Solar Cells. Chemistry Letters, 2016, 45, 592-594.	0.7	17
615	Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today, 2016, 11, 644-660.	6.2	113
616	Ligand-Mediated Modulation of Layer Thicknesses of Perovskite Methylammonium Lead Bromide Nanoplatelets. Chemistry of Materials, 2016, 28, 6909-6916.	3.2	89
617	Photodetectors Based on Two-Dimensional Layer-Structured Hybrid Lead Iodide Perovskite Semiconductors. ACS Applied Materials & Interfaces, 2016, 8, 25660-25666.	4.0	174
618	Tuning optical properties of perovskite nanocrystals by supermolecular mercapto-β-cyclodextrin. Chemical Communications, 2016, 52, 12342-12345.	2.2	27
619	Tuning the Fermi-level of TiO ₂ mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale, 2016, 8, 16881-16885.	2.8	103
620	Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. Chemical Physics Letters, 2016, 662, 35-41.	1.2	43
621	Boosting Perovskite Solar Cells Performance and Stability through Doping a Polyâ€3 (hexylthiophene) Hole Transporting Material with Organic Functionalized Carbon Nanostructures. Advanced Functional Materials, 2016, 26, 7443-7453.	7.8	86
622	Bi-layer photoanode films of hierarchical carbon-doped brookite-rutile TiO 2 composite and anatase TiO 2 beads for efficient dye-sensitized solar cells. Electrochimica Acta, 2016, 216, 429-437.	2.6	15
623	Perovskite CH ₃ NH ₃ Pb(Br _x I _{1â~'x}) ₃ single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. Journal of Materials Chemistry C, 2016, 4, 9172-9178.	2.7	120
624	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	5.6	482
625	Direct Writing of Patterned, Leadâ€Free Nanowire Aligned Flexible Piezoelectric Device. Advanced Science, 2016, 3, 1600120.	5.6	44

#	Article	IF	CITATIONS
626	New advances in small molecule hole-transporting materials for perovskite solar cells. Chinese Chemical Letters, 2016, 27, 1293-1303.	4.8	22
627	Persistent Dopants and Phase Segregation in Organolead Mixed-Halide Perovskites. Chemistry of Materials, 2016, 28, 6848-6859.	3.2	132
628	Exploring the Electronic Band Structure of Organometal Halide Perovskite via Photoluminescence Anisotropy of Individual Nanocrystals. Nano Letters, 2016, 16, 5087-5094.	4.5	54
629	Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets. Advanced Functional Materials, 2016, 26, 6238-6245.	7.8	529
630	Effects of ambient air processing on morphology and photoconductivity of CH3NH3PbI3. Journal of Materials Science: Materials in Electronics, 2016, 27, 12028-12035.	1.1	3
631	Phosphorene and Phosphoreneâ€Based Materials – Prospects for Future Applications. Advanced Materials, 2016, 28, 8586-8617.	11.1	378
632	What difference does a thiophene make? Evaluation of a 4,4′-bis(thiophene) functionalised 2,2′-bipyridyl copper(l) complex in a dye-sensitized solar cell. Dyes and Pigments, 2016, 134, 419-426.	2.0	22
633	Reversible Medium-Dependent Solid–Solid Phase Transformations in Two-Dimensional Hybrid Perovskites. Chemistry of Materials, 2016, 28, 5522-5529.	3.2	11
634	Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects. Physical Review B, 2016, 93, .	1.1	67
635	Bismuth chalcohalides and oxyhalides as optoelectronic materials. Physical Review B, 2016, 93, .	1.1	82
636	Broadband transient absorption study of photoexcitations in lead halide perovskites: Towards a multiband picture. Physical Review B, 2016, 93, .	1.1	47
637	Exploring the cation dynamics in lead-bromide hybrid perovskites. Physical Review B, 2016, 93, .	1.1	40
638	Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction. Physical Review B, 2016, 94, .	1.1	65
640	Flexible organic-inorganic hybrid perovskite solar cells. Science China Materials, 2016, 59, 495-506.	3.5	7
642	Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere. Journal of Materials Chemistry A, 2016, 4, 13203-13210.	5.2	77
643	Organic-Inorganic Halide Perovskite Photovoltaics. , 2016, , .		115
644	The Controlling Mechanism for Potential Loss in CH ₃ NH ₃ PbBr ₃ Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 424-430.	8.8	77
645	Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics, 2016, 10, 585-589.	15.6	437
#	Article	IF	CITATIONS
-----	---	---	--------------------------
646	A study on utilizing different metals as the back contact of CH ₃ NH ₃ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 13488-13498.	5.2	205
647	Roomâ€Temperature, Hydrochlorideâ€Assisted, Oneâ€&tep Deposition for Highly Efficient and Airâ€&table Perovskite Solar Cells. Advanced Materials, 2016, 28, 8309-8314.	11.1	96
648	Waterâ€Resistant Perovskite Polygonal Microdisks Laser in Flexible Photonics Devices. Advanced Optical Materials, 2016, 4, 1718-1725.	3.6	31
649	Fewâ€Layer MoS ₂ Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600920.	10.2	207
650	A new kind of transparent and self-cleaning film for solar cells. Nanoscale, 2016, 8, 17747-17751.	2.8	41
651	Deliberate Design of TiO ₂ Nanostructures towards Superior Photovoltaic Cells. Chemistry - A European Journal, 2016, 22, 11357-11364.	1.7	25
652	Control of CH ₃ NH ₃ Pbl ₃ Perovskite Nanostructure Formation through the Use of Silicon Nanotube Templates. Small, 2016, 12, 4477-4480.	5.2	19
653	Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > < mml:mrow > < mml:msub > < mml:mrow > < mml:mi > CH < / mml:mi > < / mml:mrow > < mml:mn > 3 < / mm Physical Review Applied, 2016, 5, .	l:mn> <td>nl:msub><m< td=""></m<></td>	nl:msub> <m< td=""></m<>
654	Chemical Trends of Electronic Properties of Two-Dimensional Halide Perovskites and Their Potential Applications for Electronics and Optoelectronics. Journal of Physical Chemistry C, 2016, 120, 24682-24687.	1.5	41
655	Direct Observation of Band Structure Modifications in Nanocrystals of CsPbBr ₃ Perovskite. Nano Letters, 2016, 16, 7198-7202.	4.5	82
656	High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering. ACS Applied Materials & Interfaces, 2016, 8, 30107-30115.	4.0	28
657	Room-temperature water-vapor annealing for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 17267-17273.	5.2	58
658	High-performance self-powered perovskite photodetector with a rapid photoconductive response. RSC Advances, 2016, 6, 105076-105080.	1.7	37
659	Band gap tuning of nickelates for photovoltaic applications. Journal Physics D: Applied Physics, 2016, 49, 44LT02.	1.3	22
660	Ultrastable, Highly Luminescent Organic–Inorganic Perovskite–Polymer Composite Films. Advanced Materials, 2016, 28, 10710-10717.	11.1	400
661	Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar cells with improved moisture resistance. Nano Energy, 2016, 30, 341-346.	8.2	72
662	Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962.	8.8	87
663	Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, .	23.3	1,031

ARTICLE IF CITATIONS # Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction 5.8 139 664 perovskite solar cells. Nature Communications, 2016, 7, 12446. In situ observation of heat-induced degradation of perovskite solar cells. Nature Energy, 2016, 1, . 19.8 Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and 666 5.8 363 photoconductivity measurements. Nature Communications, 2016, 7, 12253. Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chemical Reviéws, 2016, 116, 14675-14725. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX₃Arrays. Nano 668 4.5 124 Letters, 2016, 16, 7974-7981. Spent Tea Leaf Templating of Cobalt-Based Mixed Oxide Nanocrystals for Water Oxidation. ACS Applied 4.0 Materials & amp; Interfaces, 2016, 8, 32488-32495. First Principles Investigation of Fluorine Based Strontium Series of Perovskites. Communications in 670 1.1 32 Theoretical Physics, 2016, 66, 571-578. Cobalt Oxide (CoO_{<i>x</i>}) as an Efficient Hole-Extracting Layer for High-Performance 4.0 122 Inverted Planar Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 33592-33600. Spatial Electron-hole Separation in a One Dimensional Hybrid Organic–Inorganic Lead Iodide. 672 1.6 25 Scientific Reports, 2016, 6, 20626. Ab initio study of M $\langle sub \rangle 2 \langle sub \rangle$ SnBr $\langle sub \rangle 6 \langle sub \rangle$ (M = K, Rb, Cs): Electronic and optical properties. Europhysics Letters, 2016, 115, 57002. Solar photovoltaics: current state and trends. Physics-Uspekhi, 2016, 59, 727-772. 674 79 0.8 High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic–Inorganic 4.0 151 Perovskite Solar Cells. AĆS Applied Materials & amp; Interfaces, 2016, 8, 31491-31499. Simple Approach to Improving the Amplified Spontaneous Emission Properties of Perovskite Films. ACS 676 4.0 48 Applied Materials & amp; Interfaces, 2016, 8, 32978-32983. A Lowâ€Temperature, Solutionâ€Processable Organic Electronâ€Transporting Layer Based on Planar Coronene for Highâ€performance Conventional Perovskite Solar Cells. Advanced Materials, 2016, 28, 11.1 10786-10793. Theoretical perspective of energy harvesting properties of atomically thin Bil₃. Journal of 678 5.247 Materials Chemistry A, 2016, 4, 19086-19094. Giant photostriction in organic–inorganic lead halide perovskites. Nature Communications, 2016, 7, 679 5.8 164 11193. High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific 680 1.6 134 Reports, 2016, 6, 36733. Toward Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 1233-1240. 8.8 848

ARTICLE IF CITATIONS # Efficient semi-transparent planar perovskite solar cells using a â€molecular glue'. Nano Energy, 2016, 30, 682 8.2 71 542-548. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite 1.6 Photovoltaic Cells. Scientific Reports, 2016, 6, 30759. Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using 684 3.6 178 Lead Thiocyanate Additives. ChemSusChem, 2016, 9, 3288-3297. Strategy for Improved Photoconversion Efficiency in Thin Photoelectrode Films by Controlling 24 ï€-Spacer Dihedral Angle. Journal of Physical Chemistry C, 2016, 120, 24655-24666. Synthesis and structure of pseudo-three dimensional hybrid iodobismuthate semiconductors. Dalton 686 1.6 29 Transactions, 2016, 45, 17974-17979. Atmospheric annealing effect on TiO₂/Sb₂S₃/P3HT heterojunction hybrid solar cell performance. RSC Advances, 2016, 6, 99282-99290. 1.7 Doping and alloying for improved perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 688 5.2 157 17623-17635. Silver nanoparticle plasmonic effects on hole-transport material-free mesoporous heterojunction 2.9 perovskite solar cells. Solar Energy, 2016, 139, 475-483. Surface and Interface Aspects of Organometal Halide Perovskite Materials and Solar Cells. Journal of 690 2.1 177 Physical Chemistry Letters, 2016, 7, 4764-4794. Performance enhancers for gel polymer electrolytes based on Lil and Rbl for quasi-solid-state dye 691 1.7 sensitized solar cells. RSC Advances, 2016, 6, 103683-103691. Colloidal Organometal Halide Perovskite (MAPbBrxI3â[^]x, 0â‰**¤**â‰**3**) Quantum Dots: Controllable Synthesis 692 1.6 22 and Tunable Photoluminescence. Scientific Reports, 2016, 6, 35931. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?. Energy and 15.6 239 Environmental Science, 2016, 9, 3650-3656. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical 694 1.6 132 vapour deposition. Scientific Reports, 2016, 6, 29910. Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular 1.7 p-type doping. RSC Advances, 2016, 6, 108888-108895. Concentration gradient-controlled growth of large-grain CH₃NH₃Pbl₃films and enhanced photovoltaic performance of 696 1.3 11 solar cells under ambient conditions. CrystEngComm, 2016, 18, 9243-9251. Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable 103 all-round high efficiency under both indoor and outdoor illumination. Nano Energy, 2016, 30, 460-469. Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite 698 CH₃NH₃SnI₃Films. Journal of the American Chemical Society, 6.6 252 2016, 138, 14750-14755. 699 Semiconductor nanowire lasers. Nature Reviews Materials, 2016, 1, . 23.3

ARTICLE IF CITATIONS Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized 700 5.8 350 and doped fullerene. Nature Communications, 2016, 7, 12806. Highly Efficient Perovskite Solar Cells with Substantial Reduction of Lead Content. Scientific Reports, 1.6 2016, 6, 35705. Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for 702 8.2 133 high efficiency and stable perovskites. Nano Energy, 2016, 30, 330-340. Hybrid organicâ€"inorganic perovskites: low-cost semiconductors with intriguing charge-transport 1,173 properties. Nature Reviews Materials, 2016, 1, . Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nature 704 5.8 488 Communications, 2016, 7, 11105. Role of Isopropyl Alcohol Solvent in the Synthesis of Organic–Inorganic Halide CH(NH₂)₂Pbl_{<i>x</i>}Br_{3–<i>x</i>} Perovskite Thin 1.5 Films by a Two-Step Method. Journal of Physical Chemistry C, 2016, 120, 25371-25377. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nature 706 5.8 206 Communications, 2016, 7, 11330. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nature 19.8 646 Energy, 2016, 1, . Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. 708 396 1.6 Scientific Reports, 2016, 6, 18721. Highly efficient light management for perovskite solar cells. Scientific Reports, 2016, 6, 18922. 1.6 Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. 710 1.6 32 Scientific Reports, 2016, 6, 34675. Influence of the substrate on the bulk properties of hybrid lead halide perovskite films. Journal of 5.2 Materials Chemistry A, 2016, 4, 18153-18163. Acceptor–Donor–Acceptor type ionic molecule materials for efficient perovskite solar cells and 712 8.2 79 organic solar cells. Nano Energy, 2016, 30, 387-397. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Science Advances, 2016, 2, e1601156. 714 Defects in perovskite-halides and their effects in solar cells. Nature Energy, 2016, 1, . 19.8 886 Perylene Bisimides as efficient electron transport layers in planar heterojunction perovskite solar cells. Science China Chemistry, 2016, 59, 1658-1662. Influence of Perovskite Morphology on Slow and Fast Charge Transport and Hysteresis in the 716 2.139 Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 4614-4621. Commercial progress and challenges for photovoltaics. Nature Energy, 2016, 1, . 19.8 278

#	Article	IF	CITATIONS
718	Enhanced perovskite morphology and crystallinity for high performance perovskite solar cells using a porous hole transport layer from polystyrene nanospheres. Physical Chemistry Chemical Physics, 2016, 18, 32903-32909.	1.3	23
719	Single Crystal Formamidinium Lead Iodide (FAPbI ₃): Insight into the Structural, Optical, and Electrical Properties. Advanced Materials, 2016, 28, 2253-2258.	11.1	781
720	Crosslinked Remoteâ€Doped Holeâ€Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells. Advanced Materials, 2016, 28, 2807-2815.	11.1	108
721	"Liquid Knife―to Fabricate Patterning Singleâ€Crystalline Perovskite Microplates toward Highâ€Performance Laser Arrays. Advanced Materials, 2016, 28, 3732-3741.	11.1	149
722	Hole Transport Layer Free Inorganic CsPbIBr ₂ Perovskite Solar Cell by Dual Source Thermal Evaporation. Advanced Energy Materials, 2016, 6, 1502202.	10.2	373
723	Polymer Stabilization of Lead(II) Perovskite Cubic Nanocrystals for Semitransparent Solar Cells. Advanced Energy Materials, 2016, 6, 1502317.	10.2	168
724	Holeâ€Transporting Materials in Inverted Planar Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600474.	10.2	243
725	Anisotropic and Ultralow Phonon Thermal Transport in Organic–Inorganic Hybrid Perovskites: Atomistic Insights into Solar Cell Thermal Management and Thermoelectric Energy Conversion Efficiency. Advanced Functional Materials, 2016, 26, 5297-5306.	7.8	125
726	Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films. Advanced Functional Materials, 2016, 26, 4653-4659.	7.8	61
727	Structureâ€Tuned Lead Halide Perovskite Nanocrystals. Advanced Materials, 2016, 28, 566-573.	11.1	215
728	Structure-function relationships of fullerene esters in polymer solar cells: unexpected structural effects on lifetime and efficiency. International Journal of Energy Research, 2016, 40, 507-513.	2.2	0
729	Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH ₃ NH ₃ PbI ₃ . Chemistry of Materials, 2016, 28, 4349-4357.	3.2	139
730	Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 15333-15340.	4.0	56
731	Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells. RSC Advances, 2016, 6, 57793-57798.	1.7	24
732	A PCBM-assisted perovskite growth process to fabricate high efficiency semitransparent solar cells. Journal of Materials Chemistry A, 2016, 4, 11648-11655.	5.2	49
733	High-Density and Uniform Lead Halide Perovskite Nanolaser Array on Silicon. Journal of Physical Chemistry Letters, 2016, 7, 2549-2555.	2.1	54
734	Enhanced Photovoltaic Performance with Carbon Nanotubes Incorporating into Hole Transport Materials for Perovskite Solar Cells. Journal of Electronic Materials, 2016, 45, 5127-5132.	1.0	14
735	Roadmap on optical energy conversion. Journal of Optics (United Kingdom), 2016, 18, 073004.	1.0	85

#	Article	IF	CITATIONS
736	The rising star in photovoltaics-perovskite solar cells: The past, present and future. Science China Technological Sciences, 2016, 59, 989-1006.	2.0	33
737	Room-Temperature Solution-Processed NiO _{<i>x</i>} :PbI ₂ Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors. ACS Nano, 2016, 10, 6808-6815.	7.3	122
738	Band Gaps of the Lead-Free Halide Double Perovskites Cs ₂ BiAgCl ₆ and Cs ₂ BiAgBr ₆ from Theory and Experiment. Journal of Physical Chemistry Letters, 2016, 7, 2579-2585.	2.1	529
739	Controlled growth of textured perovskite films towards high performance solar cells. Nano Energy, 2016, 27, 17-26.	8.2	123
740	Achieving Ultrafast Hole Transfer at the Monolayer MoS ₂ and CH ₃ NH ₃ Pbl ₃ Perovskite Interface by Defect Engineering. ACS Nano, 2016, 10, 6383-6391.	7.3	130
741	Tin chloride perovskite-sensitized core/shell photoanode solar cell with spiro-MeOTAD hole transport material for enhanced solar light harvesting. Journal of Solid State Electrochemistry, 2016, 20, 2633-2642.	1.2	10
742	Electronic properties of surface/bulk iodine defects of CsSnBr3 perovskite. Surface and Coatings Technology, 2016, 306, 159-163.	2.2	17
743	Role of Cations on the Electronic Transport and Optical Properties of Lead-Iodide Perovskites. Journal of Physical Chemistry C, 2016, 120, 16259-16270.	1.5	56
744	Ultralong Perovskite Microrods: One- versus Two-Step Synthesis and Enhancement of Hole-Transfer During Light Soaking. Journal of Physical Chemistry C, 2016, 120, 12273-12283.	1.5	18
745	Tailoring the lasing modes in CH ₃ NH ₃ PbBr ₃ perovskite microplates via micro-manipulation. RSC Advances, 2016, 6, 50553-50558.	1.7	11
746	TiO ₂ passivation for improved efficiency and stability of ZnO nanorods based perovskite solar cells. RSC Advances, 2016, 6, 57996-58002.	1.7	41
747	Study of Donor–Acceptor–ï€â€"Acceptor Architecture Sensitizers with Benzothiazole Acceptor for Dyeâ€Sensitized Solar Cells. Energy Technology, 2016, 4, 458-468.	1.8	8
748	Controlled crystallization of CH3NH3PbI3 films for perovskite solar cells by various PbI2(X) complexes. Solar Energy Materials and Solar Cells, 2016, 155, 331-340.	3.0	43
749	Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 2016, 28, 4532-4540.	11.1	102
750	Aligned Singleâ€Crystalline Perovskite Microwire Arrays for Highâ€Performance Flexible Image Sensors with Longâ€Term Stability. Advanced Materials, 2016, 28, 2201-2208.	11.1	346
751	Halide Perovskites: Poor Man's Highâ€Performance Semiconductors. Advanced Materials, 2016, 28, 5778-5793.	11.1	339
752	High Performance of Planar Perovskite Solar Cells Produced from PbI ₂ (DMSO) and PbI ₂ (NMP) Complexes by Intramolecular Exchange. Advanced Materials Interfaces, 2016, 3, 1500768.	1.9	206
753	Role of Stress Factors on the Adhesion of Interfaces in R2R Fabricated Organic Photovoltaics. Advanced Energy Materials, 2016, 6, 1501927.	10.2	18

#	Article	IF	CITATIONS
754	Oxygen Degradation in Mesoporous Al ₂ O ₃ /CH ₃ NH ₃ PbI _{3â€} <i>_x</i> Cl Perovskite Solar Cells: Kinetics and Mechanisms. Advanced Energy Materials, 2016, 6, 1600014.	<i>total</i>	: <b sub>
755	Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2016, 120, 2542-2547.	1.5	54
756	Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices. Nano Letters, 2016, 16, 871-876.	4.5	164
757	Solution processed graphene structures for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 2605-2616.	5.2	73
758	Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films. Frontiers of Optoelectronics, 2016, 9, 81-86.	1.9	27
759	A Long-Term View on Perovskite Optoelectronics. Accounts of Chemical Research, 2016, 49, 339-346.	7.6	189
760	The Halogen Bond. Chemical Reviews, 2016, 116, 2478-2601.	23.0	2,906
761	Enhancing the carrier thermalization time in organometallic perovskites by halide mixing. Physical Chemistry Chemical Physics, 2016, 18, 5219-5231.	1.3	61
762	Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications. Accounts of Chemical Research, 2016, 49, 320-329.	7.6	57
763	Crystallographic insights into (CH ₃ NH ₃) ₃ (Bi ₂ I ₉): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chemical Communications, 2016, 52, 3058-3060.	2.2	208
764	Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films. ACS Photonics, 2016, 3, 255-261.	3.2	26
765	Excited state and charge-carrier dynamics in perovskite solar cell materials. Nanotechnology, 2016, 27, 082001.	1.3	35
766	Charge Transfer Dynamics between Carbon Nanotubes and Hybrid Organic Metal Halide Perovskite Films. Journal of Physical Chemistry Letters, 2016, 7, 418-425.	2.1	83
767	Fiber-shaped perovskite solar cells with 5.3% efficiency. Journal of Materials Chemistry A, 2016, 4, 3901-3906.	5.2	65
768	Fabrication and Characterization of Mesoscopic Perovskite Photodiodes. IEEE Nanotechnology Magazine, 2016, 15, 255-260.	1.1	29
769	Lead-Free MA ₂ CuCl _{<i>x</i>} Br _{4–<i>x</i>} Hybrid Perovskites. Inorganic Chemistry, 2016, 55, 1044-1052.	1.9	457
770	Research opportunities to advance solar energy utilization. Science, 2016, 351, aad1920.	6.0	1,480
771	Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano, 2016, 10, 2071-2081.	7.3	1,448

ARTICLE IF CITATIONS Relativistic electronic structure and band alignment of BiSI and BiSel: candidate photovoltaic 772 5.2 127 materials. Journal of Materials Chemistry A, 2016, 4, 2060-2068. Dopant interdiffusion effects in n-i-p structured spiro-OMeTAD hole transport layer of organometal halide perovskite solar cells. Organic Electronics, 2016, 31, 71-76. 1.4 29 A highly photoconductive composite prepared by incorporating polyoxometalate into perovskite for 774 2.2 35 photodetection application. Chemical Communications, 2016, 52, 3304-3307. Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 204, 27-33. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films. 776 2.8 69 Nanoscale, 2016, 8, 1627-1634. Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites. Journal of Materials Chemistry C, 2016, 4, 793-800. Determination of the effective mass and nanoscale electrical transport in La-doped BaSnO 3 thin films. 778 1.1 20 Current Applied Physics, 2016, 16, 20-23. Crystal organometal halide perovskites with promising optoelectronic applications. Journal of 779 2.7 185 Materials Chemistry C, 2016, 4, 11-27. New terpyridine-based ruthenium complexes for dye sensitized solar cells applications. Inorganica 780 1.2 17 Chimica Ácta, 2016, 442, 158-166. van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional 4.5 Materials. Nano Letters, 2016, 16, 367-373. Epitaxial Electrodeposition of Methylammonium Lead Iodide Perovskites. Chemistry of Materials, 2016, 782 70 3.2 28, 399-405. Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from 4.5 494 All-Inorganic Perovskite Nanocrystals. Nano Letters, 2016, 16, 448-453. Effect of cesium chloride modification on the film morphology and UV-induced stability of planar 784 5.2 103 perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 11688-11695. Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells. Solar Energy, 2016, 123, 51-56. Computational Screening of Homovalent Lead Substitution in Organicâ E Inorganic Halide Perovskites. 786 208 1.5 Journal of Physical Chemistry C, 2016, 120, 166-173. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chemical 2.2 874 Communications, 2016, 52, 2067-2070. Nanophotonic perovskite solar cell architecture with a three-dimensional TiO₂ 788 nanodendrite scaffold for light trapping and electron collection. Journal of Materials Chemistry A, 5.230 2016, 4, 1119-1125. Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb²⁺with 2.8 247 Ge²⁺. Nanoscale, 2016, 8, 1503-1512.

#	Article	IF	CITATIONS
790	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	18.7	1,285
791	Light absorption enhancement by embedding submicron scattering TiO ₂ nanoparticles in perovskite solar cells. RSC Advances, 2016, 6, 24596-24602.	1.7	25
792	Low-temperature solution processable n–i–p perovskite solar cell. Japanese Journal of Applied Physics, 2016, 55, 04EA01.	0.8	3
793	Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH ₃ NH ₃ Snl ₃ Perovskite. Journal of Physical Chemistry Letters, 2016, 7, 1321-1326.	2.1	135
794	Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Advances, 2016, 6, 30978-30985.	1.7	28
795	Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy and Environmental Science, 2016, 9, 1752-1759.	15.6	917
796	High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH ₃ NH ₃ PbBr ₃ /ZnO sandwich structure. Nanoscale, 2016, 8, 10035-10042.	2.8	93
797	Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. Journal of Physical Chemistry Letters, 2016, 7, 1254-1259.	2.1	761
798	Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy, 2016, 23, 40-49.	8.2	59
799	Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals. Journal of Physical Chemistry C, 2016, 120, 6475-6481.	1.5	27
800	Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3 perovskite thin film. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	19
801	Influence of Nanostructures in Perovskite Solar Cells. , 2016, , .		3
802	High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. ACS Applied Materials & Interfaces, 2016, 8, 7070-7076.	4.0	111
803	A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films. ACS Nano, 2016, 10, 3959-3967.	7.3	238
804	Time-resolved fluorescence anisotropy study of organic lead halide perovskite. Solar Energy Materials and Solar Cells, 2016, 151, 102-112.	3.0	14
805	Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent. Journal of Alloys and Compounds, 2016, 671, 11-16.	2.8	13
806	Origin of <i><i>J</i>–<i>V</i></i> Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 905-917.	2.1	631
807	Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition. ACS Applied Materials & Interfaces, 2016, 8, 5053-5057.	4.0	120

#	Article	IF	CITATIONS
808	Dopant-Free Hole-Transporting Material with a <i>C</i> _{3<i>h</i>} Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 2528-2531.	6.6	446
809	High-efficiency crystalline silicon solar cells: status and perspectives. Energy and Environmental Science, 2016, 9, 1552-1576.	15.6	790
810	Ultrathin Cu ₂ O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016, 8, 6173-6179.	2.8	191
811	Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals <i>via</i> Reprecipitation Process at Room Temperature. ACS Nano, 2016, 10, 3648-3657.	7.3	905
812	Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.	14.8	117
813	A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells. RSC Advances, 2016, 6, 19923-19927.	1.7	50
814	Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. Journal of Materials Chemistry C, 2016, 4, 3898-3904.	2.7	179
815	Easily accessible polymer additives for tuning the crystal-growth of perovskite thin-films for highly efficient solar cells. Nanoscale, 2016, 8, 5552-5558.	2.8	83
816	Ordered Mesoporous to Macroporous Oxides with Tunable Isomorphic Architectures: Solution Criteria for Persistent Micelle Templates. Chemistry of Materials, 2016, 28, 1653-1667.	3.2	57
817	Mobile Ion Induced Slow Carrier Dynamics in Organic–Inorganic Perovskite CH ₃ NH ₃ PbBr ₃ . ACS Applied Materials & Interfaces, 2016, 8, 5351-5357.	4.0	100
818	Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites. RSC Advances, 2016, 6, 19857-19860.	1.7	115
819	Parameters responsible for the degradation of CH 3 NH 3 PbI 3 -based solar cells on polymer substrates. Nano Energy, 2016, 22, 211-222.	8.2	18
820	Charge Carrier Lifetimes Exceeding 15 μs in Methylammonium Lead Iodide Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 923-928.	2.1	226
821	Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale, 2016, 8, 12892-12899.	2.8	98
822	Nonlinear Optical Response of Organic–Inorganic Halide Perovskites. ACS Photonics, 2016, 3, 371-377.	3.2	154
823	Plasmonic nanostructures for organic photovoltaic devices. Journal of Optics (United Kingdom), 2016, 18, 033001.	1.0	38
824	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
825	Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale, 2016, 8, 7377-7383.	2.8	144

#	Article	IF	CITATIONS
826	Organohalide Perovskites for Solar Energy Conversion. Accounts of Chemical Research, 2016, 49, 545-553.	7.6	135
827	Dopant-free 3,3′-bithiophene derivatives as hole transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3661-3666.	5.2	50
828	Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films. Journal of Physical Chemistry Letters, 2016, 7, 715-721.	2.1	160
829	Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Letters, 2016, 16, 1869-1877.	4.5	425
830	Ultrasensitive 1D field-effect phototransistors: CH ₃ NH ₃ PbI ₃ nanowire sensitized individual carbon nanotubes. Nanoscale, 2016, 8, 4888-4893.	2.8	54
831	New insights into exciton binding and relaxation from high time resolution ultrafast spectroscopy of CH3NH3PbI3and CH3NH3PbBr3films. Journal of Materials Chemistry A, 2016, 4, 3546-3553.	5.2	28
832	Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents. Green Chemistry, 2016, 18, 2946-2955.	4.6	62
833	Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328-337.	8.2	180
834	Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Physical Chemistry Chemical Physics, 2016, 18, 7284-7292.	1.3	94
835	Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite: Synthesis and Optoelectronic Application. ACS Nano, 2016, 10, 3536-3542.	7.3	359
836	Hybrid Organic–Inorganic Coordination Complexes as Tunable Optical Response Materials. Inorganic Chemistry, 2016, 55, 3393-3400.	1.9	31
837	Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4962-4970.	5.2	19
838	Back-contacted hybrid organic–inorganic perovskite solar cells. Journal of Materials Chemistry C, 2016, 4, 3125-3130.	2.7	54
839	Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications. Journal of Materials Chemistry C, 2016, 4, 2545-2552.	2.7	53
840	The solvent treatment effect of the PEDOT:PSS anode interlayer in inverted planar perovskite solar cells. RSC Advances, 2016, 6, 24501-24507.	1.7	38
841	Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chemical Communications, 2016, 52, 5674-5677.	2.2	77
842	In ₂ O ₃ based perovskite solar cells. Proceedings of SPIE, 2016, , .	0.8	2
843	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185

#	Article	IF	CITATIONS
844	Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies. Chemical Communications, 2016, 52, 5354-5370.	2.2	152
845	Tunable perovskite microdisk lasers. Nanoscale, 2016, 8, 8717-8721.	2.8	32
846	Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 6435-6441.	1.5	72
847	Self limiting atomic layer deposition of Al ₂ O ₃ on perovskite surfaces: a reality?. Nanoscale, 2016, 8, 7459-7465.	2.8	28
848	Influence of the non-conjugated 5-position substituent of 1,3,5-triaryl-2-pyrazoline-based photosensitizers on the photophysical properties and performance of a dye-sensitized solar cell. RSC Advances, 2016, 6, 13964-13970.	1.7	21
849	Achieving high-performance planar perovskite solar cell with Nb-doped TiO ₂ compact layer by enhanced electron injection and efficient charge extraction. Journal of Materials Chemistry A, 2016, 4, 5647-5653.	5.2	163
850	Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF ₂ –Pyrazine Complex. Journal of the American Chemical Society, 2016, 138, 3974-3977.	6.6	658
851	Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy and Environmental Science, 2016, 9, 1706-1724.	15.6	622
852	TiO ₂ Sub-microsphere Film as Scaffold Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 8162-8167.	4.0	44
853	Design rules for the broad application of fast (<1 s) methylamine vapor based, hybrid perovskite post deposition treatments. RSC Advances, 2016, 6, 27475-27484.	1.7	41
854	Plasmonic Nanoparticle Enhancement of Solution-Processed Solar Cells: Practical Limits and Opportunities. ACS Photonics, 2016, 3, 158-173.	3.2	103
855	Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI ₃ to MAPbI ₂ Br Using Composition Spread Libraries. Journal of Physical Chemistry C, 2016, 120, 893-902.	1.5	65
856	Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy, 2016, 20, 108-116.	8.2	240
857	Effect of halide-mixing on the electronic transport properties of organometallic perovskites. Solar Energy Materials and Solar Cells, 2016, 148, 2-10.	3.0	25
858	Benzimidazole-Branched Isomeric Dyes: Effect of Molecular Constitution on Photophysical, Electrochemical, and Photovoltaic Properties. Journal of Organic Chemistry, 2016, 81, 640-653.	1.7	58
859	Measuring <i>n</i> and <i>k</i> at the Microscale in Single Crystals of CH ₃ NH ₃ PbBr ₃ Perovskite. Journal of Physical Chemistry C, 2016, 120, 616-620.	1.5	88
860	Decreasing Charge Losses in Perovskite Solar Cells Through mp-TiO ₂ /MAPI Interface Engineering. Chemistry of Materials, 2016, 28, 207-213.	3.2	77
861	Stability of perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 255-275.	3.0	726

#	ARTICLE	IF	Citations
862	Ultrafast photomodulation spectroscopy of π-conjugated polymers, nanotubes and organometal trihalide perovskites: A comparison. Synthetic Metals, 2016, 216, 31-39.	2.1	4
863	Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy and Environmental Science, 2016, 9, 1282-1289.	15.6	157
864	Novel spherical TiO 2 aggregates with diameter of 100 nm for efficient mesoscopic perovskite solar cells. Nano Energy, 2016, 20, 272-282.	8.2	50
865	Fluorescence Blinking and Photoactivation of All-Inorganic Perovskite Nanocrystals CsPbBr ₃ and CsPbBr ₂ 1. Journal of Physical Chemistry Letters, 2016, 7, 266-271.	2.1	136
866	Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy and Environmental Science, 2016, 9, 490-498.	15.6	535
867	Recent advancements in perovskite solar cells: flexibility, stability and large scale. Journal of Materials Chemistry A, 2016, 4, 6755-6771.	5.2	137
868	Rapid perovskite formation by CH ₃ NH ₂ gas-induced intercalation and reaction of Pbl ₂ 2. Journal of Materials Chemistry A, 2016, 4, 2494-2500.	5.2	115
869	Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 167-172.	2.1	833
870	Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH ₃ NH ₃ PbI ₃ -based perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 1947-1952.	5.2	58
871	Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. Journal of Materials Science, 2016, 51, 2771-2805.	1.7	295
872	Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition. RSC Advances, 2016, 6, 2819-2825.	1.7	131
873	Single-crystalline lead halide perovskite arrays for solar cells. Journal of Materials Chemistry A, 2016, 4, 1214-1217.	5.2	49
874	Hybrid Perovskite Quantum Nanostructures Synthesized by Electrospray Antisolvent–Solvent Extraction and Intercalation. ACS Applied Materials & Interfaces, 2016, 8, 854-861.	4.0	49
875	A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351, 151-155.	6.0	2,514
876	Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3. Solar Energy Materials and Solar Cells, 2016, 148, 60-66.	3.0	18
877	Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy, 2016, 19, 156-164.	8.2	137
878	X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water. ACS Nano, 2016, 10, 1224-1230.	7.3	320
879	Health hazards of methylammonium lead iodide based perovskites: cytotoxicity studies. Toxicology Research, 2016, 5, 407-419.	0.9	113

#	Article	IF	CITATIONS
880	Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. Materials Letters, 2016, 164, 472-475.	1.3	71
881	Progress in research on the stability of organometal perovskite solar cells. Solar Energy, 2016, 123, 74-87.	2.9	117
882	A calorimetric approach to reach high performance perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 146, 44-50.	3.0	14
883	A halide exchange engineering for CH3NH3PbI3â^'Br perovskite solar cells with high performance and stability. Nano Energy, 2016, 19, 17-26.	8.2	123
884	Organometal halide perovskite thin films and solar cells by vapor deposition. Journal of Materials Chemistry A, 2016, 4, 6693-6713.	5.2	210
885	Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells?. Physical Chemistry Chemical Physics, 2016, 18, 331-338.	1.3	69
886	Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites. Nanoscale, 2016, 8, 6222-6236.	2.8	119
887	Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale, 2016, 8, 6278-6283.	2.8	233
888	Growth and evolution of solution-processed CH3NH3PbI3-xClx layer for highly efficient planar-heterojunction perovskite solar cells. Journal of Power Sources, 2016, 301, 242-250.	4.0	39
889	Wavelength-tunable waveguides based on polycrystalline organic–inorganic perovskite microwires. Nanoscale, 2016, 8, 6258-6264.	2.8	76
890	Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science, 2016, 9, 323-356.	15.6	1,457
891	Study of Broadband Tunable Properties of Surface Plasmon Resonances of Noble Metal Nanoparticles Using Mie Scattering Theory: Plasmonic Perovskite Interaction. Plasmonics, 2016, 11, 713-719.	1.8	24
892	Plasmonic Perovskite Solar Cells Utilizing Au@SiO2 Core-Shell Nanoparticles. Plasmonics, 2017, 12, 237-244.	1.8	45
893	Carbon Nanotubes in TiO ₂ Nanofiber Photoelectrodes for Highâ€Performance Perovskite Solar Cells. Advanced Science, 2017, 4, 1600504.	5.6	83
894	Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nature Communications, 2017, 8, 14120.	5.8	330
895	Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3â^'xlx (0Ââ‰ÂxÂâ‰Â1). Journal of Alloys and Compounds, 2017, 702, 404-409.	2.8	55
896	Enhanced Optoelectronic Performance on the (110) Lattice Plane of an MAPbBr ₃ Single Crystal. Journal of Physical Chemistry Letters, 2017, 8, 684-689.	2.1	82
897	High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching. ACS Energy Letters, 2017, 2, 438-444.	8.8	247

#	Article	IF	CITATIONS
898	Formation, location and beneficial role of PbI ₂ in lead halide perovskite solar cells. Sustainable Energy and Fuels, 2017, 1, 119-126.	2.5	99
899	Electrochemical Doping of Halide Perovskites with Ion Intercalation. ACS Nano, 2017, 11, 1073-1079.	7.3	118
900	Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of Photovoltaics, 2017, 7, 513-517.	1.5	2
902	In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 342-348.	8.8	62
903	Highly Efficient Perovskite Solar Cell Photocharging of Lithium Ion Battery Using DC–DC Booster. Advanced Energy Materials, 2017, 7, 1602105.	10.2	128
904	Lead acetate film as precursor for two-step deposition of CH 3 NH 3 PbI 3. Materials Research Bulletin, 2017, 89, 89-96.	2.7	8
905	Cs ₂ InAgCl ₆ : A New Lead-Free Halide Double Perovskite with Direct Band Gap. Journal of Physical Chemistry Letters, 2017, 8, 772-778.	2.1	752
906	Enhanced photocatalytic activity of water stable hydroxyl ammonium lead halide perovskites. Materials Science in Semiconductor Processing, 2017, 63, 6-11.	1.9	26
908	Cd ₂ SnO ₄ transparent conductive oxide: a promising alternative candidate for highly efficient hybrid halide perovskite solar cells. RSC Advances, 2017, 7, 8295-8302.	1.7	31
909	Simplicity as a Route to Impact in Materials Research. Advanced Materials, 2017, 29, 1604681.	11.1	15
910	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
911	Leadâ€Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives. Advanced Materials, 2017, 29, 1605005.	11.1	568
912	Rigid Amino Acid as Linker to Enhance the Crystallinity of CH 3 NH 3 PbI 3 Particles. Particle and Particle Systems Characterization, 2017, 34, 1600298.	1.2	19
913	Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7029-7035.	4.0	122
914	A TiO ₂ nanotube network electron transport layer for high efficiency perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 4956-4961.	1.3	33
915	Semi-transparent solar cells. Journal Physics D: Applied Physics, 2017, 50, 093001.	1.3	70
916	Resonant Broadband Field Enhancement in Cylindrical Plasmonic Structure Surrounded by Perovskite Environment. Plasmonics, 2017, 12, 1511-1522.	1.8	4
917	A simple fabrication of CH ₃ NH ₃ PbI ₃ perovskite for solar cells using low-purity PbI ₂ . Journal of Semiconductors, 2017, 38, 014004.	2.0	12

#	Article	IF	CITATIONS
918	Readily synthesized dopant-free hole transport materials with phenol core for stabilized mixed perovskite solar cells. Journal of Power Sources, 2017, 344, 160-169.	4.0	63
919	Enhanced long-term stability of perovskite solar cells by 3-hydroxypyridine dipping. Chemical Communications, 2017, 53, 1829-1831.	2.2	59
920	Vortex Fluidics Improved Morphology of CH ₃ NH ₃ PbI _{3â€x} Cl _x Films for Perovskite Solar Cells. ChemistrySelect, 2017, 2, 369-374.	0.7	5
921	Probe Decomposition of Methylammonium Lead Iodide Perovskite in N ₂ and O ₂ by in Situ Infrared Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 1169-1174.	1.1	35
922	Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy. Structural Dynamics, 2017, 4, 044002.	0.9	61
923	Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/Pbl ₂ Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy. Nano Letters, 2017, 17, 1154-1160.	4.5	50
924	D–Ĩ€â€"A Dyes with an Intramolecular B–N Coordination Bond as a Key Scaffold for Electronic Structural Tuning and Their Application in Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2017, 90, 441-450.	2.0	25
925	An effective method of predicting perovskite solar cell lifetime–Case study on planar CH 3 NH 3 PbI 3 and HC(NH 2) 2 PbI 3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. Solar Energy Materials and Solar Cells, 2017, 162, 41-46.	3.0	77
926	Photon Reabsorption in Mixed CsPbCl ₃ :CsPbl ₃ Perovskite Nanocrystal Films for Light-Emitting Diodes. Journal of Physical Chemistry C, 2017, 121, 3790-3796.	1.5	57
927	Atomistic Origins of Surface Defects in CH ₃ NH ₃ PbBr ₃ Perovskite and Their Electronic Structures. ACS Nano, 2017, 11, 2060-2065.	7.3	123
928	Effects of ambient humidity on the optimum annealing time of mixed-halide Perovskite solar cells. Nanotechnology, 2017, 28, 114004.	1.3	20
929	Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6064-6071.	4.0	33
930	Solution-processed chalcopyrite–perovskite tandem solar cells in bandgap-matched two- and four-terminal architectures. Journal of Materials Chemistry A, 2017, 5, 3214-3220.	5.2	23
931	Effect of Precursor Solution Aging on the Crystallinity and Photovoltaic Performance of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602159.	10.2	130
932	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	8.2	362
933	Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Br) perovskite solar cells. AIP Conference Proceedings, 2017, , .	0.3	11
934	Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination. Nano Research, 2017, 10, 2130-2145.	5.8	97
935	Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. Nano Letters, 2017, 17, 2554-2560.	4.5	111

#	Article	IF	CITATIONS
936	A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Progress in Photovoltaics: Research and Applications, 2017, 25, 390-405.	4.4	171
937	Origins and mechanisms of hysteresis in organometal halide perovskites. Journal of Physics Condensed Matter, 2017, 29, 193001.	0.7	55
938	Fabrication of CH3NH3PbI3 perovskite-based solar cells: Developing various new solvents for CuSCN hole transport material. Solar Energy Materials and Solar Cells, 2017, 164, 56-62.	3.0	44
939	Scalable Ligand-Mediated Transport Synthesis of Organic–Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics. ACS Nano, 2017, 11, 2689-2696.	7.3	62
940	Highâ€ <i>Q</i> , Lowâ€Threshold Monolithic Perovskite Thinâ€Film Vertical avity Lasers. Advanced Materials, 2017, 29, 1604781.	11.1	112
941	Highly Conformal Ni Micromesh as a Current Collecting Front Electrode for Reduced Cost Si Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 8634-8640.	4.0	24
942	Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 164, 87-92.	3.0	76
943	Precise Morphology Control and Continuous Fabrication of Perovskite Solar Cells Using Droplet-Controllable Electrospray Coating System. ACS Applied Materials & Interfaces, 2017, 9, 7879-7884.	4.0	43
944	Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte Für Chemie, 2017, 148, 795-826.	0.9	431
945	Synthesis and characterization of NaSbS 2 thin film for potential photodetector and photovoltaic application. Chinese Chemical Letters, 2017, 28, 881-887.	4.8	21
946	Tuning the Competitive Recombination of Free Carriers and Bound Excitons in Perovskite CH ₃ NH ₃ PbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2017, 121, 6916-6923.	1.5	18
947	Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters, 2017, 2, 822-830.	8.8	305
948	Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment. Applied Energy, 2017, 194, 94-107.	5.1	76
949	Atomistic modelling – impact and opportunities in thin-film photovoltaic solar cell technologies. Molecular Simulation, 2017, 43, 774-796.	0.9	4
950	Fabrication and characterization of perovskite based solar cells using phthalocyanine and naphthalocyanine as hole-transporting layer. AIP Conference Proceedings, 2017, , .	0.3	1
951	Costâ€Effective Absorber Patterning of Perovskite Solar Cells by Nanosecond Laser Processing. Solar Rrl, 2017, 1, 1700003.	3.1	19
952	Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics. Advanced Materials, 2017, 29, 1605218.	11.1	91
953	Giant Twoâ€Photon Absorption and Its Saturation in 2D Organic–Inorganic Perovskite. Advanced Optical Materials, 2017, 5, 1601045.	3.6	175

#	Article	IF	CITATIONS
954	Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. Nano Letters, 2017, 17, 2895-2901.	4.5	216
955	Photoinduced Stark Effects and Mechanism of Ion Displacement in Perovskite Solar Cell Materials. ACS Nano, 2017, 11, 2823-2834.	7.3	47
956	Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8, 14555.	5.8	270
957	Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material. Science China Chemistry, 2017, 60, 423-430.	4.2	32
958	Continuous Size Tuning of Monodispersed ZnO Nanoparticles and Its Size Effect on the Performance of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 9785-9794.	4.0	43
959	A life cycle assessment of perovskite/silicon tandem solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 679-695.	4.4	74
960	Nanostructuring methylammonium lead iodide perovskite by ultrafast nano imprinting lithography. Microelectronic Engineering, 2017, 176, 106-110.	1.1	14
961	Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Organic Electronics, 2017, 45, 97-103.	1.4	20
962	Optoelectronic engineering of colloidal quantum-dot solar cells beyond the efficiency black hole: a modeling approach. Proceedings of SPIE, 2017, , .	0.8	1
963	Study of ethoxyethane deposition time and Co (III) complex doping on the performance of mesoscopic perovskite based solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 224-230.	3.0	14
964	Homoepitaxial Growth of Metal Halide Crystals Investigated by Reflection High-Energy Electron Diffraction. Scientific Reports, 2017, 7, 40542.	1.6	9
965	Alleviating hysteresis and improving device stability of perovskite solar cells via alternate voltage sweeps. Chinese Physics B, 2017, 26, 018401.	0.7	5
966	Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites. Chemistry of Materials, 2017, 29, 1561-1568.	3.2	44
967	Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. Nano Letters, 2017, 17, 2028-2033.	4.5	463
968	Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nature Reviews Materials, 2017, 2, .	23.3	867
969	Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy and Fuels, 2017, 1, 30-55.	2.5	150
970	BCP as Additive for Solution-Processed PCBM Electron Transport Layer in Efficient Planar Heterojunction Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 550-557.	1.5	29
971	Brief review of emerging photovoltaic absorbers. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 8-15.	3.2	64

#	Article	IF	CITATIONS
972	Few-layer MoS ₂ flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. Journal of Materials Chemistry A, 2017, 5, 4384-4396.	5.2	55
973	Twoâ€Dimensional Materials for Halide Perovskiteâ€Based Optoelectronic Devices. Advanced Materials, 2017, 29, 1605448.	11.1	284
974	Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy. Advanced Energy Materials, 2017, 7, 1602226.	10.2	75
975	Synergistic dielectric and semiconducting properties in fluorescein monopotassium salt random copolymers. Polymer, 2017, 114, 189-198.	1.8	6
976	The Functions of Fullerenes in Hybrid Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 782-794.	8.8	217
977	Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters, 2017, 2, 889-896.	8.8	367
978	Inhibition of a structural phase transition in one-dimensional organometal halide perovskite nanorods grown inside porous silicon nanotube templates. Physical Review B, 2017, 95, .	1.1	14
979	Progress in Tandem Solar Cells Based on Hybrid Organic–Inorganic Perovskites. Advanced Energy Materials, 2017, 7, 1602400.	10.2	130
980	Recent Advances in Dualâ€Functional Devices Integrating Solar Cells and Supercapacitors. Solar Rrl, 2017, 1, 1700002.	3.1	83
981	Decreasing Radiative Recombination Coefficients via an Indirect Band Gap in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 1265-1271.	2.1	57
982	Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, 2017, 5, 2971-2993.	2.7	415
983	Hybrid Perovskite Lightâ€Emitting Diodes Based on Perovskite Nanocrystals with Organic–Inorganic Mixed Cations. Advanced Materials, 2017, 29, 1606405.	11.1	235
984	Physical vapor deposition of methylammonium tin iodide thin films. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600796.	0.8	7
985	High-quality organohalide lead perovskite films fabricated by layer-by-layer alternating vacuum deposition for high efficiency photovoltaics. Materials Chemistry Frontiers, 2017, 1, 1520-1525.	3.2	33
986	Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. Journal of Semiconductors, 2017, 38, 011005.	2.0	22
987	Calculation studies on point defects in perovskite solar cells. Journal of Semiconductors, 2017, 38, 011006.	2.0	20
988	CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} under Different Fabrication Strategies: Electronic Structures and Energy-Level Alignment with an Organic Hole Transport Material. ACS Applied Materials & Interfaces, 2017, 9, 7859-7865.	4.0	23
989	Highly Reproducible Organometallic Halide Perovskite Microdevices based on Topâ€Đown Lithography. Advanced Materials, 2017, 29, 1606205.	11.1	138

#	Article	IF	CITATIONS
990	Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells. Electrochimica Acta, 2017, 231, 77-84.	2.6	31
991	Time-Resolved Infrared Spectroscopy Directly Probes Free and Trapped Carriers in Organo-Halide Perovskites. ACS Energy Letters, 2017, 2, 651-658.	8.8	43
992	High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material. Scientific Reports, 2017, 7, 42564.	1.6	52
993	Crystallographically Aligned Perovskite Structures for Highâ€Performance Polarizationâ€Sensitive Photodetectors. Advanced Materials, 2017, 29, 1605993.	11.1	198
994	Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Holeâ€Transporting Material with Improved Performance and Stability. ChemSusChem, 2017, 10, 1838-1845.	3.6	54
995	Formation of hybrid ABX ₃ perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Transactions, 2017, 46, 3500-3509.	1.6	133
996	Achieving Largeâ€Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer. Advanced Materials, 2017, 29, 1606363.	11.1	153
997	Highâ€Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites. Advanced Materials, 2017, 29, 1606859.	11.1	237
998	Advances in Quantum onfined Perovskite Nanocrystals for Optoelectronics. Advanced Energy Materials, 2017, 7, 1700267.	10.2	176
999	Tuning Magneto-photocurrent between Positive and Negative Polarities in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9537-9542.	1.5	8
1000	Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2017, 11, 3819-3831.	7.3	246
1001	Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.	8.2	345
1002	Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices and Microstructures, 2017, 107, 136-143.	1.4	93
1003	Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS Photonics, 2017, 4, 1232-1239.	3.2	103
1004	Improved Charge Collection in Highly Efficient CsPbBrl ₂ Solar Cells with Light-Induced Dealloying. ACS Energy Letters, 2017, 2, 1043-1049.	8.8	103
1005	Selfâ€Organized Fullerene Interfacial Layer for Efficient and Lowâ€Temperature Processed Planar Perovskite Solar Cells with High UVâ€Light Stability. Advanced Science, 2017, 4, 1700018.	5.6	47
1006	Solution-Processed Cesium Hexabromopalladate(IV), Cs ₂ PdBr ₆ , for Optoelectronic Applications. Journal of the American Chemical Society, 2017, 139, 6030-6033.	6.6	189
1007	Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability. Journal of Materials Chemistry A, 2017, 5, 9852-9858.	5.2	87

#	Article	IF	CITATIONS
1008	Highâ€Mobility pâ€Type Organic Semiconducting Interlayer Enhancing Efficiency and Stability of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700025.	5.6	36
1009	Inhibition of Zero Drift in Perovskite-Based Photodetector Devices via [6,6]-Phenyl-C61-butyric Acid Methyl Ester Doping. ACS Applied Materials & Interfaces, 2017, 9, 15638-15643.	4.0	34
1010	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 6693-6699.	6.6	723
1011	CH ₃ NH ₃ PbI ₃ perovskites: Ferroelasticity revealed. Science Advances, 2017, 3, e1602165.	4.7	257
1012	Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Materials, 2017, 9, e373-e373.	3.8	145
1013	Controlled mesoporous film formation from the deposition of electrosprayed nanoparticles. Aerosol Science and Technology, 2017, 51, 755-765.	1.5	31
1014	Solvothermal Synthesis of Highâ€Quality Allâ€Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Advanced Functional Materials, 2017, 27, 1701121.	7.8	283
1015	Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606774.	11.1	318
1016	Transparent Perfect Mirror. ACS Photonics, 2017, 4, 1026-1032.	3.2	8
1017	High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Physical Chemistry Chemical Physics, 2017, 19, 12876-12881.	1.3	78
1018	Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%. Journal of Materials Chemistry A, 2017, 5, 9897-9906.	5.2	47
1019	Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10917-10927.	5.2	95
1020	Determining interface properties limiting open-circuit voltage in heterojunction solar cells. Journal of Applied Physics, 2017, 121, .	1.1	24
1021	New Acetyleneâ€Bridged 9,10â€Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1700032.	10.2	137
1022	Electrosprayâ€Assisted Fabrication of Moistureâ€Resistant and Highly Stable Perovskite Solar Cells at Ambient Conditions. Advanced Energy Materials, 2017, 7, 1700210.	10.2	51
1023	1 cm2 CH3NH3PbI3 mesoporous solar cells with 17.8% steady-state efficiency by tailoring front FTO electrodes. Journal of Materials Chemistry C, 2017, 5, 4946-4950.	2.7	12
1024	A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy and Environmental Science, 2017, 10, 1297-1305.	15.6	438
1025	Ni-doped α-Fe 2 O 3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability. Nano Energy, 2017, 38, 193-200.	8.2	75

#	Article	IF	CITATIONS
1026	Current Advancements in Material Research and Techniques Focusing on Lead-free Perovskite Solar Cells. Chemistry Letters, 2017, 46, 1276-1284.	0.7	35
1027	Perovskite Chalcogenides with Optimal Bandgap and Desired Optical Absorption for Photovoltaic Devices. Advanced Energy Materials, 2017, 7, 1700216.	10.2	128
1028	Effect of ultraviolet absorptivity and waterproofness of poly(3,4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. Journal of Power Sources, 2017, 358, 29-38.	4.0	30
1029	Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602761.	10.2	193
1030	Dual function of a high-contrast hydrophobic–hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments. Nano Research, 2017, 10, 3885-3895.	5.8	23
1031	Impact of microstructure on the electron–hole interaction in lead halide perovskites. Energy and Environmental Science, 2017, 10, 1358-1366.	15.6	36
1032	Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A, 2017, 5, 12602-12652.	5.2	303
1033	High-Temperature–Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells. ACS Nano, 2017, 11, 6057-6064.	7.3	142
1034	An efficient and thickness insensitive cathode interface material for high performance inverted perovskite solar cells with 17.27% efficiency. Journal of Materials Chemistry C, 2017, 5, 5949-5955.	2.7	24
1035	Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. Solar Energy Materials and Solar Cells, 2017, 169, 8-12.	3.0	41
1036	Potential Improvement in Fill Factor of Lead-Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700027.	3.1	24
1037	Fabrication and characterizations of nitrogen-doped BaSi2 epitaxial films grown by molecular beam epitaxy. Journal of Crystal Growth, 2017, 471, 37-41.	0.7	0
1038	Plasma-assisted atomic layer deposition of TiO2 compact layers for flexible mesostructured perovskite solar cells. Solar Energy, 2017, 150, 447-453.	2.9	37
1039	Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 3844-3853.	4.5	101
1040	Ultralarge Allâ€Inorganic Perovskite Bulk Single Crystal for Highâ€Performance Visible–Infrared Dualâ€Modal Photodetectors. Advanced Optical Materials, 2017, 5, 1700157.	3.6	244
1041	Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chemistry of Materials, 2017, 29, 5019-5030.	3.2	237
1042	Solution-Processed Organic and Halide Perovskite Transistors on Hydrophobic Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 18120-18126.	4.0	40
1043	Recent progress in hybrid perovskite solar cells based on n-type materials. Journal of Materials Chemistry A, 2017, 5, 10092-10109.	5.2	136

#	Article	IF	CITATIONS
1044	Searching for "Defect-Tolerant―Photovoltaic Materials: Combined Theoretical and Experimental Screening. Chemistry of Materials, 2017, 29, 4667-4674.	3.2	275
1045	Photomodulated Hysteresis Behaviors in Perovskite Phototransistors with Ultra-Low Operating Voltage. Journal of Physical Chemistry C, 2017, 121, 11665-11671.	1.5	20
1046	Junction Propagation in Organometal Halide Perovskite–Polymer Composite Thin Films. Journal of Physical Chemistry Letters, 2017, 8, 2412-2419.	2.1	30
1047	Morphology and topography of perovskite solar cell films ablated and scribed with short and ultrashort laser pulses. Applied Surface Science, 2017, 416, 112-117.	3.1	29
1048	Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 2017, 11, 372-378.	15.6	871
1049	B-Site Metal Cation Exchange in Halide Perovskites. ACS Energy Letters, 2017, 2, 1190-1196.	8.8	99
1050	Matching Charge Extraction Contact for Wideâ€Bandgap Perovskite Solar Cells. Advanced Materials, 2017, 29, 1700607.	11.1	178
1051	Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renewable and Sustainable Energy Reviews, 2017, 78, 1-14.	8.2	49
1052	Strong ferroelectric polarization of CH ₃ NH ₃ Gel ₃ with high-absorption and mobility transport anisotropy: theoretical study. Journal of Materials Chemistry C, 2017, 5, 5356-5364.	2.7	101
1053	Thin film perovskite light-emitting diode based on CsPbBr 3 powders and interfacial engineering. Nano Energy, 2017, 37, 40-45.	8.2	107
1054	Enhanced light absorption of thin perovskite solar cells using textured substrates. Solar Energy Materials and Solar Cells, 2017, 168, 214-220.	3.0	50
1055	Stable and conductive lead halide perovskites facilitated by X-type ligands. Nanoscale, 2017, 9, 7252-7259.	2.8	62
1056	Solution-processed vanadium oxide thin film as the hole extraction layer for efficient hysteresis-free perovskite hybrid solar cells. Organic Electronics, 2017, 47, 85-93.	1.4	29
1057	Determination of the complex refractive index and optical bandgap of CH3NH3PbI3 thin films. Journal of Applied Physics, 2017, 121, .	1.1	38
1058	Ultrahigh Responsivity and Detectivity Graphene–Perovskite Hybrid Phototransistors by Sequential Vapor Deposition. Scientific Reports, 2017, 7, 46281.	1.6	61
1059	Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells. FlatChem, 2017, 2, 54-66.	2.8	53
1060	Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique. Solar Energy Materials and Solar Cells, 2017, 167, 173-177.	3.0	20
1061	Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 165-171.	3.0	70

#	Article	IF	CITATIONS
1064	Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability. Nano Research, 2017, 10, 2692-2698.	5.8	32
1065	Analytical model for simulating thin-film/wafer-based tandem junction solar cells. Solar Energy, 2017, 150, 287-297.	2.9	3
1066	Considerations for Upscaling of Organohalide Perovskite Solar Cells. Advanced Optical Materials, 2017, 5, 1600819.	3.6	18
1067	Au–CsPbBr ₃ Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals. ACS Energy Letters, 2017, 2, 88-93.	8.8	139
1068	An unusual photoconductive property of polyiodide and enhancement by catenating with 3-thiophenemethylamine salt. Chemical Communications, 2017, 53, 432-435.	2.2	11
1069	Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. Journal of Materials Chemistry C, 2017, 5, 118-126.	2.7	26
1070	Thermal Behavior of Photovoltaic Devices. , 2017, , .		90
1071	Stabilitävon Perowskitâ€Solarzellen: Einfluss der Substitution von Aâ€Kation und Xâ€Anion. Angewandte Chemie, 2017, 129, 1210-1233.	1.6	27
1072	Pressureâ€Induced Bandgap Optimization in Leadâ€Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability. Advanced Functional Materials, 2017, 27, 1604208.	7.8	167
1073	Temperature Coefficients of Photovoltaic Devices. , 2017, , 29-74.		7
1074	Vacancy dipole interactions and the correlation with monovalent cation dependent ion movement in lead halide perovskite solar cell materials. Nano Energy, 2017, 38, 537-543.	8.2	43
1075	Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2017, 80, 1321-1344.	8.2	240
1076	First-Principles Prediction of a Stable Hexagonal Phase of CH ₃ NH ₃ PbI ₃ . Chemistry of Materials, 2017, 29, 6003-6011.	3.2	62
1077	Pressure Dependence of Mixed Conduction and Photo Responsiveness in Organolead Tribromide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2944-2950.	2.1	33
1078	Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage. ACS Applied Materials & Interfaces, 2017, 9, 22361-22368.	4.0	81
1079	Hole transporting materials for mesoscopic perovskite solar cells – towards a rational design?. Journal of Materials Chemistry A, 2017, 5, 16446-16466.	5.2	141
1080	A Short Progress Report on High-Efficiency Perovskite Solar Cells. Nanoscale Research Letters, 2017,	3.1	89
	12, 410.		

#	Article	IF	CITATIONS
1082	Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells. Frontiers of Optoelectronics, 2017, 10, 103-110.	1.9	15
1083	Room-Temperature Processed Nb ₂ O ₅ as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 23181-23188.	4.0	120
1084	Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets. ACS Nano, 2017, 11, 6312-6318.	7.3	90
1085	Nanoscale Mapping of Bromide Segregation on the Cross Sections of Complex Hybrid Perovskite Photovoltaic Films Using Secondary Electron Hyperspectral Imaging in a Scanning Electron Microscope. ACS Omega, 2017, 2, 2126-2133.	1.6	16
1086	Solution processed double-decked V2Ox/PEDOT:PSS film serves as the hole transport layer of an inverted planar perovskite solar cell with high performance. RSC Advances, 2017, 7, 26202-26210.	1.7	23
1087	Dopantâ€Free Holeâ€Transport Materials Based on Methoxytriphenylamineâ€Substituted Indacenodithienothiophene for Solutionâ€Processed Perovskite Solar Cells. ChemSusChem, 2017, 10, 2833-2838.	3.6	43
1088	Improved water barrier properties of polylactic acid films with an amorphous hydrogenated carbon (a-C:H) coating. Carbon, 2017, 120, 157-164.	5.4	16
1089	Properties of cesium tin iodide (Cs-Sn-I) systems after annealing under different atmospheres. Materials Chemistry and Physics, 2017, 197, 27-35.	2.0	22
1090	Slot-die processing of flexible perovskite solar cells in ambient conditions. Solar Energy, 2017, 150, 570-576.	2.9	84
1091	Energy transfer from colloidal nanocrystals to strongly absorbing perovskites. Nanoscale, 2017, 9, 8695-8702.	2.8	6
1092	Thermally Stable MAPbl ₃ Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm ² achieved by Additive Engineering. Advanced Materials, 2017, 29, 1701073.	11.1	541
1093	Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6169-6175.	2.7	28
1094	Organic–Inorganic Hybrid Perovskite Nanowire Laser Arrays. ACS Nano, 2017, 11, 5766-5773.	7.3	244
1095	An Interdiffusion Method for Highly Performing Cesium/Formamidinium Double Cation Perovskites. Advanced Functional Materials, 2017, 27, 1700920.	7.8	68
1096	Composition Engineering in Doctorâ€Blading of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700302.	10.2	239
1097	Diammonium and Monoammonium Mixedâ€Organicâ€Cation Perovskites for High Performance Solar Cells with Improved Stability. Advanced Energy Materials, 2017, 7, 1700444	10.2	121
1098	Radiative Thermal Annealing/in Situ X-ray Diffraction Study of Methylammonium Lead Triiodide: Effect of Antisolvent, Humidity, Annealing Temperature Profile, and Film Substrates. Chemistry of Materials, 2017, 29, 5931-5941.	3.2	35
1099	Light incoupling tolerance of resonant and nonresonant metal nanostructures embedded in perovskite medium: effect of various geometries on broad spectral resonance. Journal Physics D: Applied Physics, 2017, 50, 335105.	1.3	9

#	Article	IF	CITATIONS
1100	Coherent Light Emitters From Solution Chemistry: Inorganic II–VI Nanocrystals and Organometallic Perovskites. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-14.	1.9	3
1101	Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films. Small, 2017, 13, 1700673.	5.2	62
1102	A 200-nm length TiO2 nanorod array with a diameter of 13 nm and areal density of 1100 Âμmâ^'2 for efficient perovskite solar cells. Ceramics International, 2017, 43, 12534-12539.	2.3	15
1103	Effect of hydrostatic strain on the electronic transport properties of CsPbI3. Computational Materials Science, 2017, 137, 314-317.	1.4	12
1104	Perovskite Nanopillar Array Based Tandem Solar Cell. ACS Photonics, 2017, 4, 2025-2035.	3.2	24
1105	Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for Highâ€Performance Perovskite Photovoltaic Cells with Stability. Small, 2017, 13, 1700418.	5.2	13
1106	Investigation of anti-solvent induced optical properties change of cesium lead bromide iodide mixed perovskite (CsPbBr3-xlx) quantum dots. Journal of Colloid and Interface Science, 2017, 504, 586-592.	5.0	27
1107	Efficient electron transfer layer based on Al 2 O 3 passivated TiO 2 nanorod arrays for high performance evaporation-route deposited FAPbI 3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 170, 187-196.	3.0	31
1108	An extremely high power factor in Seebeck effects based on a new n-type copper-based organic/inorganic hybrid C ₆ H ₄ NH ₂ CuBr ₂ 1 film with metal-like conductivity. Journal of Materials Chemistry A, 2017, 5, 13834-13841.	5.2	27
1109	Natural and artificial spectral edges in exoplanets. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L82-L86.	1.2	27
1110	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	10.2	120
1111	O ₃ fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH ₃ NH ₃ I vapor-assisted processed CH ₃ NH ₃ Pbl ₃ Pbl ₃ perovskite solar cells. Chinese Physics B, 2017, 26, 068803.	0.7	5
1112	The photocurrent response in the perovskite device based on coordination polymers: structure, topology, band gap and matched energy levels. Dalton Transactions, 2017, 46, 7866-7877.	1.6	9
1113	Layer-controlled two-dimensional perovskites: synthesis and optoelectronics. Journal of Materials Chemistry C, 2017, 5, 5610-5627.	2.7	60
1114	Studies on conducting nanocomposite with gallium nitride–doped ferrite, part-II. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2017, 231, 53-63.	0.5	0
1115	Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1602596.	10.2	62
1116	Theoretical Treatment of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 15806-15817.	7.2	107
1117	Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application. Journal of the American Chemical Society, 2017, 139, 8038-8043.	6.6	217

#	Article	IF	CITATIONS
1118	Pin-Hole Free Perovskite Film for Solar Cells Application Prepared by Controlled Two-Step Spin-Coating Method. IOP Conference Series: Materials Science and Engineering, 2017, 196, 012037.	0.3	31
1119	Improved electronic transport properties of tin-halide perovskites. Solar Energy Materials and Solar Cells, 2017, 170, 8-12.	3.0	14
1120	Theoretische Abhandlung über CH ₃ NH ₃ PbI ₃ â€Perowskitâ€Solarzellen. Angewandte Chemie, 2017, 129, 16014-16026.	1.6	5
1121	Dielectric Response: Answer to Many Questions in the Methylammonium Lead Halide Solar Cell Absorbers. Advanced Energy Materials, 2017, 7, 1700600.	10.2	163
1122	Two cyclohexanofullerenes used as electron transport materials in perovskite solar cells. Inorganica Chimica Acta, 2017, 468, 146-151.	1.2	11
1123	Exploring the PbS–Bi ₂ S ₃ Series for Next Generation Energy Conversion Materials. Chemistry of Materials, 2017, 29, 5156-5167.	3.2	32
1124	Delayed Luminescence in Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 13381-13390.	1.5	148
1125	Quantum Dynamics of Photogenerated Charge Carriers in Hybrid Perovskites: Dopants, Grain Boundaries, Electric Order, and Other Realistic Aspects. ACS Energy Letters, 2017, 2, 1588-1597.	8.8	31
1126	Halide Perovskites under Pressure: Accessing New Properties through Lattice Compression. ACS Energy Letters, 2017, 2, 1549-1555.	8.8	138
1127	Planar Perovskite Solar Cells: Local Structure and Stability Issues. Solar Rrl, 2017, 1, 1700066.	3.1	10
1128	Investigation of Interfacial Charge Transfer in Solution Processed Cs ₂ SnI ₆ Thin Films. Journal of Physical Chemistry C, 2017, 121, 13092-13100.	1.5	66
1129	Full-Spectral Fine-Tuning Visible Emissions from Cation Hybrid Cs _{1–<i>m</i>} FA <i>_m</i> PbX ₃ (X = Cl, Br, and I, 0 ≤i>m ≤) Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 20671-20678.	4.0	43
1130	Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite. Nature Communications, 2017, 8, 15565.	5.8	72
1131	Charge transport in a two-dimensional hybrid metal halide thiocyanate compound. Journal of Materials Chemistry C, 2017, 5, 5930-5938.	2.7	37
1132	Nanostructured Materials for Next-Generation Energy Storage and Conversion. , 2017, , .		7
1133	Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films. ACS Applied Materials & Interfaces, 2017, 9, 20711-20718.	4.0	21
1134	Significant light absorption improvement in perovskite/CIGS tandem solar cells with dielectric nanocone structures. Journal of Physics: Conference Series, 2017, 844, 012004.	0.3	6
1135	Oneâ€Dimensional Organic–Inorganic Hybrid Materials Based on Antimony. European Journal of Inorganic Chemistry, 2017, 2017, 3401-3408.	1.0	18

#	Article	IF	CITATIONS
1136	Symmetrization of the Crystal Lattice of MAPbI ₃ Boosts the Performance and Stability of Metal–Perovskite Photodiodes. Advanced Materials, 2017, 29, 1701656.	11.1	53
1137	Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion. Nano Energy, 2017, 38, 457-466.	8.2	40
1138	Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes. A review. Modern Electronic Materials, 2017, 3, 1-25.	0.2	29
1139	Recent efficient strategies for improving the moisture stability of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15447-15459.	5.2	125
1140	Direct Observation of Charge Collection at Nanometer-Scale Iodide-Rich Perovskites during Halide Exchange Reaction on CH ₃ NH ₃ PbBr ₃ . Journal of Physical Chemistry Letters, 2017, 8, 1724-1728.	2.1	26
1141	Direct Experimental Evidence of Halide Ionic Migration under Bias in CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} -Based Perovskite Solar Cells Using GD-OES Analysis. ACS Energy Letters, 2017, 2, 943-949.	8.8	60
1142	Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. Journal of Materials Research, 2017, 32, 1798-1824.	1.2	16
1143	Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‧ilicon Tandem with over 26% Efficiency. Advanced Energy Materials, 2017, 7, 1700228.	10.2	443
1144	Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers. Scientific Reports, 2017, 7, 45391.	1.6	48
1145	Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer. RSC Advances, 2017, 7, 19457-19463.	1.7	48
1146	Microstructured superhydrophobic anti-reflection films for performance improvement of photovoltaic devices. Materials Research Bulletin, 2017, 91, 208-213.	2.7	30
1147	Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer. Solar Energy Materials and Solar Cells, 2017, 166, 100-107.	3.0	31
1148	Solutionâ€Processed Extremely Efficient Multicolor Perovskite Lightâ€Emitting Diodes Utilizing Doped Electron Transport Layer. Advanced Functional Materials, 2017, 27, 1606874.	7.8	96
1149	Field-emission from quantum-dot-in-perovskite solids. Nature Communications, 2017, 8, 14757.	5.8	83
1150	Physical properties of fluorine based perovskites for vacuum-ultraviolet-transparent lens materials. Chinese Journal of Physics, 2017, 55, 893-903.	2.0	13
1151	<i>In Situ</i> Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices. ACS Nano, 2017, 11, 3957-3964.	7.3	151
1152	Enhanced spectral response of semiconducting BaSi 2 films by oxygen incorporation. Thin Solid Films, 2017, 629, 17-21.	0.8	14
1153	Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13231-13239.	4.0	97

#	Article	IF	CITATIONS
1154	Bose–Einstein oscillators and the excitation mechanism of free excitons in 2D layered organic–inorganic perovskites. RSC Advances, 2017, 7, 18366-18373.	1.7	9
1155	Improving the stability of the perovskite solar cells by V ₂ O ₅ modified transport layer film. RSC Advances, 2017, 7, 18456-18465.	1.7	30
1156	Stretchable Lightâ€Emitting Diodes with Organometalâ€Halideâ€Perovskite–Polymer Composite Emitters. Advanced Materials, 2017, 29, 1607053.	11.1	147
1157	Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting. Journal of Physical Chemistry Letters, 2017, 8, 1824-1830.	2.1	51
1158	Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer. Journal of Power Sources, 2017, 353, 123-130.	4.0	22
1159	The influence of anatase titanium dioxide film (0 0 1) preferred orientation on N implantation process. Materials Letters, 2017, 197, 28-30.	1.3	11
1160	Universal rules for visible-light absorption in hybrid perovskite materials. Journal of Applied Physics, 2017, 121, .	1.1	91
1161	Addressing Toxicity of Lead: Progress and Applications of Lowâ€₹oxic Metal Halide Perovskites and Their Derivatives. Advanced Energy Materials, 2017, 7, 1602512.	10.2	290
1162	Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. Journal of Materials Chemistry A, 2017, 5, 7811-7815.	5.2	209
1163	Impact of Divalent Metal Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite Prepared by the Two-Step Solution Process. MRS Advances, 2017, 2, 1183-1188.	0.5	8
1164	Engineering dielectric constants in organic semiconductors. Journal of Materials Chemistry C, 2017, 5, 3736-3747.	2.7	50
1165	Effect of Blend Composition on Bulk Heterojunction Organic Solar Cells: A Review. Solar Rrl, 2017, 1, 1700035.	3.1	29
1166	Electronic and defect properties of (CH ₃ NH ₃) ₂ Pb(SCN) ₂ I ₂ analogues for photovoltaic applications. Journal of Materials Chemistry A, 2017, 5, 7845-7853.	5.2	43
1167	Comparison of life cycle environmental impacts of different perovskite solar cell systems. Solar Energy Materials and Solar Cells, 2017, 166, 9-17.	3.0	79
1168	Pressure-Induced Metallization of the Halide Perovskite (CH ₃ NH ₃)PbI ₃ . Journal of the American Chemical Society, 2017, 139, 4330-4333.	6.6	157
1169	Dualâ€5ource Precursor Approach for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604758.	11.1	142
1170	Towards a classification strategy for complex nanostructures. Nanoscale Horizons, 2017, 2, 187-198.	4.1	45
1171	Oxide/metal/oxide electrodes for solar cell applications. Solar Energy, 2017, 146, 464-469.	2.9	25

#	Article	IF	CITATIONS
1172	Influence of Rb/Cs Cation-Exchange on Inorganic Sn Halide Perovskites: From Chemical Structure to Physical Properties. Chemistry of Materials, 2017, 29, 3181-3188.	3.2	89
1173	Selfâ€Encapsulating Thermostable and Airâ€Resilient Semitransparent Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602599.	10.2	129
1174	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
1175	High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications. Journal of Physical Chemistry C, 2017, 121, 7183-7187.	1.5	128
1176	Modulated CH3NH3PbI3â^'xBrx film for efficient perovskite solar cells exceeding 18%. Scientific Reports, 2017, 7, 44603.	1.6	60
1177	Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 2017, 7, 17044-17062.	1.7	317
1178	Solution-processed visible-blind UV-A photodetectors based on CH ₃ NH ₃ PbCl ₃ perovskite thin films. Journal of Materials Chemistry C, 2017, 5, 3796-3806.	2.7	90
1179	Enhancing performance of inverted planar perovskite solar cells by argon plasma post-treatment on PEDOT:PSS. RSC Advances, 2017, 7, 17398-17402.	1.7	9
1180	Enhancement in efficiency and optoelectronic quality of perovskite thin films annealed in MACl vapor. Sustainable Energy and Fuels, 2017, 1, 755-766.	2.5	77
1181	Solution processing of air-stable molecular semiconducting iodosalts, Cs ₂ SnI _{6â^'x} Br _x , for potential solar cell applications. Sustainable Energy and Fuels, 2017, 1, 710-724.	2.5	174
1182	Low-Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications. Nano-Micro Letters, 2017, 9, 36.	14.4	73
1183	Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7, 44629.	1.6	175
1184	Engineering of Functional Manganites Grown by MOCVD for Miniaturized Devices. Advanced Materials Interfaces, 2017, 4, 1600974.	1.9	10
1185	Ultrasensitivity broadband photodetectors based on perovskite: Research on film crystallization and electrode optimization. Organic Electronics, 2017, 46, 35-43.	1.4	23
1186	Ï€â€Conjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604545.	11.1	543
1187	Conductance Switch of a Bromoplumbate Bistable Semiconductor by Electronâ€Transfer Thermochromism. Angewandte Chemie - International Edition, 2017, 56, 554-558.	7.2	131
1188	Inkjet-printed optoelectronics. Nanoscale, 2017, 9, 965-993.	2.8	132
1189	Conductance Switch of a Bromoplumbate Bistable Semiconductor by Electronâ€Transfer Thermochromism. Angewandte Chemie, 2017, 129, 569-573.	1.6	78

#	Article	IF	Citations
1190	Specificities of the Thermal Behavior of Current and Emerging Photovoltaic Technologies. , 2017, , 105-128.		1
1191	Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Research, 2017, 10, 1092-1103.	5.8	134
1192	Rational design of bis(4-methoxyphenyl)amine-based molecules with different π-bridges as hole-transporting materials for efficient perovskite solar cells. Dyes and Pigments, 2017, 139, 283-291.	2.0	13
1193	Global Analysis of Perovskite Photophysics Reveals Importance of Geminate Pathways. Journal of Physical Chemistry C, 2017, 121, 1062-1071.	1.5	22
1194	Enhanced Grain Size, Photoluminescence, and Photoconversion Efficiency with Cadmium Addition during the Two-Step Growth of CH ₃ NH ₃ PbI ₃ . ACS Applied Materials & Interfaces, 2017, 9, 2334-2341.	4.0	45
1195	ZrO ₂ /TiO ₂ Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 2342-2349.	4.0	41
1196	Impact of Crystal Surface on Photoexcited States in Organic–Inorganic Perovskites. Advanced Functional Materials, 2017, 27, 1604995.	7.8	23
1197	Plasmonics in Organic and Perovskite Solar Cells: Optical and Electrical Effects. Advanced Optical Materials, 2017, 5, 1600698.	3.6	76
1198	Modifying CH 3 NH 3 PbBr 3 nanocrystals with arylamines. Journal of Physics and Chemistry of Solids, 2017, 103, 164-169.	1.9	7
1199	A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cells. Nano Energy, 2017, 32, 310-319.	8.2	44
1200	Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH ₃ NH ₃ PbI ₃ Film. Advanced Energy Materials, 2017, 7, 1602017.	10.2	291
1201	Functionality-Directed Screening of Pb-Free Hybrid Organic–Inorganic Perovskites with Desired Intrinsic Photovoltaic Functionalities. Chemistry of Materials, 2017, 29, 524-538.	3.2	135
1202	Organic Small Molecule as the Underlayer Toward High Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 2295-2300.	4.0	23
1203	Plasmonic nanostructures in solar energy conversion. Journal of Materials Chemistry C, 2017, 5, 1008-1021.	2.7	138
1204	Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells. Solar Energy Materials and Solar Cells, 2017, 162, 13-20.	3.0	57
1205	Crystal and electronic structures of substituted halide perovskites based on density functional calculation and molecular dynamics. Chemical Physics, 2017, 485-486, 22-28.	0.9	12
1206	Organics go hybrid. Nature Photonics, 2017, 11, 20-22.	15.6	12
1207	A review of photovoltaic module technologies for increased performance in tropical climate. Renewable and Sustainable Energy Reviews, 2017, 75, 1225-1238.	8.2	80

#	Article	IF	CITATIONS
1208	Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal Physics D: Applied Physics, 2017, 50, 033001.	1.3	42
1209	Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods. Energy Technology, 2017, 5, 373-401.	1.8	26
1210	Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed Methylammonium Lead Halide Perovskites. Chemistry of Materials, 2017, 29, 462-473.	3.2	35
1211	Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Letters, 2017, 17, 269-275.	4.5	307
1212	2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 2346-2354.	5.2	92
1213	Low Density of Conduction and Valence Band States Contribute to the High Open-Circuit Voltage in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 1455-1462.	1.5	57
1214	Crystallization Kinetics of Lead Halide Perovskite Film Monitored by In Situ Terahertz Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 401-406.	2.1	36
1215	Perovskite/Poly(3-hexylthiophene)/Graphene Multiheterojunction Phototransistors with Ultrahigh Gain in Broadband Wavelength Region. ACS Applied Materials & Interfaces, 2017, 9, 1569-1576.	4.0	110
1216	Cesium power: low Cs ⁺ levels impart stability to perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 4069-4077.	1.3	155
1217	Organometallic Perovskite Metasurfaces. Advanced Materials, 2017, 29, 1604268.	11.1	118
1218	Structural Stabilities and Electronic Properties of High-Angle Grain Boundaries in Perovskite Cesium Lead Halides. Journal of Physical Chemistry C, 2017, 121, 1715-1722.	1.5	99
1219	Mixed-Organic-Cation (FA) _{<i>x</i>} (MA) _{1<i>–x</i>} Pbl ₃ Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process. ACS Applied Materials & Interfaces, 2017, 9, 2449-2458.	4.0	98
1220	Twoâ€Dimensional Single‣ayer Organic–Inorganic Hybrid Perovskite Semiconductors. Advanced Energy Materials, 2017, 7, 1601731.	10.2	93
1221	Enhanced Efficiency of Hot ast Largeâ€Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Advanced Energy Materials, 2017, 7, 1601660.	10.2	191
1222	A Flexible Webâ€Based Approach to Modeling Tandem Photocatalytic Devices. Solar Rrl, 2017, 1, e201600013.	3.1	22
1223	Efficiency enhancement of regular-type perovskite solar cells based on Al-doped ZnO nanorods as electron transporting layers. Superlattices and Microstructures, 2017, 102, 94-102.	1.4	22
1224	Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Materials, 2017, 16, 23-34.	13.3	498
1225	International round-robin inter-comparison of dye-sensitized and crystalline silicon solar cells. Journal of Power Sources, 2017, 340, 309-318.	4.0	9

#	Article	IF	CITATIONS
1226	Annealing-free perovskite films based on solvent engineering for efficient solar cells. Journal of Materials Chemistry C, 2017, 5, 842-847.	2.7	63
1227	A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews, 2017, 70, 1286-1297.	8.2	709
1228	A perylene diimide based polymer: a dual function interfacial material for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 1079-1086.	3.2	51
1229	Enhancement of the Performance of Perovskite Solar Cells, LEDs, and Optical Amplifiers by Antiâ€Solvent Additive Deposition. Advanced Materials, 2017, 29, 1604056.	11.1	63
1230	Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2017, 139, 836-842.	6.6	470
1231	Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy and Environmental Science, 2017, 10, 516-522.	15.6	720
1232	Liquid Hydrocarbon Production from CO ₂ : Recent Development in Metalâ€Based Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.	3.6	54
1233	Room-Temperature Engineering of All-Inorganic Perovskite Nanocrsytals with Different Dimensionalities. Chemistry of Materials, 2017, 29, 8978-8982.	3.2	174
1234	Lead-Free Hybrid Material with an Exceptional Dielectric Phase Transition Induced by a Chair-to-Boat Conformation Change of the Organic Cation. Inorganic Chemistry, 2017, 56, 13078-13085.	1.9	35
1235	Perovskite Solar Cells Using Carbon Nanotubes Both as Cathode and as Anode. Journal of Physical Chemistry C, 2017, 121, 25743-25749.	1.5	89
1236	Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook. ACS Photonics, 2017, 4, 2962-2970.	3.2	241
1237	Di-isopropyl ether assisted crystallization of organic–inorganic perovskites for efficient and reproducible perovskite solar cells. Nanoscale, 2017, 9, 17893-17901.	2.8	20
1238	A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy and Environmental Science, 2017, 10, 2509-2515.	15.6	437
1239	Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air. Journal of Materials Chemistry A, 2017, 5, 22975-22983.	5.2	38
1240	Molecular Insights into Early Nuclei and Interfacial Mismatch during Vapor Deposition of Hybrid Perovskites on Titanium Dioxide Substrate. Crystal Growth and Design, 2017, 17, 6201-6211.	1.4	7
1241	The influence of hybrid alumina/titania materials as electron transmission layer in planar high-performance perovskite solar cells. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
1242	Computational Design of Perovskite Ba _{<i>x</i>} Sr _{1–<i>x</i>} SnO ₃ Alloys as Transparent Conductors and Photocatalysts. Journal of Physical Chemistry C, 2017, 121, 26446-26456.	1.5	14
1243	Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors. ACS Applied Materials & amp; Interfaces, 2017, 9, 42011-42019.	4.0	5

#		IC	CITATIONS
#	Bandgap engineering in semiconductor allow panomaterials with widely tunable compositions. Nature	IF	CHATIONS
1244	Reviews Materials, 2017, 2, .	23.3	279
1245	Influence of energy band alignment in mixed crystalline TiO2nanotube arrays: good for photocatalysis, bad for electron transfer. Journal Physics D: Applied Physics, 2017, 50, 505106.	1.3	5
1246	Cathode modification with solution-processed hybrid electron extraction layer for improved charge collection of planar heterojunction perovskite solar cells. Organic Electronics, 2017, 51, 404-409.	1.4	6
1247	Geometry and materials considerations for thin film micro-concentrator solar cells. Solar Energy, 2017, 158, 186-191.	2.9	5
1248	Solar energy storage in the rechargeable batteries. Nano Today, 2017, 16, 46-60.	6.2	175
1249	Nanorod Suprastructures from a Ternary Graphene Oxide–Polymer–CsPbX ₃ Perovskite Nanocrystal Composite That Display High Environmental Stability. Nano Letters, 2017, 17, 6759-6765.	4.5	118
1250	Mixed-Halide Perovskites with Stabilized Bandgaps. Nano Letters, 2017, 17, 6863-6869.	4.5	165
1251	altimg="si4.gif" display="inline" id="mml4" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">CH</mml:mi </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> mathvariant="normal">NH <mml:mrow> <mml:mn> 3</mml:mn> </mml:mrow> mathvariant="normal">PbI <mml:mrow> <mml:mn> 3</mml:mn> </mml:mrow> <td>לטג} שלי למנµ שלי לתנע לענγ</td><td>msyb><mral msub><mral< td=""></mral<></mral </td></mml:msub>	לטג} שלי למנµ שלי לתנע לענγ	msyb> <mral msub><mral< td=""></mral<></mral
1252	Nano Structures Nano Objects, 2017, 12, 106-112. Light Soaking Phenomena in Organic–Inorganic Mixed Halide Perovskite Single Crystals. ACS Photonics, 2017, 4, 2813-2820.	3.2	31
1253	High-Performance and Hysteresis-Free Planar Solar Cells with PC ₇₁ BM and C ₆₀ Composed Structure Prepared Irrespective of Humidity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9718-9724.	3.2	11
1254	Low-Temperature Growth of Hydrogenated Amorphous Silicon Carbide Solar Cell by Inductively Coupled Plasma Deposition Toward High Conversion Efficiency in Indoor Lighting. Scientific Reports, 2017, 7, 12706.	1.6	18
1255	Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites. Physical Review Letters, 2017, 119, 145501.	2.9	65
1256	The Stability Effect of Atomic Layer Deposition (ALD) of Al ₂ O ₃ on CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell Fabricated by Vapor Deposition. Key Engineering Materials, 0, 753, 156-162.	0.4	3
1257	Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vapor–Solution Method. Advanced Materials, 2017, 29, 1703256.	11.1	121
1258	Characterization of intrinsic hole transport in single-crystal spiro-OMeTAD. Npj Flexible Electronics, 2017, 1, .	5.1	49
1259	Metalâ€Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities. Advanced Materials, 2017, 29, 1702838.	11.1	117
1260	Effect of Water Addition during Preparation on the Earlyâ€Time Photodynamics of CH ₃ NH ₃ PbI ₃ Perovskite Layers. ChemPhysChem, 2017, 18, 3320-3324.	1.0	4
1261	Enhanced Photovoltaic Performance of the Inverted Planar Perovskite Solar Cells by Using Mixed-Phase Crystalline Perovskite Film with Trace Amounts of Pbl ₂ as an Absorption Layer. Journal of Physical Chemistry C, 2017, 121, 22607-22620.	1.5	11

