Multiplex Lateral Flow Immunoassay for Mycotoxin De

Analytical Chemistry 86, 4995-5001 DOI: 10.1021/ac500540z

Citation Report

#	Article	IF	CITATIONS
2	Miniaturized Paper-Based Gene Sensor for Rapid and Sensitive Identification of Contagious Plant Virus. ACS Applied Materials & Interfaces, 2014, 6, 22577-22584.	4.0	31
3	Simultaneous Detection of Ochratoxin A and Fumonisin B1 in Cereal Samples Using an Aptamer–Photonic Crystal Encoded Suspension Array. Analytical Chemistry, 2014, 86, 11797-11802.	3.2	78
4	Low-Cost and Highly Sensitive Immunosensing Platform for Aflatoxins Using One-Step Competitive Displacement Reaction Mode and Portable Glucometer-Based Detection. Analytical Chemistry, 2014, 86, 11451-11458.	3.2	128
5	Nanogold-signalized Lateral-flow Strip for Visual Detection of Lead Ion Based on Cleavage of Metal-ion-induced DNAzyme. Chemistry Letters, 2014, 43, 1643-1644.	0.7	5
6	Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 2015, 73, 47-63.	5.3	472
7	Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 16209-16215.	6.6	350
8	Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A. Biosensors and Bioelectronics, 2015, 68, 783-790.	5.3	92
9	Application of Nanoparticle Probe-based Lateral Flow Immunochromatographic Assay in Mycotoxins Detection. Chinese Journal of Analytical Chemistry, 2015, 43, 618-628.	0.9	16
10	Detection of aflatoxin B1 with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers. Talanta, 2015, 142, 206-212.	2.9	109
11	Rapid screening of aflatoxin B1 in beer by fluorescence polarization immunoassay. Talanta, 2015, 142, 170-175.	2.9	35
12	Developments in mycotoxin analysis: an update for 2013-2014. World Mycotoxin Journal, 2015, 8, 5-35.	0.8	38
13	Analytical methods for determination of mycotoxins: An update (2009–2014). Analytica Chimica Acta, 2015, 901, 12-33.	2.6	190
14	Designs, formats and applications of lateral flow assay: A literature review. Journal of Saudi Chemical Society, 2015, 19, 689-705.	2.4	545
15	Simultaneous Raising of Rabbit Monoclonal Antibodies to Fluoroquinolones with Diverse Recognition Functionalities via Single Mixture Immunization. Analytical Chemistry, 2016, 88, 1246-1252.	3.2	23
16	Smart material platforms for miniaturized devices: implications in disease models and diagnostics. Lab on A Chip, 2016, 16, 1978-1992.	3.1	26
17	A sensitive and semi-quantitative method for determination of multi-drug residues in animal body fluids using multiplex dipstick immunoassay. Analytica Chimica Acta, 2016, 927, 64-71.	2.6	30
18	Ultrasensitive low-background multiplex mycotoxin chemiluminescence immunoassay by silica-hydrogel photonic crystal microsphere suspension arrays in cereal samples. Sensors and Actuators B: Chemical, 2016, 232, 577-584.	4.0	45
19	An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators. Nanoscale, 2016, 8, 9791-9797.	2.8	88

	Сітатіс	on Report	
#	Article	IF	CITATIONS
20	Paper-based biodetection using luminescent nanoparticles. Analyst, The, 2016, 141, 2838-2860.	1.7	45
21	Size-dependent modulation of graphene oxide–aptamer interactions for an amplified fluorescence-based detection of aflatoxin B ₁ with a tunable dynamic range. Analyst, The, 2016, 141, 4029-4034.	1.7	73
22	Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chemistry, 2016, 213, 478-484.	4.2	104
23	Two-Color Lateral Flow Assay for Multiplex Detection of Causative Agents Behind Acute Febrile Illnesses. Analytical Chemistry, 2016, 88, 8359-8363.	3.2	78
24	Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins. Analytica Chimica Acta, 2016, 938, 137-145.	2.6	44