#	Article	IF	CITATIONS
1262	3D hole-transporting materials based on coplanar quinolizino acridine for highly efficient perovskite solar cells. Chemical Science, 2017, 8, 7807-7814.	3.7	36
1263	Organometal Trihalide Perovskites with Intriguing Ferroelectric and Piezoelectric Properties. Advanced Functional Materials, 2017, 27, 1702207.	7.8	37
1264	Optical detection of charge dynamics in CH ₃ NH ₃ PbI ₃ /carbon nanotube composites. Nanoscale, 2017, 9, 17781-17787.	2.8	7
1265	Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites. Nature Communications, 2017, 8, 687.	5.8	63
1266	Energetic and visual comfort implications of using perovskite-based building-integrated photovoltaic glazings. Energy Procedia, 2017, 126, 636-643.	1.8	17
1267	Impact of halide stoichiometry on structure-tuned formation of CH3NH3PbX3â^'aYa hybrid perovskites. Solar Energy, 2017, 158, 367-379.	2.9	10
1268	Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 5395-5401.	2.1	141
1269	Dopant-free and low-cost molecular "bee―hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 11429-11435.	2.7	40
1270	High-gain and fast-response metal-semiconductor-metal structured organolead halide perovskite photodetectors. Journal Physics D: Applied Physics, 2017, 50, 495102.	1.3	8
1271	Junction diodes in organic solar cells. Nano Energy, 2017, 41, 717-730.	8.2	20
1272	Junction Quality of SnO ₂ -Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling. ACS Applied Materials & Interfaces, 2017, 9, 38373-38380.	4.0	56
1273	Slow hot carrier cooling in cesium lead iodide perovskites. Applied Physics Letters, 2017, 111, .	1.5	56
1275	High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions. ACS Applied Materials & Interfaces, 2017, 9, 37832-37838.	4.0	91
1276	Tetrabutylammonium cations for moisture-resistant and semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 22325-22333.	5.2	69
1277	Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction. Applied Physics Letters, 2017, 111, .	1.5	109
1278	Using Bulk Heterojunctions and Selective Electron Trapping to Enhance the Responsivity of Perovskite–Graphene Photodetectors. Advanced Functional Materials, 2017, 27, 1704173.	7.8	79
1279	Unraveling the Charge Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: Interfacial Energetics between Methylammonium Lead Iodide and C ₆₀ . Journal of Physical Chemistry Letters, 2017, 8, 5423-5429.	2.1	32
1280	Advanced Photonic Processes for Photovoltaic and Energy Storage Systems. Advanced Materials, 2017, 29, 1700335.	11.1	61

#	Article	IF	CITATIONS
1281	Synthesis of CsPbCl ₃ â€Mn Nanocrystals via Cation Exchange. Advanced Optical Materials, 2017, 5, 1700520.	3.6	53
1282	Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. Journal of Power Sources, 2017, 365, 1-6.	4.0	63
1283	The Effect of Stoichiometry on the Stability of Inorganic Cesium Lead Mixed-Halide Perovskites Solar Cells. Journal of Physical Chemistry C, 2017, 121, 19642-19649.	1.5	101
1284	Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. Nanoscale, 2017, 9, 13983-13989.	2.8	40
1285	Effects of surface morphology on the ionic capacitance and performance of perovskite solar cells. Japanese Journal of Applied Physics, 2017, 56, 090305.	0.8	7
1286	Route to Stable Lead-Free Double Perovskites with the Electronic Structure of CH ₃ NH ₃ PbI ₃ : A Case for Mixed-Cation [Cs/CH ₃ NH ₃ /CH(NH ₂) ₂] ₂] ₂ . InBiBr ₆ . Iournal of Physical Chemistry Letters. 2017. 8. 3917-3924.	2.1	82
1287	Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 172, 368-375.	3.0	59
1288	Temperature-dependent charge transport in solution-processed perovskite solar cells with tunable trap concentration and charge recombination. Journal of Materials Chemistry C, 2017, 5, 9376-9382.	2.7	44
1289	Unraveling the Impact of Rubidium Incorporation on the Transport-Recombination Mechanisms in Highly Efficient Perovskite Solar Cells by Small-Perturbation Techniques. Journal of Physical Chemistry C, 2017, 121, 24903-24908.	1.5	42
1290	First-principles study on the electric structure and ferroelectricity in epitaxial CsSnl ₃ films. RSC Advances, 2017, 7, 41077-41083.	1.7	25
1291	Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy. Applied Energy, 2017, 205, 834-846.	5.1	51
1292	Emerging two-dimensional halide perovskite nanomaterials. Journal of Materials Chemistry C, 2017, 5, 11165-11173.	2.7	67
1293	New insights into the electronic structures and optical properties in the orthorhombic perovskite MAPbl ₃ : a mixture of Pb and Ge/Sn. New Journal of Chemistry, 2017, 41, 11413-11421.	1.4	27
1294	Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands. AIP Advances, 2017, 7, .	0.6	10
1295	Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31950-31958.	4.0	26
1296	Pressure-induced dramatic changes in organic–inorganic halide perovskites. Chemical Science, 2017, 8, 6764-6776.	3.7	74
1297	Influence of processing temperature and precursor composition on phase region of solution processed methylammonium lead iodide perovskite. Materials Research Express, 2017, 4, 096201.	0.8	1
1298	Enhanced Electronic Properties of SnO ₂ <i>via</i> Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano, 2017, 11, 9176-9182.	7.3	302
#	Article	IF	CITATIONS
------	---	------	-----------
1299	Highly Sensitive Graphene–Semiconducting Polymer Hybrid Photodetectors with Millisecond Response Time. ACS Photonics, 2017, 4, 2335-2344.	3.2	25
1300	Cation Effect on Hot Carrier Cooling in Halide Perovskite Materials. Journal of Physical Chemistry Letters, 2017, 8, 4439-4445.	2.1	97
1301	Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances, 2017, 7, 42105-42112.	1.7	13
1302	Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films. Joule, 2017, 1, 371-382.	11.7	442
1303	Fluorinated fused nonacyclic interfacial materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21414-21421.	5.2	59
1304	Rational Design of Solution-Processed Ti–Fe–O Ternary Oxides for Efficient Planar CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells with Suppressed Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 34833-34843.	4.0	21
1305	Enhanced electronic transport in Fe ³⁺ -doped TiO ₂ for high efficiency perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10754-10760.	2.7	80
1306	Monolithic Wide Band Gap Perovskite/Perovskite Tandem Solar Cells with Organic Recombination Layers. Journal of Physical Chemistry C, 2017, 121, 27256-27262.	1.5	40
1307	Discovery of Pb-Free Perovskite Solar Cells via High-Throughput Simulation on the K Computer. Journal of Physical Chemistry Letters, 2017, 8, 4826-4831.	2.1	134
1308	Good Vibrations: Locking of Octahedral Tilting in Mixed-Cation Iodide Perovskites for Solar Cells. ACS Energy Letters, 2017, 2, 2424-2429.	8.8	126
1309	Highly efficient perovskite solar cells incorporating NiO nanotubes: increased grain size and enhanced charge extraction. Journal of Materials Chemistry A, 2017, 5, 21750-21756.	5.2	23
1310	New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption. Accounts of Chemical Research, 2017, 50, 2487-2495.	7.6	245
1311	Full space device optimization for solar cells. Scientific Reports, 2017, 7, 11984.	1.6	38
1312	Effect of disorder on transport properties in a tight-binding model for lead halide perovskites. Scientific Reports, 2017, 7, 8902.	1.6	25
1313	Wearable Largeâ€5cale Perovskite Solarâ€Power Source via Nanocellular Scaffold. Advanced Materials, 2017, 29, 1703236.	11.1	152
1314	A Rising Star: Truxene as a Promising Hole Transport Material in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21729-21739.	1.5	32
1315	Enhanced Performance for Planar Perovskite Solar Cells with Samarium-Doped TiO ₂ Compact Electron Transport Layers. Journal of Physical Chemistry C, 2017, 121, 20150-20157.	1.5	64
1316	Microwave-assisted synthesis of high-quality "all-inorganic―CsPbX ₃ (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 10947-10954.	2.7	180

#	Article	IF	CITATIONS
1317	Studies on perovskite film ablation and scribing with ns-, ps- and fs-laser pulses. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	30
1318	Investigation of highly efficient methyl ammonium lead halide perovskite solar cell with non-textured front surface. Optik, 2017, 148, 54-62.	1.4	12
1319	Fabrication of methylammonium bismuth iodide through interdiffusion of solution-processed Bil ₃ /CH ₃ NH ₃ I stacking layers. RSC Advances, 2017, 7, 43826-43830.	1.7	40
1320	Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr3) single crystals. Applied Physics Letters, 2017, 111, .	1.5	19
1321	A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials, 2017, 29, 1605242.	11.1	590
1322	Highly Efficient Perovskite Solar Cells Using Nonâ€Toxic Industry Compatible Solvent System. Solar Rrl, 2017, 1, 1700091.	3.1	62
1323	Understanding and Tailoring Grain Growth of Lead-Halide Perovskite for Solar Cell Application. ACS Applied Materials & Interfaces, 2017, 9, 33925-33933.	4.0	39
1324	Tunable hysteresis effect for perovskite solar cells. Energy and Environmental Science, 2017, 10, 2383-2391.	15.6	188
1325	Monolithic MAPbI ₃ films for high-efficiency solar cells via coordination and a heat assisted process. Journal of Materials Chemistry A, 2017, 5, 21313-21319.	5.2	132
1326	Inorganic materials for photovoltaics: Status and futures challenges. EPJ Web of Conferences, 2017, 148, 00007.	0.1	3
1327	Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017, 136, 54-80.	3.3	83
1328	Barium hydroxide hole blocking layer for front- and back-organic/crystalline Si heterojunction solar cells. Journal of Applied Physics, 2017, 122, .	1.1	26
1329	Effect of Formamidinium/Cesium Substitution and PbI ₂ on the Longâ€Term Stability of Triple ation Perovskites. ChemSusChem, 2017, 10, 3804-3809.	3.6	28
1330	Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance. Advanced Functional Materials, 2017, 27, 1703061.	7.8	175
1331	Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Scientific Reports, 2017, 7, 7962.	1.6	69
1332	Highly Efficient Colored Perovskite Solar Cells Integrated with Ultrathin Subwavelength Plasmonic Nanoresonators. Scientific Reports, 2017, 7, 10640.	1.6	51
1333	Current progress and scientific challenges in the advancement of organic–inorganic lead halide perovskite solar cells. New Journal of Chemistry, 2017, 41, 10508-10527.	1.4	21
1334	Halide anion–fullerene π noncovalent interactions: n-doping and a halide anion migration mechanism in p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20720-20728.	5.2	49

#	Article	IF	CITATIONS
1335	Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers. ACS Photonics, 2017, 4, 2522-2528.	3.2	61
1336	Multiphoton Absorption Coefficients of Organic–Inorganic Lead Halide Perovskites CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) Single Crystals. Chemistry of Materials, 2017, 29, 6876-6882.	3.2	86
1337	Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation. Physical Chemistry Chemical Physics, 2017, 19, 21407-21413.	1.3	8
1338	Thienylvinylenethienyl and Naphthalene Core Substituted with Triphenylamines—Highly Efficient Hole Transporting Materials and Their Comparative Study for Inverted Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700105.	3.1	59
1339	Enhanced Moisture Stability of Cesiumâ€Containing Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	1.9	65
1340	High Quality Hybrid Perovskite Semiconductor Thin Films with Remarkably Enhanced Luminescence and Defect Suppression via Quaternary Alkyl Ammonium Salt Based Treatment. Advanced Materials Interfaces, 2017, 4, 1700562.	1.9	32
1341	Towards Allâ€inorganic Transport Layers for Wideâ€Bandâ€Gap Formamidinium Lead Bromideâ€Based Planar Photovoltaics. Energy Technology, 2017, 5, 1800-1806.	1.8	8
1342	Improved efficiency and shortâ€ŧerm stability of the planar heterojunction perovskite solar cells with a polyelectrolyte layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700281.	0.8	3
1343	Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells. Solar Energy Materials and Solar Cells, 2017, 172, 74-81.	3.0	70
1344	Efficient Solid-State Electrochemiluminescence from High-Quality Perovskite Quantum Dot Films. Analytical Chemistry, 2017, 89, 8212-8216.	3.2	59
1345	Tailoring the Performances of Lead Halide Perovskite Devices with Electronâ€Beam Irradiation. Advanced Materials, 2017, 29, 1701636.	11.1	72
1346	Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002.	1.3	129
1347	Trapping charges at grain boundaries and degradation of CH ₃ NH ₃ Pb(I _{1â^'<i>x</i>} Br <i>_x</i>) ₃ perovskite solar cells. Nanotechnology, 2017, 28, 315402.	1.3	23
1348	Lowâ€Cost Alternative Highâ€Performance Holeâ€Transport Material for Perovskite Solar Cells and Its Comparative Study with Conventional SPIROâ€OMeTAD. Advanced Electronic Materials, 2017, 3, 1700139.	2.6	60
1349	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 12658-12662.	7.2	69
1350	Two dimethoxyphenylamine-substituted carbazole derivatives as hole-transporting materials for efficient inorganic-organic hybrid perovskite solar cells. Dyes and Pigments, 2017, 146, 589-595.	2.0	24
1351	In situ investigation of halide incorporation into perovskite solar cells. MRS Communications, 2017, 7, 575-582.	0.8	7
1352	Updating the road map to metal-halide perovskites for photovoltaics. Journal of Materials Chemistry A, 2017, 5, 17135-17150.	5.2	33

#	Article	IF	CITATIONS
1353	Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy and Environmental Science, 2017, 10, 1942-1949.	15.6	402
1354	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells. Angewandte Chemie, 2017, 129, 12832-12836.	1.6	3
1355	Siliconâ€Based Inorganic–Organic Hybrid Nanocomposites for Optoelectronic Applications. Energy Technology, 2017, 5, 1795-1799.	1.8	9
1356	Tuning Charge Carrier Types, Superior Mobility and Absorption in Lead-free Perovskite CH3NH3Gel3: Theoretical Study. Electrochimica Acta, 2017, 247, 891-898.	2.6	56
1357	Viologen-templated bromoplumbate: a new in situ synthetic method and energy gap engineering. CrystEngComm, 2017, 19, 4476-4479.	1.3	17
1358	Investigation of high performance TiO ₂ nanorod array perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15970-15980.	5.2	64
1359	Monovalent Cation Doping of CH ₃ NH ₃ PbI ₃ for Efficient Perovskite Solar Cells. Journal of Visualized Experiments, 2017, , .	0.2	20
1360	Highâ€Temperature Ionic Epitaxy of Halide Perovskite Thin Film and the Hidden Carrier Dynamics. Advanced Materials, 2017, 29, 1702643.	11.1	83
1361	Precise Characterization of Performance Metrics of Organic Solar Cells. Small Methods, 2017, 1, 1700159.	4.6	11
1362	Emerging Semitransparent Solar Cells: Materials and Device Design. Advanced Materials, 2017, 29, 1700192.	11.1	200
1363	Lowâ€Temperature Softâ€Cover Deposition of Uniform Largeâ€Scale Perovskite Films for Highâ€Performance Solar Cells. Advanced Materials, 2017, 29, 1701440.	11.1	74
1364	Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602803.	10.2	147
1365	High Efficiency MAPbI ₃ Perovskite Solar Cell Using a Pure Thin Film of Polyoxometalate as Scaffold Layer. ChemSusChem, 2017, 10, 3773-3779.	3.6	40
1366	Charge Transfer Dynamics in β- and <i>Meso</i> -Substituted Dithienylethylene Porphyrins. Journal of Physical Chemistry C, 2017, 121, 18385-18400.	1.5	17
1367	Fabrication of high-performance and low-hysteresis lead halide perovskite solar cells by utilizing a versatile alcohol-soluble bispyridinium salt as an efficient cathode modifier. Journal of Materials Chemistry A, 2017, 5, 17943-17953.	5.2	26
1368	Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model. Chinese Physics B, 2017, 26, 054201.	0.7	5
1369	Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance. ACS Energy Letters, 2017, 2, 1901-1908.	8.8	128
1370	Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex. ACS Applied Materials & amp; Interfaces, 2017, 9, 26958-26964.	4.0	80

#	Article	IF	CITATIONS
1371	Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells. Chemical Physics Letters, 2017, 685, 210-216.	1.2	10
1372	Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates. Nano Letters, 2017, 17, 5277-5284.	4.5	221
1373	Molecular Engineering of Simple Benzene–Arylamine Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 27657-27663.	4.0	42
1374	Cr ³⁺ /Er ³⁺ co-doped LaAlO ₃ perovskite phosphor: a near-infrared persistent luminescence probe covering the first and third biological windows. Journal of Materials Chemistry B, 2017, 5, 6385-6393.	2.9	65
1375	Van der Waals Interactions and Anharmonicity in the Lattice Vibrations, Dielectric Constants, Effective Charges, and Infrared Spectra of the Organic–Inorganic Halide Perovskite CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry C, 2017, 121, 18459-18471.	1.5	24
1376	Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces. Advanced Energy Materials, 2017, 7, 1701235.	10.2	37
1377	CsPbBr ₃ Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics, 2017, 4, 2281-2289.	3.2	243
1378	Advances in Small Perovskiteâ€Based Lasers. Small Methods, 2017, 1, 1700163.	4.6	268
1379	Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer. Nano Energy, 2017, 40, 345-351.	8.2	101
1380	Surface-related properties of perovskite CH ₃ NH ₃ PbI ₃ thin films by aerosol-assisted chemical vapour deposition. Journal of Materials Chemistry C, 2017, 5, 8366-8370.	2.7	16
1381	Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy and Environmental Science, 2017, 10, 1983-1993.	15.6	192
1382	Hybridization of Single Nanocrystals of Cs ₄ PbBr ₆ and CsPbBr ₃ . Journal of Physical Chemistry C, 2017, 121, 19490-19496.	1.5	68
1383	Perovskite-based photodetectors: materials and devices. Chemical Society Reviews, 2017, 46, 5204-5236.	18.7	709
1384	Peroptronic devices: perovskite-based light-emitting solar cells. Energy and Environmental Science, 2017, 10, 1950-1957.	15.6	41
1385	Combining theory and experiment in the design of a lead-free ((CH ₃ NH ₃) ₂ AgBil ₆) double perovskite. New Journal of Chemistry, 2017, 41, 9598-9601.	1.4	72
1386	Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 4140-4147.	2.1	35
1387	Ab-Initio Calculation of Electronic Structure of Lead Halide Perovskites with Formamidinium Cation as an Active Material for Perovskite Solar Cells. Journal of Physics: Conference Series, 2017, 877, 012054.	0.3	6
1388	Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces. Nanoscale, 2017, 9, 12486-12493.	2.8	58

#	Article	IF	CITATIONS
1389	Globularity‣elected Large Molecules for a New Generation of Multication Perovskites. Advanced Materials, 2017, 29, 1702005.	11.1	81
1390	Solvent Toolkit for Electrochemical Characterization of Hybrid Perovskite Films. Analytical Chemistry, 2017, 89, 9649-9653.	3.2	14
1391	Room-Temperature Synthesis of Mn-Doped Cesium Lead Halide Quantum Dots with High Mn Substitution Ratio. Journal of Physical Chemistry Letters, 2017, 8, 4167-4171.	2.1	139
1392	Candidate photoferroic absorber materials for thin-film solar cells from naturally occurring minerals: enargite, stephanite, and bournonite. Sustainable Energy and Fuels, 2017, 1, 1339-1350.	2.5	32
1393	Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. ACS Nano, 2017, 11, 8717-8729.	7.3	67
1394	Synthetic Manipulation of Hybrid Perovskite Systems in Search of New and Enhanced Functionalities. ChemSusChem, 2017, 10, 3722-3739.	3.6	11
1395	Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Science and Applications, 2017, 6, e17023-e17023.	7.7	272
1396	Influence of ï€-bridge conjugation on the electrochemical properties within hole transporting materials for perovskite solar cells. Nanoscale, 2017, 9, 12916-12924.	2.8	34
1397	DFT analysis and FDTD simulation of CH ₃ NH ₃ PbI _{3â^'<i>x</i>} Cl _{<i>x</i>} mixed halide perovskite solar cells: role of halide mixing and light trapping technique. Journal Physics D: Applied Physics. 2017. 50. 415501.	1.3	34
1398	Noble metal-free catalysts for oxygen reduction reaction. Science China Chemistry, 2017, 60, 1494-1507.	4.2	60
1399	Controllable Synthesis of Two-Dimensional Ruddlesden–Popper-Type Perovskite Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 6211-6219.	2.1	54
1400	A comparative study on the electronic and optical properties of Sb2Se3 thin film. Semiconductors, 2017, 51, 1615-1624.	0.2	25
1401	Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS. ACS Applied Materials & Interfaces, 2017, 9, 43902-43909.	4.0	149
1402	Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride. Applied Physics Letters, 2017, 111, .	1.5	28
1403	Perovskite solar cell – electrochemical double layer capacitor interplay. Electrochimica Acta, 2017, 258, 825-833.	2.6	18
1404	Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance. Journal of Physics: Conference Series, 2017, 917, 062002.	0.3	6
1405	Emerging solar technologies: Perovskite solar cell. Resonance, 2017, 22, 1061-1083.	0.2	22
1406	Spontaneous emission enhancement of colloidal perovskite nanocrystals by a photonic crystal cavity. Applied Physics Letters, 2017, 111, .	1.5	14

		IF	CITATIONS
#	ARTICLE	IF	CHATIONS
1407	Polymer Matrix. ACS Applied Materials & amp; Interfaces, 2017, 9, 43030-43042.	4.0	61
1408	Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature Communications, 2017, 8, 1890.	5.8	467
1409	Vapor-Assisted Solution Approach for High-Quality Perovskite CH ₃ NH ₃ PbBr ₃ Thin Films for High-Performance Green Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2017, 9, 42893-42904.	4.0	46
1410	Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 2017, 3, eaao5616.	4.7	635
1411	Photon Energy-Dependent Hysteresis Effects in Lead Halide Perovskite Materials. Journal of Physical Chemistry C, 2017, 121, 26180-26187.	1.5	26
1412	Coating ZnO nanoparticle films with DNA nanolayers for enhancing the electron extracting properties and performance of polymer solar cells. Nanoscale, 2017, 9, 19031-19038.	2.8	39
1413	Mechanism of Reversible Trap Passivation by Molecular Oxygen in Lead-Halide Perovskites. ACS Energy Letters, 2017, 2, 2794-2798.	8.8	100
1414	Application of carbon nanotubes in perovskite solar cells: A review. AIP Conference Proceedings, 2017,	0.3	12
1416	Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites. Nature Communications, 2017, 8, 1328.	5.8	35
1417	Impact of Element Doping on Photoexcited Electron Dynamics in CdS Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 5680-5686.	2.1	20
1418	Self-Catalyzed Vapor–Liquid–Solid Growth of Lead Halide Nanowires and Conversion to Hybrid Perovskites. Nano Letters, 2017, 17, 7561-7568.	4.5	37
1419	Blended additive manipulated morphology and crystallinity transformation toward high performance perovskite solar cells. RSC Advances, 2017, 7, 51944-51949.	1.7	11
1420	A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358, 1192-1197.	6.0	554
1421	Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nature Communications, 2017, 8, 34.	5.8	91
1422	Computational Study on Non-linear Optical and Absorption Properties of Benzothiazole based Dyes: Tunable Electron-Withdrawing Strength and Reverse Polarity. Open Chemistry, 2017, 15, 139-146.	1.0	18
1423	lodine Vacancy Redistribution in Organic–Inorganic Halide Perovskite Films and Resistive Switching Effects. Advanced Materials, 2017, 29, 1700527.	11.1	268
1424	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	10.2	295
1425	Insights into optoelectronic properties of anti-solvent treated perovskite films. Journal of Materials Science: Materials in Electronics, 2017, 28, 15630-15636.	1.1	8

#	Article	IF	CITATIONS
1426	Solution-processed perovskite solar cells using environmentally friendly solvent system. Thin Solid Films, 2017, 636, 639-643.	0.8	18
1427	The Role of Synthesis Parameters on Crystallization and Grain Size in Hybrid Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 17053-17061.	1.5	30
1428	Perovskite light-emitting devices with a metal–insulator–semiconductor structure and carrier tunnelling. Journal of Materials Chemistry C, 2017, 5, 7715-7719.	2.7	17
1429	Profiling Light Absorption Enhancement in Two-Dimensional Photonic-Structured Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1324-1328.	1.5	16
1430	Accelerated Lifetime Testing of Organic–Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. ACS Applied Materials & Interfaces, 2017, 9, 25073-25081.	4.0	165
1431	Origin of the crossover from polarons to Fermi liquids in transition metal oxides. Nature Communications, 2017, 8, 15769.	5.8	122
1432	Mechanisms of Lithium Intercalation and Conversion Processes in Organic–Inorganic Halide Perovskites. ACS Energy Letters, 2017, 2, 1818-1824.	8.8	111
1433	Analytical model (CELIC) for describing organic and inorganic solar cells based on drift-diffusion calculations. Applied Physics Letters, 2017, 111, 023506.	1.5	2
1434	Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2017, 2, .	23.3	927
1435	Poor Photovoltaic Performance of Cs ₃ Bi ₂ I ₉ : An Insight through First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 17062-17067.	1.5	121
1436	Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Mat	4.0	453
1437	Enhanced photovoltaic performance and stability in mixed-cation perovskite solar cells via compositional modulation. Electrochimica Acta, 2017, 247, 460-467.	2.6	41
1438	Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Science China Materials, 2017, 60, 1063-1078.	3.5	60
1439	2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation. 2D Materials, 2017, 4, 035009.	2.0	23
1440	Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition. Applied Physics Letters, 2017, 110, .	1.5	35
1441	Solution-phase growth of organolead halide perovskite nanowires and nanoplates assisted by long-chain alkylammonium and solvent polarity. Materials Letters, 2017, 206, 75-79.	1.3	18
1442	Microscopic Analysis of Inherent Void Passivation in Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1705-1710.	8.8	14
1443	On the efficiency limit of ZnO/CH ₃ NH ₃ PbI ₃ /CuI perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 19916-19921.	1.3	12

#	ARTICLE	IF	CITATIONS
1444	light-emitting diodes. Nanotechnology, 2017, 28, 365601.	1.3	43
1445	Effect of Photogenerated Dipoles in the Hole Transport Layer on Photovoltaic Performance of Organic–Inorganic Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601575.	10.2	54
1446	Twoâ€Dimensional Nonâ€Layered Materials: Synthesis, Properties and Applications. Advanced Functional Materials, 2017, 27, 1603254.	7.8	161
1447	Synthetic Development of Low Dimensional Materials. Chemistry of Materials, 2017, 29, 168-175.	3.2	28
1448	Nucleation mechanism of CH3NH3PbI3 with two-step method for rational design of high performance perovskite solar cells. Journal of Alloys and Compounds, 2017, 697, 374-379.	2.8	21
1449	Alternative current conduction, dielectric behavior, transport properties and Mössbauer study of LaBaFe0.5Ti0.5MnO6-δ new compound. Journal of Alloys and Compounds, 2017, 695, 3310-3317.	2.8	3
1450	Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 969-974.	5.2	56
1451	Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study. Applied Surface Science, 2017, 394, 488-497.	3.1	6
1452	Photoluminescence quenching of inorganic cesium lead halides perovskite quantum dots (CsPbX ₃) by electron/hole acceptor. Physical Chemistry Chemical Physics, 2017, 19, 1920-1926.	1.3	57
1453	Photochemistry of nanoporous carbons: Perspectives in energy conversion and environmental remediation. Journal of Colloid and Interface Science, 2017, 490, 879-901.	5.0	48
1454	Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO 2 layer. Nano Energy, 2017, 31, 462-468.	8.2	244
1455	Investigation on the high pressure annealing induced re-crystallization mechanism of CH3NH3PbI3 film. Journal of Alloys and Compounds, 2017, 694, 1365-1370.	2.8	7
1456	Carbon Nanotube Fibers for Wearable Devices. , 2017, , 347-379.		1
1457	High Openâ€Circuit Voltages in Tinâ€Rich Lowâ€Bandgap Perovskiteâ€Based Planar Heterojunction Photovoltaics. Advanced Materials, 2017, 29, 1604744.	11.1	212
1458	Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility. Advanced Materials Technologies, 2017, 2, 1600183.	3.0	137
1459	Spiro[fluorene-9,9â \in 2-xanthene]-based hole transporting materials for efficient perovskite solar cells with enhanced stability. Materials Chemistry Frontiers, 2017, 1, 100-110.	3.2	84
1460	Chemical Approaches to Addressing the Instability and Toxicity of Lead–Halide Perovskite Absorbers. Inorganic Chemistry, 2017, 56, 46-55.	1.9	255
1461	Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorganic Chemistry, 2017, 56, 92-101.	1.9	117

#	Article	IF	CITATIONS
1462	Whispering-gallery-mode based CH ₃ NH ₃ PbBr ₃ perovskite microrod lasers with high quality factors. Materials Chemistry Frontiers, 2017, 1, 477-481.	3.2	39
1463	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x</i> PbI ₃ with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.	10.2	298
1464	Crack-free CH3NH3PbI3 layer via continuous dripping method for high-performance mesoporous perovskite solar cells. Applied Surface Science, 2017, 392, 960-965.	3.1	24
1465	Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Materials, 2017, 16, 115-120.	13.3	369
1466	Beyond methylammonium lead iodide: prospects for the emergent field of ns ² containing solar absorbers. Chemical Communications, 2017, 53, 20-44.	2.2	357
1467	Visibleâ€Light Ultrasensitive Solutionâ€Prepared Layered Organic–Inorganic Hybrid Perovskite Fieldâ€Effect Transistor. Advanced Optical Materials, 2017, 5, 1600539.	3.6	78
1468	Highâ€resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600302.	0.8	40
1469	Single-crystal perovskites prepared by simple solution process: Cast-capping method. Journal of Crystal Growth, 2017, 468, 796-799.	0.7	27
1470	Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells. Journal of Power Sources, 2017, 339, 27-32.	4.0	36
1471	Stability of Perovskite Solar Cells: A Prospective on the Substitution of the Aâ€Cation and Xâ€Anion. Angewandte Chemie - International Edition, 2017, 56, 1190-1212.	7.2	473
1472	The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1601959.	11.1	91
1473	Multifunctional Benzoquinone Additive for Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1603808.	11.1	135
1474	Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbl _{3â^²} <i>_x</i> Cl <i>_x</i>) for Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601297.	10.2	106
1475	Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr ₃ Perovskite Colloidal Nanocrystal Back Layer. Advanced Energy Materials, 2017, 7, 1601773.	10.2	56
1476	Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31, 210-217.	8.2	142
1477	Costâ€Performance Analysis of Perovskite Solar Modules. Advanced Science, 2017, 4, 1600269.	5.6	345
1478	Properties of methylammonium lead iodide perovskite single crystals. Journal of Structural Chemistry, 2017, 58, 1567-1572.	0.3	7
1479	A high quality and quantity hybrid perovskite quantum dots (CsPbX3, X= Cl, Br and I) powders synthesis via ionic displacement. IOP Conference Series: Earth and Environmental Science, 2017, 100,	0.2	2

#	Article	IF	CITATIONS
1480	Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nature Communications, 2017, 8, 2230.	5.8	220
1481	Performance Analysis of Perovskite on Si Tandem Solar Cell. Materials Today: Proceedings, 2017, 4, 12647-12650.	0.9	2
1482	Combined Organic-Perovskite Solar Cell Fabrication as conventional Energy substitute. Materials Today: Proceedings, 2017, 4, 12651-12656.	0.9	5
1483	From properties to materials: An efficient and simple approach. Journal of Chemical Physics, 2017, 147, 234105.	1.2	16
1484	Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells. Science Advances, 2017, 3, eaaq0208.	4.7	65
1485	Deterministic Nucleation for Halide Perovskite Thin Films with Large and Uniform Grains. Advanced Functional Materials, 2017, 27, 1702180.	7.8	27
1486	Highâ€Resolution Spinâ€onâ€Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array. Advanced Materials, 2017, 29, 1702902.	11.1	148
1487	Free Carrier Emergence and Onset of Electron–Phonon Coupling in Methylammonium Lead Halide Perovskite Films. Journal of the American Chemical Society, 2017, 139, 18262-18270.	6.6	78
1488	Enhancing the Crystalline of Planar-Structure CH3NH3PbI3 Perovskite Solar Cells via Sandwich Evaporation Technique. , 2017, , .		0
1489	Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25, A1162.	1.7	35
1490	TiO_2 nanotube/TiO_2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes. Optical Materials Express, 2017, 7, 3322.	1.6	15
1491	Third-order nonlinear optical response of CH_3NH_3PbI_3 perovskite in the mid-infrared regime. Optical Materials Express, 2017, 7, 3894.	1.6	62
1492	A Simple Deposition Method for Self-Assembling Single Crystalline Hybrid Perovskite Nanostructures. Chinese Physics Letters, 2017, 34, 068103.	1.3	1
1493	One-Dimensional Electron Transport Layers for Perovskite Solar Cells. Nanomaterials, 2017, 7, 95.	1.9	41
1494	The Effect of Post-Baking Temperature and Thickness of ZnO Electron Transport Layers for Efficient Planar Heterojunction Organometal-Trihalide Perovskite Solar Cells. Coatings, 2017, 7, 215.	1.2	6
1496	Light Intensity Dependence of Performance of Lead Halide Perovskite Solar Cells. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 577-582.	0.1	23
1497	Spectroscopic Ellipsometry Study of Organic-Inorganic Halide: FAPbIxBr3â^'x Perovskite Thin Films by Two-Step Method. , 2017, , .		1
1498	Recent Research Progress on Lead-free or Less-lead Perovskite Solar Cells. International Journal of Electrochemical Science, 2017, , 4915-4927.	0.5	2

# 1499	ARTICLE PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals. Beilstein Journal of Nanotechnology, 2017, 8, 2521-2529.	lF 1.5	CITATIONS 8
1500	Optical Absorption and Scattering Properties of The Active Layer Of Perovskite Solar Cells Incorporated Silver Nanoparticles. Oriental Journal of Chemistry, 2017, 33, 807-813.	0.1	9
1501	Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. Journal of Alloys and Compounds, 2018, 746, 391-398.	2.8	47
1502	Hybrid Dion–Jacobson 2D Lead Iodide Perovskites. Journal of the American Chemical Society, 2018, 140, 3775-3783.	6.6	686
1503	Synthesis by Low Temperature Solution Processing of Ferroelectric Perovskite Oxide Thin Films as Candidate Materials for Photovoltaic Applications. , 2018, , 45-81.		2
1504	Molecular engineering of the organometallic perovskites/HTMs in the PSCs: Photovoltaic behavior and energy conversion. Solar Energy Materials and Solar Cells, 2018, 180, 46-58.	3.0	14
1505	A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination. Journal of Materials Chemistry A, 2018, 6, 5566-5573.	5.2	35
1506	Evidence of tunable macroscopic polarization in perovskite films using photo-Kelvin Probe Force Microscopy. Materials Letters, 2018, 217, 308-311.	1.3	5
1507	Enhanced Performance of Hole-Conductor-Free Perovskite Solar Cells by Utilization of Core/Shell-Structured Î2-NaYF4:Yb3+,Er3+@SiO2 Nanoparticles in Ambient Air. IEEE Journal of Photovoltaics, 2018, 8, 132-136.	1.5	23
1508	Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 9849-9857.	4.0	58
1509	Lead-Free Perovskite Nanocrystals for Light-Emitting Devices. Journal of Physical Chemistry Letters, 2018, 9, 1573-1583.	2.1	167
1510	Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH ₃ NH ₃ Pbl ₃ [*] . Chinese Physics Letters, 2018, 35, 036104.	1.3	154
1511	Bending Durable and Recyclable Mesostructured Perovskite Solar Cells Based on Superaligned ZnO Nanorod Electrode. Solar Rrl, 2018, 2, 1700194.	3.1	25
1512	Key parameters of two typical intercalation reactions to prepare hybrid inorganic–organic perovskite films. Chinese Physics B, 2018, 27, 018807.	0.7	0
1513	Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Letters, 2018, 18, 2172-2178.	4.5	186
1515	Effects of CsBr addition on the performance of CH3NH3PbI3-xClx-based solar cells. AIP Conference Proceedings, 2018, , .	0.3	2
1516	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
1517	Synergic solventing-out crystallization with subsequent time-delay thermal annealing of Pbl ₂ precursor in mesostructured perovskite solar cells. Materials Research Express, 2018, 5, 066404.	0.8	4

#	Article	IF	CITATIONS
1518	Present status and future prospects of perovskite photovoltaics. Nature Materials, 2018, 17, 372-376.	13.3	590
1519	Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chemical Society Reviews, 2018, 47, 4581-4610.	18.7	455
1520	Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface. ACS Energy Letters, 2018, 3, 1192-1197.	8.8	33
1521	In Situ X-Ray Studies of Crystallization Kinetics and Ordering in Functional Organic and Hybrid Materials. , 2018, , 33-60.		0
1522	Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application. Nano Energy, 2018, 49, 380-392.	8.2	87
1523	One-Dimensional Organic–Inorganic Hybrid Perovskite Incorporating Near-Infrared-Absorbing Cyanine Cations. Journal of Physical Chemistry Letters, 2018, 9, 2438-2442.	2.1	22
1524	Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Letters, 2018, 18, 3221-3228.	4.5	177
1525	Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16390-16399.	4.0	89
1526	Solar Charging Batteries: Advances, Challenges, and Opportunities. Joule, 2018, 2, 1217-1230.	11.7	229
1527	Tetraâ€Propyl‧ubstituted Copper (II) Phthalocyanine as Dopantâ€Free Hole Transporting Material for Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800050.	3.1	43
1528	Quasiâ€2D Inorganic CsPbBr ₃ Perovskite for Efficient and Stable Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1801193.	7.8	108
1529	Realâ€Time Observation of Orderâ€Disorder Transformation of Organic Cations Induced Phase Transition and Anomalous Photoluminescence in Hybrid Perovskites. Advanced Materials, 2018, 30, e1705801.	11.1	60
1530	Mixed 3D–2D Passivation Treatment for Mixed ation Lead Mixedâ€Halide Perovskite Solar Cells for Higher Efficiency and Better Stability. Advanced Energy Materials, 2018, 8, 1703392.	10.2	289
1531	Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition. Organic Electronics, 2018, 58, 153-158.	1.4	69
1532	Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness. Japanese Journal of Applied Physics, 2018, 57, 052301.	0.8	14
1533	Ultrasensitive Photoresponsive Devices Based on Graphene/Bil ₃ van der Waals Epitaxial Heterostructures. Advanced Functional Materials, 2018, 28, 1800179.	7.8	44
1534	Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA) ₂ Pbl ₄ . Nanoscale, 2018, 10, 8677-8688.	2.8	169
1535	Remarkable long-term stability of nanoconfined metal–halide perovskite crystals against degradation and polymorph transitions. Nanoscale, 2018, 10, 8320-8328.	2.8	14

#	Article	IF	CITATIONS
1536	Surface Instability of Sn-Based Hybrid Perovskite Thin Film, CH ₃ NH ₃ SnI ₃ : The Origin of Its Material Instability. Journal of Physical Chemistry Letters, 2018, 9, 2293-2297.	2.1	45
1537	Versatility of Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and High Stability. Advanced Materials, 2018, 30, e1706975.	11.1	95
1538	Performance Enhancement of Perovskite Solar Cells Induced by Lead Acetate as an Additive. Solar Rrl, 2018, 2, 1800066.	3.1	94
1539	Controlled defects and enhanced electronic extraction in fluorine-incorporated zinc oxide for high-performance planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 182, 263-271.	3.0	41
1540	Molecular Engineering of Quinoxaline-Based D–Aâ~'Ĩ€â€"A Organic Sensitizers: Taking the Merits of a Large and Rigid Auxiliary Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 13635-13644.	4.0	45
1541	Low-cost synthesis of heterocyclic spiro-type hole transporting materials for perovskite solar cell applications. New Journal of Chemistry, 2018, 42, 7332-7339.	1.4	17
1542	Cation Dynamics Governed Thermal Properties of Lead Halide Perovskite Nanowires. Nano Letters, 2018, 18, 2772-2779.	4.5	55
1543	Unraveling the Chemical Nature of the 3D "Hollow―Hybrid Halide Perovskites. Journal of the American Chemical Society, 2018, 140, 5728-5742.	6.6	132
1544	Investigations on the elasticity of functional gold nanoparticles using single-molecule force spectroscopy. Journal of Materials Chemistry B, 2018, 6, 2960-2971.	2.9	11
1545	Manipulating the assembly of perovskites onto soft nanoimprinted titanium dioxide templates. Nanotechnology, 2018, 29, 255301.	1.3	10
1546	How the Connectivity of Methoxy Substituents Influences the Photovoltaic Properties of Dissymmetric Core Materials: A Theoretical Study on FDT. Journal of Physical Chemistry C, 2018, 122, 8804-8813.	1.5	11
1547	Formamidinium Lead Bromide (FAPbBr3) Perovskite Microcrystals for Sensitive and Fast Photodetectors. Nano-Micro Letters, 2018, 10, 43.	14.4	77
1548	Engineered optical and electrical performance of rf–sputtered undoped nickel oxide thin films for inverted perovskite solar cells. Scientific Reports, 2018, 8, 5590.	1.6	47
1549	The Deposition Environment Controlling Method: A Vapor-Phase Solvent-Assisted Approach to Fabricate High-Quality Crystalline Perovskite. IEEE Journal of Photovoltaics, 2018, , 1-6.	1.5	1
1550	Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells. Journal of Power Sources, 2018, 389, 13-19.	4.0	15
1551	Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands. Angewandte Chemie, 2018, 130, 5856-5860.	1.6	3
1552	Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. ACS Applied Materials & amp; Interfaces, 2018, 10, 14922-14929.	4.0	81
1553	Energy transfer mechanisms in layered 2D perovskites. Journal of Chemical Physics, 2018, 148, 134706.	1.2	70

#	Article	IF	CITATIONS
1554	Ultrastable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process. ACS Applied Materials & Interfaces, 2018, 10, 14659-14664.	4.0	61
1555	Extremely low trap-state energy level perovskite solar cells passivated using NH2-POSS with improved efficiency and stability. Journal of Materials Chemistry A, 2018, 6, 6806-6814.	5.2	45
1556	Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS Applied Materials & Interfaces, 2018, 10, 16225-16230.	4.0	66
1557	Dopant-free hole transport materials based on alkyl-substituted indacenodithiophene for planar perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 4706-4713.	2.7	52
1558	Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives. Bulletin of the Chemical Society of Japan, 2018, 91, 1058-1068.	2.0	84
1560	Efficient and stable inverted planar perovskite solar cells using dopant-free CuPc as hole transport layer. Electrochimica Acta, 2018, 273, 273-281.	2.6	38
1561	Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy, 2018, 49, 290-299.	8.2	205
1562	Recent Advances in Halide Perovskite Photodetectors Based on Different Dimensional Materials. Advanced Optical Materials, 2018, 6, 1701302.	3.6	107
1563	Determination of the structural phase and octahedral rotation angle in halide perovskites. Applied Physics Letters, 2018, 112, .	1.5	38
1564	Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance. Progress in Materials Science, 2018, 95, 42-131.	16.0	128
1565	Near ultra-violet to mid-visible band gap tuning of mixed cation Rb _x Cs _{1â^²x} PbX ₃ (X = Cl or Br) perovskite nanoparticles. Nanoscale, 2018, 10, 6060-6068.	2.8	82
1566	Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Nano Energy, 2018, 46, 45-53.	8.2	46
1567	One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185-192.	8.2	271
1568	Effects of Gel2 or Znl2 addition to perovskite CH3NH3Pbl3 photovoltaic devices. AIP Conference Proceedings, 2018, , .	0.3	6
1569	Aromatic Alkylammonium Spacer Cations for Efficient Twoâ€Đimensional Perovskite Solar Cells with Enhanced Moisture and Thermal Stability. Solar Rrl, 2018, 2, 1700215.	3.1	55
1570	Chemical vapor deposition in fabrication of robust and highly efficient perovskite solar cells based on single-walled carbon nanotubes counter electrodes. Journal of Alloys and Compounds, 2018, 747, 703-711.	2.8	28
1571	Grain Boundary Engineering of Halide Perovskite CH ₃ NH ₃ PbI ₃ Solar Cells with Photochemically Active Additives. Journal of Physical Chemistry C, 2018, 122, 4817-4821.	1.5	31
1572	Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 7974-7981.	4.0	40

ARTICLE IF CITATIONS Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells. Joule, 2018, 2, 1573 11.7 403 558-570. Morphology tuned BaSnO3 active layer for ambient perovskite solar cells. Materials Letters, 2018, 219, 1574 1.3 166-169. Luminescence Imaging Characterization of Perovskite Solar Cells: A Note on the Analysis and 1575 10.2 16 Reporting the Results. Advanced Energy Materials, 2018, 8, 1702256. Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells. ACS Omega, 2018, 3, 1117-1125. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and 1577 4.5 394 Anion Exchange To Access New Materials. Nano Letters, 2018, 18, 1118-1123. Self-assembly monolayers boosting organic–inorganic halide perovskite solar cell performance. Journal of Materials Research, 2018, 33, 387-400. 1.2 Interplay Between Extra Charge Injection and Lattice Evolution in 1579 VO₂/CH₃NH₃Pbl₃ Heterostructure. Physica Status 1.2 3 Solidi - Rapid Research Letters, 2018, 12, 1700416. Ab Initio Design of Low Band Gap 2D Tin Organohalide Perovskites. Journal of Physical Chemistry C, 1.5 10 2018, 122, 3677-3689. Polystyrene nanoparticle-templated hollow titania nanosphere monolayers as ordered scaffolds. 1581 2.7 18 Journal of Materials Chemistry C, 2018, 6, 2502-2508. Efficient design of perovskite solar cell using mixed halide and copper oxide. Chinese Physics B, 2018, 27,018801. Perovskite templating <i>via</i> a bathophenanthroline additive for efficient light-emitting devices. 1583 12 2.7 Journal of Materials Chemistry C, 2018, 6, 2295-2302. Low-temperature processed non-TiO₂ electron selective layers for perovskite solar cells. 1584 5.2 Journal of Materials Chemistry A, 2018, 6, 4572-4589. Fluoranthene-based dopant-free hole transporting materials for efficient perovskite solar cells. 1585 3.7 109 Chemical Science, 2018, 9, 2698-2704. Spectral Studies of Leadâ€Free Organicâ€Inorganic Hybrid Solidâ€State Perovskites CH₃NH₃Bi_{2/3}I₃and CH₃NH₃Pb_{1/2}Bi_{1/3}I₃?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub>?</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??</sub??? Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for 1587 1.7 8 perovskite solar cells. Journal of Materials Science, 2018, 53, 6626-6636. Vis-Near-Infrared Photodetectors Based on Methyl Ammonium Lead Iodide Thin Films by Pulsed Laser 1588 Deposition. Journal of Electronic Materials, 2018, 47, 2306-2315. Humidityâ€Induced Degradation via Grain Boundaries of HC(NH₂)₂Pbl₃ Planar Perovskite Solar Cells. Advanced Functional 1589 7.8 260 Materials, 2018, 28, 1705363. Octadecylamineâ€Functionalized Singleâ€Walled Carbon Nanotubes for Facilitating the Formation of a 1590 Monolithic Perovskite Layer and Stable Solar Cells. Advanced Functional Materials, 2018, 28, 1705545.

#	Article	IF	CITATIONS
1591	Green Antiâ€Solvent Processed Planar Perovskite Solar Cells with Efficiency Beyond 19%. Solar Rrl, 2018, 2, 1700213.	3.1	91
1592	Predicted Lead-Free Perovskites for Solar Cells. Chemistry of Materials, 2018, 30, 718-728.	3.2	102
1593	Practical Efficiency Limit of Methylammonium Lead Iodide Perovskite (CH ₃ NH ₃ PbI ₃) Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 426-434.	2.1	68
1594	Stability and Performance of CsPbI ₂ Br Thin Films and Solar Cell Devices. ACS Applied Materials & Interfaces, 2018, 10, 3750-3760.	4.0	123
1595	Interfacial engineering <i>via</i> inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 3435-3443.	5.2	30
1596	Nature of the octahedral tilting phase transitions in perovskites: A case study of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>CaMnO </mml:mi> <mml:mn>3 Physical Review B, 2018, 97, .</mml:mn></mml:msub></mml:math 	/>/»لايتكە	mætamsub><
1597	All arbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706777.	7.8	242
1598	Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films. Journal of Energy Chemistry, 2018, 27, 1170-1174.	7.1	23
1599	Scalable Synthesis of Exfoliated Organometal Halide Perovskite Nanocrystals by Ligand-Assisted Ball Milling. ACS Sustainable Chemistry and Engineering, 2018, 6, 3733-3738.	3.2	42
1600	Influence of chromium hyperdoping on the electronic structure of CH3NH3PbI3 perovskite: a first-principles insight. Scientific Reports, 2018, 8, 2511.	1.6	13
1601	lodine chemistry determines the defect tolerance of lead-halide perovskites. Energy and Environmental Science, 2018, 11, 702-713.	15.6	480
1602	Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation. Chemistry - A European Journal, 2018, 24, 8708-8716.	1.7	26
1603	Stoichiometry control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport layers for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 178, 200-207.	3.0	26
1604	Methodologies toward Highly Efficient Perovskite Solar Cells. Small, 2018, 14, e1704177.	5.2	315
1605	Plasmonicâ€Functionalized Broadband Perovskite Photodetector. Advanced Optical Materials, 2018, 6, 1701271.	3.6	86
1606	Optical Characteristics and Operational Principles of Hybrid Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700730.	0.8	48
1607	Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation. ACS Energy Letters, 2018, 3, 428-435.	8.8	344
1608	Environment versus sustainable energy: The case of lead halide perovskite-based solar cells. MRS Energy & Sustainability, 2018, 5, 1.	1.3	59

#	Article	IF	CITATIONS
1609	Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process. Nature Communications, 2018, 9, 293.	5.8	243
1610	Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8, 1070.	1.6	144
1611	Exploring Anomalous Polarization Dynamics in Organometallic Halide Perovskites. Advanced Materials, 2018, 30, 1705298.	11.1	44
1612	Single-Walled Carbon Nanotubes in Solar Cells. Topics in Current Chemistry, 2018, 376, 4.	3.0	58
1613	Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer. ACS Applied Materials & Interfaces, 2018, 10, 5511-5518.	4.0	32
1614	Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron–Phonon Coupling. Advanced Materials, 2018, 30, 1704737.	11.1	86
1615	Lead Halide Perovskite Based Microdisk Lasers for On hip Integrated Photonic Circuits. Advanced Optical Materials, 2018, 6, 1701266.	3.6	48
1616	Simultaneous Improvement in Efficiency and Stability of Lowâ€Temperatureâ€Processed Perovskite Solar Cells by Interfacial Control. Advanced Energy Materials, 2018, 8, 1702934.	10.2	84
1617	Halide Perovskites for Applications beyond Photovoltaics. Small Methods, 2018, 2, 1700310.	4.6	94
1618	Subdiffraction Infrared Imaging of Mixed Cation Perovskites: Probing Local Cation Heterogeneities. ACS Energy Letters, 2018, 3, 469-475.	8.8	54
1619	Manipulation of cation combinations and configurations of halide double perovskites for solar cell absorbers. Journal of Materials Chemistry A, 2018, 6, 1809-1815.	5.2	85
1620	Enhanced Twoâ€Photonâ€Pumped Emission from In Situ Synthesized Nonblinking CsPbBr ₃ /SiO ₂ Nanocrystals with Excellent Stability. Advanced Optical Materials, 2018, 6, 1700997.	3.6	116
1621	Potassium Ion Assisted Synthesis of Organic–Inorganic Hybrid Perovskite Nanobelts for Stable and Flexible Photodetectors. Advanced Optical Materials, 2018, 6, 1701029.	3.6	37
1622	Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH ₃ NH ₃ PbI ₃ : Implications on Solar Cell Degradation and Choice of Electrode. Advanced Science, 2018, 5, 1700662.	5.6	130
1623	Analysis of Ionâ€Diffusionâ€Induced Interface Degradation in Inverted Perovskite Solar Cells via Restoration of the Ag Electrode. Advanced Energy Materials, 2018, 8, 1702197.	10.2	55
1624	Electron–Phonon Coupling and Polaron Mobility in Hybrid Perovskites from First Principles. Journal of Physical Chemistry C, 2018, 122, 1361-1366.	1.5	29
1625	Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines. ACS Central Science, 2018, 4, 216-222.	5.3	12
1626	Controllable Crystal Film Growth via Appropriate Substrate-Preheating Treatment for Perovskite Solar Cells Using Mixed Lead Sources. IEEE Journal of Photovoltaics, 2018, 8, 162-170.	1.5	6

#	Article	IF	CITATIONS
1627	Doping of [In ₂ (phen) ₃ Cl ₆]·CH ₃ CN·2H ₂ O Indiumâ€Based Metal–Organic Framework into Hole Transport Layer for Enhancing Perovskite Solar Cell Efficiencies. Advanced Energy Materials, 2018, 8, 1702052.	10.2	55
1628	Two-in-one additive-engineering strategy for improved air stability of planar perovskite solar cells. Nano Energy, 2018, 45, 229-235.	8.2	41
1629	Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs ₃ Sb ₂ I ₉ . ACS Applied Materials & Interfaces, 2018, 10, 2566-2573.	4.0	137
1630	An overview of double perovskites A2B′B″O6 with small ions at A site: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds, 2018, 740, 414-427.	2.8	111
1631	Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance. Nano Energy, 2018, 45, 184-192.	8.2	142
1632	Low temperature processed ternary oxide as an electron transport layer for efficient and stable perovskite solar cells. Electrochimica Acta, 2018, 261, 474-481.	2.6	23
1633	Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells. Nano Energy, 2018, 45, 280-286.	8.2	67
1634	Do Capacitance Measurements Reveal Light-Induced Bulk Dielectric Changes in Photovoltaic Perovskites?. Journal of Physical Chemistry C, 2018, 122, 13450-13454.	1.5	58
1635	Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	44
1636	Realizing Efficient Leadâ€Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Advanced Materials, 2018, 30, 1703800.	11.1	198
1637	Grapheneâ€Based Inverted Planar Perovskite Solar Cells: Advancements, Fundamental Challenges, and Prospects. Chemistry - an Asian Journal, 2018, 13, 240-249.	1.7	16
1638	Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells. Journal of Power Sources, 2018, 378, 98-104.	4.0	24
1639	Temperature Gradient-Induced Instability of Perovskite via Ion Transport. ACS Applied Materials & Interfaces, 2018, 10, 835-844.	4.0	15
1640	Electronic and optical properties of bilayer PbI2: a first-principles study. Journal Physics D: Applied Physics, 2018, 51, 035301.	1.3	9
1641	Sustainable chemical processing and energy-carbon dioxide management: Review of challenges and opportunities. Chemical Engineering Research and Design, 2018, 131, 440-464.	2.7	49
1642	Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires. Advanced Optical Materials, 2018, 6, 1701032.	3.6	114
1643	Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature. Electrochimica Acta, 2018, 261, 227-235.	2.6	74
1644	Fabrication and characterization of CH ₃ NH ₃ (Cs)Pb(Sn)I ₃ (Cl) perovskite solar cells with TiO ₂ nanoparticle layers. Japanese Journal of Applied Physics, 2018, 57, 02CE03.	0.8	11

#	Article	IF	CITATIONS
1645	Spinel Co ₃ O ₄ nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale, 2018, 10, 2341-2350.	2.8	106
1646	Recent advances of flexible perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 673-689.	7.1	75
1647	Crystal orientation-dependent optoelectronic properties of MAPbCl ₃ single crystals. Journal of Materials Chemistry C, 2018, 6, 1579-1586.	2.7	78
1648	Structure of deposits formed from electrosprayed aggregates of nanoparticles. Journal of Aerosol Science, 2018, 118, 45-58.	1.8	8
1649	Influence of [6,6]-Phenyl-C61-butyric Acid Methyl Ester doping on Au/CH3NH3PbI3/Au metal-semiconductor-metal (MSM) photoelectric detectors. Materials Letters, 2018, 217, 139-142.	1.3	2
1650	Solution-Processed, Silver-Doped NiO _{<i>x</i>} as Hole Transporting Layer for High-Efficiency Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 561-570.	2.5	95
1651	Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 3793-3823.	5.2	154
1652	Editorial—Focus on inorganic semiconductor nanowires for device applications. Nanotechnology, 2018, 29, 030201.	1.3	4
1653	Highâ€Performance Singleâ€Crystalline Perovskite Thinâ€Film Photodetector. Advanced Materials, 2018, 30, 1704333.	11.1	225
1654	Highly Efficient Inverted Structural Quantum Dot Solar Cells. Advanced Materials, 2018, 30, 1704882.	11.1	88
1655	Anisotropic ionic transportation performances of (100) and (112) planes in MAPbI3 single crystal. Materials Research Bulletin, 2018, 99, 466-470.	2.7	12
1656	Post-healing of defects: an alternative way for passivation of carbon-based mesoscopic perovskite solar cells <i>via</i> hydrophobic ligand coordination. Journal of Materials Chemistry A, 2018, 6, 2449-2455.	5.2	66
1657	Electric field assisted sintering to improve the performance of nanostructured dye sensitized solar cell (DSSC). Journal of Applied Physics, 2018, 123, .	1.1	9
1659	Excitations Partition into Two Distinct Populations in Bulk Perovskites. Advanced Optical Materials, 2018, 6, 1700975.	3.6	8
1660	Trappedâ€Electronâ€Induced Hole Injection in Perovskite Photodetector with Controllable Gain. Advanced Optical Materials, 2018, 6, 1701189.	3.6	27
1661	Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors. Advanced Materials, 2018, 30, 1705176.	11.1	81
1662	Enhanced performance of perovskite/organic-semiconductor hybrid heterojunction photodetectors with the electron trapping effects. Journal of Materials Chemistry C, 2018, 6, 1338-1342.	2.7	47
1663	Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Materials, 2018, 5, 021001.	2.0	65

#	Article	IF	CITATIONS
1664	Highly Stable, New, Organicâ€Inorganic Perovskite (CH ₃ NH ₃) ₂ PdBr ₄ : Synthesis, Structure, and Physical Properties. Chemistry - A European Journal, 2018, 24, 4991-4998.	1.7	25
1665	Tunable optical properties and stability of lead free all inorganic perovskites (Cs ₂ Snl _x Cl _{6â^'x}). Journal of Materials Chemistry A, 2018, 6, 2577-2584.	5.2	55
1666	Mechanochemical Synthesis of YFeO3 Nanoparticles: Optical and Electrical Properties of Thin Films. Journal of Cluster Science, 2018, 29, 225-233.	1.7	17
1667	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	15.6	364
1668	Construction of Perovskite Solar Cells Using Inorganic Hole-Extracting Components. ACS Omega, 2018, 3, 46-54.	1.6	21
1669	Compositionally Graded Absorber for Efficient and Stable Nearâ€Infraredâ€Transparent Perovskite Solar Cells. Advanced Science, 2018, 5, 1700675.	5.6	65
1670	Improving electron transport in the hybrid perovskite solar cells using CaMnO3-based buffer layer. Nano Energy, 2018, 45, 287-297.	8.2	19
1671	Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices. Journal of Physical Chemistry Letters, 2018, 9, 446-458.	2.1	69
1672	Progress in hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 650-672.	7.1	90
1673	Cyclopropenium (C ₃ H ₃) ⁺ as an Aromatic Alternative A-Site Cation for Hybrid Halide Perovskite Architectures. Journal of Physical Chemistry C, 2018, 122, 2041-2045.	1.5	12
1674	Surface Plasmon Enhanced Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Nanowires. Nano Letters, 2018, 18, 3335-3343.	4.5	133
1675	Stable mixed group II (Ca, Sr) and XIV (Ge, Sn) lead-free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9220-9227.	5.2	55
1676	Hydrogen evolution with CsPbBr3 perovskite nanocrystals under visible light in solution. Materials Today Communications, 2018, 16, 90-96.	0.9	30
1677	Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy and Environmental Science, 2018, 11, 1742-1751.	15.6	76
1678	Enhanced piezoelectric output performance via control of dielectrics in Fe2+-incorporated MAPbI3 perovskite thin films: Flexible piezoelectric generators. Nano Energy, 2018, 49, 247-256.	8.2	68
1679	Interface-Dependent Radiative and Nonradiative Recombination in Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 10691-10698.	1.5	40
1680	Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Science Advances, 2018, 4, eaar7353.	4.7	56
1681	Effect of Size Non-uniformity on Performance of a Plasmonic Perovskite Solar Cell: an Array of Embedded Plasmonic Nanoparticles with the Gaussian Distribution Radiuses. Plasmonics, 2018, 13, 2305-2312.	1.8	28

#	Article	IF	CITATIONS
1682	Improved performance of sol–gel ZnO-based perovskite solar cells via TiCl4 interfacial modification. Solar Energy Materials and Solar Cells, 2018, 183, 157-163.	3.0	38
1683	Metal replacement in perovskite solar cell materials: chemical bonding effects and optoelectronic properties. Sustainable Energy and Fuels, 2018, 2, 1430-1445.	2.5	78
1684	Phase transitions, optical and electronic properties of the layered perovskite hybrid [NH3(CH2)2COOH]2CdCl4 of Y-aminobutyric acid (GABA). Chemical Physics Letters, 2018, 702, 8-15.	1.2	8
1685	Hysteresis-free two-dimensional perovskite solar cells prepared by single-source physical vapour deposition. Solar Energy, 2018, 169, 179-186.	2.9	12
1686	Sb2S3 Solar Cells. Joule, 2018, 2, 857-878.	11.7	382
1687	Impact of interlayer application on band bending for improved electron extraction for efficient flexible perovskite mini-modules. Nano Energy, 2018, 49, 300-307.	8.2	32
1688	Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites. Nano Letters, 2018, 18, 3473-3480.	4.5	65
1689	Aliovalent Doping of Lead Halide Perovskites: Exploring the CH ₃ NH ₃ PbI ₃ –(CH ₃ NH ₃) ₃ Sb <su Nanocrystalline Phase Space. Journal of Physical Chemistry C, 2018, 122, 14082-14090.</su 	ıb ⊾ Ձ <td>>txsub>9∢/s</td>	>txsub>9∢/s
1690	Controlling Thin-Film Stress and Wrinkling during Perovskite Film Formation. ACS Energy Letters, 2018, 3, 1225-1232.	8.8	148
1691	The effect of Srl ₂ substitution on perovskite film formation and its photovoltaic properties <i>via</i> two different deposition methods. Inorganic Chemistry Frontiers, 2018, 5, 1354-1364.	3.0	15
1692	Pb–Sn–Cu Ternary Organometallic Halide Perovskite Solar Cells. Advanced Materials, 2018, 30, e1800258.	11.1	106
1693	A Primer on Photovoltaic Generators. Springer Series in Materials Science, 2018, , 63-90.	0.4	3
1694	Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum. Electrochimica Acta, 2018, 271, 567-575.	2.6	34
1695	Sn2+—Stabilization in MASnI3 perovskites by superhalide incorporation. Journal of Chemical Physics, 2018, 148, 124111.	1.2	19
1696	Long Electron–Hole Diffusion Length in Highâ€Quality Leadâ€Free Double Perovskite Films. Advanced Materials, 2018, 30, e1706246.	11.1	242
1697	Progress towards highly stable and lead-free perovskite solar cells. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	31
1698	Review of recent developments and persistent challenges in stability of perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 90, 210-222.	8.2	96
1699	Advances in Spray-Cast Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 1977-1984.	2.1	106

#	Article	IF	CITATIONS
1700	Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale, 2018, 10, 11342-11348.	2.8	76
1701	Synthesis and Characterization of an Efficient Hole-Conductor Free Halide Perovskite CH ₃ NH ₃ PbI ₃ Semiconductor Absorber Based Photovoltaic Device for IOT. Journal of the Electrochemical Society, 2018, 165, B3023-B3029.	1.3	27
1702	Decrease in electrical contact resistance of Sb-doped n ⁺ -BaSi ₂ layers and spectral response of an Sb-doped n ⁺ -BaSi ₂ /undoped BaSi ₂ structure for solar cells. Japanese Journal of Applied Physics, 2018, 57, 031202.	0.8	3
1703	The Relationship between Chemical Flexibility and Nanoscale Charge Collection in Hybrid Halide Perovskites. Advanced Functional Materials, 2018, 28, 1706995.	7.8	28
1704	What Makes a Good Solar Cell?. Advanced Energy Materials, 2018, 8, 1703385.	10.2	167
1705	Lithiumâ€ion Endohedral Fullerene (Li ⁺ @C ₆₀) Dopants in Stable Perovskite Solar Cells Induce Instant Doping and Antiâ€Oxidation. Angewandte Chemie, 2018, 130, 4697-4701.	1.6	18
1706	Metal Oxide CrO _x as a Promising Bilayer Electron Transport Material for Enhancing the Performance Stability of Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700245.	3.1	16
1707	Advances in Polymer-Based Photovoltaic Cells: Review of Pioneering Materials, Design, and Device Physics. , 2018, , 1-48.		1
1708	Discerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells. Nano Energy, 2018, 48, 63-72.	8.2	103
1709	Enormously improved CH3NH3PbI3 film surface for environmentally stable planar perovskite solar cells with PCE exceeding 19.9%. Nano Energy, 2018, 48, 10-19.	8.2	61
1710	Computational Study of Structural and Electronic Properties of Lead-Free CsMI ₃ Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba). Journal of Physical Chemistry C, 2018, 122, 7838-7848.	1.5	62
1711	Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH ₃ NH ₃ Pbl ₃ Perovskites. Chinese Physics Letters, 2018, 35, 028401.	1.3	5
1712	Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell. Materials Research Express, 2018, 5, 036208.	0.8	26
1713	Influence of O ₂ plasma treatment on NiO <i> _x </i> layer in perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 04FS07.	0.8	26
1714	Nonfullerene Electron Transporting Material Based on Naphthalene Diimide Small Molecule for Highly Stable Perovskite Solar Cells with Efficiency Exceeding 20%. Advanced Functional Materials, 2018, 28, 1800346.	7.8	83
1715	Diversity of band gap and photoluminescence properties of lead halide perovskite: A halogen-dependent spectroscopic study. Chemical Physics Letters, 2018, 699, 93-98.	1.2	8
1716	High-Sensitivity Light Detection via Gate Tuning of Organometallic Perovskite/PCBM Bulk Heterojunctions on Ferroelectric Pb _{0.92} La _{0.08} Zr _{0.52} Ti _{0.48} O ₃ Gated Graphene Field Effect Transistors, ACS Applied Materials & amp: Interfaces, 2018, 10, 12824-12830	4.0	20
1717	Zinc ion as effective film morphology controller in perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 1093-1100.	2.5	55

#	Article	IF	CITATIONS
1718	Single Semiconductor Nanostructure Extinction Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 16443-16463.	1.5	15
1719	Halide Composition Controls Electron–Hole Recombination in Cesium–Lead Halide Perovskite Quantum Dots: A Time Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2018, 9, 1872-1879.	2.1	103
1720	First-Principles Screening of All-Inorganic Lead-Free ABX ₃ Perovskites. Journal of Physical Chemistry C, 2018, 122, 7670-7675.	1.5	98
1721	Investigation of Hole-Transporting Poly(triarylamine) on Aggregation and Charge Transport for Hysteresisless Scalable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 11633-11641.	4.0	86
1722	Vertical Organic–Inorganic Hybrid Perovskite Schottky Junction Transistors. Advanced Electronic Materials, 2018, 4, 1800039.	2.6	15
1723	Highlyâ€Stable Organoâ€Lead Halide Perovskites Synthesized Through Green Selfâ€Assembly Process. Solar Rrl, 2018, 2, 1800052.	3.1	56
1724	Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.	18.7	339
1725	High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20%. Nanoscale, 2018, 10, 7218-7227.	2.8	45
1726	Electronic properties of tin iodide hybrid perovskites: effect of indium doping. Materials Chemistry Frontiers, 2018, 2, 1291-1295.	3.2	13
1727	A novel ball milling technique for room temperature processing of TiO ₂ nanoparticles employed as the electron transport layer in perovskite solar cells and modules. Journal of Materials Chemistry A, 2018, 6, 7114-7122.	5.2	35
1728	Polarized Optoelectronics of CsPbX ₃ (X = Cl, Br, I) Perovskite Nanoplates with Tunable Size and Thickness. Advanced Functional Materials, 2018, 28, 1800283.	7.8	63
1729	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie, 2018, 130, 5935-5939.	1.6	12
1730	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5833-5837.	7.2	109
1731	Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands. Angewandte Chemie - International Edition, 2018, 57, 5754-5758.	7.2	117
1732	Alloy ontrolled Work Function for Enhanced Charge Extraction in Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. ChemSusChem, 2018, 11, 1432-1437.	3.6	62
1733	Halogen in materials design: Fluoroammonium lead triiodide (FNH ₃ PbI ₃) perovskite as a newly discovered dynamical bandgap semiconductor in 3D. International Journal of Quantum Chemistry, 2018, 118, e25621.	1.0	2
1734	Perovskite Solar Absorbers: Materials by Design. Small Methods, 2018, 2, 1700316.	4.6	95
1735	Layered Halide Double Perovskites: Dimensional Reduction of Cs ₂ AgBiBr ₆ . Journal of the American Chemical Society, 2018, 140, 5235-5240.	6.6	293

#	Article	IF	CITATIONS
1736	Inorganic based hole transport materials for perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 8847-8853.	1.1	17
1737	Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material. Journal of Materials Science and Technology, 2018, 34, 1474-1480.	5.6	45
1738	Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nature Materials, 2018, 17, 445-449.	13.3	410
1739	Nature of Photoinduced Quenching Traps in Methylammonium Lead Triiodide Perovskite Revealed by Reversible Photoluminescence Decline. ACS Photonics, 2018, 5, 2034-2043.	3.2	42
1740	Direct or Indirect Bandgap in Hybrid Lead Halide Perovskites?. Advanced Optical Materials, 2018, 6, 1701254.	3.6	54
1741	Thermodynamically Selfâ€Healing 1D–3D Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703421.	10.2	158
1742	Lithiumâ€ion Endohedral Fullerene (Li ⁺ @C ₆₀) Dopants in Stable Perovskite Solar Cells Induce Instant Doping and Antiâ€Oxidation. Angewandte Chemie - International Edition, 2018, 57, 4607-4611.	7.2	89
1743	Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures. Journal of Physical Chemistry Letters, 2018, 9, 1655-1662.	2.1	75
1744	Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure. ACS Energy Letters, 2018, 3, 869-874.	8.8	77
1745	Synthesis and optical properties of ordered-vacancy perovskite cesium bismuth halide nanocrystals. Chemical Communications, 2018, 54, 3640-3643.	2.2	58
1746	Surface modulation of solution processed organolead halide perovskite quantum dots to large nanocrystals integrated with silica gel G. Chemical Communications, 2018, 54, 3508-3511.	2.2	36
1747	Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs <i>via</i> an energy cascade. Energy and Environmental Science, 2018, 11, 1770-1778.	15.6	135
1748	Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renewable and Sustainable Energy Reviews, 2018, 81, 2264-2270.	8.2	123
1749	Recent progress in perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 81, 2812-2822.	8.2	153
1750	Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Materials Today, 2018, 21, 8-21.	8.3	403
1751	Improvement of photovoltaic performance of the inverted planar perovskite solar cells by using CH3NH3PbI3â^'xBrx films with solvent annealing. Superlattices and Microstructures, 2018, 113, 1-12.	1.4	9
1752	Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52, 172-183.	1.4	83
1753	Screen printing large-area organometal halide perovskite thin films for efficient photodetectors. Materials Research Bulletin, 2018, 98, 322-327.	2.7	42

#	Article	IF	CITATIONS
1754	Recent Advances in Spiroâ€MeOTAD Hole Transport Material and Its Applications in Organic–Inorganic Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1700623.	1.9	316
1755	Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles. Applied Surface Science, 2018, 434, 375-381.	3.1	27
1756	Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chemistry - A European Journal, 2018, 24, 3083-3100.	1.7	118
1757	Inorganic–organic halide perovskites for new photovoltaic technology. National Science Review, 2018, 5, 559-576.	4.6	49
1758	Cs ₂ AgInCl ₆ Double Perovskite Single Crystals: Parity Forbidden Transitions and Their Application For Sensitive and Fast UV Photodetectors. ACS Photonics, 2018, 5, 398-405.	3.2	317
1759	Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport layers. Materials Chemistry Frontiers, 2018, 2, 81-89.	3.2	43
1760	A mixed-cation lead iodide MA1â^'EA PbI3 absorber for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 215-218.	7.1	25
1761	Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation. Journal of Electronic Materials, 2018, 47, 917-926.	1.0	19
1762	ZnO/ZnS core-shell composites for low-temperature-processed perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1461-1467.	7.1	26
1763	Interfacial charge-transfer engineering by ionic liquid for high performance planar CH3NH3PbBr3 solar cells. Journal of Energy Chemistry, 2018, 27, 748-752.	7.1	18
1764	Carrier dynamics in CsPbI 3 perovskite microcrystals synthesized in solution phase. Chinese Chemical Letters, 2018, 29, 699-702.	4.8	6
1765	Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 2018, 82, 894-900.	8.2	1,440
1766	Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization. Renewable and Sustainable Energy Reviews, 2018, 82, 845-857.	8.2	83
1767	Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers. Carbon, 2018, 126, 208-214.	5.4	51
1768	New Trends in Solar Cells Research. SpringerBriefs in Applied Sciences and Technology, 2018, , 45-75.	0.2	7
1769	Hexagonal Array of Mesoscopic HTMâ€Based Perovskite Solar Cell with Embedded Plasmonic Nanoparticles. Physica Status Solidi (B): Basic Research, 2018, 255, 1700291.	0.7	17
1770	Fabrication and characterization of next generation nano-structured organo-lead halide-based perovskite solar cell. Ionics, 2018, 24, 1227-1233.	1.2	12
1771	Hybrid Organic/Inorganic and Perovskite Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 187-227.	0.4	2

#	Article	IF	CITATIONS
1772	Quantifying energy losses in planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 206-213.	3.0	76
1773	Future Solar Energy Devices. SpringerBriefs in Applied Sciences and Technology, 2018, , .	0.2	3
1774	Recent advances in the design of dopant-free hole transporting materials for highly efficient perovskite solar cells. Chinese Chemical Letters, 2018, 29, 219-231.	4.8	45
1775	High-Efficiency Solar Cells. Green Energy and Technology, 2018, , 19-31.	0.4	1
1776	Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Applied Surface Science, 2018, 427, 782-790.	3.1	93
1777	Selfâ€Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with Extended UV Stability. Advanced Energy Materials, 2018, 8, 1701722.	10.2	46
1778	A brief review on the lead element substitution in perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1054-1066.	7.1	38
1779	Geometric structure and photovoltaic properties of mixed halide germanium perovskites from theoretical view. Organic Electronics, 2018, 53, 50-56.	1.4	74
1780	CH3NH3PbI3/GeSe bilayer heterojunction solar cell with high performance. Solar Energy, 2018, 159, 142-148.	2.9	27
1781	Multi-functional organic molecules for surface passivation of perovskite. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 42-47.	2.0	12
1782	The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C, 2018, 6, 682-712.	2.7	172
1783	Performance enhancement of perovskite solar cells by employing TiO2 nanorod arrays decorated with CuInS2 quantum dots. Journal of Colloid and Interface Science, 2018, 513, 693-699.	5.0	32
1784	ZnSe quantum dots downshifting layer for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 736-741.	7.1	27
1785	Low-Dimensional Organometal Halide Perovskites. ACS Energy Letters, 2018, 3, 54-62.	8.8	528
1786	Influence of Solvent Coordination on Hybrid Organic–Inorganic Perovskite Formation. ACS Energy Letters, 2018, 3, 92-97.	8.8	273
1787	Dephasing and Quantum Beating of Excitons in Methylammonium Lead Iodide Perovskite Nanoplatelets. ACS Photonics, 2018, 5, 648-654.	3.2	37
1788	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
1789	Deep insights into the advancements and applications of perovskite based photovoltaic cells. Journal of Energy Chemistry, 2018, 27, 753-763.	7.1	1

#	Article	IF	CITATIONS
1790	Chipâ€Scale Fabrication of Uniform Lead Halide Perovskites Microlaser Array and Photodetector Array. Laser and Photonics Reviews, 2018, 12, 1700234.	4.4	65
1791	Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of Merit. Advanced Functional Materials, 2018, 28, 1705589.	7.8	42
1792	The Degradation and Blinking of Single CsPbI ₃ Perovskite Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 13407-13415.	1.5	111
1793	Carboxylic Acid Group-Induced Oxygen Vacancy Migration on an Anatase (101) Surface. Langmuir, 2018, 34, 546-552.	1.6	11
1794	Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule, 2018, 2, 168-183.	11.7	105
1795	The mixing effect of organic cations on the structural, electronic and optical properties of FA _x MA _{1â^'x} PbI ₃ perovskites. Physical Chemistry Chemical Physics, 2018, 20, 941-950.	1.3	24
1796	Fullereneâ€Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresisâ€Free, and Stable Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700435.	2.6	101
1797	Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model. Advanced Energy Materials, 2018, 8, 1701586.	10.2	82
1798	Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications. Chemistry - A European Journal, 2018, 24, 2305-2316.	1.7	103
1799	Inorganic Holeâ€Transporting Materials for Perovskite Solar Cells. Small Methods, 2018, 2, 1700280.	4.6	141
1800	DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application. Journal Physics D: Applied Physics, 2018, 51, 025502.	1.3	10
1801	Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704507.	7.8	180
1802	Revealing the Chemistry between Band Gap and Binding Energy for Leadâ€∤Tinâ€Based Trihalide Perovskite Solar Cell Semiconductors. ChemSusChem, 2018, 11, 449-463.	3.6	27
1803	Degradation of inverted architecture <scp>CH</scp> ₃ <scp>NH</scp> ₃ 3â€ <scp>_xC</scp> <s perovskite solar cells due to trapped moisture. Energy Science and Engineering, 2018, 6, 35-46.</s 	ub ⊾ø <td>> 21</td>	> 21
1804	Insights Into the Microscopic and Degradation Processes in Hybrid Perovskite Solar Cells Using Noise Spectroscopy. Solar Rrl, 2018, 2, 1700173.	3.1	13
1805	CH3NH3I treatment temperature of 70â€ [~] °C in low-pressure vapor-assisted deposition for mesoscopic perovskite solar cells. Chemical Physics Letters, 2018, 691, 444-448.	1.2	4
1806	Phosphorescent molecular metal complexes in heterojunction solar cells. Polyhedron, 2018, 140, 84-98.	1.0	14
1807	Stacking n-type layers: Effective route towards stable, efficient and hysteresis-free planar perovskite solar cells. Nano Energy, 2018, 44, 34-42.	8.2	56

#	Article	IF	CITATIONS
1808	Improving the <scp>NIR</scp> lightâ€harvesting of perovskite solar cell with upconversion fluorotellurite glass. Journal of the American Ceramic Society, 2018, 101, 1923-1928.	1.9	8
1809	Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. Journal of Energy Chemistry, 2018, 27, 1017-1039.	7.1	37
1810	Perovskite Solar Cells with ZnO Electronâ€Transporting Materials. Advanced Materials, 2018, 30, 1703737.	11.1	319
1811	Interface Engineering for Highly Efficient and Stable Planar pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701883.	10.2	338
1812	Breathing bands due to molecular order in CH3NH3PbI3. Computational Materials Science, 2018, 142, 361-371.	1.4	14
1813	Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 175, 1-19.	3.0	66
1814	Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustainable Energy and Fuels, 2018, 2, 294-302.	2.5	81
1815	Reduced interface losses in inverted perovskite solar cells by using a simple dual-functional phenanthroline derivative. Nano Energy, 2018, 43, 72-80.	8.2	43
1816	Effects of Na2SO4 on the optical and structural properties of Cu2ZnSnS4 thin films synthesized using co-electrodeposition technique. Optical Materials, 2018, 75, 471-482.	1.7	18
1817	Leadâ€Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?. Advanced Science, 2018, 5, 1700331.	5.6	233
1818	Light- and Temperature-Modulated Magneto-Transport in Organic–Inorganic Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 39-45.	8.8	15
1819	Nanoarchitectonics in dielectric/ferroelectric layered perovskites: from bulk 3D systems to 2D nanosheets. Dalton Transactions, 2018, 47, 2841-2851.	1.6	42
1820	Theoretical investigations on crystal crosslinking in perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 234-241.	2.7	14
1821	Bromobismuthates: Cation-induced structural diversity and Hirshfeld surface analysis of cation–anion contacts. Polyhedron, 2018, 139, 282-288.	1.0	52
1822	Recent Progress in Singleâ€Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Advanced Science, 2018, 5, 1700471.	5.6	223
1823	Revealing the Working Mechanisms of Planar Perovskite Solar Cells With Cross-Sectional Surface Potential Profiling. IEEE Journal of Photovoltaics, 2018, 8, 125-131.	1.5	20
1824	Effect of ferroelectricity on charge conduction in a PCBM/perovskite device structure. Organic Electronics, 2018, 53, 96-100.	1.4	6
1825	Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy, 2018, 7, 246-259.	2.5	84

#	Article	IF	CITATIONS
1826	Recyclable patterning of silver nanowire percolated network for fabrication of flexible transparent electrode. Applied Surface Science, 2018, 429, 151-157.	3.1	28
1829	Silicon Surface Photochemistry. , 2018, , 611-620.		3
1830	Fabrication of Efficient Organic-Inorganic Perovskite Solar Cells in Ambient Air. Nanoscale Research Letters, 2018, 13, 293.	3.1	23
1831	Rapid, Chemical-Free Generation of Optically Scattering Structures in Poly(ethylene terephthalate) Using a CO2 Laser for Lightweight and Flexible Photovoltaic Applications. International Journal of Photoenergy, 2018, 2018, 1-10.	1.4	0
1832	Numerical Analysis: Toward the Design of Lead Free Highly-Efficient Perovskite Solar Cells. , 2018, , .		1
1833	Design and Optimization of Perovskite Solar Cell with Thin ZnO Insulator Layer as Electron Transport. , 2018, , .		8
1834	Growth and characteristics of perovskite CH3NH3PbBr3 crystal for optoelectronic applications. Ferroelectrics, 2018, 533, 72-81.	0.3	1
1835	Halogen in materials design: Chloroammonium lead triiodide perovskite (ClNH 3 Pbl 3) a dynamical bandgap semiconductor in 3D for photovoltaics. Journal of Computational Chemistry, 2018, 39, 1902-1912.	1.5	2
1836	Using microgels to control the morphology and optoelectronic properties of hybrid organic–inorganic perovskite films. Physical Chemistry Chemical Physics, 2018, 20, 27959-27969.	1.3	10
1837	Photo-induced dual passivation <i>via</i> Usanovich acid–base on surface defects of methylammonium lead triiodide perovskite. Physical Chemistry Chemical Physics, 2018, 20, 28068-28074.	1.3	5
1838	Synergic effects of upconversion nanoparticles NaYbF ₄ :Ho ³⁺ and ZrO ₂ enhanced the efficiency in hole-conductor-free perovskite solar cells. Nanoscale, 2018, 10, 22003-22011.	2.8	35
1839	Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces. Sustainable Energy and Fuels, 2018, 2, 2754-2761.	2.5	61
1840	First-principles characterization of two-dimensional (CH ₃ (CH ₂) ₃ NH ₃) ₂ (CH ₃ NH _{ perovskite. Journal of Materials Chemistry A, 2018, 6, 24389-24396.}	3 <i>q</i> anp>)<	suda≫nâ^'1 </td
1841	1.2 μm persistent luminescence of Ho ³⁺ in LaAlO ₃ and LaGaO ₃ perovskites. Journal of Materials Chemistry C, 2018, 6, 11374-11383.	2.7	29
1842	Colloidal synthesis of lead-free all-inorganic cesium bismuth bromide perovskite nanoplatelets. CrystEngComm, 2018, 20, 7473-7478.	1.3	44
1843	Low-temperature-processed inorganic perovskite solar cells <i>via</i> solvent engineering with enhanced mass transport. Journal of Materials Chemistry A, 2018, 6, 23602-23609.	5.2	67
1844	A new method to discover the reaction mechanism of perovskite nanocrystals. Dalton Transactions, 2018, 47, 16218-16224.	1.6	28
1845	Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 23787-23796.	5.2	21

#	Article	IF	CITATIONS
1847	Intense THz-assisted modulation of semiconductor optical properties. , 2018, , .		0
1848	First-Principles Calculations of the Electronic and Optical Properties of CH 3 NH 3 Pbl 3 for Photovoltaic Applications. Materials Today: Proceedings, 2018, 5, 10570-10576.	0.9	7
1850	1. Size and shape control of metal nanoparticles in millifluidic reactors. , 2018, , 1-48.		0
1852	High-Efficiency Spray-Coated Perovskite Solar Cells Utilizing Vacuum-Assisted Solution Processing. ACS Applied Materials & Interfaces, 2018, 10, 39428-39434.	4.0	74
1853	CH3NH3PbX3 (X = I, Br) encapsulated in silicon carbide/carbon nanotube as advanced diodes. Scientific Reports, 2018, 8, 15187.	1.6	7
1854	General Nondestructive Passivation by 4â€Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability. Small, 2018, 14, e1803350.	5.2	82
1855	Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials, 2018, 1, 133-154.	3.2	128
1856	First-Principles Insight into the Degradation Mechanism of CH ₃ NH ₃ PbI ₃ Perovskite: Light-Induced Defect Formation and Water Dissociation. Journal of Physical Chemistry C, 2018, 122, 27340-27349.	1.5	28
1857	Multi-scale model for the structure of hybrid perovskites: analysis of charge migration in disordered MAPbl ₃ structures. New Journal of Physics, 2018, 20, 103013.	1.2	4
1858	Spray Plasma Processing of Barrier Films Deposited in Air for Improved stability of Flexible Electronic Devices. , 2018, , .		0
1859	Recent Advances in and New Perspectives on Crystalline Silicon Solar Cells with Carrier-Selective Passivation Contacts. Crystals, 2018, 8, 430.	1.0	52
1860	Tailored lead iodide growth for efficient flexible perovskite solar cells and thin-film tandem devices. NPG Asia Materials, 2018, 10, 1076-1085.	3.8	35
1861	A Compact and Smooth CH3NH3PbI3 Film: Investigation of Solvent Sorts and Concentrations of CH3NH3I towards Highly Efficient Perovskite Solar Cells. Nanomaterials, 2018, 8, 897.	1.9	6
1862	Rationalizing Perovskite Data for Machine Learning and Materials Design. Journal of Physical Chemistry Letters, 2018, 9, 6948-6954.	2.1	68
1863	Unveiling the Chemical Composition of Halide Perovskite Films Using Multivariate Statistical Analyses. ACS Applied Energy Materials, 2018, 1, 7174-7181.	2.5	31
1864	Electroluminescence and photo-response of inorganic halide perovskite bi-functional diodes. Nanophotonics, 2018, 7, 1981-1988.	2.9	11
1865	Enhanced Detectivity and Suppressed Dark Current of Perovskite–InGaZnO Phototransistor via a PCBM Interlayer. ACS Applied Materials & Interfaces, 2018, 10, 44144-44151.	4.0	50
1866	Excess charge-carrier induced instability of hybrid perovskites. Nature Communications, 2018, 9, 4981.	5.8	159

#	Article	IF	CITATIONS
1867	Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 44501-44510.	4.0	73
1868	High Dielectric Constant Semiconducting Poly(3-alkylthiophene)s from Side Chain Modification with Polar Sulfinyl and Sulfonyl Groups. Macromolecules, 2018, 51, 9368-9381.	2.2	43
1869	Anomalous Scaling Exponents in the Capacitance–Voltage Characteristics of Perovskite Thin Film Devices. Journal of Physical Chemistry C, 2018, 122, 27935-27940.	1.5	10
1870	High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12, 783-789.	15.6	715
1871	Kinetics of Ion-Exchange Reactions in Hybrid Organic–Inorganic Perovskite Thin Films Studied by In Situ Real-Time X-ray Scattering. Journal of Physical Chemistry Letters, 2018, 9, 6750-6754.	2.1	28
1872	New Helicene-Type Hole-Transporting Molecules for High-Performance and Durable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 41439-41449.	4.0	43
1873	Organic-Inorganic Hybrid Perovskite Solar Cells. Springer Series in Optical Sciences, 2018, , 463-507.	0.5	2
1874	A unified parameter set designed for typical 2D/3D simulations of homo-/hetero-/single-/multi-junction solar cells in various simulation programs. , 2018, , .		1
1875	Mixed halide perovskite light emitting solar cell. Journal of Physics: Conference Series, 2018, 1124, 041022.	0.3	1
1876	High-Performance Inverted Perovskite Solar Cells with Mesoporous NiO <i>_x</i> Hole Transport Layer by Electrochemical Deposition. ACS Omega, 2018, 3, 18434-18443.	1.6	38
1877	Temperature Driven Phase Transition of Organic-Inorganic Halide Perovskite Single Crystals. Journal of the Korean Physical Society, 2018, 73, 1729-1734.	0.3	1
1878	Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials, 2018, 11, 2592.	1.3	43
1879	Polymer Passivation Effect on Methylammonium Lead Halide Perovskite Photodetectors. Journal of the Korean Physical Society, 2018, 73, 1675-1678.	0.3	6
1880	Gold Nanoparticles-embedded MAPbI3 Perovskite Thin Films. Journal of the Korean Physical Society, 2018, 73, 1725-1728.	0.3	5
1881	Holeâ€Transporting Materials Incorporating Carbazole into Spiro ore for Highly Efficient Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807094.	7.8	93
1882	Highly Efficient and Stable Inverted Perovskite Solar Cell Obtained via Treatment by Semiconducting Chemical Additive. Advanced Materials, 2019, 31, e1805554.	11.1	134
1883	Dielectric Behavior as a Screen in Rational Searches for Electronic Materials: Metal Pnictide Sulfosalts. Journal of the American Chemical Society, 2018, 140, 18058-18065.	6.6	69
1884	Nanoscale Imaging of Photocurrent in Perovskite Solar Cells using Near-field Scanning Photocurrent Microscopy. , 2018, , .		0

#	Article	IF	CITATIONS
1885	Computational Prediction of Electronic and Photovoltaic Properties of Anthracene-Based Organic Dyes for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2018, 2018, 1-17.	1.4	2
1887	Ultrafast THz photophysics of solvent engineered triple-cation halide perovskites. Journal of Applied Physics, 2018, 124, .	1.1	4
1888	Ultrafast Exciton Dissociation at the 2D-WS ₂ Monolayer/Perovskite Interface. Journal of Physical Chemistry C, 2018, 122, 28910-28917.	1.5	23
1889	Progress of Graphene–Silicon Heterojunction Photovoltaic Devices. Advanced Materials Interfaces, 2018, 5, 1801520.	1.9	22
1890	Solution-Processed Bil3 Films with 1.1 eV Quasi-Fermi Level Splitting: The Role of Water, Temperature, and Solvent during Processing. ACS Omega, 2018, 3, 12713-12721.	1.6	18
1891	SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells. Journal of Power Sources, 2018, 402, 460-467.	4.0	42
1892	Achieving High Efficiency in Solution-Processed Perovskite Solar Cells Using C ₆₀ /C ₇₀ Mixed Fullerenes. ACS Applied Materials & Interfaces, 2018, 10, 39590-39598.	4.0	67
1893	Insight into Photon Recycling in Perovskite Semiconductors from the Concept of Photon Diffusion. Physical Review Applied, 2018, 10, .	1.5	20
1894	Additive engineering induced perovskite crystal growth for high performance perovskite solar cells. Organic Electronics, 2018, 63, 207-215.	1.4	26
1895	Giant Light-Emission Enhancement in Lead Halide Perovskites by Surface Oxygen Passivation. Nano Letters, 2018, 18, 6967-6973.	4.5	59
1896	Fullerene derivative anchored SnO ₂ for high-performance perovskite solar cells. Energy and Environmental Science, 2018, 11, 3463-3471.	15.6	205
1897	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7.3	201
1898	Insight into the Mechanochemical Synthesis and Structural Evolution of Hybrid Organic–Inorganic Guanidinium Lead(II) Iodides. Chemistry - A European Journal, 2018, 24, 17701-17711.	1.7	26
1899	Ag@SiO2 Core-shell Nanoparticles Embedded in a TiO2 Mesoporous Layer Substantially Improve the Performance of Perovskite Solar Cells. Nanomaterials, 2018, 8, 701.	1.9	35
1900	Efficient and Stable Inorganic Perovskite Solar Cells Manufactured by Pulsed Flash Infrared Annealing. Advanced Energy Materials, 2018, 8, 1802060.	10.2	98
1901	The N, N-Dimethylformamide Annealing for Enhanced Performance of Perovskite Solar Cells Fabricated in Ambient Air. Nano, 2018, 13, 1850102.	0.5	0
1902	Brightness Enhancement in Pulsed-Operated Perovskite Light-Emitting Transistors. ACS Applied Materials & amp; Interfaces, 2018, 10, 37316-37325.	4.0	46
1903	Several Orders of Magnitude Difference in Charge-Transfer Kinetics Induced by Localized Trapped Charges on Mixed-Halide Perovskites. ACS Applied Materials & Interfaces, 2018, 10, 37057-37066.	4.0	5

#	Article	IF	Citations
1904	Activated carbon as back contact for HTM-free mixed cation perovskite solar cell. Phase Transitions, 2018, 91, 1268-1276.	0.6	7
1905	Tunable Semiconductors: Control over Carrier States and Excitations in Layered Hybrid Organic-Inorganic Perovskites. Physical Review Letters, 2018, 121, 146401.	2.9	103
1906	Intrinsic Carrier Mobility of Cesium Lead Halide Perovskites. Physical Review Applied, 2018, 10, .	1.5	59
1907	Metallic tin substitution of organic lead perovskite films for efficient solar cells. Journal of Materials Chemistry A, 2018, 6, 20224-20232.	5.2	24
1908	Device Simulation of Organic–Inorganic Halide Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cell With Various Antireflection Materials. IEEE Journal of Photovoltaics, 2018, 8, 1685-1691.	1.5	30
1909	Recent Studies of Semitransparent Solar Cells. Coatings, 2018, 8, 329.	1.2	39
1910	Study of the reverse saturation current and series resistance of p-p-n perovskite solar cells using the single and double-diode models. Superlattices and Microstructures, 2018, 123, 338-348.	1.4	16
1911	Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition. ACS Nano, 2018, 12, 10327-10337.	7.3	186
1912	Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nature Communications, 2018, 9, 3880.	5.8	109
1913	J-V characteristic of perovskite solar cells using lead(II) thiocyanate doped-methylammonium lead iodide (MAPbI3) as active material. Journal of Physics: Conference Series, 2018, 1080, 012012.	0.3	2
1914	Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes. Inorganic Chemistry, 2018, 57, 13470-13476.	1.9	14
1915	Steady-state microwave conductivity reveals mobility-lifetime product in methylammonium lead iodide. Applied Physics Letters, 2018, 113, 153902.	1.5	9
1916	Manipulating the Tradeâ€off Between Quantum Yield and Electrical Conductivity for Highâ€Brightness Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1804187.	7.8	113
1917	All-Inorganic Perovskite Nanocrystals with a Stellar Set of Stabilities and Their Use in White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 37267-37276.	4.0	82
1918	Efficient carrier multiplication in CsPbI3 perovskite nanocrystals. Nature Communications, 2018, 9, 4199.	5.8	101
1919	Donor/Acceptor Charge-Transfer States at Two-Dimensional Metal Halide Perovskite and Organic Semiconductor Interfaces. ACS Energy Letters, 2018, 3, 2708-2712.	8.8	34
1920	Laser Annealing of Perovskite Solar Cells Thin Film Structure. , 2018, , .		1
1921	A theoretical investigation of structural, mechanical, electronic and thermoelectric properties of orthorhombic CH3NH3PbI3. European Physical Journal B, 2018, 91, 1.	0.6	20

ARTICLE IF CITATIONS Impact of iodine antisite (IPb) defects on the electronic properties of the (110) CH3NH3PbI3 surface. 1922 1.2 17 Journal of Chemical Physics, 2018, 149, 164704. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite 5.8 solar module. Nature Communications, 2018, 9, 4609. Photovoltaics: Advances in First Principles Modeling – Overview. , 2018, , 1-8. 1924 1 The Diffusion of Low-Energy Methyl Group on ITO Film Surface and Its Impact on Optical-Electrical Properties. Materials, 2018, 11, 1991. Illuminationâ€Induced Halide Segregation in Gradient Bandgap Mixedâ€Halide Perovskite Nanoplatelets. 1926 3.6 30 Advanced Optical Materials, 2018, 6, 1801107. Suppressed Decomposition of Perovskite Film on ZnO Via a Selfâ€Assembly Monolayer of Methoxysilane. 3.1 Solar Rrl, 2018, 2, 1800240. Proton Migration in Hybrid Lead Iodide Perovskites: From Classical Hopping to Deep Quantum 1928 2.1 15 Tunneling. Journal of Physical Chemistry Letters, 2018, 9, 6536-6543. Electric Bias Induced Degradation in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes. 1929 1.6 26 Scientific Reports, 2018, 8, 15799. Hexagonal-Tiled Indium Tin Oxide Electrodes To Enhance Light Trapping in Perovskite Solar Cells. ACS 1930 2.4 9 Applied Nano Materials, 2018, 1, 6159-6167. Synthesis and Characterization of ZnO Nanorods by Hydrothermal Methods and Its Application on Pérovskite Solar Cells. Journal of Physics: Conference Series, 2018, 1093, 012012. Improvement of Perovskite Photoluminescence Characteristics by Using a Lithography-Free 1932 0 Metasurface., 2018,,. Solution-Processed "Silver-Bismuth-Iodine" Ternary Thin Films for Lead-Free Photovoltaic Absorbers. 1933 Journal of Visualized Experiments, 2018, , . Impact of Moisture on Photoexcited Charge Carrier Dynamics in Methylammonium Lead Halide 1934 2.1 56 Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6312-6320. Efficient flexible printed perovskite solar cells based on lead acetate precursor. Solar Energy, 2018, 16 176, 406-411. Strain and layer modulated electronic and optical properties of low dimensional perovskite 1936 2.9 31 methylammonium lead iodide: Implications to solar cells. Solar Energy, 2018, 173, 1315-1322. Molecular Engineering of Triphenylamine-Based Non-Fullerene Electron-Transport Materials for Efficient Rigid and Flexible Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 34 38970-38977. A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Advanced Materials 1938 200 1.9 Interfaces, 2018, 5, 1800882. Research Update: Recombination and open-circuit voltage in lead-halide perovskites. APL Materials, 1939 2.2 2018, 6, .

#	Article	IF	CITATIONS
1940	Atomic-layer-deposited ultra-thin VO _x film as a hole transport layer for perovskite solar cells. Semiconductor Science and Technology, 2018, 33, 115016.	1.0	22
1941	Synthesis and dielectric characterisation of triiodide perovskite methylammonium lead iodide for energy applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 18693-18698.	1.1	2
1942	Excitonic phenomena in perovskite quantum-dot supercrystals. Physical Chemistry Chemical Physics, 2018, 20, 25023-25030.	1.3	10
1943	Lead free, air stable perovskite derivative Cs2SnI6 as HTM in DSSCs employing TiO2 nanotubes as photoanode. Materials Research Bulletin, 2018, 108, 113-119.	2.7	24
1944	Improvement in the performance of inverted planar perovskite solar cells via the CH3NH3PbI3-xClx:ZnO bulk heterojunction. Journal of Power Sources, 2018, 401, 303-311.	4.0	19
1945	High-sensitive and fast response to 255 nm deep-UV light of CH 3 NH 3 PbX 3 (X = Cl, Br, I) bulk crystals. Royal Society Open Science, 2018, 5, 180905.	1.1	25
1946	All electrospray printed perovskite solar cells. Nano Energy, 2018, 53, 440-448.	8.2	46
1947	Synthesis of new 2-((5-(4-alkyl-4H-dithieno[3,2-b:2′,3′-d]pyrrol-2-yl)thiophen-2-yl)methylene)malononitrile: Dopant free hole transporting materials for perovskite solar cells with high power conversion efficiency. Solar Energy 2018 174 130-138	2.9	19
1948	Pressures Tuning the Band Gap of Organic–Inorganic Trihalide Perovskites (MAPbBr3): A First-Principles Study. Journal of Electronic Materials, 2018, 47, 7204-7211.	1.0	12
1949	Deep neural networks for accurate predictions of crystal stability. Nature Communications, 2018, 9, 3800.	5.8	178
1950	Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite IGSe Tandem Solar Cells. Advanced Energy Materials, 2018, 8, 1801692.	10.2	17
1951	Graphdiyneâ€Based Bulk Heterojunction for Efficient and Moistureâ€Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1802012.	10.2	70
1952	Recent advances of low-dimensional materials in lasing applications. FlatChem, 2018, 10, 22-38.	2.8	14
1953	Plasmon-Enhanced Thin-Film Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 23691-23697.	1.5	25
1954	Highly Efficient, Solution-Processed CsPbI ₂ Br Planar Heterojunction Perovskite Solar Cells via Flash Annealing. ACS Photonics, 2018, 5, 4104-4110.	3.2	64
1955	Effective hopping strength between supercells in a disordered tight-binding model. Computational Materials Science, 2018, 155, 534-540.	1.4	0
1956	Millimeter-Scale Nonlocal Photo-Sensing Based on Single-Crystal Perovskite Photodetector. IScience, 2018, 7, 110-119.	1.9	14
1957	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
#	Article	IF	CITATIONS
------	---	------	-----------
1958	Investigation of Interface Effect on the Performance of CH ₃ NH ₃ PbCl ₃ /ZnO UV Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 34744-34750.	4.0	40
1959	Highly Efficient Infrared Light-Converting Perovskite Solar Cells: Direct Electron Injection from NaYF ₄ :Yb ³⁺ , Er ³⁺ to the TiO ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 14004-14009.	3.2	12
1960	Chemical interaction dictated energy level alignment at the N,N′-dipentyl-3,4,9,10-perylenedicarboximide/CH3NH3PbI3 interface. Applied Physics Letters, 2018, 113, .	1.5	11
1961	Facile Solution Spin-Coating SnO2 Thin Film Covering Cracks of TiO2 Hole Blocking Layer for Perovskite Solar Cells. Coatings, 2018, 8, 314.	1.2	19
1964	Rich Chemistry in Inorganic Halide Perovskite Nanostructures. Advanced Materials, 2018, 30, e1802856.	11.1	106
1965	Controllable growth of two-dimensional perovskite microstructures. CrystEngComm, 2018, 20, 6538-6545.	1.3	14
1966	Excitation Wavelength Dependent Interfacial Charge Transfer Dynamics in a CH ₃ NH ₃ PbI ₃ Perovskite Film. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 633-642.	0.1	10
1967	Surface recombination velocity of methylammonium lead bromide nanowires in anodic aluminium oxide templates. Molecular Systems Design and Engineering, 2018, 3, 723-728.	1.7	7
1968	Bulk inversion asymmetry effect on band structure and optical transition of a new class all-inorganic cubic perovskite nanoplatelet. AIP Advances, 2018, 8, .	0.6	3
1969	The crucial role of density functional nonlocality and on-axis CH3NH3 rotation induced I2 formation in hybrid organic-inorganic CH3NH3PbI3 cubic perovskite. Scientific Reports, 2018, 8, 13161.	1.6	12
1970	Room-temperature solution-processed amorphous NbO _x as an electron transport layer in high-efficiency photovoltaics. Journal of Materials Chemistry A, 2018, 6, 17882-17888.	5.2	19
1971	Plasmonic Ag@Nb2O5 surface passivation layer on quantum confined SnO2 films for high current dye-sensitized solar cell applications. Electrochimica Acta, 2018, 289, 1-12.	2.6	20
1972	Planar inverted perovskite solar cells based on the electron transport layer of PC61BM:ITIC. Synthetic Metals, 2018, 245, 116-120.	2.1	12
1973	Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays of dielectric particles. Optics Express, 2018, 26, A865.	1.7	19
1974	Modelling the impact of spectral irradiance and average photon energy on photocurrent of solar modules. Solar Energy, 2018, 173, 1058-1064.	2.9	9
1975	Yb ³⁺ and Yb ³⁺ /Er ³⁺ doping for near-infrared emission and improved stability of CsPbCl ₃ nanocrystals. Journal of Materials Chemistry C, 2018, 6, 10101-10105.	2.7	100
1976	Perovskites for Light Emission. Advanced Materials, 2018, 30, e1801996.	11.1	417
1977	Resonant Silicon Nanoparticles for Enhanced Light Harvesting in Halide Perovskite Solar Cells. Advanced Optical Materials, 2018, 6, 1800576.	3.6	40

#	Article	IF	CITATIONS
1978	A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 2018, 53, 405-414.	8.2	60
1979	Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation. Solar Energy Materials and Solar Cells, 2018, 188, 37-45.	3.0	67
1980	Study of transport and recombination mechanism in hole transporter free perovskite solar cell. Materials Research Express, 2018, 5, 105508.	0.8	2
1981	Determination of the miscibility gap in the solid solutions series of methylammonium lead iodide/chloride. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 445-449.	0.5	11
1982	Photoinduced Migration of Ions in Optically Resonant Perovskite Nanoparticles. JETP Letters, 2018, 107, 742-748.	0.4	7
1983	Effect of incorporation of highlyâ€ordered aâ€Ge:H nanoparticles on the performance of perovskite solar cells. Micro and Nano Letters, 2018, 13, 1111-1116.	0.6	6
1984	Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy and Environmental Science, 2018, 11, 2102-2113.	15.6	43
1985	Photovoltaics and Nanotechnology as Alternative Energy. Environmental Chemistry for A Sustainable World, 2018, , 211-241.	0.3	1
1986	Electronic, optical and mechanical properties of lead-free halide double perovskites using first-principles density functional theory. Materials Letters, 2018, 227, 289-291.	1.3	51
1987	A Review on Halide Perovskites as Color Conversion Layers in White Light Emitting Diode Applications. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800120.	0.8	73
1988	Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Solar Energy Materials and Solar Cells, 2018, 184, 15-21.	3.0	179
1989	Nb-Doping TiO ₂ Electron Transporting Layer for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2576-2581.	2.5	26
1990	Large-Scale Compositional and Electronic Inhomogeneities in CH ₃ NH ₃ PbI ₃ Perovskites and Their Effect on Device Performance. ACS Applied Energy Materials, 2018, 1, 2410-2416.	2.5	26
1991	D–A–D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group. ACS Applied Materials & Interfaces, 2018, 10, 19697-19703.	4.0	101
1992	(C ₆ H ₅ CH ₂ NH ₃) ₂ CuBr ₄ : A Lead-Free, Highly Stable Two-Dimensional Perovskite for Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 2709-2716.	2.5	73
1993	Improved Efficiency of Inverted Perovskite Solar Cells Via Surface Plasmon Resonance Effect of Au@PSS Coreâ€Shell Tetrahedra Nanoparticles. Solar Rrl, 2018, 2, 1800061.	3.1	22
1994	Stable Formamidiniumâ€Based Perovskite Solar Cells via In Situ Grain Encapsulation. Advanced Energy Materials, 2018, 8, 1800232.	10.2	78
1995	Thermoelectric Properties of Doped-Cu ₃ SbSe ₄ Compounds: A First-Principles Insight. Inorganic Chemistry, 2018, 57, 7321-7333.	1.9	36

#	Article	IF	Citations
1996	An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. Journal of Materials Chemistry C, 2018, 6, 6988-6995.	2.7	54
1997	Highly efficient perovskite solar cells fabricated by simplified one-step deposition method with non-halogenated anti-solvents. Organic Electronics, 2018, 59, 330-336.	1.4	13
1998	18-2: Ultrapure Green Light-Emitting Diodes using Colloidal Quantum Wells of Hybrid Lead Halide Perovskites. Digest of Technical Papers SID International Symposium, 2018, 49, 214-217.	0.1	3
1999	Reduced-Dimensional α-CsPbX3 Perovskites for Efficient and Stable Photovoltaics. Joule, 2018, 2, 1356-1368.	11.7	344
2000	An introduction to the field of commercializing emerging materials manufacturing technologies in an IoT world. Translational Materials Research, 2018, 5, 024002.	1.2	3
2001	Solar Energy Conversion. , 2018, , 881-918.		7
2002	Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives. Science Bulletin, 2018, 63, 726-731.	4.3	38
2003	Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI. Chemistry of Materials, 2018, 30, 3827-3835.	3.2	68
2004	Halogen-free guanidinium-based perovskite solar cell with enhanced stability. RSC Advances, 2018, 8, 17365-17372.	1.7	15
2005	On the structure and physical properties of methyl ammonium lead iodide perovskite thin films by the two-step deposition method. Materials Chemistry and Physics, 2018, 215, 137-147.	2.0	20
2006	Excitation Intensity Dependence of Photoluminescence Blinking in CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 12106-12113.	1.5	58
2007	Fullerene-Cation-Mediated Noble-Metal-Free Direct Introduction of Functionalized Aryl Groups onto [60]Fullerene. Organic Letters, 2018, 20, 3372-3376.	2.4	35
2008	Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, 2018, 6, 6398-6405.	2.7	168
2009	New insights into the origin of hysteresis behavior in perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 16285-16293.	1.3	7
2010	Defect-engineered epitaxial VO _{2±δ} in strain engineering of heterogeneous soft crystals. Science Advances, 2018, 4, eaar3679.	4.7	42
2011	Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite. Scientific Reports, 2018, 8, 8115.	1.6	32
2012	Fullerene derivative as an additive for highly efficient printable mesoscopic perovskite solar cells. Organic Electronics, 2018, 62, 653-659.	1.4	10
2013	Rational design criteria for D–ï̃€â€"A structured organic and porphyrin sensitizers for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 14518-14545.	5.2	256

#	Article	IF	CITATIONS
2014	Doping and Switchable Photovoltaic Effect in Leadâ€Free Perovskites Enabled by Metal Cation Transmutation. Advanced Materials, 2018, 30, e1802080.	11.1	30
2015	Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800667.	3.6	91
2016	Probing the Correlation of Twin Boundaries and Charge Transport of CdTe Solar Cells Using Electron Backscattering Diffraction and Conductive Atomic Force Microscopy. ACS Applied Energy Materials, 2018, 1, 3646-3653.	2.5	2
2017	Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1772-1778.	8.8	182
2018	All-inorganic bifacial CsPbBr ₃ perovskite solar cells with a 98.5%-bifacial factor. Chemical Communications, 2018, 54, 8237-8240.	2.2	25
2019	Recent Advances in Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2018, 6, 1800278.	3.6	149
2020	Allâ€inorganic Perovskite Nanocrystals: Microscopy Insights in Structure and Optical Properties. Advanced Optical Materials, 2018, 6, 1800289.	3.6	24
2021	Thermal Quenching and Dose Studies of X-ray Luminescence in Single Crystals of Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 16265-16273.	1.5	56
2022	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	5.2	168
2023	A Twoâ€Dimensional Holeâ€Transporting Material for Highâ€Performance Perovskite Solar Cells with 20 % Average Efficiency. Angewandte Chemie, 2018, 130, 11125-11131.	1.6	25
2024	Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy, 2018, 51, 408-424.	8.2	145
2025	Efficient Perovskite Solar Cells with Reduced Photocurrent Hysteresis through Tuned Crystallinity of Hybrid Perovskite Thin Films. ACS Omega, 2018, 3, 7069-7076.	1.6	8
2026	A Twoâ€Dimensional Holeâ€Transporting Material for Highâ€Performance Perovskite Solar Cells with 20 % Average Efficiency. Angewandte Chemie - International Edition, 2018, 57, 10959-10965.	7.2	127
2027	Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials, 2018, 2018, 1-15.	1.5	224
2028	Evolution of Perovskite Solar Cells. , 2018, , 43-88.		18
2029	Ion Migration in Hybrid Perovskites. , 2018, , 163-196.		10
2030	Fabrication and Life Time of Perovskite Solar Cells. , 2018, , 231-287.		7
2031	Fabrication of Semitransparent Perovskite Solar Cells. , 2018, , 373-386.		1

#	Article	IF	CITATIONS
2032	Commercialization of Large-Scale Perovskite Solar Energy Technology and Scaling-Up Issues. , 2018, , 387-445.		2
2033	The computational probing of carrier transport in MAPbI3â^'xClx. Computational and Theoretical Chemistry, 2018, 1138, 135-139.	1.1	2
2034	Quantifying the plasmonic orthogonalisation of light for Si, a-Si, and perovskite solar cells. Journal of Optics (United Kingdom), 2018, 20, 085901.	1.0	6
2035	Lanthanide-Doped Tellurite Glasses for Solar Energy Harvesting. , 2018, , 249-273.		1
2036	Molecular engineering of ionic type perylenediimide dimer-based electron transport materials for efficient planar perovskite solar cells. Materials Today Energy, 2018, 9, 264-270.	2.5	19
2037	Enhancement of photo-electrochemical reactions in MAPbI3/Au. Materials Today Energy, 2018, 9, 303-310.	2.5	7
2038	Numerical analysis of the angular insensitive photovoltaic light harvesting with the biomimetic scattering film inspired by the rose petal epidermal topography. Solar Energy, 2018, 170, 800-806.	2.9	9
2039	Performance improvement of perovskite solar cells through enhanced hole extraction: The role of iodide concentration gradient. Solar Energy Materials and Solar Cells, 2018, 185, 117-123.	3.0	176
2040	Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2018, 9, 3878-3885.	2.1	12
2041	Morphologyâ€Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices. Advanced Optical Materials, 2018, 6, 1800413.	3.6	34
2042	I-V and impedance characterization of a solution processed perovskite based heterojunction photodetector. Superlattices and Microstructures, 2018, 122, 410-418.	1.4	23
2043	High Current Density and Low Hysteresis Effect of Planar Perovskite Solar Cells via PCBM-doping and Interfacial Improvement. ACS Applied Materials & Interfaces, 2018, 10, 29954-29964.	4.0	35
2044	Hybrid PbS Quantumâ€Ðotâ€inâ€Perovskite for Highâ€Efficiency Perovskite Solar Cell. Small, 2018, 14, e180101	65.2	111
2045	Charge-Transporting Materials for Perovskite Solar Cells. Advances in Inorganic Chemistry, 2018, , 185-246.	0.4	8
2046	Graphene Oxide/Perovskite Interfaces For Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 16715-16726.	1.5	22
2047	Activation Energy of Organic Cation Rotation in CH ₃ NH ₃ Pbl ₃ Pbl ₃ CD ₃ NH ₃ Pbl ₃ Elastic Neutron Scattering Measurements and First-Principles Analysis Including Nuclear Quantum Effects. Journal of Physical Chemistry Letters,	2.1	34
2048	Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin–Lead Triiodide Perovskites. Advanced Functional Materials, 2018, 28, 1802803.	7.8	63
2049	Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode. Solar Energy Materials and Solar Cells, 2018, 185, 399-405.	3.0	111

#	Article	IF	CITATIONS
2050	High performance perovskite light-emitting diodes realized by isopropyl alcohol as green anti-solvent. Journal of Luminescence, 2018, 204, 110-115.	1.5	14
2051	Doping effects in SnO ₂ transport material for high performance planar perovskite solar cells. Journal Physics D: Applied Physics, 2018, 51, 394001.	1.3	25
2052	Highly Uniform Large-Area (100 cm2) Perovskite CH3NH3PbI3 Thin-Films Prepared by Single-Source Thermal Evaporation. Coatings, 2018, 8, 256.	1.2	39
2053	Highly efficient and reproducible planar perovskite solar cells with mitigated hysteresis enabled by sequential surface modification of electrodes. Journal of Materials Science, 2018, 53, 16062-16073.	1.7	5
2054	Study of the Crystallization of Metal Halide Perovskites Containing Additives via Differential Scanning Calorimetry. Journal of Electronic Materials, 2018, 47, 6319-6327.	1.0	2
2055	Molecular design enabled reduction of interface trap density affords highly efficient and stable perovskite solar cells with over 83% fill factor. Nano Energy, 2018, 52, 300-306.	8.2	112
2056	Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Advanced Materials, 2018, 30, e1800865.	11.1	203
2057	Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Research, 2018, 11, 6283-6293.	5.8	72
2058	SmFeO ₃ and Bi-doped SmFeO ₃ perovskites as an alternative class of electrodes in lithium-ion batteries. CrystEngComm, 2018, 20, 6165-6172.	1.3	17
2059	Continuous-wave operation in directly patterned perovskite distributed feedback light source at room temperature. Optics Letters, 2018, 43, 611.	1.7	27
2060	Temperature dependent two-photon photoluminescence of CH ₃ NH ₃ PbBr ₃ : structural phase and exciton to free carrier transition. Optical Materials Express, 2018, 8, 511.	1.6	26
2061	Optimization of conjugated polymer blend concentration for high performance organic solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 16437-16445.	1.1	5
2062	Dew point temperature as an invariant replacement for relative humidity for advanced perovskite solar cell fabrication systems. Journal of Materials Chemistry A, 2018, 6, 20695-20701.	5.2	10
2063	Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: spectroelectrochemistry, microscopy, and identification of thermal contributions. Journal of Materials Chemistry C, 2018, 6, 11853-11867.	2.7	47
2064	Ytterbium-doped fiber laser passively mode locked by evanescent field interaction with CH ₃ NH ₃ SnI ₃ perovskite saturable absorber. Journal Physics D: Applied Physics, 2018, 51, 375106.	1.3	25
2065	Highly-flexible perovskite photodiodes employing doped multilayer-graphene transparent conductive electrodes. Nanotechnology, 2018, 29, 425203.	1.3	13
2066	Solutionâ€Processed Lowâ€Bandgap CuIn(S,Se) ₂ Absorbers for Highâ€Efficiency Singleâ€Junction and Monolithic Chalcopyriteâ€Perovskite Tandem Solar Cells. Advanced Energy Materials, 2018, 8, 1801254.	10.2	56
2067	p-Type CuCrO ₂ particulate films as the hole transporting layer for CH ₃ NH ₃ PbI ₃ perovskite solar cells. RSC Advances, 2018, 8, 27956-27962.	1.7	48

#	Article	IF	CITATIONS
2068	Ultrafast Ionizing Radiation Detection by p–n Junctions Made with Single Crystals of Solutionâ€Processed Perovskite. Advanced Electronic Materials, 2018, 4, 1800237.	2.6	29
2069	Effects of Cu addition to perovskite CH ₃ NH ₃ PbI _{3â^'} <i>_x </i> Cl <i>_x </i> photovoltaic devices with hot airflow during spin-coating. Japanese Journal of Applied Physics, 2018, 57, 08RE10.	0.8	17
2070	Achieving High Openâ€Circuit Voltage for pâ€iâ€n Perovskite Solar Cells Via Anode Contact Engineering. Solar Rrl, 2018, 2, 1800151.	3.1	14
2071	Two-Step Growth of 2D Organic–Inorganic Perovskite Microplates and Arrays for Functional Optoelectronics. Journal of Physical Chemistry Letters, 2018, 9, 4532-4538.	2.1	31
2072	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291.		0
2073	Efficient Roomâ€Temperature Phosphorescence from Organic–Inorganic Hybrid Perovskites by Molecular Engineering. Advanced Materials, 2018, 30, e1707621.	11.1	126
2074	Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326.	1.9	40
2075	Spray-Pyrolyzed ZnO as Electron Selective Contact for Long-Term Stable Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 4057-4064.	2.5	18
2076	Zero-Dimensional Organic–Inorganic Perovskite Variant: Transition between Molecular and Solid Crystal. Journal of the American Chemical Society, 2018, 140, 10456-10463.	6.6	79
2077	In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. Nanoscale, 2018, 10, 15436-15441.	2.8	69
2078	Synergistic enhancement of Cs and Br doping in formamidinium lead halide perovskites for high performance optoelectronics. CrystEngComm, 2018, 20, 5510-5518.	1.3	6
2079	Microstructure Engineering of Metal-Halide Perovskite Films for Efficient Solar Cells. , 2018, , .		0
2080	Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods. Materials, 2018, 11, 729.	1.3	205
2081	Highly Emissive Selfâ€Trapped Excitons in Fully Inorganic Zeroâ€Dimensional Tin Halides. Angewandte Chemie - International Edition, 2018, 57, 11329-11333.	7.2	242
2082	Twin Domains in Organometallic Halide Perovskite Thin-Films. Crystals, 2018, 8, 216.	1.0	16
2083	Electronic structure, elastic and phonon properties of perovskite-type hydrides MgXH 3 (X = Fe, Co) for hydrogen storage. Solid State Communications, 2018, 281, 38-43.	0.9	36
2084	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskites. Solar Rrl, 2018, 2, 1800146.	3.1	43
2085	Mixed A-Cation Perovskites for Solar Cells: Atomic-Scale Insights Into Structural Distortion, Hydrogen Bonding, and Electronic Properties. Chemistry of Materials, 2018, 30, 5194-5204.	3.2	127

#	Article	IF	CITATIONS
2086	Enhanced Efficiency of Flexible GaN/Perovskite Solar Cells Based on the Piezo-Phototronic Effect. ACS Applied Energy Materials, 2018, 1, 3063-3069.	2.5	22
2087	Band Edges of Hybrid Halide Perovskites under the Influence of Mixed-Cation Approach: A Scanning Tunneling Spectroscopic Insight. ACS Applied Energy Materials, 2018, 1, 4351-4358.	2.5	14
2088	Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review. Materials, 2018, 11, 1008.	1.3	88
2089	Understanding the Influence of Interface Morphology on the Performance of Perovskite Solar Cells. Materials, 2018, 11, 1073.	1.3	19
2090	Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of â^1⁄414%. ACS Applied Energy Materials, 2018, 1, 3565-3570.	2.5	13
2091	Stabilizing Lead-Free All-Inorganic Tin Halide Perovskites by Ion Exchange. Journal of Physical Chemistry C, 2018, 122, 17660-17667.	1.5	68
2092	Lead-less mesoscopic perovskite solar cells with enhanced photovoltaic performance by strontium chloride substitution. Ceramics International, 2018, 44, 18863-18870.	2.3	19
2093	Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy, 2018, 51, 680-687.	8.2	59
2094	Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nature Communications, 2018, 9, 2793.	5.8	189
2095	When Crystals Go Nano – The Role of Advanced Xâ€ray Total Scattering Methods in Nanotechnology. European Journal of Inorganic Chemistry, 2018, 2018, 3789-3803.	1.0	27
2096	Mutual Composition Transformations Among 2D/3D Organolead Halide Perovskites and Mechanisms Behind. Solar Rrl, 2018, 2, 1800125.	3.1	17
2097	Facile Deposition of Nb ₂ O ₅ Thin Film as an Electron-Transporting Layer for Highly Efficient Perovskite Solar Cells. ACS Applied Nano Materials, 2018, 1, 4101-4109.	2.4	33
2098	Highly Emissive Selfâ€Trapped Excitons in Fully Inorganic Zeroâ€Dimensional Tin Halides. Angewandte Chemie, 2018, 130, 11499-11503.	1.6	37
2099	A theoretical study of perovskites related to CH ₃ NH ₃ PbX ₃ (X = F,) Tj ETQo	1 _{1.4} 0.784	1314 rgBT /
2100	Multiscale model for disordered hybrid perovskites: The concept of organic cation pair modes. Physical Review B, 2018, 98, .	1.1	15
2101	Sequential Preparation of Dualâ€Layer Fluorineâ€Doped Tin Oxide Films for Highly Efficient Perovskite Solar Cells. ChemSusChem, 2018, 11, 3234-3242.	3.6	7
2102	Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. Joule, 2018, 2, 1231-1241.	11.7	224
2103	Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. ACS Applied Materials & Interfaces, 2018, 10, 28541-28552.	4.0	72

#	Article	IF	CITATIONS
2104	Slow thermal equilibration in methylammonium lead iodide revealed by transient mid-infrared spectroscopy. Nature Communications, 2018, 9, 2792.	5.8	25
2105	Enhanced Crystallinity of Lowâ€Temperature Solutionâ€Processed SnO ₂ for Highly Reproducible Planar Perovskite Solar Cells. ChemSusChem, 2018, 11, 2898-2903.	3.6	31
2106	Inorganic pâ€Type Semiconductors as Hole Conductor Building Blocks for Robust Perovskite Solar Cells. Advanced Sustainable Systems, 2018, 2, 1800032.	2.7	26
2107	Heterogeneous/Homogeneous Mediators for Highâ€Energyâ€Density Lithium–Sulfur Batteries: Progress and Prospects. Advanced Functional Materials, 2018, 28, 1707536.	7.8	251
2108	Aligned and Graded Typeâ€II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Advanced Energy Materials, 2018, 8, 1800185.	10.2	247
2109	Inorganic CsPb _{1â^`} <i>_x</i> Sn <i>_x</i> IBr ₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.	10.2	192
2110	Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy, 2018, 119, 226-241.	4.2	163
2111	Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. Journal of Physical Chemistry Letters, 2018, 9, 2707-2713.	2.1	124
2112	Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes: A Combined Experimental and Theoretical Approach. ACS Applied Materials & Interfaces, 2018, 10, 17973-17984.	4.0	31
2113	Linking structural properties with functionality in solar cell materials – the effective mass and effective density of states. Sustainable Energy and Fuels, 2018, 2, 1550-1560.	2.5	15
2114	Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications. AIP Conference Proceedings, 2018, , .	0.3	4
2115	Sequential deposition of hybrid halide perovskite starting both from lead iodide and lead chloride on the most widely employed substrates. Thin Solid Films, 2018, 657, 110-117.	0.8	5
2116	Low-Temperature Solution-Processed ZnSe Electron Transport Layer for Efficient Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Photostability. ACS Nano, 2018, 12, 5605-5614.	7.3	89
2117	Laser Desorption/Ionization Mass Spectrometry of Perovskite Solar Cells: Identification of Interface Interactions and Degradation Reactions. Solar Rrl, 2018, 2, 1800022.	3.1	9
2118	Hybrid rinse solvent processing highly flat perovskite films on planar substrate. Electrochemistry Communications, 2018, 91, 71-74.	2.3	2
2119	Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH ₃ NH ₃ PbI ₃ Perovskite Devices in Ambient Atmosphere. ACS Applied Materials & Interfaces, 2018, 10, 16482-16489.	4.0	78
2120	Enhanced Piezoelectric Response in Hybrid Lead Halide Perovskite Thin Films via Interfacing with Ferroelectric PbZr _{0.2} Ti _{0.8} O ₃ . ACS Applied Materials & Interfaces, 2018, 10, 19218-19225.	4.0	24
2121	lonic Liquidâ€Assisted Improvements in the Thermal Stability of CH ₃ NH ₃ Pbl ₃ Perovskite Photovoltaics. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800130.	1.2	27

#	Article	IF	CITATIONS
2122	Effect of Different CH3NH3PbI3 Morphologies on Photovoltaic Properties of Perovskite Solar Cells. Nanoscale Research Letters, 2018, 13, 140.	3.1	24
2123	Mapping Highly Efficient Mixed-cation Pseudohalide-perovskite Solar Cells with a Scanning Transmission X-ray Microscope. Microscopy and Microanalysis, 2018, 24, 462-463.	0.2	0
2124	Non-doped and unsorted single-walled carbon nanotubes as carrier-selective, transparent, and conductive electrode for perovskite solar cells. MRS Communications, 2018, 8, 1058-1063.	0.8	14
2125	Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells. Journal of Materials Chemistry A, 2018, 6, 17426-17436.	5.2	33
2126	Coherent Spin and Quasiparticle Dynamics in Solutionâ€Processed Layered 2D Lead Halide Perovskites. Advanced Science, 2018, 5, 1800664.	5.6	66
2127	Effects of Ti precursors on the performance of planar perovskite solar cells. Applied Surface Science, 2018, 462, 598-605.	3.1	11
2128	Carrier Lifetimes and Polaronic Mass Enhancement in the Hybrid Halide Perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mn Physical Review Letters, 2018, 121, 086402.</mn </mml:msub></mml:mrow></mml:mrow></mml:math 	nl:mrow><	mmi:mn>3<
2129	Design and Surface Modification of PET Substrates Using UV/Ozone Treatment for Roll-to-Roll Processed Solar Photovoltaic (PV) Module Packaging. , 2018, , .		5
2130	Hysteresisâ€Free 1D Network Mixed Halideâ€Perovskite Semitransparent Solar Cells. Small, 2018, 14, e1802319.	5.2	13
2131	Oxidase-mimicking activity of perovskite LaMnO _{3+δ} nanofibers and their application for colorimetric sensing. Journal of Materials Chemistry B, 2018, 6, 5931-5939.	2.9	52
2132	Towards high performance perovskite solar cells: A review of morphological control and HTM development. Applied Materials Today, 2018, 13, 69-82.	2.3	43
2133	α-Particle Detection and Charge Transport Characteristics in the A ₃ M ₂ I ₉ Defect Perovskites (A = Cs, Rb; M = Bi, Sb). ACS Photonics, 2018, 5, 3748-3762.	3.2	88
2134	Surface polarization and recombination in organic-inorganic hybrid perovskite solar cells based on photo- and electrically induced negative capacitance studies. Organic Electronics, 2018, 62, 203-208.	1.4	28
2135	Defects engineering for high-performance perovskite solar cells. Npj Flexible Electronics, 2018, 2, .	5.1	334
2136	Size and shape control of metal nanoparticles in millifluidic reactors. Physical Sciences Reviews, 2018, 3, .	0.8	1
2137	Trap-Limited Dynamics of Excited Carriers and Interpretation of the Photoluminescence Decay Kinetics in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 4955-4962.	2.1	46
2138	First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues. ACS Energy Letters, 2018, 3, 2206-2222.	8.8	202
2139	Enhanced Device Efficiency and Long-Term Stability via Boronic Acid-Based Self-Assembled Monolayer Modification of Indium Tin Oxide in a Planar Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 30000-30007.	4.0	47

#	Article	IF	CITATIONS
2140	Performance enhancement of perovskite solar cells through interfacial engineering: Water-soluble fullerenol C60(OH)16 as interfacial modification layer. Organic Electronics, 2018, 62, 327-334.	1.4	5
2141	Perovskites photovoltaic solar cells: An overview of current status. Renewable and Sustainable Energy Reviews, 2018, 91, 1025-1044.	8.2	153
2142	Insights on the Synthesis, Crystal and Electronic Structures, and Optical and Thermoelectric Properties of Sr _{1–<i>x</i>} Sb _{<i>x</i>} HfSe ₃ Orthorhombic Perovskite. Inorganic Chemistry, 2018, 57, 7402-7411.	1.9	20
2143	Anomalous Dielectric Behavior of a Pb/Sn Perovskite: Effect of Trapped Charges on Complex Photoconductivity. ACS Photonics, 2018, 5, 3189-3197.	3.2	21
2144	Strategy to modulate the π-bridged units in bis(4-methoxyphenyl)amine-based hole-transporting materials for improvement of perovskite solar cell performance. Journal of Materials Chemistry C, 2018, 6, 6816-6822.	2.7	20
2145	Energy Harvesting Research: The Road from Single Source to Multisource. Advanced Materials, 2018, 30, e1707271.	11.1	203
2146	Grainâ€Boundary "Patches―by In Situ Conversion to Enhance Perovskite Solar Cells Stability. Advanced Materials, 2018, 30, e1800544.	11.1	224
2147	Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 9798-9802.	1.6	9
2148	Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 9650-9654.	7.2	85
2149	Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystals. Physical Review B, 2018, 97, .	1.1	51
2150	Improving the performance through SPR effect by employing Au@SiO2 core-shell nanoparticles incorporated TiO2 scaffold in efficient hole transport material free perovskite solar cells. Electrochimica Acta, 2018, 282, 10-15.	2.6	20
2151	Morphology and Interface Engineering for Organic Metal Halide Perovskite–Based Photovoltaic Cells. Advanced Materials Interfaces, 2018, 5, 1800248.	1.9	18
2152	Ptl /[(CH3)2NH2]3[Bil6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. Nano Energy, 2018, 50, 665-674.	8.2	45
2153	Insights in Perovskite Solar Cell Fabrication: Unraveling the Hidden Challenges of Each Layer. IEEE Journal of Photovoltaics, 2018, 8, 1029-1038.	1.5	5
2154	Influence of Bulky Organoâ€Ammonium Halide Additive Choice on the Flexibility and Efficiency of Perovskite Lightâ€Emitting Devices. Advanced Functional Materials, 2018, 28, 1802060.	7.8	76
2155	Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renewable and Sustainable Energy Reviews, 2018, 94, 317-329.	8.2	120
2156	Enhancing the hydrophobicity of perovskite solar cells using C18 capped CH ₃ NH ₃ PbI ₃ nanocrystals. Journal of Materials Chemistry C, 2018, 6, 7149-7156.	2.7	14
2157	Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards. Nature Energy, 2018, 3, 459-465.	19.8	123

#	Article	IF	CITATIONS
2158	Roomâ€Temperature Tripleâ€Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQEâ€11.6% Perovskite QLEDs. Advanced Materials, 2018, 30, e1800764.	11.1	431
2159	Stability Trend of Tilted Perovskites. Journal of Physical Chemistry C, 2018, 122, 15214-15219.	1.5	30
2160	Low-bandgap mixed tin–lead iodide perovskite with large grains for high performance solar cells. Journal of Materials Chemistry A, 2018, 6, 13090-13095.	5.2	47
2161	Flexible and Stretchable Perovskite Solar Cells: Device Design and Development Methods. Small Methods, 2018, 2, 1800031.	4.6	71
2162	Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation. Journal of Physical Chemistry C, 2018, 122, 15799-15818.	1.5	70
2163	Near-infrared-excitable perovskite quantum dots <i>via</i> coupling with upconversion nanoparticles for dual-model anti-counterfeiting. New Journal of Chemistry, 2018, 42, 12353-12356.	1.4	24
2164	Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. Electronic Materials Letters, 2018, 14, 657-668.	1.0	17
2165	Cross-linked Triarylamine-Based Hole-Transporting Layer for Solution-Processed PEDOT:PSS-Free Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21466-21471.	4.0	29
2166	Progress in Scalable Coating and Rollâ€ŧoâ€Roll Compatible Printing Processes of Perovskite Solar Cells toward Realization of Commercialization. Advanced Optical Materials, 2018, 6, 1701182.	3.6	52
2167	Nanocrystalline Pyrite for Photovoltaic Applications. ChemistrySelect, 2018, 3, 6488-6524.	0.7	25
2168	Electrochemical Corrosion of Ag Electrode in the Silver Grid Electrodeâ€Based Flexible Perovskite Solar Cells and the Suppression Method. Solar Rrl, 2018, 2, 1800118.	3.1	37
2169	BODIPY-Based Conjugated Polymers for Use as Dopant-Free Hole Transporting Materials for Durable Perovskite Solar Cells: Selective Tuning of HOMO/LUMO Levels. ACS Applied Materials & Interfaces, 2018, 10, 23254-23262.	4.0	49
2170	Methodologies toward Efficient and Stable Cesium Lead Halide Perovskiteâ€Based Solar Cells. Advanced Science, 2018, 5, 1800509.	5.6	53
2171	TiO ₂ -Photoanode-Assisted Direct-Solar-Energy Harvesting and Storage in a Solar-Powered Redox Cell Using Halides as Active Materials. ACS Applied Materials & Interfaces, 2018, 10, 23048-23054.	4.0	22
2172	Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Science China Materials, 2019, 62, 43-53.	3.5	20
2173	Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer. Journal of Alloys and Compounds, 2019, 771, 25-32.	2.8	19
2174	Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air. Applied Surface Science, 2019, 463, 939-946.	3.1	22
2175	Effect of number and position of methoxy substituents on fine-tuning the electronic structures and photophysical properties of designed carbazole-based hole-transporting materials for perovskite solar cells: DFT calculations. Arabian Journal of Chemistry, 2019, 12, 1-20.	2.3	27

#	Article	IF	CITATIONS
2176	Using Nanoparticles as a Bottom-up Approach to Increase Solar Cell Efficiency. KONA Powder and Particle Journal, 2019, 36, 72-87.	0.9	15
2177	Confluence of structural distortion and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi> -site composition in the band gaps of perovskite niobate and tantalate photocatalysts. Physical Review B, 2019. 100</mml:math 	1.1	3
2178	Nature of the excited state in lead iodide perovskite materials: Time-dependent charge density response and the role of the monovalent cation. Physical Review B, 2019, 100, .	1.1	10
2179	Chiral Perovskites: Promising Materials toward Nextâ€Generation Optoelectronics. Small, 2019, 15, e1902237.	5.2	137
2180	Co-harvesting Light and Mechanical Energy Based on Dynamic Metal/Perovskite Schottky Junction. Matter, 2019, 1, 639-649.	5.0	77
2181	Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2192-2200.	8.8	157
2182	Bandgap Tuning of Silver Bismuth lodide via Controllable Bromide Substitution for Improved Photovoltaic Performance. ACS Applied Energy Materials, 2019, 2, 5356-5362.	2.5	23
2183	Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases. Physical Chemistry Chemical Physics, 2019, 21, 19423-19436.	1.3	59
2184	The distinctive phase stability and defect physics in CsPbl ₂ Br perovskite. Journal of Materials Chemistry A, 2019, 7, 20201-20207.	5.2	64
	• • • • •		
2185	Perovskite-based lasers. , 2019, , 41-74.		5
2185 2186	Perovskite-based lasers. , 2019, , 41-74. Overcoming the interface losses in mesoporous n-i-p perovskite solar cells: Bronsted acid as an effective interface layer. Organic Electronics, 2019, 75, 105403.	1.4	5
2185 2186 2187	Perovskite-based lasers. , 2019, , 41-74. Overcoming the interface losses in mesoporous n-i-p perovskite solar cells: Bronsted acid as an effective interface layer. Organic Electronics, 2019, 75, 105403. Synergistic effect of guanidine thiocyanate additive and dimethyl sulfoxide post-treatment towards efficient and stable perovskite solar cell. Thin Solid Films, 2019, 689, 137495.	1.4	5 3 1
2185 2186 2187 2188	Perovskite-based lasers. , 2019, , 41-74. Overcoming the interface losses in mesoporous n-i-p perovskite solar cells: Bronsted acid as an effective interface layer. Organic Electronics, 2019, 75, 105403. Synergistic effect of guanidine thiocyanate additive and dimethyl sulfoxide post-treatment towards efficient and stable perovskite solar cell. Thin Solid Films, 2019, 689, 137495. Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A, 2019, 7, 20390-20397.	1.4 0.8 5.2	5 3 1 25
2185 2186 2187 2188 2188	Perovskite-based lasers. , 2019, , 41-74. Overcoming the interface losses in mesoporous n-i-p perovskite solar cells: Bronsted acid as an effective interface layer. Organic Electronics, 2019, 75, 105403. Synergistic effect of guanidine thiocyanate additive and dimethyl sulfoxide post-treatment towards efficient and stable perovskite solar cell. Thin Solid Films, 2019, 689, 137495. Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A, 2019, 7, 20390-20397. Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3PbI3. Journal of Power Sources, 2019, 438, 226956.	1.4 0.8 5.2 4.0	5 3 1 25 22
2185 2186 2187 2188 2189 2190	Perovskite-based lasers. , 2019, , 41-74. Overcoming the interface losses in mesoporous n-i-p perovskite solar cells: Bronsted acid as an effective interface layer. Organic Electronics, 2019, 75, 105403. Synergistic effect of guanidine thiocyanate additive and dimethyl sulfoxide post-treatment towards efficient and stable perovskite solar cell. Thin Solid Films, 2019, 689, 137495. Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A, 2019, 7, 20390-20397. Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3Pbl3. Journal of Power Sources, 2019, 438, 226956. Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007.	1.4 0.8 5.2 4.0 2.1	5 3 1 25 22 60
2185 2186 2187 2188 2189 2190	Perovskite-based lasers. , 2019, , 41-74. Overcoming the interface losses in mesoporous n-i-p perovskite solar cells: Bronsted acid as an effective interface layer. Organic Electronics, 2019, 75, 105403. Synergistic effect of guanidine thiocyanate additive and dimethyl sulfoxide post-treatment towards efficient and stable perovskite solar cell. Thin Solid Films, 2019, 689, 137495. Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A, 2019, 7, 20390-20397. Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3Pb13. Journal of Power Sources, 2019, 438, 226956. Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007. De Novo Design and Facile Synthesis of 2D Covalent Organic Frameworks: A Two-in-One Strategy. Journal of the American Chemical Society, 2019, 141, 13822-13828.	1.4 0.8 5.2 4.0 2.1 6.6	5 3 1 25 22 60 167
2185 2186 2187 2188 2189 2190 2191 2192	Perovskite-based lasers. , 2019, , 41-74. Overcoming the interface losses in mesoporous ni-p perovskite solar cells: Bronsted acid as an effective interface layer. Organic Electronics, 2019, 75, 105403. Synergistic effect of guanidine thiocyanate additive and dimethyl sulfoxide post-treatment towards efficient and stable perovskite solar cell. Thin Solid Films, 2019, 689, 137495. Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A, 2019, 7, 20390-20397. Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3Pbl3. Journal of Power Sources, 2019, 438, 226956. Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007. De Novo Design and Facile Synthesis of 2D Covalent Organic Frameworks: A Two-in-One Strategy. Journal of the American Chemical Society, 2019, 141, 13822-13828. Role of Electronã€"Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Letters, 2019, 4, 2205-2212.	1.4 0.8 5.2 4.0 2.1 6.6 8.8	5 3 1 25 22 60 167 58

#	Article	IF	CITATIONS
2194	Role of Capped Oleyl Amine in the Moistureâ€Induced Structural Transformation of CsPbBr ₃ Perovskite Nanocrystals. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900387.	1.2	31
2195	Lasing behaviors in solution processed all-inorganic CsPbBr3 perovskite microsized crystals. Optics Communications, 2019, 453, 124354.	1.0	14
2196	Energetics of Solvent-Based Deposition of Fullerene Derivative on the Inorganic–Organic Hybrid Lead Halide Perovskite Surface. Journal of Physical Chemistry C, 2019, 123, 22368-22376.	1.5	3
2197	Spaceâ€Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl ₃ Microplatelet for Nearâ€Ultraviolet Photodetection. Small, 2019, 15, e1902618.	5.2	77
2198	Study of Possible Ways of Improving the Morphology of Layers of the Solar Radiation Absorber in Perovskite-Based Cells. Applied Solar Energy (English Translation of Geliotekhnika), 2019, 55, 8-11.	0.2	1
2199	Metal halide perovskite nanocrystals and their applications in optoelectronic devices. InformaÄnÃ- Materiály, 2019, 1, 430-459.	8.5	72
2200	Band Gap Engineering in Cs ₂ (Na _{<i>x</i>} Ag _{1–<i>x</i>})BiCl ₆ Double Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 5173-5181.	2.1	109
2201	Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide for optoelectronic devices. Scientific Reports, 2019, 9, 11738.	1.6	9
2202	Pressure-induced structural transition and band gap evolution of double perovskite Cs ₂ AgBiBr ₆ nanocrystals. Nanoscale, 2019, 11, 17004-17009.	2.8	36
2203	A Highly Stable Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cell. European Journal of Inorganic Chemistry, 2019, 2019, 3699-3703.	1.0	31
2204	Phenethylammonium bismuth halides: from single crystals to bulky-organic cation promoted thin-film deposition for potential optoelectronic applications. Journal of Materials Chemistry A, 2019, 7, 20733-20741.	5.2	38
2205	Giant Electric Biasâ€Induced Tunability of Photoluminescence and Photoresistance in Hybrid Perovskite Films on Ferroelectric Substrates. Advanced Optical Materials, 2019, 7, 1901092.	3.6	8
2206	How to Make a Most Stable Perovskite Solar Cell. Matter, 2019, 1, 562-564.	5.0	13
2207	Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis. Nano Energy, 2019, 65, 104014.	8.2	74
2208	Stabilization of all-inorganic <i>α</i> -CsPbI ₃ perovskite by Bi or Sb doping. Materials Research Express, 2019, 6, 105529.	0.8	12
2209	Spinâ€Polarized Electronic Transport through Ferromagnet/Organic–Inorganic Hybrid Perovskite Spinterfaces at Room Temperature. Advanced Materials Interfaces, 2019, 6, 1900718.	1.9	21
2210	Fundamental Thermoelectric Properties in Organic Heterojunctions from Molecular to Thinâ€Film and Hybrid Designs. Advanced Electronic Materials, 2019, 5, 1800877.	2.6	5
2211	Low-Temperature Solution-Processed Thin SnO ₂ /Al ₂ O ₃ Double Electron Transport Layers Toward 20% Efficient Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1309-1315.	1.5	21

#	Article	IF	CITATIONS
2212	Thermally activated delayed fluorescence molecules and their new applications aside from OLEDs. Chinese Chemical Letters, 2019, 30, 1717-1730.	4.8	57
2213	Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 30911-30918.	4.0	44
2214	Polarization-dependent near-field phonon nanoscopy of oxides: SrTiO3,ÂLiNbO3 , and PbZr0.2Ti0.8O3. Physical Review B, 2019, 100, .	1.1	21
2215	Property control from polyhedral connectivity in ABO3 oxides. Physical Review B, 2019, 100, .	1.1	7
2216	Highly Stable Twoâ€Dimensional Tin(II) Iodide Hybrid Organic–Inorganic Perovskite Based on Stilbene Derivative. Advanced Functional Materials, 2019, 29, 1904810.	7.8	55
2217	Rational Design of Dopantâ€Free Coplanar Dâ€Ï€â€D Holeâ€Transporting Materials for Highâ€Performance Perovskite Solar Cells with Fill Factor Exceeding 80%. Advanced Energy Materials, 2019, 9, 1901268.	10.2	77
2218	Design of perovskite photonic crystals for emission control. Journal of Physics: Conference Series, 2019, 1170, 012003.	0.3	2
2219	Effect of SnF2 concentration on the optoelectronic and PV cell properties of CsSnBr3. SN Applied Sciences, 2019, 1, 1.	1.5	7
2220	Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites. ACS Energy Letters, 2019, 4, 2301-2307.	8.8	46
2221	Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion. Advanced Materials, 2019, 31, e1807376.	11.1	91
2222	Simultaneous Longâ€Persistent Blue Luminescence and High Quantum Yield within 2D Organic–Metal Halide Perovskite Micro/Nanosheets. Angewandte Chemie, 2019, 131, 15272-15279.	1.6	46
2223	Simultaneous Longâ€Persistent Blue Luminescence and High Quantum Yield within 2D Organic–Metal Halide Perovskite Micro/Nanosheets. Angewandte Chemie - International Edition, 2019, 58, 15128-15135.	7.2	184
2224	Sputtering of TiO ₂ for High-Efficiency Perovskite and 23.1% Perovskite/Silicon 4-Terminal Tandem Solar Cells. ACS Applied Energy Materials, 2019, 2, 6263-6268.	2.5	19
2225	Fullerene Derivative-Modified SnO ₂ Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21%. ACS Applied Materials & Interfaces, 2019, 11, 33825-33834.	4.0	73
2226	Using Silver Nanoparticles-Embedded Silica Metafilms as Substrates to Enhance the Performance of Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 32301-32309.	4.0	37
2227	High-performance carbon-based perovskite solar cells through the dual role of PC ₆₁ BM. Inorganic Chemistry Frontiers, 2019, 6, 2767-2775.	3.0	5
2228	All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells. Chemical Science, 2019, 10, 9530-9541.	3.7	43
2229	A strategy for improving the performance of perovskite red light-emitting diodes by controlling the growth of perovskite crystal. Journal of Materials Chemistry C, 2019, 7, 11887-11895.	2.7	9

#	Article	IF	CITATIONS
2230	The optical properties of Cs ₄ PbBr ₆ –CsPbBr ₃ perovskite composites. Nanoscale, 2019, 11, 14676-14683.	2.8	40
2231	The Phase Transition in a Hybrid Layered Perovskite: [NH3-(CH2)10NH3]ZnCl4 of 1,10-Diaminodecane. International Journal of Thermophysics, 2019, 40, 1.	1.0	1
2232	Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods. Chemistry of Materials, 2019, 31, 5900-5908.	3.2	87
2233	Unravelling the Effects of Pressure-Induced Suppressed Electron–Hole Recombination in CsPbBr ₃ Perovskite: Time-Domain ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 4354-4361.	2.1	19
2234	Unexpected Outstanding Room Temperature Spin Transport Verified in Organic–Inorganic Hybrid Perovskite Film. Journal of Physical Chemistry Letters, 2019, 10, 4422-4428.	2.1	20
2235	Snâ€₽b Binary Perovskite Films with High Crystalline Quality for High Performance Solar Cells. Chinese Journal of Chemistry, 2019, 37, 1031-1035.	2.6	12
2236	Pyridine-Terminated Conjugated Organic Molecules as an Interfacial Hole Transfer Bridge for NiO _{<i>x</i>} -Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 28960-28967.	4.0	49
2237	An Old Dog with New Tricks - Additions to the Cesium Lithium Chloride System: Cs3 Li2 Cl5 and the Hydrated Cs3 LiCl4 ·4H2 O. European Journal of Inorganic Chemistry, 2019, 2019, 3526-3535.	1.0	2
2238	Electronic Properties and Photovoltaic Functionality of Zn-Doped Orthorhombic CH3NH3PbI3: A GGA+vdW Study. Journal of Electronic Materials, 2019, 48, 6327-6334.	1.0	2
2239	Review of Stability Enhancement for Formamidiniumâ€Based Perovskites. Solar Rrl, 2019, 3, 1900215.	3.1	60
2240	Fluorine and tin co-doping synergistically improves the photoelectrochemical water oxidation performance of TiO2 nanorod arrays by enhancing the ultraviolet light conversion efficiency. Dalton Transactions, 2019, 48, 12096-12104.	1.6	11
2241	Synergy of the ray tracing+carrier transport approach: On efficiency of perovskite solar cells with a back reflector. Solar Energy Materials and Solar Cells, 2019, 200, 110050.	3.0	7
2242	Ultrafast Carrier Dynamics of Dual Emissions from the Orthorhombic Phase in Methylammonium Lead Iodide Perovskites Revealed by Two-Dimensional Coherent Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 4625-4631.	2.1	9
2243	Enhancement of Stability of Inverted Flexible Perovskite Solar Cells by Employing Graphene-Quantum-Dots Hole Transport Layer and Graphene Transparent Electrode Codoped with Gold Nanoparticles and Bis(trifluoromethanesulfonyl)amide. ACS Sustainable Chemistry and Engineering, 2019, 7, 13178-13185.	3.2	29
2244	Boosting the efficiency of quasi two-dimensional perovskite solar cells via an interfacial layer of metallic nanoparticles. Organic Electronics, 2019, 74, 190-196.	1.4	14
2245	Enhanced efficiency and stability of inverted perovskite solar cells by carbon dots cathode interlayer via solution process. Organic Electronics, 2019, 74, 228-236.	1.4	16
2246	Mechanistic Insight into Surface Defect Control in Perovskite Nanocrystals: Ligands Terminate the Valence Transition from Pb ²⁺ to Metallic Pb ⁰ . Journal of Physical Chemistry Letters, 2019, 10, 4222-4228.	2.1	51
2247	Review on clean recovery of discarded/spent lead-acid battery and trends of recycled products. Journal of Power Sources, 2019, 436, 226853.	4.0	75

#	Article	IF	CITATIONS
2248	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
2249	Light capacitances in silicon and perovskite solar cells. Solar Energy, 2019, 189, 103-110.	2.9	19
2250	A Lead-Free Hybrid lodide with Quantitative Response to X-ray Radiation. Chemistry of Materials, 2019, 31, 5927-5932.	3.2	75
2251	Carrier-gas assisted vapor deposition for highly tunable morphology of halide perovskite thin films. Sustainable Energy and Fuels, 2019, 3, 2447-2455.	2.5	12
2252	Carrier Recombination and Diffusion in Wet-Cast Tin Iodide Perovskite Layers Under High Intensity Photoexcitation. Journal of Physical Chemistry C, 2019, 123, 19275-19281.	1.5	8
2253	Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review. Global Challenges, 2019, 3, 1900050.	1.8	115
2254	Exciton Self-Trapping in Hybrid Lead Halides: Role of Halogen. Journal of the American Chemical Society, 2019, 141, 12619-12623.	6.6	126
2255	Learn-and-Match Molecular Cations for Perovskites. Journal of Physical Chemistry A, 2019, 123, 7323-7334.	1.1	28
2256	Thermal unequilibrium of strained black CsPbI ₃ thin films. Science, 2019, 365, 679-684.	6.0	444
2257	Unveiling the origin of performance reduction in perovskite solar cells with TiO2 electron transport layer: Conduction band minimum mismatches and chemical interactions at buried interface. Applied Surface Science, 2019, 495, 143490.	3.1	7
2258	Ultrafast carrier dynamics in high-performance α-bis-PCBM doped organic-inorganic hybrid perovskite solar cell. Organic Electronics, 2019, 75, 105384.	1.4	4
2259	Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Science Advances, 2019, 5, eaav9445.	4.7	130
2260	Recent Progress on Cesium Lead Halide Perovskites for Photodetection Applications. ACS Applied Electronic Materials, 2019, 1, 1348-1366.	2.0	42
2261	Clean interface without any intermixed state between ultra-thin P3 polymer and CH3NH3PbI3 hybrid perovskite thin film. Scientific Reports, 2019, 9, 10853.	1.6	4
2262	Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications. APL Photonics, 2019, 4, 076104.	3.0	21
2263	All-Inorganic CsPbBr ₃ Perovskite Solar Cells with 10.45% Efficiency by Evaporation-Assisted Deposition and Setting Intermediate Energy Levels. ACS Applied Materials & Interfaces, 2019, 11, 29746-29752.	4.0	126
2264	High-Temperature Antiferroelectric of Lead Iodide Hybrid Perovskites. Journal of the American Chemical Society, 2019, 141, 12470-12474.	6.6	108
2265	Thermodynamic Stability and Structural Insights for CH3NH3Pb1â^'xSixI3, CH3NH3Pb1â^'xGexI3, and CH3NH3Pb1â^'xSnxI3 Hybrid Perovskite Alloys: A Statistical Approach from First Principles Calculations. Scientific Reports, 2019, 9, 11061.	1.6	14

ARTICLE IF CITATIONS MAPbI3 Incorporated with Carboxyl Group Chelated Titania for Planar Perovskite Solar Cells in 2266 1.9 10 Low-Temperature Process. Nanomaterials, 2019, 9, 908. Perovskites for Laser and Detector Applications. Energy and Environmental Materials, 2019, 2, 146-153. 7.3 A new approach to predict the formation of 3D hybrid organicâ€inorganic perovskites. International 2268 1.0 8 Journal of Quantum Chemistry, 2019, 119, e26012. Stable power output (PCE>19%) of planar perovskite solar cells with PbCl2 modification at the 2269 1.4 interface of SnO2/CH3NH3Pbl3. Organic Electronics, 2019, 74, 52-58. Single Halide Perovskite/Semiconductor Core/Shell Quantum Dots with Ultrastability and 2270 131 5.6 Nonblinking Properties. Advanced Science, 2019, 6, 1900412. A Comparative Study on Hole Transfer Inversely Correlated with Driving Force in Two Non-Fullerene 2271 2.1 Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4110-4116. Inverted perovskite solar cells employing doped NiO hole transport layers: A review. Nano Energy, 2272 8.2 155 2019, 63, 103860. Interfacial TiO2 atomic layer deposition triggers simultaneous crystallization control and band 1.4 alignment for efficient CsPbIBr2 perovskite solar cell. Organic Electronics, 2019, 74, 103-109. Waterâ€Assisted Synthesis of Blue Chip Excitable 2D Halide Perovskite with Greenâ€Red Dual Emissions for 2274 4.6 25 White LEDs. Small Methods, 2019, 3, 1900365. Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar 11.7 1,228 Cells. Joule, 2019, 3, 2179-2192. Fully low-temperature processed carbon-based perovskite solar cells using thermally evaporated 2276 1.4 14 cadmium sulfide as efficient electron transport layer. Organic Electronics, 2019, 74, 152-160. Crystallization and grain growth regulation through Lewis acid-base adduct formation in hot cast 1.4 perovskite-based solar cells. Organic Electronics, 2019, 74, 172-178. Effect Of the organic cation on the optical properties of lead iodine perovskites. Solar Energy 2278 3.0 8 Materials and Solar Cells, 2019, 200, 110022. On the determination of absorption cross section of colloidal lead halide perovskite quantum dots. 2279 1.2 Journal of Chemical Physics, 2019, 151, 154706. Temperature-dependent photoluminescence of cesium lead halide perovskite (CsPbX₃, X =) Tj ETQq0 Q g rgBT /Qyerlock 10 2280 Graphene as charge transport layers in lead free perovskite solar cell. Materials Research Express,

CITATION REPORT

2282	Interfacial modification using ultrasonic atomized graphene quantum dots for efficient perovskite solar cells. Organic Electronics, 2019, 75, 105415.	1.4	16
2283	Interfacial Residual Stress Relaxation in Perovskite Solar Cells with Improved Stability. Advanced Materials, 2019, 31, e1904408.	11.1	259

2019 6 11561

#	Article	IF	CITATIONS
2284	Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ€Infrared with a Narrowâ€Bandgap Organic Semiconductor. Advanced Materials, 2019, 31, e1904494.	11.1	71
2285	Predictions and Strategies Learned from Machine Learning to Develop Highâ€Performing Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901891.	10.2	83
2286	Facetâ€Dependent Onâ€Surface Reactions in the Growth of CdSe Nanoplatelets. Angewandte Chemie, 2019, 131, 17928-17934.	1.6	1
2287	Aâ€site Cation Engineering for Highly Efficient MAPbI ₃ Singleâ€Crystal Xâ€ray Detector. Angewandte Chemie - International Edition, 2019, 58, 17834-17842.	7.2	174
2288	Narrow Bandgap Pb–Sn Perovskites/InGaZnO Hybrid Phototransistors for Nearâ€Infrared Detection. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900417.	0.8	13
2289	Goethite Quantum Dots as Multifunctional Additives for Highly Efficient and Stable Perovskite Solar Cells. Small, 2019, 15, e1904372.	5.2	32
2290	Fetal phenotype of Galloway-Mowat syndrome 3 caused by a specific OSGEP variant. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2019, 242, 182-184.	0.5	1
2291	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie, 2019, 131, 16233-16237.	1.6	78
2292	Molecular engineering of a conjugated polymer as a hole transporting layer for versatile p–i–n perovskite solar cells. Materials Today Energy, 2019, 14, 100341.	2.5	12
2293	Recent advances in atomic imaging of organic-inorganic hybrid perovskites. Nano Materials Science, 2019, 1, 260-267.	3.9	10
2294	Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS Applied Materials & amp; Interfaces, 2019, 11, 40163-40171.	4.0	17
2295	Large-Area 23%-Efficient Monolithic Perovskite/Homojunction-Silicon Tandem Solar Cell with Enhanced UV Stability Using Down-Shifting Material. ACS Energy Letters, 2019, 4, 2623-2631.	8.8	88
2296	The nature of the lead-iodine bond in PbI2: A case study for the modelling of lead halide perovskites. Computational and Theoretical Chemistry, 2019, 1164, 112558.	1.1	9
2297	Role of the solvent in large crystal grain growth of inorganic-organic halide FA0.8Cs0.2Pbl <i>x</i> Br3 â" <i>x</i> perovskite thin films monitored by ellipsometry. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	10.6	2
2298	Self-Powered Perovskite/CdS Heterostructure Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 40204-40213.	4.0	65
2299	Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science, 2019, 1, 268-287.	3.9	118
2300	The Impact of Growth Temperature on Nanorod Morphology and Optical Properties for CH3NH3PbI3 Perovskite Solar Cell Device Application. Materials Today: Proceedings, 2019, 17, 1627-1636.	0.9	1
2301	Surface Ligands Stabilized Lead Halide Perovskite Quantum Dot Photocatalyst for Visible Lightâ€Driven Hydrogen Generation. Advanced Functional Materials, 2019, 29, 1905683.	7.8	85

#	Article	IF	CITATIONS
2302	Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902740.	10.2	209
2303	An Allâ€Inorganic Perovskiteâ€Phase Rubidium Lead Bromide Nanolaser. Angewandte Chemie, 2019, 131, 16280-16286.	1.6	6
2304	Suboptimal biventricular pacing. What is the mechanism?. Journal of Arrhythmia, 2019, 35, 673-675.	0.5	0
2305	Insights into Fullerene Passivation of SnO ₂ Electron Transport Layers in Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905883.	7.8	124
2306	Impact of Pbl ₂ Passivation and Grain Size Engineering in CH ₃ NH ₃ Pbl ₃ Solar Absorbers as Revealed by Carrierâ€Resolved Photoâ€Hall Technique. Advanced Energy Materials, 2019, 9, 1902706.	10.2	52
2307	In praise and in search of highly-polarizable semiconductors: Technological promise and discovery strategies. APL Materials, 2019, 7, .	2.2	21
2308	Perovskite/Hole Transport Layer Interface Improvement by Solvent Engineering of Spiro-OMeTAD Precursor Solution. ACS Applied Materials & Interfaces, 2019, 11, 44802-44810.	4.0	28
2309	Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing Applications. Inorganic Chemistry, 2019, 58, 14939-14980.	1.9	23
2310	Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide Cs ₂ SnX ₆ Vacancy Ordered Double Perovskites. Chemistry of Materials, 2019, 31, 9430-9444.	3.2	83
2311	CsPbBr ₃ –Cs ₄ PbBr ₆ composite nanocrystals for highly efficient pure green light emission. Nanoscale, 2019, 11, 22899-22906.	2.8	35
2312	Slot-die processing and encapsulation of non-fullerene based ITO-free organic solar cells and modules. Flexible and Printed Electronics, 2019, 4, 045004.	1.5	33
2313	Towards the maximum efficiency design of a perovskite solar cell by material properties tuning: A multidimensional approach. Solar Energy, 2019, 194, 499-509.	2.9	1
2314	Role of Ammonium Derivative Ligands on Optical Properties of CH ₃ NH ₃ PbBr ₃ Perovskite Nanocrystals. Langmuir, 2019, 35, 15151-15157.	1.6	14
2315	Structures and Properties of Higher-Degree Aggregates of Methylammonium Iodide toward Halide Perovskite Solar Cells. Russian Journal of Physical Chemistry A, 2019, 93, 2250-2255.	0.1	1
2316	Inorganic Cage Motion Dominates Excited-State Dynamics in 2D-Layered Perovskites (C <i>_x</i> H ₂ <i>_x</i> ₊₁ NH ₃) ₂ PbI (<i>x</i> = 4–9). Journal of Physical Chemistry C, 2019, 123, 27904-27916.	< зцр >4 <td>sube</td>	sube
2317	Enhanced Stability of MAPbI3 Perovskite Solar Cells using Poly(p-chloro-xylylene) Encapsulation. Scientific Reports, 2019, 9, 15461.	1.6	60
2318	Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. ACS Applied Materials & amp; Interfaces, 2019, 11, 44233-44240.	4.0	68
2319	Chemical and Structural Diversity of Hybrid Layered Double Perovskite Halides. Journal of the American Chemical Society, 2019, 141, 19099-19109.	6.6	144

#	Article	IF	CITATIONS
2320	Advances in molecular engineering of organic-inorganic/inorganic halide perovskites: Photochemical properties behind the energy conversion ability. Solar Energy, 2019, 194, 51-60.	2.9	14
2321	Narrow Absorption in ITO-Free Perovskite Solar Cells for Sensing Applications Analyzed through Electromagnetic Simulation. Applied Sciences (Switzerland), 2019, 9, 4850.	1.3	8
2322	Numerical study of Cs2TiX6 (X = Brâ^', Iâ^, Fâ^' and Clâ^') based perovskite solar cell using SCAPS-1D device simulation. Solar Energy, 2019, 194, 886-892.	2.9	176
2323	Solvent engineering of LiTFSI towards high-efficiency planar perovskite solar cells. Solar Energy, 2019, 194, 321-328.	2.9	17
2325	Aâ€site Cation Engineering for Highly Efficient MAPbI ₃ Single rystal Xâ€ray Detector. Angewandte Chemie, 2019, 131, 17998-18006.	1.6	15
2326	An Allâ€Inorganic Perovskiteâ€Phase Rubidium Lead Bromide Nanolaser. Angewandte Chemie - International Edition, 2019, 58, 16134-16140.	7.2	12
2327	The Effect of Annealing Pressure on Perovskite Films and Its Thinâ€Film Fieldâ€Effect Transistors' Performance. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900434.	0.8	5
2328	Electron Transport Bilayer with Cascade Energy Alignment for Efficient Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900333.	3.1	49
2329	Improved crystallinity of perovskite via molecularly tailored surface modification of SnO2. Journal of Power Sources, 2019, 441, 227161.	4.0	20
2330	Efficiency Improvement of TiO ₂ Nanorods Electron Transport Layer Based Perovskite Solar Cells by Solvothermal Etching. IEEE Journal of Photovoltaics, 2019, 9, 1699-1707.	1.5	15
2331	Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. II. Turbulence anisotropy and growth rate. Physics of Fluids, 2019, 31, 083303.	1.6	17
2332	Tolerance factor and phase stability of the garnet structure. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1353-1358.	0.2	67
2333	3D Nanoprinting of Perovskites. Advanced Materials, 2019, 31, e1904073.	11.1	64
2334	Guideline for Optical Optimization of Planar Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900944.	3.6	24
2335	Effect of Underground Coal Mining on the Regional Soil Organic Carbon Pool in Farmland in a Mining Subsidence Area. Sustainability, 2019, 11, 4961.	1.6	25
2336	Mechanistic Insights into Photochemical Reactions on CH3NH3PbBr3Perovskite Nanoparticles from Singleâ€Particle Photoluminescence Spectroscopy. ChemNanoMat, 2019, 5, 340-345.	1.5	5
2337	A preliminary study of the decline in solubility of ancient silk protein. Polymer Degradation and Stability, 2019, 169, 108988.	2.7	3
2338	Design of rolling ball control system based on OpenMV. Journal of Physics: Conference Series, 2019, 1303, 012102.	0.3	1

			_
#		IF	CITATIONS
2339	Drying Dynamics of Solutiona Processed Perovskite Thina Information Photovoltaics: In Situ Characterization, Modeling, and Process Control. Advanced Energy Materials, 2019, 9, 1901581.	10.2	42
2340	Highâ€Quality Ruddlesden–Popper Perovskite Films Based on In Situ Formed Organic Spacer Cations. Advanced Materials, 2019, 31, e1904243.	11.1	35
2341	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 16087-16091.	7.2	192
2342	Assessment of the exact-exchange-only Kohn-Sham method for the calculation of band structures for transition metal oxide and metal halide perovskites. Physical Review B, 2019, 100, .	1.1	5
2343	Analysis of Optimum Copper Oxide Hole Transporting Layer for Perovskite Solar Cells. , 2019, , .		4
2344	High-Energy Photon Spectroscopy Using All Solution-Processed Heterojunctioned Surface-Modified Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 33399-33408.	4.0	10
2345	Enhanced moisture stability of MAPbI3 perovskite solar cells through Barium doping. Solar Energy, 2019, 190, 396-404.	2.9	35
2346	Database-driven high-throughput study of coating materials for hybrid perovskites. New Journal of Physics, 2019, 21, 083018.	1.2	6
2347	The Effect of Decomposed PbI2 on Microscopic Mechanisms of Scattering in CH3NH3PbI3 Films. Nanoscale Research Letters, 2019, 14, 208.	3.1	33
2348	Low-profile Flexible Perovskite based Millimetre Wave Antenna. , 2019, , .		2
2349	NaSbSe2 as a promising light-absorber semiconductor in solar cells: First-principles insights. APL Materials, 2019, 7, 081122.	2.2	11
2350	Morphological and opto-electrical studies of newly decorated nano organo-lead halide-based perovskite photovoltaics. Journal of Sol-Gel Science and Technology, 2019, 92, 548-553.	1.1	1
2351	Interfacial Bonding and Electronic Structure between Copper Thiocyanate and Hybrid Organohalide Lead Perovskites for Photovoltaic Application. Journal of Physical Chemistry Letters, 2019, 10, 5609-5616.	2.1	4
2352	Donor–Acceptor–Donor Type Cyclopenta[2,1-b;3,4-b′]dithiophene Derivatives as a New Class of Hole Transporting Materials for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 7070-7082.	2.5	32
2353	2D-3D heterostructure enables scalable coating of efficient low-bandgap Sn–Pb mixed perovskite solar cells. Nano Energy, 2019, 66, 104099.	8.2	63
2354	Fluorine-mediated porosity and crystal-phase tailoring of meso-macroporous F TiO2 nanofibers and their enhanced photocatalytic performance. Thin Solid Films, 2019, 689, 137523.	0.8	1
2355	Long-Term Stabilization of Two-Dimensional Perovskites by Encapsulation with Hexagonal Boron Nitride. Nanomaterials, 2019, 9, 1120.	1.9	31
2356	Spontaneous low-temperature crystallization of α-FAPbI3 for highly efficient perovskite solar cells. Science Bulletin, 2019, 64, 1608-1616.	4.3	58

#	Article	IF	CITATIONS
2357	Quasiperiodic behavior in the electrodeposition of Cu/Sn multilayers: extraction of activation energies and wavelet analysis. Physical Chemistry Chemical Physics, 2019, 21, 21057-21063.	1.3	6
2358	Charge-Carrier Recombination in Halide Perovskites. Chemical Reviews, 2019, 119, 11007-11019.	23.0	197
2359	Crystal Structure Ideality Impact on Bimolecular, Auger, and Diffusion Coefficients in Mixed-Cation Cs <i>_x</i> MA _{1–<i>x</i>} PbBr ₃ and Cs <i>_x</i> FA _{1–<i>x</i>} PbBr ₃ Perovskites. Journal of Physical Chemistry C, 2019, 123, 23838-23844.	1.5	5
2360	Oriented Attachment as the Mechanism for Microstructure Evolution in Chloride-Derived Hybrid Perovskite Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 39930-39939.	4.0	26
2361	Controlled Redox of Lithium-Ion Endohedral Fullerene for Efficient and Stable Metal Electrode-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 16553-16558.	6.6	61
2362	Deconstruction-assisted perovskite formation for sequential solution processing of Cs0.15(MA0.7FA0.3)0.85PbI3 solar cells. Solar Energy Materials and Solar Cells, 2019, 203, 110200.	3.0	8
2363	Alkali metal ions passivation to decrease interface defects of perovskite solar cells. Solar Energy, 2019, 193, 220-226.	2.9	8
2364	Active meta-optics and nanophotonics with halide perovskites. Applied Physics Reviews, 2019, 6, 031307.	5.5	68
2365	Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA1â^'xMAxPbBr) Obtained by One-Step Method. Journal of Electronic Materials, 2019, 48, 8014-8023.	1.0	5
2366	Improving performance and moisture stability of perovskite solar cells through interface engineering with polymer-2D MoS2 nanohybrid. Solar Energy, 2019, 193, 95-101.	2.9	30
2367	Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nature Communications, 2019, 10, 4475.	5.8	49
2368	Optimization of back ITO layer as the sandwiched reflector for exploiting longer wavelength lights in thin and flexible (30â€Âµm) single junction c-Si solar cells. Solar Energy, 2019, 193, 293-302.	2.9	16
2369	Ideal p–n Diodes from Single-Walled Carbon Nanotubes for Use in Solar Cells: Beating the Detailed Balance Limit of Efficiency. ACS Applied Nano Materials, 2019, 2, 7496-7502.	2.4	0
2370	Structural and spectroscopic properties of LaAlBO3 doped with Eu3+ ions. Applied Radiation and Isotopes, 2019, 154, 108876.	0.7	12
2371	Perovskite quantum dots for light-emitting devices. Nanoscale, 2019, 11, 19119-19139.	2.8	97
2372	Effect of cation replacement on the phase stability of formamidinium lead iodide perovskite. Journal of Chemical Physics, 2019, 151, 134104.	1.2	11
2373	A potassium thiocyanate additive for hysteresis elimination in highly efficient perovskite solar cells. Inorganic Chemistry Frontiers, 2019, 6, 434-442.	3.0	39
2374	Energy level-modulated non-fullerene small molecule acceptors for improved <i>V</i> _{OC} and efficiency of inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 3336-3343.	5.2	29

	Сітатіо	n Report	
#	Article	IF	CITATIONS
2375	Thermochromic Leadâ€Free Halide Double Perovskites. Advanced Functional Materials, 2019, 29, 1807375.	7.8	120
2376	Designing Alternative Nonâ€Fullerene Molecular Electron Acceptors for Solutionâ€Processable Organic Photovoltaics. Chemical Record, 2019, 19, 1078-1092.	2.9	9
2377	High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: Effect of surface capping by alkyl chain on sensor performance. Journal of Physics and Chemistry of Solids, 2019, 129, 270-276.	1.9	24
2378	Solution processed Mo doped SnO2 as an effective ETL in the fabrication of low temperature planer perovskite solar cell under ambient conditions. Organic Electronics, 2019, 67, 159-167.	1.4	53
2379	Ag-Doped Halide Perovskite Nanocrystals for Tunable Band Structure and Efficient Charge Transport. ACS Energy Letters, 2019, 4, 534-541.	8.8	96
2380	Novel optoelectronic rotors based on orthorhombic CsPb(Br/l) ₃ nanorods. Nanoscale, 2019, 11, 3117-3122.	2.8	14
2381	Engineering Perovskite Nanocrystal Surface Termination for Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 15%. Advanced Functional Materials, 2019, 29, 1807284.	7.8	80
2382	Green Anti-solvent Processed Efficient Flexible Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 4343-4350.	3.2	24
2383	Atomic layer deposition of a SnO ₂ electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chemical Communications, 2019, 55, 2433-2436.	2.2	77
2384	Thermally evaporated two-dimensional SnS as an efficient and stable electron collection interlayer for inverted planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4759-4765.	5.2	20
2385	Large current efficiency enhancement in the CsPbBr3 perovskite light-emitting diodes assisted by an ultrathin buffer layer. Journal of Luminescence, 2019, 209, 251-257.	1.5	9
2386	Electric-field effect on photoluminescence of lead-halide perovskites. Materials Today, 2019, 28, 31-39.	8.3	21
2387	Perfect Self-Assembling of One-Dimensional Lead Iodides with Tetrahedral Cu ₄ I ₆ S ₄ Clusters: A High-Symmetry Cubic Packing. Inorganic Chemistry, 2019, 58, 2248-2251.	1.9	3
2388	High-Performance All-Inorganic CsPbCl ₃ Perovskite Nanocrystal Photodetectors with Superior Stability. ACS Nano, 2019, 13, 1772-1783.	7.3	105
2389	Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. Nature Communications, 2019, 10, 484.	5.8	88
2390	High performance printable perovskite solar cells based on Cs0.1FA0.9PbI3 in mesoporous scaffolds. Journal of Power Sources, 2019, 415, 105-111.	4.0	34
2391	New Benzo[1,2- <i>d</i> :4,5- <i>d</i> ′]bis([1,2,3]thiadiazole) (iso-BBT)-Based Polymers for Application in Transistors and Solar Cells. Chemistry of Materials, 2019, 31, 6519-6529.	3.2	31
2392	High-Performance Photodetectors Based on Lead-Free 2D Ruddlesden–Popper Perovskite/MoS ₂ Heterostructures. ACS Applied Materials & Interfaces, 2019, 11, 8419-8427.	4.0	114

# 2393	ARTICLE Solid-State Encapsulation and Color Tuning in Films of Cesium Lead Halide Perovskite Nanocrystals for White Light Generation. ACS Applied Nano Materials, 2019, 2, 1185-1193.	IF 2.4	CITATIONS
2394	Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?. Nanoscale Advances, 2019, 1, 1276-1289.	2.2	130
2395	Dielectric and ferroic properties of metal halide perovskites. APL Materials, 2019, 7, .	2.2	173
2396	Multifunctional Optoelectronic Device Based on an Asymmetric Active Layer Structure. Advanced Functional Materials, 2019, 29, 1807894.	7.8	30
2397	A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. Chemical Communications, 2019, 55, 2765-2768.	2.2	40
2398	Introduction of carbon nanodots into SnO ₂ electron transport layer for efficient and UV stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5353-5362.	5.2	67
2399	Recent Progress of Flexible Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800566.	1.2	36
2400	Liberating Researchers from the Glovebox: A Universal Thermal Radiation Protocol Toward Efficient Fully Airâ€Processed Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800324.	3.1	21
2401	Terahertz surface and interface emission spectroscopy for advanced materials. Journal of Physics Condensed Matter, 2019, 31, 153001.	0.7	59
2402	Impact of the Solvation State of Lead Iodide on Its Twoâ€Step Conversion to MAPbI ₃ : An In Situ Investigation. Advanced Functional Materials, 2019, 29, 1807544.	7.8	45
2403	Rapid Oxidation of the Hole Transport Layer in Perovskite Solar Cells by A Low-Temperature Plasma. Scientific Reports, 2019, 9, 459.	1.6	14
2404	Functional polymers for growth and stabilization of CsPbBr ₃ perovskite nanoparticles. Chemical Communications, 2019, 55, 1833-1836.	2.2	32
2405	Enhancing charge transport in an organic photoactive layer <i>via</i> vertical component engineering for efficient perovskite/organic integrated solar cells. Nanoscale, 2019, 11, 4035-4043.	2.8	22
2406	Organic interfacial materials for perovskite-based optoelectronic devices. Energy and Environmental Science, 2019, 12, 1177-1209.	15.6	185
2407	Stability and Performance of Nanostructured Perovskites for Lightâ€Harvesting Applications. Small Methods, 2019, 3, 1800404.	4.6	10
2408	First-Principles Modeling of Lead-Free Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2019, 123, 3795-3800.	1.5	18
2409	Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells. Chemical Engineering Science, 2019, 199, 388-397.	1.9	28
2410	The Applications of Polymers in Solar Cells: A Review. Polymers, 2019, 11, 143.	2.0	146

#	Article	IF	CITATIONS
2411	Exploring the electrochemical properties of hole transporting materials from first-principles calculations: an efficient strategy to improve the performance of perovskite solar cells. Physical Chemistry Chemical Physics, 2019, 21, 1235-1241.	1.3	23
2412	lodide-ion conduction in methylammonium lead iodide perovskite: some extraordinary aspects. Chemical Communications, 2019, 55, 1108-1111.	2.2	14
2413	Structural characterization and magnetic property determination of nanocrystalline Ba ₃ Fe ₂ WO ₉ and Sr ₃ Fe ₂ WO ₉ perovskites prepared by a modified aqueous sol–gel route. CrystEngComm, 2019, 21, 218-227.	1.3	12
2414	Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes <i>via</i> FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295-1303.	2.8	36
2415	Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chemical Science, 2019, 10, 1904-1935.	3.7	279
2416	Structure and chemical stability in perovskite–polymer hybrid photovoltaic materials. Journal of Materials Chemistry A, 2019, 7, 1687-1699.	5.2	60
2417	Dual-source evaporation of silver bismuth iodide films for planar junction solar cells. Journal of Materials Chemistry A, 2019, 7, 2095-2105.	5.2	63
2418	Simultaneous enhancement in performance and UV-light stability of organic–inorganic perovskite solar cells using a samarium-based down conversion material. Journal of Materials Chemistry A, 2019, 7, 322-329.	5.2	42
2419	Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. Journal of Materials Chemistry C, 2019, 7, 1413-1446.	2.7	182
2420	Halide perovskites for resistive random-access memories. Journal of Materials Chemistry C, 2019, 7, 5226-5234.	2.7	90
2421	Excitons in 2D Organic–Inorganic Halide Perovskites. Trends in Chemistry, 2019, 1, 380-393.	4.4	146
2422	Simulations on photovoltaic conversion in perovskite solar cells by solving hierarchical equations of motion. AIP Advances, 2019, 9, .	0.6	2
2423	A study of electromagnetic light propagation in a perovskite-based solar cell via a computational modelling approach. Bulletin of Materials Science, 2019, 42, .	0.8	20
2425	Highâ€Performance and Stable Perovskite Solar Cells Based on Dopantâ€Free Arylamineâ€Substituted Copper(II) Phthalocyanine Holeâ€Transporting Materials. Advanced Energy Materials, 2019, 9, 1901019.	10.2	80
2426	Perovskite sensitized erbium doped TiO2 photoanode solar cells with enhanced photovoltaic performance. Optical Materials, 2019, 94, 1-8.	1.7	19
2427	Electrospun Fibers Containing Emissive Hybrid Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 24468-24477.	4.0	13
2428	Stabilizing the CsSnCl ₃ Perovskite Lattice by B-Site Substitution for Enhanced Light Emission. Chemistry of Materials, 2019, 31, 4999-5004.	3.2	57
2429	Organic Molecule Orientations and Rashba–Dresselhaus Effect in α-Formamidinium Lead Iodide. Journal of Physical Chemistry C, 2019, 123, 16508-16515.	1.5	16