25	Multiplexed Biosensors for Mycotoxins. Journal of AOAC INTERNATIONAL, 2016, 99, 849-860.	0.7	18
26	A dual-readout chemiluminescent-gold lateral flow test for multiplex and ultrasensitive detection of disease biomarkers in real samples. Nanoscale, 2016, 8, 15205-15212.	2.8	93
27	Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale, 2016, 8, 11418-11425.	2.8	235
28	Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst, The, 2016, 141, 1307-1318.	1.7	66
29	Effect of the tip length of multi-branched AuNFs on the detection performance of immunochromatographic assays. Analytical Methods, 2016, 8, 3316-3324.	1.3	36
30	Advancements of molecularly imprinted polymers in the food safety field. Analyst, The, 2016, 141, 3540-3553.	1.7	70
31	A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale, 2016, 8, 5245-5253.	2.8	160
32	Nanoparticle-based immunosensors and immunoassays for aflatoxins. Analytica Chimica Acta, 2016, 912, 10-23.	2.6	125
33	Development of an immunochromatographic strip for the semi-quantitative and quantitative detection of biotin in milk and milk products. Analytical Methods, 2016, 8, 1595-1601.	1.3	17
34	Mycotoxins in wheat flour and intake assessment in Shandong province of China. Food Additives and Contaminants: Part B Surveillance, 2016, 9, 170-175.	1.3	33
35	Mycotoxin detection. Current Opinion in Biotechnology, 2016, 37, 120-126.	3.3	192
36	Lateral-flow technology: From visual to instrumental. TrAC - Trends in Analytical Chemistry, 2016, 79, 297-305.	5.8	202
37	Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol. Biosensors and Bioelectronics, 2016, 77, 866-870.	5.3	72

#	Article	IF	CITATIONS
38	Development of Sensitive, Rapid, and Effective Immunoassays for the Detection of Vitamin B12 in Fortified Food and Nutritional Supplements. Food Analytical Methods, 2017, 10, 10-18.	1.3	29
39	Use of Foodomics for Control of Food Processing and Assessing of Food Safety. Advances in Food and Nutrition Research, 2017, 81, 187-229.	1.5	17
40	Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays. Talanta, 2017, 165, 167-175.	2.9	64
41	Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control, 2017, 77, 1-7.	2.8	67
42	A Dual-Color Quantum Dots Encoded Frit-Based Immunoassay for Visual Detection of Aflatoxin M ₁ and Pirlimycin Residues in Milk. Journal of Agricultural and Food Chemistry, 2017, 65, 1822-1828.	2.4	25
43	A disposable aptasensing device for label-free detection of fumonisin B1 by integrating PDMS film-based micro-cell and screen-printed carbon electrode. Sensors and Actuators B: Chemical, 2017, 251, 192-199.	4.0	43
44	Household Fluorescent Lateral Flow Strip Platform for Sensitive and Quantitative Prognosis of Heart Failure Using Dual-Color Upconversion Nanoparticles. ACS Nano, 2017, 11, 6261-6270.	7.3	262
45	Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of vancomycin in raw milk and animal feed. Food and Agricultural Immunology, 2017, 28, 414-426.	0.7	51
46	Multiplexed Point-of-Care Testing – xPOCT. Trends in Biotechnology, 2017, 35, 728-742.	4.9	386
47	Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of citrinin in cereals. Food and Agricultural Immunology, 2017, 28, 754-766.	0.7	24
48	Comparative study of colloidal gold and quantum dots as labels for multiplex screening tests for multi-mycotoxin detection. Analytica Chimica Acta, 2017, 955, 48-57.	2.6	81
49	Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the simultaneous detection of avermectin and ivermectin. Food and Agricultural Immunology, 2017, 28, 439-451.	0.7	21