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2430	Metal halide perovskites under compression. Journal of Materials Chemistry A, 2019, 7, 16	089-16108.	5.2	42
2431	Chargeâ€Carrier Dynamics, Mobilities, and Diffusion Lengths of 2D–3D Hybrid Butylammonium–Cesium–Formamidinium Lead Halide Perovskites. Advanced Function 29, 1902656.	nal Materials, 2019,	7.8	45
2432	Discrete SnO 2 Nanoparticleâ€Modified Poly(3,4â€Ethylenedioxythiophene):Poly(Styrenes Efficient Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900162.	sulfonate) for	3.1	13
2433	Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and Pb-Doped SrSnO- Epitaxial Films. ACS Applied Materials & amp; Interfaces, 2019, 11, 25605-25612.	₃	4.0	14
2434	3D-printed continuous flow reactor for high yield synthesis of CH ₃ NH ₃ PbX ₃ (X = Br, I) nanocrystals. Journal of Ma Chemistry C, 2019, 7, 9167-9174.	aterials	2.7	22
2435	Shaping Resonant Light Confinement and Optoelectronic Spectra Using Strain in Hierarch Multiscale Structures. Advanced Optical Materials, 2019, 7, 1900471.	ical	3.6	2
2436	Perovskite solar cells. , 2019, , 417-446.			9
2437	Integrated advantages from perovskite photovoltaic cell and 2D MoTe2 transistor towards self-power energy harvesting and photosensing. Nano Energy, 2019, 63, 103833.	5	8.2	19
2438	First-principles study on the electronic properties of perovskites MASnaPb(1â€`â^` a)Xb\ Results in Physics, 2019, 14, 102408.	Y(3â€`â^`â€ [~] b) (X, Yâ€	⁻ =â€ ⁻ Cl, Br, 2.0	l) ₁₂
2439	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Perform through Interfacial Energyâ€Band Engineering. Advanced Materials, 2019, 31, e1902543.	nance	11.1	62
2440	Understanding substitution effects on dye structures and optoelectronic properties of mo halide perovskite Cs4MX6 (M=Pb, Sn, Ge; X= Br, I, Cl). Journal of Molecular Graphics and M 2019, 91, 172-179.	lecular 10delling,	1.3	7
2441	A Generalized Crystallization Protocol for Scalable Deposition of Highâ€Quality Perovskite for Photovoltaic Applications. Advanced Science, 2019, 6, 1901067.	Thin Films	5.6	97
2442	Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Modules. ACS Applied Materials & Interfaces, 2019, 11, 25195-25204.	e Solar	4.0	53
2443	Tin(<scp>iv</scp>) dopant removal through anti-solvent engineering enabling tin based pe solar cells with high charge carrier mobilities. Journal of Materials Chemistry C, 2019, 7, 83	erovskite 189-8397.	2.7	34
2444	Simulation studies of Sn-based perovskites with Cu back-contact for non-toxic and non-co devices. Journal of Materials Research, 2019, 34, 2789-2795.	rrosive	1.2	10
2445	Fully Chiral Light Emission from CsPbX ₃ Perovskite Nanocrystals Enabled by C Superstructure Stacks. Advanced Functional Materials, 2019, 29, 1903155.	Cholesteric	7.8	78
2446	Graphene as a Transparent and Conductive Electrode for Organic Optoelectronic Devices. Electronic Materials, 2019, 5, 1900247.	Advanced	2.6	40
2447	Cooling, Scattering, and Recombination—The Role of the Material Quality for the Physics Perovskites. Advanced Functional Materials, 2019, 29, 1902963.	of Tin Halide	7.8	40

#	Article	IF	CITATIONS
2448	Theoretical investigation of the structural and electronic properties of Al-decorated TiO2/perovskite interfaces. Applied Surface Science, 2019, 492, 369-373.	3.1	4
2449	Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications. EnergyChem, 2019, 1, 100008.	10.1	76
2450	Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells. Nano Energy, 2019, 63, 103853.	8.2	37
2451	Recent progress of inorganic perovskite solar cells. Energy and Environmental Science, 2019, 12, 2375-2405.	15.6	405
2452	New Spiroâ€Phenylpyrazole/Dibenzosuberene Derivatives as Holeâ€Transporting Material for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900143.	3.1	6
2453	Incorporation of two electron acceptors to improve the electron mobility and stability of perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 8344-8349.	2.7	14
2454	Surfaceâ€Plasmonâ€Assisted Metal Halide Perovskite Small Lasers. Advanced Optical Materials, 2019, 7, 1900279.	3.6	35
2455	Lead Halide Perovskiteâ€Based Dynamic Metasurfaces. Laser and Photonics Reviews, 2019, 13, 1900079.	4.4	42
2456	Improving the Performance of Planar Perovskite Solar Cells through a Preheated, Delayed Annealing Process To Control Nucleation and Phase Transition of Perovskite Films. Crystal Growth and Design, 2019, 19, 4314-4323.	1.4	7
2457	Reverse Micelle Templating Route to Ordered Monodispersed Spherical Organo-Lead Halide Perovskite Nanoparticles for Light Emission. ACS Applied Nano Materials, 2019, 2, 4121-4132.	2.4	32
2458	Optimizing optoelectronic performances by controlling halide compositions of MAPb(Cl _x l _{lâ^'x}) ₃ single crystals. CrystEngComm, 2019, 21, 4169-4174.	1.3	9
2459	Anisotropy of Thermal Diffusivity in Lead Halide Perovskite Layers Revealed by Thermal Grating Technique. Journal of Physical Chemistry C, 2019, 123, 14914-14920.	1.5	7
2460	Origin of Extended UV Stability of 2D Atomic Layer Titania-Based Perovskite Solar Cells Unveiled by Ultrafast Spectroscopy. ACS Applied Materials & Interfaces, 2019, 11, 21473-21480.	4.0	11
2461	Bright and fast scintillation of organolead perovskite MAPbBr ₃ at low temperatures. Materials Horizons, 2019, 6, 1740-1747.	6.4	105
2462	Enhancement of luminescence properties and stability in perovskite hybrid structure with CdSe/ZnS quantum dots. APL Materials, 2019, 7, 051112.	2.2	3
2463	Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells. Chemical Physics Letters, 2019, 730, 117-123.	1.2	29
2464	Centimeter-size square 2D layered Pb-free hybrid perovskite single crystal (CH ₃ NH ₃) ₂ MnCl ₄ for red photoluminescence. CrystEngComm, 2019, 21, 4085-4091.	1.3	31
2465	Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 2019, 7, 7476-7493.	2.7	72

#	Article	IF	CITATIONS
2466	Effects of KBr or KCl addition to CH3NH3PbI3(Cl) photovoltaic devices. AIP Conference Proceedings, 2019, , .	0.3	0
2467	Spintronics of Hybrid Organic–Inorganic Perovskites: Miraculous Basis of Integrated Optoelectronic Devices. Advanced Optical Materials, 2019, 7, 1900350.	3.6	47
2468	Role of Compositional Tuning on Thermoelectric Parameters of Hybrid Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 14928-14933.	1.5	37
2469	Alkali Salts as Interface Modifiers in nâ€iâ€p Hybrid Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900088.	3.1	47
2470	Enhanced stability and photovoltage for inverted perovskite solar cells <i>via</i> precursor engineering. Journal of Materials Chemistry A, 2019, 7, 15880-15886.	5.2	22
2471	Optical Characterization of Cesium Lead Bromide Perovskites. Crystals, 2019, 9, 280.	1.0	21
2472	Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material. Nano Energy, 2019, 62, 781-790.	8.2	83
2473	Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 2019, 106, 100574.	16.0	184
2474	Layered Germanium Hybrid Perovskite Bromides: Insights from Experiments and Firstâ€Principles Calculations. Advanced Functional Materials, 2019, 29, 1903528.	7.8	26
2475	Engineering the mesoporous TiO2 layer by a facile method to improve the performance of perovskite solar cells. Electrochimica Acta, 2019, 318, 83-90.	2.6	9
2476	Comprehensive investigation of sputtered and spin-coated zinc oxide electron transport layers for highly efficient and stable planar perovskite solar cells. Journal of Power Sources, 2019, 427, 223-230.	4.0	24
2477	Quantitative imaging of anion exchange kinetics in halide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12648-12653.	3.3	84
2478	Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 2019, 31, e1901242.	11.1	210
2479	Highly-flexible graphene transparent conductive electrode/perovskite solar cells with graphene quantum dots-doped PCBM electron transport layer. Dyes and Pigments, 2019, 170, 107630.	2.0	28
2480	Performance enhancement of hole-transport material free perovskite solar cells with TiO2 nanorods modified with SiO2/NaYF4:Yb,Er@SiO2 for upconversion and charge recombination suppression. Organic Electronics, 2019, 73, 152-158.	1.4	15
2481	Surface stabilized cubic phase of CsPbI ₃ and CsPbBr ₃ at room temperature*. Chinese Physics B, 2019, 28, 056402.	0.7	16
2482	Enhanced Radiative Recombination of Excitons and Free Charges Due to Local Deformations in the Band Structure of MAPbBr ₃ Perovskite Crystals. Journal of Physical Chemistry C, 2019, 123, 13444-13450.	1.5	15
2483	High-throughput computational design of organic–inorganic hybrid halide semiconductors beyond perovskites for optoelectronics. Energy and Environmental Science, 2019, 12, 2233-2243.	15.6	82

#	Article	IF	CITATIONS
2484	To Greatly Reduce Defects via Photoannealing for High-Quality Perovskite Films. ACS Applied Materials & Interfaces, 2019, 11, 20943-20948.	4.0	14
2485	Photoelectric Synaptic Plasticity Realized by 2D Perovskite. Advanced Functional Materials, 2019, 29, 1902538.	7.8	132
2486	Oriented and Uniform Distribution of Dion–Jacobson Phase Perovskites Controlled by Quantum Well Barrier Thickness. Solar Rrl, 2019, 3, 1900090.	3.1	102
2487	Vacuumâ€Deposited Inorganic Perovskite Memory Arrays with Longâ€Term Ambient Stability. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900182.	1.2	10
2488	Room-Temperature Sputtered SnO2 as Robust Electron Transport Layer for Air-Stable and Efficient Perovskite Solar Cells on Rigid and Flexible Substrates. Scientific Reports, 2019, 9, 6963.	1.6	57
2489	Ion induced passivation of grain boundaries in perovskite solar cells. Journal of Applied Physics, 2019, 125, .	1.1	13
2490	Dual-sized TiO2 nanoparticles as scaffold layers in carbon-based mesoscopic perovskite solar cells with enhanced performance. Journal of Power Sources, 2019, 430, 12-19.	4.0	16
2491	Bandgap-tunable double-perovskite thin films by solution processing. Materials Today, 2019, 28, 25-30.	8.3	45
2492	New Metallic Ordered Phase of Perovskite CsPbl ₃ under Pressure. Advanced Science, 2019, 6, 1900399.	5.6	57
2493	Nanoionic Resistive witching Devices. Advanced Electronic Materials, 2019, 5, 1900184.	2.6	41
2494	Plasmonicâ€Enhanced Light Harvesting and Perovskite Solar Cell Performance Using Au Biometric Dimers with Broadband Structural Darkness. Solar Rrl, 2019, 3, 1900138.	3.1	34
2495	Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411.	3.2	82
2496	Applications of 3D Potassium-Ion Pre-Intercalated Graphene for Perovskite and Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2019, 58, 8743-8749.	1.8	12
2497	High performance and stable perovskite solar cells using vanadic oxide as a dopant for spiro-OMeTAD. Journal of Materials Chemistry A, 2019, 7, 13256-13264.	5.2	81
2498	The role of Mn as dopant on the optoelectronic properties of MA(Pb _{1â^'x} Mn _x)Cl ₃ single crystals. Materials Research Express, 2019, 6, 086210.	0.8	3
2500	Putting the Squeeze on Lead Iodide Perovskites: Pressure-Induced Effects To Tune Their Structural and Optoelectronic Behavior. Chemistry of Materials, 2019, 31, 4063-4071.	3.2	87
2501	Computational Screening of Indirect-Gap Semiconductors for Potential Photovoltaic Absorbers. Chemistry of Materials, 2019, 31, 4072-4080.	3.2	31
2502	Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation. Advanced Materials, 2019, 31, e1900682.	11.1	270

#	Article	IF	CITATIONS
2503	Efficient formamidinium–methylammonium lead halide perovskite solar cells using Mg and Er co-modified TiO2 nanorods. Journal of Materials Science: Materials in Electronics, 2019, 30, 11043-11053.	1.1	5
2504	Hybrid metal nanoantenna 2D-material photovoltaic device. Solar Energy Materials and Solar Cells, 2019, 200, 109918.	3.0	9
2505	High-Performance Polymer Solar Cells with Minimal Energy Loss Enabled by a Main-Chain-Twisted Nonfullerene Acceptor. Chemistry of Materials, 2019, 31, 4222-4227.	3.2	52
2506	Perovskite Thin Film Materials Stabilized and Enhanced by Zinc(II) Doping. Applied Sciences (Switzerland), 2019, 9, 1678.	1.3	37
2507	Enhancement in power conversion efficiency of edge-functionalized graphene quantum dot through adatoms for solar cell applications. Solar Energy Materials and Solar Cells, 2019, 200, 109908.	3.0	51
2508	Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs ₂ Pbl ₄ with a Ruddlesden–Popper structure. Journal of Materials Chemistry C, 2019, 7, 7433-7441.	2.7	62
2509	Improvement of quantum and power conversion efficiency through electron transport layer modification of ZnO/perovskite/PEDOT: PSS based organic heterojunction solar cell. Solar Energy, 2019, 185, 439-444.	2.9	16
2510	Charge Trap Formation and Passivation in Methylammonium Lead Tribromide. Journal of Physical Chemistry C, 2019, 123, 13812-13817.	1.5	9
2511	Solventâ€Free Aerosol Deposition for Highly Luminescent and Thermally Stable Perovskiteâ€Ceramic Nanocomposite Film. Advanced Materials Interfaces, 2019, 6, 1900359.	1.9	29
2512	Giant Nonlinear Optical Response in 2D Perovskite Heterostructures. Advanced Optical Materials, 2019, 7, 1900398.	3.6	58
2513	Radiation tolerance of perovskite solar cells under gamma ray. Organic Electronics, 2019, 71, 79-84.	1.4	40
2514	Pressure-induced transformation of CH ₃ NH ₃ PbI ₃ : the role of the noble-gas pressure transmitting media. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 361-370.	0.5	4
2515	Evolution of Pb-Free and Partially Pb-Substituted Perovskite Absorbers for Efficient Perovskite Solar Cells. Electronic Materials Letters, 2019, 15, 525-546.	1.0	12
2516	Temperature-Dependent Ambipolar Charge Carrier Mobility in Large-Crystal Hybrid Halide Perovskite Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 20838-20844.	4.0	49
2517	Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasiâ€2D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900221.	7.8	144
2518	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095.	11.1	94
2519	Record Openâ€Circuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure. Advanced Energy Materials, 2019, 9, 1803699.	10.2	325
2520	Interfacial Interactions and Enhanced Optoelectronic Properties in CsSnI 3 –Black Phosphorus van der Waals Heterostructures. Physica Status Solidi (B): Basic Research, 2019, 256, 1800540.	0.7	34

#	Article	IF	CITATIONS
2521	Structural, Magnetoâ€electronic, Mechanical, and Thermophysical Properties of Double Perovskite Ba ₂ ZnReO ₆ . Physica Status Solidi (B): Basic Research, 2019, 256, 1800625.	0.7	11
2522	Tuning of the surface plasmon resonance of aluminum nanoshell near-infrared regimes. Physical Chemistry Chemical Physics, 2019, 21, 9441-9449.	1.3	22
2523	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie, 2019, 131, 8608.	1.6	14
2524	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie - International Edition, 2019, 58, 8520-8525.	7.2	73
2525	Highly efficient nanocrystalline Cs _x MA _{1â^x} PbBr _x perovskite layers for white light generation. Nanotechnology, 2019, 30, 345702.	1.3	2
2526	Numerical reproduction of a perovskite solar cell by device simulation considering band gap grading. Optical Materials, 2019, 92, 60-66.	1.7	32
2527	Ultrathin and easy-processing photonic crystal absorbing layers to enhance light absorption efficiency of solar cells. APL Materials, 2019, 7, .	2.2	8
2528	Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ. Sensors and Actuators B: Chemical, 2019, 291, 226-234.	4.0	73
2529	Flexible Organometal–Halide Perovskite Lasers for Speckle Reduction in Imaging Projection. ACS Nano, 2019, 13, 5421-5429.	7.3	84
2530	Efficient light harvesting with a nanostructured organic electron-transporting layer in perovskite solar cells. Nanoscale, 2019, 11, 9281-9286.	2.8	9
2531	Hydrothermally Treated SnO ₂ as the Electron Transport Layer in Highâ€Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3%. Advanced Functional Materials, 2019, 29, 1807604.	7.8	72
2532	Effects of Solvent Coordination Strength on the Morphology of Solution-Processed Bil ₃ Thin Films. Journal of Physical Chemistry C, 2019, 123, 13394-13400.	1.5	16
2533	High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer. Journal of Materials Chemistry C, 2019, 7, 6956-6963.	2.7	29
2534	Reaction Temperature and Partial Pressure Induced Etching of Methylammonium Lead Iodide Perovskite by Trimethylaluminum. Langmuir, 2019, 35, 6522-6531.	1.6	12
2535	Temperature-Dependent Band Gap in Two-Dimensional Perovskites: Thermal Expansion Interaction and Electron–Phonon Interaction. Journal of Physical Chemistry Letters, 2019, 10, 2546-2553.	2.1	90
2536	Photovoltaic Performance of Lead-Less Hybrid Perovskites from Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 12638-12646.	1.5	39
2537	Insight into the Structural, Electronic, Elastic, Mechanical, and Thermodynamic Properties of XReO ₃ (X = Rb, Cs, Tl) Perovskite Oxides: A DFT Study. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 827-836.	0.7	7
2538	Solutionâ€Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for Highâ€Performance Solar Cells. Advanced Materials, 2019, 31, e1807689.	11.1	185

#	Article	IF	CITATIONS
2539	Tracking Structural Phase Transitions in Leadâ€Halide Perovskites by Means of Thermal Expansion. Advanced Materials, 2019, 31, e1900521.	11.1	88
2540	Recent Progress in Metal Halide Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2019, 7, 1900080.	3.6	95
2541	Triggering the Passivation Effect of Potassium Doping in Mixedâ€Cation Mixedâ€Halide Perovskite by Light Illumination. Advanced Energy Materials, 2019, 9, 1901016.	10.2	109
2542	Tuning the Optical Properties of Already Crystalized Hybrid Perovskite. Solar Rrl, 2019, 3, 1900128.	3.1	5
2543	Lightâ€Directed Soft Mass Migration for Micro/Nanophotonics. Advanced Optical Materials, 2019, 7, 1900074.	3.6	31
2544	Understanding the Solution Chemistry of Lead Halide Perovskites Precursors. ACS Applied Energy Materials, 2019, 2, 3400-3409.	2.5	74
2545	Machine learning for renewable energy materials. Journal of Materials Chemistry A, 2019, 7, 17096-17117.	5.2	207
2546	Lightâ€Emitting Transistors Based on Solutionâ€Processed Heterostructures of Selfâ€Organized Multipleâ€Quantumâ€Well Perovskite and Metalâ€Oxide Semiconductors. Advanced Electronic Materials, 2019, 5, 1800985.	2.6	18
2547	High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles. Journal of Power Sources, 2019, 426, 178-187.	4.0	65
2548	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0
2549	All-optical control of lead halide perovskite microlasers. Nature Communications, 2019, 10, 1770.	5.8	104
2550	Ultrafast photoinduced energy and charge transfer. Faraday Discussions, 2019, 216, 9-37.	1.6	5
2551	Nanomaterials for Polymer and Perovskite Light-Emitting Diodes. , 2019, , 371-421.		0
2552	A low-cost, non-invasive phase velocity and length meter and controller for multiphase lab-in-a-tube devices. Lab on A Chip, 2019, 19, 2107-2113.	3.1	20
2553	Efficient, hysteresis free, inverted planar flexible perovskite solar cells <i>via</i> perovskite engineering and stability in cylindrical encapsulation. Sustainable Energy and Fuels, 2019, 3, 1739-1748.	2.5	27
2554	Structural and Functional Diversity in Leadâ€Free Halide Perovskite Materials. Advanced Materials, 2019, 31, e1900326.	11.1	198
2555	Red-Shifted Photoluminescence from Crystal Edges Due to Carrier Redistribution and Reabsorption in Lead Triiodide Perovskites. Journal of Physical Chemistry C, 2019, 123, 12521-12526.	1.5	23
2556	Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5596-5603.	2.7	47

#	Article	IF	CITATIONS
2557	MAPbBr ₃ perovskite solar cells <i>via</i> a two-step deposition process. RSC Advances, 2019, 9, 12906-12912.	1.7	51
2558	Light-Emitting Field-Effect Transistors Based on Composite Films of Polyfluorene and CsPbBr3 Nanocrystals. Physics of the Solid State, 2019, 61, 256-262.	0.2	18
2559	Photoluminescence Tuning Through Irradiation Defects in CH ₃ NH ₃ PbI ₃ Perovskites. Physica Status Solidi (B): Basic Research, 2019, 256, 1900199.	0.7	8
2560	Earth-abundant photovoltaic semiconductor NaSbS2 in the rocksalt-derived structure: A first-principles study. Progress in Natural Science: Materials International, 2019, 29, 322-328.	1.8	8
2561	Low-Frequency Carrier Kinetics in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 14166-14174.	4.0	26
2562	Broadband phototransistors realised by incorporating a bi-layer perovskite/NIR light absorbing polymer channel. Journal of Materials Chemistry C, 2019, 7, 4808-4816.	2.7	18
2563	ln situ Investigation of Water Interaction with Lead-Free All Inorganic Perovskite (Cs ₂ SnI <i>_x</i> Cl _{6–<i>x</i>}). Journal of Physical Chemistry C, 2019, 123, 9575-9581.	1.5	23
2564	Understanding the impact of C60 at the interface of perovskite solar cells via drift-diffusion modeling. AIP Advances, 2019, 9, .	0.6	42
2565	Künstliche Photosynthese: Eine Analyse in Teilprozessen. Technik Im Fokus, 2019, , 97-127.	0.2	0
2566	Preparation of high quality perovskite thin film in ambient air using ethylacetate as anti-solvent. Journal of Solid State Chemistry, 2019, 274, 199-206.	1.4	11
2567	A photosensor based on lead-free perovskite-like methyl-ammonium bismuth iodide. Sensors and Actuators A: Physical, 2019, 291, 75-79.	2.0	13
2568	Radiative and conductive thermal annealing of hybrid organic-inorganic perovskite layer. Solar Energy Materials and Solar Cells, 2019, 195, 353-357.	3.0	9
2569	Performance enhancement of perovskite solar cells <i>via</i> material quality improvement assisted by MAI/IPA solution post-treatment. Dalton Transactions, 2019, 48, 5292-5298.	1.6	8
2570	Using a Neural Network to Improve the Optical Absorption in Halide Perovskite Layers Containing Core-Shells Silver Nanoparticles. Nanomaterials, 2019, 9, 437.	1.9	19
2571	The effect of the halide anion on the optical properties of lead halide perovskites. Solar Energy Materials and Solar Cells, 2019, 195, 269-273.	3.0	26
2572	Effect of Pressing Pressure on the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2358-2363.	2.5	11
2573	3D hybrid perovskite solid solutions: a facile approach for deposition of nanoparticles and thin films <i>via</i> B-site substitution. New Journal of Chemistry, 2019, 43, 5448-5454.	1.4	5
2574	Electron Transport Improvement of Perovskite Solar Cells via a ZIF-8-Derived Porous Carbon Skeleton. ACS Applied Energy Materials, 2019, 2, 2760-2768.	2.5	22

#	Article	IF	CITATIONS
2575	Highly efficient and stable 2D–3D perovskite solar cells fabricated by interfacial modification. Nanotechnology, 2019, 30, 275202.	1.3	40
2576	Toward ultra-thin and omnidirectional perovskite solar cells: Concurrent improvement in conversion efficiency by employing light-trapping and recrystallizing treatment. Nano Energy, 2019, 60, 198-204.	8.2	42
2577	Nickel Oxide as Efficient Hole Transport Materials for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900001.	3.1	151
2578	Investigation of Rbx(MA)1â^'xPbI3(x = 0, 0.1, 0.3, 0.5, 0.75, 1) perovskites as a potential source of P- and N-type materials for PN-junction solar cell. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	6
2579	Vibrational Probe of the Structural Origins of Slow Recombination in Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 7061-7073.	1.5	29
2580	Enhancing Photostability of Perovskite Solar Cells by Eu(TTA) ₂ (Phen)MAA Interfacial Modification. ACS Applied Materials & Interfaces, 2019, 11, 11481-11487.	4.0	41
2581	Chemical stability and instability of inorganic halide perovskites. Energy and Environmental Science, 2019, 12, 1495-1511.	15.6	510
2582	Electronic and optical properties of perovskite compounds MA _{1â^α} FA _α PbI _{3â^β} X _β (X = Cl, Br) explored for photovoltai applications. RSC Advances, 2019, 9, 7015-7024.	C1.7	20
2583	Passivating Crystal Boundaries with Potassiumâ€Rich Phase in Organic Halide Perovskite. Solar Rrl, 2019, 3, 1900053.	3.1	64
2584	Tunable Halide Perovskites for Miniaturized Solidâ€State Laser Applications. Advanced Optical Materials, 2019, 7, 1900099.	3.6	47
2585	Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances. Israel Journal of Chemistry, 2019, 59, 649-660.	1.0	25
2586	High-efficiency perovskite solar cell based on TiO2 nanorod arrays under natural ambient conditions: Solvent effect. Ceramics International, 2019, 45, 12353-12359.	2.3	7
2587	Sub-sized monovalent alkaline cations enhanced electrical stability for over 17% hysteresis-free planar perovskite solar mini-module. Electrochimica Acta, 2019, 306, 635-642.	2.6	9
2588	Suppressing defect states in CsPbBr ₃ perovskite <i>via</i> magnesium substitution for efficient all-inorganic light-emitting diodes. Nanoscale Horizons, 2019, 4, 924-932.	4.1	34
2589	Sequential Deposition of Highâ€Quality Photovoltaic Perovskite Layers via Scalable Printing Methods. Advanced Functional Materials, 2019, 29, 1900964.	7.8	69
2590	Impedance Spectroscopy for Emerging Photovoltaics. Journal of Physical Chemistry C, 2019, 123, 11329-11346.	1.5	248
2591	From Large to Small Polarons in Lead, Tin, and Mixed Lead–Tin Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1790-1798.	2.1	72
2592	Analytical Expressions for the Efficiency Limits of Radiatively Coupled Tandem Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 679-687.	1.5	19

#	Article	IF	CITATIONS
2593	New Strategy to Overcome the Instability That Could Speed up the Commercialization of Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1900134.	1.9	11
2594	Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals. Nature Communications, 2019, 10, 1163.	5.8	97
2595	Understanding structures and properties of phosphorene/perovskite heterojunction toward perovskite solar cell applications. Journal of Molecular Graphics and Modelling, 2019, 89, 96-101.	1.3	5
2596	Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Applied Physics Letters, 2019, 114, .	1.5	59
2597	Facile synthesis of 1D organic–inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chemical Science, 2019, 10, 4567-4572.	3.7	212
2598	Significant THz-wave absorption property in mixed <i>Î′</i> - and <i>α</i> -FAPbI ₃ hybrid perovskite flexible thin film formed by sequential vacuum evaporation. Applied Physics Express, 2019, 12, 051003.	1.1	17
2599	Hot airflow deposition: Toward high quality MAPbI3 perovskite films. Journal of Alloys and Compounds, 2019, 790, 1101-1107.	2.8	6
2600	Untapped Potentials of Inorganic Metal Halide Perovskite Solar Cells. Joule, 2019, 3, 938-955.	11.7	196
2601	Concurrent Inhibition and Redistribution of Spontaneous Emission from All Inorganic Perovskite Photonic Crystals. ACS Photonics, 2019, 6, 1331-1337.	3.2	39
2602	Recent Challenges in Perovskite Solar Cells Toward Enhanced Stability, Less Toxicity, and Largeâ€Area Mass Production. Advanced Materials Interfaces, 2019, 6, 1801758.	1.9	52
2603	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
2604	Grapheneâ€Assisted Growth of Patterned Perovskite Films for Sensitive Light Detector and Optical Image Sensor Application. Small, 2019, 15, e1900730.	5.2	53
2605	Oriented Growth of Ultrathin Single Crystals of 2D Ruddlesden–Popper Hybrid Lead Iodide Perovskites for High-Performance Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 15905-15912.	4.0	43
2606	Overcoming intrinsic defects of the hole transport layer with optimized carbon nanorods for perovskite solar cells. Nanoscale, 2019, 11, 8776-8784.	2.8	9
2607	Physical properties of alkali metals-based iodides via Ab-initio calculations. Journal of Physics and Chemistry of Solids, 2019, 132, 68-75.	1.9	6
2608	Multi-dimensional anatase TiO2 materials: Synthesis and their application as efficient charge transporter in perovskite solar cells. Solar Energy, 2019, 184, 323-330.	2.9	35
2609	Significant THz absorption in CH3NH2 molecular defect-incorporated organic-inorganic hybrid perovskite thin film. Scientific Reports, 2019, 9, 5811.	1.6	26
2610	Modeling the edge effect for measuring the performance of mesoscopic solar cells with shading masks. Journal of Materials Chemistry A, 2019, 7, 10942-10948.	5.2	11
#	Article	IF	CITATIONS
------	---	------	-----------
2611	Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 387-403.	2.4	17
2612	A 3D Iodoplumbate Semiconducting Open Framework with Visibleâ€lightâ€induced Photocatalytic Performance. Chemistry - an Asian Journal, 2019, 14, 2086-2090.	1.7	19
2613	Advances in Polymer-Based Photovoltaic Cells: Review of Pioneering Materials, Design, and Device Physics. , 2019, , 1055-1101.		3
2614	Mechanochemical synthesis of the lead-free double perovskite Cs ₂ [AgIn]Br ₆ and its optical properties. JPhys Energy, 2019, 1, 025003.	2.3	19
2615	The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction. RSC Advances, 2019, 9, 11151-11159.	1.7	76
2616	Shortâ€Chain Ligandâ€Passivated Stable αâ€CsPbI ₃ Quantum Dot for Allâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900991.	7.8	216
2617	Photo-stability of perovskite solar cells with Cu electrode. Journal of Materials Science: Materials in Electronics, 2019, 30, 9582-9592.	1.1	6
2618	Oxide Analogs of Halide Perovskites and the New Semiconductor Ba ₂ AgIO ₆ . Journal of Physical Chemistry Letters, 2019, 10, 1722-1728.	2.1	36
2619	Indepth Studies on Working Mechanism of Plasmon-Enhanced Inverted Perovskite Solar Cells Incorporated with Ag@SiO ₂ Core–Shell Nanocubes. ACS Applied Energy Materials, 2019, 2, 3605-3613.	2.5	18
2620	Bis[di(4-methoxyphenyl)amino]carbazole-capped indacenodithiophenes as hole transport materials for highly efficient perovskite solar cells: the pronounced positioning effect of a donor group on the cell performance. Journal of Materials Chemistry A, 2019, 7, 10200-10205.	5.2	30
2621	High efficient and long-time stable planar heterojunction perovskite solar cells with doctor-bladed carbon electrode. Journal of Power Sources, 2019, 424, 61-67.	4.0	13
2622	Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air. CheM, 2019, 5, 995-1006.	5.8	245
2623	The Dominant Energy Transport Pathway in Halide Perovskites: Photon Recycling or Carrier Diffusion?. Advanced Energy Materials, 2019, 9, 1900185.	10.2	85
2624	Polarity effects of ZnO on charge recombination at CsPbBr3 nanoparticles/ZnO interfaces. Applied Surface Science, 2019, 483, 165-169.	3.1	11
2625	Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization. Journal of Energy Chemistry, 2019, 38, 207-213.	7.1	27
2626	Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 10564-10570.	1.5	37
2627	Spectroscopic properties of GdxLa1â´´xAlO3 nanocrystals doped with Pr3+ ions. New Journal of Chemistry, 2019, 43, 6242-6248.	1.4	2
2628	30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homoâ€Tandem Structures. Solar Rrl, 2019, 3, 1900083.	3.1	10

#	Article	IF	CITATIONS
2629	The fabrication of homogeneous perovskite films on non-wetting interfaces enabled by physical modification. Journal of Energy Chemistry, 2019, 38, 192-198.	7.1	48
2630	Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Organic Electronics, 2019, 70, 63-70.	1.4	40
2631	Effects of thiourea on the perovskite crystallization for fully printable solar cells. Solar Energy Materials and Solar Cells, 2019, 196, 105-110.	3.0	37
2632	Semiconductive Polymer-Doped PEDOT with High Work Function, Conductivity, Reversible Dispersion, and Application in Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 8206-8214.	3.2	25
2633	Two-dimensional eclipsed arrangement hybrid perovskites for tunable energy level alignments and photovoltaics. Journal of Materials Chemistry C, 2019, 7, 5139-5147.	2.7	22
2634	High-Performance Photoresistors Based on Perovskite Thin Film with a High PbI2 Doping Level. Nanomaterials, 2019, 9, 505.	1.9	12
2635	Energy Level Bending of Organicâ€Inorganic Halide Perovskite by Interfacial Dipole. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900103.	1.2	12
2636	Shining Light on Sulfide Perovskites: LaYS ₃ Material Properties and Solar Cells. Chemistry of Materials, 2019, 31, 3359-3369.	3.2	32
2637	Low-dimensional emissive states in non-stoichiometric methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2019, 7, 11104-11116.	5.2	7
2639	Low-temperature synthesis of all-inorganic perovskite nanocrystals for UV-photodetectors. Journal of Materials Chemistry C, 2019, 7, 5488-5496.	2.7	19
2640	Structural, Morphological and Electrical Impedance Spectroscopy of Bi2MnCdO6 Double Perovskite Electronic Material. Transactions on Electrical and Electronic Materials, 2019, 20, 280-287.	1.0	11
2641	Electrically Sorted Single-Walled Carbon Nanotubes-Based Electron Transporting Layers for Perovskite Solar Cells. IScience, 2019, 14, 100-112.	1.9	36
2642	Oxidation, reduction, and inert gases plasma-modified defects in TiO2 as electron transport layer for planar perovskite solar cells. Journal of CO2 Utilization, 2019, 32, 46-52.	3.3	8
2643	Possible deviations from AM1.5 illumination in coherent light simulations on plasmonic nanostructures in Perovskite solar cells. Solar Energy, 2019, 181, 452-455.	2.9	3
2644	High-Performance Surface Barrier X-ray Detector Based on Methylammonium Lead Tribromide Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 9679-9684.	4.0	89
2645	High thermoelectric efficiency in monolayer Pbl ₂ from 300 K to 900 K. Inorganic Chemistry Frontiers, 2019, 6, 920-928.	3.0	29
2646	Exploring the Properties of Niobium Oxide Films for Electron Transport Layers in Perovskite Solar Cells. Frontiers in Chemistry, 2019, 7, 50.	1.8	22
2647	Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. Advanced Materials, 2019, 31, e1803515.	11.1	315

#	Article	IF	Citations
2648	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	10.2	224
2649	Progress of Leadâ€Free Halide Double Perovskites. Advanced Energy Materials, 2019, 9, 1803150.	10.2	322
2650	Twoâ€Ðimensional Halide Perovskites in Solar Cells: 2D or not 2D?. ChemSusChem, 2019, 12, 1560-1575.	3.6	195
2651	Review of Novel Passivation Techniques for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800302.	3.1	139
2652	Leadâ€Free Metal Halide Perovskite Nanocrystals: Challenges, Applications, and Future Aspects. ChemNanoMat, 2019, 5, 300-312.	1.5	74
2653	Microconcave MAPbBr ₃ Single Crystal for High-Performance Photodetector. Journal of Physical Chemistry Letters, 2019, 10, 786-792.	2.1	41
2654	Hydrophobic Cu ₂ O Quantum Dots Enabled by Surfactant Modification as Top Holeâ€Transport Materials for Efficient Perovskite Solar Cells. Advanced Science, 2019, 6, 1801169.	5.6	101
2655	Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure. Journal of Materials Chemistry A, 2019, 7, 6357-6362.	5.2	30
2656	Synthesis of Polyvinylcarbazole/Reduced Graphite Oxideâ€ZnO Nanocomposites. Macromolecular Symposia, 2019, 383, 1700081.	0.4	4
2657	Development of High-Quality Organo-metal Halide Perovskite Film: Optimization of Thickness, Surface Morphology and Characterization. Springer Proceedings in Physics, 2019, , 419-422.	0.1	0
2658	Surface composition of MAPb(lxBr1â^'x)3 (0 â‰≇€¯x â‰≇€¯1) organic-inorganic mixed-halide perovskites. A Surface Science, 2019, 479, 311-317.	Apglied	8
2659	Synthesis and Characterization of Multiple-Cation Rb(MAFA)PbI3 Perovskite Single Crystals. Scientific Reports, 2019, 9, 2022.	1.6	18
2660	Waterâ€Soluble Triazolium Ionicâ€Liquidâ€Induced Surface Selfâ€Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900417.	7.8	145
2661	Appraisement of Crystal Expansion in CH ₃ NH ₃ PbI ₃ on Doping: Improved Photovoltaic Properties. ChemSusChem, 2019, 12, 2366-2372.	3.6	6
2662	Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells. Nano Energy, 2019, 59, 91-101.	8.2	100
2663	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports, 2019, 795, 1-51.	10.3	303
2664	Novel heterojunction bipolar transistor architectures for the practical implementation of high-efficiency three-terminal solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 54-61.	3.0	12
2665	Formation and application of electrochemically active cross-linked triarylamine–siloxane films using the Piers–Rubinsztajn reaction. Canadian Journal of Chemistry, 2019, 97, 378-386.	0.6	2

#	Article	IF	CITATIONS
2666	Bi(Sb)NCa ₃ : Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials. Journal of Physical Chemistry C, 2019, 123, 6363-6369.	1.5	10
2667	Potential Applications of Halide Double Perovskite Cs ₂ AgInX ₆ (X = Cl, Br) in Flexible Optoelectronics: Unusual Effects of Uniaxial Strains. Journal of Physical Chemistry Letters, 2019, 10, 1120-1125.	2.1	44
2668	Controlled synthesis and photostability of blue emitting Cs ₃ Bi ₂ Br ₉ perovskite nanocrystals by employing weak polar solvents at room temperature. Journal of Materials Chemistry C, 2019, 7, 3688-3695.	2.7	50
2669	Efficient and Stable Perovskite Solar Cell with TiO <inf>2</inf> Thin Insulator Layer as Electron Transport. , 2019, , .		4
2670	Probing Strain-Induced Band Gap Modulation in 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Letters, 2019, 4, 796-802.	8.8	47
2671	Material Basis. , 2019, , 107-148.		0
2672	CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy, 2019, 59, 517-526.	8.2	165
2673	Multifunctional energy devices caused by ionic behaviors in perovskite-polymer hybrid films. Synthetic Metals, 2019, 250, 31-34.	2.1	8
2674	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 119, 3036-3103.	23.0	2,009
2675	Optically Transparent Wood Substrate for Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 6061-6067.	3.2	89
2676	Highly luminescent red emissive perovskite quantum dots-embedded composite films: ligands capping and caesium doping-controlled crystallization process. Nanoscale, 2019, 11, 4942-4947.	2.8	20
2677	Synthesis of ZnxCd1-xSe@ZnO Hollow Spheres in Different Sizes for Quantum Dots Sensitized Solar Cells Application. Nanomaterials, 2019, 9, 132.	1.9	19
2678	Absorption of light by a particulate monolayer: Effect of ordering, concentration, and size of particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 229, 50-59.	1.1	1
2679	Theoretical study on halide and mixed halide Perovskite solar cells: Effects of halide atoms on the stability and electronic properties. Journal of the Chinese Chemical Society, 2019, 66, 575-582.	0.8	10
2680	In-plane self-assembly and lasing performance of cesium lead halide perovskite nanowires. Materials Research Letters, 2019, 7, 203-209.	4.1	12
2681	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	7.8	835
2682	Hybrid perovskites for device applications. , 2019, , 211-256.		13
2683	Recycling perovskite solar cells through inexpensive quality recovery and reuse of patterned indium tin oxide and substrates from expired devices by single solvent treatment. Solar Energy Materials and Solar Cells, 2019, 194, 74-82.	3.0	39

#	Article	IF	CITATIONS
2684	Third generation photovoltaic cells based on photonic crystals. Journal of Materials Chemistry C, 2019, 7, 3121-3145.	2.7	51
2685	Highly Efficient Perovskite Solar Cells Processed Under Ambient Conditions Using In Situ Substrateâ€Heatingâ€Assisted Deposition. Solar Rrl, 2019, 3, 1800318.	3.1	37
2686	Bifacial Diffuse Absorptance of Semitransparent Microstructured Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 10021-10027.	4.0	10
2687	Charge carrier recombination dynamics in a bi-cationic perovskite solar cell. Physical Chemistry Chemical Physics, 2019, 21, 5409-5415.	1.3	20
2688	Energy performance of building-integrated electrochromic and photovoltaic systems. IOP Conference Series: Materials Science and Engineering, 2019, 609, 062004.	0.3	4
2689	Investigation of Light Absorption in Gold Nanoparticles Embedded Methylammonium Lead Iodide Perovskite Film. , 2019, , .		0
2690	Investigation of materials for hot carrier solar cell absorbers. , 2019, , .		0
2691	A study of structural phase transitions and optoelectronic properties of perovskite-type hydride MgFeH ₃ : <i>ab initio</i> calculations. Journal of Physics Condensed Matter, 2019, 31, 305401.	0.7	11
2692	Light yield of Perovskite nanocrystal-doped liquid scintillator. Journal of Instrumentation, 2019, 14, P11024-P11024.	0.5	18
2693	Effect of formamidinium cation on electronic structure of formamidinium lead iodide. Journal of Physics: Conference Series, 2019, 1380, 012080.	0.3	0
2694	Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping. Journal of Semiconductors, 2019, 40, 122201.	2.0	7
2695	Investigation of structure, microstructure, impedance, dielectric and transport properties of sodium tungstate titanate: Na(W _{1/2} Ti _{1/2})O ₃ . Materials Research Express, 2019, 6, 125710.	0.8	5
2696	High efficiency perovskite solar cell for industrialization via sandwich evaporation. , 2019, , .		0
2697	Synthesis of a carbazole-substituted diphenylethylene hole transporting material and application in perovskite solar cells. IOP Conference Series: Materials Science and Engineering, 2019, 556, 012022.	0.3	1
2698	Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23404-23409.	3.3	45
2699	Defect processes in F and Cl doped anatase TiO2. Scientific Reports, 2019, 9, 19970.	1.6	35
2700	Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material. Nanoscale, 2019, 11, 19586-19594.	2.8	26
2701	Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 25511-25520.	5.2	27

ARTICLE IF CITATIONS Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite 2702 5.2 98 additive. Journal of Materials Chemistry A, 2019, 7, 26580-26585. Highly crystalline CsPbI₂Br films for efficient perovskite solar cells <i>via</i> 2703 1.7 compositional engineering. RSC Advances, 2019, 9, 30534-30540. Helicity-dependent terahertz photocurrent and phonon dynamics in hybrid metal halide perovskites. 2704 1.2 16 Journal of Chemical Physics, 2019, 151, 244706. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. 2705 846 Science, 2019, 366, 1509-1513. Emerging alkali metal ion (Li⁺, Na⁺, K⁺ and Rb⁺) doped 2706 perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials 5.2 116 Chemistry A, 2019, 7, 24150-24163. The synergistic effect of cooperating solvent vapor annealing for high-efficiency planar inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 27267-27277. 2707 5.2 24 Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for 2708 5.2 40 efficient and stable perovskite modules. Journal of Materials Chemistry A, 2019, 7, 26849-26857. 3D low toxicity Cu–Pb binary perovskite films and their photoluminescent/photovoltaic performance. 5.2 34 Journal of Materials Chemistry A, 2019, 7, 27225-27235. High-Detectivity/-Speed Flexible and Self-Powered Graphene Quantum Dots/Perovskite Photodiodes. 2710 3.2 16 ACS Sustainable Chemistry and Engineering, 2019, 7, 19961-19968. First principles study of the vibrational and thermo-elastic properties of BaScO3 perovskite oxide. AIP 2711 Conference Proceedings, 2019, , . Crystal and Band-Gap Engineering of One-Dimensional Antimony/Bismuth-Based Organic–Inorganic 2712 1.9 20 Hýbrids. Inorganic Chemistry, 2019, 58, 16346-16353. Facile Synthesis of Methylammonium Lead Iodide Perovskite with Controllable Morphologies with 2713 Enhancéd Luminescence Performance. Nanomaterials, 2019, 9, 1660. Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode?. 2714 1.2 12 Journal of Chemical Physics, 2019, 151, 211101. Influence of Bi doping on physical properties of lead halide perovskites: a comparative first-principles study between CsPbI3 and CsPbBr3. Materials Today Advances, 2019, 3, 100019. 2715 2.5 Synthesis and characterization of a hybrid perovskite to be applied as an absorbent layer in solar cell. 2716 2 0.3Journal of Physics: Conference Series, 2019, 1386, 012068. The importance of relativistic effects on two-photon absorption spectra in metal halide perovskites. 2717 5.8 30 Nature Communications, 2019, 10, 5342. Effect of Solar Concentration on Performance of Perovskite Solar Cell: A detailed balance study., 2718 0 2019,,. Environmental Performance of Emerging Photovoltaic Technologies: Assessment of the Status Quo 2719 and Future Prospects Based on a Meta-Analysis of Life-Cycle Assessment Studies. Energies, 2019, 12, 1.6 4228.

#	Article	IF	CITATIONS
2720	Investigation of Chemical Origin of White-Light Emission in Two-Dimensional (C4H9NH3)2PbBr4 via Infrared Nanoscopy. Journal of Physical Chemistry Letters, 2019, 10, 7942-7948.	2.1	22
2721	Characterizing temperature-dependent optical properties of (MA0.13FA0.87) PbI3 single crystals using spectroscopic ellipsometry. Scientific Reports, 2019, 9, 18253.	1.6	12
2722	High Bandwidth Perovskite based Antenna for High-Resolution Biomedical Imaging at Terahertz. , 2019, , .		7
2723	Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots. Scientific Reports, 2019, 9, 18433.	1.6	16
2724	Tuning the bandgap of Cs ₂ AgBiBr ₆ through dilute tin alloying. Chemical Science, 2019, 10, 10620-10628.	3.7	58
2725	Influence of drying temperature on morphology of MAPbI3 thin films and the performance of solar cells. Journal of Alloys and Compounds, 2019, 773, 511-518.	2.8	24
2726	Carbonâ€Based Photocathode Materials for Solar Hydrogen Production. Advanced Materials, 2019, 31, e1801446.	11.1	83
2727	Core-shell structure of ZnO@TiO2 nanorod arrays as electron transport layer for perovskite solar cell with enhanced efficiency and stability. Applied Surface Science, 2019, 464, 301-310.	3.1	47
2728	The Physics of Light Emission in Halide Perovskite Devices. Advanced Materials, 2019, 31, e1803336.	11.1	189
2729	Halideâ€Perovskite Resonant Nanophotonics. Advanced Optical Materials, 2019, 7, 1800784.	3.6	146
2730	Er and Mg co-doped TiO2 nanorod arrays and improvement of photovoltaic property in perovskite solar cell. Journal of Alloys and Compounds, 2019, 771, 649-657.	2.8	25
2731	The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722.	11.1	268
2732	Singleâ€Walled Carbon Nanotubes in Emerging Solar Cells: Synthesis and Electrode Applications. Advanced Energy Materials, 2019, 9, 1801312.	10.2	86
2733	Rational chemical doping of metal halide perovskites. Chemical Society Reviews, 2019, 48, 517-539.	18.7	196
2734	Activating Old Materials with New Architecture: Boosting Performance of Perovskite Solar Cells with H ₂ Oâ€Assisted Hierarchical Electron Transporting Layers. Advanced Science, 2019, 6, 1801170.	5.6	35
2735	Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells. Nano Research, 2019, 12, 601-606.	5.8	14
2736	The first-principle study of mechanical, optoelectronic and thermoelectric properties of CsGeBr ₃ and CsSnBr ₃ perovskites. Materials Research Express, 2019, 6, 045901.	0.8	42
2737	Reduced Defects of MAPbI ₃ Thin Films Treated by FAI for Highâ€Performance Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1805810.	7.8	73

		CITATION REPORT		
#	Article		IF	CITATIONS
2738	Exploring wide bandgap metal oxides for perovskite solar cells. APL Materials, 2019, 7, .		2.2	54
2739	Highly Compact TiO ₂ Films by Spray Pyrolysis and Application in Perovskite S Advanced Engineering Materials, 2019, 21, 1801196.	blar Cells.	1.6	33
2740	Ultrathin Metal Films as the Transparent Electrode in ITOâ€Free Organic Optoelectronic De Advanced Optical Materials, 2019, 7, 1800778.	zvices.	3.6	133
2741	Improved Efficiency and Stability of Pb/Sn Binary Perovskite Solar Cells Fabricated by Galva Displacement Reaction. Advanced Energy Materials, 2019, 9, 1802774.	nic	10.2	67
2742	Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in solar cells. Solar Energy Materials and Solar Cells, 2019, 192, 65-71.	perovskite	3.0	50
2743	Anisotropic optical properties of highly doped rutile SnO2: Valence band contributions to t Burstein-Moss shift. APL Materials, 2019, 7, .	he	2.2	14
2744	Enhanced temperature-tunable narrow-band photoluminescence from resonant perovskite nanograting. Applied Surface Science, 2019, 473, 419-424.		3.1	25
2745	Zero-Dimensional Cs ₂ Tel ₆ Perovskite: Solution-Processed Thick High X-ray Sensitivity. ACS Photonics, 2019, 6, 196-203.	Films with	3.2	70
2746	Vanadium Oxide Post-Treatment for Enhanced Photovoltage of Printable Perovskite Solar (Sustainable Chemistry and Engineering, 2019, 7, 2619-2625.	Cells. ACS	3.2	36
2747	A comprehensive review of flexible piezoelectric generators based on organic-inorganic me perovskites. Nano Energy, 2019, 57, 74-93.	tal halide	8.2	122
2748	Fully Airâ€Processed Carbonâ€Based Efficient Hole Conductor Free Planar Heterojunction Solar Cells With High Reproducibility and Stability. Solar Rrl, 2019, 3, 1800297.	Perovskite	3.1	20
2749	A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in personal solar cells by numerical simulation. Results in Physics, 2019, 12, 1097-1103.	provskite	2.0	90
2750	Experimental Phonon Dispersion and Lifetimes of Tetragonal CH3NH3PbI3 Perovskite Crys of Physical Chemistry Letters, 2019, 10, 1-6.	tals. Journal	2.1	15
2751	Tuning Bandgap of Mixedâ€Halide Perovskite for Improved Photovoltaic Performance Unde Monochromaticâ€Light Illumination. Physica Status Solidi (A) Applications and Materials So 216, 1800727.	er cience, 2019,	0.8	8
2752	Novel π-extended porphyrin-based hole-transporting materials with triarylamine donor uni performance perovskite solar cells. Dyes and Pigments, 2019, 163, 734-739.	ts for high	2.0	27
2753	Effect of defect density and energy level mismatch on the performance of perovskite solar numerical simulation. Optik, 2019, 182, 1204-1210.	cells by	1.4	82
2754	Cs/MAPbI3 composite formation and its influence on optical properties. Journal of Alloys ar Compounds, 2019, 783, 935-942.	nd	2.8	15
2755	Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via ho transport engineering. Journal of Materials Science and Technology, 2019, 35, 987-993.	e	5.6	123

#	Article	IF	CITATIONS
2756	Artifacts in Transient Absorption Measurements of Perovskite Films Induced by Transient Reflection from Morphological Microstructures. Journal of Physical Chemistry Letters, 2019, 10, 97-101.	2.1	25
2757	Power- and Spectral-Dependent Photon-Recycling Effects in a Double-Junction Gallium Arsenide Photodiode. ACS Photonics, 2019, 6, 59-65.	3.2	9
2758	Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nature Communications, 2019, 10, 16.	5.8	430
2759	IoT Based Framework: Mathematical Modelling and Analysis of Dust Impact on Solar Panels. 3D Research, 2019, 10, 1.	1.8	7
2760	Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?. Advanced Functional Materials, 2019, 29, 1806482.	7.8	257
2761	Enhanced Photovoltaic Performance and Thermal Stability of CH ₃ NH ₃ PbI ₃ Perovskite through Lattice Symmetrization. ACS Applied Materials & Interfaces, 2019, 11, 740-746.	4.0	20
2762	Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering Reports, 2019, 137, 38-65.	14.8	300
2763	Photovoltaic applications: Status and manufacturing prospects. Renewable and Sustainable Energy Reviews, 2019, 102, 318-332.	8.2	86
2764	Optical properties of the perovskite films deposited on meso-porous TiO2 by one step and hot casting techniques. Thin Solid Films, 2019, 671, 139-146.	0.8	14
2765	Recent Progress of Strong Exciton–Photon Coupling in Lead Halide Perovskites. Advanced Materials, 2019, 31, e1804894.	11.1	60
2766	Integrating Properties Modification in the Synthesis of Metal Halide Perovskites. Advanced Materials Technologies, 2019, 4, 1800321.	3.0	5
2767	Perovskite solar cells based on polyaniline derivatives as hole transport materials. JPhys Energy, 2019, 1, 015004.	2.3	12
2768	Organohalide Lead Perovskites: More Stable than Glass under Gammaâ€Ray Radiation. Advanced Materials, 2019, 31, e1805547.	11.1	92
2769	PbS QDs as Electron Blocking Layer Toward Efficient and Stable Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 194-199.	1.5	14
2770	Record‣owâ€Threshold Lasers Based on Atomically Smooth Triangular Nanoplatelet Perovskite. Advanced Functional Materials, 2019, 29, 1805553.	7.8	52
2771	Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells. Nano Energy, 2019, 56, 741-750.	8.2	65
2772	Mixed-phase Mesoporous TiO2 Film for High Efficiency Perovskite Solar Cells. Chemical Research in Chinese Universities, 2019, 35, 101-108.	1.3	10
2773	Improved stability of perovskite solar cells with enhanced moisture-resistant hole transport layers. Electrochimica Acta, 2019, 296, 508-516.	2.6	17

#	Article	IF	CITATIONS
2774	Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 2019, 119, 3418-3451.	23.0	1,131
2775	Screening Approach for the Discovery of New Hybrid Perovskites with Efficient Photoemission. Advanced Functional Materials, 2019, 29, 1806728.	7.8	26
2776	Random lasing in cesium lead bromine perovskite quantum dots film. Journal of Materials Science: Materials in Electronics, 2019, 30, 1084-1088.	1.1	14
2777	Electronic and optical behaviors of methylammonium and formamidinium lead trihalide perovskite materials. Journal of Materials Science: Materials in Electronics, 2019, 30, 711-720.	1.1	24
2778	Physisorption of Oxygen in SnO ₂ Nanoparticles for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 200-206.	1.5	12
2779	Two-dimensional perovskite materials: From synthesis to energy-related applications. Materials Today Energy, 2019, 11, 61-82.	2.5	133
2780	Design for Highly Piezoelectric and Visible/Nearâ€Infrared Photoresponsive Perovskite Oxides. Advanced Materials, 2019, 31, e1805802.	11.1	101
2781	Carrier Transfer Behaviors at Perovskite/Contact Layer Heterojunctions in Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1801253.	1.9	27
2782	The optimization of intermediate semi–bonding structure using solvent vapor annealing for high performance p-i-n structure perovskite solar cells. Organic Electronics, 2019, 65, 300-304.	1.4	5
2783	Nanowire Electronics. Nanostructure Science and Technology, 2019, , .	0.1	4
2784	Understanding photoresponsive catechol-based polyoxotitanate molecules: A combined experimental and first principles investigation. Chemical Physics Letters, 2019, 715, 217-221.	1.2	1
2785	Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy, 2019, 56, 733-740.	8.2	201
2786	Micro-scale current path distributions of Zn1-Mg O-coated SnO2:F transparent electrodes prepared by sol-gel and sputtering methods in perovskite solar cells. Thin Solid Films, 2019, 669, 455-460.	0.8	5
2787	High-Performance <i>n-i-p-</i> Type Perovskite Photodetectors Employing Graphene-Transparent Conductive Electrodes N-Type Doped with Amine Group Molecules. ACS Sustainable Chemistry and Engineering, 2019, 7, 734-739.	3.2	21
2788	Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 446-451.	1.5	30
2789	SnO ₂ â€Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Solar Rrl, 2019, 3, 1800292.	3.1	80
2790	Electronic structure, magnetism properties and optical absorption of organometal halide perovskite CH3NH3XI3 (X = Fe, Mn). Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	11
2791	Perylene Diimideâ€Based Electronâ€Transporting Material for Perovskite Solar Cells with Undoped Poly(3â€hexylthiophene) as Holeâ€Transporting Material. ChemSusChem, 2019, 12, 1155-1161.	3.6	31

#	Article	IF	CITATIONS
2792	Cesium lead halide perovskite nanocrystals for ultraviolet and blue light blocking. Chinese Chemical Letters, 2019, 30, 1021-1023.	4.8	21
2793	Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy, 2019, 58, 138-146.	8.2	38
2794	Fluoro- and Amino-Functionalized Conjugated Polymers as Electron Transport Materials for Perovskite Solar Cells with Improved Efficiency and Stability. ACS Applied Materials & Interfaces, 2019, 11, 5289-5297.	4.0	37
2795	Origin of Low Carrier Mobilities in Halide Perovskites. ACS Energy Letters, 2019, 4, 456-463.	8.8	136
2796	Extrinsic Electron Concentration in SnO ₂ Electron Extracting Contact in Lead Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1801788.	1.9	29
2797	High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. Organic Electronics, 2019, 65, 19-25.	1.4	13
2798	Multilayer evaporation of MAFAPbI _{3â^²<i>x</i>} Cl _{<i>x</i>} for the fabrication of efficient and large-scale device perovskite solar cells. Journal Physics D: Applied Physics, 2019, 52, 034005.	1.3	19
2799	Synthetic Approaches for Halide Perovskite Thin Films. Chemical Reviews, 2019, 119, 3193-3295.	23.0	454
2800	A solar tube: Efficiently converting sunlight into electricity and heat. Nano Energy, 2019, 55, 269-276.	8.2	50
2801	Optically tuned and large-grained bromine doped CH3NH3PbI3 perovskite thin films via aerosol-assisted chemical vapour deposition. Materials Chemistry and Physics, 2019, 223, 157-163.	2.0	5
2802	Stabilizing RbPbBr ₃ Perovskite Nanocrystals through Cs ⁺ Substitution. Chemistry - A European Journal, 2019, 25, 2597-2603.	1.7	25
2803	New Assembly-Free Bulk Layered Inorganic Vertical Heterostructures with Infrared and Optical Bandgaps. Nano Letters, 2019, 19, 142-149.	4.5	3
2804	Porous Halide Perovskite–Polymer Nanocomposites for Explosive Detection with a High Sensitivity. Advanced Materials Interfaces, 2019, 6, 1801686.	1.9	22
2805	Understanding the transport mechanism of organic-inorganic perovskite solar cells: The effect of exciton or free-charge on diffusion length. Organic Electronics, 2019, 66, 163-168.	1.4	14
2806	3,4-Dihydroxybenzhydrazide as an additive to improve the morphology of perovskite films for efficient and stable perovskite solar cells. Organic Electronics, 2019, 66, 47-52.	1.4	9
2807	Benzobis(thiadiazole)-based small molecules as efficient electron transporting materials in perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 191, 437-443.	3.0	7
2808	Design and Color Flexibility for Inkjet-Printed Perovskite Photovoltaics. ACS Applied Energy Materials, 2019, 2, 764-769.	2.5	32
2809	Tripyridineâ€Derivativeâ€Derived Semiconducting Iodoâ€Argentate/Cuprate Hybrids with Excellent Visibleâ€Lightâ€Induced Photocatalytic Performance. Chemistry - an Asian Journal, 2019, 14, 269-277.	1.7	22

	CITATION RE	PORT	
#	Article	IF	CITATIONS
2810	Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 2019, 381, 1-64.	9.5	269
2811	Integration of phenylammoniumiodide (PAI) as a surface coating molecule towards ambient stable MAPbI3 perovskite for solar cell application. Solar Energy Materials and Solar Cells, 2019, 191, 316-328.	3.0	17
2812	Polyiodide Hybrid Perovskites: A Strategy To Convert Intrinsic 2D Systems into 3D Photovoltaic Materials. ACS Applied Energy Materials, 2019, 2, 477-485.	2.5	19
2813	Fabrication of Photodiodes Based on Solution-Processed Perovskite Single Crystals. IEEE Transactions on Electron Devices, 2019, 66, 485-490.	1.6	7
2814	Impact of fluorine on organic cation for determining the electronic and optical properties of CH3â°'xFxNH3PbI3 (xâ€= 0, 1, 2, 3) hybrid perovskites-based photovoltaic devices. Solar Energy, 2019, 177, 517-530.	2.9	12
2815	Formation of CH ₃ NH ₂ -incorporated intermediate state in CH ₃ NH ₃ PbI ₃ hybrid perovskite thin film formed by sequential vacuum evaporation. Applied Physics Express, 2019, 12, 015501.	1.1	13
2816	Nanowire-Based Lasers. Nanostructure Science and Technology, 2019, , 367-393.	0.1	1
2817	A comparative study of planar and mesoporous perovskite solar cells with printable carbon electrodes. Journal of Power Sources, 2019, 412, 118-124.	4.0	41
2818	Scalable Grapheneâ€onâ€Organometal Halide Perovskite Heterostructure Fabricated by Dry Transfer. Advanced Materials Interfaces, 2019, 6, 1801419.	1.9	11
2819	Selfâ€Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Advanced Energy Materials, 2019, 9, 1803258.	10.2	149
2820	Bromide Induced Roomâ€Temperature Formation of Photoactive Formamidiniumâ€Based Perovskite for Highâ€Efficiency, Lowâ€Cost Solar Cells. Solar Rrl, 2019, 3, 1800313.	3.1	7
2821	Novel photo-voltaic device based on Bi1â^'xLaxFeO3 perovskite films with higher efficiency. Journal of Materials Science: Materials in Electronics, 2019, 30, 1654-1662.	1.1	4
2822	Employing tetraethyl orthosilicate additive to enhance trap passivation of planar perovskite solar cells. Electrochimica Acta, 2019, 293, 174-183.	2.6	18
2823	DFT prediction of band gap in organic-inorganic metal halide perovskites: An exchange-correlation functional benchmark study. Chemical Physics, 2019, 516, 225-231.	0.9	62
2824	Controlled Synthesis and Photonics Applications of Metal Halide Perovskite Nanowires. Small Methods, 2019, 3, 1800294.	4.6	45
2825	Solvothermal synthesis of highly crystalline SnO2 nanoparticles for flexible perovskite solar cells application. Materials Letters, 2019, 234, 311-314.	1.3	32
2826	Remarkable enhancement of stability in high-efficiency Si-quantum-dot heterojunction solar cells by employing bis(trifluoromethanesulfonyl)-amide as a dopant for graphene transparent conductive electrodes. Journal of Alloys and Compounds, 2019, 773, 913-918.	2.8	11
2827	Method to control the optical properties: Band gap energy of mixed halide Organolead perovskites. Arabian Journal of Chemistry, 2020, 13, 988-997.	2.3	23

#	Article	IF	CITATIONS
2828	Integrated Perovskite/Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2020, 32, e1805843.	11.1	61
2829	Mixed Halide Perovskite Solar Cells: Progress and Challenges. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 85-112.	6.8	51
2830	Unraveling the Stable Phase, High Absorption Coefficient, Optical and Mechanical Properties of Hybrid Perovskite CH3NH3PbxMg1–xI3: Density Functional Approach. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 299-309.	1.9	16
2831	Bleifreie Halogenidâ€Perowskitâ€Nanokristalle: Kristallstrukturen, Synthese, StabilitÃæn und optische Eigenschaften. Angewandte Chemie, 2020, 132, 1042-1059.	1.6	22
2832	Leadâ€Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties. Angewandte Chemie - International Edition, 2020, 59, 1030-1046.	7.2	320
2833	Alternate Photovoltaic Material: Its Environmental Consequences. , 2020, , 250-264.		1
2834	Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. Journal of Energy Chemistry, 2020, 41, 43-51.	7.1	37
2835	Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-p calculations. Indian Journal of Physics, 2020, 94, 455-467.	rinciples	51
2836	Halide Perovskites for Nonlinear Optics. Advanced Materials, 2020, 32, e1806736.	11.1	210
2837	Benzodithiophene-thienopyrroledione-thienothiophene-based random copolymeric hole transporting material for perovskite solar cell. Chemical Engineering Journal, 2020, 382, 122830.	6.6	16
2838	Rb+-doped CsPbBr3 quantum dots with multi-color stabilized in borosilicate glass via crystallization. Journal of the European Ceramic Society, 2020, 40, 94-102.	2.8	24
2839	Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: A review. Solar Energy Materials and Solar Cells, 2020, 204, 110212.	3.0	56
2840	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
2841	Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902650.	10.2	516
2842	Oxychalcogenide Perovskite Solar Cells: A Multiscale Design Approach. Energy Technology, 2020, 8, 1900766.	1.8	1
2843	2D and Quasiâ€2D Halide Perovskites: Applications and Progress. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900435.	1.2	37
2844	SnO ₂ –Carbon Nanotubes Hybrid Electron Transport Layer for Efficient and Hysteresisâ€Free Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900415.	3.1	61
2845	CsPbBr ₃ Perovskite Quantum Dot Lightâ€Emitting Diodes Using Atomic Layer Deposited Al ₂ O ₃ and ZnO Interlayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900573.	1.2	19

#	Article	IF	Citations
2846	Light polarization dependency existing in the biological photosystem and possible implications for artificial antenna systems. Photosynthesis Research, 2020, 143, 205-220.	1.6	2
2847	First-principles study of electronic and optical properties of antimony sulphide thin film. Optik, 2020, 202, 163631.	1.4	3
2848	Synergistic interactions between N3 dye and perovskite CH3NH3PbI3 for aqueous-based photoresponsiveness under visible light. Dyes and Pigments, 2020, 173, 107925.	2.0	9
2849	Effect of gold nanoparticles on transmittance and conductance of graphene oxide thin films and efficiency of perovskite solar cells. Applied Nanoscience (Switzerland), 2020, 10, 485-497.	1.6	20
2850	To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small, 2020, 16, e1902579.	5.2	80
2851	Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications. Advanced Materials, 2020, 32, e1806474.	11.1	148
2852	Perovskiteâ€Based Phototransistors and Hybrid Photodetectors. Advanced Functional Materials, 2020, 30, 1903907.	7.8	225
2853	Photoexcited charge carrier behaviors in solar energy conversion systems from theoretical simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1441.	6.2	7
2854	Dynamic Antisolvent Engineering for Spin Coating of 10 × 10 cm ² Perovskite Solar N Approaching 18%. Solar Rrl, 2020, 4, 1900263.	1gdule	52
2855	High-efficiency colorful perovskite solar cells using TiO2 nanobowl arrays as a structured electron transport layer. Science China Materials, 2020, 63, 35-46.	3.5	26
2856	Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability. Solar Rrl, 2020, 4, 1900257.	3.1	119
2857	Hydrophilic Fullerene Derivative Doping in Active Layer and Electron Transport Layer for Enhancing Oxygen Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900249.	3.1	11
2858	Energyâ€Level Modulation in Diboronâ€Modified SnO ₂ for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900217.	3.1	28
2859	Highly efficient perovskite solar cells by tuning electronic structures of thienothiophene-based as hole transport materials. Molecular Physics, 2020, 118, .	0.8	1
2860	Carbonâ€Electrode Based Perovskite Solar Cells: Effect of Bulk Engineering and Interface Engineering on the Power Conversion Properties. Solar Rrl, 2020, 4, 1900190.	3.1	45
2861	Organicâ€Inorganic Halide Perovskites: From Crystallization of Polycrystalline Films to Solar Cell Applications. Solar Rrl, 2020, 4, 1900200.	3.1	43
2862	Strategies Toward Extending the Nearâ€Infrared Photovoltaic Response of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900280.	3.1	13
2863	Material and Interface Engineering for Highâ€Performance Perovskite Solar Cells: A Personal Journey and Perspective. Chemical Record, 2020, 20, 209-229.	2.9	9

	Сіта	tion Report	
#	Article	IF	CITATIONS
2864	Studies on fast and green biodiesel production from an indigenous nonedible Indian feedstock using single phase strontium titanate catalyst. Energy Conversion and Management, 2020, 203, 112180.	4.4	41
2865	Influence of halogen content in mixed halide perovskite solar cells on cell performances through device simulation. Solar Energy Materials and Solar Cells, 2020, 205, 110252.	3.0	15
2866	Electronic and Optical Properties of Organic–Inorganic MASn1â^'xGexI3 Perovskites: A First-Principles Study. Journal of Cluster Science, 2020, 31, 1103-1109.	1.7	8
2867	Semi-transparent perovskite solar cells with directly sputtered amorphous InZnSnO top cathodes for building integrated photovoltaics. Organic Electronics, 2020, 78, 105560.	1.4	16
2868	Large Polaron Self-Trapped States in Three-Dimensional Metal-Halide Perovskites. , 2020, 2, 20-27.		33
2869	Wave-optical front structures on silicon and perovskite thin-film solar cells. , 2020, , 315-354.		7
2870	Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy, 2020, 67, 104267.	8.2	35
2871	Modeling Thin Film Solar Cells: From Organic to Perovskite. Advanced Science, 2020, 7, 1901397.	5.6	38
2872	Kpâ€10 promotes bovine mammary epithelial cell proliferation by activating GPR54 and its downstream signaling pathways. Journal of Cellular Physiology, 2020, 235, 4481-4493.	2.0	17
2873	CsPbBr ₃ quantum dots assisted crystallization of solution-processed perovskite films with preferential orientation for high performance perovskite solar cells. Nanotechnology, 2020, 31, 085401.	1.3	17
2874	Twoâ€ŧerminal Perovskite silicon tandem solar cells with a highâ€Bandgap Perovskite absorber enabling voltages over 1.8ÂV. Progress in Photovoltaics: Research and Applications, 2020, 28, 99-110.	4.4	63
2875	Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International, 2020, 46, 5521-5535.	2.3	141
2876	Comparison of the treatment outcomes of endoscopic and surgical resection of GI stromal tumors in the stomach: a propensity score–matched case-control study. Gastrointestinal Endoscopy, 2020, 91, 527-536.	0.5	21
2877	Organometallic perovskite single crystals grown on lattice-matched substrate for photodetection. Nano Materials Science, 2020, 2, 292-296.	3.9	5
2878	Efficient light-emitting devices based on mixed-cation lead halide perovskites. Organic Electronics, 2020, 77, 105546.	1.4	8
2879	Grain Quality Engineering for Organic Metal Halide Perovskites Using Mixed Antisolvent Spraying Treatment. Solar Rrl, 2020, 4, 1900397.	3.1	9
2880	The physics of ion migration in perovskite solar cells: Insights into hysteresis, device performance, and characterization. Progress in Photovoltaics: Research and Applications, 2020, 28, 533-537.	4.4	36
2881	Polyfluorene Copolymers as Highâ€Performance Holeâ€Transport Materials for Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900384.	3.1	21

#	Article	IF	CITATIONS
2882	Titanium dioxide-coated copper electrodes for hydrogen production by water splitting. International Journal of Hydrogen Energy, 2020, 45, 24037-24044.	3.8	3
2883	Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Solar Energy Materials and Solar Cells, 2020, 206, 110268.	3.0	66
2884	Revealing Crystallization Dynamics and the Compositional Control Mechanism of 2D Perovskite Film Growth by In Situ Synchrotron-Based GIXRD. ACS Energy Letters, 2020, 5, 8-16.	8.8	68
2885	Spiroâ€Linked Molecular Holeâ€Transport Materials for Highly Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900389.	3.1	28
2886	A Review on Halide Perovskite Film Formation by Sequential Solution Processing for Solar Cell Applications. Energy Technology, 2020, 8, 1901114.	1.8	31
2887	Mechanically tuning spin-orbit coupling effects in organic-inorganic hybrid perovskites. Nano Energy, 2020, 67, 104285.	8.2	6
2888	Dimensional tailoring of halide perovskite: A case study on Cs4PbBr6/CsPbBr3 hybrid with molecular halide perovskite. Solar Energy Materials and Solar Cells, 2020, 204, 110237.	3.0	17
2889	Dynamic Functional Connectivity Reveals Abnormal Variability and Hyperâ€connected Pattern in Autism Spectrum Disorder. Autism Research, 2020, 13, 230-243.	2.1	54
2890	1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1900918.	1.8	21
2891	Role of the Iodide–Methylammonium Interaction in the Ferroelectricity of CH ₃ NH ₃ Pbl ₃ . Angewandte Chemie - International Edition, 2020, 59, 424-428.	7.2	37
2892	Modulation of Electronic States of Hybrid Lead Halide Perovskite Embedded in Organic Matrix. Energy Technology, 2020, 8, 1900894.	1.8	4
2893	Color tunable carbon quantum dots from wasted paper by different solvents for anti-counterfeiting and fluorescent flexible film. Chemical Engineering Journal, 2020, 383, 123200.	6.6	103
2894	Systematic understanding of <i>f</i> â€electron–based semiconducting actinide perovskites Ba ₂ MgMO ₆ (M = U, Np) from DFT ab initio calculations. International Journal of Energy Research, 2020, 44, 3066-3081.	2.2	7
2895	All-Inorganic Perovskite Solar Cells With Both High Open-Circuit Voltage and Stability. Frontiers in Materials, 2020, 6, .	1.2	15
2896	Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 100026.	10.1	24
2897	First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Reports on Progress in Physics, 2020, 83, 036501.	8.1	176
2898	Air-processed and mixed-cation single crystal engineering-based perovskite films for efficient and air-stable perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 2167-2176.	1.1	11
2899	Effects of methylamine doping on the stability of triple cation (FA _{0.95â´'x} MA _x Cs _{0.05})PbI ₃ single crystal perovskites. Nanoscale Advances, 2020, 2, 332-339.	2.2	8

#	Article	IF	Citations
2900	Enhancement of the intrinsic light harvesting capacity of Cs ₂ AgBiBr ₆ double perovskite <i>via</i> modification with sulphide. Journal of Materials Chemistry A, 2020, 8, 2008-2020.	5.2	54
2901	Recent progress towards roll-to-roll manufacturing of perovskite solar cells using slot-die processing. Flexible and Printed Electronics, 2020, 5, 014006.	1.5	37
2902	Designing solar-cell absorber materials through computational high-throughput screening*. Chinese Physics B, 2020, 29, 028803.	0.7	6
2903	Exciton-to-Charge Dynamics Driven by the Nonuniform Polymer Packing at Donor/Acceptor Interfaces. Journal of Physical Chemistry C, 2020, 124, 1898-1906.	1.5	5
2904	Revolution of Perovskite. Materials Horizons, 2020, , .	0.3	10
2905	Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale, 2020, 12, 2201-2227.	2.8	71
2906	Analysis of Antireflection Performance of Vâ€Ring Groove Structures for Photovoltaic Crystal Silicon Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900572.	0.8	1
2907	Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900485.	3.1	29
2908	Highly efficient and rapid manufactured perovskite solar cells via Flash InfraRed Annealing. Materials Today, 2020, 35, 9-15.	8.3	35
2909	Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation. Optical Materials, 2020, 100, 109631.	1.7	132
2910	Low temperature, solution processed spinel NiCo2O4 nanoparticles as efficient hole transporting material for mesoscopic n-i-p perovskite solar cells. Solar Energy, 2020, 196, 367-378.	2.9	26
2911	Theory of light-induced degradation in perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 208, 110383.	3.0	25
2912	First-Principles Screening of Lead-Free Mixed-Anion Perovskites for Photovoltaics. Journal of Physical Chemistry C, 2020, 124, 1303-1308.	1.5	8
2913	Improved air stability and low voltage resistive switching behaviors of NiO-buffered CH ₃ NH ₃ PbI ₃ films prepared by a solution method. Journal Physics D: Applied Physics, 2020, 53, 075101.	1.3	2
2914	Bionic Detectors Based on Lowâ€Bandgap Inorganic Perovskite for Selective NIRâ€I Photon Detection and Imaging. Advanced Materials, 2020, 32, e1905362.	11.1	83
2915	Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells. Nano Energy, 2020, 69, 104412.	8.2	54
2916	Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer. ACS Applied Materials & Interfaces, 2020, 12, 2417-2423.	4.0	40
2917	Synthesis, structural and Raman spectroscopic in organicâ^inorganic halide perovskites based on β-Alanine. Journal of Molecular Structure, 2020, 1204, 127380.	1.8	13

#	Article	IF	CITATIONS
2918	Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energy, 2020, 68, 104289.	8.2	83
2919	Single Crystal Perovskite Solar Cells: Development and Perspectives. Advanced Functional Materials, 2020, 30, 1905021.	7.8	171
2920	The Role of the Interfaces in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901469.	1.9	239
2921	Zur Rolle der Iodidâ€Methylammoniumâ€Interaktion in der Ferroelektrizitäin CH ₃ NH ₃ Pbl ₃ . Angewandte Chemie, 2020, 132, 432-436.	1.6	2
2922	Comparative study of hybrid perovskite phototransistors based on CVD-grown and spin-coated MAPb13. Journal of Alloys and Compounds, 2020, 815, 152404.	2.8	11
2923	Spatially Resolved Photogenerated Exciton and Charge Transport in Emerging Semiconductors. Annual Review of Physical Chemistry, 2020, 71, 1-30.	4.8	95
2924	Molecule occupancy by a <i>n</i> -butylamine treatment to facilitate the conversion of PbI ₂ to perovskite in sequential deposition. Physical Chemistry Chemical Physics, 2020, 22, 981-984.	1.3	4
2925	Laminating Fabrication of Bifacial Organic-Inorganic Perovskite Solar Cells. International Journal of Photoenergy, 2020, 2020, 1-8.	1.4	6
2926	Efficient Bifacial Passivation with Crosslinked Thioctic Acid for Highâ€Performance Methylammonium Lead Iodide Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905661.	11.1	127
2927	Antiperovskites with Exceptional Functionalities. Advanced Materials, 2020, 32, e1905007.	11.1	93
2928	Polarizationâ€Dependent Photoluminescence of a Highly (100)â€Oriented Perovskite Film. ChemPhysChem, 2020, 21, 204-211.	1.0	5
2929	Fabrication of CH 3 NH 3 PbBr 3 â€Based Perovskite Singleâ€Crystal Arrays by Spinâ€Coating Method Using Hydrophobic Patterned Substrate. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900511.	0.8	5
2930	A chain-type diamine strategy towards strongly anisotropic triiodide of DMEDA·I6. Science China Materials, 2020, 63, 566-574.	3.5	4
2931	Improvement of photovoltaic performance of perovskite solar cells by interface modification with CaTiO3. Journal of Power Sources, 2020, 449, 227504.	4.0	16
2932	Charge Injection from Excited Cs ₂ AgBiBr ₆ Quantum Dots into Semiconductor Oxides. Chemistry of Materials, 2020, 32, 510-517.	3.2	21
2933	Distinguish the Quenching and Degradation of CH ₃ NH ₃ PbI ₃ Perovskite by Simultaneous Absorption and Photoluminescence Measurements. Journal of Physical Chemistry C, 2020, 124, 1207-1213.	1.5	6
2934	Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting. ACS Energy Letters, 2020, 5, 232-237.	8.8	68
2935	The application of transition metal complexes in hole-transporting layers for perovskite solar cells: Recent progress and future perspectives. Coordination Chemistry Reviews, 2020, 406, 213143.	9.5	50

#	Article	IF	CITATIONS
2936	Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells. Journal of Materials Science and Technology, 2020, 42, 38-45.	5.6	15
2937	Rashba Band Splitting in CH ₃ NH ₃ PbI ₃ : An Insight from Spin-Polarized Scanning Tunneling Spectroscopy. Nano Letters, 2020, 20, 292-299.	4.5	18
2938	Perovskite solar cells: The new epoch in photovoltaics. Solar Energy, 2020, 196, 295-309.	2.9	53
2939	Enhanced Optical Absorption and Interfacial Carrier Separation of CsPbBr ₃ /Graphene Heterostructure: Experimental and Theoretical Insights. ACS Applied Materials & Interfaces, 2020, 12, 3086-3095.	4.0	23
2940	On the electrical and photoelectrical properties of CH3NH3PBI3 perovskites thin films. Solar Energy, 2020, 195, 446-453.	2.9	21
2941	Performance improvement of planar perovskite solar cells with cobalt-doped interface layer. Applied Surface Science, 2020, 507, 145081.	3.1	22
2942	The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. JPhys Energy, 2020, 2, 022001.	2.3	76
2943	Bandâ€Edge Exciton Fine Structure and Exciton Recombination Dynamics in Single Crystals of Layered Hybrid Perovskites. Advanced Functional Materials, 2020, 30, 1907979.	7.8	68
2944	Polarons in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1902748.	10.2	84
2945	Fabricating an optimal rutile TiO2 electron transport layer by delicately tuning TiCl4 precursor solution for high performance perovskite solar cells. Nano Energy, 2020, 68, 104336.	8.2	33
2946	Dual-passivation of ionic defects for highly crystalline perovskite. Nano Energy, 2020, 68, 104320.	8.2	55
2947	X-ray diffraction and Raman spectroscopy for lead halide perovskites. , 2020, , 23-47.		2
2948	Optical absorption and photoluminescence spectroscopy. , 2020, , 49-79.		9
2949	Current-voltage analysis: lessons learned from hysteresis. , 2020, , 81-108.		9
2950	Time resolved photo-induced optical spectroscopy. , 2020, , 139-160.		2
2951	Organic-inorganic metal halide perovskite tandem devices. , 2020, , 237-254.		1
2952	First principles investigation on long alkyl chain-based surface anchoring for self-assembled bilayer. Applied Surface Science, 2020, 506, 144692.	3.1	2
2953	CH3NH3PbI3:MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Solar Energy, 2020, 195, 436-445.	2.9	42

#	Article	IF	Citations
2954	Stabilization of Inorganic CsPb _{0.5} Sn _{0.5} I ₂ Br Perovskite Compounds by Antioxidant Tea Polyphenol. Solar Rrl, 2020, 4, 1900457.	3.1	43
2955	NiO _{<i>x</i>} /Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21%. ACS Energy Letters, 2020, 5, 79-86.	8.8	104
2956	Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications. Progress in Materials Science, 2020, 109, 100620.	16.0	100
2957	Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31, 152002.	1.3	31
2958	Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762.	10.2	50
2959	Highly Efficient Sn–Pb Perovskite Solar Cell and Highâ€Performance Allâ€Perovskite Fourâ€Terminal Tandem Solar Cell. Solar Rrl, 2020, 4, 1900396.	3.1	30
2960	Recent Developments in Leadâ€Free Double Perovskites: Structure, Doping, and Applications. Chemistry - an Asian Journal, 2020, 15, 242-252.	1.7	74
2961	Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review. Renewable and Sustainable Energy Reviews, 2020, 119, 109608.	8.2	83
2962	Inverted planar perovskite solar cells featuring ligand-protecting colloidal NiO nanocrystals hole transport layer. Vacuum, 2020, 172, 109077.	1.6	12
2963	Research Direction toward Scalable, Stable, and High Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903106.	10.2	193
2964	Ethylenediamine chlorides additive assisting formation of high-quality formamidinium-caesium perovskite film with low trap density for efficient solar cells. Journal of Power Sources, 2020, 449, 227484.	4.0	14
2965	Effects of Thermal Annealing Duration on the Film Morphology of Methylamine Lead Triiodide (MAPbI3) Perovskite Thin Films in Ambient Air. Journal of Nanoscience and Nanotechnology, 2020, 20, 3795-3801.	0.9	4
2966	Room-Temperature-Processed Amorphous Sn-In-O Electron Transport Layer for Perovskite Solar Cells. Materials, 2020, 13, 32.	1.3	7
2967	Performance enhancement of thin-film solar cell using Yagi–Uda nanoantenna array embedded inside the anti-reflection coating. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
2968	Physical origins of high photoluminescence quantum yield in α-CsPbI3 nanocrystals and their stability. Applied Surface Science, 2020, 508, 145188.	3.1	13
2969	Improved Pore-Filling and Passivation of Defects in Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells Based on <scp>d</scp> -Sorbitol Hexaacetate-Modified MAPbI ₃ . ACS Applied Materials & Interfaces, 2020, 12, 47677-47683.	4.0	7
2970	Edge Influence on Charge Carrier Localization and Lifetime in CH ₃ NH ₃ PbBr ₃ Perovskite: <i>Ab Initio</i> Quantum Dynamics Simulation. Journal of Physical Chemistry Letters, 2020, 11, 9100-9109.	2.1	39
2971	Interlayer Polarization Explains Slow Charge Recombination in Two-Dimensional Halide Perovskites by Nonadiabatic Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2020, 11, 9032-9037.	2.1	13

#	Article	IF	CITATIONS
2972	Theoretical analysis of the structural, electronic, optical and thermodynamic properties of trigonal and hexagonal Cs3Sb2I9 compound. European Physical Journal B, 2020, 93, 1.	0.6	21
2973	Pâ€121: Solution Processed Organicâ€Inorganic Hybrid Perovskite TFTs with Excellent Ambient Air Stability. Digest of Technical Papers SID International Symposium, 2020, 51, 1825-1828.	0.1	Ο
2974	Effect of acetic acid concentration on optical properties of lead acetate based methylammonium lead iodide perovskite thin film. Optical Materials, 2020, 109, 110456.	1.7	17
2975	Growth process control produces high-crystallinity and complete-reaction perovskite solar cells. RSC Advances, 2020, 10, 35898-35905.	1.7	4
2976	Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 2020, 3, 704-710.	13.1	143
2977	Influence of Temperature, Pressure, and Humidity on the Stabilities and Transition Kinetics of the Various Polymorphs of FAPbI ₃ . Journal of Physical Chemistry C, 2020, 124, 22972-22980.	1.5	18
2978	Strategy for the Complete Conversion of Thermally Grown PbI2 Layers in Inverted Perovskite Solar Cells. Electronic Materials Letters, 2020, 16, 588-594.	1.0	6
2979	Stabilization of Intrinsic Ions in Perovskite Solar Cells by Employment of a Bipolar Star-Shaped Organic Molecule as a Charge Transport Buffer. ACS Applied Energy Materials, 2020, 3, 10632-10641.	2.5	2
2980	Compositional Engineering Study of Lead-Free Hybrid Perovskites for Solar Cell Applications. ACS Applied Materials & Interfaces, 2020, 12, 49636-49647.	4.0	31
2981	Toward Stable Solution-Processed High-Mobility p <i>-</i> Type Thin Film Transistors Based on Halide Perovskites. ACS Nano, 2020, 14, 14790-14797.	7.3	42
2982	Single Source, Surfactantâ€Free, and One‣tep Solvothermal Route Synthesized TiO ₂ Microspheres for Highly Efficient Mesoscopic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000519.	3.1	7
2983	Historical Analysis of Highâ€Efficiency, Largeâ€Area Solar Cells: Toward Upscaling of Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002202.	11.1	103
2984	Infrared Spectra of the CH ₃ NH ₃ PbI ₃ Hybrid Perovskite: Signatures of Phase Transitions and of Organic Cation Dynamics. Journal of Physical Chemistry C, 2020, 124, 23307-23316.	1.5	5
2985	A Two-Step, All Solution Process for Conversion of Lead Sulfide to Methylammonium Lead Iodide Perovskite Thin Films. Thin Solid Films, 2020, 714, 138367.	0.8	4
2986	Solid-State Ionic Rectification in Perovskite Nanowire Heterostructures. Nano Letters, 2020, 20, 8151-8156.	4.5	12
2987	Photoinduced Phase Segregation in Mixed Halide Perovskites: Thermodynamic and Kinetic Aspects of Cl–Br Segregation. Advanced Optical Materials, 2021, 9, 2001440.	3.6	46
2988	Nanostructured boron nitride–based materials: synthesis and applications. Materials Today Advances, 2020, 8, 100107.	2.5	46
2989	Tuning the Ultrafast Response of Fano Resonances in Halide Perovskite Nanoparticles. ACS Nano, 2020, 14, 13602-13610.	7.3	14

#	Article	IF	CITATIONS
2990	Implicit Tandem Organic–Inorganic Hybrid Perovskite Solar Cells Based on Internal Dye Sensitization: Robotized Screening, Synthesis, Device Implementation, and Theoretical Insights. Journal of the American Chemical Society, 2020, 142, 18437-18448.	6.6	18
2991	Structure-induced optoelectronic properties of phenothiazine-based materials. Journal of Materials Chemistry C, 2020, 8, 15486-15506.	2.7	58
2992	A Quantitative Analysis of the Research Trends in Perovskite Solar Cells in 2009–2019. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000441.	0.8	5
2993	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	11.7	137
2994	Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies. Materials Today, 2020, 41, 120-142.	8.3	81
2995	Origin of temperature-dependent performance of hole-transport-layer-free perovskite solar cells doped with CuSCN. Organic Electronics, 2020, 87, 105958.	1.4	7
2996	Performance enhancement of CsPbI2Br perovskite solar cells via stoichiometric control and interface engineering. Solar Energy, 2020, 211, 654-660.	2.9	9
2997	Preparing Ambient-Processed Perovskite Solar Cells with Better Electronic Properties via Preheating Assisted One-Step Deposition Method. Nanoscale Research Letters, 2020, 15, 178.	3.1	5
2998	Miscellaneous and Perspicacious: Hybrid Halide Perovskite Materials Based Photodetectors and Sensors. Advanced Optical Materials, 2020, 8, 2001095.	3.6	46
2999	Highly Efficient Photoluminescence and Lasing from Hydroxide Coated Fully Inorganic Perovskite Micro/Nanoâ€Rods. Advanced Optical Materials, 2020, 8, 2001235.	3.6	2
3000	Crystallization Kinetics in 2D Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2002558.	10.2	124
3001	Solarâ€Driven Electrochemical CO ₂ Reduction with Heterogeneous Catalysts. Advanced Energy Materials, 2021, 11, 2002652.	10.2	67
3002	Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Leadâ€Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000452.	3.1	14
3003	Liquid-like Interfaces Mediate Structural Phase Transitions in Lead Halide Perovskites. Matter, 2020, 3, 534-545.	5.0	42
3004	Defect and interface engineering of highly efficient La2NiMnO6 planar perovskite solar cell: A theoretical study. Optical Materials, 2020, 108, 110453.	1.7	13
3005	Study on fluorescence properties and stability of Cu2+-Substituted CsPbBr3 perovskite quantum dots. Physica B: Condensed Matter, 2020, 599, 412488.	1.3	15
3006	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 12, 22425-22451.	2.8	26
3007	Critical Assessment of the Use of Excess Lead Iodide in Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 6505-6512.	2.1	116

#	Article	IF	CITATIONS
3008	Electron transport enhancement in perovskite solar cell <i>via</i> the polarized BaTiO ₃ thin film. Journal of Materials Research, 2020, 35, 2158-2165.	1.2	12
3009	Impact of Processing on Structural and Compositional Evolution in Mixed Metal Halide Perovskites during Film Formation. Advanced Functional Materials, 2020, 30, 2001752.	7.8	39
3010	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 2020, 30, 2001904.	7.8	78
3011	Enhanced Performance of Planar Perovskite Solar Cells Induced by Van Der Waals Epitaxial Growth of Mixed Perovskite Films on WS ₂ Flakes. Advanced Functional Materials, 2020, 30, 2002358.	7.8	73
3012	Roomâ€Temperatureâ€Processed Fullerene/TiO ₂ Nanocomposite Electron Transporting Layer for Highâ€Efficiency Rigid and Flexible Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000247.	3.1	18
3013	Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers. Nano Energy, 2020, 77, 105110.	8.2	31
3014	Effect of functional groups of self assembled monolayer molecules on the performance of inverted perovskite solar cell. Materials Chemistry and Physics, 2020, 254, 123435.	2.0	16
3015	Competitive Nucleation Mechanism for CsPbBr ₃ Perovskite Nanoplatelet Growth. Journal of Physical Chemistry Letters, 2020, 11, 6535-6543.	2.1	31
3016	Perovskite Solar Cells for BIPV Application: A Review. Buildings, 2020, 10, 129.	1.4	60
3017	Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: A numerical study. Superlattices and Microstructures, 2020, 146, 106652.	1.4	48
3018	Fluorescent methylammonium lead halide perovskite quantum dots as a sensing material for the detection of polar organochlorine pesticide residues. Analyst, The, 2020, 145, 6683-6690.	1.7	12
3019	An air-stable two-dimensional perovskite artificial synapse. Semiconductor Science and Technology, 2020, 35, 104001.	1.0	6
3020	Lowâ€Dimensional Hybrid Perovskites for Fieldâ€Effect Transistors with Improved Stability: Progress and Challenges. Advanced Electronic Materials, 2020, 6, 2000137.	2.6	45
3021	Ce _{1.0} Mo _{0.15} Eu _{0.05} O _{<i>x</i>} Aqueous Perovskites for Stable Near-Infrared Emission and Their Sensitivity toward Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 3126-3134.	3.2	2
3022	Pressureâ€5uppressed Carrier Trapping Leads to Enhanced Emission in Twoâ€Đimensional Perovskite (HA) ₂ (GA)Pb ₂ 1 ₇ . Angewandte Chemie, 2020, 132, 17686-17692.	1.6	26
3023	Photon Upconverting Solid Films with Improved Efficiency for Endowing Perovskite Solar Cells with Nearâ€infrared Sensitivity. ChemPhotoChem, 2020, 4, 5271-5278.	1.5	26
3024	Advances in perovskite photodetectors. InformaÄnÃ-Materiály, 2020, 2, 1247-1256.	8.5	107
3025	Identifying the Soft Nature of Defective Perovskite Surface Layer and Its Removal Using a Facile Mechanical Approach. Joule, 2020, 4, 2661-2674.	11.7	81

ARTICLE IF CITATIONS Shining a light on perovskite devices. Nature Electronics, 2020, 3, 657-657. 13.1 3 3026 Room-temperature random lasing of metal-halide perovskites <i>via</i> morphology-controlled 2.2 synthesis. Nanoscale Advances, 2020, 2, 5833-5840. Static Rashba Effect by Surface Reconstruction and Photon Recycling in the Dynamic Indirect Gap of APbBr₃ (A = Cs, CH₃ NH₃) Single Crystals. Journal of the American 3028 6.6 33 Chemical Society, 2020, 142, 21059-21067. Numerical Investigation Energy Conversion Performance of Tin-Based Perovskite Solar Cells Using 99 Cell Capacitance Simulator. Energies, 2020, 13, 5907. Temperature-Dependent Electroabsorption Spectra and Exciton Binding Energy in a Perovskite CH₃NH<sub>NH₃NH<sub>NH<sub>NH₃NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH<sub>NH 3030 2.5 10 2020, 3, 11830-11840. Tin and germanium substitution in lead free perovskite solar cell: current status and future trends. IOP Conference Series: Materials Science and Engineering, 2020, 957, 012057. 0.3 Two-Dimensional Hybrid Perovskite Ferroelectric Induced by Perfluorinated Substitution. Journal of 3032 6.6 96 the American Chemical Society, 2020, 142, 20208-20215. ZnO Nanorods: An Advanced Cathode Buffer Layer for Inverted Perovskite Solar Cells. ACS Applied 3033 2.5 Energy Materials, 2020, 3, 11781-11791. Interfacial electronic features in methyl-ammonium lead iodide and p-type oxide heterostructures: 3034 new insights for inverted perovskite solar cells. Physical Chemistry Chemical Physics, 2020, 22, 1.3 12 28401-28413. Calculation and Fabrication of a CH3NH3Pb(SCN)xI3â^'x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells. Journal of the Korean Physical Society, 2020, 77, 1210-1217. Selective Valorization of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Using Atmospheric O₂ and MAPbBr₃ Perovskite under Visible Light. ACS Catalysis, 2020, 10, 3036 83 5.514793-14800. Dependence of Precursors on Solution-Processed SnO₂ as Electron Transport Layers for 0.5 CsPbBr₃ Perovskite Solar Cells. Nano, 2020, 15, 2050161. Combined Computational and Experimental Investigation on the Nature of Hydrated Iodoplumbate 3038 Complexes: Insights into the Dual Role of Water in Perovskite Precursor Solutions. Journal of 1.2 21 Physical Chemistry B, 2020, 124, 11481-11490. Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional 49 molybdenum chalcogenides. Npj 2D Materials and Applications, 2020, 4, . Effect of Perovskite material on performance of surface plasmon resonance biosensor. IET 3040 1.8 27 Optoelectronics, 2020, 14, 256-265. Applications of Selfâ€Assembled Monolayers for Perovskite Solar Cells Interface Engineering to 3041 Address Efficiency and Stability. Advanced Energy Materials, 2020, 10, 2002989. Semiconducting metal oxides empowered by graphene and its derivatives: Progresses and critical 3042 1.1 18 perspective on selected functional applications. Journal of Applied Physics, 2020, 128, . Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface 3043 Passivation of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 52643-52651.