50	Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array. Sensors and Actuators B: Chemical, 2017, 248, 351-358.	4.0	52
51	Magnetic microspheres-based cytometric bead array assay for highly sensitive detection of ochratoxin A. Biosensors and Bioelectronics, 2017, 94, 420-428.	5.3	29
52	Development of indirect competitive ELISA and lateral-flow immunochromatographic assay strip for the detection of sterigmatocystin in cereal products. Food and Agricultural Immunology, 2017, 28, 260-273.	0.7	46
53	Application of Au based nanomaterials in analytical science. Nano Today, 2017, 12, 64-97.	6.2	68
54	Use of quantum dot beads-labeled monoclonal antibody to improve the sensitivity of a quantitative and simultaneous immunochromatographic assay for neuron specific enolase and carcinoembryonic antigen. Talanta, 2017, 164, 463-469.	2.9	61
55	Inkjet-printed barcodes for a rapid and multiplexed paper-based assay compatible with mobile devices. Lab on A Chip, 2017, 17, 3874-3882.	3.1	44

#	Article	IF	CITATIONS
56	Pt-Decorated Magnetic Nanozymes for Facile and Sensitive Point-of-Care Bioassay. ACS Applied Materials & Interfaces, 2017, 9, 35133-35140.	4.0	113
57	Multiplex Lateral Flow Immunoassays Based on Amorphous Carbon Nanoparticles for Detecting Three <i>Fusarium</i> Mycotoxins in Maize. Journal of Agricultural and Food Chemistry, 2017, 65, 8063-8071.	2.4	114
58	Time-Resolved Fluorescence Immunochromatographic Assay Developed Using Two Idiotypic Nanobodies for Rapid, Quantitative, and Simultaneous Detection of Aflatoxin and Zearalenone in Maize and Its Products. Analytical Chemistry, 2017, 89, 11520-11528.	3.2	120
59	Mass spectrometry pesticide screening with paper-based microfluidic cassette for 2D paper chromatography and electrospray ionization. , 2017, , .		1
60	Skiving stacked sheets of paper into test paper for rapid and multiplexed assay. Science Advances, 2017, 3, eaao4862.	4.7	71
61	Fluorescence quenching-based signal amplification on immunochromatography test strips for dual-mode sensing of two biomarkers of breast cancer. Nanoscale, 2017, 9, 18711-18722.	2.8	41
62	Application of magnetite nanoparticles for the development of highly sensitive immunochromatographic test systems for mycotoxin detection. Applied Biochemistry and Microbiology, 2017, 53, 470-475.	0.3	13
63	A simple method for point-of-need extraction, concentration and rapid multi-mycotoxin immunodetection in feeds using aqueous two-phase systems. Journal of Chromatography A, 2017, 1511, 15-24.	1.8	17
64	Development of a Rainbow Lateral Flow Immunoassay for the Simultaneous Detection of Four Mycotoxins. Journal of Agricultural and Food Chemistry, 2017, 65, 7121-7130.	2.4	89
65	High Throughput Detection Methods for Multiplex Mycotoxins. Toxicology: Open Access, 2017, 03, .	0.2	2
66	Near Infrared Spectrometry for Rapid Non-Invasive Modelling of Aspergillus-Contaminated Maturing Kernels of Maize (Zea mays L.). Agriculture (Switzerland), 2017, 7, 77.	1.4	12
67	Biosensors for detection mycotoxins and pathogenic bacteria in food. , 2017, , 35-92.		5
68	Precision Target Guide Strategy for Applying SERS into Environmental Monitoring. , 0, , .		3
69	Integrated paper-based detection chip with nucleic acid extraction and amplification for automatic and sensitive pathogen detection. Sensors and Actuators B: Chemical, 2018, 261, 288-296.	4.0	27
70	One-Step Core/Multishell Quantum Dots-Based Fluoroimmunoassay for Screening of Deoxynivalenol in Maize. Food Analytical Methods, 2018, 11, 2569-2578.	1.3	22
71	TiO ₂ Nanolayer-Enhanced Fluorescence for Simultaneous Multiplex Mycotoxin Detection by Aptamer Microarrays on a Porous Silicon Surface. ACS Applied Materials & Interfaces, 2018, 10, 14447-14453.	4.0	67
72	Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags. Biosensors and Bioelectronics, 2018, 106, 204-211.	5.3	248
73	Emerging Biotechnology Applications of Aqueous Twoâ€Phase Systems. Advanced Healthcare Materials, 2018, 7, e1701036.	3.9	84

#	Article	IF	CITATIONS
74	Universal simultaneous multiplex ELISA of small molecules in milk based on dual luciferases. Analytica Chimica Acta, 2018, 1001, 125-133.	2.6	42
75	Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst, The, 2018, 143, 1015-1035.	1.7	33
76	Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays. Analytical and Bioanalytical Chemistry, 2018, 410, 5353-5371.	1.9	76
77	SERS-based lateral flow assay for quantitative detection of C-reactive protein as an early bio-indicator of a radiation-induced inflammatory response in nonhuman primates. Analyst, The, 2018, 143, 2115-2121.	1.7	66
78	Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Critical Reviews in Food Science and Nutrition, 2018, 58, 1715-1734.	5.4	60
79	Dual-competitive lateral flow aptasensor for detection of aflatoxin B1 in food and feedstuffs. Journal of Hazardous Materials, 2018, 344, 249-257.	6.5	67
80	Dual-wavelength fluorescence polarization immunoassay to increase information content per screen: Applications for simultaneous detection of total aflatoxins and family zearalenones in maize. Food Control, 2018, 87, 100-108.	2.8	37
81	Time-resolved fluorescent immunochromatographic assay-based on three antibody labels for the simultaneous detection of aflatoxin B ₁ and zearalenone in Chinese herbal medicines. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 2434-2442.	1.1	28
82	Mycotoxin Contamination of Beverages Obtained from Tropical Crops. Beverages, 2018, 4, 83.	1.3	16
83	Binding-Induced DNA Dissociation Assay for Small Molecules: Sensing Aflatoxin B1. ACS Sensors, 2018, 3, 2590-2596.	4.0	29
84	A new quality control method for lateral flow assay. Chinese Chemical Letters, 2018, 29, 1853-1856.	4.8	18
85	Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sensors and Actuators B: Chemical, 2018, 270, 72-79.	4.0	124
86	A competitive immunoassay for zearalenone with integrated poly(dimethysiloxane) based microarray assay. Analytical Methods, 2018, 10, 4036-4043.	1.3	8
87	A smartphone-based quantitative detection platform of mycotoxins based on multiple-color upconversion nanoparticles. Nanoscale, 2018, 10, 15865-15874.	2.8	53
88	Lateral flow immunoassay integrated with competitive and sandwich models for the detection of aflatoxin M1 and Escherichia coli O157:H7 in milk. Journal of Dairy Science, 2018, 101, 8767-8777.	1.4	30
89	Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensors and Actuators B: Chemical, 2018, 276, 48-56.	4.0	112
90	Amino-functionalized CdSe/ZnS quantum dot-based lateral flow immunoassay for sensitive detection of aflatoxin B1. Analytical Methods, 2018, 10, 3582-3588.	1.3	17
91	Plasmonic Au–Ag Janus Nanoparticle Engineered Ratiometric Surface-Enhanced Raman Scattering Aptasensor for Ochratoxin A Detection. Analytical Chemistry, 2019, 91, 11812-11820.	3.2	140

#	Article	IF	CITATIONS
92	Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS Applied Materials & Interfaces, 2019, 11, 31283-31290.	4.0	132
93	Validation of a Biochip Chemiluminescent Immunoassay for Multi-Mycotoxins Screening in Maize (Zea) Tj ETQq1 1	0.78431 1.3	4 rgBT /Ove