ARTICLE IF CITATIONS Nanoparticle Wetting Agent for Gas Stream-Assisted Blade-Coated Inverted Perovskite Solar Cells and 3044 4.0 22 Modules. ACS Applied Materials & amp; Interfaces, 2020, 12, 52678-52690. Self-Elimination of Intrinsic Defects Improves the Low-Temperature Performance of Perovskite 3045 11.7 Photovoltaics. Joule, 2020, 4, 1961-1976. Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 3046 23.0 248 2020, 120, 9835-9950. A comprehensive review on synthesis and applications of single crystal perovskite halides. Progress in 3047 3.9 Solid State Chemistry, 2020, 60, 100286. Hybrid Perovskites with Larger Organic Cations Reveal Autocatalytic Degradation Kinetics and 3048 1.9 12 Increased Stability under Light. Inorganic Chemistry, 2020, 59, 12176-12186. Halide (Cl/Br)-Incorporated Organic–Inorganic Metal Trihalide Perovskite Films: Study and 3049 Investigation of Dielectric Properties and Mechanical Energy Harvesting Performance. ACS Applied Electronic Materials, 2020, 2, 2579-2590. Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites. Nature 3050 5.8 136 Communications, 2020, 11, 4023. Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations. Journal of Materials Chemistry C, 2020, 8, 12012-12035. Effect of alkaline earth metal chloride additives BCl₂ (B = Mg, Ca, Sr and Ba) on the 3052 photovoltaic performance of FAPbI₃ based perovskite solar cells. Nanoscale Horizons, 4.1 40 2020, 5, 1332-1343. Reduced energy loss in SnO₂/ZnO bilayer electron transport layer-based perovskite solar cells for achieving high efficiencies in outdoor/indoor environments. Journal of Materials Chemistry A, 2020, 8, 17163-17173. 5.2 Anharmonicity and Ultralow Thermal Conductivity in Lead-Free Halide Double Perovskites. Physical 3054 2.9 90 Review Letters, 2020, 125, 045701. Inhibition of Phase Segregation in Cesium Lead Mixed-Halide Perovskites by B-Site Doping. IScience, 2020, 23, 101415. The impact of synthesis techniques on the properties of hybrid perovskite materials for photovoltaic 3056 0.2 2 application. Materials Express, 2020, 10, 1127-1134. Synthesis of Perovskite Nanocrystals and Their Photon-Emission Application in Conjunction With 1.8 Líquid Crystals. Frontiers in Chémistry, 2020, 8, 574. Electrodeposited ZnO Nanorods as Efficient Photoanodes for the Degradation of Rhodamine B. 3058 0.8 12 Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000349. Low-temperature processed rare-earth doped brookite TiO2 scaffold for UV stable, hysteresis-free and 3059 58 high-performance perovskite solar cells. Nano Energy, 2020, 77, 105183. Enhanced moisture stability of mixed cation perovskite solar cells enabled by a room-temperature 3060 solution-processed organic-inorganic bilayer hole transport layer. Journal of Alloys and Compounds, 2.8 16 2020, 847, 156512. Understanding the Degradation of Spiroâ€OMeTADâ€Based Perovskite Solar Cells at High Temperature. 3.1 Solar Rrl, 2020, 4, 2000305.

#	Article	IF	Citations
3062	Realization of Moisture-Resistive Perovskite Films for Highly Efficient Solar Cells Using Molecule Incorporation. ACS Applied Materials & amp; Interfaces, 2020, 12, 39063-39073.	4.0	11
3063	Unique phonon modes of a CH3NH3PbBr3 hybrid perovskite film without the influence of defect structures: an attempt toward a novel THz-based application. NPG Asia Materials, 2020, 12, .	3.8	20
3064	Lead Halide Perovskite Nanocrystals: Room Temperature Syntheses toward Commercial Viability. Advanced Energy Materials, 2020, 10, 2001349.	10.2	63
3065	Thirdâ€Generation Solar Cells: Toxicity and Risk of Exposure. Helvetica Chimica Acta, 2020, 103, e2000074.	1.0	18
3066	Metal–Semiconductor–Metal Thinâ€Film Xâ€Ray Detector Based on Halide Perovskites. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000296.	0.8	2
3067	Highly efficient and stable perovskite solar cells using thionyl chloride as a p-type dopant for spiro-OMeTAD. Journal of Alloys and Compounds, 2020, 847, 156500.	2.8	19
3068	Roll-transferred graphene encapsulant for robust perovskite solar cells. Nano Energy, 2020, 77, 105182.	8.2	24
3069	Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Convergence, 2020, 7, 25.	6.3	33
3070	Single-crystal perovskite detectors: development and perspectives. Journal of Materials Chemistry C, 2020, 8, 11664-11674.	2.7	35
3071	Perovskite and Organic Solar Cells on a Rocket Flight. Joule, 2020, 4, 1880-1892.	11.7	107
3072	Performance enhancement of low temperature processed tin oxide as an electron transport layer for perovskite solar cells under ambient conditions. International Journal of Energy Research, 2020, 44, 11361-11371.	2.2	7
3073	Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13, 196-224.	1.9	25
3074	Temperature dependence of CIGS and perovskite solar cell performance: an overview. SN Applied Sciences, 2020, 2, 1.	1.5	26
3075	Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells. Sustainable Materials and Technologies, 2020, 26, e00210.	1.7	18
3076	MAPbI3 Quasi-Single-Crystal Films Composed of Large-Sized Grains with Deep Boundary Fusion for Sensitive Vis–NIR Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 38314-38324.	4.0	12
3077	Toward Greener Solution Processing of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 13126-13138.	3.2	41
3078	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	1.1	91
3079	Modeling and size control of CsPbBr ₃ perovskite quantum dots. , 2020, , .		3

ARTICLE IF CITATIONS Role of Individual Bands in the Unusual Temperature-Dependent Band Gap of Methylammonium Lead 3080 1.5 7 Iodide. Journal of Physical Chemistry C, 2020, 124, 19841-19848. Terahertz Conductivity Analysis for Highly Doped Thin-Film Semiconductors. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1431-1449. 1.2 The compositional engineering of organic–inorganic hybrid perovskites for high-performance 3082 3.2 10 perovskite solar cells. Emergent Materials, 2020, 3, 727-750. Observing dynamic and static Rashba effects in a thin layer of 3D hybrid perovskite nanocrystals using 3083 transient absorption spectroscopy. AIP Advances, 2020, 10, . Defects and Their Passivation in Hybrid Halide Perovskites toward Solar Cell Applications. Solar Rrl, 3084 3.1 47 2020, 4, 2000505. Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 49281-49296. 3085 4.0 Effects of substrates on the performance of optoelectronic devices: A review. Cogent Engineering, 3086 1.1 9 2020, 7, 1829274. Recent Advances of Dopant-Free Polymer Hole-Transporting Materials for Perovskite Solar Cells. ACS 2.5 Applied Energy Materials, 2020, 3, 10282-10302. 3088 Metastable alloying structures in MAPbI3â[^]xClx crystals. NPG Asia Materials, 2020, 12, . 3.8 12 Effect of energetic distribution of trap states on fill factor in perovskite solar cells. Journal of Power Sources, 2020, 479, 229077. Simple Production of Highly Luminescent Organometal Halide Perovskite Nanocrystals Using 3090 3.2 14 Ultrasound-Assisted Bead Milling. ACS Sustainable Chemistry and Engineering, 2020, 8, 16469-16476. CIGS and perovskite solar cells $\hat{a} \in a$ noverview. Emerging Materials Research, 2020, 9, 812-824. 0.4 Ultralow Lattice Thermal Conductivity in Double Perovskite Cs₂PtI₆: A 3092 2.5 120 Promising Thermoelectric Material. ACS Applied Energy Materials, 2020, 3, 11293-11299. A Review on Lead-Free Hybrid Halide Perovskites as Light Absorbers for Photovoltaic Applications Based on Their Structural, Optical, and Morphological Properties. Molecules, 2020, 25, 5039. 3093 1.7 Biodeterioration Affecting Efficiency and Lifetime of Plastic-Based Photovoltaics. Joule, 2020, 4, 3094 11.7 6 2088-2100. Electronic and geometrical parametrization of the role of organic/inorganic cations on the 3095 photovoltaic perovskite band gap. Physical Chemistry Chemical Physics, 2020, 22, 27757-27769. Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small 3096 4.6 63 Methods, 2020, 4, 2000395. Epitaxial Metal Halide Perovskites by Inkjetâ€Printing on Various Substrates. Advanced Functional Materials, 2020, 30, 2004612.

#	Article	IF	CITATIONS
3098	Multifunctional Charge Transporting Materials for Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2002176.	11.1	55
3099	Effect of Polyethylene Glycol Incorporation in Electron Transport Layer on Photovoltaic Properties of Perovskite Solar Cells. Nanomaterials, 2020, 10, 1753.	1.9	12
3100	Progress and Prospects of Solution-Processed Two-Dimensional Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 21895-21908.	1.5	32
3101	Photo-assisted deposited titanium dioxide for all-inorganic CsPbl2Br perovskite solar cells with high efficiency exceeding 13.6%. Applied Physics Letters, 2020, 117, 093902.	1.5	2
3102	Terahertz Antenna Array Based on a Hybrid Perovskite Structure. IEEE Open Journal of Antennas and Propagation, 2020, 1, 464-471.	2.5	17
3103	Ultrastable Perovskite–Zeolite Composite Enabled by Encapsulation and Inâ€Situ Passivation. Angewandte Chemie - International Edition, 2020, 59, 23100-23106.	7.2	75
3104	Nanoporous GaN/ <i>n-</i> type GaN: A Cathode Structure for ITO-Free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3295-3303.	8.8	23
3105	Energy Upconversion in Rareâ€Earthâ€Doped Tinâ€Based Double Halo Perovskites, A 2 SnCl 6 (A = K, Rb, and) 1	j ETQq1	1 0.784314 rgf
3106	Highly Tunable Single-Phase Excitons in Mixed Halide Layered Perovskites. ACS Applied Electronic Materials, 2020, 2, 3199-3210.	2.0	10
3107	Omnidirectional, Broadband Light Absorption in a Hierarchical Nanoturf Membrane for an Advanced Solarâ€Vapor Generator. Advanced Functional Materials, 2020, 30, 2003862.	7.8	48
3108	Tailoring the Grain Boundaries of Wideâ€Bandgap Perovskite Solar Cells by Molecular Engineering. Solar Rrl, 2020, 4, 2000384.	3.1	15
3109	Doping in inorganic perovskite for photovoltaic application. Nano Energy, 2020, 78, 105354.	8.2	53
3110	The dominant role of memory-based capacitive hysteretic currents in operation of photovoltaic perovskites. Nano Energy, 2020, 78, 105398.	8.2	14
3111	Decoration of MAPbI ₃ Perovskites with Carbon Dots for Enhanced Photoelectrochemical Performance and Stability. Nano, 2020, 15, 2050141.	0.5	1
3112	Contrasting Electron and Hole Transfer Dynamics from CH(NH2)2PbI3 Perovskite Quantum Dots to Charge Transport Layers. Applied Sciences (Switzerland), 2020, 10, 5553.	1.3	5
3113	Growth and optimization of hybrid perovskite single crystals for optoelectronics/electronics and sensing. Journal of Materials Chemistry C, 2020, 8, 13918-13952.	2.7	17
3114	Rashba Splitting in Two Dimensional Hybrid Perovskite Materials for High Efficient Solar and Heat Energy Harvesting. Journal of Physical Chemistry Letters, 2020, 11, 7679-7686.	2.1	14
3115	Ambient Manipulation of Perovskites by Alternating Electric Field toward Tunable Photovoltaic Performance. Advanced Functional Materials, 2020, 30, 2004652.	7.8	9

#	Article	IF	CITATIONS
3116	SnS Quantum Dot–CsPbBr 3 Perovskite Bulk Heterojunction for Enhanced Photoelectrical Conversion Efficiency. Solar Rrl, 2020, 4, 2000417.	3.1	8
3117	Grapheneâ€Based Materials in Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000502.	3.1	36
3118	Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , .	0.4	4
3119	Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO ₂ and SnO ₂ . Journal of Materials Chemistry A, 2020, 8, 19768-19787.	5.2	60
3120	Realizing Reduced Imperfections via Quantum Dots Interdiffusion in High Efficiency Perovskite Solar Cells. Advanced Materials, 2020, 32, e2003296.	11.1	50
3121	Fabrication and characterization of inkjet-printed 2D perovskite optoelectronic devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	6
3122	Phase Transitions and Anion Exchange in All-Inorganic Halide Perovskites. Accounts of Materials Research, 2020, 1, 3-15.	5.9	67
3123	Synergetic Effect of Plasmonic Gold Nanorods and MgO for Perovskite Solar Cells. Nanomaterials, 2020, 10, 1830.	1.9	13
3124	Phenomenological mechanisms of hybrid organic–inorganic perovskite thin film deposition by RIR-MAPLE. Journal of Applied Physics, 2020, 128, 105303.	1.1	3
3125	2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties. Nanoscale, 2020, 12, 21094-21117.	2.8	45
3126	Unraveling the Photogenerated Electron Localization on the Defect-Free CH3NH3PbI3(001) Surfaces: Understanding and Implications from a First-Principles Study. Journal of Physical Chemistry Letters, 2020, 11, 8041-8047.	2.1	6
3127	A Comprehensive Survey on Hybrid Communication in Context of Molecular Communication and Terahertz Communication for Body-Centric Nanonetworks. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2020, 6, 107-133.	1.4	44
3128	Ultrastable Perovskite–Zeolite Composite Enabled by Encapsulation and Inâ€Situ Passivation. Angewandte Chemie, 2020, 132, 23300-23306.	1.6	7
3129	New Fullerene Derivative as an nâ€Type Material for Highly Efficient, Flexible Perovskite Solar Cells of a pâ€iâ€n Configuration. Advanced Functional Materials, 2020, 30, 2004357.	7.8	38
3130	Recent Progress in Metal Halide Perovskiteâ€Based Tandem Solar Cells. Advanced Materials, 2020, 32, e2002228.	11.1	39
3131	Hot Carrier Cooling and Recombination Dynamics of Chlorine-Doped Hybrid Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 8430-8436.	2.1	11
3132	Yb/Ho Codoped Layered Perovskite Bismuth Titanate Microcrystals with Upconversion Luminescence: Fabrication, Characterization, and Application in Optical Fiber Ratiometric Thermometry. Inorganic Chemistry, 2020, 59, 14229-14235.	1.9	25
3133	Constructing Graded Perovskite Homojunctions by Adding Large Radius Phenylmethylamine Ions for Sequential Spin-Coating Deposition Method To Improve the Efficiency of Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 20765-20772.	1.5	15

#	Article	IF	CITATIONS
3134	Graphene/Metal Oxide Nanocomposite Usage as Photoanode in Dye-Sensitized and Perovskite Solar Cells. , 2020, , .		2
3135	Synthesis of Interface-Driven Tunable Bandgap Metal Oxides. , 2020, 2, 1211-1217.		14
3136	Octahedron rotation evolution in 2D perovskites and its impact on optoelectronic properties: the case of Ba–Zr–S chalcogenides. Materials Horizons, 2020, 7, 2985-2993.	6.4	11
3137	Role of formamidinium in the crystallization of FAxMA1-xPbI3-yCly perovskite via recrystallization-assisted bath-immersion sequential ambient deposition. Journal of Power Sources, 2020, 477, 228736.	4.0	3
3138	Preferred oriented cation configurations in high pressure phases IV and V of methylammonium lead iodide perovskite. Scientific Reports, 2020, 10, 21138.	1.6	5
3139	Stress Effects on Vibrational Spectra of a Cubic Hybrid Perovskite: A Probe of Local Strain. Journal of Physical Chemistry C, 2020, 124, 27287-27299.	1.5	7
3140	Enhanced Electro-Optical Performance of Inorganic Perovskite/a-InGaZnO Phototransistors Enabled by Sn–Pb Binary Incorporation with a Selective Photonic Deactivation. ACS Applied Materials & Interfaces, 2020, 12, 58038-58048.	4.0	9
3141	Recent Progress of Lead Halide Perovskite Sensitized Solar Cells. , 2020, , .		0
3142	Effect of defect densities and absorber thickness on carrier collection in Perovskite solar cells. , 2020, , .		1
3143	Recent Progress in Developing Monolithic Perovskite/Si Tandem Solar Cells. Frontiers in Chemistry, 2020, 8, 603375.	1.8	22
3144	Electronic Structure and Surface Properties of Copper Thiocyanate: A Promising Hole Transport Material for Organic Photovoltaic Cells. Materials, 2020, 13, 5765.	1.3	8
3145	Irreversibility in Anion Exchange Between Cesium Lead Bromide and Iodide Nanocrystals Imaged by Single-Particle Fluorescence. Journal of Physical Chemistry C, 2020, 124, 27158-27168.	1.5	4
3146	Luminescent Metal–Organic Frameworks for White LEDs. Advanced Optical Materials, 2021, 9, 2001817.	3.6	71
3147	Perovskite solar cells based on CH3NH3SnI3 Structure. IOP Conference Series: Materials Science and Engineering, 2020, 928, 072148.	0.3	3
3148	Three-Dimensional CsPbCl3 Perovskite Anode for Quasi-Solid-State Li -Ion and Dual-Ion Batteries: Mechanism of Li+ Conversion Process in Perovskite. Physical Review Applied, 2020, 14, .	1.5	17
3149	The Bright Side and Dark Side of Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2020, 124, 27340-27355.	1.5	3
3150	High Efficiency (41.85) of Br Perovskites base solar cells with ZnO and TiO2 comparable study as ETM. IOP Conference Series: Materials Science and Engineering, 2020, 928, 072091.	0.3	1
3151	Temperature-Assisted Crystal Growth of Photovoltaic α-Phase FAPbI ₃ Thin Films by Sequential Blade Coating. ACS Applied Materials & Interfaces, 2020, 12, 55830-55837.	4.0	11

#	Article	IF	CITATIONS
3152	Titanium Dioxide in Chromogenic Devices: Synthesis, Toxicological Issues, and Fabrication Methods. Applied Sciences (Switzerland), 2020, 10, 8896.	1.3	1
3153	Three-Dimensional Lead Bromide Hybrid Ferroelectric Realized by Lattice Expansion. Journal of the American Chemical Society, 2020, 142, 19698-19704.	6.6	31
3154	Experimental and First-Principles Spectroscopy of Cu ₂ SrSnS ₄ and Cu ₂ BaSnS ₄ Photoabsorbers. ACS Applied Materials & Interfaces, 2020, 12, 50446-50454.	4.0	13
3155	Forecasting electronic-band structure and magnetism in complex double perovskite Ba2CdReO6. AIP Conference Proceedings, 2020, , .	0.3	3
3156	Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials, 2020, 10, 1904102.	10.2	321
3157	Improving the heterointerface in hybrid organic–inorganic perovskite solar cells by surface engineering: Insights from periodic hybrid density functional theory calculations. Journal of Computational Chemistry, 2020, 41, 1740-1747.	1.5	8
3158	High-humidity processed perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 10481-10518.	5.2	56
3159	Direct observation of surface polarization at hybrid perovskite/Au interfaces by dark transient experiments. Applied Physics Letters, 2020, 116, 183503.	1.5	11
3160	Template Stripping of Perovskite Thin Films for Dry Interfacing and Surface Structuring. ACS Applied Materials & amp; Interfaces, 2020, 12, 26601-26606.	4.0	2
3161	Tailoring the orientation of perovskite crystals via adding two-dimensional polymorphs for perovskite solar cells. JPhys Energy, 2020, 2, 034005.	2.3	16
3162	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	11.1	69
3163	Robust and Transient Writeâ€Onceâ€Readâ€Manyâ€Times Memory Device Based on Hybrid Perovskite Film with Novel Room Temperature Molten Salt Solvent. Advanced Electronic Materials, 2020, 6, 2000109.	2.6	22
3164	Preparation and characterization of MoSe2/CH3NH3PbI3/PMMA perovskite solar cells using polyethylene glycol solution. Vacuum, 2020, 178, 109441.	1.6	20
3165	Carbon nanotubes to outperform metal electrodes in perovskite solar cells <i>via</i> dopant engineering and hole-selectivity enhancement. Journal of Materials Chemistry A, 2020, 8, 11141-11147.	5.2	51
3166	Harnessing Hot Phonon Bottleneck in Metal Halide Perovskite Nanocrystals via Interfacial Electron–Phonon Coupling. Nano Letters, 2020, 20, 4610-4617.	4.5	60
3167	Tuning Surface Wettability of Buffer Layers by Incorporating Polyethylene Glycols for Enhanced Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 26670-26679.	4.0	20
3168	Effects of cation size and concentration of cationic chlorides on the properties of formamidinium lead iodide based perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 3753-3763.	2.5	17
3169	Artificial Tactile Perceptual Neuron with Nociceptive and Pressure Decoding Abilities. ACS Applied Materials & amp; Interfaces, 2020, 12, 26258-26266.	4.0	55

#	Article	IF	CITATIONS
3170	Effect of Optimization of TiO2 Electron Transport Layer on Performance of Perovskite Solar Cells with Rough FTO Substrates. Materials, 2020, 13, 2272.	1.3	7
3171	Potassiumâ€Induced Phase Stability Enables Stable and Efficient Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000098.	3.1	37
3172	Indene-C ₆₀ Bisadduct Electron-Transporting Material with the High LUMO Level Enhances Open-Circuit Voltage and Efficiency of Tin-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5581-5588.	2.5	15
3173	Dye Sensitization and Local Surface Plasmon Resonance-Enhanced Upconversion Luminescence for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 24737-24746.	4.0	65
3174	Enabling selective absorption in perovskite solar cells for refractometric sensing of gases. Scientific Reports, 2020, 10, 7761.	1.6	5
3175	Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells. Small Methods, 2020, 4, 2000065.	4.6	22
3176	Synthesis and dimensional control of CsPbBr3 perovskite nanocrystals using phosphorous based ligands. Journal of Chemical Physics, 2020, 152, 174702.	1.2	26
3177	A facile method for preparing Yb ³⁺ -doped perovskite nanocrystals with ultra-stable near-infrared light emission. RSC Advances, 2020, 10, 17635-17641.	1.7	13
3178	Modeling of Electronic Mobilities in Halide Perovskites: Adiabatic Quantum Localization Scenario. Physical Review Letters, 2020, 124, 196601.	2.9	27
3179	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	1.3	20
3180	Ionic liquid doped organic hole transporting material for efficient and stable perovskite solar cells. Physica B: Condensed Matter, 2020, 586, 412124.	1.3	18
3181	Hot carriers perspective on the nature of traps in perovskites. Nature Communications, 2020, 11, 2712.	5.8	65
3182	Optical and electrical optimization of all-perovskite pin type junction tandem solar cells. Journal Physics D: Applied Physics, 2020, 53, 315104.	1.3	8
3183	Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2003295.	7.8	100
3184	Optical and electrical properties of ferroelectric Bi0.5Na0.5TiO3-NiTiO3 semiconductor ceramics. Materials Science in Semiconductor Processing, 2020, 115, 105089.	1.9	21
3185	Contributions to Optical Properties and Efficiencies of Methyl–Ammonium Lead, Tin, and Germanium Iodide Perovskites. Journal of Physical Chemistry C, 2020, 124, 12305-12310.	1.5	6
3186	Improved Stability of Inverted and Flexible Perovskite Solar Cells with Carbon Electrode. ACS Applied Energy Materials, 2020, 3, 5126-5134.	2.5	95
3187	Annealing temperature effects on the performance of the perovskite solar cells. IOP Conference Series: Materials Science and Engineering, 2020, 757, 012039.	0.3	7

#	Article	IF	CITATIONS
3188	Mixed single-layer and self-alignment technology of organic light-emitting diodes and multi-functional integration in organic devices. Japanese Journal of Applied Physics, 2020, 59, SO0802.	0.8	1
3189	Tunable excitonic properties in two-dimensional heterostructures based on solution-processed PbI2 flakes. Journal of Materials Science, 2020, 55, 10656-10667.	1.7	3
3190	New Oxindole-Bridged Acceptors for Organic Sensitizers: Substitution and Performance Studies in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 2159.	1.7	6
3191	Electron Transport Materials: Evolution and Case Study for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000136.	3.1	32
3192	Controlled Structure and Growth Mechanism behind Hydrothermal Growth of TiO2 Nanorods. Scientific Reports, 2020, 10, 8065.	1.6	41
3193	A facile, environmentally friendly synthesis of strong photo-emissive methylammonium lead bromide perovskite nanocrystals enabled by ionic liquids. Green Chemistry, 2020, 22, 3433-3440.	4.6	29
3194	Kinetic Monte Carlo modeling of the equilibrium-based size control of CsPbBr3 perovskite quantum dots in strongly confined regime. Computers and Chemical Engineering, 2020, 139, 106872.	2.0	18
3195	The Rb ₇ Bi _{3â[~]3<i>x</i>} Sb _{3<i>x</i>} Cl ₁₆ Family: A Fully Inorganic Solid Solution with Roomâ€Temperature Luminescent Members. Angewandte Chemie, 2020, 132, 14598-14605.	1.6	11
3196	The Rb ₇ Bi _{3â^'3<i>x</i>} Sb _{3<i>x</i>} Cl ₁₆ Family: A Fully Inorganic Solid Solution with Roomâ€Temperature Luminescent Members. Angewandte Chemie - International Edition, 2020, 59, 14490-14497.	7.2	56
3197	Progress in Materials Development for the Rapid Efficiency Advancement of Perovskite Solar Cells. Small, 2020, 16, e1907531.	5.2	23
3198	Encapsulation of CsPbBr3 perovskite quantum dots into PPy conducting polymer: Exceptional water stability and enhanced charge transport property. Applied Surface Science, 2020, 526, 146735.	3.1	41
3199	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	10.1	22
3200	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy, 2020, 75, 104917.	8.2	44
3201	Establishing charge-transfer excitons in 2D perovskite heterostructures. Nature Communications, 2020, 11, 2618.	5.8	58
3202	Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures. Scientific Reports, 2020, 10, 8601.	1.6	59
3203	All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Materials, 2020, 8, .	2.2	28
3204	Photoelectron spectroscopy on single crystals of organic semiconductors: experimental electronic band structure for optoelectronic properties. Journal of Materials Chemistry C, 2020, 8, 9090-9132.	2.7	41
3205	Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science, 2020, 368, .	6.0	306

#	Article	IF	CITATIONS
3206	Dopantâ€Free Crossconjugated Holeâ€Transporting Polymers for Highly Efficient Perovskite Solar Cells. Advanced Science, 2020, 7, 1903331.	5.6	55
3207	Strategies for high performance perovskite/c-Si tandem solar cells: Effects of bandgap engineering, solar concentration and device temperature. Optical Materials, 2020, 106, 109935.	1.7	18
3208	Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device. Optical Materials, 2020, 105, 109957.	1.7	59
3209	Standing growth mechanism and ultrafast nonlinear absorption properties of WS2 films. Optical Materials, 2020, 106, 109995.	1.7	16
3210	Identifying the functional groups effect on passivating perovskite solar cells. Science Bulletin, 2020, 65, 1726-1734.	4.3	52
3211	Simulation studies to quantify the impacts of point defects: An investigation of Cs2AgBiBr6 perovskite solar devices utilizing ZnO and Cu2O as the charge transport layers. Computational Materials Science, 2020, 184, 109865.	1.4	33
3212	Perovskite–Gallium Phosphide Platform for Reconfigurable Visible-Light Nanophotonic Chip. ACS Nano, 2020, 14, 8126-8134.	7.3	39
3213	Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Communications Materials, 2020, 1, .	2.9	66
3214	Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical Society Reviews, 2020, 49, 4953-5007.	18.7	269
3215	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
3216	Stable, Bromine-Free, Tetragonal Perovskites with 1.7 eV Bandgaps via A-Site Cation Substitution. , 2020, 2, 869-872.		18
3217	Asymmetric Benzotrithiophene-Based Hole Transporting Materials Provide High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, , .	4.0	8
3218	Understanding the role of Sn substitution and Pb-â—i in enhancing the optical properties and solar cell efficiency of CH(NH ₂) ₂ Pb _{1â^xâ^y} Sn _x â—i _y Br ₃ . Journal of Materials Chemistry C, 2020, 8, 10362-10368.	2.7	13
3219	Modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as transparent electrodes for ITO-free perovskite solar cells. Applied Physics Express, 2020, 13, 085501.	1.1	1
3220	Recent Advances in Perovskiteâ€Based Buildingâ€Integrated Photovoltaics. Advanced Materials, 2020, 32, e2000631.	11.1	80
3221	Hybrid 1D/2D Carbon Nanostructure-Incorporated Titania Photoanodes for Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 6195-6204.	2.5	17
3222	Photon upconversion-assisted dual-band luminescence solar concentrators coupled with perovskite solar cells for highly efficient semi-transparent photovoltaic systems. Nanoscale, 2020, 12, 12426-12431.	2.8	18
3223	Efficiency enhancement of perovskite solar cells based on graphene-CuInS2 quantum dots composite: The roles for fast electron injection and light harvests. Applied Surface Science, 2020, 528, 146560.	3.1	15

#	Article	IF	CITATIONS
3224	Environmentally stable lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite: Synthesis to solar cell application. Journal of Physics and Chemistry of Solids, 2020, 146, 109608.	1.9	47
3225	The Two-Photon Absorption Cross-Section Studies of CsPbX3 (X = I, Br, Cl) Nanocrystals. Nanomaterials, 2020, 10, 1054.	1.9	19
3226	Exploring the impact of fractional-order capacitive behavior on the hysteresis effects of perovskite solar cells: A theoretical perspective. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105371.	1.7	17
3227	Device simulation of low cost HTM free perovskite solar cell based on TiO2 electron transport layer. AIP Conference Proceedings, 2020, , .	0.3	13
3228	Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting. Nanoscale Horizons, 2020, 5, 1174-1187.	4.1	65
3229	AgBi3I10 rudorffite for photovoltaic application. Solar Energy, 2020, 206, 436-442.	2.9	21
3230	Atomic hydrogen passivation for photoresponsivity enhancement of boron-doped p-BaSi2 films and performance improvement of boron-doped p-BaSi2/n-Si heterojunction solar cells. Journal of Applied Physics, 2020, 127, .	1.1	13
3231	Structural, opto-electronic characteristics and second harmonic generation of solution processed CH3NH3Pbl3-xClx thin film prepared by spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 259, 114599.	1.7	6
3232	Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nature Communications, 2020, 11, 2994.	5.8	63
3233	Recognition of M2 type tumor-associated macrophages with ultrasensitive and biocompatible photoelectrochemical cytosensor based on Ce doped SnO2/SnS2 nano heterostructure. Biosensors and Bioelectronics, 2020, 165, 112367.	5.3	11
3234	Flat Lenses Based on 2D Perovskite Nanosheets. Advanced Materials, 2020, 32, e2001388.	11.1	26
3235	Significantly Enhanced <i>V</i> -oc and Efficiency in Perovskite Solar Cells through Composition Adjustment of SnS ₂ Electron Transport Layers. ACS Sustainable Chemistry and Engineering, 2020, 8, 9250-9256.	3.2	18
3236	Recent advances in synthesis, surface chemistry of cesium lead-free halide perovskite nanocrystals and their potentialÂapplications. , 2020, , 157-228.		2
3237	Revealing photoinduced bulk polarization and spin-orbit coupling effects in high-efficiency 2D/3D Pb–Sn alloyed perovskite solar cells. Nano Energy, 2020, 76, 104999.	8.2	20
3238	Highly stable and Pb-free bismuth-based perovskites for photodetector applications. New Journal of Chemistry, 2020, 44, 11282-11290.	1.4	16
3239	Unconventional Application of Direct Ink Writing: Surface Force-Driven Patterning of Low Viscosity Inks. ACS Applied Materials & Interfaces, 2020, 12, 15875-15884.	4.0	14
3240	A General Wet Transferring Approach for Diffusion-Facilitated Space-Confined Grown Perovskite Single-Crystalline Optoelectronic Thin Films. Nano Letters, 2020, 20, 2747-2755.	4.5	34
3241	Advances in inorganic and hybrid perovskites for miniaturized lasers. Nanophotonics, 2020, 9, 2251-2272.	2.9	40

~	~
TATION	REDUBL

#	Article	IF	CITATIONS
3242	Crystal Systems and Lattice Parameters of CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Determined Using Single Crystals: Validity of Vegard's Law. Inorganic Chemistry, 2020, 59, 6709-6716.	1.9	25
3243	Near-infrared absorption enhancement for perovskite solar cells via the rear grating design. Optical and Quantum Electronics, 2020, 52, 1.	1.5	8
3244	Perovskite Solution Aging: What Happened and How to Inhibit?. CheM, 2020, 6, 1369-1378.	5.8	112
3245	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	6.6	116
3246	Solution Deposition of a Bournonite CuPbSbS ₃ Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Solvent Mixture. Journal of the American Chemical Society, 2020, 142, 6173-6179.	6.6	22
3247	Sandwich-like electron transporting layer to achieve highly efficient perovskite solar cells. Journal of Power Sources, 2020, 453, 227876.	4.0	15
3248	Large Optical Anisotropy in Two-Dimensional Perovskite [CH(NH ₂) ₂][C(NH ₂) ₃]PbI ₄ with Corrugated Inorganic Layers. Nano Letters, 2020, 20, 2339-2347.	4.5	40
3249	Simple Processing Additive-Driven 20% Efficiency for Inverted Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 18431-18436.	4.0	12
3250	Defect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1198-1205.	8.8	33
3251	The emerging science of electrosynbionics. Bioinspiration and Biomimetics, 2020, 15, 033001.	1.5	6
3252	Upconverting TiO ₂ spheres with light scattering effect for enhanced quantum dot-sensitized solar cells. Materials Express, 2020, 10, 556-562.	0.2	7
3253	Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020, 20, 720-737.	1.1	20
3254	Charge Carrier Recombination Dynamics of Two-Dimensional Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 2570-2576.	2.1	61
3255	Superionic conduction in low-dimensional-networked anti-perovskites. Energy Storage Materials, 2020, 28, 146-152.	9.5	27
3256	Efficient defect passivation of perovskite solar cells <i>via</i> stitching of an organic bidentate molecule. Sustainable Energy and Fuels, 2020, 4, 3318-3325.	2.5	26
3257	The effects of interstitial iodine in hybrid perovskite hot carrier cooling: A non-adiabatic molecular dynamics study. Journal of Chemical Physics, 2020, 152, 091102.	1.2	15
3258	Reducing lead toxicity in the methylammonium lead halide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MAPbl<mml:mn>3</mml:mn></mml:mi </mml:msub> : Why Sn substitution should be preferred to Pb vacancy for optimum solar cell efficiency. Physical Review B,</mml:math 	1.1	25
3259	Hot Carriers in Halide Perovskites: How Hot Truly?. Journal of Physical Chemistry Letters, 2020, 11, 2743-2750.	2.1	41
#	Article	IF	CITATIONS
------	---	-----	-----------
3260	White Light Emission from a Zero-Dimensional Lead Chloride Hybrid Material. ACS Photonics, 2020, 7, 1178-1187.	3.2	39
3261	Ligand assisted swelling–deswelling microencapsulation (LASDM) for stable, color tunable perovskite–polymer composites. Nanoscale Advances, 2020, 2, 2034-2043.	2.2	21
3262	A perovskite solar cell owing very high stabilities and power conversion efficiencies. Solar Energy, 2020, 201, 541-546.	2.9	11
3263	Perovskite Transparent Conducting Oxide for the Design of a Transparent, Flexible, and Self-Powered Perovskite Photodetector. ACS Applied Materials & Interfaces, 2020, 12, 16462-16468.	4.0	52
3264	Unprecedented tin iodide perovskite-like structures featuring ordering of organic moieties. Chemical Communications, 2020, 56, 4543-4546.	2.2	22
3265	Reducing Agents for Improving the Stability of Snâ€based Perovskite Solar Cells. Chemistry - an Asian Journal, 2020, 15, 1524-1535.	1.7	39
3266	Effect of Sr substitution on the property and stability of CH ₃ NH ₃ SnI ₃ perovskite: A firstâ€principles investigation. International Journal of Energy Research, 2020, 44, 5765-5778.	2.2	19
3267	Polarons in Halide Perovskites: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 3271-3286.	2.1	110
3268	Piezo-phototronic effect enhanced polarization-sensitive photodetectors based on cation-mixed organic–inorganic perovskite nanowires. Materials Today, 2020, 37, 56-63.	8.3	28
3269	Improving efficiency and stability of colorful perovskite solar cells with two-dimensional photonic crystals. Nanoscale, 2020, 12, 8425-8431.	2.8	27
3270	In Situ Growth of MAPbBr ₃ Nanocrystals on Few‣ayer MXene Nanosheets with Efficient Energy Transfer. Small, 2020, 16, e1905896.	5.2	38
3271	lodine and Sulfur Vacancy Cooperation Promotes Ultrafast Charge Extraction at MAPbl ₃ /MoS ₂ Interface. ACS Energy Letters, 2020, 5, 1346-1354.	8.8	53
3272	<i>In situ</i> study of the film formation mechanism of organic–inorganic hybrid perovskite solar cells: controlling the solvate phase using an additive system. Journal of Materials Chemistry A, 2020, 8, 7695-7703.	5.2	29
3273	Nonlinear organic–inorganic halide hybrids containing unprecedented linear [MIX ₂] ^{â²} coordination units and quasi-two-dimensional lone pairs. Chemical Communications, 2020, 56, 4894-4897.	2.2	13
3274	Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. Journal of Materials Chemistry C, 2020, 8, 4988-5014.	2.7	18
3275	Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. ACS Nano, 2020, 14, 4871-4881.	7.3	126
3276	Compositional Engineering for Compact Perovskite Absorber Fabrication Toward Efficient Photovoltaics. IEEE Journal of Photovoltaics, 2020, 10, 765-770.	1.5	1
3277	Strongly Enhanced Photoluminescence and Photoconductivity in Erbium-Doped MAPbBr ₃ Single Crystals. Journal of Physical Chemistry C, 2020, 124, 8992-8998.	1.5	26

#	Article	IF	Citations
3278	Spontaneously Selfâ€Assembly of a 2D/3D Heterostructure Enhances the Efficiency and Stability in Printed Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000173.	10.2	126
3279	Multifunctional behavior of Ca-doped niobium-based double perovskite for photovoltaic/solar cell devices. Journal of Materials Science: Materials in Electronics, 2020, 31, 6097-6108.	1.1	15
3280	Halide perovskite nanotube toward energy applications: A firstâ€principles investigation. International Journal of Energy Research, 2020, 44, 5412-5424.	2.2	5
3281	Solution preparation of molybdenum oxide on graphene: a hole transport layer for efficient perovskite solar cells with a 1.12ÂV high open-circuit voltage. Journal of Materials Science: Materials in Electronics, 2020, 31, 6248-6254.	1.1	10
3282	Sensitized Molecular Triplet and Triplet Excimer Emission in Two-Dimensional Hybrid Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 2247-2255.	2.1	33
3283	Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light: Science and Applications, 2020, 9, 31.	7.7	372
3284	Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49, 1653-1687.	18.7	364
3285	Rapid synthesis and mechanochemical reactions of cesium copper halides for convenient chromaticity tuning and efficient white light emission. Journal of Materials Chemistry C, 2020, 8, 4895-4901.	2.7	49
3286	Engineered electronic properties of the spin-coated MAPI for hole-transport-free perovskite solar cell (HT-free PSC): Spinning time and PSC performance relationship. Chemical Physics Letters, 2020, 754, 137718.	1.2	32
3287	Highly stable blue fluorescent lead free all-inorganic Cs2ZnX4 2D perovskite nanocrystals. Journal of Alloys and Compounds, 2020, 844, 156148.	2.8	29
3288	State-of-the-art methods for overcoming temperature polarization in membrane distillation process: A review. Journal of Membrane Science, 2020, 616, 118413.	4.1	149
3289	Self-Assembled Hydrophobic Molecule-Based Surface Modification: A Strategy to Improve Efficiency and Stability of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	2
3290	The Characteristics of Perovskite Solar Cells Fabricated Using DMF and DMSO/GBL Solvents. Journal of Electronic Materials, 2020, 49, 6823-6828.	1.0	13
3291	Efficient Energy Funnelling by Engineering the Bandgap of a Perovskite: Förster Resonance Energy Transfer or Charge Transfer?. Journal of Physical Chemistry Letters, 2020, 11, 5963-5971.	2.1	14
3292	Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 2020, 10, 709.	1.6	65
3293	Chlorine-doped SnO ₂ hydrophobic surfaces for large grain perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 11638-11646.	2.7	40
3294	Enhanced performance of perovskite solar cells via laser-induced heat treatment on perovskite film. Solar Energy, 2020, 206, 301-307.	2.9	6
3296	Applications in photovoltaics. , 2020, , 109-140.		3

ARTICLE IF CITATIONS Anomalous 3D nanoscale photoconduction in hybrid perovskite semiconductors revealed by 3297 5.8 53 tomographic atomic force microscopy. Nature Communications, 2020, 11, 3308. A hybrid structure light-emitting device based on a CsPbBr3 nanoplate and two-dimensional materials. 3298 1.5 Applied Physics Letters, 2020, 116, . Surface Degradation Mechanism on CH3NH3PbBr3 Hybrid Perovskite Single Crystal by a Grazing E-Beam 3299 1.9 12 Irradiation. Nanomaterials, 2020, 10, 1253. Recent advances and comprehensive insights on nickel oxide in emerging optoelectronic devices. 3300 Sustainable Energy and Fuels, 2020, 4, 4415-4458.

The correlation between phase transition and photoluminescence properties of CsPbX₃ (X) Tj ETQq0 Q Q rgBT /Qyerlock 10

CITATION REPORT

Two-dimensional halide perovskite as Î²-ray scintillator for nuclear radiation monitoring. Nature 5.8 Communications, 2020, 11, 3395. Stability Improvement of Perovskite Solar Cells by Adding Sbâ€Xanthate to Precursor Solution. Physica 3303 0.8 3 Status Solidi (A) Applications and Materials Science, 2020, 217, 2000144. Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite 3304 11.7 284 Solar Cells. Joule, 2020, 4, 1759-1775. Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters, 3305 90 8.8 2020, 5, 2498-2504. Imide-functionalized acceptor $\hat{a} \in \hat{a}$ cceptor copolymers as efficient electron transport layers for 5.2 high-performance perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 13754-13762. Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics. Journal 3307 5.251 of Materials Chemistry A, 2020, 8, 13594-13599. Optical-electrical-thermal optimization of plasmon-enhanced perovskite solar cells. Physical 3308 1.3 Chemistry Chemical Physics, 2020, 22, 17068-17074. Perovskite Granular Wire Photodetectors with Ultrahigh Photodetectivity. Advanced Materials, 2020, 3309 11.1 36 32, e2002357. Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar 1.3 Cells. Advanced Theory and Simulations, 2020, 3, 2000022. Selection of contact materials to p-type halide perovskite by electronegativity matching. AIP Advances, 3311 0.6 4 2020, 10, 065224. An analysis of carrier dynamics in methylammonium lead triiodide perovskite solar cells using cross correlation noise spectroscopy. Applied Physics Letters, 2020, 116, . Numerical Study of Hole Transport Layer for Efficient Perovskite Solar Cell Using Copper Oxide., 3313 1 2020,,. Perovskite nanogels: synthesis, properties, and applications. Journal of Materials Chemistry C, 2020, 8, 3314 12355-12379.

#	Article	IF	CITATIONS
3315	Phase transitions, screening and dielectric response of CsPbBr ₃ . Journal of Materials Chemistry A, 2020, 8, 14015-14022.	5.2	37
3316	Gaining Insight into the Effect of Organic Interface Layer on Suppressing Ion Migration Induced Interfacial Degradation in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000837.	7.8	29
3317	Recent progress of twoâ€dimensional lead halide perovskite single crystals: Crystal growth, physical properties, and device applications. EcoMat, 2020, 2, e12036.	6.8	80
3318	Pressureâ€Suppressed Carrier Trapping Leads to Enhanced Emission in Twoâ€Dimensional Perovskite (HA) ₂ (GA)Pb ₂ I ₇ . Angewandte Chemie - International Edition, 2020, 59, 17533-17539.	7.2	71
3319	Sustained energy harvesting from ambient humidity. Science Bulletin, 2020, 65, 1783-1784.	4.3	0
3320	Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nature Chemistry, 2020, 12, 672-682.	6.6	120
3321	A study of structural and dielectric properties of Ba2+ doped CH3NH3PbI3 crystals. SN Applied Sciences, 2020, 2, 1.	1.5	4
3322	Effect of rubidium incorporation on the structural, electronic and properties of MAPbI3. Chemical Physics Letters, 2020, 743, 137179.	1.2	2
3323	Thermal stability of CH3NH3PbIxCl3-x versus [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 perovskite films by X-ray photoelectron spectroscopy. Applied Surface Science, 2020, 513, 145596.	3.1	13
3324	Effect of annealing treatment on the properties of inverted solar cells based on mixed halide perovskite. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114000.	1.3	10
3325	Synthesis and characterization of CH3NH3PbI3 perovskite thin films obtained in one step. Physica B: Condensed Matter, 2020, 585, 412081.	1.3	1
3326	Probing of mechanical, optical and thermoelectric characteristics of double perovskites Cs2GeCl/Br6 by DFT method. Materials Science in Semiconductor Processing, 2020, 112, 105009.	1.9	86
3327	Design of Lead-Free and Stable Two-Dimensional Dion–Jacobson-Type Chalcogenide Perovskite A′La2B3S10 (A′ = Ba/Sr/Ca; B = Hf/Zr) with Optimal Band Gap, Strong Optical Absorption, and High Efficiency for Photovoltaics. Chemistry of Materials, 2020, 32, 2450-2460.	3.2	19
3328	Revealing the Role of Interfaces in Photocarrier Dynamics of Perovskite Films by Alternating Front/Back Side Excitation Time-Resolved Photoluminescence. Journal of Physical Chemistry C, 2020, 124, 6290-6296.	1.5	25
3329	Influence of Functional Diamino Organic Cations on the Stability, Electronic Structure, and Carrier Transport Properties of Three-Dimensional Hybrid Halide Perovskite. Journal of Physical Chemistry C, 2020, 124, 6796-6810.	1.5	12
3330	Organicâ~'inorganic hybrid perovskites: Game-changing candidates for solar fuel production. Nano Energy, 2020, 71, 104647.	8.2	41
3331	Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109. NPG Asia Materials, 2020, 12, .	3.8	71
3332	Organic additive engineering toward efficient perovskite lightâ€emitting diodes. InformaÄnÃ-Materiály, 2020, 2, 1095-1108.	8.5	26

#	Article	IF	CITATIONS
3333	Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite. Science China Materials, 2020, 63, 1503-1509.	3.5	8
3334	Electrically driven lasing in metal halide perovskites: Challenges and outlook. APL Materials, 2020, 8, .	2.2	46
3335	Azetidinium as cation in lead mixed halide perovskite nanocrystals of optoelectronic quality. AIP Advances, 2020, 10, 025001.	0.6	0
3336	Electronic Structure and Optoelectronic Properties of Bismuth Oxyiodide Robust against Percent‣evel Iodineâ€; Oxygenâ€; and Bismuthâ€Related Surface Defects. Advanced Functional Materials, 2020, 30, 1909983.	7.8	40
3337	Boosted hole extraction in all-inorganic CsPbBr3 perovskite solar cells by interface engineering using MoO2/N-doped carbon nanospheres composite. Solar Energy Materials and Solar Cells, 2020, 209, 110460.	3.0	27
3338	Development of Burton–Cabrera–Frank Theory for the Growth of a Non-Kossel Crystal via Chemical Reaction. Crystal Growth and Design, 2020, 20, 2590-2601.	1.4	12
3339	Pd-LaFeO ₃ Catalysts in Aqueous Ethanol: Pd Reduction, Leaching, and Structural Transformations in the Presence of a Base. ACS Catalysis, 2020, 10, 3933-3944.	5.5	6
3340	Real-Time Observation of the Diffusion Mechanism Progression from Liquid to Solid State of Transition Metal Complexes. ACS Energy Letters, 2020, 5, 583-588.	8.8	3
3341	Vacuum-Induced Degradation of 2D Perovskites. Frontiers in Chemistry, 2020, 8, 66.	1.8	19
3342	Inkjet-Printed Organohalide 2D Layered Perovskites for High-Speed Photodetectors on Flexible Polyimide Substrates. ACS Applied Materials & Interfaces, 2020, 12, 10809-10819.	4.0	51
3343	Raman scattering obtained from laser excitation of MAPbI3 single crystal. Applied Materials Today, 2020, 19, 100571.	2.3	2
3344	Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 13941-13949.	4.0	69
3345	Hierarchical and scalable integration of nanostructures for energy and environmental applications: a review of processing, devices, and economic analyses. Nano Futures, 2020, 4, 012002.	1.0	12
3346	Colorâ€Tunable Photoluminescence and Whispering Gallery Mode Lasing of Alloyed CsPbCl _{3(1–} <i>_x</i> ₎ Br ₃ <i>_x</i> Microstructures. Advanced Materials Interfaces, 2020, 7, 1902126.	1.9	5
3347	Investigating the Effects of Chemical Gradients on Performance and Reliability within Perovskite Solar Cells with TOF‧IMS. Advanced Energy Materials, 2020, 10, 1903674.	10.2	52
3348	Controlling the film structure by regulating 2D Ruddlesden–Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5874-5881.	5.2	23
3349	Thermal Stability and Performance Enhancement of Perovskite Solar Cells Through Oxalic Acid-Induced Perovskite Formation. ACS Applied Energy Materials, 2020, 3, 2432-2439.	2.5	55
3350	Donor/Acceptor Heterojunction Organic Solar Cells. Electronics (Switzerland), 2020, 9, 70.	1.8	6

#	Article	IF	CITATIONS
3351	Highâ€Performance CsPbl <i>_x</i> Br _{3â€} <i>_x</i> Allâ€Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation. Advanced Functional Materials, 2020, 30, 2000457.	7.8	118
3352	Dopantâ€Free Organic Holeâ€Transporting Material for Efficient and Stable Inverted Allâ€Inorganic and Hybrid Perovskite Solar Cells. Advanced Materials, 2020, 32, e1908011.	11.1	195
3353	Investigating the effects of carbon-based counter electrode layers on the efficiency of hole-transporter-free perovskite solar cells. Energy, Ecology and Environment, 2020, 5, 141-152.	1.9	14
3354	Investigating the impact of layer properties on the performance of p-graphene/CH3NH3PbI3/n-cSi solar cell using numerical modelling. Superlattices and Microstructures, 2020, 140, 106468.	1.4	13
3355	Is Formamidinium Always More Stable than Methylammonium?. Chemistry of Materials, 2020, 32, 2501-2507.	3.2	34
3356	Inverted Planar Perovskite Solar Cells Based on NiO _x Nano Film with Enhanced Efficiency and Stability. Journal of Nanoscience and Nanotechnology, 2020, 20, 1892-1898.	0.9	5
3357	Solutionâ€Processed Faraday Rotators Using Single Crystal Lead Halide Perovskites. Advanced Science, 2020, 7, 1902950.	5.6	17
3358	Controllable Multistep Preparation Method for Highâ€Efficiency Perovskite Solar Cells with Low Annealing Temperature in Glove Box. Energy Technology, 2020, 8, 2000071.	1.8	6
3359	Effects of Chlorine Mixing on Optoelectronics, Ion Migration, and Gamma-Ray Detection in Bromide Perovskites. Chemistry of Materials, 2020, 32, 1854-1863.	3.2	46
3360	Ag/In leadâ€free double perovskites. EcoMat, 2020, 2, e12017.	6.8	16
3361	The application of perovskite materials in solar water splitting. Journal of Semiconductors, 2020, 41, 011701.	2.0	46
3361 3362	The application of perovskite materials in solar water splitting. Journal of Semiconductors, 2020, 41, 011701. An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115.	2.0 1.9	46 20
3361 3362 3363	The application of perovskite materials in solar water splitting. Journal of Semiconductors, 2020, 41, 011701. An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. Journal of Semiconductors, 2020, 41, 011201.	2.0 1.9 2.0	46 20 16
3361 3362 3363 3364	The application of perovskite materials in solar water splitting. Journal of Semiconductors, 2020, 41, 011701. An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. Journal of Semiconductors, 2020, 41, 011201. Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammoniumâ€Based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900463.	2.0 1.9 2.0 3.1	46 20 16 2
 3361 3362 3363 3364 3365 	The application of perovskite materials in solar water splitting. Journal of Semiconductors, 2020, 41, 011701. An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. Journal of Semiconductors, 2020, 41, 011201. Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammoniumâ€Based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900463. Multifunctional character of revived double perovskite for device applications. Materials Chemistry and Physics, 2020, 247, 122690.	2.0 1.9 2.0 3.1 2.0	46 20 16 2 2
 3361 3362 3363 3364 3365 3366 	The application of perovskite materials in solar water splitting. Journal of Semiconductors, 2020, 41, 011701.An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115.Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. Journal of Semiconductors, 2020, 41, 011201.Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammoniumá€Based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900463.Multifunctional character of revived double perovskite for device applications. Materials Chemistry and Physics, 2020, 247, 122690.Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights. Renewable and Sustainable Energy Reviews, 2020, 121, 109678.	2.0 1.9 2.0 3.1 2.0 8.2	 46 20 16 2 2 91
 3361 3362 3363 3364 3365 3366 3367 	The application of perovskite materials in solar water splitting. Journal of Semiconductors, 2020, 41, 011701.An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115.Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. Journal of Semiconductors, 2020, 41, 011201.Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammoniumâ€Based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900463.Multifunctional character of revived double perovskite for device applications. Materials Chemistry and Physics, 2020, 247, 122690.Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical nsights. Renewable and Sustainable Energy Reviews, 2020, 121, 109678.Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chemical Reviews, 2020, 123, 2123-2170.	2.0 1.9 2.0 3.1 2.0 8.2 23.0	 46 20 16 2 2 91 206

#	Article	IF	CITATIONS
3369	Acetic Acid Assisted Crystallization Strategy for High Efficiency and Longâ€Term Stable Perovskite Solar Cell. Advanced Science, 2020, 7, 1903368.	5.6	85
3370	Cation Diffusion Guides Hybrid Halide Perovskite Crystallization during the Gel Stage. Angewandte Chemie, 2020, 132, 6035-6043.	1.6	22
3371	Progress of Highâ€Throughput and Low ost Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900556.	3.1	43
3372	Orthorhombic CsPbI3 perovskites: Thickness-dependent structural, optical and vibrational properties. Computational Condensed Matter, 2020, 23, e00453.	0.9	8
3373	Molybdenum Disulphide Heterointerfaces as Potential Materials for Solar Cells, Energy Storage, and Hydrogen Evolution. Energy Technology, 2020, 8, 1901299.	1.8	12
3374	First principle study of Lead free halide double perovskites Cs2AuBiX6 (X = Cl, Br). Materials Today: Proceedings, 2020, 27, 561-564.	0.9	4
3375	Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 2020, 70, 104480.	8.2	52
3376	Highly conductive n-type CH ₃ NH ₃ PbI ₃ single crystals doped with bismuth donors. Journal of Materials Chemistry C, 2020, 8, 3694-3704.	2.7	27
3377	Mechanisms of Oxygen Passivation on Surface Defects in MAPbI ₃ Revealed by First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 3731-3737.	1.5	10
3378	Bismuth chalcogenide iodides Bi ₁₃ S ₁₈ I ₂ and BiSI: solvothermal synthesis, photoelectric behavior, and photovoltaic performance. Journal of Materials Chemistry C, 2020, 8, 3821-3829.	2.7	38
3379	A Critical Review of Machine Learning of Energy Materials. Advanced Energy Materials, 2020, 10, 1903242.	10.2	319
3380	Development of Dopantâ€Free Organic Hole Transporting Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903326.	10.2	202
3381	Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. Heliyon, 2020, 6, e03237.	1.4	103
3382	Highâ€Performance Perovskite Solar Cells Using Iodine as Effective Dopant for Spiroâ€OMeTAD. Energy Technology, 2020, 8, 1901171.	1.8	14
3383	Cation Diffusion Guides Hybrid Halide Perovskite Crystallization during the Gel Stage. Angewandte Chemie - International Edition, 2020, 59, 5979-5987.	7.2	29
3384	Dielectric phase transition of an A ₂ BX ₄ -type perovskite with a pentahedral to octahedral transformation. Dalton Transactions, 2020, 49, 2218-2224.	1.6	21
3385	Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites. Materials, 2020, 13, 210.	1.3	23
3386	Allâ€Rounder Low ost Dopantâ€Free Dâ€Aâ€Ð Holeâ€Transporting Materials for Efficient Indoor and Outdoor Performance of Perovskite Solar Cells. Advanced Electronic Materials, 2020, 6, 1900884.	2.6	72

#	Article	IF	CITATIONS
3387	A Disquisition on the Active Sites of Heterogeneous Catalysts for Electrochemical Reduction of CO ₂ to Valueâ€Added Chemicals and Fuel. Advanced Energy Materials, 2020, 10, 1902106.	10.2	113
3388	Lead-Free Tin(IV)-Based Organic–Inorganic Metal Halide Hybrids with Excellent Stability and Blue-Broadband Emission. Journal of Physical Chemistry Letters, 2020, 11, 1808-1813.	2.1	82
3389	Efficient Nanorod Array Perovskite Solar Cells: A Suitable Structure for High Strontium Substitution in Nature. ACS Applied Materials & Interfaces, 2020, 12, 10515-10526.	4.0	9
3390	Impact of Diethyl Ether Dripping Delay Time on the Electronic Structure of Methylammonium Lead Triiodide Perovskite Film. Journal of the Korean Physical Society, 2020, 76, 162-166.	0.3	2
3391	Dual Passivation of Perovskite Defects for Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 20%. Advanced Functional Materials, 2020, 30, 1909754.	7.8	212
3392	Quantifying Chargeâ€Carrier Mobilities and Recombination Rates in Metal Halide Perovskites from Timeâ€Resolved Microwave Photoconductivity Measurements. Advanced Energy Materials, 2020, 10, 1903788.	10.2	43
3393	Balanced strain-dependent carrier dynamics in flexible organic–inorganic hybrid perovskites. Journal of Materials Chemistry C, 2020, 8, 3374-3379.	2.7	20
3394	Lowâ€dimensional metal halide perovskites and related optoelectronic applications. InformaÄnÃ- Materiály, 2020, 2, 341-378.	8.5	72
3395	First principle study of the structural and optoelectronic properties of direct bandgap double perovskite Cs2AgInCl6. Materials Today: Proceedings, 2020, 33, 1252-1256.	0.9	17
3396	Lead-free Cesium Europium Halide Perovskite Nanocrystals. Nano Letters, 2020, 20, 3734-3739.	4.5	103
3397	Intermolecular ï€â€"ï€ Conjugation Selfâ€Assembly to Stabilize Surface Passivation of Highly Efficient Perovskite Solar Cells. Advanced Materials, 2020, 32, e1907396.	11.1	128
3398	Recent progress in morphology optimization in perovskite solar cell. Journal of Materials Chemistry A, 2020, 8, 21356-21386.	5.2	159
3399	Organic-inorganic hybrid halide perovskites impregnated with Group 1 and 15 elements for solar cell application. Journal of Physics and Chemistry of Solids, 2020, 144, 109518.	1.9	10
3400	Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy, 2020, 74, 104842.	8.2	63
3401	NiO@GeSe core-shell nano-rod array as a new hole transfer layer in perovskite solar cells: A numerical study. Solar Energy, 2020, 204, 200-207.	2.9	29
3402	First-principles mechanism study on distinct optoelectronic properties of Cl-doped 2D hybrid tin iodide perovskite. Journal of Materials Chemistry C, 2020, 8, 9540-9548.	2.7	21
3403	Revealing Excitonic and Electron-Hole Plasma States in Stimulated Emission of Single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>Cs</mml:mi><mml:mi>Pb</mml:mi><mml:mi>BrNanowires at Room Temperature. Physical Review Applied, 2020, 13, .</mml:mi></mml:mrow></mml:msub></mml:math 	i> <td>nrow><mml:r< td=""></mml:r<></td>	nrow> <mml:r< td=""></mml:r<>
3404	Nanoscale spatial mapping of charge carrier dynamics in perovskite solar cells. Nano Today, 2020, 33, 100874.	6.2	21

#	Article	IF	CITATIONS
3405	Visualizing the role of photoinduced ion migration on photoluminescence in halide perovskite grains. Journal of Materials Chemistry C, 2020, 8, 7509-7518.	2.7	14
3406	Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chemical Engineering Journal, 2020, 394, 124903.	6.6	97
3407	Phenylhydrazinium Iodide for Surface Passivation and Defects Suppression in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000778.	7.8	103
3408	Structural Diversity and Magnetic Properties of Hybrid Ruthenium Halide Perovskites and Related Compounds. Angewandte Chemie - International Edition, 2020, 59, 8974-8981.	7.2	25
3409	Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Research, 2020, 13, 1156-1161.	5.8	17
3410	Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coordination Chemistry Reviews, 2020, 415, 213316.	9.5	21
3411	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4, 1035-1053.	11.7	257
3412	Enhanced stability and performance of poly(4-vinylpyridine) modified perovskite solar cell with quaternary semiconductor Cu2MSnS4 (M= Co2+, Ni2+, Zn2+) as hole transport materials. Solar Energy Materials and Solar Cells, 2020, 211, 110538.	3.0	16
3413	High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212, 110555.	3.0	36
3414	Enriched Photophysical Properties and Thermal Stability of Tin(II) Substituted Lead-Based Perovskite Nanocrystals with Mixed Organic–Inorganic Cations. Journal of Physical Chemistry C, 2020, 124, 9611-9621.	1.5	21
3415	Understanding the Defect Properties of Quasi-2D Halide Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2020, 11, 3521-3528.	2.1	43
3416	Carbazole-Terminated Isomeric Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19710-19717.	4.0	28
3417	The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices. Energies, 2020, 13, 1929.	1.6	26
3418	Boosting the Conversion Efficiency Over 20% in MAPbl ₃ Perovskite Planar Solar Cells by Employing a Solution-Processed Aluminum-Doped Nickel Oxide Hole Collector. ACS Applied Materials & Interfaces, 2020, 12, 22958-22970.	4.0	42
3419	Modulating the emission of CsPbBr3 perovskite nanocrystals via thermally varying magnetic field of La0.67Sr0.33Mn0.9(Ni/Co)0.1O3. AIP Advances, 2020, 10, .	0.6	11
3420	Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells. Scientific Reports, 2020, 10, 6732.	1.6	24
3421	Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. RSC Advances, 2020, 10, 14856-14866.	1.7	18
3422	Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies. Applied Physics Reviews, 2020, 7, .	5.5	150

#	Article	IF	CITATIONS
3423	The effect of the spinning speed variation on the perovskite solar cell efficiency. IOP Conference Series: Materials Science and Engineering, 2020, 757, 012071.	0.3	8
3424	Exciton diffusion in two-dimensional metal-halide perovskites. Nature Communications, 2020, 11, 2035.	5.8	113
3425	Photovoltaic Characteristics of CH3NH3PbI3 Perovskite Solar Cells Added with Ethylammonium Bromide and Formamidinium lodide. Coatings, 2020, 10, 410.	1.2	32
3426	Origin of Amplified Spontaneous Emission Degradation in MAPbBr ₃ Thin Films under Nanosecond-UV Laser Irradiation. Journal of Physical Chemistry C, 2020, 124, 10696-10704.	1.5	14
3427	Tin versus Lead Redox Chemistry Modulates Charge Trapping and Self-Doping in Tin/Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 3546-3556.	2.1	132
3428	Carbazole-Based Hole-Transport Materials for High-Efficiency and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 4492-4498.	2.5	47
3429	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. Journal of the American Chemical Society, 2020, 142, 8871-8879.	6.6	26
3430	Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Advanced Science, 2020, 7, 1903389.	5.6	129
3431	All-Inorganic Halide Perovskites as Potential Thermoelectric Materials: Dynamic Cation off-Centering Induces Ultralow Thermal Conductivity. Journal of the American Chemical Society, 2020, 142, 9553-9563.	6.6	155
3432	Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells. JPhys Energy, 2020, 2, 031002.	2.3	76
3433	Recent Advances in Halide Perovskite Memristors: Materials, Structures, Mechanisms, and Applications. Advanced Materials Technologies, 2020, 5, .	3.0	110
3434	Understanding the Film Formation Kinetics of Sequential Deposited Narrowâ€Bandgap Pb–Sn Hybrid Perovskite Films. Advanced Energy Materials, 2020, 10, 2000566.	10.2	33
3435	Structural Diversity and Magnetic Properties of Hybrid Ruthenium Halide Perovskites and Related Compounds. Angewandte Chemie, 2020, 132, 9059-9066.	1.6	11
3436	Recent Advances and Optoelectronic Applications of Leadâ€Free Halide Double Perovskites. Chemistry - A European Journal, 2020, 26, 16975-16984.	1.7	38
3437	Thermodynamic Studies of Bromide Incorporation into Cesium Lead Iodide (CsPbI3). Journal of Physical Chemistry C, 2020, 124, 8639-8642.	1.5	9
3438	Spontaneous Passivation of Perovskite Solar Cells by Titanium Tetrafluoride. ACS Applied Energy Materials, 2020, 3, 4121-4126.	2.5	4
3439	Self-Powered Filterless Narrow-Band p–n Heterojunction Photodetector for Low Background Limited Near-Infrared Image Sensor Application. ACS Applied Materials & Interfaces, 2020, 12, 21845-21853.	4.0	37
3440	A Study of Eu Doping in Nanolayers of CsPbBr ₃ using Ab Initio Calculations to Understand <i>f–f</i> Transitions in Eu ³⁺ -Doped Nanocrystals for Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 4437-4444.	2.4	9

#	Article	IF	Citations
3441	High-Performance Perovskite-Based Light-Emitting Diodes from the Conversion of Amorphous Spin-Coated Lead Bromide with Phenethylamine Doping. ACS Omega, 2020, 5, 8697-8706.	1.6	4
3442	Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network. Npj Computational Materials, 2020, 6, .	3.5	93
3443	Bismuth triiodide complexes: structure, spectroscopy, electronic properties, and memristive properties. Journal of Materials Chemistry C, 2020, 8, 6136-6148.	2.7	6
3444	Theoretical and experimental investigations on the bulk photovoltaic effect in lead-free perovskites MASnl ₃ and FASnl ₃ . RSC Advances, 2020, 10, 14679-14688.	1.7	60
3445	Congo Red Dye Degradation by Graphene Nanoplatelets/Doped Bismuth Ferrite Nanoparticle Hybrid Catalysts under Dark and Light Conditions. Catalysts, 2020, 10, 367.	1.6	38
3446	A timeâ€dependent density functional study on optical response in allâ€inorganic leadâ€halide perovskite nanostructures. International Journal of Quantum Chemistry, 2020, 120, e26232.	1.0	6
3447	Reduction in the tilting of oxygen octahedron and its effect on bandgap with La doping in SrSnO3. Ceramics International, 2020, 46, 17569-17576.	2.3	21
3448	Hybrid Fullerene-Based Electron Transport Layers Improving the Thermal Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 20733-20740.	4.0	39
3449	α-DTC ₇₀ fullerene performs significantly better than β-DTC70 as electron transporting material in perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 6813-6819.	2.7	5
3450	Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance. Rare Metals, 2021, 40, 555-562.	3.6	36
3451	Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells. Frontiers of Chemical Science and Engineering, 2021, 15, 180-186.	2.3	18
3452	Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 2021, 52, 393-411.	7.1	132
3453	Twoâ€Ðimensional Metalâ€Halide Perovskiteâ€based Optoelectronics: Synthesis, Structure, Properties and Applications. Energy and Environmental Materials, 2021, 4, 46-64.	7.3	34
3454	Interfacial engineering revolutionizers: perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 251-279.	6.8	35
3455	Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications. Journal of Energy Chemistry, 2021, 54, 770-785.	7.1	75
3456	Scope for Spherical Bi2WO6 Quazi-Perovskites in the Artificial Photosynthesis Reaction—The Effects of Surface Modification with Amine Groups. Catalysis Letters, 2021, 151, 293-305.	1.4	4
3457	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie - International Edition, 2021, 60, 9772-9788.	7.2	11
3458	All Electrospray Printing of Carbonâ€Based Costâ€Effective Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2006803.	7.8	26

#	Article	IF	CITATIONS
3459	Improving Moisture/Thermal Stability and Efficiency of CH 3 NH 3 PbI 3 â€Based Perovskite Solar Cells via Gentle Butyl Acrylate Additive Strategy. Solar Rrl, 2021, 5, 2000621.	3.1	20
3460	Evaluation of the optical properties of the lead-free mixed-halide iron perovskite CH3NH3FeI2Br for application in solar cells: A computational study. Materials Today Communications, 2021, 26, 101847.	0.9	2
3461	Tetrazole modulated perovskite films for efficient solar cells with improved moisture stability. Chemical Engineering Journal, 2021, 420, 127579.	6.6	14
3462	Unravelling the theoretical window to fabricate high performance inorganic perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 219-229.	2.5	19
3463	Impact of Li doping on the photophysical properties of perovskite absorber layer FAPbI3. Journal of Alloys and Compounds, 2021, 850, 156696.	2.8	6
3464	Synthesis, growth, and characterisation of a novel organic–inorganic perovskite-type hybrid system based on glycine. Journal of Molecular Structure, 2021, 1224, 129008.	1.8	5
3465	Physical properties of lead-free double perovskites A2SnI6 (A= Cs, Rb) using ab-initio calculations for solar cell applications. Materials Science in Semiconductor Processing, 2021, 121, 105313.	1.9	62
3466	Advanced variants of LEDs. , 2021, , 127-152.		1
3467	Advanced Strategies of Passivating Perovskite Defects for Highâ€Performance Solar Cells. Energy and Environmental Materials, 2021, 4, 293-301.	7.3	15
3468	Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Advanced Functional Materials, 2021, 31, 2006243.	7.8	71
3469	Suppressing Ion Migration across Perovskite Grain Boundaries by Polymer Additives. Advanced Functional Materials, 2021, 31, 2006802.	7.8	66
3470	Highly sensitive and fast perovskite photodetector functionalized by plasmonic Au nanoparticles-alkanethiol assembly. Applied Surface Science, 2021, 538, 148007.	3.1	8
3471	Structural, electronic, optical and thermoelectric properties in the phases of AgTaO3. Materials Science in Semiconductor Processing, 2021, 122, 105467.	1.9	7
3472	Ultrasensitive detection of hydrogen sulfide gas based on perovskite vertical channel chemo-sensor. Sensors and Actuators B: Chemical, 2021, 326, 128988.	4.0	31
3473	Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion. Journal of Materials Science and Technology, 2021, 73, 9-22.	5.6	13
3474	Perovskite Nanocrystalsâ€Based Heterostructures: Synthesis Strategies, Interfacial Effects, and Photocatalytic Applications. Solar Rrl, 2021, 5, 2000419.	3.1	20
3475	Efficient and stable perovskite solar cells via surface passivation of an ultrathin hydrophobic organic molecular layer. Chemical Engineering Journal, 2021, 405, 126712.	6.6	42
3476	Excellent quinoline additive in perovskite toward to efficient and stable perovskite solar cells. Journal of Power Sources, 2021, 481, 228857.	4.0	43

#	Article	IF	CITATIONS
3477	Kinetics of light-induced degradation in semi-transparent perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 219, 110776.	3.0	29
3478	In Situ Exploration of the Structural Transition during Morphology―and Efficiencyâ€Conserving Halide Exchange on a Single Perovskite Nanocrystal. Angewandte Chemie - International Edition, 2021, 60, 2548-2553.	7.2	9
3479	Optimization of layer thickness of ZnO based perovskite solar cells using SCAPS 1D. Materials Today: Proceedings, 2021, 43, 3432-3437.	0.9	15
3480	Hybrid structure of ionic liquid and ZnO nano clusters for potential application in dye-sensitized solar cells. Journal of Molecular Liquids, 2021, 322, 114538.	2.3	22
3481	Interface engineering, the trump-card for CsPbX3 (XËł, Br) perovskite solar cells development. Nano Energy, 2021, 79, 105490.	8.2	22
3482	The structural stability, lattice dynamics, electronic, thermophysical, and mechanical properties of the inverse perovskites A ₃ OX: A comparative firstâ€principles study. International Journal of Energy Research, 2021, 45, 4793-4810.	2.2	21
3483	Efficient and Stable Perovskite Solar Cells by Fluorinated Ionic Liquid–Induced Component Interaction. Solar Rrl, 2021, 5, .	3.1	24
3484	High-performance and stable inverted perovskite solar cells using low-temperature solution-processed CuNbOx hole transport layer. Journal of Power Sources, 2021, 483, 229194.	4.0	12
3485	Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection. Nano Energy, 2021, 81, 105570.	8.2	100
3486	Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO ₂ . Chemical Science, 2021, 12, 946-959.	3.7	12
3487	Bio-inspired smart electronic-skin based on inorganic perovskite nanoplates for application in photomemories and mechanoreceptors. Nanoscale, 2021, 13, 253-260.	2.8	14
3488	Hollow TiO2 spheres as mesoporous layer for better efficiency and stability of perovskite solar cells. Journal of Alloys and Compounds, 2021, 866, 158079.	2.8	9
3489	Toward Efficient and Stable Perovskite Solar Cells by 2D Interface Energy Band Alignment. Advanced Materials Interfaces, 2021, 8, .	1.9	19
3490	Research and progress of black metastable phase CsPbI ₃ solar cells. Materials Chemistry Frontiers, 2021, 5, 1221-1235.	3.2	28
3491	Putting DFT to trial: For the exploration to correlate structural, electronic and optical properties of M-doped (Mâ€=†Group I, II, III, XII, XVI) lead free high piezoelectric c-BiAlO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114959.	1.7	14
3492	Distinctive Bulk- and Surface-Specific Photoluminescence and Photocarrier Dynamics in CH ₃ NH ₃ Pbl ₃ Perovskite. Crystal Growth and Design, 2021, 21, 45-51.	1.4	9
3493	Effect of charge compensators (Li+, Na+, K+) on the luminescence properties of Sr3TeO6:Eu3+ red phosphor. Ceramics International, 2021, 47, 8518-8527.	2.3	24
3494	Thermodynamics of cesium lead halide (CsPbX3, x= I, Br, Cl) perovskites. Thermochimica Acta, 2021, 695, 178813.	1.2	26

#	Article	IF	CITATIONS
3495	Hollow 3D TiO2 sub-microspheres as an electron transporting layer for highly efficient perovskite solar cells. Materials Today Energy, 2021, 19, 100614.	2.5	12
3496	Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis. Chemical Engineering Journal, 2021, 407, 128001.	6.6	66
3497	Inorganic Electron Transport Materials in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008300.	7.8	105
3498	2D Hybrid Halide Perovskites: Synthesis, Properties, and Applications. Solar Rrl, 2021, 5, .	3.1	20
3499	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 301-309.	5.2	25
3500	Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication. Nano Research, 2021, 14, 1210-1217.	5.8	58
3501	Facile star-shaped tetraphenylethylene-based molecules with fused ring-terminated diarylamine as interfacial hole transporting materials for inverted perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 1373-1387.	3.2	11
3502	Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A, 2021, 9, 1372-1394.	5.2	43
3503	Solar energy harvesting with ferroelectric materials. , 2021, , 43-84.		4
3504	Asymmetrical planar acridine-based hole-transporting materials for highly efficient perovskite solar cells. Chemical Engineering Journal, 2021, 413, 127440.	6.6	5
3505	Low-cost organic-inorganic metal halide perovskite solar cells with enhanced stability. , 2021, , 413-429.		0
3506	A Novel Annealingâ€Free Amorphous Inorganic Metal Oxyhydroxide Cathode Interlayer for Efficient and Stable Inverted Perovskite Solar Cells. Solar Rrl, 2021, 5, .	3.1	8
3507	Structural Properties and Stability of Inorganic CsPbI ₃ Perovskites. Small Structures, 2021, 2, 2000089.	6.9	39
3508	Revealing the Degradation and Selfâ€Healing Mechanisms in Perovskite Solar Cells by Subâ€Bandgap External Quantum Efficiency Spectroscopy. Advanced Materials, 2021, 33, e2006170.	11.1	64
3509	Strain Engineering of Metal–Halide Perovskites toward Efficient Photovoltaics: Advances and Perspectives. Solar Rrl, 2021, 5, 2000672.	3.1	33
3510	In Situ Exploration of the Structural Transition during Morphology―and Efficiency onserving Halide Exchange on a Single Perovskite Nanocrystal. Angewandte Chemie, 2021, 133, 2578-2583.	1.6	2
3511	Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chemical Reviews, 2021, 121, 1425-1462.	23.0	94
3512	Titanium Nanopillar Arrays Functioning as Electron Transporting Layers for Efficient, Antiâ€Aging Perovskite Solar Cells. Small, 2021, 17, e2004778.	5.2	9

		CITATION REPORT		
#	Article		IF	CITATIONS
3513	Review and perspective of materials for flexible solar cells. Materials Reports Energy, 20	021, 1, 100001.	1.7	54
3514	CsPbBr ₃ @Cs ₄ PbBr ₆ Emitter-in-Host Composit Origin and Interphase Energy Transfer. Journal of Physical Chemistry C, 2021, 125, 3-1	e: Fluorescence 9.	1.5	24
3515	Doping in Semiconductor Oxidesâ€Based Electron Transport Materials for Perovskite S Application. Solar Rrl, 2021, 5, 2000605.	Solar Cells	3.1	19
3516	Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved yield and stability. Chemical Engineering Journal, 2021, 421, 127777.	l quantum	6.6	46
3517	Design of Low Crystallinity Spiro-Typed Hole Transporting Material for Planar Perovskit to Achieve 21.76% Efficiency. Chemistry of Materials, 2021, 33, 285-297.	e Solar Cells	3.2	57
3518	Anchoring of CsPbBr ₃ perovskite quantum dots on BN nanostructures fo efficiency and stability: a comparative study. Journal of Materials Chemistry C, 2021, 9	r enhanced , 842-850.	2.7	14
3519	Elucidation of the Formation Mechanism of Highly Oriented Multiphase Ruddlesdenâ€ Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 249-260.	"Popper	8.8	34
3520	Dual Interfacial Modification Engineering for Highly Efficient and Stable Perovskite Sola Rrl, 2021, 5, 2000652.	ar Cells. Solar	3.1	4
3521	Fabrication of stable and efficient 2D/3D perovskite solar cells through post-treatment TBABF ₄ . Journal of Materials Chemistry C, 2021, 9, 957-966.	with	2.7	60
3522	Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge). Materials Sc Semiconductor Processing, 2021, 122, 105484.	ience in	1.9	67
3523	Perovskite/Metalâ€Based Hyperbolic Metamaterials: Tailoring the Permittivity Propertion Anisotropies in the Visible Region. Advanced Optical Materials, 2021, 9, .	es of Coexisting	3.6	6
3524	Leaching potential of chemical species from real perovskite and silicon solar cells. Cher Engineering Research and Design, 2021, 149, 115-122.	nical	2.7	20
3525	Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (XÂ=ÂI, nanocrystals. Applied Surface Science, 2021, 536, 147939.	Br) perovskite	3.1	9
3526	Towards highly stable and efficient planar perovskite solar cells: Materials developmen control and interfacial engineering. Chemical Engineering Journal, 2021, 420, 127599.	t, defect	6.6	37
3527	Hybrid perovskite photovoltaic devices: Architecture and fabrication methods based or solution-processed metal oxide transport layers. , 2021, , 291-313.	١		5
3528	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hyd Anisotropic Static, and Dynamic Pressures. Angewandte Chemie, 2021, 133, 9856-987	Irostatic, 72.	1.6	0
3529	Coarse and fine-tuning of lasing transverse electromagnetic modes in coupled all-inorg perovskite quantum dots. Nano Research, 2021, 14, 108-113.	janic	5.8	5
3530	An overview of rare earth coupled lead halide perovskite and its application in photovo light emitting devices. Progress in Materials Science, 2021, 120, 100737.	Itaics and	16.0	35

#	Article	IF	Citations
3531	An overview of the mathematical modelling of perovskite solar cells towards achieving highly efficient perovskite devices. International Journal of Energy Research, 2021, 45, 1496-1516.	2.2	14
3532	X-ray diffraction – A simplistic approach for perovskite based solar cells degradation studies. Materials Today: Proceedings, 2021, 35, 31-34.	0.9	3
3533	Ï€-Conjugated Polymers Incorporating Naphthalene-Based Nitrogen-Containing Heteroaromatics for Organic Photovoltaics. , 2021, , 541-559.		1
3534	Amplified spontaneous emission in thin films of quasi-2D BA ₃ MA ₃ Pb ₅ Br ₁₆ lead halide perovskites. Nanoscale, 2021, 13, 8893-8900.	2.8	8
3535	Nanometer-thick [(FPEA) ₂ PbX ₄ ; X = I and Br] 2D halide perovskite based thin films for pollutant detection and nonconventional photocatalytic degradation. Materials Advances, 2021, 2, 5712-5722.	2.6	5
3536	Simple Fabrication of Green Emission and Water-Resistant CsPbBr ₃ Encapsulation Using Commercial Glass Frits. Korean Journal of Materials Research, 2021, 31, 54-59.	0.1	0
3537	Research progress of metal halide perovskite nanometer optoelectronic materials. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 087303.	0.2	2
3538	Organic Inorganic Perovskites: A Low-Cost-Efficient Photovoltaic Material. , 0, , .		0
3539	Light management in perovskite solar cell by incorporation of carbon quantum dots. Materials Today: Proceedings, 2022, 49, 2487-2490.	0.9	3
3540	The effect of bromide precursor on the properties of organolead halide perovskite for solar cell fabricated under ambient condition. Journal of Materials Science: Materials in Electronics, 2021, 32, 3797-3808.	1.1	0
3541	Highly emissive halide perovskite nanocrystals: from lead to lead-free. CrystEngComm, 2021, 23, 3619-3630.	1.3	5
3542	Plasmon-Enhanced Photovoltaic Characteristics of Black Phosphorus-MoS ₂ Heterojunction. IEEE Open Journal of Nanotechnology, 2021, 2, 41-51.	0.9	4
3543	Pb in halide perovskites for photovoltaics: reasons for optimism. Materials Advances, 2021, 2, 6125-6135.	2.6	16
3544	Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5, 1926-1951.	2.5	11
3545	An ultrathin and compact electron transport layer made from novel water-dispersed Fe ₃ O ₄ nanoparticles to accomplish UV-stable perovskite solar cells. Materials Advances, 2021, 2, 3629-3636.	2.6	8
3546	Toward highly efficient and stable Sn ²⁺ and mixed Pb ²⁺ /Sn ²⁺ based halide perovskite solar cells through device engineering. Energy and Environmental Science, 2021, 14, 3256-3300.	15.6	49
3547	Terpyridine-derived perovskite single crystals with tunable structures and electronic dimensionality. RSC Advances, 2021, 11, 24816-24821.	1.7	7
3548	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96

ARTICLE IF CITATIONS Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy and 92 3549 15.6 Environmental Science, 2021, 14, 5690-5722. Role of the A-Site Cation in Low-Temperature Optical Behaviors of APbBr₃ (A = Cs,) Tj ETQq1 1 0.784314 rgBT /Qyerlock Perovskite solar cells: A review of architecture, processing methods, and future prospects. , 2021, , 3551 6 375-412. Niobate-based perovskites: Characterization, preparation, and photocatalytic properties., 2021, 341-356. Temporal-spatial-energy resolved advance multidimensional techniques to probe photovoltaic 3553 materials from atomistic viewpoint for next-generation energy solutions. Energy and Environmental 15.6 12 Science, 2021, 14, 4760-4802. Role of surface termination and quantum size in \hat{l} ±-CsPbX₃ (X = Cl, Br, I) 2D nanostructures for solar light harvesting. Physical Chemistry Chemical Physics, 2021, 23, 3031-3040. 3554 1.3 High-performance photovoltaic application of the 2D all-inorganic Ruddlesden–Popper perovskite 3555 heterostructure Cs₂Pbl₂Cl₂/MAPbl₃. Physical 1.36 Chemistry Chemical Physics, 2021, 23, 23703-23710. Perovskite photodetectors and their application in artificial photonic synapses. Chemical Communications, 2021, 57, 11429-11442. Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and 3557 1.0 20 Triple Coupled Nanoparticles. Journal of Electronic Materials, 2021, 50, 1817-1826. Crystallization in one-step solution deposition of perovskite films: Upward or downward?. Science 3558 4.7 165 Advances, 2021, 7, . Reliability of 3D Cs₂M⁺M<sup>3+</sub>X₆ type absorbers for perovskite solar cells: assessing the figures of merit. Journal of Materials Chemistry A, 2021, 9, 3559 5.2 12 17701-17719. Polycrystalline silicon solar cells., 2021, , 271-285. 3560 Tuning interfacial chemical interaction for high-performance perovskite solar cell with PEDOT:PSS as 3561 5.2 23 hole transporting layer. Journal of Materials Chemistry A, 2021, 9, 14920-14927. Dual-Band Plasmonic Perfect Absorber Based on the Hybrid Halide Perovskite in the Communication 3562 1.2 14 Regime. Coatings, 2021, 11, 67. Top transparent electrodes for fabricating semitransparent organic and perovskite solar cells. 3564 2.7 17 Journal of Materials Chemistry C, 2021, 9, 9102-9123. Influence of Nanostructures in Perovskite Solar Cells., 2022, , 646-660. 3565 TiO2 oxides for chromogenic devices and dielectric mirrors., 2021, , 483-505. 3566 1 Room-temperature synthesis, growth mechanisms and opto-electronic properties of

organicâ€^dinorganic ĥalide perovskite CH₃NH₃PbX₃ (X = I, Br, and) Tj ETQq131 0.784914 rgB

#	Article	IF	CITATIONS
3568	Recent progress in tailoring the properties of inorganic CsPbX ₃ perovskites with functional organic compounds: a route to enhanced efficiency and operational stability in CsPbX ₃ -based photovoltaics. Journal of Materials Chemistry C, 2021, 9, 9377-9399.	2.7	6
3570	Laser-Induced Thermal Annealing of CH3NH3PbI3 Perovskite Microwires. Photonics, 2021, 8, 30.	0.9	4
3571	Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. Nanoscale, 2021, 13, 12394-12422.	2.8	38
3572	Recent progress in tin-based perovskite solar cells. Energy and Environmental Science, 2021, 14, 1286-1325.	15.6	257
3573	Microstructure and lattice strain control towards high-performance ambient green-printed perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 13297-13305.	5.2	29
3574	Ultrafast transformation of PbI ₂ in two-step fabrication of halide perovskite films for long-term performance and stability <i>via</i> nanosecond laser shock annealing. Journal of Materials Chemistry C, 2021, 9, 12819-12827.	2.7	8
3575	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	0.6	1
3576	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	15.6	76
3577	High-Performance Perovskite Solar Cells Fabricated by a Hybrid Physical–Chemical Vapor Deposition. Journal of Solar Energy Engineering, Transactions of the ASME, 2021, 143, .	1.1	3
3578	Metal halide perovskites as an emergent catalyst for CO ₂ photoreduction: a minireview. Reaction Chemistry and Engineering, 2021, 6, 828-838.	1.9	13
3579	Challenges in tin perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 23413-23427.	1.3	27
3580	Recent advances in radiation detection technologies enabled by metal-halide perovskites. Materials Advances, 2021, 2, 6744-6767.	2.6	20
3581	On the adsorption mechanism of caffeine on MAPbI ₃ perovskite surfaces: a combined UMC-DFT study. Physical Chemistry Chemical Physics, 2021, 23, 10807-10813.	1.3	6
3582	All-in-one: a new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures. Chemical Science, 2021, 12, 3805-3817.	3.7	40
3583	Prediction of band gap for 2D hybrid organic–inorganic perovskites by using machine learning through molecular graphics descriptors. New Journal of Chemistry, 2021, 45, 9427-9433.	1.4	11
3584	Insights on cold plasma ammonia synthesis and decomposition using alkaline earth metal-based perovskites. Catalysis Science and Technology, 0, , .	2.1	24
3585	Lowâ€Dimensionalâ€Networked Perovskites with Aâ€Siteâ€Cation Engineering for Optoelectronic Devices. Small Methods, 2021, 5, e2001147.	4.6	27
3586	Perovskite solar cells as modern nano tools and devices in solar power energy. , 2021, , 377-427.		5

ARTICLE IF CITATIONS Enhanced photocurrent of perovskite solar cells by dual-sensitized \hat{l}^2 -NaYF4:Nd3+/Yb3+/Er3+ 3587 1.2 23 up-conversion nanoparticles. Chemical Physics Letters, 2021, 763, 138253. Magnetic perovskite nanoparticles for latent fingerprint detection. Nanoscale, 2021, 13, 12038-12044. 3588 2.8 Research progress on two-dimensional (2D) halide organic–inorganic hybrid perovskites. Sustainable 3589 2.512 Energy and Fuels, 2021, 5, 3950-3978. Progress of lead-free perovskite and its resistance switching performance. Wuli Xuebao/Acta Physica 0.2 Sinica, 2021, 70, 157301-157301. Perovskite-inspired materials for photovoltaics and beyondâ€"from design to devices. Nanotechnology, 3591 1.3 106 2021, 32, 132004. Highâ€Quality Ruddlesden–Popper Perovskite Film Formation for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2002582. 11.1 NIR-excitable heterostructured upconversion perovskite nanodots with improved stability. Nature 3593 5.8 57 Communications, 2021, 12, 219. Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of 3594 5.8 94 >21% and improved stability towards humidity. Nature Communications, 2021, 12, 52 Boosting the performance of MA-free inverted perovskite solar cells<i>via</i>multifunctional ion 3595 5.2 44 liquid. Journal of Materials Chemistry A, 2021, 9, 12746-12754. High-Performance Perovskite Solar Cells Based on NaCsWO₃@ NaYF₄@NaYF₄:Yb,Er Upconversion Nanoparticles. ACS Applied Materials & amp; Interfaces, 2021, 13, 2674-2684. Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy and 3597 15.6166 Environmental Science, 2021, 14, 3233-3255. Performance Evaluation of Perovskite Solar Cells at Elevated Temperatures. Lecture Notes in 3598 0.3 Electrical Engineering, 2021, , 127-133. Enhancement of Light Absorption in Gold Nanoparticles Embedded Methylammonium Lead Iodide 3599 0.1 0 Perovskite Film. Springer Proceedings in Physics, 2021, , 679-682. 3600 Organic–Inorganic Semiconductor Heterojunction Photocatalysts., 2021, , 315-350. Metal halide perovskite nanocrystals: application in high-performance photodetectors. Materials 3601 2.6 18 Advances, 2021, 2, 856-879. Carrier transport layers of tin-based perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 038801. Nanowire Waveguides and Lasers: Advances and Opportunities in Photonic Circuits. Frontiers in 3603 1.8 13 Chemistry, 2020, 8, 613504. Structural evolution, optical gap and thermoelectric properties of 3604 CH₃NH₃SnBr₃hybrid perovskite, prepared by mechanochemistry. Materials Advances, 2021, 2, 3620-3628.

#	Article	IF	CITATIONS
3605	Lead-free perovskite compounds CsSn _{1â^'x} Ge _x I _{3â^'y} Br _y explored for superior visible-light absorption. Physical Chemistry Chemical Physics, 2021, 23, 14449-14456.	1.3	10
3606	A High Seebeck Voltage Thermoelectric Module with Pâ€type and Nâ€type MAPbI ₃ Perovskite Single Crystals. Advanced Electronic Materials, 2021, 7, 2001003.	2.6	13
3607	High efficiency deep red to yellow photochemical upconversion under solar irradiance. Energy and Environmental Science, 0, , .	15.6	10
3608	Perovskite solar cells. , 2021, , 249-281.		5
3609	Self-assembled carbon dot-wrapped perovskites enable light trapping and defect passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 7508-7521.	5.2	21
3610	Inhomogeneous Trap-State-Mediated Ultrafast Photocarrier Dynamics in CsPbBr ₃ Microplates. ACS Applied Materials & Interfaces, 2021, 13, 6820-6829.	4.0	34
3611	Simulation and investigation of perovskite/nano-pyramidal GeSe solar cell: Realizing high efficiency by controllable light trapping. Solar Energy, 2021, 214, 310-318.	2.9	19
3612	Fused Dithienopicenocarbazole Enabling High Mobility Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 6688-6698.	4.0	26
3613	Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. Chemical Science, 2021, 12, 7231-7247.	3.7	31
3614	Hierarchical computational screening of layered lead-free metal halide perovskites for optoelectronic applications. Journal of Materials Chemistry A, 2021, 9, 6476-6486.	5.2	15
3615	Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 2021, 23, 5302-5336.	4.6	38
3616	Highly stable and efficient perovskite solar cells passivated by a functional amorphous layer. Journal of Materials Chemistry A, 2021, 9, 21708-21715.	5.2	13
3617	Tuning the Interfacial Dipole Moment of Spacer Cations for Charge Extraction in Efficient and Ultrastable Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 1256-1268.	1.5	56
3618	Hexaarylbenzene based high-performance p-channel molecules for electronic applications. RSC Advances, 2021, 11, 11672-11701.	1.7	10
3619	Efficient defect passivation with niacin for high-performance and stable perovskite solar cells. Journal of Materials Chemistry C, 0, , .	2.7	10
3620	Photoelectric conversion based on peptide–porphyrin conjugates assembled hydrogel. New Journal of Chemistry, 2021, 45, 7052-7055.	1.4	5
3621	Influence of the stoichiometry of tin-based 2D/3D perovskite active layers on solar cell performance. Journal of Materials Chemistry A, 2021, 9, 10095-10103.	5.2	13
3622	Efficiency improvement of perovskite solar cell by modifying structural parameters and using Ag nanoparticles. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5

#	Article	IF	CITATIONS
3623	Ferroelastic domains and phase transitions in organic–inorganic hybrid perovskite CH ₃ NH ₃ PbBr ₃ . Journal of Materials Chemistry C, 2021, 9, 3096-3107.	2.7	14
3624	Laser-Assisted Fabrication of Microphotocapacitors with High Energy Density and Output Voltage. ACS Applied Materials & Interfaces, 2021, 13, 419-428.	4.0	5
3625	Recent Progress in Perovskite Solar Cell: Fabrication, Efficiency, and Stability. Challenges and Advances in Computational Chemistry and Physics, 2021, , 1-32.	0.6	3
3626	Lead-Free Perovskite Nanocomposites: An Aspect for Environmental Application. , O, , .		0
3627	The limiting factors and improving solutions of P-I-N type tin-lead perovskite solar cells performance. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	1
3628	Recent Advances and Opportunities of Lead-Free Perovskite Nanocrystal for Optoelectronic Application. Energy Material Advances, 2021, 2021, .	4.7	43
3629	High-Pressure Structural Phase Transformation of Ferroelectric Bis-benzylammonium Lead Tetrachloride Studied by Raman Spectroscopy and X-ray Diffraction. Inorganic Chemistry, 2021, 60, 3657-3666.	1.9	5
3630	Mitigating Open-Circuit Voltage Loss in Pb–Sn Low-Bandgap Perovskite Solar Cells via Additive Engineering. ACS Applied Energy Materials, 2021, 4, 1731-1742.	2.5	43
3631	Nonlinear Band Gap Dependence of Mixed Pb–Sn 2D Ruddlesden–Popper PEA ₂ Pb _{1–<i>x</i>} Sn _{<i>x</i>} I ₄ Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 1501-1506.	2.1	9
3632	Europium ions doped WOx nanorods for dual interfacial modification facilitating high efficiency and stability of perovskite solar cells. Nano Energy, 2021, 80, 105564.	8.2	26
3633	Interface Engineering of Perovskite/Hole Transport Layer Using Nanoâ€Network Formation in Small Molecule–Polymer Blend for Efficient Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001891.	1.9	4
3634	Effect of alloying on the dynamics of coherent acoustic phonons in bismuth double perovskite single crystals. Optics Express, 2021, 29, 7948. Disorder effects in <mml:math< td=""><td>1.7</td><td>4</td></mml:math<>	1.7	4
3635	<pre>xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LaAl</mml:mi><mml:msub><mml:m mathvariant="normal">O<mml:mn>3</mml:mn></mml:m </mml:msub></mml:mrow>: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Ho</mml:mi></mml:mrow></mml:msup><mml:mi>Ho</mml:mi>Ho<td>i 1.1</td><td>3 Il·mrow><m< td=""></m<></td></mml:math </pre>	i 1.1	3 Il·mrow> <m< td=""></m<>
3636	single crystals revealed by optical spectra. Physical Review B, 2021, 103, . Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells. Advanced Materials, 2021, 33, e2006753.	11.1	69
3637	Recent Progress on Patterning Strategies for Perovskite Lightâ€Emitting Diodes toward a Fullâ€Color Display Prototype. Small Science, 2021, 1, 2000050.	5.8	39
3638	Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Science Advances, 2021, 7, .	4.7	98
3639	Flexible MAPbI3 perovskite solar cells with the high efficiency of 16.11% by low-temperature synthesis of compact anatase TiO2 film. Journal of Alloys and Compounds, 2021, 854, 155488.	2.8	16
3640	Coexistence of topological Weyl and nodal-ring states in ferromagnetic and ferrimagnetic double perovskites. Physical Review B, 2021, 103, .	1.1	11

#	Article	IF	CITATIONS
3641	Nonlinear Photonics Using Lowâ€Ðimensional Metalâ€Halide Perovskites: Recent Advances and Future Challenges. Advanced Materials, 2021, 33, e2004446.	11.1	58
3642	A review of experimental and computational attempts to remedy stability issues of perovskite solar cells. Heliyon, 2021, 7, e06211.	1.4	15
3643	Solar absorbance enhancement in perovskite solar cells with the inclusion of copper nanoparticles: an architectural study. Optical and Quantum Electronics, 2021, 53, 1.	1.5	11
3644	Recent advances in perovskite/organic integrated solar cells. Rare Metals, 2021, 40, 2763-2777.	3.6	26
3645	Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO*. Chinese Physics B, 2021, 30, 038801.	0.7	6
3646	Photostable and Uniform CH3NH3PbI3 Perovskite Film Prepared via Stoichiometric Modification and Solvent Engineering. Nanomaterials, 2021, 11, 405.	1.9	5
3647	3D structure–property correlations of electronic and energy materials by tomographic atomic force microscopy. Applied Physics Letters, 2021, 118, .	1.5	11
3648	Recrystallization of CsPbBr3 Nanoparticles in Fluoropolymer Nonwoven Mats for Down- and Up-Conversion of Light. Nanomaterials, 2021, 11, 412.	1.9	6
3649	Black phosphorus doped Poly(triarylamine) as hole transport layer for highly efficient perovskite solar cells. Organic Electronics, 2021, 89, 106052.	1.4	15
3650	Structural Design for Efficient Perovskite Solar Modules. Solar Rrl, 2021, 5, 2000733.	3.1	8
3651	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	7.8	100
3652	Broadband optical absorption enhancement in hybrid organic–inorganic perovskite metasurfaces. AIP Advances, 2021, 11, .	0.6	9
3653	Structural, Electronic, and Optical Properties of Group 6 Doped Anatase TiO2: A Theoretical Approach. Applied Sciences (Switzerland), 2021, 11, 1657.	1.3	4
3654	Atomic and electronic structure of cesium lead triiodide surfaces. Journal of Chemical Physics, 2021, 154, 074712.	1.2	2
3655	Metal Halide Perovskites for Laser Applications. Advanced Functional Materials, 2021, 31, 2010144.	7.8	180
3656	Synchronous Interface Modification and Bulk Passivation via a One-Step Cesium Bromide Diffusion Process for Highly Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 10110-10119.	4.0	15
3657	Recent progress in two-dimensional Ruddlesdenä€"Popper perovskite based heterostructures. 2D Materials, 2021, 8, 022006.	2.0	19

#	Article	IF	CITATIONS
3659	Additive manufacturing and applications of nanomaterial-based sensors. Materials Today, 2021, 48, 135-154.	8.3	46
3660	Recent Advances in Perovskite Photodetectors for Image Sensing. Small, 2021, 17, e2005606.	5.2	111
3661	Nonpolar Solventâ€Dispersible Alkylated Reduced Graphene Oxide for Hole Transport Material in nâ€iâ€p Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100087.	3.1	7
3662	In Situ Construction of Direct Zâ€5cheme Cs _{<i>x</i>} WO ₃ /CsPbBr ₃ Heterojunctions via Cosharing Cs Atom. Solar Rrl, 2021, 5, 2100036.	3.1	11
3663	Thermodynamic limit of tandem solar cells under different solar spectra and their perovskite top solar cell. Optical Materials, 2021, 113, 110819.	1.7	10
3664	Mechanism of Additive-Assisted Room-Temperature Processing of Metal Halide Perovskite Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 13212-13225.	4.0	27
3665	Performance analysis of surface plasmon resonance sensors using bimetallic alloy-perovskite-bimetallic alloy and perovskite-bimetallic alloy-perovskite nanostructures. Physica Scripta, 2021, 96, 065505.	1.2	6
3667	Polarization-Sensitive Light Sensors Based on a Bulk Perovskite MAPbBr3 Single Crystal. Materials, 2021, 14, 1238.	1.3	3
3668	Emerging Lowâ€Dimensional Crystal Structure of Metal Halide Perovskite Optoelectronic Materials and Devices. Small Structures, 2021, 2, 2000133.	6.9	33
3669	Chemical Interaction at the MoO ₃ /CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl <i>_x</i> Interface. ACS Applied Materials & Interfaces, 2021, 13, 17085-17092.	4.0	13
3670	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie, 2021, 133, 10041-10046.	1.6	3
3671	Recent Progress in Optical Control of Ferroelectric Polarization. Advanced Optical Materials, 2021, 9, 2002146.	3.6	37
3672	The effects of pyridine molecules structure on the defects passivation of perovskite solar cells. Journal of Solid State Electrochemistry, 2021, 25, 1531-1540.	1.2	12
3673	Room Temperature Lightâ€Mediated Longâ€Range Coupling of Excitons in Perovskites. Advanced Optical Materials, 2021, 9, 2001835.	3.6	6
3674	Photostrictive Effect: Characterization Techniques, Materials, and Applications. Advanced Functional Materials, 2021, 31, 2010706.	7.8	24
3675	The photophysics of Ruddlesden-Popper perovskites: A tale of energy, charges, and spins. Applied Physics Reviews, 2021, 8, .	5.5	34
3676	Impact of Photoluminescence Reabsorption in Metalâ€Halide Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100029.	3.1	9
3677	Impact of Auger recombination on performance limitation of perovskite solar cell. Solar Energy, 2021, 217, 342-353.	2.9	27

#	Article	IF	CITATIONS
3679	Boric Acid Mediated Formation and Doping of NiO _{<i>x</i>} Layers for Perovskite Solar Cells with Efficiency over 21%. Solar Rrl, 2021, 5, 2000810.	3.1	12
3680	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	7.8	96
3681	A review of stability and progress in tin halide perovskite solar cell. Solar Energy, 2021, 216, 26-47.	2.9	67
3682	Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 11741-11754.	4.0	45
3683	Universal Passivation Strategy for the Hole Transport Layer/Perovskite Interface via an Alkali Treatment for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000793.	3.1	14
3684	Effect of lattice polarisability in optical properties of methylammonium lead iodide by modified Becke-Johnson functionals and Bethe-Salpeter equation. Computational Materials Science, 2021, 189, 110245.	1.4	0
3685	Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics. Npj 2D Materials and Applications, 2021, 5, .	3.9	22
3686	Volatile solution: the way toward scalable fabrication of perovskite solar cells?. Matter, 2021, 4, 775-793.	5.0	53
3687	Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1539-1572.	1.4	18
3688	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie - International Edition, 2021, 60, 9953-9958.	7.2	26
3689	First-principles investigation of intrinsic point defects in perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CsSnBr</mml:mi><mml:mn>3Physical Review Materials, 2021, 5, .</mml:mn></mml:msub></mml:math 	mloren> </td <td>mmu4msub><</td>	mmu4msub><
3690	Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6555-6563.	1.5	16
3691	Remote Phonon Control of Quantum Dots and Other Artificial Atoms. Advanced Quantum Technologies, 2021, 4, 2000128.	1.8	9
3692	Kesterite Solar Cells: Insights into Current Strategies and Challenges. Advanced Science, 2021, 8, 2004313.	5.6	90
3693	Multistate resistive switching behaviors for neuromorphic computing in memristor. Materials Today Advances, 2021, 9, 100125.	2.5	33
3694	Airâ€Stable Selfâ€Powered Photodetectors Based on Leadâ€Free CsBi ₃ I ₁₀ /SnO ₂ Heterojunction for Weak Light Detection. Advanced Functional Materials, 2021, 31, 2100773.	7.8	60
3695	Ultra-Halide-Rich Synthesis of Stable Pure Tin-Based Halide Perovskite Quantum Dots: Implications for Photovoltaics. ACS Applied Nano Materials, 2021, 4, 3958-3968.	2.4	9
3696	Effects of organic ligands on efficiency and stability of perovskite light-emitting diodes. Journal of Materials Science, 2021, 56, 11436-11447.	1.7	5

#	Article	IF	CITATIONS
3697	High stability of photovoltaic cells with phenethylammonium iodide-passivated perovskite layers and printable copper phthalocyanine-modified carbon electrodes. Nanotechnology, 2021, 32, 225701.	1.3	4
3698	Performance enhancement of surface plasmon resonance sensor based on Ag-TiO2-MAPbX3-graphene for the detection of glucose in water. Optical and Quantum Electronics, 2021, 53, 1.	1.5	13
3699	Formation of Highâ€Performance Multiâ€Cation Halide Perovskites Photovoltaics by Î′â€CsPbl ₃ /Î′â€RbPbl ₃ Seedâ€Assisted Heterogeneous Nucleation. Advanced Energy Materials, 2021, 11, 2003785.	10.2	32
3700	Hybrid iodobismuthates code: adapting the geometry of Bi polyhedra to weak interactions. Mendeleev Communications, 2021, 31, 166-169.	0.6	2
3701	2D Perovskite Nanosheets with Intrinsic Chirality. Journal of Physical Chemistry Letters, 2021, 12, 2676-2681.	2.1	27
3702	Diluted-CdS Quantum Dot-Assisted SnO ₂ Electron Transport Layer with Excellent Conductivity and Suitable Band Alignment for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 16326-16335.	4.0	27
3703	lodine reduction for reproducible and high-performance perovskite solar cells and modules. Science Advances, 2021, 7, .	4.7	158
3704	(Li,Na)SbS2 as a promising solar absorber material: A theoretical investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119389.	2.0	6
3705	High mobility transparent and conducting oxide films of La-doped SrSnO\$\$_3\$\$. Journal of Materials Science: Materials in Electronics, 2021, 32, 11835-11844.	1.1	4
3706	Amplification of strong coupling in the simulation system of perovskite nanowire coated by the metal film. Modern Physics Letters B, 2021, 35, 2150246.	1.0	0
3707	Ultrafast Interfacial Electron Transfer from Graphene Quantum Dot to 2,4-Dinitrotoluene. Journal of Physical Chemistry C, 2021, 125, 9638-9645.	1.5	13
3708	Suppressed Oxidation and Photodarkening of Hybrid Tin Iodide Perovskite Achieved with Reductive Organic Small Molecule. ACS Applied Energy Materials, 2021, 4, 4704-4710.	2.5	10
3709	Recent Progress in CsPbX ₃ Perovskite Nanocrystals for Enhanced Stability and Photocatalytic Applications. ChemNanoMat, 2021, 7, 789-804.	1.5	13
3710	Role of earth-abundant selenium in different types of solar cells. Journal of Electrical Engineering, 2021, 72, 132-139.	0.4	3
3711	Directional and Fast Photoluminescence from CsPbI3 Nanocrystals Coupled to Dielectric Circular Bragg Gratings. Micromachines, 2021, 12, 422.	1.4	3
3712	Phase Tailoring of Ruddlesden–Popper Perovskite at Fixed Large Spacer Cation Ratio. Small, 2021, 17, e2100560.	5.2	10
3713	Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules. Applied Surface Science, 2021, 545, 149012.	3.1	22
3714	Synthesis of 0D Manganeseâ€Based Organic–Inorganic Hybrid Perovskite and Its Application in Leadâ€Free Red Lightâ€Emitting Diode. Advanced Functional Materials, 2021, 31, 2100855.	7.8	98

#	Article	IF	CITATIONS
3715	Interfacial Engineering via Selfâ€Assembled Thiol Silane for High Efficiency and Stability Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100128.	3.1	24
3716	Poly(catecholamine) Coated CsPbBr ₃ Perovskite Microlasers: Lasing in Water and Biofunctionalization. Advanced Functional Materials, 2021, 31, 2101902.	7.8	12
3717	Unraveling the Charge Transport Mechanism in Mechanochemically Processed Hybrid Perovskite Solar Cell. Langmuir, 2021, 37, 5513-5521.	1.6	11
3718	Charge-Carrier Mobility and Localization in Semiconducting Cu ₂ AgBil ₆ for Photovoltaic Applications. ACS Energy Letters, 2021, 6, 1729-1739.	8.8	41
3719	Efficient Optical Orientation and Slow Spin Relaxation in Lead-Free CsSnBr ₃ Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 1670-1676.	8.8	23
3720	Hydrogen freedom linked to perovskite efficiency. Nature Materials, 2021, 20, 914-915.	13.3	1
3721	Structural, Electronic, and Optical Properties of the Vacancy-Ordered Bismuth–Antimony Perovskites (CH3NH3)3(Bi1–xSbx)2I9. Journal of Physical Chemistry C, 2021, 125, 8938-8946.	1.5	5
3722	Nanochannel-confined growth of crystallographically orientated perovskite nanowire arrays for polarization-sensitive photodetector application. Science China Materials, 2021, 64, 2497-2506.	3.5	21
3723	In situ XPS investigation of the X-ray-triggered decomposition of perovskites in ultrahigh vacuum condition. Npj Materials Degradation, 2021, 5, .	2.6	36
3725	Fabrication and Characterization of an Efficient Inverted Perovskite Solar Cells with POSS Passivating Hole Transport Layer. Nanomaterials, 2021, 11, 974.	1.9	10
3726	Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 2021, 32, 282001.	1.3	26
3727	Rational Design and Simulation of Two-Dimensional Perovskite Photonic Crystal Absorption Layers Enabling Improved Light Absorption Efficiency for Solar Cells. Energies, 2021, 14, 2460.	1.6	7
3728	Bottomâ€Up Quasiâ€Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving Highâ€Efficiency Solar Cells via Template â€Guided Crystallization. Advanced Materials, 2021, 33, e2100009.	11.1	44
3729	Chalcogen-Containing Hole Transporting Materials. Bulletin of the Chemical Society of Japan, 2021, 94, 1311-1323.	2.0	1
3730	Effects of Choline Chloride in Lead Bromide Layer and Methylammonium Bromide Precursor on Perovskite Conversion and Optoelectronic Properties of Perovskite-Based Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3, 2035-2043.	2.0	4
3731	Vapor-deposited CsPbI3 solar cells demonstrate an efficiency of 16%. Science Bulletin, 2021, 66, 757-760.	4.3	16
3732	Efficient calculation of carrier scattering rates from first principles. Nature Communications, 2021, 12, 2222.	5.8	205
3733	Efficient Perovskite Solar Cells with a Gradient Light Absorption Layer and Low VOC Loss Obtained by Interface Engineering. ACS Applied Energy Materials, 2021, 4, 3584-3592.	2.5	2

#	Article	IF	CITATIONS
3734	Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technology, 2021, 9, 2000901.	1.8	33
3735	SnO2/2D-Bi2O2Se new hybrid electron transporting layer for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 410, 128436.	6.6	32
3736	A highly-specific photoelectrochemical platform based on carbon nanodots and polymers functionalized organic-inorganic perovskite for cholesterol sensing. Talanta, 2021, 225, 122050.	2.9	18
3737	Preparation of Low Grain Boundary Perovskite Crystals with Excellent Performance: The Inhibition of Ammonium Iodide. ACS Omega, 2021, 6, 12858-12865.	1.6	5
3738	Synergistic Effect of RbBr Interface Modification on Highly Efficient and Stable Perovskite Solar Cells. ACS Omega, 2021, 6, 13766-13773.	1.6	3
3739	First-Principles Study on the Structure, Electronic and Optical Properties of Cs ₂ AgSb _{<i>x</i>} Bi _{1–<i>x</i>} Cl ₆ Double Perovskites. Journal of Physical Chemistry C, 2021, 125, 11271-11277.	1.5	10
3740	Dielectric Screening Modulates Semiconductor Nanoplatelet Excitons. Journal of Physical Chemistry Letters, 2021, 12, 4958-4964.	2.1	9
3741	Efficient perovskite solar cells processed in supercritical carbon dioxide. Journal of Supercritical Fluids, 2021, 171, 105203.	1.6	5
3742	An approach based on random sampling and density functional theory to identify highly stable structures of ABX3 compounds. Computational Materials Science, 2021, 192, 110304.	1.4	2
3743	Enhanced crystallization of solution-processed perovskite using urea as an additive for large-grain MAPbl ₃ perovskite solar cells. Nanotechnology, 2021, 32, 30LT02.	1.3	8
3744	Thermal and Humidity Stability of Mixed Spacer Cations 2D Perovskite Solar Cells. Advanced Science, 2021, 8, 2004510.	5.6	40
3745	Unified theory for light-induced halide segregation in mixed halide perovskites. Nature Communications, 2021, 12, 2687.	5.8	70
3746	Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D. Nanomaterials, 2021, 11, 1218.	1.9	81
3747	Benzylammoniumâ€Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics. Advanced Functional Materials, 2021, 31, 2101163.	7.8	28
3748	Switchedâ€On: Progress, Challenges, and Opportunities in Metal Halide Perovskite Transistors. Advanced Functional Materials, 2021, 31, 2101029.	7.8	57
3749	Manipulation of perovskite film by biasâ€induced reversible lattice deformation toward tunable photoelectric performances. Nano Select, 0, , .	1.9	0
3750	Gold-Cage Perovskites: A Three-Dimensional Au ^{III} –X Framework Encasing Isolated MX ₆ ^{3–} Octahedra (M ^{III} = In, Sb, Bi; X = Cl [–] ,) Tj ETQq0 C) 06r.øBT /C)venlock 10 T

ARTICLE IF CITATIONS Synthesis and Investigation of the Properties of Organic-Inorganic Perovskite Films with Non-Contact 3752 0.1 2 Methods. Ukrainian Journal of Physics, 2021, 66, 429. Metalâ€Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies. 10.2 Advanced Energy Materials, 2021, 11, 2100784. Influence of Solvent on Stability and Electrophysical Properties of Organicâ& Inorganic Perovskites 3754 0.2 3 Films CH3NH3PbI3. Theoretical and Experimental Chemistry, 2021, 57, 113-120. Shining Light on the Structure of Lead Halide Perovskite Nanocrystals., 2021, 3, 845-861. 23 Effect of the structure of lead iodine perovskites on the photovoltaic efficiencies. Journal of Physics 3756 1.9 1 and Chemistry of Solids, 2021, 152, 109958. Anomalous effects of dielectric coated plasmonic metal nanoparticles on solar absorption 1.3 enhancement in perovskite thin films. Journal Physics D: Applied Physics, 2021, 54, 305501. Nanocrystals form a superfluorescent lattice mimicking the atomic structure of perovskite materials. 3758 13.7 0 Nature, 2021, 593, 513-514. Simulations of Trions and Biexcitons in Layered Hybrid Organic-Inorganic Lead Halide Perovskites. 3759 2.9 9 Physical Review Letters, 2021, 126, 216402. Enhanced Conversion Efficiency Enabled by Species Migration in Direct Solar Energy Storage. 3760 1.0 4 ChemPhysChem, 2021, 22, 1193-1200. Performanceâ€Enhanced CsPbBr 3 /HfO 2 /Si Heterostructure Optoelectronics through the Tunneling 3761 1.9 Effect. Advanced Materials Interfaces, 2021, 8, 2100279. Single Junction Highly Efficient Perovskite Solar Cells With Sun-Light Tracking System., 2021,,. 3762 0 Photonic crystals for perovskiteâ€based optoelectronic applications. Nano Select, 2022, 3, 39-50. 3763 Understanding the Transformation of 2D Layered Perovskites to 3D Perovskites in the Sonochemical 3764 1.5 6 Synthesis. Journal of Physical Chemistry C, 2021, 125, 12131-12139. Formamidinium containing tetra cation organic–inorganic hybrid perovskite solar cell. Solar Energy, 3765 2021, 220, 258-268. Efficiency enhancement of Si solar cell based on spectral down-shifting property of CsGeBr3 3766 optimized by time and temperature of synthesis. Journal of Materials Science: Materials in Electronics, 1.1 6 2021, 32, 15675-15686. Ferroelectrochemistry. APL Materials, 2021, 9, . 3767 2.2 29 Surfactantâ€Free, Oneâ€Step Synthesis of Leadâ€Free Perovskite Hollow Nanospheres for Trace CO 3768 11.1 18 Detection. Advanced Materials, 2021, 33, e2100674. Mechanism and Timescales of Reversible pâ€Doping of Methylammonium Lead Triiodide by Oxygen. 3769 11.1 Advanced Materials, 2021, 33, e2100211.

	CITATION RE	PORT	
#	Article	IF	CITATIONS
3770	Integrating Concentrated Optics for Ambient Perovskite Solar Cells. Energies, 2021, 14, 2714.	1.6	2
3771	Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma. Düzce Üniversitesi Bilim Teknoloji Dergisi, 0, , 158-171.	Ve 0.2	0
3772	Sensitive Photodetector Arrays Based on Patterned CH ₃ NH ₃ PbBr ₃ Single Crystal Microplate for Image Sensing Application. Advanced Optical Materials, 2021, 9, 2100371.	3.6	14
3773	Development of photovoltaic solar cells based on heterostructure of layered materials: challenges and opportunities. Emergent Materials, 2021, 4, 881-900.	3.2	6
3774	Efficient and Stable Perovskite Solar Cells Using Bathocuproine Bilateral-Modified Perovskite Layers. ACS Applied Materials & Interfaces, 2021, 13, 24747-24755.	4.0	22
3775	Large Cation Engineering in Two-Dimensional Silver–Bismuth Bromide Double Perovskites. Chemistry of Materials, 2021, 33, 4688-4700.	3.2	25
3776	Structure, electronic and optical properties of CsPbX3 halide perovskite: A first-principles study. Journal of Alloys and Compounds, 2021, 862, 158442.	2.8	31
3777	Electrode-induced impurities in tin halide perovskite solar cell material CsSnBr3 from first principles. Npj Computational Materials, 2021, 7, .	3.5	13
3778	First-principles calculations of electronic, optical and transport properties of the inorganic metal halide perovskite CsBl2Br (B = Sn, Ge, Pb) compounds. Materials Science in Semiconductor Processing, 2021, 126, 105657.	1.9	20
3779	A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 2021, 40, 2712-2729.	3.6	138
3780	Polarons and Charge Localization in Metalâ€Halide Semiconductors for Photovoltaic and Lightâ€Emitting Devices. Advanced Materials, 2021, 33, e2007057.	11.1	53
3781	Comparative Study on TiO2 and C60 Electron Transport Layers for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5543-5553.	2.5	4
3782	Lead–halide perovskites for next-generation self-powered photodetectors: a comprehensive review. Photonics Research, 2021, 9, 968.	3.4	52
3783	Naphthylmethylamine post-treatment of MAPbI3 perovskite solar cells with simultaneous defect passivation and stability improvement. Solar Energy, 2021, 220, 18-23.	2.9	10
3784	Recent advances in perovskite/2D materials based hybrid photodetectors. JPhys Materials, 2021, 4, 032008.	1.8	31
3785	Antimony chalcogenide-based thin film solar cells: Device engineering routes to boost the performance. Journal of Applied Physics, 2021, 129, .	1.1	10
3786	Spiro-OMeTAD doped with cumene hydroperoxide for perovskite solar cells. Electrochemistry Communications, 2021, 126, 107020.	2.3	7
3787	[KNbO3]1-x[BaCo1/2Nb1/2O3-Î]x inorganic perovskite oxide coupled with TiO2 nanorods photoelectrode: Toward efficient enhancement of photoelectrochemical properties. Materials Chemistry and Physics, 2021, 264, 124426.	2.0	2

#	Article	IF	CITATIONS
3788	Nanoparticles, Nanocrystals, and Quantum Dots: What are the Implications of Size in Colloidal Nanoscale Materials?. Journal of Physical Chemistry Letters, 2021, 12, 4769-4779.	2.1	32
3789	Dimethyl Sulfoxide Vapor-Assisted Cs ₂ AgBiBr ₆ Homogenous Film Deposition for Solar Cell Application. ACS Applied Energy Materials, 2021, 4, 6797-6805.	2.5	20
3790	Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films. Materials, 2021, 14, 3526.	1.3	3
3791	Counterion Gradients around Charged Metal Nanoparticles Enabling Basic Electronics without Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 6102-6110.	2.1	2
3792	Reducing Defects in Organic-Lead Halide Perovskite Film by Delayed Thermal Annealing Combined with KI/I2 for Efficient Perovskite Solar Cells. Nanomaterials, 2021, 11, 1607.	1.9	6
3793	A Tri-Metallic (Mn–Co–Ti) Oxide Photoanode with Improved Photo-Conversion Efficiency. Russian Journal of Inorganic Chemistry, 2021, 66, 806-813.	0.3	3
3794	Incorporation of an Emissive Cu ₄ I ₄ Core into Cross-Linked Networks: An Effective Strategy for Luminescent Organic–Inorganic Hybrid Coatings. Inorganic Chemistry, 2021, 60, 15049-15054.	1.9	8
3795	Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI ₃ : A Reactive Force Field Molecular Dynamics Study. Journal of Physical Chemistry Letters, 2021, 12, 5519-5525.	2.1	31
3796	Charge-transfer complexes and their applications in optoelectronic devices. Materials Today Energy, 2021, 20, 100644.	2.5	19
3797	Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites. Nature Communications, 2021, 12, 3489.	5.8	38
3798	Effect of sulfur-doped graphene quantum dots incorporation on morphological, optical and electron transport properties of CH3NH3PbBr3 perovskite thin films. Journal of Materials Science: Materials in Electronics, 2021, 32, 17406-17417.	1.1	17
3799	Additiveâ€Induced Synergies of Defect Passivation and Energetic Modification toward Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101394.	10.2	36
3800	Variational hysteresis and photoresponse behavior of MAPbX ₃ (X = I, Br, Cl) perovskite single crystals. Journal of Physics Condensed Matter, 2021, 33, 285703.	0.7	7
3801	Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3. Science China Materials, 2021, 64, 2976-2986.	3.5	25
3802	A Thienothiopheneâ€Based Cation Treatment Allows Semitransparent Perovskite Solar Cells with Improved Efficiency and Stability. Advanced Functional Materials, 2021, 31, 2103130.	7.8	15
3803	Metasurface-assisted broadband optical absorption in ultrathin perovskite films. Optics Express, 2021, 29, 19170.	1.7	5
3804	Brightly Luminescent and Moisture Tolerant Phenyl Viologen Lead Iodide Perovskites for Light Emission Applications. Journal of Physical Chemistry Letters, 2021, 12, 5456-5462.	2.1	5
3805	Strain Induced Topological Insulator Phase in CsPbBrxI3â^'x (x = 0, 1, 2, and 3) Perovskite: A Theoretical Study. Applied Sciences (Switzerland), 2021, 11, 5353.	1.3	5

	CITATION RE	Citation Report	
#	Article	IF	Citations
3806	Advances of Nonlinear Photonics in Lowâ€Dimensional Halide Perovskites. Small, 2021, 17, e2100809.	5.2	39
3807	Octahedral tilting dominated phase transition in compressed double perovskite Ba2SmBiO6. Applied Physics Letters, 2021, 118, .	1.5	8
3808	Gravity-Guided Growth of Large-Area High-Quality Two-Dimensional Ruddlesden–Popper Perovskite Thin Films for Stable Ultraviolet Photodetectors. Journal of Physical Chemistry C, 2021, 125, 13909-13916.	1.5	5
3809	Strong Electron Localization in Tin Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 5339-5343.	2.1	22
3810	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€&tabilized αâ€CsPbI 3 Perovskite. Angewandte Chemie, 2021, 133, 16300-16306.	1.6	1
3811	Research progress of absorber film of inorganic perovskite solar cells: Fabrication techniques and additive engineering in defect passivation. Materials Science in Semiconductor Processing, 2021, 127, 105666.	1.9	24
3812	The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nature Energy, 2021, 6, 624-632.	19.8	144
3813	All-inorganic lead-free NiOx/Cs3Bi2Br9 perovskite heterojunction photodetectors for ultraviolet multispectral imaging. Nano Research, 2022, 15, 1094-1101.	5.8	39
3814	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
3815	Impact of standard front and rear side albedo spectra on the band alignment optimization of n-i-p solar cells. , 2021, , .		0
3816	Impact of carbon-based charge transporting layer on the performance of perovskite solar cells. Solar Energy, 2021, 221, 254-274.	2.9	7
3817	Metal-to-Ligand Charge-Transfer Spectrum of a Ru-Bipyridine-Sensitized TiO ₂ Cluster from Embedded Multiconfigurational Excited-State Theory. Journal of Physical Chemistry A, 2021, 125, 4998-5013.	1.1	5
3818	Nanoscale Film Thickness Gradients Printed in Open Air by Spatially Varying Chemical Vapor Deposition. Advanced Functional Materials, 2021, 31, 2103271.	7.8	8
3819	Annealing effects on interdiffusion in layered FA-rich perovskite solar cells. AIP Advances, 2021, 11, .	0.6	12
3820	Exciton linewidth broadening induced by exciton–phonon interactions in CsPbBr3 nanocrystals. Journal of Chemical Physics, 2021, 154, 214502.	1.2	14
3821	Multifunctional Crosslinkingâ€Enabled Strainâ€Regulating Crystallization for Stable, Efficient αâ€FAPbl ₃ â€Based Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008487.	11.1	106
3822	p-Type Polymers for Templated Crystallization of Perovskite Films and Interface Optimization for High Performance Solar Cells. Crystals, 2021, 11, 654.	1.0	0
3823	Photorechargeable Lead-Free Perovskite Lithium-Ion Batteries Using Hexagonal Cs ₃ Bi ₂ I ₉ Nanosheets. Nano Letters, 2021, 21, 5578-5585.	4.5	59

#	Article	IF	CITATIONS
3824	Photon recycling in perovskite solar cells assessed by a detailed-balance compatible dipole emission model. , 2021, , .		0
3825	Three-Dimensional Perovskite Nanopixels for Ultrahigh-Resolution Color Displays and Multilevel Anticounterfeiting. Nano Letters, 2021, 21, 5186-5194.	4.5	33
3826	Theoretical study of mixed-halide influence on the stability and electronic properties of CsCd(Cl/Br)3. Computational and Theoretical Chemistry, 2021, 1200, 113251.	1.1	2
3827	Synthetic approaches for thin-film halide double perovskites. Matter, 2021, 4, 1801-1831.	5.0	11
3828	Advances in Conversion Efficiency and Thermal Stability of the Perovskite-Based Solar Cell: Review. TH Wildau Engineering and Natural Sciences Proceedings, 0, 1, .	0.0	0
3829	Tailored Key Parameters of Perovskite for High-Performance Photovoltaics. Accounts of Materials Research, 2021, 2, 447-457.	5.9	5
3830	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€6tabilized αâ€CsPbI ₃ Perovskite. Angewanc Chemie - International Edition, 2021, 60, 16164-16170.	lte 7.2	210
3831	Zinc ions doped cesium lead bromide perovskite nanocrystals with enhanced efficiency and stability for white light-emitting diodes. Journal of Alloys and Compounds, 2021, 866, 158969.	2.8	20
3832	A New Perspective and Design Principle for Halide Perovskites: Ionic Octahedron Network (ION). Nano Letters, 2021, 21, 5415-5421.	4.5	9
3833	Evaluation of Damage Coefficient for Minority-Carrier Diffusion Length of Triple-Cation Perovskite Solar Cells under 1 MeV Electron Irradiation for Space Applications. Journal of Physical Chemistry C, 2021, 125, 13131-13137.	1.5	12
3834	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
3835	Roomâ€Temperatureâ€Processed, Carbonâ€Based Fully Printed Mesoscopic Perovskite Solar Cells with 15% Efficiency. Solar Rrl, 2021, 5, 2100274.	3.1	11
3836	Structural chemistry of layered lead halide perovskites containing single octahedral layers. IUCrJ, 2021, 8, 485-513.	1.0	31
3837	Highly Efficient and Thickness Insensitive Inverted Triple-Cation Perovskite Solar Cells Fabricated by Gas Pumping Method. Journal of Physical Chemistry Letters, 2021, 12, 5580-5586.	2.1	6
3838	CO2 doping of organic interlayers for perovskite solar cells. Nature, 2021, 594, 51-56.	13.7	120
3839	Dual Passivation of SnO ₂ by Tetramethylammonium Chloride for High-Performance CsPbI ₂ Br-Based Inorganic Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 5850-5858.	3.2	39
3840	Ternary halide perovskites for possible optoelectronic applications revealed by Artificial Intelligence and DFT calculations. Materials Chemistry and Physics, 2021, 267, 124710.	2.0	23
3841	Advances in cesium lead iodide perovskite solar cells: Processing science matters. Materials Today, 2021, 47, 156-169.	8.3	25

		CITATION REPORT		
#	Article		IF	CITATIONS
3842	Review on Solar Hydrogen: Its Prospects and Limitations. Energy & amp; Fuels, 2021, 35	, 11613-11639.	2.5	48
3843	Unveiling Crystal Orientation in Quasiâ€2D Perovskite Films by In Situ GIWAXS for High Photovoltaics. Small, 2021, 17, e2100972.	hâ€Performance	5.2	23
3844	Numerical Modeling and Optimization of Lead-Free Hybrid Double Perovskite Solar Cell SCAPS-1D. Journal of Renewable Energy, 2021, 2021, 1-12.	by Using	2.1	46
3845	Optically Clear Films of Formamidinium Lead Bromide Perovskite for Wide-Band-Gap, Solution-Processed, Semitransparent Solar Cells. ACS Applied Materials & amp; Interface 37223-37230.	es, 2021, 13,	4.0	10
3846	Kinetics of moisture-induced phase transformation in inorganic halide perovskite. Matte 2392-2402.	er, 2021, 4,	5.0	34
3847	Broadband emission of corner-sharing halometalate templated by benzyltrimethylammo Inorganic Chemistry Communication, 2021, 129, 108622.	onium.	1.8	2
3848	A novel dopant for spiro-OMeTAD towards efficient and stable perovskite solar cells. Sc Materials, 2021, 64, 2915-2925.	ience China	3.5	7
3849	8â€Hydroxyquinoline Metal Complexes as Cathode Interfacial Materials in Inverted Plan Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100506.	ar Perovskite	1.9	2
3850	Solvent Engineering for Controlled Crystallization and Growth of All-Inorganic Pb-Free R Absorbers of Perovskite Solar Cells. Inorganic Chemistry, 2021, 60, 11110-11119.	udorffite	1.9	6
3851	An experiment for novel material thin-film solar cell characterization on sounding rocket Review of Scientific Instruments, 2021, 92, 074501.	t flights.	0.6	4
3852	Methylamine Gas Treatment Affords Improving Semitransparency, Efficiency, and Stabil CH ₃ NH ₃ PbBr ₃ â€Based Perovskite Solar Cells. S 2100277.	ity of olar Rrl, 2021, 5,	3.1	11
3853	High Shunt Resistance SnO ₂ â€₽bO Electron Transport Layer for Perovskite in Low Lighting Applications. Advanced Sustainable Systems, 2021, 5, 2100120.	e Solar Cells Used	2.7	36
3854	The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Contex Solar Cells. Crystals, 2021, 11, 814.	t of Perovskite	1.0	17
3855	New <scp>leadâ€free</scp> double perovskites <scp> X ₂ Gel _{6of Energy Research, 2021, 45, 19645-19652.}</scp>	ıb> (XÂ=ÂK, Rb,) T	ETQq1 1 2.2	0.784314 g 20
3856	Toroidal Resonance Tunability in THz Metamaterial Based on Perovskite. Integrated Ferr 2021, 218, 199-207.	oelectrics,	0.3	1
3857	Improved light absorption in perovskite solar module employing nanostructured micro- Solar Energy Materials and Solar Cells, 2021, 226, 111077.	brism array.	3.0	4
3858	Highly efficient perovskite solar cells fabricated under a 70% relative humidity atmosphological power Sources, 2021, 500, 229985.	ere. Journal	4.0	8
3859	Tuning Hybrid exciton–Photon Fano Resonances in Two-Dimensional Organic–Inorg Thin Films. Nano Letters, 2021, 21, 6124-6131.	ganic Perovskite	4.5	11

#	Article	IF	CITATIONS
3860	Influence of Atmospheric Constituents on Spectral Instability and Defect-Mediated Carrier Recombination in Hybrid Perovskite Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 17133-17143.	1.5	10
3861	Room-temperature sputtered-SnO2 modified anode toward efficient TiO2-based planar perovskite solar cells. Science China Technological Sciences, 2021, 64, 1995-2002.	2.0	6
3862	Selenium-containing Dâ^'Aâ^'D-type dopant-free hole transport materials for perovskite solar cells. Dyes and Pigments, 2021, 191, 109339.	2.0	17
3863	Quantifying Capacitive and Diffusion-Controlled Charge Storage from 3D Bulk to 2D Layered Halide Perovskite-Based Porous Electrodes for Efficient Supercapacitor Applications. Journal of Physical Chemistry C, 2021, 125, 16946-16954.	1.5	91
3864	Newfangled progressions in the charge transport layers impacting the stability and efficiency of perovskite solar cells. Reviews in Inorganic Chemistry, 2022, 42, 137-159.	1.8	8
3865	DFT Study of Lead-Free Mixed-Halide Materials Cs2X2Y2 (X, Y = F, Cl, Br, I) for Optoelectronic Applications. Journal of Electronic Materials, 2021, 50, 5647-5655.	1.0	Ο
3866	Synergistic Effect of Codoped Nickel Oxide Hole–Transporting Layers for Highly Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100243.	3.1	8
3867	Picosecond laser seal welding of perovskite films. Optics and Laser Technology, 2021, 140, 107083.	2.2	4
3868	A first principle investigation of the non-synthesized cubic perovskite LiGeX3 (X=I, Br, and Cl). Materials Science in Semiconductor Processing, 2021, 131, 105858.	1.9	18
3869	Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case. Technological Forecasting and Social Change, 2021, 169, 120826.	6.2	10
3870	Oxide and Organic–Inorganic Halide Perovskites with Plasmonics for Optoelectronic and Energy Applications: A Contributive Review. Catalysts, 2021, 11, 1057.	1.6	10
3871	Tight-binding description of inorganic lead halide perovskites in cubic phase. Computational Materials Science, 2021, 196, 110535.	1.4	5
3872	FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 40656-40663.	4.0	24
3873	Lead-free perovskites: growth, properties, and applications. Science China Materials, 2021, 64, 2889-2914.	3.5	12
3874	Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nature Communications, 2021, 12, 5009.	5.8	10
3875	Band-Gap-Engineered Transparent Perovskite Solar Modules to Combine Photovoltaics with Photosynthesis. ACS Applied Materials & amp; Interfaces, 2021, 13, 39230-39238.	4.0	8
3876	Photon Recycling in Semiconductor Thin Films and Devices. Advanced Science, 2021, 8, e2004076.	5.6	16
3880	Recent Progress on Metal Halide Perovskite Solar Minimodules. Solar Rrl, 2022, 6, 2100458.	3.1	21

#	Article	IF	CITATIONS
3881	Branched Methoxydiphenylamine-Substituted Carbazole Derivatives for Efficient Perovskite Solar Cells: Bigger Is Not Always Better. Chemistry of Materials, 2021, 33, 7017-7027.	3.2	11
3882	Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions. Angewandte Chemie - International Edition, 2021, 60, 21434-21440.	7.2	72
3883	3D Temporaryâ€Magnetized Soft Robotic Structures for Enhanced Energy Harvesting. Advanced Materials, 2021, 33, e2102691.	11.1	23
3884	Development and outlook of high output piezoelectric nanogenerators. Nano Energy, 2021, 86, 106080.	8.2	76
3885	Recent progress of flexible perovskite solar cells. Nano Today, 2021, 39, 101155.	6.2	61
3886	Slow carrier relaxation in tin-based perovskite nanocrystals. Nature Photonics, 2021, 15, 696-702.	15.6	40
3887	Optimal design and photovoltaic performance of eco friendly, stable and efficient perovskite solar cell. Superlattices and Microstructures, 2021, 156, 106972.	1.4	9
3888	First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). Journal of Physics and Chemistry of Solids, 2022, 160, 110302.	1.9	64
3889	Ion migration in halide perovskite solar cells: Mechanism, characterization, impact and suppression. Journal of Energy Chemistry, 2021, 63, 528-549.	7.1	76
3890	Numerical simulation of perovskite solar cell with different material as electron transport layer using SCAPS-1D Software. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2021, 24, 341-347.	0.3	11
3891	Hydrothermal preparation of Nb-doped NaTaO3 with enhanced photocatalytic activity for removal of organic dye. Chinese Journal of Chemical Engineering, 2022, 46, 142-149.	1.7	7
3892	Sandwiched electrode buffer for efficient and stable perovskite solar cells with dual back surface fields. Joule, 2021, 5, 2148-2163.	11.7	63
3893	Crystallization of silicon oxide films using Al as a catalyst. Journal of the Korean Physical Society, 0, , 1.	0.3	0
3894	Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions. Angewandte Chemie, 2021, 133, 21604-21610.	1.6	13
3895	Study of optical and thermoelectric properties of ZYbI3 (Z = Rb, Cs) for solar cells and renewable energy; Modelling by density functional theory. Journal of Physics and Chemistry of Solids, 2021, 155, 110117.	1.9	18
3896	Origin and alleviation of J-V hysteresis in perovskite solar cells: A short review. Catalysis Today, 2021, 374, 86-101.	2.2	42
3897	Highly efficient Cesium Titanium (IV) Bromide perovskite solar cell and its point defect investigation: A computational study. Superlattices and Microstructures, 2021, 156, 106946.	1.4	13
3898	Dimension-controlled halide perovkites using templates. Nano Today, 2021, 39, 101181.	6.2	11

#	Article	IF	CITATIONS
3899	Graph representational learning for bandgap prediction in varied perovskite crystals. Computational Materials Science, 2021, 196, 110530.	1.4	16
3900	Optical Properties of Ion Accumulation Areas in MAPbX 3 Single Crystals. Advanced Optical Materials, 0, , 2100850.	3.6	8
3901	Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catalysis, 2021, 11, 11336-11359.	5.5	81
3902	Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching. Cell Reports Physical Science, 2021, 2, 100511.	2.8	21
3903	Submicrometer perovskite plasmonic lasers at room temperature. Science Advances, 2021, 7, .	4.7	25
3904	Numerical study of highly efficient tin-based perovskite solar cell with MoS ₂ hole transport layer. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 1045-1059.	0.7	5
3905	Recent Advances in Flexible Perovskite Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100441.	1.9	28
3906	Electronic and Optical Properties of C4N2H14-Based Lead-Less Halide Perovskites Investigated by First Principles. Journal of Physical Chemistry C, 2021, 125, 19445-19454.	1.5	0
3907	Making BaZrS ₃ Chalcogenide Perovskite Thin Films by Molecular Beam Epitaxy. Advanced Functional Materials, 2021, 31, 2105563.	7.8	34
3908	Grain Boundaries in Methylammonium Lead Halide Perovskites Facilitate Water Diffusion. Advanced Energy and Sustainability Research, 2021, 2, 2100087.	2.8	9
3909	Mixed Halide Perovskite Films by Vapor Anion Exchange for Spectrally Stable Blue Stimulated Emission. Small, 2021, 17, e2103169.	5.2	11
3910	Surface modulation of halide perovskite films for efficient and stable solar cells. Chinese Physics B, 2022, 31, 037303.	0.7	3
3911	Toward Allâ€Vacuumâ€Processable Perovskite Solar Cells with High Efficiency, Stability, and Scalability Enabled by Fluorinated Spiroâ€OMeTAD through Thermal Evaporation. Solar Rrl, 2021, 5, 2100415.	3.1	10
3912	Chlorides, other Halides, and Pseudoâ€Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3665-3692.	3.6	14
3913	Lithium Polystyrene Sulfonate as a Hole Transport Material in Inverted Perovskite Solar Cells. Chemistry - an Asian Journal, 2021, 16, 3151-3161.	1.7	4
3914	A Review on Experimental Identification of Active Sites in Model Bifunctional Electrocatalytic Systems for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2021, 8, 3433-3456.	1.7	13
3915	Upscaling perovskite solar cells via the ambient deposition of perovskite thin films. Trends in Chemistry, 2021, 3, 747-764.	4.4	12
3916	Tuning composition space in lead-free divalent and tetravalent halide perovskite : a critical review. Emergent Materials, 2022, 5, 1021-1032.	3.2	1
#	ARTICLE Efficiency improvement of perovskite solar cells by charge transport balancing using length tunable	IF	CITATIONS
------	---	-----	-----------
3917	ZnO nanorods and optimized perovskite morphology. Solar Energy Materials and Solar Cells, 2021, 230, 111206.	3.0	9
3918	Solar cells based on n+-AZO/p-BaSi2 heterojunction: Advanced opto-electrical modelling and experimental demonstration. Solar Energy Materials and Solar Cells, 2021, 230, 111181.	3.0	19
3919	Oxidic 2D Materials. Materials, 2021, 14, 5213.	1.3	1
3920	High-Stability and High-Efficiency Photovoltaic Materials Based on Functional Diamino Organic Cation Halide Hybrid Perovskite Superlattice Structures. ACS Applied Energy Materials, 2021, 4, 8774-8790.	2.5	3
3921	Review on engineering two-dimensional nanomaterials for promoting efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 154-175.	7.1	11
3922	Toward high-performance semitransparent perovskite solar cells: interfacial modification and charge extraction perspectives. Materials Today Energy, 2021, 21, 100833.	2.5	8
3923	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
3924	The Trapped Charges at Grain Boundaries in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2107125.	7.8	47
3925	Numerical study of lead free CsSn0.5Ge0.5I3 perovskite solar cell by SCAPS-1D. Optik, 2021, 248, 168060.	1.4	53
3926	Numerical investigation of a new approach based on perovskite CH3NH3PbI3 absorber layer for high-efficiency solar cells. Materials Research Express, 2021, 8, 095507.	0.8	2
3927	Modified colored semi-transparent perovskite solar cells with enhanced stability. Journal of Alloys and Compounds, 2021, 875, 159781.	2.8	11
3928	Facile Fabrication of Highly Stable and Wavelength-Tunable Tin Based Perovskite Materials with Enhanced Quantum Yield via the Cation Transformation Reaction. Journal of Physical Chemistry Letters, 2021, 12, 8763-8769.	2.1	10
3929	Understanding improved photoelectrochemical performance in BaxSr1â^'xTiO3/TiO2 rod–shell nanostructures. AlP Advances, 2021, 11, .	0.6	1
3930	Efficient Perovskite Nanocrystalâ€based Optoelectronic Devices. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100366.	0.8	4
3931	Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Materials Science, 2021, 3, 276-290.	3.9	35
3932	Predicting Power Conversion Efficiency of Organic Photovoltaics: Models and Data Analysis. ACS Omega, 2021, 6, 23764-23775.	1.6	11
3933	Origin of Rashba Spin Splitting and Strain Tunability in Ferroelectric Bulk CsPbF ₃ . Journal of Physical Chemistry Letters, 2021, 12, 9539-9546.	2.1	10
3934	Boosting interfacial charge transfer by constructing rare earth–doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells. Materials Today Energy, 2021, 21, 100724.	2.5	8

#	Article	IF	CITATIONS
3935	Organic Matrix Assisted Lowâ€ŧemperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie, 2022, 134, .	1.6	3
3936	Controlled solution-based fabrication of perovskite thin films directly on conductive substrate. Thin Solid Films, 2021, 733, 138806.	0.8	5
3937	Stabilization of MAPbI ₃ Nanocrystals by Dual Ligands for Photodetectors. ACS Applied Nano Materials, 2021, 4, 10334-10343.	2.4	6
3938	Unravelling the crystal structure and optoelectronic properties of C3H3MI3 (M = Sn, Pb) for solar cell applications. Solar Energy Materials and Solar Cells, 2021, 230, 111133.	3.0	1
3939	Reduction of Nonradiative Loss in Inverted Perovskite Solar Cells by Donorâ^ï€â€"Acceptor Dipoles. ACS Applied Materials & Interfaces, 2021, 13, 44321-44328.	4.0	30
3940	Unnatural Hygroscopic Property of Nicotinic Acid by Restructuring Molecular Density: Self-Healing Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8932-8938.	2.1	2
3941	A review of primary technologies of thin-film solar cells. Engineering Research Express, 2021, 3, 032001.	0.8	42
3942	Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH ₃ NH ₃ PbBr ₃ single crystal. Chinese Physics B, 2022, 31, 047104.	0.7	2
3943	Thermal- and Light-Induced Evolution of the 2D/3D Interface in Lead-Halide Perovskite Films. ACS Applied Materials & Interfaces, 2022, 14, 34180-34188.	4.0	19
3944	Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications. SusMat, 2021, 1, 324-344.	7.8	70
3945	Hybrid material for the fabrication of electron transport layer in perovskite solar cell. Polymer Bulletin, 2022, 79, 8033-8055.	1.7	4
3946	Two-dimensional hybrid perovskite solar cells: a review. Environmental Chemistry Letters, 2022, 20, 189-210.	8.3	10
3947	Sb2S3 entrenched MWCNT composite as a low-cost Pt-free counter electrode for dye-sensitized solar cell and a viewpoint for a photo-powered energy system. Electrochimica Acta, 2021, 390, 138864.	2.6	31
3948	Recent Progress on Synthesis, Characterization, and Applications of Metal Halide Perovskites@Metal Oxide. Advanced Functional Materials, 2021, 31, 2104634.	7.8	19
3949	Solution process of selective color-gamut perovskite solar cell modulated with organic Fabry-Perot electrode for building-integrated photovoltaic. Solar Energy Materials and Solar Cells, 2021, 230, 111192.	3.0	7
3950	Antioxidation and Energy-Level Alignment for Improving Efficiency and Stability of Hole Transport Layer-Free and Methylammonium-Free Tin–Lead Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45059-45067.	4.0	18
3951	Magnetic Properties in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films by Mn Doping. Journal of Physical Chemistry C, 2021, 125, 20104-20112.	1.5	12
3952	2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells. Small, 2021, 17, e2103514.	5.2	59

#	ARTICLE	IF	CITATIONS
3953	Tailoring hot carrier cooling and recombination dynamics of mixed-halide-perovskite by	1.3	3
3954	Repair Strategies for Perovskite Solar Cells. Chemical Research in Chinese Universities, 2021, 37, 1055-1066.	1.3	3
3955	Preparation of nanocomposites of PbS quantum dots dispersed in MAPbl ₃ matrix from precursor solution of Pb xanthate. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 035005.	0.7	0
3956	Study of structural, optical and magnetic properties of 3D and quasi-2D iron-based lead-free perovskites. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	1
3957	Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability. Chemical Engineering Journal, 2021, 420, 129678.	6.6	15
3958	A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy, 2021, 87, 106141.	8.2	28
3959	Perovskite Anion Exchange: A Microdynamics Model and a Polar Adsorption Strategy for Precise Control of Luminescence Color. Advanced Functional Materials, 2021, 31, 2106871.	7.8	45
3960	Marked Near-Infrared Response of 2D Ca ₃ Sn ₂ S ₇ Chalcogenide Perovskite via Solid and Electronic Structure Engineering. Journal of Physical Chemistry C, 2021, 125, 20241-20248.	1.5	6
3961	Leadâ€Free Double Perovskite Cs ₂ AgBiBr ₆ : Fundamentals, Applications, and Perspectives. Advanced Functional Materials, 2021, 31, 2105898.	7.8	166
3962	Recent advances in carbon nanomaterial-optimized perovskite solar cells. Materials Today Energy, 2021, 21, 100769.	2.5	14
3963	Planar heterojunction boosts solar-driven photocatalytic performance and stability of halide perovskite solar photocatalyst cell. Applied Catalysis B: Environmental, 2022, 301, 120760.	10.8	33
3964	Recent progress on all-inorganic metal halide perovskite solar cells. Materials Today Nano, 2021, 16, 100143.	2.3	13
3965	Stability Issues of Perovskite Solar Cells: A Critical Review. Energy Technology, 2021, 9, 2100560.	1.8	31
3966	Piezophototronic Effect Enhanced Perovskite Solar Cell Based on P(VDFâ€TrFE). Solar Rrl, 2021, 5, 2100692.	3.1	8
3967	Compositionâ€Dependent Photoluminescence Properties and Antiâ€Counterfeiting Applications of A ₂ AgX ₃ (AÂ=ÂRb, Cs; XÂ= ÂCl, Br, I). Advanced Functional Materials, 2021, 31, 2104941.	7.8	50
3968	A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7, 940-956.	2.8	111
3969	Quasiparticle Band Structure and Phonon-Induced Band Gap Renormalization of the Lead-Free Halide Double Perovskite Cs ₂ InAgCl ₆ . Journal of Physical Chemistry C, 2021, 125, 21689-21700.	1.5	13
3970	Simulation and analysis of the performances of a thin plasmonic-based perovskite absorber by subtracting the parasitic absorption of nano-cylinders. Optical and Quantum Electronics, 2021, 53, 1.	1.5	5

#	Article	IF	CITATIONS
3971	A SCAPS simulation investigation of non-toxic MAGel3-on-Si tandem solar device utilizing monolithically integrated (2-T) and mechanically stacked (4-T) configurations. Solar Energy, 2021, 225, 471-485.	2.9	33
3972	Present and Perspectives of Photoactive Porous Composites Based on Semiconductor Nanocrystals and Metal-Organic Frameworks. Molecules, 2021, 26, 5620.	1.7	6
3973	Organic Matrix Assisted Lowâ€ŧemperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
3974	Solving the equivalent circuit of a planar heterojunction perovskite solar cell using Lambert W-function. Solid State Communications, 2021, 337, 114439.	0.9	4
3975	Advances in perovskite solar cells: Film morphology control and interface engineering. Journal of Cleaner Production, 2021, 317, 128368.	4.6	10
3976	Understanding the surface passivation effects of Lewis base in perovskite solar cells. Applied Surface Science, 2021, 563, 150267.	3.1	25
3977	Exploring the impact of HgI2 doping on optical, structural and morphological properties of pure CH3NH3PbI3 perovskite. Inorganic Chemistry Communication, 2021, 132, 108851.	1.8	5
3978	Advances and Challenges in Tin Halide Perovskite Nanocrystals. , 2021, 3, 1541-1557.		12
3979	Guanidinium cation passivated Pb-Cu alloyed perovskite for efficient low-toxicity solar cells. Applied Surface Science, 2021, 567, 150778.	3.1	6
3980	Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy, 2021, 89, 106370.	8.2	63
3981	Mie-resonant mesoporous electron transport layer for highly efficient perovskite solar cells. Nano Energy, 2021, 89, 106484.	8.2	18
3982	A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. Journal of Energy Chemistry, 2021, 62, 243-251.	7.1	35
3983	Efficient colorful perovskite solar cells designed by 2D and 3D ordered titania inverse opals. Journal of Power Sources, 2021, 512, 230488.	4.0	5
3984	Effect of anti-solvent chlorobenzene on bottom micro-porous structure of perovskite light-absorbing layer. Materials Letters, 2021, 302, 130430.	1.3	0
3985	Structural diversity in hybrid lead halides templated by 4-methylimidazolium. Journal of Solid State Chemistry, 2021, 303, 122466.	1.4	8
3986	Efficient application of intermediate phase for highly-oriented MAPbI3 perovskite solar cells in ambient air. Solar Energy, 2021, 228, 200-205.	2.9	7
3987	Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Materials and Design, 2021, 209, 109972.	3.3	21
3988	Near field control for enhanced photovoltaic performance and photostability in perovskite solar cells. Nano Energy, 2021, 89, 106388.	8.2	25

#	ARTICLE	IF	CITATIONS
" 3989	Mixed solvent atmosphere induces the surface termination state transition of perovskite to achieve matched energy loval alignment. Chemical Engineering Journal, 2021, 424, 130508	6.6	5
3990	NaCl-passivated and Na+-doped tin oxide electron transport layers enable highly efficient planar perovskite solar cells. Journal of Physics and Chemistry of Solids, 2021, 158, 110250.	1.9	8
3991	Molecular spectroscopy of hybrid organic–inorganic perovskites and related compounds. Coordination Chemistry Reviews, 2021, 448, 214180.	9.5	37
3992	Prediction of optoelectronic features and efficiency for CuMX2 (M=Ga, In; X=S, Se) semiconductors using mbj+U approximation. Current Applied Physics, 2021, 32, 11-23.	1.1	1
3993	Phase evolution from CsPbBr3:Cu to Cs4PbBr6:Cu quantum dots with stable blue emission. Journal of Luminescence, 2021, 240, 118413.	1.5	6
3994	Design of (C3N2H5)(1-)Cs PbI3 as a novel hybrid perovskite with strong stability and excellent photoelectric performance: A theoretical prediction. Solar Energy Materials and Solar Cells, 2021, 233, 111401.	3.0	7
3995	Effect of heterostructure engineering on electronic structure and transport properties of two-dimensional halide perovskites. Computational Materials Science, 2021, 200, 110823.	1.4	10
3996	Introduction of 4-hydroxybenzaldehyde as interface modifier with multidimensional defects passivation effect for high-performance perovskite solar cells. Applied Surface Science, 2021, 570, 151259.	3.1	9
3997	Ambient processed perovskite sensitized porous TiO2 nanorods for highly efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2021, 884, 161061.	2.8	7
3998	Novel ytterbium-doped CsPbI2Br thin-films–based inorganic perovskite solar cells toward improved phase stability. Materials Today Chemistry, 2021, 22, 100557.	1.7	11
3999	MoO3 doped PTAA for high-performance inverted perovskite solar cells. Applied Surface Science, 2022, 571, 151301.	3.1	19
4000	Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. Journal of Energy Chemistry, 2022, 65, 371-404.	7.1	36
4001	Self-woven monolayer polyionic mesh to achieve highly efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 428, 132074.	6.6	19
4002	Incorporation of Î ³ -aminobutyric acid and cesium cations to formamidinium lead halide perovskites for highly efficient solar cells. Journal of Energy Chemistry, 2022, 64, 561-567.	7.1	19
4003	Recombination. Springer Theses, 2021, , 97-119.	0.0	0
4005	Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells. Nano Select, 2021, 2, 1055-1080.	1.9	32
4006	Temperature-responsive emission and elastic properties of a new 2D lead halide perovskite. Dalton Transactions, 2021, 50, 2648-2653.	1.6	18
4007	Alkali chloride doped SnO ₂ electron-transporting layers for boosting charge transfer and passivating defects in all-inorganic CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 15003-15011.	5.2	30

#	Article	IF	CITATIONS
4008	Palliating the efficiency loss due to shunting in perovskite/silicon tandem solar cells through modifying the resistive properties of the recombination junction. Sustainable Energy and Fuels, 2021, 5, 2036-2045.	2.5	10
4009	Chiral organic–inorganic lead halide perovskites based on α-alanine. New Journal of Chemistry, 2021, 45, 12606-12612.	1.4	16
4010	Photodiodes based on a MAPbBr ₃ /Bi ³⁺ -doped MAPbCl ₃ single crystals heterojunction for the X-ray detection. CrystEngComm, 2021, 23, 4954-4962.	1.3	10
4011	Indole fused heterocycles as sensitizers in dye-sensitized solar cells: an overview. Materials Advances, 2021, 2, 6136-6168.	2.6	35
4012	Photophysics of 2D Organic–Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. Advanced Science, 2021, 8, 2001843.	5.6	59
4013	A Highâ€Performance Flexible Broadband Photodetector Based on Graphene–PTAA–Perovskite Heterojunctions. Advanced Electronic Materials, 2021, 7, 2000522.	2.6	24
4014	Enhancing the efficiency and stability of two-dimensional Dion–Jacobson perovskite solar cells using a fluorinated diammonium spacer. Journal of Materials Chemistry A, 2021, 9, 11778-11786.	5.2	27
4015	Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. Journal of Materials Chemistry A, 2021, 9, 4589-4625.	5.2	149
4016	Enhanced resistive switching performance in yttrium-doped CH ₃ NH ₃ PbI ₃ perovskite devices. Physical Chemistry Chemical Physics, 2021, 23, 21757-21768.	1.3	12
4017	Progress in copper metal halides for optoelectronic applications. Materials Chemistry Frontiers, 2021, 5, 4796-4820.	3.2	55
4018	Electrolytes, Dyes, and Perovskite Materials in Third Generation Photovoltaic Cells. , 2022, , 621-634.		7
4019	Effect of 2D, TMD, perovskite, and 2D transition metal carbide/nitride materials on performance parameters of SPR biosensor. , 2021, , 57-90.		8
4020	Impact of noncovalent interactions on structural and photophysical properties of zero-dimensional tellurium(<scp>iv</scp>) perovskites. Journal of Materials Chemistry C, 2021, 9, 3271-3286.	2.7	9
4021	Data-driven analysis of the rotational energy landscapes of an organic cation in a substituted alloy perovskite. Materials Advances, 2021, 2, 2366-2372.	2.6	Ο
4022	Nanocarbons for emerging photovoltaic applications. , 2021, , 49-80.		0
4023	Luminescent and scintillation properties of perovskite CsPbBr3 crystal at cryogenic temperatures. Journal of Physical Studies, 2021, 25, .	0.2	Ο
4024	Zinc ion functional doping for all-inorganic planar CsPblBr ₂ perovskite solar cells with efficiency over 10.5%. Journal of Materials Chemistry C, 2021, 9, 2145-2155.	2.7	43
4025	Perovskite CH ₃ NH ₃ Pbl _{3–X} Cl _x Solar Cells and their Degradation (Part 1: A Short Review). Latvian Journal of Physics and Technical Sciences, 2021, 58, 44-52.	0.4	1

#	Article	IF	CITATIONS
4026	Leadâ€Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. Advanced Science, 2021, 8, 2003334.	5.6	155
4027	Oneâ€Dimensional Molecular Metal Halide Materials: Structures, Properties, and Applications. Small Structures, 2021, 2, 2000062.	6.9	40
4028	Recent progress in metal sulfide-based electron transport layers in perovskite solar cells. Nanoscale, 2021, 13, 17272-17289.	2.8	10
4029	Visible-light photocatalytic selective oxidation of amine and sulfide with CsPbBr ₃ as photocatalyst. New Journal of Chemistry, 2021, 45, 13317-13322.	1.4	9
4030	The structural stability and defect-tolerance of ionic spinel semiconductors for high-efficiency solar cells. Journal of Materials Chemistry A, 2021, 9, 14566-14575.	5.2	6
4031	CHAPTER 8. Highly Efficient Dye-sensitized Solar Cells with Integrated 3D Graphene-based Materials. Chemistry in the Environment, 2021, , 205-236.	0.2	1
4032	Halide Perovskite Metamaterial Directional Emitter. , 2021, , .		0
4033	New Insight into the Lewis Basic Sites in Metal–Organic Framework-Doped Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 5235-5244.	4.0	33
4034	Highly Mobile Large Polarons in Black Phase CsPbI ₃ . ACS Energy Letters, 2021, 6, 568-573.	8.8	40
4035	Relaxed Current Matching Requirements in Highly Luminescent Perovskite Tandem Solar Cells and Their Fundamental Efficiency Limits. ACS Energy Letters, 2021, 6, 612-620.	8.8	38
4036	Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials, 2021, 31, 2008684.	7.8	70
4037	Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammoniumâ€Based Additives. Advanced Materials, 2018, 30, 1703670.	11.1	132
4038	Localized Surface Plasmon Resonance Enhanced Light Absorption in AuCu/CsPbCl ₃ Core/Shell Nanocrystals. Advanced Materials, 2020, 32, e2002163.	11.1	59
4039	Tenâ€Gramâ€Scale Synthesis of FAPbX ₃ Perovskite Nanocrystals by a Highâ€Power Roomâ€Temperature Ultrasonicâ€Assisted Strategy and Their Electroluminescence. Advanced Materials Technologies, 2020, 5, 1901089.	3.0	16
4040	NIR Light Driven Terahertz Wave Modulator with a Large Modulation Depth Based on a Siliconâ€PEDOT:PSSâ€Perovskite Hybrid System. Advanced Materials Technologies, 2020, 5, 1901090.	3.0	9
4041	High Efficiency Perovskiteâ€6ilicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.	10.2	110
4042	Doped Bilayer Tin(IV) Oxide Electron Transport Layer for High Open ircuit Voltage Planar Perovskite Solar Cells with Reduced Hysteresis. Small, 2021, 17, e2005671.	5.2	34
4043	Synergistic Benefits of Cesiumâ€Doped Aqueous Precursor in Airâ€Processed Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900406.	3.1	10

#	Article	IF	CITATIONS
4044	Effect of Oxygen Vacancies in Electron Transport Layer for Perovskite Solar Cells. , 2020, , 283-305.		3
4045	Perspective of Nanomaterials in the Performance of Solar Cells. , 2020, , 25-54.		4
4046	Perovskite Material-Based Photocatalysts. Materials Horizons, 2020, , 251-287.	0.3	3
4047	Fully slot-die-coated perovskite solar cells in ambient condition. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	24
4048	Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances. Journal of Power Sources, 2020, 451, 227825.	4.0	44
4049	Thiocyanate assisted nucleation for high performance mix-cation perovskite solar cells with improved stability. Journal of Power Sources, 2020, 466, 228320.	4.0	29
4050	Well-ordered vertically aligned ZnO nanorods arrays for high-performance perovskite solar cells. Materials Research Bulletin, 2020, 130, 110935.	2.7	35
4051	Efficient CsPbBr3 nanocrystals light emitting diodes achieved with Na+ modifying. Organic Electronics, 2020, 84, 105796.	1.4	7
4052	Quantum confinement and strain effects on the low-dimensional all-inorganic halide Cs2XI2Cl2 (X=) Tj ETQq0 0 C E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114226.) rgBT /Ove 1.3	erlock 10 Tf 12
4053	Stable lead-free perovskite solar cells: A first-principles investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118493.	2.0	7
4054	Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO2 electron transport layer, ultraviolet conversion layer CsPbBr3 and the encapsulation layer Al2O3. Solar Energy, 2020, 198, 187-193.	2.9	21
4055	The influence of CdS intermediate layer on CdSe/CdS co-sensitized free-standing TiO2 nanotube solar cells. Superlattices and Microstructures, 2018, 113, 696-705.	1.4	10
4056	Progress and Opportunities for Cs Incorporated Perovskite Photovoltaics. Trends in Chemistry, 2020, 2, 638-653.	4.4	35
4057	Small Electron Polarons in CsPbBr ₃ : Competition between Electron Localization and Delocalization. Chemistry of Materials, 2020, 32, 8393-8400.	3.2	15
4058	On-device lead sequestration for perovskite solar cells. Nature, 2020, 578, 555-558.	13.7	284
4059	Chapter 2. Towards Optimum Solution-processed Planar Heterojunction Perovskite Solar Cells. RSC Energy and Environment Series, 2016, , 32-56.	0.2	5
4060	Chapter 7. Electronic Properties of Metal Halide Perovskites. RSC Energy and Environment Series, 2016, , 202-233.	0.2	2
4061	Chapter 8. First Principles Modeling of Perovskite Solar Cells: Interplay of Structural, Electronic and Dynamical Effects. RSC Energy and Environment Series, 2016, , 234-296.	0.2	2

#	Article	IF	CITATIONS
4062	CHAPTER 4. Solution-processed Solar Cells: Perovskite Solar Cells. Inorganic Materials Series, 2019, , 153-192.	0.5	6
4063	Halide Perovskites With Ambipolar Transport Properties for Transistor Applications. RSC Smart Materials, 2020, , 41-82.	0.1	2
4064	Recent Advances in Photocatalytic Materials for Solar Fuel Production from Water and Carbon Dioxide. RSC Energy and Environment Series, 2020, , 80-115.	0.2	2
4065	A pseudo-two-dimensional conjugated polysquaraine: an efficient p-type polymer semiconductor for organic photovoltaics and perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13644-13651.	5.2	47
4066	Current status and prospects of memristors based on novel 2D materials. Materials Horizons, 2020, 7, 1495-1518.	6.4	101
4067	Suppression of surface defects to achieve hysteresis-free inverted perovskite solar cells <i>via</i> quantum dot passivation. Journal of Materials Chemistry A, 2020, 8, 5263-5274.	5.2	67
4068	Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Materials Horizons, 2020, 7, 2276-2291.	6.4	66
4069	Synthetic factors affecting the stability of methylammonium lead halide perovskite nanocrystals. Nanoscale, 2020, 12, 11694-11702.	2.8	9
4070	Seed crystal free growth of high-quality double cation – double halide perovskite single crystals for optoelectronic applications. Journal of Materials Chemistry C, 2020, 8, 8275-8283.	2.7	7
4071	Organic-inorganic hybrid corrosion protection coating materials for offshore wind power devices: a mini-review and perspective. Molecular Crystals and Liquid Crystals, 2020, 710, 74-89.	0.4	2
4072	Defects in halide perovskite semiconductors: impact on photo-physics and solar cell performance. Journal Physics D: Applied Physics, 2020, 53, 503003.	1.3	26
4073	Basis and effects of ion migration on photovoltaic performance of perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 063001.	1.3	20
4074	Theoretical investigation of halide perovskites for solar cell and optoelectronic applications*. Chinese Physics B, 2020, 29, 108401.	0.7	15
4075	HI hydrolysis-derived intermediate as booster for CsPbI ₃ perovskite: from crystal structure, film fabrication to device performance. Journal of Semiconductors, 2020, 41, 051202.	2.0	19
4076	Low-Temperature synthesis of FeOOH Quantum Dots as Promising Electron-Transporting Layers for High-Performance Planar Perovskite Solar Cells. IOP Conference Series: Earth and Environmental Science, 0, 585, 012010.	0.2	2
4077	MAPbBr ₃ single crystal based metal-semiconductor-metal photodetector enhanced by localized surface plasmon. Materials Research Express, 2020, 7, 125902.	0.8	5
4078	Laser printed metal halide perovskites. JPhys Materials, 2020, 3, 034010.	1.8	5
4079	Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>CH </mml:mi> <mml:m Physical Review Materials, 2017, 1, .</mml:m </mml:msub></mml:mrow></mml:math 	nn>3 <td>ıl:87 n:mn></td>	ıl:87 n:mn>

#		IF	CITATIONS
4080	Computationally driven high-throughput identification of Calle and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:mi> as promising candidates for high-mobility <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi> -type</mml:math </mml:mi></mml:msub></mml:mrow></mml:math 	>30.9	nn>16
4081	<pre>impactorimetalecimingathecimination in the impact of the impact of</pre>	0.9	60
4082	Design of p -type transparent conductors from inverted band structure: The case of inorganic metal halide perovskites. Physical Review Materials, 2019, 3, .	0.9	20
4083	Effects of band edge positions on defect structure in lead halide perovskites: A case study on the Br vacancy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Cs</mml:mi><mml:mi>PbPhysical Review Materials, 2020, 4.</mml:mi></mml:mrow></mml:math 	> <mark>0.9</mark> > <mml:m:< td=""><td>sub> < mml:n</td></mml:m:<>	sub> < mml:n
4084	X-ray luminescence in undoped and bismuth-doped single crystal hybrid lead halide perovskites. , 2019, ,		3
4085	Plasmonic enhancement of absorption in bulk-heterojunction organic solar cells. , 2019, , .		1
4086	Reducing Interface Traps with High Density Hydrogen Treatment to Increase Passivated Emitter Rear Contact Cell Efficiency. Nanoscale Research Letters, 2019, 14, 375.	3.1	6
4087	Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers. Nanoscale Research Letters, 2020, 15, 66.	3.1	8
4088	Enhancement of light harvesting efficiency of perovskite solar cells by using one-dimensional photonic crystals. Applied Optics, 2019, 58, 8046.	0.9	9
4089	Silicon nitride nanobeam enhanced emission from all-inorganic perovskite nanocrystals. Optics Express, 2019, 27, 18673.	1.7	11
4090	Complete optical absorption in hybrid halide perovskites based on critical coupling in the communication band. Optics Express, 2020, 28, 14151.	1.7	12
4091	Nonlinear refraction in CH ₃ NH ₃ PbBr ₃ single crystals. Optics Letters, 2020, 45, 2431.	1.7	19
4092	Easy-to-process and high-performance colorful perovskite solar cells using a multilayer planar filter. Optics Letters, 2020, 45, 6326.	1.7	4
4093	Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells. Photonics Research, 2020, 8, A39.	3.4	34
4094	Cavity engineering of two-dimensional perovskites and inherent light-matter interaction. Photonics Research, 2020, 8, A72.	3.4	18
4095	Superior single-mode lasing in a self-assembly CsPbX ₃ microcavity over an ultrawide pumping wavelength range. Photonics Research, 2021, 9, 54.	3.4	13
4096	Golden hour for perovskite photonics. Photonics Research, 2020, 8, PP1.	3.4	15
4097	Perovskite nanowire based multijunction solar cell. , 2015, , .		2

ARTICLE IF CITATIONS Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron 4098 2.9 19 conversion. Nanophotonics, 2020, 9, 3323-3333. Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles. Nanophotonics, 2020, 4099 9, 3111-3133. Ultrafast dynamics of photoexcited carriers in perovskite semiconductor nanocrystals. 4100 2.9 16 Nanophotonics, 2021, 10, 1943-1965. Recent Progress on Applications of Nano Metal Oxides in Perovskite Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 897. Properties of Silver Nanostructures Incorporated Perovskite Based Thin Films for Solar Cell 4102 0.6 1 Applications. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 908. Synthesis and Structural Investigations of Layered Perovskite System: [NH3-(CH2)3-COOH]2MCL4 (M=) Tj ETQq1 , 0.784314 rgBT Fabrication and characterization of potassium- and formamidinium-added perovskite solar cells. 4104 0.5 27 Journal of the Ceramic Society of Japan, 2020, 128, 805-811. Recent Progress in Long-term Stability of Perovskite Solar Cells. U Porto Journal of Engineering, 2015, 4106 0.2 1, 52-62. Printing photovoltaics by electrospray. Opto-Electronic Advances, 2020, 3, 190038-190038. 20 4107 6.4 The Path to Perovskite on Silicon PV., 2018, 1, 1-8. Back-Contact Perovskite Solar Cells., 2019, 1, 1-10. 4109 4 Perovskite LEDs., 2019, 1, 1-5. Properties of Perovskite Solar Cells with GO Addition on TiO<sub>2</sub> Layer. Journal of 4111 0.4 6 Korean Institute of Metals and Materials, 2019, 57, 456-461. Terahertz Switch Utilizing Inorganic Perovskite-Embedded Metasurface. Frontiers in Physics, 2020, 8, . 1.0 Effect of Passivation Layer on the Thin Film Perovskite Random Lasers. Materials, 2020, 13, 2322. 4114 1.3 5 Performance Enhancement of Ultra-Thin Nanowire Array Solar Cells by Bottom Reflectivity 1.9 Engineering. Nanomaterials, 2020, 10, 184. Architectures and Applications of BODIPY-Based Conjugated Polymers. Polymers, 2021, 13, 75. 4116 2.0 15 Low-Temperature Solution Process of Al-Doped ZnO Nano-flakes for Flexible Perovskite Solar Cells. Journal of Electrochemical Science and Technology, 2019, 9, 118-125.