94	Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chemistry, 2019, 300, 125176.	4.2	98
95	Advanced Nanoparticle-Based Biosensors for Diagnosing Foodborne Pathogens. , 2019, , 1-43.		2
96	Observation of an Emerging Charged Domain Wall at a Non-ferroelectric Heterointerface with Aberration-corrected STEM. Microscopy and Microanalysis, 2019, 25, 672-673.	0.2	0
97	A novel reactive power optimization method for distributed power system using PSO. Journal of Physics: Conference Series, 2019, 1303, 012107.	0.3	0
98	<p>Near-Infrared Light-Enhanced Protease-Conjugated Gold Nanorods As A Photothermal Antimicrobial Agent For Elimination Of Exotoxin And Biofilms</p> . International Journal of Nanomedicine, 2019, Volume 14, 8047-8058.	3.3	31
99	Development of a multiplex and sensitive lateral flow immunoassay for the diagnosis of periprosthetic joint infection. Scientific Reports, 2019, 9, 15679.	1.6	20
100	Fluorometric lateral flow immunoassay for simultaneous determination of three mycotoxins (aflatoxin B1, zearalenone and deoxynivalenol) using quantum dot microbeads. Mikrochimica Acta, 2019, 186, 748.	2.5	59
101	Occurrence, toxicity, production and detection of Fusarium mycotoxin: a review. Food Production Processing and Nutrition, 2019, 1, .	1.1	110
103	Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (II): The application in liquid chromatography with fluorescence detector for mycotoxins. Journal of Chromatography A, 2019, 1604, 460475.	1.8	18
104	Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specific antigen. Biosensors and Bioelectronics, 2019, 145, 111719.	5.3	87
105	Thin Films Sensor Devices for Mycotoxins Detection in Foods: Applications and Challenges. Chemosensors, 2019, 7, 3.	1.8	19
106	Application of quantitative structureâ€activity relationship analysis on an antibody and alternariolâ€like compounds interaction study. Journal of Molecular Recognition, 2019, 32, e2776.	1.1	2
107	The end user sensor tree: An end-user friendly sensor database. Biosensors and Bioelectronics, 2019, 130, 245-253.	5.3	28
108	Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food. Food Chemistry, 2019, 293, 41-48.	4.2	40
109	Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Analytica Chimica Acta, 2019, 1069, 1-27.	2.6	149
110	Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. TrAC - Trends in Analytical Chemistry, 2019, 114, 151-170.	5.8	51

#	Article	IF	Citations
111	Current trends in rapid tests for mycotoxins. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 800-814.	1.1	57
112	Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Analytical Chemistry, 2019, 91, 3885-3892.	3.2	200
113	Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. , 2019, ,		10
114	Simultaneous Lateral Flow Immunoassay for Multi-Class Chemical Contaminants in Maize and Peanut with One-Stop Sample Preparation. Toxins, 2019, 11, 56.	1.5	30
115	Multiplex Immunoassays. , 2019, , 177-196.		0
116	Identifying Challenges and Risks Associated with the Analysis of Major Mycotoxins in Feed and Botanicals. Journal of AOAC INTERNATIONAL, 2019, 102, 1689-1694.	0.7	1
117	Mycotoxin Testing Paradigm: Challenges and Opportunities for the Future. Journal of AOAC INTERNATIONAL, 2019, 102, 1681-1688.	0.7	3
118	Identifying Challenges and Risks Associated with the Analysis of Major Mycotoxins in Feed and Botanicals. Journal of AOAC INTERNATIONAL, 2019, 102, 1689-1694.	0.7	5
119	Recent developments of photoelectrochemical biosensors for food analysis. Journal of Materials Chemistry B, 2019, 7, 7283-7300.	2.9	72