ARTICLE IF CITATIONS High-Performance and Hysteresis-Free Perovskite Solar Cells Based on Rare-Earth-Doped SnO 4118 2.8 35 ₂ Mesoporous Scaffold. Research, 2019, 2019, 4049793. Constructing Stable and Potentially High-Performance Hybrid Organic-Inorganic Perovskites with 2.8 "Unstable―Cations. Research, 2020, 2020, 1986576. Interfacial Built-In Electric Field-Driven Direct Current Generator Based on Dynamic Silicon 4120 2.8 24 Homojunction. Research, 2020, 2020, 5714754. Self-powered ultraviolet–visible–near infrared perovskite/silicon hybrid photodetectors based on a novel Si/SnO₂/MAPbI₃/MoO₃ heterostructure. Applied Physics 1.1 Express, 2020, 13, 121001. Study of oxide/metal/oxide thin films for transparent electronics and solar cells applications by 4122 0.7 17 spectroscopic ellipsometry. AIMS Materials Science, 2017, 4, 594-613. N719 and N3 dyes for quasi-solid state dye sensitized solar cells - A comparative study using polyacrylonitrile and CsI based electrolytes. Ceylon Journal of Science, 2016, 45, 61. 0.1 Fabrication of Perovskite-Type Photovoltaic Devices with Polysilane Hole Transport Layers. Materials 4124 0.3 4 Sciences and Applications, 2017, 08, 209-222. Recent progress in material study and photovoltaic device of Sb2Se3. Wuli Xuebao/Acta Physica Sinica, 0.2 2015, 64, 038406. A review of the perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038805. 0.2 4126 26 Progress of new carbon material research in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 0.2 2016, 65, 058801. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two 4128 3 0.2 additives on perovskite solar cell performance. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 118801. Progress in perovskite solar cells based on different buffer layer materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 138401. Morphology control of zinc oxide nanorods and its application as an electron transport layer in 4130 0.2 3 perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178101. A selenophene-containing conjugated organic ligand for two-dimensional halide perovskites. Chemical Communications, 2021, 57, 11469-11472. 2.2 A perylene diimide dimer-based electron transporting material with an A–D–A structure for efficient 4132 2.7 12 inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2544-2550. Emerging electronic applications of fullerene derivatives: an era beyond OPV. Journal of Materials Chemistry C, 2021, 9, 16143-16163. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society 4134 18.7 15 Reviews, 2021, 50, 12915-12984.

#	Article	IF	CITATIONS
4136	Deciphering the capacitance frequency technique for performance-limiting defect-state parameters in energy-harvesting perovskites. Physical Chemistry Chemical Physics, 2021, 23, 24421-24427.	1.3	4
4137	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151
4138	Numerical and Experimental Investigation of Infrared Optical Filter Based on Metal Oxide Thin Films for Temperature Mitigation in Photovoltaics. Journal of Electronic Materials, 2022, 51, 179-189.	1.0	6
4139	Halide Perovskites: Advanced Photovoltaic Materials Empowered by a Unique Bonding Mechanism. Advanced Functional Materials, 2022, 32, 2110166.	7.8	35
4140	First principle analysis of lead-free variant perovskites iodides for optical and thermoelectric applications. Journal of Materials Research and Technology, 2021, 15, 5165-5174.	2.6	4
4141	Power Dependent Hot Carrier Cooling Dynamics in Trioctylphosphine Capped CsPbBr ₃ Perovskite Quantum Dots Using Ultrafast Spectroscopy. ChemistrySelect, 2021, 6, 10165-10177.	0.7	6
4142	Organic additives in all-inorganic perovskite solar cells and modules: from moisture endurance to enhanced efficiency and operational stability. Journal of Energy Chemistry, 2022, 67, 361-390.	7.1	21
4143	A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 043001.	1.3	9
4144	Defect suppression and energy level alignment in formamidinium-based perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 65-72.	7.1	19
4145	0D Perovskites: Unique Properties, Synthesis, and Their Applications. Advanced Science, 2021, 8, e2102689.	5.6	142
4146	Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics. Journal Physics D: Applied Physics, 2022, 55, 113002.	1.3	17
4147	Printable Solar Cells from Solution Processable Materials. Springer Series in Materials Science, 2022, , 401-432.	0.4	1
4148	Advances and Perspectives for the Application of Perovskite Oxides in Supercapacitors. Energy & Fuels, 2021, 35, 17353-17371.	2.5	26
4149	It is an Allâ€Rounder! On the Development of Metal Halide Perovskiteâ€Based Fluorescent Sensors and Radiation Detectors. Advanced Optical Materials, 2021, 9, 2101276.	3.6	18
4150	MCdCl ₃ (M=CH ₃ NH ₃ ,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 192 Td ((CH Constants for Fieldâ€Effect Transistors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100485.	l _{3<!--<br-->0.8}	sub>) _{2 7}
4151	Interplay of Structure, Chargeâ€Carrier Localization and Dynamics in Copperâ€Silverâ€Bismuthâ€Halide Semiconductors. Advanced Functional Materials, 2022, 32, .	7.8	19
4152	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11, .	10.2	40
4153	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	10.1	25

#	Article	IF	CITATIONS
4154	Optimizing the NiO _{<i>x</i>} /Au Interface via Postannealing of the Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells for High Efficiency. Advanced Engineering Materials, 2022, 24, 2100962.	1.6	4
4155	Tuning Dielectric Transitions in Two-Dimensional Organic–Inorganic Hybrid Lead Halide Perovskites. Inorganic Chemistry, 2021, 60, 16871-16877.	1.9	18
4156	Modeling and characteristics of a nanostructured NiO/GeSe core–shell perovskite solar cell. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3441.	0.9	2
4157	Light absorption enhancement in ultrathin perovskite solar cells using light scattering of high-index dielectric nanospheres. Optics Express, 2021, 29, 35366.	1.7	6
4158	Mitigating Ion Migration by Polyethylene Glycol-Modified Fullerene for Perovskite Solar Cells with Enhanced Stability. ACS Energy Letters, 2021, 6, 3864-3872.	8.8	36
4159	Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH ₃ NH ₃ PbI ₃ â€Based Perovskite Solar Cell with Efficiency Beyond 21%. Small, 2021, 17, e2102186.	5.2	28
4160	Enhanced electron transfer dynamics in perylene diimide passivated efficient and stable perovskite solar cells. EcoMat, 2021, 3, e12146.	6.8	24
4161	The making of a reconfigurable semiconductor with a soft ionic lattice. Matter, 2021, 4, 3874-3896.	5.0	17
4162	Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review. Energies, 2021, 14, 6827.	1.6	10
4163	Electronic and optical properties of bulk and surface of CsPbBr3 inorganic halide perovskite a first principles DFT 1/2 approach. Scientific Reports, 2021, 11, 20622.	1.6	35
4164	Improved Efficiency and Stability of Perovskite Solar Cells Using a Difluorobenzothiadiazole-Based Interfacial Material. ACS Applied Energy Materials, 2021, 4, 10646-10655.	2.5	9
4165	Numerical Simulation to Design an Efficient Perovskite Solar Cell Through Triple-Graded Approach. Journal of Electronic Materials, 2021, 50, 6756-6765.	1.0	15
4166	A-site phase segregation in mixed cation perovskite. Materials Reports Energy, 2021, 1, 100064.	1.7	19
4167	First-principles predictions of Hall and drift mobilities in semiconductors. Physical Review Research, 2021, 3, .	1.3	48
4168	Improving efficiency of perovskite solar cell using optimized front surface nanospheres grating. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	9
4169	Mechano-Chemical Synthesis, Structural Features and Optical Gap of Hybrid CH3NH3CdBr3 Perovskite. Materials, 2021, 14, 6039.	1.3	2
4170	Flexible perovskite solar cells: Materials and devices. Journal of Semiconductors, 2021, 42, 101606.	2.0	12
4171	Investigation and Optimization of Mxene Functionalized Mesoporous Titania Films as Efficient Photoelectrodes. Materials, 2021, 14, 6292.	1.3	34

#	Article	IF	CITATIONS
4172	Stable perovskite solar cells with efficiency of 22.6% via quinoxaline-based polymeric hole transport material. Science China Chemistry, 2021, 64, 2035-2044.	4.2	28
4173	Materials development and prospective for protonic ceramic fuel cells. International Journal of Energy Research, 2022, 46, 2212-2240.	2.2	29
4174	Monocrystalline Methylammonium Lead Halide Perovskite Materials for Photovoltaics. Advanced Materials, 2021, 33, e2102588.	11.1	22
4175	Chryseneâ€Based Azahelicene Ï€â€Linker of Dâ€Ï€â€Dâ€Type Holeâ€Transporting Materials for Perovskite Solar (ChemSusChem, 2021, 14, 4923-4928.	Cells. 3.6	14
4176	Additive-Assisted Stabilization Against Photooxidation of Organic and Hybrid Solar Cells. , 2022, , 169-193.		0
4177	Printed Memtransistor Utilizing a Hybrid Perovskite/Organic Heterojunction Channel. ACS Applied Materials & amp; Interfaces, 2021, 13, 51592-51601.	4.0	9
4178	Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells. Solar Energy, 2021, 228, 689-699.	2.9	23
4179	Hole transporting layer optimization for an efficient lead-free double perovskite solar cell by numerical simulation. Optical Materials, 2021, 121, 111645.	1.7	36
4180	Recent progress and future prospects of perovskite tandem solar cells. Applied Physics Reviews, 2021, 8, .	5.5	71
4181	DFT study of structural, electronic, and thermoelectric properties of Cs2PdX(X=Br2Be2Te2) compound. Computational Condensed Matter, 2021, 29, e00600.	0.9	9
4182	A new and simple method for simulation of lattice mismatch on the optical properties of solar cells: A combination of DFT and FDTD simulations. Solar Energy, 2021, 230, 166-176.	2.9	5
4183	Inverted perovskite solar cells based on inorganic hole transport material of CuInS2 with high efficiency and stability. Solar Energy, 2021, 230, 485-491.	2.9	6
4184	Recent advancement in inorganic-organic electron transport layers in perovskite solar cell: current status and future outlook. Materials Today Chemistry, 2021, 22, 100595.	1.7	17
4186	A Facile Spray Deposition Route for Uniform Perovskite Solar Cells Processed in Air. , 2015, , .		0
4187	Metal Nanoparticle Arrays as Wavelength-Selective Rear Reflectors. , 2015, , .		0
4188	Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 186102.	0.2	3
4189	Progress on nanopatterned front electrodes for perovskite thin-film solar cells. , 2016, , .		0
4190	Perovskite Metamaterials. , 2016, , .		0

#	Article	IF	CITATIONS
4191	Chapter 6. Structural, Electronic, and Optical Properties of Lead Halide Perovskites. RSC Energy and Environment Series, 2016, , 177-201.	0.2	0
4192	Degradation and Stability of Organic-Inorganic Perovskite Solar Cells. Current Photovoltaic Research, 2016, 4, 68-79.	0.0	0
4193	Photocatalytic Hydrogen Evolution. , 2017, , 1-41.		0
4194	Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 737-749.	0.0	0
4195	Highly Reproducible- Organometallic Halide Perovskite Microdevices Based on Top-Down Lithography. , 2017, , .		0
4196	20â€1: <i>Invited Paper</i> : Solution Processable Luminescent Nanomaterials for Display, Lighting and Beyond. Digest of Technical Papers SID International Symposium, 2017, 48, 272-275.	0.1	1
4197	Bulk Structural and Electronic Properties at the Density Functional Theory and Post-Density Functional Theory Level of Calculation. , 2017, , 43-86.		0
4198	Optical simulations of advanced light management for liquid-phase crystallized silicon thin-film solar cells. , 2017, , .		0
4200	Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite CH3NH3PbI3. , 2017, , .		0
4201	Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes. , 2017, , .		1
4202	Solar Cell Fundamentals. Series in Optics and Optoelectronics, 2017, , 383-414.	0.0	2
4203	Current state and perspectives for organo-halide perovskite solar cells: Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotube. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2017, 20, 153-193.	0.1	0
4204	Energy Yield Modelling of Wide Bandgap Perovskite-Based Tandem Solar Modules. , 2018, , .		0
4205	Stability of perovskite solar cells on flexible substrates. , 2018, , .		0
4206	Perovskite Solar Cells and Instability Problems. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2018, 9, 297-304.	0.4	1
4207	Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI ₂ Br perovskite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158805.	0.2	2
4208	Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 078801.	0.2	2
4209	Advanced Coupling of Energy Storage and Photovoltaics. , 2019, , 317-350.		0

#	Article	IF	CITATIONS
4210	Organometal halide perovskite-based optoelectronic devices. WEENTECH Proceedings in Energy, 2018, 4, 221-226.	0.0	0
4211	Research progress of efficient green perovskite light emitting diodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158504.	0.2	8
4212	Study on Carrier Separation in Perovskite Solar Cells by Operando Profiling of Electrical Potential Distribution. Vacuum and Surface Science, 2019, 62, 9-14.	0.0	0
4213	Semiconductor Bandstructure. Graduate Texts in Physics, 2019, , 215-234.	0.1	Ο
4214	Highly Efficient and Stable Perovskite-Silicon Tandem Solar Cells. , 2019, , .		0
4215	Enhancing the wettability of PEDOT:PSS layer with plasma treatment method in perovskite solar cells. , 2019, , .		0
4216	Environmentally friendly approach via solvent-free processed perovskite solar cells. , 2019, , .		0
4217	Superior photodetector based on solution-synthesized perovskite film. , 2019, , .		1
4218	Life Cycle Assessment of Silicon-Based Tandem Solar Photovoltaics and their End-of-Life. Indonesian Journal of Life Cycle Assessment and Sustainability, 0, , .	0.0	2
4220	Application of CuSCN and PEDOT:PSS as hole transport material in perovskite solar cell. , 2019, , .		0
4222	Solar elements based on organic and organo-inorganic materials. Surface, 2019, 11(26), 270-343.	0.4	0
4223	Characterization of Lead Halide Perovskites Using Synchrotron X-ray Techniques. Springer Series in Materials Science, 2020, , 157-179.	0.4	1
4224	Photovoltaics: Advances in First Principles Modeling – Overview. , 2020, , 287-294.		0
4225	Computer-aided synthesis of cost-effective perovskite crystals: an emerging alternative to silicon solar cells. Clean Technologies and Environmental Policy, 2020, 22, 1187-1198.	2.1	3
4226	Combining solution process and thermal evaporation to improve the crystallinity and fabircate high-quality perovskite solar cell. , 2020, , .		0
4227	Performance Evaluation of Lead-free Perovskite Solar Cell with Different Hole/Electron Transport Materials. , 2020, , .		2
4228	Materials and mechanisms for hot carrier solar cell absorbers. , 2020, , .		0
4229	Thick Sn-Pb Perovskite Films with 2D/3D Structure for High Performance Solar Cells. , 2020, , .		0

#	Article	IF	CITATIONS
4230	Photoluminescence properties of hybrid perovskites in solar cells with IIO ₂ and Mg _{0.2} Zn _{0.8} O electron transport layers. Lithuanian Journal of Physics, 2020, 60, .	0.1	0
4231	Effect of Annealing Temperature on Efficiency of Perovskite Solar Cell. Journal of Applied Science and Technology Trends, 2020, 1, 112-117.	10.8	0
4232	Encapsulation Techniques of Perovskite Solar Cells. , 2021, , .		0
4233	Advances and Promises of Photovoltaic Solar Cells. Journal of Physics: Conference Series, 2021, 2044, 012042.	0.3	0
4234	Lithium-Based Upconversion Nanoparticles for High Performance Perovskite Solar Cells. Nanomaterials, 2021, 11, 2909.	1.9	6
4235	Performance Improvement of Perovskite Solar Cells by Using Ionic Liquid BMIMPF ₆ as an Interface Modifier. ACS Applied Energy Materials, 2021, 4, 12421-12428.	2.5	16
4236	Optimization of Lead Base Perovskite Solar Cell with ZnO and CuI as Electron Transport Material and Hole Transport Material Using SCAPS-1D. Malaysian Journal of Applied Sciences, 2021, 6, 69-84.	0.2	1
4237	Design and Optimization of Graphene Quantum Dot-based Luminescent Solar Concentrator Using Monte-Carlo Simulation. Energy and Built Environment, 2021, , .	2.9	3
4238	Perovskite-based solar cells fabricated from TiO2 nanoparticles hybridized with biomaterials from mollusc and diatoms. Chemosphere, 2022, 291, 132692.	4.2	7
4239	Defect Investigation of Ti-Based Vacancy-Ordered Double Perovskite Solar Cell using SCAPS-1D. Journal of Physics: Conference Series, 2021, 2044, 012100.	0.3	2
4240	The Role of Alkyl Chain Length and Halide Counter Ion in Layered Dionâ^'Jacobson Perovskites with Aromatic Spacers. Journal of Physical Chemistry Letters, 2021, 12, 10325-10332.	2.1	23
4241	Observation of elastic heterogeneity and phase evolution in 2D layered perovskites using coherent acoustic phonons. Nanophotonics, 2021, 10, 4009-4017.	2.9	5
4242	Surface-tension release in PTAA-based inverted perovskite solar cells. Organic Electronics, 2022, 100, 106378.	1.4	20
4243	Highâ€Efficiency and Durable Inverted Perovskite Solar Cells with Thermallyâ€Induced Phaseâ€Change Electron Extraction Layer. Advanced Energy Materials, 2021, 11, 2102844.	10.2	35
4244	Environmental Assessment of Perovskite Solar Cells. Green Energy and Technology, 2022, , 279-289.	0.4	1
4245	Oxygen-deficient tungsten oxide perovskite nanosheets-based photonic nanomedicine for cancer theranostics. Chemical Engineering Journal, 2022, 431, 133273.	6.6	6
4246	Energy performance of perovskite solar cell fabrication in Argentina. A life cycle assessment approach. Solar Energy, 2021, 230, 645-653.	2.9	9
4247	Optical and Elecrtical Simulation of CH3NH3PbI3-based Perovskite Solar Cells. International Journal of Optics and Photonics, 2020, 14, 57-66.	0.2	0

#	Article	IF	CITATIONS
4248	Organometal Halide Perovskite-Based Materials and Their Applications in Solar Cell Devices. , 2020, , 259-281.		1
4249	Pseudohalide Perovskite Absorbers. Springer Theses, 2020, , 65-85.	0.0	0
4250	Study on Optical-Electric-Thermal Performance of the Perovskite Solar Cells Based on Embedding Different Geometric Metal Nanoparticles. , 2020, , .		0
4251	Revealing Local Disorder in a Silver-Bismuth Halide Perovskite upon Compression. Journal of Physical Chemistry Letters, 2021, 12, 532-536.	2.1	11
4252	Cation engineering for wide bandgap CH3NH3Pb (I1â^'xBrx)3 perovskite solar cells. OSA Continuum, 2021, 4, 1.	1.8	0
4253	Polymer Solar Cells: Development of π-Conjugated Polymers with Controlled Energetics and Structural Orders. , 2021, , 89-121.		1
4254	Single Crystal Hybrid Perovskite Optoelectronics: Progress and Perspectives. , 0, , .		0
4255	Investigation of the structure, stability and physical properties of CH3NH3PbI3â^'x Br x. Emerging Materials Research, 2020, 9, 1283-1292.	0.4	0
4256	Firstâ€principles study of Cs 2 Ti 1â^' x M x Br 6 (M = Pb, Sn) and numerical simulation of the solar cells based on Cs 2 Ti 0.25 Sn 0.75 Br 6. International Journal of Energy Research, 2021, 45, 8049-8060.	2.2	5
4257	Recent advances in Re-based double perovskites: Synthesis, structural characterization, physical properties, advanced applications, and theoretical studies. AIP Advances, 2020, 10, .	0.6	24
4258	Improvement of quality and stability of MAPbI ₃ films grown by post annealing under high pressure argon atmosphere. Journal Physics D: Applied Physics, 2021, 54, 075101.	1.3	2
4259	Suppressing the defects in cesium-based perovskites <i>via</i> polymeric interlayer assisted crystallization control. Journal of Materials Chemistry A, 2021, 9, 26149-26158.	5.2	6
4260	Energy yield of perovskite solar cells: Influence of location, orientation, and external light management. Solar Energy Materials and Solar Cells, 2022, 234, 111421.	3.0	9
4261	Nonlinear dynamic investigation of the perovskite solar cell with GPLR-FGP stiffeners under blast impact. International Journal of Mechanical Sciences, 2022, 213, 106866.	3.6	19
4262	Photovoltaic study of TiO2 films sensitized with Cu2O and CdS QDs for applications in a solar cell. Journal of Solid State Chemistry, 2022, 305, 122648.	1.4	1
4263	Crystal growth, defect passivation and strain release via In-situ Self-polymerization strategy enables efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 430, 132869.	6.6	25
4264	Few-layer fluorine-functionalized graphene hole-selective contacts for efficient inverted perovskite solar cells. Chemical Engineering Journal, 2022, 430, 132831.	6.6	13
4265	Comparing the planar and porous Nb-doped TiO2 photoanode of triple cation perovskite solar cells. Materials Science in Semiconductor Processing, 2022, 138, 106259.	1.9	6

#	Article	IF	CITATIONS
4266	Ab-initio investigations for structural, mechanical, optoelectronic, and thermoelectric properties of Ba2SbXO6 (X Nb, Ta) compounds. Journal of Alloys and Compounds, 2022, 893, 162332.	2.8	7
4267	Photovoltaics. Springer Theses, 2020, , 3-20.	0.0	0
4268	Room-temperature phosphorescence of manganese-based metal halides. Dalton Transactions, 2021, 50, 17275-17280.	1.6	7
4269	Investigating the effect of lamination on FAMACs: toward a new phase space of perovskite solar cell fabrication. , 2019, , .		0
4270	Fabrication and Characterization of Graphene Incorporated Cu Based Perovskite in Application of Perovskite Solar Cell under Ambient Condition. Advances in Materials Physics and Chemistry, 2020, 10, 1-16.	0.3	5
4271	Research progress of wide bandgap perovskite materials and solar cells. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 207401.	0.2	2
4272	Numerical Analysis and Optimization of CH3NH3PbI3-xClx Based Perovskite Solar Cells. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 2021, 9, 28-39.	0.2	2
4274	Advanced Technologies Reliant on the Properties of Lead. Minerals, Metals and Materials Series, 2020, , 777-781.	0.3	0
4275	Optics of Perovskite-based Highly Efficient Tandem Solar Cells. , 2020, , .		0
4277	Synthesis of ZnO Film as Transparent Conductive Oxide for Solar Cells. Learning and Analytics in Intelligent Systems, 2020, , 228-235.	0.5	0
4278	Review of the research on nano-structure used as light harvesting in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 077101.	0.2	1
4279	Properties and applications of hybrid organic-inorganic halide perovskites thin films. , 2020, , .		4
4280	A COMPREHENSIVE REVIEW OF PHOTOVOLTAIC DEVICES BASED ON PEROVSKITES. Open Journal of Engineering Science, 2020, 1, 26-52.	0.0	0
4281	Capturing excitonic and polaronic effects in lead iodide perovskites using many-body perturbation theory. Journal of Materials Chemistry C, 2021, 9, 17113-17123.	2.7	8
4282	The 50 Most Highly Cited Reviews of 2013–2017. Scientific and Technical Information Processing, 2021, 48, 168-184.	0.3	2
4285	Correlation of THz-wave absorption properties by different halogen elements in FAPb(Br, I)-based hybrid perovskite thin films. Applied Physics Express, 2021, 14, 121002.	1.1	2
4286	Interfacial Defect Passivation and Charge Carrier Management for Efficient Perovskite Solar Cells via a Highly Crystalline Small Molecule. ACS Energy Letters, 2021, 6, 4209-4219.	8.8	63
4288	Opportunities of copper addition in CH3NH3PbI3 perovskite and their photovoltaic performance evaluation. Journal of Alloys and Compounds, 2022, 895, 162626.	2.8	16

#	Article	IF	CITATIONS
4289	Homologous Bromides Treatment for Improving the Openâ€Circuit Voltage of Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106280.	11.1	26
4290	Deployment Opportunities for Space Photovoltaics and the Prospects for Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, .	3.0	25
4291	Energy Funneling in Quasiâ€2D Ruddlesden–Popper Perovskites: Charge Transfer versus Resonant Energy Transfer. Advanced Photonics Research, 2022, 3, 2100283.	1.7	8
4292	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	7.8	18
4293	Targeted Distribution of Passivator for Polycrystalline Perovskite Light-Emitting Diodes with High Efficiency. ACS Energy Letters, 2021, 6, 4187-4194.	8.8	41
4294	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> < mml:msub> < mml:mi> CH < mml:mn> 3 < /mml:mn> < /mml:msub> < mml:msub> < mml:m mathvariant="normal"> x < /mml:mi> < /mml:mrow> < /mml:msub> < mml:msub> < mml:mi> Br < /mml:mi> < mml:mi mathvariant="normal"> x < /mml:mi> < /mml:msub> < /mml:msub> < mml:msub> < mml:mi> = normal"> x < /mml:mi> < /mml:msub> < mml:msub> < mml:msub> < mml:mi> = normal"> x < /mml:mi> < /mml:msub> < /mml:msub> < mml:msub> < mml:msub> < mml:mi> < mml:mi> < /mml:msub> < mml:msub> < mml:msub> < mml:mi> < mml:mi> < mml:mi> < mml:msub> < mml:msub> < mml:msub> < mml:msub> < mml:mi> < mml:mi> < mml:msub> < mml:msub	ni>NH1.7	nl:mi> <mml:< td=""></mml:<>
4295	conversion efficiency. Optical Materials, 2021, 122, 111734. Efficient light harvesting in perovskite layer via three-dimensional TiO2 nanobranched nanorod scaffold. Nano Express, 2020, 1, 030017.	1.2	1
4296	Structural, Morphological and Dielectric Spectroscopy Analysis of Double Perovskite Bi2MnNiO6 Electronic Material. Journal of Surface Investigation, 2020, 14, 1380-1386.	0.1	0
4297	Detection of Volatile Organic Compounds (VOCs) using Organic-Inorganic Hybrid Perovskite Nanoparticles. Korean Journal of Materials Research, 2020, 30, 515-521.	0.1	0
4299	Impact of the polar optical phonon and alloy scattering on the charge-carrier mobilities of FA0.83Cs0.17Pb(I1â^'xBrx)3 hybrid perovskites. Physical Chemistry Chemical Physics, 2021, , .	1.3	3
4300	On the efficiency of perovskite solar cells with a back reflector: effect of a hole transport material. Physical Chemistry Chemical Physics, 2021, 23, 26250-26262.	1.3	5
4301	Investigation of Equatorial Medium Earth Orbits for Space Solar Power. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 1574-1592.	2.6	4
4302	Photochemical and nonthermal chemical modification of porous silicon. , 2021, , 51-112.		0
4303	Mixed-dimensional organic–inorganic metal halide perovskite (OIMHP) based gas sensors with superior stability for NO ₂ detection. Materials Advances, 2022, 3, 1263-1271.	2.6	12
4304	Perovskite-structured cobalt-free cathode materials for solid oxide fuel cells. , 2022, , 357-373.		2
4305	All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Science Advances, 2021, 7, eabj6627.	4.7	47
4306	Updated Progresses in Perovskite Solar Cells. Chinese Physics Letters, 2021, 38, 107801.	1.3	11
4307	Coexistence of Photoelectric Conversion and Storage in van der Waals Heterojunctions. Physical Review Letters, 2021, 127, 217401.	2.9	13

#	Article	IF	CITATIONS
4309	Improved Performance and Stability of Perovskite Solar Modules by Regulating Interfacial Ion Diffusion with Nonionic Cross‣inked 1D Leadâ€ŀodide. Advanced Energy Materials, 2022, 12, .	10.2	24
4310	Semitransparent visualizers of infrared lasers based on perovskite quantum dots. Journal of Physics: Conference Series, 2021, 2015, 012112.	0.3	0
4311	Prediction of solar cell materials via unsupervised literature learning. Journal of Physics Condensed Matter, 2022, 34, 095902.	0.7	5
4312	Toward Stable and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2109495.	7.8	77
4313	Microstructural Evaluation of Phase Instability in Large Bandgap Metal Halide Perovskites. ACS Nano, 2021, 15, 20391-20402.	7.3	8
4314	Blue light-emitting diodes based on halide perovskites: Recent advances and strategies. Materials Today, 2021, 51, 222-246.	8.3	64
4315	Bond versus charge disproportionation and nature of the holes in sâ^'pÂABX3 perovskites. Physical Review B, 2021, 104, .	1.1	4
4316	Fabrication Strategy to Promote Performance of Perovskite Solar Cells. Journal of Physics: Conference Series, 2021, 2109, 012007.	0.3	3
4317	Electrochemical 3D micro―and nanoprinting: Current state and future perspective. Electrochemical Science Advances, 2022, 2, .	1.2	10
4318	Effect of Cs+ and K+ incorporation on the charge carrier lifetime, device performance and stability in perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 236, 111512.	3.0	8
4319	Emerging Transistor Applications Enabled by Halide Perovskites. Accounts of Materials Research, 2022, 3, 8-20.	5.9	8
4320	Mixed halide bulk perovskite triplet sensitizers: Interplay between band alignment, mid-gap traps, and phonons. Journal of Chemical Physics, 2021, 155, 234706.	1.2	8
4321	The Role of Ending Groups in Nonâ€Fullerene Acceptors for Interfacial Modification in Perovskite Solar Cells. Solar Rrl, 0, , .	3.1	1
4322	Energy Resonance Transfer between Quantum Defects in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 11182-11190.	2.1	2
4323	Lowâ€Temperature Atomic Layer Deposited Electron Transport Layers for Coâ€Evaporated Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100842.	3.1	16
4324	Study on Optical and Electrical Properties of Thermally Evaporated Tin Oxide Thin Films for Perovskite Solar Cells. Crystals, 2021, 11, 1380.	1.0	4
4325	Amorphous CdOâ€In 2 O 3 Electrode for Perovskiteâ€Based Bifacial and Tandem Photovoltaic Technologies with High Energy Production. Solar Rrl, 0, , 2100809.	3.1	3
4326	Drop-Casting Method to Screen Ruddlesden–Popper Perovskite Formulations for Use in Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 56217-56225.	4.0	17

#	Article	IF	CITATIONS
4327	Device Simulation of Ag ₂ SrSnS ₄ and Ag ₂ SrSnSe ₄ Based Thinâ€Film Solar Cells from Scratch. Advanced Theory and Simulations, 2022, 5, .	1.3	6
4328	Direct Fabrication of CsPbxMn1â^'x(Br,Cl)3 Thin Film by a Facile Solution Spraying Approach. Nanomaterials, 2021, 11, 3242.	1.9	3
4330	Real-Time TEM Imaging of Moisture-Induced Degradation of Triple Cation Mixed Halide Perovskite. Microscopy and Microanalysis, 2021, 27, 47-48.	0.2	0
4331	Nanoporous anodic alumina with ohmic contact between substrate and infill: Application to perovskite solar cells. Energy Science and Engineering, 2022, 10, 30-42.	1.9	3
4332	Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. Journal of Hazardous Materials, 2022, 426, 127848.	6.5	100
4333	The Chemical Design in High-Performance Lead Halide Perovskite: Additive vs Dopant?. Journal of Physical Chemistry Letters, 2021, 12, 11636-11644.	2.1	13
4334	Study of the electronic and opto-electronic properties of the perovskite KPbBr3 by DFT and TDDFT methods. Computational Condensed Matter, 2022, 33, e00617.	0.9	15
4335	Numerical optimization of (FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au) perovskite solar cell using solar capacitance simulator with efficiency above 23% predicted. Optical and Quantum Electronics, 2021, 53, 1.	1.5	7
4336	Subwavelength-scale lasing perovskite with ultrahigh Purcell enhancement. Matter, 2021, 4, 4042-4050.	5.0	13
4337	Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science and Applications, 2021, 10, 239.	7.7	40
4338	Phase evolution of all-inorganic perovskite nanowires during its growth from quantum dots. Nanotechnology, 2022, 33, 085706.	1.3	1
4339	Multiple-polarization-sensitive photodetector based on a perovskite metasurface. Optics Letters, 2022, 47, 565.	1.7	15
4340	Semitransparent Perovskite Solar Cells with Enhanced Light Utilization Efficiencies by Transferable Ag Nanogrid Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 58475-58485.	4.0	9
4341	Amplified Spontaneous Emission in low dimensional lead halide perovskites: An overview. Optical Materials: X, 2021, 12, 100115.	0.3	1
4342	Layer number-dependent optoelectronic characteristics of quasi-2D PBA ₂ (MAPbBr ₃ (sub> <i>n</i> a^^1PbBr ₄ perovskite films. Journal of Materials Chemistry C, 2021, 9, 17033-17041.	2.7	5
4343	Thermodynamic stability screening of IR-photonic processed multication halide perovskite thin films. Journal of Materials Chemistry A, 2021, 9, 26885-26895.	5.2	4
4345	Photoluminescence enhancement study in a Bi-doped Cs ₂ AgInCl ₆ double perovskite by pressure and temperature-dependent self-trapped exciton emission. Dalton Transactions, 2022, 51, 2026-2032.	1.6	14
4346	Stretchable Photodetectors Based on Electrospun Polymer/Perovskite Composite Nanofibers. ACS Applied Nano Materials, 2022, 5, 1308-1316.	2.4	26

#	Article	IF	Citations
4347	Fabrication of stable perovskite solar cells with efficiency over 20% in open air using <i>in situ</i> polymerized bi-functional additives. Journal of Materials Chemistry A, 2022, 10, 3688-3697.	5.2	16
4348	Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy and Environmental Science, 2022, 15, 714-726.	15.6	68
4349	Selfâ€Ðriving Perovskite Dember Photodetectors. Advanced Optical Materials, 2022, 10, 2101821.	3.6	7
4350	The recent process and future of perovskite solar cells materials. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 0, , 1.	0.9	1
4351	Unravelling the effect of defect density, grain boundary and gradient doping in an efficient lead-free formamidinium perovskite solar cell. Optical Materials, 2022, 124, 111952.	1.7	11
4352	Multiple bonding effects of 1-methanesulfonyl-piperazine on the two-step processed perovskite towards efficient and stable solar cells. Nano Energy, 2022, 93, 106856.	8.2	20
4353	Magnetic polaronic and bipolaronic excitons in Mn(II) doped (TDMP)PbBr4 and their high emission. Nano Energy, 2022, 93, 106863.	8.2	25
4354	Stable white emission and color-tunable electroluminescence achieved from n-ZnO/p-GaN nano-heterojunction decorated with CsPbBr3 and CsPbI3 quantum dots. Journal of Luminescence, 2022, 244, 118691.	1.5	5
4355	Ambient environment induced synergetic improvement in morphology and iodine vacancy passivation by MAI surface engineering in mixed-cation lead mixed-halide (FA0.85MA0.15PbI0.55Br0.45) perovskite solar cells. Surfaces and Interfaces, 2022, 29, 101703.	1.5	1
4357	A Sustainable Approach for the Use of Perovskite in Photovoltaics by Reduction or Elimination of Toxic Lead. , 2021, , .		0
4359	Structural and Optical Properties Investigation of The Hybrid CZTS-MWCNT Composite Hole Transporting Material. , 2021, , .		0
4360	Numerical Simulation of Lead-Free Sn-Based Perovskite Solar Cell by Using SCAPS-1D. Engineering Proceedings, 2022, 12, .	0.4	5
4361	Designing Ionic Liquids as the Solvent for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22870-22878.	4.0	18
4362	Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab. ACS Applied Energy Materials, 2022, 5, 1342-1377.	2.5	9
4363	An organometal halide perovskite supported Pt single-atom photocatalyst for H ₂ evolution. Energy and Environmental Science, 2022, 15, 1271-1281.	15.6	97
4364	Firstâ€Principles Calculation of the Electronic Structure of CH 3 NH 3 Pbl 3 under High Pressure. Physica Status Solidi (B): Basic Research, 0, , 2100484.	0.7	0
4365	Solvent strategies toward high-performance perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 3276-3286.	2.7	9
4366	Recent Development and Directions in Printed Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	7

#	Article	IF	CITATIONS
4367	Longâ€Rangeâ€Ordered Assembly of Microâ€∤Nanostructures at Superwetting Interfaces. Advanced Materials, 2022, 34, e2106857.	11.1	21
4368	1,8â€Octanediamine Dihydroiodideâ€Mediated Grain Boundary and Interface Passivation in Twoâ€Stepâ€Processed Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6
4369	Surface Passivation of MAPbBr ₃ Perovskite Single Crystals to Suppress Ion Migration and Enhance Photoelectronic Performance. ACS Applied Materials & amp; Interfaces, 2022, 14, 10917-10926.	4.0	39
4370	Semitransparent organic solar cells: from molecular design to structure–performance relationships. Journal of Materials Chemistry C, 2021, 10, 13-43.	2.7	25
4371	Giant Third-Order Nonlinear Response of Mixed Perovskite Nanocrystals. Materials, 2022, 15, 389.	1.3	11
4372	Characterization of a CH ₃ NH ₃ PbI ₃ perovskite microwire by Raman spectroscopy, 2022, 53, 288-296.	1.2	8
4373	Dithiol surface treatment towards improved charge transfer dynamic and reduced lead leakage in lead halide perovskite solar cells. EcoMat, 2022, 4, .	6.8	23
4374	Optics in high efficiency perovskite tandem solar cells. , 2022, , 319-345.		1
4375	Enhancement of perovskite solar cell performance by external downâ€conversion of Euâ€complex film. International Journal of Energy Research, 2022, 46, 7996-8006.	2.2	2
4376	Anion Exchange in Lead Halide Perovskites: An Overview. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	12
4377	Interface Engineering of Pb–Sn Lowâ€Bandgap Perovskite Solar Cells for Improved Efficiency and Stability. Solar Rrl, 2022, 6, .	3.1	8
4379	CsPbI ₃ perovskite quantum dot solar cells: opportunities, progress and challenges. Materials Advances, 2022, 3, 1931-1952.	2.6	17
4380	Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 2105-2112.	5.2	13
4381	Ultrasensitive Photodetectors Based on Strongly Interacted Layered-Perovskite Nanowires. ACS Applied Materials & Interfaces, 2022, 14, 1601-1608.	4.0	8
4382	(C ₇ H ₁₁ N ₂) ₂ MBr ₄ (M=Cu, Zn): Xâ€Ray Sensitive 0D Hybrid Metal Halides with Tunable Broadband Emission. European Journal of Inorganic Chemistry, 2022, 2022, e202100954.	1.0	11
4383	Bifunctional ionic liquid for enhancing efficiency and stability of carbon counter electrode-based MAPbI3 perovskites solar cells. Solar Energy, 2022, 231, 1048-1060.	2.9	9
4384	Quantifying Efficiency Limitations in Allâ€Inorganic Halide Perovskite Solar Cells. Advanced Materials, 2022, 34, e2108132.	11.1	44
4385	Stable copperâ€based <scp>2D</scp> perovskite (<scp>NH₃C₃H₆NH₃</scp>) <scp>CuBr₄</scp> thin film processed from green solvent for thermoelectric application. EcoMat, 2022, 4, .	6.8	4

#	Article	IF	CITATIONS
4386	Regulation of the luminescence mechanism of two-dimensional tin halide perovskites. Nature Communications, 2022, 13, 60.	5.8	48
4387	Study of MAPb(I1â^'xBrx)3 thin film and perovskite solar cells based on hole transport material-free and carbon electrode. Journal of Materials Science: Materials in Electronics, 2022, 33, 2654.	1.1	0
4388	Highâ€Performance Ternary Perovskite–Organic Solar Cells. Advanced Materials, 2022, 34, e2109348.	11.1	34
4389	Two-Dimensional Materials for Future Terahertz Wireless Communications. IEEE Open Journal of Antennas and Propagation, 2022, 3, 217-228.	2.5	13
4390	Engineered Cathode Buffer Layers for Highly Efficient Organic Solar Cells: A Review. Advanced Materials Interfaces, 2022, 9, .	1.9	21
4391	Defects and stability of perovskite solar cells: a critical analysis. Materials Chemistry Frontiers, 2022, 6, 400-417.	3.2	68
4392	Effects of temperature-dependent burn-in decay on the performance of triple cation mixed halide perovskite solar cells. AIP Advances, 2022, 12, 015122.	0.6	6
4393	Rare earth–based compounds for solar cells. , 2022, , 365-393.		1
4394	Interlayer Modification Using Phenylethylamine Tetrafluoroborate for Highly Effective Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 658-666.	2.5	8
4395	Challenges for Thermally Stable Spiro-MeOTAD toward the Market Entry of Highly Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34220-34227.	4.0	17
4396	The electronic stability of tin-halide perovskite charged regions. Materials Advances, 2022, 3, 2524-2532.	2.6	2
4397	Featuring Semitransparent p–i–n Perovskite Solar Cells for Highâ€Efficiency Fourâ€Terminal/Silicon Tandem Solar Cells. Solar Rrl, 0, , 2100891.	3.1	3
4398	Effect of Substitution of Pb for Mg on the Photovoltaic Properties of Methylâ€Ammonium Lead Iodide Perovskites. Advanced Theory and Simulations, 0, , 2100509.	1.3	2
4399	Highly Visibleâ€Transparent and Colorâ€Neutral Perovskite Solar Cells for Selfâ€Powered Smart Windows. Solar Rrl, 2022, 6, .	3.1	8
4400	Enhanced proton irradiation resistance in Cs-doped CH3NH3PbI3 films and solar cells. Journal of Energy Chemistry, 2022, 69, 261-269.	7.1	4
4401	Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances. Solar Energy, 2022, 231, 684-693.	2.9	3
4402	Cation-Doping in Organic–Inorganic Perovskites to Improve the Structural Stability from Theoretical Prediction. Journal of Physical Chemistry Letters, 2022, 13, 1180-1186.	2.1	2
4403	Cross-Scale Synthesis of Organic High-k Semiconductors Based on Spiro-Gridized Nanopolymers. Research, 2022, 2022, 9820585.	2.8	10

#	Article	IF	Citations
4404	Double Cascading Charge Transfer at Integrated Perovskite/Organic Bulk Heterojunctions for Extended Nearâ€Infrared Photoresponse and Enhanced Photocurrent. Small, 2022, 18, e2106083.	5.2	7
4405	Review on efficiency improvement effort of perovskite solar cell. Solar Energy, 2022, 233, 421-434.	2.9	74
4406	Dimensionality reduction in machine learning for nonadiabatic molecular dynamics: Effectiveness of elemental sublattices in lead halide perovskites. Journal of Chemical Physics, 2022, 156, 054110.	1.2	4
4407	Understanding the effects of annealing temperature on the mechanical properties of layers in FAI-rich perovskite solar cells. AIP Advances, 2022, 12, 025104.	0.6	2
4408	Dual Modification Engineering via Lanthanideâ€Based Halide Quantum Dots and Black Phosphorus Enabled Efficient Perovskite Solar Cells with High Openâ€Voltage of 1.235ÂV. Advanced Functional Materials, 2022, 32, .	7.8	22
4409	Sensitive NO detection by lead-free halide Cs2TeI6 perovskite with Te-N bonding. Sensors and Actuators B: Chemical, 2022, 357, 131397.	4.0	5
4410	2D materials for organic and perovskite photovoltaics. Nano Energy, 2022, 94, 106833.	8.2	20
4411	Are the emission quantum yields of cesium plumbobromide perovskite nanocrystals reliable metrics for their quality?. Journal of Photochemistry and Photobiology, 2022, 10, 100109.	1.1	3
4412	Predicting the photon energy of quasi-2D lead halide perovskites from the precursor composition through machine learning. Nanoscale Advances, 2022, 4, 1632-1638.	2.2	6
4413	Growth and optical properties of leadâ€free Cs 3 Bi 2 Br 9 perovskite microplatelets. Physica Status Solidi (B): Basic Research, 0, , .	0.7	2
4414	One-Center and Two-Center Self-Trapped Excitons in Zero-Dimensional Hybrid Copper Halides: Tricolor Luminescence with High Quantum Yields. Journal of Physical Chemistry Letters, 2022, 13, 1373-1381.	2.1	11
4415	Improving Hole Transport and Extraction by Interface Engineering in Perovskite Solar Cells. Energy Technology, 0, , 2101002.	1.8	1
4416	White‣ight Driven Resonant Emission from a Monolayer Semiconductor. Advanced Materials, 2022, , 2103527.	11.1	2
4417	The concept of light-harvesting, self-powered mechanical sensors using a monolithic structure. Nano Energy, 2022, 96, 107030.	8.2	10
4418	Small amines bring big benefits to perovskite-based solar cells and light-emitting diodes. CheM, 2022, 8, 351-383.	5.8	35
4419	Reducing Losses in Perovskite Large Area Solar Technology: Laser Design Optimization for Highly Efficient Modules and Minipanels. Advanced Energy Materials, 2022, 12, .	10.2	24
4420	Photophysics of Two-Dimensional Semiconducting Organic–Inorganic Metal-Halide Perovskites. Annual Review of Physical Chemistry, 2022, 73, 403-428.	4.8	18
4421	Controlled growth of perovskite microplates arrays for functional optoelectronics. Current Applied Physics, 2022, 37, 27-27.	1.1	2

#	Article	IF	CITATIONS
4422	"Self-trapping―in solar cell hybrid inorganic-organic perovskite absorbers. Applied Materials Today, 2022, 26, 101380.	2.3	6
4423	2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy, 2022, 95, 107036.	8.2	54
4424	Development of SnO2 Composites as Electron Transport Layer in Unencapsulated CH3NH3PbI3 Solar Cells. Solids, 2021, 2, 407-419.	1.1	4
4425	Fabry–Perot Mode-Limited High-Purcell-Enhanced Spontaneous Emission from <i>In Situ</i> Laser-Induced CsPbBr ₃ Quantum Dots in CsPb ₂ Br ₅ Microcavities. Nano Letters, 2022, 22, 355-365.	4.5	17
4426	Thermochromic Materials for Smart Windows: A State-of-Art Review. Frontiers in Energy Research, 2021, 9, .	1.2	20
4427	The Concept of Light-Harvesting, Self-Powered Mechanical Sensors Using a Monolithic Structure. SSRN Electronic Journal, 0, , .	0.4	0
4428	Solution-Processed Fe2-Xmgxo3 Ternary Oxides for Interface Passivation in Efficient Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
4429	Strain coupling and Jahn–Teller effect in efficient and stable sky-blue germanium–lead perovskites. Journal of Materials Chemistry C, 2022, 10, 6827-6836.	2.7	5
4430	Metal Halide-Based Adsorption and Substitution at Halide Perovskite Surfaces: Study of CuBr2/CH3NH3PbI3. Russian Journal of Physical Chemistry A, 2022, 96, 190-197.	0.1	1
4431	Boron materials for energy applications. , 2022, , 203-289.		1
4432	Inserting protonated phenanthroline derivatives into the interchain voids of anionic halometallate units to generate hybrid materials with tunable photochromic performance. Dalton Transactions, 2022, 51, 4310-4316.	1.6	6
4433	Advancements in organic small molecule hole-transporting materials for perovskite solar cells: past and future. Journal of Materials Chemistry A, 2022, 10, 5044-5081.	5.2	69
4434	Controlling the charge carrier dynamics by modulating the orientation diversity of perovskites. Materials Chemistry Frontiers, 2022, 6, 1026-1032.	3.2	3
4436	Zinc germanium nitrides and oxide nitrides: the influence of oxygen on electronic and structural properties. Faraday Discussions, 0, 239, 219-234.	1.6	1
4437	High thermoelectric performance based on CsSnl ₃ thin films with improved stability. Journal of Materials Chemistry A, 2022, 10, 7020-7028.	5.2	10
4438	More Effective Perovskite Surface Passivation Strategy Via Optimized Functional Groups Enables Efficient P-I-N Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
4439	Facile synthesis of nanostructured perovskites by precursor accumulation on nanocarbons. RSC Advances, 2022, 12, 6186-6191.	1.7	3
4440	Photochromic Semiconductive Hydrogen-Bonded Organic Framework (HOF) with Broadband Absorption. ACS Applied Materials & Interfaces, 2022, 14, 11619-11625.	4.0	29

#	Article	IF	CITATIONS
4441	Instability Issues and Stabilization Strategies of Lead Halide Perovskites for Photo(electro)catalytic Solar Fuel Production. Journal of Physical Chemistry Letters, 2022, 13, 1806-1824.	2.1	7
4442	Selection of the ultimate perovskite solar cell materials and fabrication processes towards its industrialization: A review. Energy Science and Engineering, 2022, 10, 1478-1525.	1.9	9
4443	Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells. Nanomaterials, 2022, 12, 780.	1.9	6
4444	Combination of Photovoltaics and Organic Light-Emitting Diode Display. Journal of Physics: Conference Series, 2022, 2194, 012022.	0.3	0
4445	CeTaN ₃ and CeNbN ₃ : Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps. Chemistry of Materials, 2022, 34, 2107-2122.	3.2	13
4446	Efficient Enhancement of Stability and Luminescence of Three-Dimensional CsPbBr ₃ Nanoparticles via Ligand-Triggered Transformation into Zero-Dimensional Cs ₄ PbBr ₆ Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 4172-4181.	1.5	4
4447	Mechanical Stability Study on PEDOT:PSS-Based ITO-Free Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 3081-3091.	2.5	11
4448	Recent Progress on Perovskite Photodetectors for Narrowband Detection. Advanced Photonics Research, 2022, 3, .	1.7	21
4449	First principle study of band gap tuning in Cs ₂ InSbX ₆ (XÂ=ÂCl, Br, I) for optoelectronic and thermoelectric applications. Physica Scripta, 2022, 97, 045801.	1.2	9
4450	Low-Temperature Microwave Processed TiO ₂ as an Electron Transport Layer for Enhanced Performance and Atmospheric Stability in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 2679-2696.	2.5	11
4451	Study on the Coating Condition of ZnS Passivation Layer for the Enhanced Photovoltaic Properties of Quantum Dot Photoelectrodes. Transactions of the Korean Hydrogen and New Energy Society, 2022, 33, 113-120.	0.1	0
4452	Current advances in perovskite oxides supported on graphene-based materials as interfacial layers of perovskite solar cells. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 112-131.	6.8	7
4453	Photothermal Optimization of Quantum Dot Converters for Highâ€Power Solidâ€6tate Light Sources. Advanced Optical Materials, 2022, 10, .	3.6	8
4454	Controllable Introduction of Surface Defects on CH3NH3PbI3 Perovskite. Nanomaterials, 2022, 12, 1002.	1.9	1
4455	Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. Advanced Science, 2022, 9, e2200308.	5.6	40
4456	Are Metal Halide Perovskite Solar Cells Ready for Space Applications?. Journal of Physical Chemistry Letters, 2022, 13, 2908-2920.	2.1	16
4457	Self-Assembly of Triphenylamine Macrocycles and Co-assembly with Guest Molecules at the Liquid–Solid Interface Studied by STM: Influence of Different Side Chains on Host–Guest Interaction. Langmuir, 2022, 38, 3568-3574.	1.6	9
4458	Effect of Dispersion Solutions on Optical Properties and Stability of CsPbBr ₃ Perovskite Nanocrystals. ECS Journal of Solid State Science and Technology, 2022, 11, 036002.	0.9	3

#	ARTICLE Importance and Advancement of Modification Engineering in Perovskite Solar Cells. Solar Rrl, 2022, 6,	IF 3 1	CITATIONS
4409		5.1	0
4460	Acetylammonium chloride as an additive for crystallization control and defect passivation in MAPbI ₃ based perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 265501.	1.3	7
4461	The effect of argon plasma treatment on surface engineering in an inverted perovskite solar cell. Journal of Chemical Sciences, 2022, 134, 1.	0.7	1
4462	Lowâ€Temperatureâ€Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review. Advanced Energy Materials, 2022, 12, .	10.2	38
4463	Methylamine-Based Method to Deposit MAPbI ₃ Nanoscale-Thick Films for Efficient Perovskite Solar Cells with Carbon Electrodes. ACS Applied Nano Materials, 2022, 5, 4112-4118.	2.4	4
4464	Spin-enabled photochemistry using nanocrystal-molecule hybrids. CheM, 2022, , .	5.8	8
4465	Adenosine Triphosphate Disodium Modified Hole Transport Layer for Efficient Inverted Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	2
4466	Extracting quantitative dielectric properties from pump-probe spectroscopy. Nature Communications, 2022, 13, 1437.	5.8	16
4467	The effect of solvent on preparation of CH ₃ NH ₃ PbI ₃ photodetectors via an antisolventâ€free method. Luminescence, 2022, , .	1.5	0
4468	Using Featureâ€Assisted Machine Learning Algorithms to Boost Polarity in Leadâ€Free Multicomponent Niobate Alloys for Highâ€Performance Ferroelectrics. Advanced Science, 2022, 9, e2104569.	5.6	11
4469	Metal Halide Perovskite Based Heterojunction Photocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
4470	The Role of Thermal Fluctuations and Vibrational Entropy: A Theoretical Insight into the δ-to-α Transition of FAPbI ₃ . Journal of Physical Chemistry Letters, 2022, 13, 3089-3095.	2.1	5
4471	Optical Properties and Photostability Improvement of CH ₃ NH ₃ PbI ₃ Treated by Iodide of Long H ₃ N(CH ₂) ₁₀ COOH Bifunctional Cation in "2D/3D―and "Monolaverâ€Passivation Modes. Chemistry of Materials. 2022. 34. 2998-3005.	3.2	2
4472	Revealing the Correlation of Light Soaking Effect with Ion Migration in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	9
4473	An artificial visual nerve for mimicking pupil reflex. Matter, 2022, 5, 1578-1589.	5.0	43
4474	Evaluation of annual performance for buildingâ€integrated photovoltaics based on 2â€terminal perovskite/silicon tandem cells under realistic conditions. Energy Science and Engineering, 2022, 10, 1373-1383.	1.9	2
4475	Metal Halide Perovskite Based Heterojunction Photocatalysts. Angewandte Chemie, 2022, 134, .	1.6	11
4476	In Situ Inorganic Ligand Replenishment Enables Bandgap Stability in Mixedâ€Halide Perovskite Quantum Dot Solids. Advanced Materials, 2022, 34, e2200854.	11.1	82

#	Article	IF	Citations
4477	Manipulating Crystallization Kinetics in Highâ€Performance Bladeâ€Coated Perovskite Solar Cells via Cosolventâ€Assisted Phase Transition. Advanced Materials, 2022, 34, e2200276.	11.1	64
4478	Low-temperature processed nickel oxide hole-transporting layer for perovskite solar cell. Journal of the Korean Physical Society, 2022, 80, 981-985.	0.3	1
4479	Recent Advances in Colloidal Quantum Dots or Perovskite Quantum Dots as a Luminescent Downshifting Layer Embedded on Solar Cells. Nanomaterials, 2022, 12, 985.	1.9	18
4480	Unveiling the Critical Role of Oxidants and Additives in Doped Spiro-OMeTAD toward Stable and Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 3595-3604.	2.5	24
4481	Influence of Annealing and Composition on the Crystal Structure of Mixed-Halide, Ruddlesden–Popper Perovskites. Chemistry of Materials, 2022, 34, 3109-3122.	3.2	27
4482	Robust Design of High-Performance Optoelectronic Chalcogenide Crystals from High-Throughput Computation. Journal of the American Chemical Society, 2022, 144, 5878-5886.	6.6	21
4483	Formation of Metal Cation/Oxidized Pyridine Complexesâ€Based Bifunctional Interfacial Layer for Fabrication of Highly Efficient and Reproducible Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
4484	Enhanced p-Type Conductivity of NiO _{<i>x</i>} Films with Divalent Cd Ion Doping for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 17434-17443.	4.0	13
4485	Recent Progress in Understanding the Structural, Optoelectronic, and Photophysical Properties of Lead Based Dion–Jacobson Perovskites as Well as Their Application in Solar Cells. , 2022, 4, 891-917.		9
4486	Transversal Halide Motion Intensifies Bandâ€īoâ€Band Transitions in Halide Perovskites. Advanced Science, 2022, 9, e2200706.	5.6	12
4487	Artificial intelligence informed toxicity screening of amine chemistries used in the synthesis of hybrid <scp>organic–inorganic</scp> perovskites. AICHE Journal, 2022, 68, .	1.8	1
4488	Mixed Chalcogenideâ€Halides for Stable, Leadâ€Free and Defectâ€Tolerant Photovoltaics: Computational Screening and Experimental Validation of CuBiSCl ₂ with Ideal Band Gap. Advanced Functional Materials, 2022, 32, .	7.8	7
4489	Study of new inorganic double perovskites iodides <scp> A ₂ ZrI ₆ </scp> (AÂ=ÂGa, In, Tl) for solar cells and renewable energy. International Journal of Energy Research, 2022, 46, 11326-11335.	2.2	2
4490	Franz-Keldysh and Stark Effects in Two-Dimensional Metal Halide Perovskites. , 2022, 1, .		9
4491	Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. Advanced Materials, 2022, 34, e2200720.	11.1	50
4492	Current-voltage curves of planar heterojunction perovskite solar cells – Novel expressions based on Lambert W function and Special Trans Function Theory. Journal of Advanced Research, 2023, 44, 91-108.	4.4	12
4493	Encapsulation of commercial and emerging solar cells with focus on perovskite solar cells. Solar Energy, 2022, 237, 264-283.	2.9	35
4494	Multi-functional cyclic ammonium chloride additive for efficient and stable air-processed perovskite solar cells. Journal of Power Sources, 2022, 531, 231243.	4.0	10

#	Article	IF	CITATIONS
4495	Ag+/Bi3+ doping induced band structure and optoelectronic properties changes in CsPbBr3 crystals. Journal of Crystal Growth, 2022, 586, 126604.	0.7	8
4496	Directly purifiable Pre-oxidation of Spiro-OMeTAD for stability enhanced perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 2022, 437, 135457.	6.6	14
4497	Facilitate hole transport with thin 2D perovskite capping layer to passivate interface defects of 3D perovskite solar cells using PEABr. Materials Research Bulletin, 2022, 150, 111793.	2.7	17
4498	A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021. Renewable and Sustainable Energy Reviews, 2022, 161, 112361.	8.2	10
4499	Material requirements for low-carbon energy technologies: A quantitative review. Renewable and Sustainable Energy Reviews, 2022, 161, 112334.	8.2	44
4500	A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renewable and Sustainable Energy Reviews, 2022, 161, 112339.	8.2	116
4501	CuInSe2 quantum dots doped MAPbI3 films with reduced trap density for perovskite solar cells. Journal of Alloys and Compounds, 2022, 906, 164292.	2.8	9
4502	Aqueous-phase assembly of ultra-stable perovskite nanocrystals in chiral cellulose nanocrystal films for circularly polarized luminescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128921.	2.3	8
4503	Characterization and investigation of intermediate stages during anion-exchange reaction between CsPbBr3 and CsPbI3 nanocrystal solution and film via photoluminescence and electroluminescence spectroscopy. Journal of Luminescence, 2022, 247, 118876.	1.5	3
4504	Global instability index as a crystallographic stability descriptor of halide and chalcogenide perovskites. Journal of Energy Chemistry, 2022, 70, 1-8.	7.1	13
4505	Solution-processed Fe2-xMgxO3 ternary oxides for interface passivation in efficient perovskite solar cells. Chemical Engineering Journal, 2022, 441, 136118.	6.6	14
4506	The Effect of Morphologies of Embedded Plasmonic Cu-nanoparticles on Solar Absorption of Perovskite Solar Cells. A Comprehensive Study. Optics and Spectroscopy (English Translation of) Tj ETQq1 1 0.784	1@124 rgBT	/Dverlock
4507	The emergence of concentrator photovoltaics for perovskite solar cells. Applied Physics Reviews, 2021, 8, .	5.5	8
4508	Modifying Optoelectronic Properties of Molecular Halide Perovskite Cs4PbBr6 via Organic Ligands: A First-Principles Investigation. Russian Journal of Physical Chemistry A, 2021, 95, 2586-2591.	0.1	0
4509	Hydrogen-Rich 2D Halide Perovskite Scintillators for Fast Neutron Radiography. Journal of the American Chemical Society, 2021, 143, 21302-21311.	6.6	27
4510	Illumination Power-Dependent Electroabsorption of Excitons in a CH ₃ NH ₃ PbI ₃ Perovskite Film. Journal of Physical Chemistry C, 2021, 125, 27631-27637.	1.5	2
4511	Role of additives and surface passivation on the performance of perovskite solar cells. Materials for Renewable and Sustainable Energy, 2022, 11, 47-70.	1.5	18
4512	Perovskite/silicon tandem solar cell: surface recombination analysis. , 2021, , .		0

#	Article	IF	CITATIONS
4513	Photothermally Enhanced Photoresponse of Bismuth Halide Perovskite by Phonon Scattering. ACS Applied Electronic Materials, 2022, 4, 217-224.	2.0	2
4514	Oxidized Spiro-OMeTAD: Investigation of Stability in Contact with Various Perovskite Compositions. ACS Applied Energy Materials, 2021, 4, 13696-13705.	2.5	24
4515	Millimeter‣ized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Rollâ€toâ€Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	36
4516	Effect of treatment condition on perovskite film for perovskite solar cell application. , 2021, , 81-86.		0
4517	Assessing Optical Properties of CH ₃ NH ₃ PbBr ₃ Single Crystals across the Structural Phase Transitions by Spectroscopic Ellipsometry. Journal of Physical Chemistry C, 2022, 126, 797-805.	1.5	2
4518	Multifunctional Perylenediimide-Based Cathode Interfacial Materials for High-Performance Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 13657-13665.	2.5	8
4519	Comparative Numerical Study Of Hole Transport Layer To Improve The Performance Of Cs ₂ Til ₆ Based Perovskite Solar Cell. , 2021, , .		0
4520	Encapsulation of Recrystallized Inorganic Perovskite Quantum Dots in Nonwoven Fluoropolymer Fibers. Journal of Physics: Conference Series, 2021, 2086, 012131.	0.3	0
4521	Boosting the photoluminescence of 2D organic–inorganic perovskite films by mixing with polymers. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	10
4522	Halide Mixing Inhibits Exciton Transport in Two-dimensional Perovskites Despite Phase Purity. ACS Energy Letters, 2022, 7, 358-365.	8.8	12
4523	Passivation Effect of CsPbI3 Quantum Dots on the Performance and Stability of Perovskite Solar Cells. Photonics, 2022, 9, 3.	0.9	6
4524	Methylammonium Bromide Assisted Crystallization for Enhanced Leadâ€Free Double Perovskite Photovoltaic Performance. Advanced Functional Materials, 2022, 32, .	7.8	28
4525	Optical spectra of the quantum defects in metal halide perovskites. Applied Physics Letters, 2021, 119, 232102.	1.5	0
4526	Thermal Evaporation for Halide Perovskite Optoelectronics: Fundamentals, Progress, and Outlook. Advanced Optical Materials, 2022, 10, .	3.6	42
4527	Significance of the Chemical Environment of an Element in Nonadiabatic Molecular Dynamics: Feature Selection and Dimensionality Reduction with Machine Learning. Journal of Physical Chemistry Letters, 2021, 12, 12026-12032.	2.1	11
4528	Pressure-Induced Structural and Optical Transitions in Luminescent Bulk Cs ₄ PbBr ₆ . Journal of Physical Chemistry C, 2022, 126, 541-550.	1.5	6
4529	Cerium-based lead-free chalcogenide perovskites for photovoltaics. Physical Review B, 2021, 104, .	1.1	6
4530	Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV–visible to near-infrared. Nanotechnology, 2022, 33, 085204.	1.3	3

#	Article	IF	CITATIONS
4531	Modification of FA0.85MA0.15Pb(I0.85Br0.15)3 Films by NH2-POSS. Crystals, 2021, 11, 1544.	1.0	3
4532	Singleâ€Walled Carbon Nanotube Thin Film for Flexible and Highly Responsive Perovskite Photodetector. Advanced Functional Materials, 2022, 32, .	7.8	21
4533	Stable Formamidiniumâ€Based Centimeter Long Twoâ€Dimensional Lead Halide Perovskite Singleâ€Crystal for Longâ€Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277.	7.8	8
4534	Degradation mechanism of CH3NH3PbI3 and enhancing its optical absorption through variety of doping sites. Computational Condensed Matter, 2021, 29, e00611.	0.9	3
4535	Excitonic versus Free-Carrier Contributions to the Nonlinearly Excited Photoluminescence in CsPbBr ₃ Perovskites. ACS Photonics, 2022, 9, 179-189.	3.2	11
4536	Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineering. ACS Applied Materials & Interfaces, 2021, 13, 58640-58651.	4.0	2
4537	Investigation of Carrier Transport Materials for Performance Assessment of Lead-Free Perovskite Solar Cells. IEEE Transactions on Electron Devices, 2022, 69, 3217-3224.	1.6	43
4538	Progress in the preparation and application of CsPbX ₃ perovskites. Materials Advances, 2022, 3, 4053-4068.	2.6	17
4539	Development of Yttrium and Iron Oxide Thin Films via AACVD Method for Photooxidation of Water. Russian Journal of Applied Chemistry, 2022, 95, 37-45.	0.1	3
4540	Electronic phase transition and enhanced optoelectronic performance of lead-free halide perovskites AGel3 (A = Rb, K) under pressure. Materials Today Communications, 2022, 31, 103532.	0.9	13
4541	Highly effective surface defect passivation of perovskite quantum dots for excellent optoelectronic properties. Journal of Materials Research and Technology, 2022, 18, 4145-4155.	2.6	10
4542	Developments and challenges ahead in blue perovskite light-emitting devices. Journal of Energy Chemistry, 2022, 71, 418-433.	7.1	16
4543	Extracting Decay-Rate Ratios From Photoluminescence Quantum Efficiency Measurements in Optoelectronic Semiconductors. Physical Review Applied, 2022, 17, .	1.5	5
4544	Photoâ€Responsive Molecular Junctions Activated by Perovskite/Graphene Heterostructure Electrode. Advanced Optical Materials, 2022, 10, .	3.6	4
4545	Accelerated Crystal Growth in >16% Printed MA _{<i>x</i>} FA _{<i>y</i>} Cs _{<i>z</i>} PbI ₃ Perovskite Solar Cells from Aqueous Inks. ACS Sustainable Chemistry and Engineering, 2022, 10, 5225-5232.	3.2	1
4546	Electrode Spacing as a Determinant of the Output Performance of Planar-Type Photodetectors Based on Methylammonium Lead Bromide Perovskite Single Crystals. ACS Applied Materials & Deterfaces, 2022, 14, 20159-20167.	4.0	19
4547	A Quasiâ€Twoâ€Dimensional Trilayered CsPbBr ₃ â€based Dionâ€Jacobson Hybrid Perovskite toward Highâ€Performance Photodetection. Chemistry - A European Journal, 2022, 28, .	1.7	11
4548	Silicon Dioxide Nanoparticles Increase the Incidence Depth of Short-Wavelength Light in Active Layer for High-Performance Perovskite Solar Cells. Journal of Physical Chemistry C, 2022, 126, 7400-7409.	1.5	1

#	Article	IF	CITATIONS
4549	Bandgap engineering of Na1-Ag SbS2 alloys for photovoltaic applications. Materials Research Bulletin, 2022, 152, 111862.	2.7	6
4554	Modeling and Balancing the Solvent Evaporation of Thermal Annealing Process for Metal Halide Perovskites and Solar Cells. Small Methods, 2022, 6, e2200161.	4.6	2
4555	In Situ Polymer Network in Perovskite Solar Cells Enabled Superior Moisture and Thermal Resistance. Journal of Physical Chemistry Letters, 2022, 13, 3754-3762.	2.1	14
4556	Probing the Disorder Inside the Cubic Unit Cell of Halide Perovskites from First-Principles. ACS Applied Materials & Interfaces, 2022, 14, 22973-22981.	4.0	12
4557	Solution-processable perylene diimide-based electron transport materials as non-fullerene alternatives for inverted perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 11046-11053.	5.2	11
4558	A perovskite/porous GaN crystal hybrid structure for ultrahigh sensitivity ultraviolet photodetectors. Journal of Materials Chemistry C, 2022, 10, 8321-8328.	2.7	14
4559	Challenges, progress and prospects in solid state triplet fusion upconversion. Journal of Materials Chemistry C, 2022, 10, 7783-7798.	2.7	40
4560	Electron transport layer assisted by nickel chloride hexahydrate for open-circuit voltage improvement in MAPbI ₃ perovskite solar cells. RSC Advances, 2022, 12, 13820-13825.	1.7	Ο
4561	Role of metal and anions in organo-metal halide perovskites CH ₃ NH ₃ MX ₃ (M: Cu, Zn, Ga, Ge, Sn, Pb; X: Cl, Br, I) on structural and optoelectronic properties for photovoltaic applications. RSC Advances, 2022, 12, 13281-13294.	1.7	15
4562	Guanidium-assisted crystallization engineering for highly efficient CsPbI ₃ solar cells. Journal of Materials Chemistry C, 2022, 10, 8234-8240.	2.7	4
4563	çj基-钙钛矿åå±,å≇€~³èf½ç"µæ±çš"å‰ç®jç†ç−ç•¥. Chinese Science Bulletin, 2022, , .	0.4	1
4564	Combinatorial Exploration of Monovalent Metals (M, M′) in Alkali, 11th-, and 13th-Group Elements toward (M/M′)–(Bi/Sb)–I Solar Cells. ACS Applied Energy Materials, 2022, 5, 6291-6301.	2.5	1
4565	A rare 3D hybrid bimetal halide ferroelectric: (3-Hydroxypyrrolidinium)2RbBiBr6. Science China Materials, 2022, 65, 2879-2883.	3.5	9
4566	Development of <scp>MXene</scp> / <scp> WO ₃ </scp> embedded <scp>PEDOT</scp> : <scp>PSS</scp> hole transport layers for highly efficient perovskite solar cells and Xâ€ray detectors. International Journal of Energy Research, 2022, 46, 12485-12497.	2.2	13
4567	Surface passivation of perovskite films by potassium bis(fluorosulfonyl)imide for efficient solar cells. Organic Electronics, 2022, , 106544.	1.4	4
4568	Rashba and Dresselhaus effects in two-dimensional Pb-I-based perovskites. Physical Review B, 2022, 105, .	1.1	7
4569	Structural and Optical Properties of Two-Step Dip-Coated CH3NH3PbI3 Films Based on Underlying Dip-Coated PbI2 Films. Journal of Electronic Materials, 2022, 51, 3873-3884.	1.0	2
4570	Stabilizing α-phase FAPbI ₃ solar cells. Journal of Semiconductors, 2022, 43, 040202.	2.0	5

	CHATON	ICLFOILI	
#	Article	IF	CITATIONS
4571	Prospect of SnO2 Electron Transport Layer Deposited by Ultrasonic Spraying. Energies, 2022, 15, 3211.	1.6	5
4572	Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors. Journal of Semiconductors, 2022, 43, 041106.	2.0	9
4573	Advances in Photoelectric Detection Units for Imaging Based on Perovskite Materials. Laser and Photonics Reviews, 2022, 16, .	4.4	9
4574	Probing direct bandgap of double perovskites Rb2LiTlX6 (X = Cl, Br) and optoelectronic characteristics for Solar cell applications: DFT calculations. Journal of Materials Research and Technology, 2022, 18, 4775-4785.	2.6	20
4575	Study of Resistive Switching and Biodegradability in Ultralow Power Memory Device Based on Allâ€Inorganic Ag/AgBi ₂ I ₇ /ITO Structure. Advanced Materials Interfaces, 2022, 9,	1.9	5
4576	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
4577	Atomic Permutation toward New Ruddlesden–Popper Two-Dimensional Perovskite with the Smallest Interlayer Spacing. Journal of Physical Chemistry C, 2022, 126, 8268-8277.	1.5	6
4578	Cesium trifluoroacetate induced synergistic effects of grain growth and defect passivation on high-performance perovskite solar cells. Chemical Engineering Journal, 2022, 446, 136936.	6.6	12
4579	Exploring the exemplary structural, electronic, optical, and elastic nature of inorganic ternary cubic XBaF ₃ (X = Al and Tl) employing the accurate TB-mBJ approach. Semiconductor Science and Technology, 2022, 37, 075004.	1.0	20
4580	PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review. Solar Rrl, 2022, 6, .	3.1	65
4581	Stability ascent in perovskite solar cells employing star poly(3-hexylthiophene)/quantum dot nanostructures. Organic Electronics, 2022, 108, 106547.	1.4	1
4582	Laser-accelerated phase transformation in cesium lead iodide perovskite. Matter, 2022, 5, 1455-1465.	5.0	11
4583	Efficiency improvement of inverted perovskite solar cells enabled by PTAA/MoS ₂ double hole transporters. Nanotechnology, 2022, 33, 335202.	1.3	4
4584	Tautomeric Dual‧ite Passivation for Carbonâ€Based Printable Mesoscopic Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	9
4585	Understanding the Effect of Lead Iodide Excess on the Performance of Methylammonium Lead Iodide Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1912-1919.	8.8	14
4586	A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices. Scientific Reports, 2022, 12, 7411.	1.6	13
4587	Tracking perovskite crystallization via deep learning-based feature detection on 2D X-ray scattering data. Npj Computational Materials, 2022, 8, .	3.5	9
4588	Thin film absorber selection to pair with silicon for 1-Sun tandem photovoltaics. Solar Energy, 2022, 238, 178-188.	2.9	1
#	Article	IF	CITATIONS
------	--	------	-----------
4589	Revealing the Dynamics of the Thermal Reaction between Copper and Mixed Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 20866-20874.	4.0	6
4590	Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics Reviews, 2022, 9,	5.5	33
4591	Active phase stabilization and photovoltaic performance improvement in mixed-cation formamidinium cesium lead iodide via dimensional engineering with 5-ammonium valeric acid bromide. Sustainable Materials and Technologies, 2022, 32, e00438.	1.7	2
4592	Bromide complimented methylammonium-free wide bandgap perovskite solar modules with high efficiency and stability. Chemical Engineering Journal, 2022, 445, 136626.	6.6	12
4593	Halide anions engineered ionic liquids passivation layer for highly stable inverted perovskite solar cells. Journal of Colloid and Interface Science, 2022, 622, 469-480.	5.0	12
4594	Analytical Review of Spiroâ€OMeTAD Hole Transport Materials: Paths Toward Stable and Efficient Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	53
4595	High-Efficiency p-n Homojunction Perovskite and CIGS Tandem Solar Cell. Crystals, 2022, 12, 703.	1.0	5
4596	Thermochromic Cs ₂ AgBiBr ₆ Single Crystal with Decreased Band Gap through Orderâ€Disorder Transition. Small, 2022, 18, e2201943.	5.2	15
4597	Investigation of Singlet Fission–Halide Perovskite Interfaces. Chemistry of Materials, 2022, 34, 4865-4875.	3.2	8
4598	A D–π–A Organic Dye as a Passivator to Effectively Regulate the Performance of Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	2
4599	Understanding of the Band Gap Transition in Cs ₃ Sb ₂ Cl _{9–<i>x</i>} Br _{<i>x</i>} : Anion Site Preference-Induced Structural Distortion. ACS Applied Energy Materials, 2022, 5, 6952-6961.	2.5	14
4600	A Bionic Interface to Suppress the Coffeeâ€Ring Effect for Reliable and Flexible Perovskite Modules with a Nearâ€90% Yield Rate. Advanced Materials, 2022, 34, e2201840.	11.1	54
4601	Ab-initio Study of structural, elastic, electronic and optical properties of hexahalometallate single crystals K2XBr6(X = Se, Pt). Scientific Reports, 2022, 12, 8345.	1.6	2
4602	Porous organic polymers in solar cells. Chemical Society Reviews, 2022, 51, 4465-4483.	18.7	21
4603	A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization. Frontiers in Chemistry, 2022, 10, 802890.	1.8	14
4606	Direct Conversion X-Ray Detectors with High Sensitivity at Low Dose Rate Based on All-Inorganic Lead-Free Perovskite Wafers. Detection, 2022, 09, 13-27.	0.2	4
4607	Carbon nanomaterials–polymer composites for perovskite solar cells: preparation, properties and applications. Journal of Materials Chemistry A, 2022, 10, 19211-19230.	5.2	11
4608	Nanophotonics for Perovskite Solar Cells. Advanced Photonics Research, 2022, 3, .	1.7	15

#	Article	IF	CITATIONS
4609	Synthesis Attempt and Structural Studies of Novel A ₂ CeWO ₆ Double Perovskites (A ²⁺ = Ba, Ca) in and outside of Ambient Conditions. ACS Omega, 0, , .	1.6	1
4610	Slow Shallow Energy States as the Origin of Hysteresis in Perovskite Solar Cells. Frontiers in Photonics, 2022, 3, .	1.1	2
4611	Above 23% Efficiency by Binary Surface Passivation of Perovskite Solar Cells Using Guanidinium and Octylammonium Spacer Cations. Solar Rrl, 2022, 6, .	3.1	22
4612	High Radiance of Perovskite Lightâ€Emitting Diodes Enabled by Perovskite Heterojunctions. Advanced Functional Materials, 2022, 32, .	7.8	11
4613	Evidence of Hot Charge Carrier Transfer in Hybrid CsPbBr ₃ /Functionalized Graphene. ChemNanoMat, 2022, 8, .	1.5	11
4614	Nonlinear dynamic instability of the perovskite solar cell under biaxial mechanical impacts. Engineering Failure Analysis, 2022, 139, 106444.	1.8	11
4615	Hybrid Nanocomposites of Allâ€Inorganic Halide Perovskites with Polymers for Highâ€Performance Fieldâ€Effectâ€Transistorâ€Based Photodetectors: An Experimental and Simulation Study. Advanced Materials Interfaces, 2022, 9, .	1.9	19
4616	X-ray diffraction of photovoltaic perovskites: Principles and applications. Applied Physics Reviews, 2022, 9, .	5.5	28
4617	Perovskite-based multi-dimension THz modulation of EIT-like metamaterials. Optik, 2022, 262, 169348.	1.4	13
4618	Exploring the structural, phononic, electronic, magnetic, optical, and thermoelectric properties of Pb-free vanadium-based double perovskites using the first-principles approach for optoelectronic and thermoelectric applications. Solar Energy, 2022, 240, 27-37.	2.9	7
4619	Gadolinium-Doped Sno2 Electron Transfer Layer for Highly Efficient Planar Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
4620	Stability investigation of the titanium-based eco-friendly perovskite-like antifluorite Cs ₂ TiBr ₆ . Journal of Materials Chemistry C, 2022, 10, 9301-9309.	2.7	6
4622	Review of defect engineering in perovskites for photovoltaic application. Materials Advances, 2022, 3, 5234-5247.	2.6	28
4623	Metal Element Doping in Cspb1-Xdexbr3 for Solar Cell Materials. SSRN Electronic Journal, 0, , .	0.4	0
4624	Controlling Intrinsic Quantum Confinement in Formamidinium Lead Triiodide Perovskite through Cs Substitution. ACS Nano, 2022, 16, 9640-9650.	7.3	8
4625	Single‣ayer Sheets of Alkylammonium Lead Iodide Perovskites with Tunable and Stable Green Emission for White Lightâ€Emitting Devices. Advanced Optical Materials, 2022, 10, .	3.6	2
4628	Band gap engineering to stimulate the optoelectronic performance of lead-free halide perovskites RbGeX3 (X = Cl, Br) under pressure. Journal of Materials Science: Materials in Electronics, 2022, 33, 13860-13875.	1.1	13
4629	Antiperovskite Sr ₃ MN and Ba ₃ MN (MÂ=ÂSb or Bi) as promising photovoltaic absorbers for thinâ€film solar cells: A firstâ€principles study. Journal of the American Ceramic Society, 2022, 105, 5807-5816.	1.9	6

#	Article	IF	CITATIONS
4630	Achieving dual-color imaging by dual-band perovskite photodetectors coupled with algorithms. Journal of Colloid and Interface Science, 2022, 625, 297-304.	5.0	10
4631	Solution-processed perovskite crystals for electronics: Moving forward. Matter, 2022, 5, 1700-1733.	5.0	3
4632	Sb‣ubstituted Cs ₂ AgBiBr ₆ —As Much As It Could Be?—Influence of Synthesis Methods on Sb‣ubstitution Level in Cs ₂ AgBiBr ₆ . Energy Technology, 2022, 10, .	1.8	14
4633	Ultrasimple and Ultrafast Method of Optical Modulation by Perovskite Quantum Dot Attachment to a Graphene Surface. ACS Omega, 2022, 7, 19606-19613.	1.6	1
4634	Formamidinium halide salts as precursors of carbon nitrides. Carbon, 2022, 196, 1035-1046.	5.4	9
4635	Recent Progress in AC-Driven Organic and Perovskite Electroluminescent Devices. ACS Photonics, 2022, 9, 1852-1874.	3.2	9
4636	Learning time-dependent deposition protocols to design thin films via genetic algorithms. Materials and Design, 2022, 219, 110815.	3.3	5
4637	Nonlinear modulation of terahertz waves based on a MAPbI3/Gold/Si Hybrid Plasmon-Induced Transparency (PIT) metasurface. Optical Materials, 2022, 129, 112554.	1.7	3
4638	Large area bar coated TiO2 electron transport layers for perovskite solar cells with excellent performance homogeneity. Solar Energy, 2022, 240, 258-268.	2.9	13
4639	Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite. Materials Today Physics, 2022, 26, 100731.	2.9	19
4640	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 166, 112614.	8.2	39
4641	2D White-Light Spectroscopy: Application to Lead-Halide Perovskites with Mixed Cations. ACS Symposium Series, 0, , 135-151.	0.5	1
4642	Two-Dimensional Nanomaterials for Solar Cell Technology. Studies in Systems, Decision and Control, 2022, , 103-119.	0.8	1
4643	Dye-Sensitized Solar Cells. Springer Handbooks, 2022, , 1137-1214.	0.3	1
4644	A vertically oriented two-dimensional Ruddlesden–Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy and Environmental Science, 2022, 15, 3369-3378.	15.6	50
4645	Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation. Physical Chemistry Chemical Physics, 2022, 24, 15657-15671.	1.3	34
4646	Znl ₂ post-processing of CsPbBr ₃ quantum dots for red, stable, and low-threshold amplified spontaneous emission. Applied Physics Letters, 2022, 120, 221101.	1.5	0
4647	Processing of Lead Halide Perovskite Thin Films Studied with In-Situ Real-Time X-ray Scattering. ACS Applied Materials & amp; Interfaces, 2022, 14, 26315-26326.	4.0	5

#	Article	IF	CITATIONS
4648	Preparation of poly (εâ€caprolactone) as a gel electrolyte for <scp>dyeâ€sensitized</scp> solar cells. Polymers for Advanced Technologies, 2022, 33, 2560-2570.	1.6	2
4649	Geometrically nonlinear dynamic analysis of the stiffened perovskite solar cell subjected to biaxial velocity impacts. Nonlinear Dynamics, 2022, 110, 281-311.	2.7	8
4650	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
4652	Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7, 642-651.	19.8	121
4653	Stable <scp>Methylammoniumâ€Free</scp> pâ€iâ€n Perovskite Solar Cells and <scp>Miniâ€Modules</scp> with Phenothiazine Dimers as Holeâ€Transporting Materials. Energy and Environmental Materials, 2023, 6, .	7.3	2
4654	In-depth understanding of ionic liquid assisted perovskite film formation mechanism for two-step perovskite photovoltaics. Journal of Energy Chemistry, 2022, 73, 599-606.	7.1	20
4655	Low-Temperature Hydrothermal Growth of ZnO Nanowires on AZO Substrates for FACsPb(IBr)3 Perovskite Solar Cells. Nanomaterials, 2022, 12, 2093.	1.9	3
4656	Key Factors Affecting the Stability of CsPbI ₃ Perovskite Quantum Dot Solar Cells: A Comprehensive Review. Advanced Materials, 2023, 35, .	11.1	19
4657	Guidelines for the Design of High-Performance Perovskite Based Solar Cells. Key Engineering Materials, 0, 922, 95-105.	0.4	0
4658	Advanced supercritical fluid technique to reduce amorphous silicon defects in heterojunction solar cells. Semiconductor Science and Technology, 2022, 37, 085011.	1.0	2
4660	Pb-free halide perovskites for solar cells, light-emitting diodes, and photocatalysts. APL Materials, 2022, 10, .	2.2	11
4662	Recent Progress in Lanthanide-Doped Inorganic Perovskite Nanocrystals and Nanoheterostructures: A Future Vision of Bioimaging. Nanomaterials, 2022, 12, 2130.	1.9	8
4663	Nonheteroepitaxial CsPbBr ₃ /Cs ₄ PbBr ₆ Interfaces Result in Nonpassivated Bright Bromide Vacancies. Chemistry of Materials, 2022, 34, 5377-5385.	3.2	4
4664	Dimensionalityâ€Dependent Resistive Switching in 0D and 2D Cs ₃ Sb ₂ I ₉ : Energyâ€Efficient Synaptic Functions with the Layeredâ€Phase. Advanced Electronic Materials, 2022, 8, .	2.6	6
4665	Thermal Stability of K-Doped Organometal Halide Perovskite for Photovoltaic Materials. ACS Applied Energy Materials, 2022, 5, 10409-10414.	2.5	1
4666	Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan. Renewable Energy, 2022, 195, 896-905.	4.3	1
4668	Gain-switching in CsPbBr3 microwire lasers. Communications Physics, 2022, 5, .	2.0	5
4669	Solar Energy in Space Applications: Review and Technology Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	68

#	Article	IF	CITATIONS
4670	Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%. Chemical Engineering Journal, 2022, 446, 137416.	6.6	14
4671	Accurately Quantifying Stress during Metal Halide Perovskite Thin Film Formation. ACS Applied Materials & Interfaces, 2022, 14, 27791-27798.	4.0	3
4672	Facile Exfoliation of the Perovskite Thin Film for Visualizing the Buried Interfaces in Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 7458-7465.	2.5	15
4673	Role of Solvents in the Preparation of Methylammonium Bismuth Iodide (MBI) Perovskite Films for Self-Biased Photodetector Applications. ACS Applied Electronic Materials, 2022, 4, 2793-2804.	2.0	6
4674	Lead-Tin Laminated All-Perovskite Solar Cells: Verification of Feasibility from the Perspective of Device Simulation. ECS Journal of Solid State Science and Technology, 2022, 11, 063011.	0.9	0
4676	A simulation based incremental study of stable perovskite-on-perovskite tandem solar device utilizing non-toxic tin and germanium perovskite. Materials Today Communications, 2022, 32, 103881.	0.9	3
4677	Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy, 2022, 100, 107516.	8.2	33
4678	Cs-content-dependent organic cation exchange in FA1-Cs PbI3 perovskite. Journal of Energy Chemistry, 2022, 72, 539-544.	7.1	12
4679	Exploring smartphone-based environmental sensors through applying perovskite quantum dots. Chemical Engineering Journal, 2022, 448, 137583.	6.6	4
4680	Recent Progress in Mixed Aâ€Site Cation Halide Perovskite Thinâ€Films and Nanocrystals for Solar Cells and Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	47
4681	Janus Dione Derivatives: Novel High-Mobility Hole Transport Materials for Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
4682	Effects of Low Oxygen Flux on the Structure, Morphology, Optical and Electrical Properties of Niox Films Prepared by Rf Magnetron Sputtering. SSRN Electronic Journal, 0, , .	0.4	0
4683	Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy and Environmental Science, 2022, 15, 3630-3669.	15.6	58
4684	Fabrication and amplified spontaneous emission behavior of FAPbBr ₃ perovskite quantum dots in solid polymer rods. Materials Science-Poland, 2022, 40, 84-100.	0.4	1
4685	Absorption Modulation, Enhancement, and Narrowing Using Sub-Wavelength Gratings. , 2022, , .		0
4686	Deposition of Perovskite Thin Layer with Electrospraying for Solar Cells. , 2022, , .		0
4687	Polymer passivation of defects in inorganic perovskite solar cells. Optoelectronics Letters, 2022, 18, 338-342.	0.4	7
4688	Investigating the band gap on the performance of tin-based perovskite solar cells by device simulation. Optical and Quantum Electronics, 2022, 54, .	1.5	2

ARTICLE IF CITATIONS 4-Hydroxy-2,2,6,6-tetramethylpiperidine as a Bifunctional Interface Modifier for High-Efficiency and 4689 2.5 3 Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6754-6763. Highâ€Performance MAPbI₃/PM6:Y6 Perovskite/Organic Hybrid Photodetectors with a 4690 3.6 9 Broadband Response. Advanced Optical Materials, 2022, 10, . Design and numerical simulation of highly efficient mixedâ€organic cation mixedâ€metal cation perovskite 4691 2.2 5 solar cells. International Journal of Energy Research, 2022, 46, 15654-15664. Narrowband Near-Infrared Photodetectors Based on Perovskite Waveguide Devices. Journal of Physical Chemistry Letters, 2022, 13, 6057-6063. Singleâ€Photon Emission from Single Microplate MAPbI ₃ Nanocrystals with Ultranarrow 4693 3.6 2 Photoluminescence Linewidths and Exciton Fine Structures. Advanced Optical Materials, 0, , 2200606. Long Carrier Diffusion Length and Efficient Charge Transport in Thick Quasi-Two-Dimensional Perovskite Solar Cells Enabled by Modulating Crystal Orientation and Phase Distribution. ACS Applied Energy Materials, 2022, 5, 8930-8939. 4694 2.5 KBF₄ Additive for Alleviating Microstrain, Improving Crystallinity, and Passivating 4695 7.8 40 Defects in Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, . Organic Holeâ€Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. 4696 11.1 Advanced Materials, 2022, 34, . Photoinduced large polaron transport and dynamics in organic–inorganic hybrid lead halide 4697 7.7 27 perovskite with terahertz probes. Light: Science and Applications, 2022, 11, . Electronic and Optical Properties of CsGeX₃ (X= Cl, Br, and I) Compounds. ACS Omega, 1.6 2022, 7, 25210-25218. A comparative study of different materials used for solar photovoltaics technology. Materials Today: 4699 0.9 5 Proceedings, 2022, 66, 3522-3528. Predicting the formation of fractionally doped perovskite oxides by a function-confined machine 4700 2.9 learning method. Communications Materials, 2022, 3, . Metal element doping in Cs(Pb1Âa^{^,}ÂDE)Br3 for solar cell materials. Chemical Engineering Journal 4701 2.4 1 Advances, 2022, 12, 100364. Controlling the Defects of Cs₂AgBiBr₆ by Varied Precursor Compositions. 4702 1.7 Advanced Photonics Research, 2022, 3, . Effective Passivation with Sizeâ€Matched Alkyldiammonium Iodide for Highâ€Performance Inverted 4703 7.8 41 Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, . Developments in Perovskite Materials Based Solar Cells: In Pursuit of Hysteresis Effect, Stability Issues 4704 and Lead-Free Based Perovskite Materials. Nanoscience and Nanotechnology - Asia, 2022, 12, . Combatting temperature and reverse-bias challenges facing perovskite solar cells. Joule, 2022, 6, 4705 11.7 23 1782-1797. More effective perovskite surface passivation strategy via optimized functional groups enables 4706 3.1 efficient p-i-n perovskite solar cells. Applied Surface Science, 2022, 602, 154248.

#	Article	IF	CITATIONS
4707	Observation of Longâ€Term Stable Response in MAPbBr ₃ Single Crystals Monitored through Displacement Currents under Varying Illumination. Solar Rrl, 2022, 6, .	3.1	2
4708	Lead-free â€~Ca' doped Bi0.80La0.20FeO3 multiferroic material for solar cell applications. Materials Today: Proceedings, 2022, 67, 713-718.	0.9	1
4709	The Recent Progress and the state-of-art applications of Perovskite Solar Cells. , 0, 5, 216-222.		0
4710	Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications. Nano Research, 2022, 15, 9368-9376.	5.8	19
4711	Energyâ€Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
4712	Energyâ€Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angewandte Chemie, 2022, 134, .	1.6	5
4713	Optimal Solvents for Interfacial Solution Engineering of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6
4714	Design and numerical investigation of Perovskite/Silicon tandem solar cell. Optical Materials, 2022, 131, 112671.	1.7	10
4715	First principles prediction of the carrier mobilities and optical properties of strained lead free perovskite Cs2SnX6(X=Cl, Br). Solid State Communications, 2022, 353, 114868.	0.9	0
4716	Surface passivation boosted performances of perovskite solar cells assembled under ambient conditions. Optical Materials, 2022, 131, 112746.	1.7	12
4717	Paleomagnetism of Gedemsa magmatic segment, Main Ethiopian Rift: Implication for clockwise rotation of the segment in the Early Pleistocene. Tectonophysics, 2022, 838, 229475.	0.9	2
4718	Opto-electro-mechanical properties of lead-free hybrid double perovskites Cs2AgSbX6 (X = Cl, Br, I) for solar cells: A first-principles study. Journal of Physics and Chemistry of Solids, 2022, 169, 110880.	1.9	16
4719	Effect of Cu ion implantation on charge transport of the PbZr0.52Ti0.48O3/FAPbI3 interface. Physica B: Condensed Matter, 2022, 643, 414169.	1.3	0
4720	Tuning bandgap and energy stability of Organic-Inorganic halide perovskites through surface engineering. Computational Materials Science, 2022, 213, 111649.	1.4	1
4721	Recent advances of micro-nanofiber materials for rechargeable zinc-air batteries. Energy Storage Materials, 2022, 51, 181-211.	9.5	19
4722	Progress and challenges of halide perovskite-based solar cell- a brief review. Materials Science in Semiconductor Processing, 2022, 150, 106953.	1.9	22
4723	Chalcogenide perovskites for photovoltaic applications: a review. Journal of Nanoparticle Research, 2022, 24, .	0.8	9
4724	Filterless ultra-narrow-band perovskite photodetectors with high external quantum efficiency based on the charge collection narrowing mechanism enabled by electron blocking/hole transport layer. Semiconductor Science and Technology, 0, , .	1.0	1

#	ARTICLE	IF	CITATIONS
4725	Minireview on Application of Microencapsulated Phase Change Materials with Reversible Chromic Function: Advances and Perspectives. Energy & Fuels, 2022, 36, 8054-8065.	2.5	15
4726	Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34303-34327.	4.0	34
4727	Optimized photoelectric characteristics of MAPbCl ₃ and MAPbBr ₃ composite perovskite single crystal heterojunction photodetector. Journal of Physics Condensed Matter, 2022, 34, 405703.	0.7	1
4728	Comparative Study of Ge-doped CH ₃ NH ₃ Ge _x Pb(1-x) I ₃ Perovskite Solar Cell By SCAPS-1D Software. , 2022, , .		0
4729	Ammonia for post-healing of formamidinium-based Perovskite films. Nature Communications, 2022, 13, .	5.8	21
4730	High-throughput screening of stable and efficient double inorganic halide perovskite materials by DFT. Scientific Reports, 2022, 12, .	1.6	17
4731	Tuning the Band Gap in the Halide Perovskite CsPbBr ₃ through Sr Substitution. ACS Applied Materials & Interfaces, 2022, 14, 34884-34890.	4.0	11
4732	Ionâ€Implantation in Titaniaâ€Based Plasmonic Photoâ€anodes: A Review. Advanced Materials Interfaces, 2022, 9, .	1.9	4
4733	Perovskite Plasticity: Exploiting Instability for Selfâ€Optimized Performance. Advanced Functional Materials, 0, , 2203771.	7.8	1
4734	Electrochemically Prepared Polyaniline as an Alternative to Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) for Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 9351-9360.	2.5	2
4735	Defect-Polaron and Enormous Light-Induced Fermi-Level Shift at Halide Perovskite Surface. Journal of Physical Chemistry Letters, 2022, 13, 6711-6720.	2.1	8
4736	Electronic Disorder Dominates the Charge-Carrier Dynamics in Two-Dimensional/Three-Dimensional Organic–Inorganic Perovskite Heterostructure. Journal of Physical Chemistry C, 2022, 126, 12689-12695.	1.5	7
4737	Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization. Light: Science and Applications, 2022, 11, .	7.7	19
4738	Controllable volatile-to-nonvolatile memristive switching in single-crystal lead-free double perovskite with ultralow switching electric field. Science China Materials, 2023, 66, 241-248.	3.5	7
4739	2,2′-Dihydroxy-4,4′-dimethoxy-benzophenon as Bifunctional Additives for Passivated Defects and Improved Photostability of Efficient Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2022, 14, 36602-36610.	4.0	3
4740	Ferroelasticity Mediated Energy Conversion in Strained Perovskite Films. Advanced Electronic Materials, 2022, 8, .	2.6	6
4741	Doping Mechanism of Perovskite Films with PbCl ₂ Prepared by Magnetron Sputtering for Enhanced Efficiency of Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 40062-40071.	4.0	6
4742	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69

ARTICLE IF CITATIONS Investigating the Performance of Lead-Free Perovskite Solar Cells Using Various Hole Transport 4743 24 1.0 Material by Numerical Simulation. Transactions on Electrical and Electronic Materials, 2023, 24, 20-30. Making the most of metastability. Science, 2022, 377, 814-815. 4744 6.0 Role of graphene-oxide and reduced-graphene-oxide on the performance of lead-free double perovskite 4745 0.7 6 solar cell. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77, 1083-1098. Confining Light in Porous Perovskite Heterostructures for Light Amplification. Journal of Physical 4746 Chemistry C, 2022, 126, 13830-13839. Recent Progress on the Phase Stabilization of FAPbI₃ for Highâ€Performance Perovskite 4747 3.1 25 Solar Cells. Solar Rrl, 2022, 6, . Perovskite or Not Perovskite? A Deepâ€Learning Approach to Automatically Identify New Hybrid Perovskites from Xâ€ray Diffraction Patterns. Advanced Materials, 2022, 34, . 4748 11.1 Overview and Outlook on Graphene and Carbon Nanotubes in Perovskite Photovoltaics from 4749 7.8 14 Singleâ€Junction to Tandem Applications. Advanced Functional Materials, 2022, 32, . Intensity Modulated Photocurrent Microspectrosopy for Next Generation Photovoltaics. Small 9 4.6 Methods, 2022, 6, . Surface optimization of metal halide perovskite solar cells using ZnS nanorods. Journal of Materials 4751 2 1.1 Science: Materials in Electronics, 2022, 33, 21576-21587. Progress of Solution-Processed Metal Oxides as Charge Transport Layers towards Efficient and Stable 2.3 Perovskite Solar Cells and Modules. Materials Today Nano, 2022, , 100252. Comprehensive Screening of Halogen-Containing Oxide Double Perovskites A₂BXO₆ (X = Cl, Br, and I) for Photovoltaic Applications. Journal of Physical 4754 2 2.1 Chemistry Letters, 2022, 13, 7306-7313. Computational study of Cs2ScXBr6 (X=Ag, Tl) for renewable energy devices. Physica B: Condensed 1.3 Matter, 2022, , 414277. Isomeric Dithienothiopheneâ€Based Hole Transport Materials: Role of Sulphur Atoms Positions on 4756 Photovoltaic Performance of Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 7.8 15 32,. Regulation of Quantum Wells Width Distribution in 2D Perovskite Films for Photovoltaic Application. 29 Advanced Functional Materials, 2022, 32, . Nonlinear Two-Photon Absorption in the Near-Infrared Band for Lead Bromide Perovskite Films Using 4758 1.6 1 an F-Scan Nonlinear Spectrometer. ACS Omega, 2022, 7, 29100-29105. Excitations of Quantum Many-Body Systems via Purified Ensembles: A Unitary-Coupled-Cluster-Based Approach. Physical Review Letters, 2022, 129, . Openâ \in eircuit voltage, fill factor, and heterojunction band offset in semiconductor diode solar cells. 4760 6.8 10 EcoMat, 2022, 4, . Nonplanar Spray-Coated Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 4761

CITATION REPORT

37587-37594.

#	Article	IF	CITATIONS
4762	Photoemission of the Upconverted Hot Electrons in Mn-Doped CsPbBr ₃ Nanocrystals. Nano Letters, 2022, 22, 6753-6759.	4.5	11
4763	γ-ray Radiation Hardness of CsPbBr ₃ Single Crystals and Single-Carrier Devices. ACS Applied Materials & Interfaces, 2022, 14, 37904-37915.	4.0	9
4764	Negative Differential Resistance in the Au-Coated CH ₃ NH ₃ PbBr ₃ Perovskite Photodetectors with Fast Response. Journal of Physical Chemistry C, 2022, 126, 13748-13754.	1.5	1
4765	Thermalâ€Radiationâ€Driven Ultrafast Crystallization of Perovskite Films Under Heavy Humidity for Efficient Inverted Solar Cells. Advanced Materials, 2022, 34, .	11.1	17
4766	Nanopatterning on Mixed Halide Perovskites for Promoting Photocurrent Generation of Flexible Photodetector. Advanced Functional Materials, 2022, 32, .	7.8	2
4767	Tunable Dualâ€Band White Light Emission from Gua ₃ CuCl ₄ and Gua ₇ Cu ₃ X ₁₀ ·3DMF (X = Br, I). Advanced Photonics Research, 2	202 2 , 3,	4
4768	Selection of a Suitable Solvent Additive for 2-Methoxyethanol-Based Antisolvent-Free Perovskite Film Fabrication. ACS Applied Materials & Interfaces, 2022, 14, 39132-39140.	4.0	8
4769	Detailed study of dimensioning and simulating a grid-connected PV power station and analysis of its environmental and economic effect, case study. Modeling Earth Systems and Environment, 2023, 9, 53-61.	1.9	11
4770	Sn/Ge Substitution in ((C _{<i>n</i>} H _{2<i>n</i>–1} NH ₃) ₂ Pbl ₄ ;) Tj ETQ@	q0 <u>0</u> 0 rgB	BT /Overlock
4771	First-principles studies on electronic and optical properties of formate-doped organic-inorganic perovskites MAPbI3. Solar Energy Materials and Solar Cells, 2022, 246, 111941.	3.0	5
4772	Improved charge extraction and atmospheric stability of all-inorganic Cs2AgBiBr6 perovskite solar cells by MoS2 nanoflakes. Solar Energy Materials and Solar Cells, 2022, 246, 111932.	3.0	10
4773	Perovskite solar cells enhancement by CZTS based hole transport layer. Surfaces and Interfaces, 2022, 33, 102187.	1.5	12
4774	Gadolinium-doped SnO2 electron transfer layer for highly efficient planar perovskite solar cells. Journal of Power Sources, 2022, 544, 231870.	4.0	17
4775	Gain and loss energy generation of perovskite/sc-Si tandem solar cells with series and parallel configurations compared with sc-Si solar cell under real environmental factors based on detailed balance limit. Optical Materials, 2022, 132, 112789.	1.7	0
4776	Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system. Nano Energy, 2022, 102, 107686.	8.2	20
4777	An introduction to perovskites for solar cells and their characterisation. Energy Reports, 2022, 8, 89-106.	2.5	4
4778	Constructing 2D passivation layer on perovskites based on 3-chlorobenzylamine enables efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2022, 926, 166891.	2.8	10
4779	Low temperature preparation of W-doped In2O3 transparent electrodes for p-i-n structured perovskite solar cells. Journal of Alloys and Compounds, 2022, 926, 166827.	2.8	4

#	Article	IF	CITATIONS
4780	Estimation of performance limit for bifacial single-junction solar cell. Optics and Laser Technology, 2022, 156, 108500.	2.2	1
4781	Intermolecular interaction assisted fabrication of Dion-Jacobson perovskite film with promoted photovoltaic property. Chemical Engineering Journal, 2023, 451, 138654.	6.6	4
4782	Improved performance and stability of perovskite solar cells by iodine-immobilizing with small and flexible bis(amide) molecule. Chemical Engineering Journal, 2023, 451, 138559.	6.6	13
4784	A computational insight of the leadâ€free double perovskites <scp> Rb ₂ AgSbCl ₆ </scp> and <scp> Rb ₂ AgSbBr ₆ </scp> for optoelectronic and thermoelectric applications. International Journal of Energy Research, 2022, 46, 24273-24285.	2.2	7
4785	Review of nanomaterials impact on improving the performance of dye-sensitized and perovskite solar cells. Optical and Quantum Electronics, 2022, 54, .	1.5	6
4786	Low-Temperature Removal of Residual Dimethylammonium via Surface Molecular Oligomerization for CsPbl ₃ Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 3227-3234.	8.8	15
4787	Impacts of 0D Cs4PbI6 phase in all-inorganic CsPbI3 perovskites on their physical, optical properties and photovoltaic performances. Thin Solid Films, 2022, 759, 139485.	0.8	0
4788	Bandgap graded perovskite solar cell for above 30% efficiency. Optik, 2022, 269, 169891.	1.4	13
4789	Two-dimensional hybrid double perovskite (PA)4AgBiBr8 single crystals for X-ray detection. Optical Materials, 2022, 133, 112972.	1.7	7
4790	Recent progress towards photovoltaics' circular economy. Journal of Cleaner Production, 2022, 373, 133864.	4.6	17
4791	Low-cost star-shaped hole-transporting materials with isotropic properties and its application in perovskite solar cells. Dyes and Pigments, 2022, 207, 110695.	2.0	6
4792	Enhancement in power conversion efficiency and stability of perovskite solar cell by reducing trap states using trichloroacetic acid additive in anti-solvent. Surfaces and Interfaces, 2022, 34, 102341.	1.5	3
4793	Photoelectron spectroscopic studies on metal halide perovskite materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	1
4794	A 1D helical eco-friendly Mn(II) halide coordination polymer: Luminescent properties involving resonant energy transfer and magnetic characterization. Journal of Luminescence, 2022, 252, 119251.	1.5	1
4795	First principle insights on mechanical, electronic and optical properties of direct bandgap material Cs2KScX6 (X=Cl, Br and I) for optoelectronic applications. Journal of Solid State Chemistry, 2022, 316, 123590.	1.4	4
4796	Correlation between detailed balance limit and actual environmental factors for perovskite/crystalline Si tandem solar cells with different structures. Materials Science in Semiconductor Processing, 2022, 152, 107085.	1.9	2
4797	Low power consumed PV-electrolysis with CoFeP nanowires for hydrazine-assisted hydrogen production. Applied Surface Science, 2022, 606, 154951.	3.1	7
4798	Enhance the photoconversion efficiency of carbon-based perovskite solar cells through the synergetic effect of upconversion nanoparticles Li doped NaYbF4:Ho3+ and 2D g-C3N4. Materials Today Communications, 2022, 33, 104513.	0.9	4

#	Article	IF	CITATIONS
4799	A realistic model of temperature dependent carrier diffusion constant in MAPbI3 films. Applied Surface Science, 2022, 606, 154908.	3.1	3
4800	Structural evolution, dielectric relaxation, and charge transport characteristics of formamidinium lead iodide (FAPbI3) perovskite. Materials Research Bulletin, 2023, 157, 112012.	2.7	11
4801	Modeling and low-velocity impact analysis of perovskite solar cells resting on porous substrates reinforced by graphene platelets. European Journal of Mechanics, A/Solids, 2023, 97, 104799.	2.1	6
4802	Eu3+ Doped Cspbcl2br1 Nanocrystals Glass for Enhanced the Ultraviolet Response of Si Photodetectors. SSRN Electronic Journal, 0, , .	0.4	0
4803	Understanding the role of inorganic carrier transport layer materials and interfaces in emerging perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 15725-15780.	2.7	17
4804	Two-Dimensional Electronic Spectroscopy reveals liquid like structural dynamics in semiconductor perovskites. , 2022, , .		0
4805	Lead Free Perovskite Solar Cell Using TiO2 as an Electron Transport Materials and Cu2O as a Hole Transport Materials. Lecture Notes in Electrical Engineering, 2022, , 305-311.	0.3	7
4806	A comparative study of the mechanical stability, electronic, optical and photocatalytic properties of CsPbX ₃ (X = Cl, Br, I) by DFT calculations for optoelectronic applications. RSC Advances, 2022, 12, 23704-23717.	1.7	12
4807	Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 18762-18772.	5.2	17
4808	Lead-free double perovskites: how divalent cations tune the electronic structure for photovoltaic applications. Journal of Materials Chemistry C, 2022, 10, 12276-12285.	2.7	6
4809	Broadband-tunable spectral response of perovskite-on-paper photodetectors using halide mixing. Nanoscale, 2022, 14, 14057-14063.	2.8	1
4810	Recent advances of crosslinkable organic semiconductors in achieving solution-processed and stable optoelectronic devices. Journal of Materials Chemistry A, 2022, 10, 18542-18576.	5.2	12
4811	Understanding the Doping Effect in Cspbi2br Solar Cells: Crystallization Kinetics, Defect Passivation and Energy Level Alignment. SSRN Electronic Journal, 0, , .	0.4	0
4812	A mechanistic study of the dopant-induced breakdown in halide perovskites using solid state energy storage devices. Energy and Environmental Science, 2022, 15, 4323-4337.	15.6	3
4813	Excited-state charge polarization and electronic structure of mixed-cation halide perovskites: the role of mixed inorganic–organic cations in CsFAPbl ₃ . RSC Advances, 2022, 12, 25415-25423.	1.7	5
4814	Quantum machine learning for chemistry and physics. Chemical Society Reviews, 2022, 51, 6475-6573.	18.7	40
4815	Energy Materials. , 2022, , 383-413.		0
4816	[PbX ₆] ^{4â^'} modulation and organic spacer construction for stable perovskite solar cells. Energy and Environmental Science, 2022, 15, 4470-4510.	15.6	16

#	Article	IF	CITATIONS
4817	Thermal instability originating from the interface between organic–inorganic hybrid perovskites and oxide electron transport layers. Energy and Environmental Science, 2022, 15, 4836-4849.	15.6	26
4818	Emerging Metal-Halide Perovskite Materials for Enhanced Solar Cells and Light-Emitting Applications. Engineering Materials, 2022, , 45-85.	0.3	1
4819	The Versatility of Polymers in Perovskite Solar Cells. Journal of Materials Chemistry C, 0, , .	2.7	2
4820	Bifunctional NiCuO _{<i>x</i>} photoelectrodes to promote pseudocapacitive charge storage by <i>in situ</i> photocharging. Journal of Materials Chemistry A, 2022, 10, 20375-20385.	5.2	12
4821	Temperature dependent scintillation properties and mechanisms of (PEA) ₂ PbBr ₄ single crystals. Journal of Materials Chemistry C, 2022, 10, 11598-11606.	2.7	9
4822	Theory and Computation in Photo-Electro-Chemical Catalysis: Highlights, Challenges, and Prospects. Engineering Materials, 2022, , 3-43.	0.3	0
4823	Fatigue of Flexible and Stretchable Electronic Structures. , 2022, , .		0
4824	First principles predictionAofAstructural,AmechanicalAandAoptoelectronicApropertiesAofAlead-freeAdoubleAperovskites A2SeX6A(A=Rb,AK;AX=Cl,ABr,AI). SSRN Electronic Journal, 0, , .	0.4	1
4825	Modeling and evaluation for large amplitude vibration and nonlinear bending of perovskite solar cell. Composite Structures, 2023, 303, 116235.	3.1	13
4826	Na2S decorated NiOx as effective hole transport layer for inverted planar perovskite solar cells. Materials Science in Semiconductor Processing, 2023, 153, 107107.	1.9	5
4827	Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSC—A Review. Nanomaterials, 2022, 12, 3003.	1.9	6
4828	Laserâ€induced Modifiable Dualâ€wavelength Emissions from Lead Halide Perovskite Alloy Microcrystal. Advanced Materials Interfaces, 2022, 9, 2200680.	1.9	0
4829	Thermal Transport Properties of Phonons in Halide Perovskites. Advanced Materials, 2023, 35, .	11.1	3
4830	Highly stable MAPbI3 microcrystals: a single precursor derived from low-grade PbI2 using sono-chemical method for economical and efficient perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 21531-21545.	1.1	3
4831	Electrospun Triâ€Cation Perovskite Nanofibers for Infrared Photodetection. Advanced Functional Materials, 2022, 32, .	7.8	4
4832	Materials for Humanitas. Material Science Research India, 2022, 19, 54-55.	0.9	0
4833	Recent Progress on Heterojunction Engineering in Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	23
4834	Laserâ€Induced Secondary Crystallization of CsPbBr ₃ Perovskite Film for Robust and Low Threshold Amplified Spontaneous Emission. Advanced Functional Materials, 2022, 32, .	7.8	7

#	Article	IF	Citations
4835	Configurable Organic Charge Carriers toward Stable Perovskite Photovoltaics. Chemical Reviews, 2022, 122, 14954-14986.	23.0	26
4836	Activity Enhancement of Photo-generated Carrier in CsPbBr3 Nanocrystals Improved by Cd Element. Optics Express, 0, , .	1.7	0
4837	Comparative performance analysis and material exploration of ECO-friendly highly efficient perovskite solar cells. Semiconductor Science and Technology, 2022, 37, 115004.	1.0	5
4838	Comparative architecture in monolithic perovskite/silicon tandem solar cells. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	3
4839	Enhancement of the photovoltaic performance of perovskite solar cells via sonoâ€synthesis of Alâ€doped <scp> TiO ₂ </scp> as the electron transport layer. International Journal of Energy Research, 2022, 46, 23465-23479.	2.2	5
4840	Preparation of ultra-high efficiency perovskite cells by conversion of Pbl ₂ . Chinese Science Bulletin, 2022, , .	0.4	Ο
4841	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, .	11.1	67
4842	Highly efficient cesium-based halide perovskite solar cell using SCAPS-1DÂsoftware: Theoretical study. Journal of Optics (India), 2023, 52, 1218-1225.	0.8	24
4843	Thermally oxidized ultrathin copper film as low-cost hole-transport layer in planar perovskite solar cells. Solar Energy, 2022, 244, 457-464.	2.9	9
4844	Growth, characterization and photoelectrical properties of orthorhombic and cubic CsPbBr3 single crystals. Journal of Materials Science: Materials in Electronics, 2022, 33, 24895-24905.	1.1	4
4845	A Polyanionic Strategy to Modify the Perovskite Grain Boundary for a Larger Switching Ratio in Flexible Woven Resistive Random-Access Memories. ACS Applied Materials & Interfaces, 2022, 14, 44652-44664.	4.0	7
4846	Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Science Advances, 2022, 8, .	4.7	34
4847	Investigation on Thermodynamic Properties of Novel Ag2SrSn(S/Se)4 Quaternary Chalcogenide for Solar Cell Applications: A Density Functional Theory Study. Lecture Notes in Electrical Engineering, 2023, , 103-110.	0.3	0
4848	Band structures in orientation-controlled CuI thin films under epitaxial strain. Physical Review B, 2022, 106, .	1.1	4
4849	A Typeâ€I Heterostructure with a KBiFe ₂ O ₅ Brownmillerite Core and a ZnO Nanoparticle Shell for Enhanced Optoelectronic Performance. ChemistrySelect, 2022, 7, .	0.7	3
4850	Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nature Energy, 2022, 7, 794-807.	19.8	89
4851	Understanding on the formation mechanisms of quasi-2D Ruddlesden- Popper halide perovskites. Ceramist, 2022, 25, 356-367.	0.0	0
4852	The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells. Optical and Quantum Electronics, 2022, 54, .	1.5	9

#	Article	IF	CITATIONS
4853	Multifunctional devices based on planar microsupercapacitors: Progress and challenges. Science China Materials, 2022, 65, 3202-3228.	3.5	8
4854	Addressing gain-bandwidth trade-off by a monolithically integrated photovoltaic transistor. Science Advances, 2022, 8, .	4.7	4
4855	Understanding the Photoelectrochemical Behavior of Metal Nanoclusters: A Perspective. Journal of Physical Chemistry C, 2022, 126, 16928-16942.	1.5	4
4856	Thickness control of perovskite nanocrystals based on the molecular structure of surface ligands. Applied Physics Express, 2022, 15, 105502.	1.1	2
4857	Optical Memory, Switching, and Neuromorphic Functionality in Metal Halide Perovskite Materials and Devices. Advanced Materials, 2023, 35, .	11.1	12
4858	Addressing the stability challenge of metal halide perovskite based photocatalysts for solar fuel production. JPhys Energy, 2022, 4, 042005.	2.3	2
4859	From Triboelectric Nanogenerator to Multifunctional Triboelectric Sensors: A Chemical Perspective toward the Interface Optimization and Device Integration. Small, 2022, 18, .	5.2	26
4860	An improvement in un-Encapsulated perovskite solar cell's environmental stability via introduction of an electrode interface layer. Materials Technology, 2022, 37, 3079-3088.	1.5	3
4861	Persistent Ion Accumulation at Interfaces Improves the Performance of Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 3302-3310.	8.8	11
4862	A Firstâ€Principles Study on ABBr ₃ (A = Cs, Rb, K, Na; B = Ge, Sn) Halide Perovskites for Photovoltaic Applications. Advanced Theory and Simulations, 2022, 5, .	1.3	8
4863	First-principles investigation on the structural, electronic, mechanical and optical properties of silver based perovskite AgXCl3 (X= Ca, Sr). Journal of Materials Research and Technology, 2022, 20, 3296-3305.	2.6	20
4864	Perovskites: Emergence of highly efficient thirdâ€generation solar cells. International Journal of Energy Research, 2022, 46, 21856-21883.	2.2	13
4865	Fabrication of Crystalline Si Thin Films for Photovoltaics. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	2
4866	Commercial Applications of Indoor Photovoltaics Based on Flexible Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 3729-3733.	8.8	13
4867	Pressure-induced phase transitions of CsSnBr ₃ perovskite from first-principles calculations. Physica Scripta, 2022, 97, 115811.	1.2	1
4868	Grain Boundary Passivation Using D131 Organic Dye Molecule for Efficient and Thermally Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 13825-13834.	3.2	12
4869	APPLICATION OF POROCITIES IN THE TRANSPARENTELECTRODE LAYER OF A PEROVSKITE SOLAR CELLFOR PERFORMANCE ENHANCEMENT. Applied Optics, 0, , .	0.9	0
4870	Mixed 2D-Dion—Jacobson/3D Sn-Pb alloyed perovskites for efficient photovoltaic solar devices. Nano Research, 2023, 16, 3142-3148.	5.8	7

#	Article	IF	CITATIONS
4871	Transparent wood-based functional materials via a top-down approach. Progress in Materials Science, 2023, 132, 101025.	16.0	38
4872	Solution preparation of CsPbBr3/Cs4PbBr6 polycrystalline composites. Physica B: Condensed Matter, 2022, 647, 414378.	1.3	5
4873	Understanding the efficiency enhancement of perovskite solar cells with NaGdF4: Er3+/Yb3+ nanorods. Solar Energy Materials and Solar Cells, 2022, 248, 112029.	3.0	4
4874	A practical guide to 3D halide perovskites: Structure, synthesis, and measurement. , 2022, , .		0
4875	Green-solvent-processed formamidinium-based perovskite solar cells with uniform grain growth and strengthened interfacial contact <i>via</i> a nanostructured tin oxide layer. Materials Horizons, 2023, 10, 122-135.	6.4	18
4876	Organic–Inorganic Hybrid Devices—Perovskite-Based Devices. , 2022, , 283-307.		0
4877	Rapid scalable fabrication of roll-to-roll slot-die coated flexible perovskite solar cells using intense pulse light annealing. Sustainable Energy and Fuels, 2022, 6, 5316-5323.	2.5	7
4878	Revealing ultrafast vibronic dynamics of tetracene molecules with sub-8-fs UV impulsive Raman spectroscopy. Physical Chemistry Chemical Physics, 0, , .	1.3	0
4879	Revealing superoxide-induced degradation in lead-free tin perovskite solar cells. Energy and Environmental Science, 2022, 15, 5274-5283.	15.6	32
4880	lonic and poly(ionic liquid)s as perovskite passivating molecules for improved solar cell performances. Journal of Materials Chemistry C, 2022, 10, 16583-16591.	2.7	6
4881	Enhance luminescence or change morphology: effect of the doping method on Cu ²⁺ -doped CsPbBr ₃ perovskite nanocrystals. CrystEngComm, 2022, 24, 7962-7970.	1.3	2
4882	A MINI-REVIEW OF RECENT STUDIES ON LEAD AND LEAD-FREE PEROVSKITE MATERIALS FOR SOLAR CELLS APPLICATION AND THEIR ISSUES. Jurnal Teknologi (Sciences and Engineering), 2022, 84, 135-146.	0.3	2
4883	The Origin of Broad Emission in âŸ ⁻ 100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes. ACS Energy Letters, 2022, 7, 4232-4241.	8.8	20
4884	Detection of Basal Cancer Cells using Photodetector Based on a Novel Surface Plasmon Resonance Nanostructure Employing Perovskite Layer with an Ultra High Sensitivity. Plasmonics, 2022, 17, 2365-2373.	1.8	23
4885	A-site cation engineering enables oriented Ruddlesden-Popper perovskites towards efficient solar cells. Science China Chemistry, 2022, 65, 2468-2475.	4.2	11
4886	Light-tunable three-phase coexistence in mixed halide perovskites. Physical Review B, 2022, 106, .	1.1	0
4887	Recent development in electron transport layers for efficient tin-based perovskite solar cells. IOP Conference Series: Materials Science and Engineering, 2022, 1258, 012015.	0.3	0
4888	Air-processed hole-conductor–free and printable infrared light responded carbon-based perovskite solar cells using up-conversion NaYF4:Yb3+, Er3+ nanoparticles. Ceramics International, 2023, 49, 6974-6983.	2.3	1

#	Article	IF	CITATIONS
4889	Fullereneâ€Based Inverted Perovskite Solar Cell: A Key to Achieve Promising, Stable, and Efficient Photovoltaics. Advanced Materials Interfaces, 2022, 9, .	1.9	12
4890	Passivating Defects of Perovskite Solar Cells with Functional Donorâ€Acceptor–Donor Type Hole Transporting Materials. Advanced Functional Materials, 2023, 33, .	7.8	7
4891	Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Science China Materials, 2023, 66, 1-21.	3.5	15
4892	Novel broad spectral response perovskite solar cells: A review of the current status and advanced strategies for breaking the theoretical limit efficiency. Journal of Materials Science and Technology, 2023, 140, 33-57.	5.6	5
4893	Snâ€Based Perovskite Halides for Electronic Devices. Advanced Science, 2022, 9, .	5.6	12
4894	Evaluation of the Passivation Effects of PEDOT:PSS on Inverted Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	26
4895	The interfacial embedding of halogen-terminated carbon dots produces highly efficient and stable flexible perovskite solar cells. New Carbon Materials, 2022, 37, 988-999.	2.9	1
4896	Surface Characterization of the Solutionâ€Processed Organic–Inorganic Hybrid Perovskite Thin Films. Small, 0, , 2204271.	5.2	1
4897	Modeling of a Sn-Based HTM-Free Perovskite Solar Cell Using a One-Dimensional Solar Cell Capacitance Simulator Tool. Transactions of Tianjin University, 2023, 29, 62-72.	3.3	9
4898	Molecular Electronic Study of Spiro-[cyclopenta[1,2- <i>b</i> :5,4- <i>b</i> ′]dithiophene-4,9′-fluorene] Derivatives: Route to Decent Hole-Transporting Materials. Journal of Physical Chemistry C, 2022, 126, 18238-18250.	1.5	0
4899	Vacancy-ordered chloride perovskites for reversible release–storage of chlorine. Journal of Materials Science, 2022, 57, 18266-18276.	1.7	3
4900	Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites. Materials Today Physics, 2022, 28, 100881.	2.9	13
4901	Increasing the efficiency of perovskite solar cells using Cs ₄ CuSb ₂ Cl ₁₂ quantum dots as an interface layer: A numerical study. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 0 095440892211343.	1.4	1
4902	Atomic layer deposition and other thin film deposition techniques: from principles to film properties. Journal of Materials Research and Technology, 2022, 21, 2481-2514.	2.6	26
4903	Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. IScience, 2022, 25, 105371.	1.9	10
4904	Non-metal doping in triple perovskite Ba2K2Te2O9 for enhanced photovoltaic properties: A first-principles study. Optik, 2022, 271, 170098.	1.4	0
4905	Photo-dynamics in 2D materials: Processes, tunability and device applications. Physics Reports, 2022, 993, 1-70.	10.3	4
4906	Impact of Sb-insertion on structural, optical, and dielectric characteristics of the PbI2 thin film. Optical Materials, 2022, 134, 113180.	1.7	1

#	Article	IF	CITATIONS
4907	Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells. Nano Energy, 2022, 104, 107918.	8.2	26
4908	Enhanced oxidization and corrosion resistance of silver nanowire based transparent conductor by nickel electroplating to obtain power conversion efficiencyÂ>Â18Â% in perovskite solar cells. Applied Surface Science, 2023, 609, 155250.	3.1	4
4909	A DFT study on the stability and optoelectronic properties of Pb/Sn/Ge-based MA ₂ B(SCN) ₂ 1 ₂ perovskites. New Journal of Chemistry, 0, , .	1.4	0
4910	Regulating the phase distribution of quasi-2D perovskites using a three-dimensional cyclic molecule toward improved light-emitting performance. Nanoscale, 2022, 14, 17409-17417.	2.8	1
4911	Predictive Modeling of Cracking Behaviors in Flexible Perovskite Solar Cells. , 2022, 1, 231-235.		1
4912	New potential materials in advancement of photovoltaic and optoelectronic applications: Metal halide perovskite nanorods. Renewable and Sustainable Energy Reviews, 2023, 171, 113037.	8.2	6
4913	Exploring the structural, electronic, optical, and thermoelectric properties of potassium-based double perovskites K2AgXI6 (XÂ=ÂSb, Bi) compounds: A DFT study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 287, 116122.	1.7	7
4914	Eu3+ doped CsPbCl2Br1 nanocrystals glass for enhanced the ultraviolet response of Si photodetectors. Journal of Luminescence, 2023, 254, 119530.	1.5	3
4915	Understanding the doping effect in CsPbI2Br solar cells: crystallization kinetics, defect passivation and energy level alignment. Chemical Engineering Journal, 2023, 453, 139952.	6.6	9
4916	Controlled Deposition of Perovskite Thin Layer with Electrospraying for Solar Cells. , 2022, , .		0
4918	Semitransparent Perovskite Solar Cells for Photovoltaic Application. Solar Rrl, 2023, 7, .	3.1	2
4919	Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells. Frontiers of Optoelectronics, 2022, 15, .	1.9	19
4920	Numerical Investigation of Photo-Generated Carrier Recombination Dynamics on the Device Characteristics for the Perovskite/Carbon Nitride Absorber-Layer Solar Cell. Nanomaterials, 2022, 12, 4012.	1.9	0
4921	Synergistic Effect of Cation Composition Engineering of Hybrid Cs _{1â²'<i>x</i>} FA _{<i>x</i>} PbBr ₃ Nanocrystals for Selfâ€Healing Electronics Application. Advanced Materials, 2023, 35, .	11.1	19
4922	Quantitative analysis of free-electron dynamics in InSb by terahertz shockwave spectroscopy. Physical Review B, 2022, 106, .	1.1	0
4923	Solvent Engineering of Ionic Liquids for Stable and Efficient Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	4
4924	Photoelectric properties of cubic mixed-cation lead halide perovskites (Cs MA1-PbI3) from First-Principles. Materials Today Communications, 2022, , 104898.	0.9	0
4925	Synthesis of Sulfide Perovskites by Sulfurization with Boron Sulfides. Inorganic Chemistry, 2022, 61, 18823-18827.	1.9	5

#	Article	IF	CITATIONS
4926	High Efficiency Cs based Perovskite―Silicon Tandem Solar Cells―A Modelling Study. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	3
4927	Understanding the Working Mechanism of S ^{2–} lons on Compacted TiO ₂ Layers in Cesium–Methylammonium–Formamidinium Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 13377-13384.	2.5	2
4928	High performance flexible photodetector based on 0D-2D perovskite heterostructure. , 2023, 2, 100032.		0
4929	Energy transfer in supramolecular calix[4]arene—Perylene bisimide dye light harvesting building blocks: Resolving loss processes with simultaneous target analysis. Journal of Photochemistry and Photobiology, 2022, 12, 100154.	1.1	4
4930	Realization of half-metal antiferromagnetic (HM-AFM) behaviour in double perovskite Sr2CrReO6 on substitution of Tc at Cr site: Promising material for optoelectronics and thermoelectric applications via DFT framework. Inorganic Chemistry Communication, 2022, 146, 110172.	1.8	8
4931	Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews, 2022, 3, .	2.6	10
4932	Moisture-induced phase transition and emission color change for lead-free manganese (II)-Based halide perovskite crystals with greatly improved photoluminescence quantum yield. Optical Materials, 2022, 134, 113164.	1.7	10
4933	Recent progress of scalable perovskite solar cells and modules. , 2022, 1, 100010.		14
4934	Recent review of interfacial engineering for perovskite solar cells: effect of functional groups on the stability and efficiency. Materials Today Chemistry, 2022, 26, 101224.	1.7	8
4935	Experimental absence of the non-perovskite ground state phases of MaPbI ₃ explained by a Funnel Hopping Monte Carlo study based on a neural network potential. Materials Advances, 2023, 4, 184-194.	2.6	4
4936	Method to Inhibit Perovskite Solution Aging: Induced by Perovskite Microcrystals. ACS Applied Materials & amp; Interfaces, 2022, 14, 52960-52970.	4.0	4
4937	Design of an S-scheme photo-catalyst utilizing a Cu-doped perovskite and MOF-5 for simultaneous degradation of organic pollutants under LED light irradiation: Application of EXRSM method for spectra separation and BBD-RSM modeling. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 287, 122116.	2.0	5
4938	Chemically suppressing redox reaction at the NiO _{<i>x</i>} /perovskite interface in narrow bandgap perovskite solar cells to exceed a power conversion efficiency of 20%. Journal of Materials Chemistry A, 2022, 11, 205-212.	5.2	7
4939	Enhancing the stability of the polymeric Lewis-base-assisted dual-phase 3D CsPbBr ₃ –Cs ₄ PbBr ₆ perovskite by molecular engineering and self-passivation. Journal of Materials Chemistry C, 2022, 11, 307-320.	2.7	2
4940	Three-dimensional narrow-bandgap perovskite semiconductor ferroelectric methylphosphonium tin triiodide for potential photovoltaic application. Chemical Communications, 2023, 59, 920-923.	2.2	8
4941	Efficient and stable formamidinium–caesium perovskite solar cells and modules from lead acetate-based precursors. Energy and Environmental Science, 2023, 16, 138-147.	15.6	17
4942	Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science, 2023, 14, 1040-1064.	3.7	2
4943	Organic iodides in efficient and stable perovskite solar cells: strong surface passivation and interaction. Energy and Environmental Science, 2023, 16, 565-573.	15.6	16

#	Article	IF	CITATIONS
4944	Investigation of the optoelectronics properties and stability of Formamidinium lead mixed halides perovskite. Optical Materials, 2023, 135, 113334.	1.7	10
4945	Emerging applications of metal-organic frameworks and derivatives in solar cells: Recent advances and challenges. Materials Science and Engineering Reports, 2023, 152, 100714.	14.8	12
4946	Design and modification of perovskite materials for photocatalytic performance improvement. Journal of Environmental Chemical Engineering, 2023, 11, 109056.	3.3	8
4947	Inhibiting phase separation of perovskite quantum dots for achieving stable blue light-emitting diodes. Organic Electronics, 2023, 113, 106718.	1.4	4
4948	Efficient and stable MAPbI3 perovskite solar cells via green anti-solvent diethyl carbonate. Organic Electronics, 2023, 113, 106709.	1.4	6
4949	First principles investigations for structural, electronic, optical and elastic properties of Ag2BeSn(S/Se)4 chalcogenide in kesterite and stannite phases with theoretical SLME calculations. Physica B: Condensed Matter, 2023, 650, 414563.	1.3	5
4950	One-step synthesis of low-cost perylenediimide-based cathode interfacial materials for efficient inverted perovskite solar cells. Chemical Engineering Journal, 2023, 454, 140451.	6.6	6
4951	Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review. Environmental Research, 2023, 219, 115066.	3.7	6
4952	Lead-free Dion–Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and X, Y = Cl, Br, I) used for optoelectronic applications via first principle calculations. Journal of Physics and Chemistry of Solids, 2023, 174, 111157.	1.9	8
4953	A DFT insight into structural, mechanical, elasto-acoustic, and anisotropic properties of AePdH3 (Ae =) Tj ETQq1	0.78431	4 rgBT /Over
4954	Effects of anti-solvent temperature on microstructures and photovoltaic properties of TiO2@MAPbI3 core-shell nanowire arrays. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115610.	1.3	3
4955	Study on light absorption of CH3NH3PbI3 perovskite solar cells enhanced by gold nanobipyramids. Optics and Laser Technology, 2023, 159, 108924.	2.2	3
4956	Theoretical study of a lead-free perovskite solar cell using ZnSe as ETL and PTAA as HTL. Emerging Materials Research, 2023, 12, 37-46.	0.4	10
4957	Piezo-Phototronic Enhancement of Vertical Structure Photodetectors Based on 2D CsPbBr ₃ Nanosheets. Journal of Nanoelectronics and Optoelectronics, 2022, 17, 769-774.	0.1	0
4958	Display Application and Development Trend of Perovskite Emitters. , 2022, 1, 13-28.		0
4959	Emerging Chalcohalide Materials for Energy Applications. Chemical Reviews, 2023, 123, 327-378.	23.0	34
4960	Improved opto-electro-mechanical properties of Cs2TeBr6 double perovskite by Ge doping. Journal of Applied Physics, 2022, 132, .	1.1	1

#	Article	IF	CITATIONS
4962	Degradation evaluation of titanium dioxide under stress factors. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	0
4963	COMSOL multiphysics-based modeling approach to solar cell development. International Journal of Modern Physics B, 0, , .	1.0	0
4964	Scalable Production of High Performance Flexible Perovskite Solar Cells via Film-Growth-Megasonic-Spray-Coating System. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1223-1234.	2.7	3
4965	Enhancement in Device Performance of Perovskite Solar Cells via Annealing of PCBM Electron Transport Layer. Applied Science and Convergence Technology, 2022, 31, 167-170.	0.3	2
4966	Bionic Levodopa-Modified TiO ₂ for Preparation of Perovskite Solar Cells with Efficiency over 23%. ACS Sustainable Chemistry and Engineering, 2022, 10, 16055-16063.	3.2	3
4967	Optical, Morphological and Structural Properties of Hybrid CH ₃ NH ₃ PbBr ₃ Perovskite Thin Films Deposited via a Single Step Spin-Coating Process. , 2022, , .		0
4968	2D‣ayered Manganese Perovskite with High Mobility. Advanced Functional Materials, 2023, 33, .	7.8	4
4969	Defect Passivation by Natural Piperine Molecule Enabling for Stable Perovskite Solar Cells with Efficiencies over 23%. ACS Sustainable Chemistry and Engineering, 2022, 10, 16359-16367.	3.2	3
4970	Zwitterions in 3D Perovskites: Organosulfide-Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 22403-22408.	6.6	10
4971	High-Performance and Stable Perovskite Solar Cells Using Carbon Quantum Dots and Upconversion Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 14441.	1.8	4
4972	Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability. Nano-Micro Letters, 2023, 15, .	14.4	19
4973	Synergy of Block Copolymers and Perovskites: Template Growth through Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 11610-11621.	2.1	6
4974	High-pressure investigations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>CH </mml:mi> <mml:m (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>X </mml:mi> </mml:math>) Tj ETQq(</mml:m </mml:msub></mml:mrow></mml:math 	n>3D 1 010 rgBT	l:mn>/Overlock 1
4975	Strain induced structural phase transition and compositional dependent magnetic phase transition in Ti doped Bi0.80Ba0.20FeO3 ceramics. Heliyon, 2022, 8, e12530.	1.4	1
4976	Minimizing the transport loss and degradation of perovskite optoelectronics via grain dimerization technique. EcoMat, 2023, 5, .	6.8	4
4977	A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials, 2022, 12, 4390.	1.9	19
4978	Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide. Nanomaterials, 2022, 12, 4454.	1.9	2
4979	An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development. Energies, 2023, 16, 190.	1.6	3

#	Article	IF	CITATIONS
4980	Leadâ€Free Cesium Manganese Halide Nanocrystals Embedded Glasses for Xâ€Ray Imaging. Advanced Science, 2023, 10, .	5.6	20
4981	An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films. Nature Communications, 2022, 13, .	5.8	13
4982	Extrinsic photoresponse of Ag doped MAPbBr3 perovskite crystals. Applied Surface Science, 2023, 614, 156230.	3.1	4
4983	Effect of Interface Modification on Mechanoluminescence-Inorganic Perovskite Impact Sensors. Sensors, 2023, 23, 236.	2.1	1
4984	Large Exciton Polaron Formation in 2D Hybrid Perovskites via Time-Resolved Photoluminescence. ACS Nano, 2022, 16, 21259-21265.	7.3	5
4985	Synergistic Surface Modification of Tin–Lead Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	22
4986	Structural, elastic, mechanical, and thermodynamic characteristic of NaReO3 and KReO3 perovskite oxides from first principles study. European Physical Journal Plus, 2022, 137, .	1.2	19
4987	Perovskite quantum dots: Synthesis, applications, prospects, and challenges. Journal of Applied Physics, 2022, 132, .	1.1	7
4988	Recent progress in perovskite solar cells: material science. Science China Chemistry, 2023, 66, 10-64.	4.2	53
4989	Ternary Organic Solar Cells: Recent Insight on Structure–Processing–Property–Performance Relationships. Energy Technology, 2023, 11, .	1.8	8
4990	Tailoring Two-Dimensional Ruddlesden–Popper Perovskite via 1D Perovskitoid Enables Efficient and Stable Solar Cells. ACS Energy Letters, 2023, 8, 637-646.	8.8	7
4991	Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Energy Technology, 2023, 11, .	1.8	8
4992	Fabrication of Highâ€Quality CsPbI ₃ Perovskite Films with Phosphorus Pentachloride Additive for Highly Stable Solar Cells. ChemSusChem, 2023, 16, .	3.6	1
4993	Revisiting the Nature of Chemical Bonding in Chalcogenides to Explain and Design their Properties. Advanced Materials, 2023, 35, .	11.1	32
4994	Electronic Structure, Optical and Thermal Response of Lead-Free RbAuBr ₃ and RbAuBr ₄ Perovskites for Renewable Energy Applications. ECS Journal of Solid State Science and Technology, 2022, 11, 123003.	0.9	13
4995	Perovskite photonic crystal photoelectric devices. Applied Physics Reviews, 2022, 9, .	5.5	6
4996	Effect of Organic Chloride Additives on the Photovoltaic Performance of MAâ€Free Cs _{0.1} FA _{0.9} PbI ₃ Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	0
4997	Slowing the hot arrier cooling by an organic small molecule in perovskite solar cells. EcoMat, 2023, 5, .	6.8	4

#	Article	IF	CITATIONS
4998	Mixed-Dimensional van der Waals Heterostructure for High-Performance and Air-Stable Perovskite Nanowire Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 55183-55191.	4.0	5
4999	Synergistic Effect of Crystallization Control and Defect Passivation Induced by a Multifunctional Primidone Additive for High-Performance Perovskite Solar Cells. Energy & Fuels, 2023, 37, 675-683.	2.5	5
5000	In-situ structural degradation study of quadruple-cation perovskite solar cells with nanostructured charge transfer layer. Ceramics International, 2023, 49, 24475-24486.	2.3	1
5001	Photo-synaptic properties of CH3NH3Pb1-xMnxBr2x+1 hybrid perovskite thin film-based artificial synapse. Ceramics International, 2023, 49, 11140-11148.	2.3	3
5002	The current state of the art in internal additive materials and quantum dots for improving efficiency and stability against humidity in perovskite solar cells. Heliyon, 2022, 8, e11878.	1.4	2
5003	Metal Halide Perovskite Alloy: Fundamental, Optoelectronic Properties and Applications. Advanced Photonics Research, 2023, 4, .	1.7	4
5004	Highly Sensitive Tinâ€Lead Perovskite Photodetectors with Over 450 Days Stability Enabled by Synergistic Engineering for Pulse Oximetry System. Advanced Materials, 2023, 35, .	11.1	22
5005	Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. Nanoscale, 2023, 15, 2997-3031.	2.8	2
5006	Solvent-mediated crystallization of (TMS) ₂ BiBr ₅ ·DMSO: a new 0D hybrid halide perovskite. Dalton Transactions, 2023, 52, 1777-1784.	1.6	3
5007	Deterministic and replaceable transfer of silver flakes for microcavities. Frontiers of Physics, 2023, 18, .	2.4	1
5008	Effective Inhibition of Phase Segregation in Wideâ€Bandgap Perovskites with Alkali Halides Additives to Improve the Stability of Solar Cells. Solar Rrl, 2023, 7, .	3.1	10
5009	A Facile Approach for the Encapsulation of Perovskite Solar Cells. Energies, 2023, 16, 598.	1.6	2
5010	Stacking Interactions and Photovoltaic Performance of Cs ₂ AgBiBr ₆ Perovskite. Solar Rrl, 2023, 7, .	3.1	4
5011	Recent advancements and manipulation strategies of colloidal Cs2BIBIIIX6 lead-free halide double perovskite nanocrystals. Nano Research, 2023, 16, 5572-5591.	5.8	7
5012	Efficient thin-film perovskite solar cells from a two-step sintering of nanocrystals. Nanoscale, 2023, 15, 2924-2931.	2.8	5
5013	The nonhalides in perovskite solar cells. Materials Chemistry Frontiers, 2023, 7, 789-805.	3.2	6
5014	Device simulation of perovskite/silicon tandem solar cell with antireflective coating. Optical and Quantum Electronics, 2023, 55, .	1.5	2
5015	Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule, 2023, 7, 257-271.	11.7	23

#	Article	IF	CITATIONS
5016	Structural, electrical and leakage current behaviour of double perovskite Gd2NiTiO6. International Journal of Hydrogen Energy, 2023, 48, 14012-14024.	3.8	2
5017	Insoluble Organics as Electron-Transporting Materials Enabled by Solvothermal Technology for Solution-Processable Perovskite Solar Cells. Journal of Physical Chemistry C, 2023, 127, 1326-1332.	1.5	0
5018	Nonlinear dynamic analysis of the perovskite solar cell under blast impacts based on the modified strain gradient theory. Acta Mechanica, 0, , .	1.1	0
5019	First-principles calculations to investigate pressure-driven electronic phase transition of lead-free halide perovskites KMCl3 (MÂ=ÂGe, Sn) for superior optoelectronic performance. Results in Physics, 2023, 44, 106212.	2.0	10
5020	Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nature Reviews Materials, 2023, 8, 261-281.	23.3	77
5021	é«~稳定性铋基钙钛矿纳米晶的åĩ控åîæˆ⊧ 结构和光物 ç†æ€§èŤ. Science China Materials	2.0 23, 66	5, 4 2079-208
5022	Bandgap Assessment of Compositional Variation for Uncovering Highâ€Efficiency Improved Stable Allâ€Inorganic Leadâ€Free Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	5
5023	Synthesis, structure, and photoelectric properties of a novel zero-dimensional organic-inorganic hybrid perovskite (C6H9N2)2MnI4. Optical Materials, 2023, 136, 113360.	1.7	2
5024	Probing the stability of perovskite solar cell under working condition through an ultra-thin silver electrode: Beyond the halide ion diffusion and metal diffusion. Chemical Engineering Journal, 2023, 458, 141405.	6.6	4
5025	Improved sensitivity of P3HT-based photo-transistors blended with perovskite nanocrystals. Organic Electronics, 2023, 114, 106744.	1.4	3
5026	Band gap engineering and optoelectronic properties of all-inorganic Ruddlesden-Popper halide perovskites Cs2B(X1-uYu)4 (B = Pb, Sn; X/Y = Cl, Br, I). Materials Science in Semiconductor Processing, 2023, 157, 107308.	1.9	6
5027	Crystallization control based on A-site cation strategy for blue FAPbBr3 perovskite nanoplatelets with pure emission. Applied Surface Science, 2023, 615, 156355.	3.1	3
5028	Electronic State Modulation by Large A-Site Cations in Quasi-Two-Dimensional Organic–Inorganic Lead Halide Perovskites. Chemistry of Materials, 2023, 35, 289-294.	3.2	5
5029	Two-Terminal Perovskite Tandem Solar Cells: from Design to Commercial Prospect. , 0, 27, 368-376.		0
5030	Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. Nano-Micro Letters, 2023, 15, .	14.4	36
5031	Triazine: An Important Building Block of Organic Materials for Solar Cell Application. Molecules, 2023, 28, 257.	1.7	3
5032	Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & Fuels, 2023, 37, 876-901.	2.5	7
5033	Two-Terminal Nonvolatile Write-Once-Read-Many-Times Memory Based on All-Inorganic Halide Perovskite. Micromachines, 2023, 14, 93.	1.4	1

#	Article	IF	Citations
5034	Free-Standing Carbon Nanotube Thin Film for Multifunctional Halide-Perovskite Optoelectronics. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86, S127-S130.	0.1	0
5035	Potential of AMnO ₃ (A=Ca, Sr, Ba, La) as Active Layer in Inorganic Perovskite Solar Cells. ChemPhysChem, 2023, 24, .	1.0	2
5036	3D Printing of Arbitrary Perovskite Nanowire Heterostructures. Advanced Functional Materials, 2023, 33, .	7.8	5
5037	Recent progress in layered metal halide perovskites for solar cells, photodetectors, and field-effect transistors. Nanoscale, 2023, 15, 4219-4235.	2.8	8
5038	A Comprehensive Analysis of Ecoâ€Friendly Cs ₂ SnI ₆ Based Tin Halide Perovskite Solar Cell through Device Modeling. Advanced Theory and Simulations, 2023, 6, .	1.3	11
5039	Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in Optoelectronic Devices. Nanomaterials, 2023, 13, 419.	1.9	5
5040	Thermalâ€Induced Ceriumâ€Doped Perovskite Solar Cells with a Fill Factor Exceeding 81%. Solar Rrl, 2023, 7, .	3.1	5
5041	Distributed Feedback Lasers by Thermal Nanoimprint of Perovskites Using Gelatin Gratings. ACS Applied Materials & Interfaces, 2023, 15, 8436-8445.	4.0	6
5042	The effect of temperature and distance of hot airflow on the quality of MAPbCl3 thin films grown by sol–gel deposition. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
5043	Recent advances in the development of flexible dye-sensitized solar cells: fabrication, challenges and applications-a review. Flexible and Printed Electronics, 2023, 8, 013001.	1.5	7
5044	The Influence of Different Recombination Pathways on Hysteresis in Perovskite Solar Cells with Ion Migration. Inorganics, 2023, 11, 52.	1.2	0
5045	Tailoring Multifunctional Selfâ€Assembled Hole Transporting Molecules for Highly Efficient and Stable Inverted Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	17
5046	Halide-based perovskites in photonics: From photocatalysts to highly efficient optoelectronic devices. , 2023, , 547-600.		1
5047	Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies. Advanced Devices & Instrumentation, 2023, 4, .	4.0	9
5048	Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices. Nano-Micro Letters, 2023, 15, .	14.4	34
5049	Doping Strategies for Promising Organic–Inorganic Halide Perovskites. Small, 2023, 19, .	5.2	8
5050	Dragon Mimic Shape Facilitate Ultrahighâ€Performance Flexible Allâ€Perovskite Tandem Solar Cells. Solar Rrl, 2023, 7, .	3.1	1
5051	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi>C</mml:mi><mml:mi>s</mml:mi><td>w><mml:r< td=""><td>nn>2</td></mml:r<></td></mml:mrow></mml:msub></mml:mrow></mml:math>	w> <mml:r< td=""><td>nn>2</td></mml:r<>	nn>2

ARTICLE IF CITATIONS Elucidating the Structureâ€"Property Relationship and Ultrafast Exciton/Charge Carrier Dynamics of Layered Cs₄CuSb₂Cl₁₂Double-Perovskite Microcrystals. Journal 5052 1.5 4 of Physical Chemistry C, 2023, 127, 1881-1890. Structural effects on halide perovskite properties., 2023, , 57-89. 5054 Other applications of halide perovskites., 2023, , 301-333. 1 Perovskite and organic bulk heterojunction integrated solar cells: a mini review. Journal of the 5056 0.3 Korean Physical Society, 2023, 82, 229-235. Polymer-based nano-inks for solar cells., 2023, , 359-388. 5057 0 Crosslinking and densification by plasma-enhanced molecular layer deposition for hermetic seal of 5058 8.2 flexible perovskite solar cells. Nano Energy, 2023, 109, 108232. Computational Study of Double Absorber layer Perovskite Solar Cell Devices., 2022,,. 5059 0 Single-particle optical study on the effect of chloride post-treatment of MAPbl₃ 2.8 5060 nano/microcrystals. Nanoscale, 2023, 15, 5437-5447. Citric acid tuned negative thermal quenching of all inorganic copper-based perovskites. RSC Advances, 5061 1.7 0 2023, 13, 5428-5436. Metal halide perovskite nanomaterials for solar energy., 2023, , 149-168. 5062 Tenability and improvement of the structural, electronic, and optical properties of lead-free CsSnCl₃perovskite by incorporating reduced graphene oxide (rGO) for optoelectronic 5063 2.7 13 applications. Journal of Materials Chemistry C, 2023, 11, 3606-3615. Mitigation of Temperature Effects and Performance Enhancement of Perovskite Solar Cells Using 5064 2.6 Nano-Pyramids Grating. IEEE Access, 2023, 11, 36399-36408. Halide perovskites and high-pressure technologies: a fruitful encounter. Materials Chemistry 5065 3.2 2 Frontiers, 2023, 7, 2102-2119. Crystal structure engineering of metal halide perovskites for photocatalytic organic synthesis. Chemical Communications, 2023, 59, 3122-3125. 5066 2.2 Numerical Simulation and Optimization of Inorganic Lead-Free Cs3Bi2I9-Based Perovskite Photovoltaic 5067 1.6 7 Cell: Impact of Various Design Parameters. Energies, 2023, 16, 2328. Benzyl Alcohol Photo-oxidation Based on Molecular Electronic Transitions in Metal Halide 5068 3.2 Perovskites. ACS Photonics, 2023, 10, 772-779. Transformations of 2D to 3D Double-Perovskite Nanoplates of Cs₂AgBiBr₆ 5069 3.22 Composition. Chemistry of Materials, 2023, 35, 1363-1372. Solar-driven integrated carbon capture and utilization: Coupling CO2 electroreduction toward CO 5070 5.1

CITATION REPORT

with capture or photovoltaic systems. Applied Energy, 2023, 334, 120649.

#	Article	IF	CITATIONS
5071	Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews, 2023, 123, 3625-3692.	23.0	9
5072	De-doping buried interface in p-i-n perovskite solar cells by utilizing compositional heterogeneity in depth. Nano Energy, 2023, 108, 108250.	8.2	6
5073	Photoexcitation of perovskite precursor solution to induce high-valent iodoplumbate species for wide bandgap perovskite solar cells with enhanced photocurrent. Scientific Reports, 2023, 13, .	1.6	3
5074	Fabrication and characterization of TiO2: ZnO thin films as electron transport material in perovskite solar cell (PSC). Physica B: Condensed Matter, 2023, 654, 414690.	1.3	5
5075	Numerical analysis of high performance perovskite solar cells with stacked ETLs/C60 using SCAPS-1D device simulator. Optical and Quantum Electronics, 2023, 55, .	1.5	2
5076	Design Principle of a Water-Dispersed Photocatalytic Perovskite through Ligand Deconstruction. ACS Energy Letters, 2023, 8, 2159-2168.	8.8	9
5077	Tuneable structural and optical properties of inorganic mixed halide perovskite nanocrystals. , 2024, 3, .		4
5078	Highly Stable Perovskite Solar Cells by Reducing Residual <scp>Waterâ€Induced</scp> Decomposition of Perovskite. Chinese Journal of Chemistry, 2023, 41, 1594-1602.	2.6	1
5079	Transition metal dichalcogenides solar cells and integration with perovskites. Nano Energy, 2023, 108, 108249.	8.2	19
5080	Inorganic antimony-based rudorffite photo-responsive electrochemical capacitor utilizing non-aqueous polyvinylpyrrolidone polymer gel electrolyte for hybrid energy harvesting and storage applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 291, 116373.	1.7	1
5081	Improving the stability and performance of hybrid perovskite solar cells based on 1D/3D mixed-dimensional structure by multiple cation doping. Optical Materials, 2023, 139, 113781.	1.7	1
5082	Enhanced performance of organic and perovskite solar cells using simple linear polyethyleneimine with reduced chemical reactivity. Synthetic Metals, 2023, 295, 117336.	2.1	3
5083	Effect of Cu doping on structural, electronic and thermoelectric properties of double perovskite Cs2NaVCl6. Computational Condensed Matter, 2023, 35, e00803.	0.9	2
5084	Structure stability and optical properties of spatial confined all-inorganic perovskites nanocrystals under gamma-ray irradiation. Journal of Luminescence, 2023, 258, 119784.	1.5	3
5085	Enhanced moisture-resistant and highly efficient perovskite solar cells via surface treatment with long-chain alkylammonium iodide. Applied Surface Science, 2023, 623, 157003.	3.1	2
5086	Self-crystallization mechanism of perovskite films for improving performance of perovskite solar cells. Materials Research Bulletin, 2023, 162, 112209.	2.7	0
5087	Synthesis, structure and optical properties of (H2DMAPA)BiBr5, (H2DMAPA)BiBr2I3, (H2DMAPA)2AgBiBr8 and (H2EP)2AgBiBr8 lead-free perovskites. Journal of Solid State Chemistry, 2023, 322, 123938.	1.4	1
5088	Neurotoxicity study of lead-based perovskite nanoparticles. Nano Today, 2023, 50, 101830.	6.2	4

#	Article	IF	CITATIONS
5089	Investigation of multifunction features of double perovskite oxide A2FeVO6 (where A = Ba, Ca). Physica B: Condensed Matter, 2023, 659, 414849.	1.3	2
5090	Structure stabilized with robust molecular cation N(CH3)4+ in high efficiency perovskite solar cells. Materials Today Chemistry, 2023, 30, 101511.	1.7	1
5091	The role of hydrophobic molecules in the optoelectronical attributes of triple-cation perovskite solar cells. Synthetic Metals, 2023, 295, 117323.	2.1	4
5092	Surface Passivation of Organic-Inorganic Hybrid Perovskites with Methylhydrazine Iodide for Enhanced Photovoltaic Device Performance. Inorganics, 2023, 11, 168.	1.2	6
5093	Solvent engineering towards scalable fabrication of high-quality perovskite films for efficient solar modules. Journal of Energy Chemistry, 2023, 80, 689-710.	7.1	16
5094	Insights into structural, elastic, mechanical, opto-electronic, and thermoelectric properties of rubidium-based fluoroperovskites RbXF3 (X = Zn, Cd, Hg). Journal of Physics and Chemistry of Solids, 2023, 178, 111357.	1.9	1
5095	Pressure-induced tuning of structure and electronic properties in lead-free hybrid halide perovskite HC(NH2)2SnI3 for photovoltaic solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 293, 116468.	1.7	2
5096	Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H ₂ O Vapor Sorption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
5097	Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H ₂ O Vapor Sorption. Angewandte Chemie, 2023, 135, .	1.6	0
5098	Maximizing Current Density in Monolithic Perovskite Silicon Tandem Solar Cells. Solar Rrl, 2023, 7, .	3.1	15
5099	Metal Ion-Incorporated Lead-Free Perovskites toward Broadband Photodetectors. ACS Applied Electronic Materials, 2023, 5, 5291-5302.	2.0	5
5100	Tuning the structural and photophysical behaviour of non-toxic CsSnCl3 using reduced graphene oxide for optoelectronic applications. , 2023, , .		1
5101	Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells. Energies, 2023, 16, 1296.	1.6	3
5102	Perovskite solar cells: Recent development and perspectives. Tehnika, 2022, 77, 667-679.	0.0	0
5103	Pure Blue Perovskites Nanocrystals in Glass: Ultrafast Laser Direct Writing and Bandgap Tuning. Laser and Photonics Reviews, 2023, 17, .	4.4	9
5104	Coherent Random Lasing in Subwavelength Quasiâ€⊋D Perovskites. Laser and Photonics Reviews, 2023, 17,	4.4	3
5105	Enhancement in Power Conversion Efficiency of Perovskite Solar Cells by Reduced Non-Radiative Recombination Using a Brij C10-Mixed PEDOT:PSS Hole Transport Layer. Polymers, 2023, 15, 772.	2.0	2
5106	Design and optimization of four-terminal mechanically stacked and optically coupled silicon/perovskite tandem solar cells with over 28% efficiency. Heliyon, 2023, 9, e13477.	1.4	6

#	Article	IF	CITATIONS
5107	Recent development in nano-phase change materials and their applications in enhancing thermal capacity of intelligent buildings: A state-of-the art review. Journal of Materials Research, 2023, 38, 1463-1487.	1.2	2
5108	Phonon dynamics in lead free perovskite (1-x)KNN-xBAN (x = 0.0–0.1): a temperature dependent raman study. Physica Scripta, 2023, 98, 035711.	1.2	0
5109	Current Understanding of Band-Edge Properties of Halide Perovskites: Urbach Tail, Rashba Splitting, and Exciton Binding Energy. Journal of Physical Chemistry Letters, 2023, 14, 1592-1603.	2.1	15
5110	Functional Layers of Inverted Flexible Perovskite Solar Cells and Effective Technologies for Device Commercialization. Small Structures, 2023, 4, .	6.9	32
5111	Investigation of High-Efficiency and Stable Carbon-Perovskite/Silicon and Carbon-Perovskite/CIGS-GeTe Tandem Solar Cells. Energies, 2023, 16, 1676.	1.6	10
5112	Structural Symmetry Impressing Carrier Dynamics of Halide Perovskite. Advanced Functional Materials, 2023, 33, .	7.8	5
5113	Recruiting Unicellular Algae for the Mass Production of Nanostructured Perovskites. Advanced Science, 2023, 10, .	5.6	1
5114	Study on low hydrostatic pressure-dependent optoelectronic, mechanical, and anisotropic properties of heavy thallium perovskites TIPbX3 (X = Cl, Br). Journal of Materials Research, 2023, 38, 2007-2017.	1.2	4
5115	The effects of cation and halide anion on the stability, electronic and optical properties of double perovskite Cs2NaMX6 (MÂ=ÂIn, Tl, Sb, bi; X Â=ÂCl, Br, I). Computational Materials Science, 2023, 220, 112058.	1.4	13
5116	Crossover from strong to weak exciton confinement in thickness-controlled epitaxial PbI ₂ thin films. Applied Physics Letters, 2023, 122, 073101.	1.5	0
5117	Boosting the stability and growth of methylammonium lead bromide perovskites film doped with FA for solar cells. Optical Materials, 2023, 137, 113563.	1.7	9
5118	Design Perspective, Fabrication, and Performance Analysis of Formamidinium Tin Halide Perovskite Solar Cell. IEEE Journal of Photovoltaics, 2023, 13, 404-410.	1.5	7
5119	Theoretical Study of Bromide Mixed-RbPbI3 Towards Optoelectronic Applications. Journal of Electronic Materials, 2023, 52, 3146-3155.	1.0	1
5120	Narrowband Near-Infrared Photodetectors Based on Dye-Doped Perovskites. ACS Applied Electronic Materials, 2023, 5, 1628-1635.	2.0	1
5121	Structure and optical properties of Nd-substituted nanocrystalline Ba4Ce2Hf2O11 photocatalysts. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
5122	High-performance lead-free perovskite solar cell: a theoretical study. Emerging Materials Research, 2023, 12, 92-99.	0.4	2
5123	Rapid Interlayer Charge Separation and Extended Carrier Lifetimes due to Spontaneous Symmetry Breaking in Organic and Mixed Organic–Inorganic Dion–Jacobson Perovskites. Journal of the American Chemical Society, 2023, 145, 5297-5309.	6.6	24
5124	Surface Photovoltage Study of Metal Halide Perovskites Deposited Directly on Crystalline Silicon. ACS Omega, 2023, 8, 8125-8133.	1.6	1

#	Article	IF	CITATIONS
5125	Facet Engineering for Decelerated Carrier Cooling in Polyhedral Perovskite Nanocrystals. Nano Letters, 2023, 23, 1946-1953.	4.5	6
5126	Quantum dots assembled from an aziridinium based hybrid perovskite displaying tunable luminescence. Chemical Communications, 2023, 59, 3566-3569.	2.2	7
5127	Nanoscale Thermal Strain Engineering-Driven Ferroelastic Domain Evolution in CH ₃ NH ₃ PbI ₃ Perovskites. ACS Applied Materials & Interfaces, 2023, 15, 12502-12510.	4.0	2
5128	Reversible Growth of Halide Perovskites via Lead Oxide Hydroxide Nitrates Anchored Zeolitic Imidazolate Frameworks for Information Encryption and Decryption. ACS Nano, 2023, 17, 4483-4494.	7.3	5
5129	Effect of bromide incorporation on the electronic & photovoltaic properties of Sn-based perovskite devices: A multiscale investigation utilizing first principles approach and numerical simulation, aided by machine learning models. Solar Energy, 2023, 253, 375-388.	2.9	2
5130	Performance analysis of a novel PV/T hybrid system based on spectral beam splitting. Renewable Energy, 2023, 207, 398-406.	4.3	8
5131	Amorphous non-doped and Se-, Cu-, and Zn-doped Sb2S3 nanoparticles prepared by a hot-injection method: bandgap tuning and possible observation of the quantum size effect. Journal of Nanoparticle Research, 2023, 25, .	0.8	1
5132	Phenethylammonium bromide addition for high luminance and efficiency perovskite light-emitting diodes. , 2023, , .		0
5133	Native point defects in antiperovskite Ba ₃ SbN: a promising semiconductor for photovoltaics. Physical Chemistry Chemical Physics, 2023, 25, 9800-9806.	1.3	2
5134	Observation of Enhanced Generation of a Fifth Harmonic from Halide Perovskite Nonlocal Metasurfaces. ACS Photonics, 2023, 10, 1367-1375.	3.2	4
5135	Enabling Perovskite Solar Cell Omnidirectional Light Utilizing Via Trapping Technology. Advanced Theory and Simulations, 2023, 6, .	1.3	1
5136	Synergistic Crystallization Modulation and Defects passivation via Additive Engineering Stabilize Perovskite Films for Efficient Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	15
5138	Microscopic theory of Raman scattering for the rotational organic cation in metal halide perovskites. Physical Review B, 2023, 107, .	1.1	4
5139	Highly efficient and stable blue photoluminescence from environmental-friendly double perovskites. Applied Physics Letters, 2023, 122, .	1.5	2
5140	Substitution of Ethylammonium Halides Enabling Lead-Free Tin-Based Perovskite Solar Cells with Enhanced Efficiency and Stability. ACS Applied Materials & Interfaces, 2023, 15, 15775-15784.	4.0	8
5141	Analytical solutions using special trans functions theory for current–voltage expressions of perovskite solar cells and their approximate equivalent circuits. Ain Shams Engineering Journal, 2023, 14, 102225.	3.5	3
5142	Preparation and promising optoelectronic applications of lead halide perovskite patterned structures: A review. , 2023, 5, .		6
5143	Inverted Perovskite Solar Cells with >85% Fill Factor via Sequential Interfacial Engineering. Solar Rrl, 2023, 7,	3.1	3

#	Article	IF	CITATIONS
5144	Leadâ€Free Cesium Thulium Halide Perovskite Microcrystals for Near Ultraviolet Luminescence. Small, 2023, 19, .	5.2	3
5145	State-of-the-art of polymer/nanowall nanocomposite: fundamental—to—leading-edge application. Polymer-Plastics Technology and Materials, 2022, 61, 665-681.	0.6	1
5146	Simulation study of CsPblxBr1-x and MAPbl3 heterojunction solar cell using SCAPS-1D. Solar Energy, 2023, 254, 137-157.	2.9	13
5147	Innovative Approaches to Semi-Transparent Perovskite Solar Cells. Nanomaterials, 2023, 13, 1084.	1.9	7
5148	Formate additive for efficient and stable methylammoniumâ€free perovskite solar cells by gasâ€quenching. Chemistry - A European Journal, 0, , .	1.7	0
5149	Nanostructured Ruddlesden–Popper-Layered Lead Bromide Perovskites with Stable and Selected Wavelength for Photodetection Applications. ACS Applied Nano Materials, 2023, 6, 5187-5199.	2.4	5
5150	Lowâ€Threshold, Externalâ€Cavityâ€Free Flexible Perovskite Lasers. Advanced Functional Materials, 2023, 33,	7.8	2
5151	Modeling the Electronic and Optical Properties of Lead-Based Perovskite Materials: Insights from Density Functional Theory and Electrostatic Embedding. Journal of Physical Chemistry C, 2023, 127, 5968-5981.	1.5	5
5152	Tailoring Molecularâ€6cale Contact at the Perovskite/Polymeric Holeâ€Transporting Material Interface for Efficient Solar Cells. Advanced Materials, 2023, 35, .	11.1	4
5153	Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Advanced Functional Materials, 2023, 33, .	7.8	12
5154	Development of Software for the Analysis of the Current–Voltage Characteristics of Perovskite Solar Cells based on One- and Two-Diode Models. Applied Solar Energy (English Translation of) Tj ETQq0 0 0 rgBT	/ @v ⊉rlock	1 0 Tf 50 33
5155	The influence of spin state of the Cr ions on the structural and magnetic behavior of orthorhombic LaFe1â^'xCrxO3 Perovskites (0.0 <x<0.5). 2023,<br="" electronics,="" in="" journal="" materials="" of="" science:="">34, .</x<0.5).>	1.1	3
5156	A novel natural scaffold layer improving efficiency, stability and reproducibility of Perovskite solar cells. Scientific Reports, 2023, 13, .	1.6	2
5157	Tailored Cysteineâ€Derived Molecular Structures toward Efficient and Stable Inorganic Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	25
5158	Re-emerging photo responsiveness enhancement under compression in (NH4)2SeBr6. Applied Physics Letters, 2023, 122, .	1.5	3
5159	Machine Learning for Halide Perovskite Materials ABX3 (B = Pb, X = I, Br, Cl) Assessment of Structural Properties and Band Gap Engineering for Solar Energy. Materials, 2023, 16, 2657.	1.3	4
5160	Large‣cale, Uniformâ€Patterned CsCu ₂ 1 ₃ Films for Flexible Solarâ€Blind Photodetectors Array with Ultraweak Light Sensing. Small, 2023, 19, .	5.2	8
5161	High performance flexible Sn-Pb mixed perovskite solar cells enabled by a crosslinking additive. Npj Flexible Electronics, 2023, 7, .	5.1	6

#	Article	IF	CITATIONS
5162	Ab initio study of fundamental properties of ACdX3 (A = K, Rb, Cs; and X = F, Cl, Br) halide perovskite compounds. Emergent Materials, 2023, 6, 1009-1025.	3.2	2
5164	Modeling and Quantifying Optimal Dynamics of Extraction of Charge Carriers in the Operation of Perovskite Solar Cells. Advanced Materials Interfaces, 2023, 10, .	1.9	0
5165	Enhancing Photovoltaic Performance of Hybrid Perovskite Solar Cells Utilizing GaP Nanowires. ACS Applied Energy Materials, 2023, 6, 3696-3704.	2.5	0
5166	Myth behind Metastable and Stable <i>n</i> -Hexylammonium Bromide-Based Low-Dimensional Perovskites. Journal of the American Chemical Society, 2023, 145, 8209-8217.	6.6	8
5167	Thermally driven phase transition of halide perovskites revealed by big data-powered <i>in situ</i> electron microscopy. Journal of Chemical Physics, 2023, 158, 134705.	1.2	1
5168	The effect of permanent electric dipoles on the stability and photoelectric properties of MAPbl ₃ films. Journal of Materials Chemistry C, 2023, 11, 5806-5814.	2.7	2
5169	CaTiO3 perovskite synthetized by chemical route at low temperatures for application as a photocatalyst for the degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	3
5170	Light Soaking Effects in Perovskite Solar Cells: Mechanism, Impacts, and Elimination. ACS Applied Energy Materials, 2023, 6, 10303-10318.	2.5	5
5171	Investigation of MoSâ,,/Perovskite/WSeâ,, on Si Tandem Structure of Solar Cell. , 2022, , .		0
5172	Spectral Fingerprint of Quantum Confinement in Single CsPbBr ₃ Nanocrystals. Nano Letters, 2023, 23, 3607-3613.	4.5	6
5173	Halideâ€InitiatedÂStructural Regulation in Amidinoâ€Based Lowâ€Dimensional Perovskite/Perovskitoid and Their Application for Crystal Xâ€Ray Detectors. Advanced Optical Materials, 2023, 11, .	3.6	1
5174	Perovskite Materials for Photovoltaics: A Review. EPJ Applied Physics, 0, , .	0.3	0
5175	Insights into the replacement of FA by Cs in FAPbI3â^'xClx thin film fabricated in atmospheric conditions: Inspection of solar cell and photocatalytic performances. Journal of Alloys and Compounds, 2023, 953, 169930.	2.8	1
5176	Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. , 2023, , 27-60.		0
5177	Lead-free Metal Halide Perovskites for Solar Energy. , 2023, , 189-222.		0
5178	Numerical Analysis in DFT and SCAPS-1D on the Influence of Different Charge Transport Layers of CsPbBr ₃ Perovskite Solar Cells. Energy & Fuels, 2023, 37, 6078-6098.	2.5	61
5179	Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP. Energies, 2023, 16, 3289.	1.6	1
5180	Zero-dimensional cadmium-based metal halide with near-unity photoluminescence quantum efficiency. Materials Chemistry Frontiers, 0, , .	3.2	1

#	Article	IF	CITATIONS
5181	Prospects for Tin-Containing Halide Perovskite Photovoltaics. , 2023, 1, 69-82.		8
5182	Binary hole transport layer enables stable perovskite solar cells with PCE exceeding 24%. , 2023, 1, 100004.		9
5183	Recent Progress of Film Fabrication Process for Carbon-Based All-Inorganic Perovskite Solar Cells. Crystals, 2023, 13, 679.	1.0	6
5184	Origin of the bias instability in CsPbI3 light-emitting diodes. Applied Surface Science, 2023, 626, 157289.	3.1	3
5185	Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	8
5186	Influences of Mn ²⁺ /Eu ³⁺ dopants on the microstructures and optical properties of glass-embedded CsPbBr ₃ quantum dots. Optical Materials Express, 2023, 13, 1488.	1.6	2
5187	Recent Trends in Sustainable Solar Energy Conversion Technologies: Mechanisms, Prospects, and Challenges. Energy & Fuels, 2023, 37, 6283-6301.	2.5	11
5188	CsPbBr ₃ Perovskite Nanoparticles causes Colitisâ€Like Symptom via Promoting Intestinal Barrier Damage and Gut Microbiota Dysbiosis. Small, 2023, 19, .	5.2	2
5189	Understanding the impact of surface roughness: changing from FTO to ITO to PEN/ITO for flexible perovskite solar cells. Scientific Reports, 2023, 13, .	1.6	7
5190	Dodecahedron CsPbBr ₃ Perovskite Nanocrystals Enable Facile Harvesting of Hot Electrons and Holes. Journal of Physical Chemistry Letters, 2023, 14, 3953-3960.	2.1	2
5191	Highâ€Quality Lead Acetate–Based Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Solar Rrl, 2023, 7, .	3.1	1
5192	Single-Crystal Halide Perovskites for Transistor Applications. , 2023, , 265-296.		0
5193	Advances in Organometallic Perovskites Enabled Radiation Detection Technologies. , 2023, , 111-140.		0
5194	Systematic investigation of the impact of kesterite and zinc based charge transport layers on the device performance and optoelectronic properties of ecofriendly tin (Sn) based perovskite solar cells. Solar Energy, 2023, 257, 58-87.	2.9	14
5206	Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. Materials Horizons, 2023, 10, 2343-2372.	6.4	7
5207	Surface Passivation of FAPbI ₃ -Rich Perovskite with Cesium Iodide Outperforms Bulk Incorporation. ACS Energy Letters, 2023, 8, 2456-2462.	8.8	14
5217	Effect of Electron Transport Layer on Tin based Perovskite Solar Cells. , 2023, , .		0
5225	Towards cost-efficient and stable perovskite solar cells and modules: utilization of self-assembled monolayers. Materials Chemistry Frontiers, 2023, 7, 3958-3985.	3.2	8

		CITATION REPORT		
#	Article	IF	CITATIONS	
5231	The role of artificial intelligence in solar harvesting, storage, and conversion. , 2023, , 293-318.		1	
5232	Synthesis and characterization of perovskite-based QDs, 1D, 2D, and hierarchical nanomaterials. , 20 , 175-199.	023,	0	
5233	Perovskite-based LEDs and lasers. , 2023, , 519-548.		0	
5244	Progress of Photocapacitors. Chemical Reviews, 2023, 123, 9327-9355.	23.0	11	
5281	Halide perovskites: Properties, synthesis, and applications. , 2024, , 659-678.		0	
5289	Photovoltaic Performance of FAPbl ₃ Perovskite Is Hampered by Intrinsic Quantum Confinement. ACS Energy Letters, 2023, 8, 2543-2551.	8.8	2	
5290	A perspective on photoelectrochemical storage materials for coupled solar batteries. Energy and Environmental Science, 2023, 16, 2432-2447.	15.6	12	
5297	A Comprehensive Review of Tandem Solar Cells Integrated on Silicon Substrate: III/V vs Perovskite. Silicon, 2023, 15, 6329-6347.	1.8	5	
5319	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	23.0	21	
5328	Tailoring passivators for highly efficient and stable perovskite solar cells. Nature Reviews Chemistry, 2023, 7, 632-652.	13.8	36	
5340	Circular economy for perovskite solar cells – drivers, progress and challenges. Energy and Environmental Science, 2023, 16, 3711-3733.	15.6	4	
5348	From LEDs to lasing by electrical injection, this is possible for lead halide perovskites?. , 2023, , 183-	199.	О	
5349	Lead halide perovskite-based whispering gallery mode (WGM) lasers. , 2023, , 257-289.		0	
5350	Perovskite nonlinear optical properties and photonics. , 2023, , 323-370.		Ο	
5351	Light-emitting field-effect transistors (LET) based on metal halide perovskites. , 2023, , 201-218.		0	
5354	Recent advances in electrode interface modifications in perovskite solar cells. Materials Chemistry Frontiers, 0, , .	3.2	0	
5362	Design of perovskite light-emitting diodes based on FAPbBr3 nanocrystals synthesized by ultrasonic crushing method. , 2023, , .		0	
5365	Impact of Bi doping on the structural and optical properties of the lead-free double perovskites (Cs2SnCl6:Bi3+) for optoelectronic applications. , 2023, , .		0	

#	Article	IF	CITATIONS
5367	2D modeling of perovskite/Si tandem solar cell. , 2023, , .		0
5369	Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: a cost-effective technique to improve the structural and optical properties for optoelectronic device applications. , 2023, , .		0
5376	Design considerations for the bottom cell in perovskite/silicon tandems: a terawatt scalability perspective. Energy and Environmental Science, 2023, 16, 4164-4190.	15.6	1
5382	Indoor Organic Solar Cell for Low-power IoT Devices: Recent Progress, Challenges, and Application. Journal of Materials Chemistry C, O, , .	2.7	0
5386	Progress and Challenges Toward Effective Flexible Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	6
5397	Solvent-free room-temperature synthesis of brightly luminescent [BMPyr] ₂ [SnCl ₄]. Chemical Communications, 2023, 59, 11113-11116.	2.2	0
5398	Perovskite material-based memristors for applications in information processing and artificial intelligence. Journal of Materials Chemistry C, 2023, 11, 13167-13188.	2.7	4
5400	Incorporation of functional polymers into metal halide perovskite thin-films: from interactions in solution to crystallization. Materials Advances, 2023, 4, 4294-4316.	2.6	1
5401	Rational design and recent advancements of addictives engineering in ASnl ₃ tin-based perovskite solar cells: insights from experiments and computational. Sustainable Energy and Fuels, 2023, 7, 5198-5223.	2.5	0
5433	Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. Journal of Materials Chemistry A, 2023, 11, 22656-22687.	5.2	4
5436	Application of Carbonaceous Quantum Dots in Solar Cells. , 2023, , 94-109.		0
5467	Vapor transport deposition of metal-halide perovskites solar cells. , 2023, , .		0
5472	Electrochemical and Structural Properties of Organic Carbon Based Counter Electrode (CE) for DSSCs. , 2023, , .		0
5478	Two dimensional perovskites. Semiconductors and Semimetals, 2023, , .	0.4	0
5499	Chemical pressure-induced Pt ^{III} –I Mott–Hubbard nanowire, [Pt(en) ₂ I](Asp-C _{<i>n</i>}) ₂ ·H ₂ O (13 ≤i>n), detected <i>via</i> polarized infrared spectroscopy. Chemical Communications, 2023, 59, 14118-14121.	2.2	0
5506	Advanced Perovskite Solar Cells. Advances in Material Research and Technology, 2024, , 113-135.	0.3	0
5529	Self-assembled monolayers as hole-transporting materials for inverted perovskite solar cells. Molecular Systems Design and Engineering, 2023, 8, 1440-1455.	1.7	0
5536	Unlocking the Potential of Perovskite Solar Cells: Enhancing Efficiency Through Acceptor Density Optimization. , 2023, , .		0

#	Article	IF	CITATIONS
5542	Investigation of photovoltaic properties of organic perovskite solar cell (OPSCS) using Pbi2/CH3NH3I/Tio2:FTO. AIP Conference Proceedings, 2023, , .	0.3	0
5547	Reinforcing built-in electric field to enable efficient carrier extraction for high-performance perovskite solar cells. Materials Chemistry Frontiers, 2024, 8, 956-985.	3.2	0
5551	A review on conventional perovskite solar cells with organic dopant-free hole transport materials: roles of chemical structure and interfacial materials in efficient devices. Journal of Materials Chemistry C, O, , .	2.7	0
5553	Recent progress in monolithic two-terminal perovskite-based triple-junction solar cells. Energy and Environmental Science, 2024, 17, 1781-1818.	15.6	0
5565	Steric hindrance driven passivating cations for stable perovskite solar cells with an efficiency over 24%. Journal of Materials Chemistry A, 0, , .	5.2	0
5572	High-performance artificial leaf: from electrocatalyst design to solar-to-chemical conversion. Materials Chemistry Frontiers, 2024, 8, 1300-1333.	3.2	0
5591	Modeling of Perovskite/Si Tandem Solar Cell. , 2023, , .		0
5609	Review on Characteristics, Scalable Fabrication, Advancing Strategies, and Recent Enhancements in High-Performance Perovskite Photovoltaic Cells. , 2024, , .		0
5614	Enhancing the Performance of Perovskite Solar Cells Through Antioxidant Incorporation. , 2023, , .		0
5615	An Overview of Solar Cell Technologies Toward the Next-Generation Agrivoltaics. Green Energy and Technology, 2024, , 69-129.	0.4	0
5616	Enhancing Photovoltaic Efficiency in CsSnI ₃ -Based Perovskite Solar Cells through Optimal Defect Density. , 2023, , .		0
5617	Unlocking Solar Potential: Maximizing Efficiency through Donor Density Variations in MAPbl ₃ Perovskite Solar Cells. , 2023, , .		0
5626	Enhancing the inherent stability of perovskite solar cells through chalcogenide-halide combinations. Energy and Environmental Science, 2024, 17, 1368-1386.	15.6	0
5627	An Overview of Dye-Sensitized Solar Cells. , 2024, , .		0
5636	Green Solar Harvesting Materials. , 2024, , .		0
5642	Two-dimensional complex metal halides: influence of restricted dimensionality on functional properties. Journal of Materials Chemistry A, 2024, 12, 5055-5079.	5.2	0
5643	A review on challenges and opportunities in perovskite solar cells. AIP Conference Proceedings, 2024,	0.3	0
5645	Potential-induced degradation: a challenge in the commercialization of perovskite solar cells. Energy and Environmental Science, 2024, 17, 1819-1853.	15.6	0
#	Article	IF	CITATIONS
------	---	-----	-----------
5673	Performance Optimization of Perovskite Based Solar Cells Without and With Different ETM/HTM Layers. , 2023, , .		0
5695	Computational Approaches to Optimizing Perovskite Solar Cell Performance. , 2023, , .		0
5712	Relaxation Dynamics of Free Carriers. Graduate Texts in Physics, 2024, , 121-162.	0.1	0