120	A Critical Comparison between Flow-through and Lateral Flow Immunoassay Formats for Visual and Smartphone-Based Multiplex Allergen Detection. Biosensors, 2019, 9, 143.	2.3	45
121	Mycotoxin Testing Paradigm: Challenges and Opportunities for the Future. Journal of AOAC INTERNATIONAL, 2019, 102, 1681-1688.	0.7	15
122	Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sensors and Actuators B: Chemical, 2019, 283, 230-238.	4.0	73
123	Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-throughput Point-of-Need Testing. Biosensors, 2019, 9, 2.	2.3	133
124	Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Analytica Chimica Acta, 2019, 1055, 140-147.	2.6	129
125	Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry, 2019, 411, 1905-1913.	1.9	73
126	Multiplex Flow Cytometric Immunoassays for High-Throughput Screening of Multiple Mycotoxin Residues in Milk. Food Analytical Methods, 2019, 12, 877-886.	1.3	17
127	Dual-channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta, 2019, 194, 709-716.	2.9	66
128	Alarm lateral flow immunoassay for detection of the total infection caused by the five viruses. Talanta, 2019, 195, 739-744.	2.9	21

#	Article	IF	CITATIONS
129	A colorimetric paper-based sensor for toltrazuril and its metabolites in feed, chicken, and egg samples. Food Chemistry, 2019, 276, 707-713.	4.2	62
130	Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line. Talanta, 2019, 192, 288-294.	2.9	89
131	A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7. Food Chemistry, 2019, 276, 333-341.	4.2	103
132	Immunochromatographic techniques for mycotoxin analysis. , 2020, , 71-86.		2
133	Sorbent-incorporated dipstick for direct assaying of proteases. Analytical and Bioanalytical Chemistry, 2020, 412, 1385-1393.	1.9	0
134	Development of an Escherichia coli-based electrochemical biosensor for mycotoxin toxicity detection. Bioelectrochemistry, 2020, 133, 107453.	2.4	28
135	A quadruple-label time-resolved fluorescence immunochromatographic assay for simultaneous quantitative determination of three mycotoxins in grains. Analytical Methods, 2020, 12, 247-254.	1.3	18
136	Near-Infrared Lanthanide-Doped Nanoparticles for a Low Interference Lateral Flow Immunoassay Test. ACS Applied Materials & Interfaces, 2020, 12, 4358-4365.	4.0	51
137	Simultaneous Detection of Multiple β-Adrenergic Agonists with 2-Directional Lateral Flow Strip Platform. Analytical Sciences, 2020, 36, 653-657.	0.8	9
138	A Calibration Curve Implanted Enzyme-Linked Immunosorbent Assay for Simultaneously Quantitative Determination of Multiplex Mycotoxins in Cereal Samples, Soybean and Peanut. Toxins, 2020, 12, 718.	1.5	12
139	Switching from Multiplex to Multimodal Colorimetric Lateral Flow Immunosensor. Sensors, 2020, 20, 6609.	2.1	11
140	Recent Trends in Nanomaterial-Based Biosensors for Point-of-Care Testing. Frontiers in Chemistry, 2020, 8, 586702.	1.8	25
141	Synthesis of raspberry-like nanogapped Fe ₃ O ₄ @Au nanocomposites for SERS-based lateral flow detection of multiple tumor biomarkers. Journal of Materials Chemistry C, 2020, 8, 12854-12864.	2.7	49
142	Functional nanomaterials based immunological detection of aflatoxin B1: a review. World Mycotoxin Journal, 2020, 13, 151-162.	0.8	3
143	Recent Advances in Aflatoxins Detection Based on Nanomaterials. Nanomaterials, 2020, 10, 1626.	1.9	23
144	An Impedance Based Electrochemical Immunosensor for Aflatoxin B1 Monitoring in Pistachio Matrices. Chemosensors, 2020, 8, 121.	1.8	15
145	Fast Deoxynivalenol Determination in Cereals Using a White Light Reflectance Spectroscopy Immunosensor. Biosensors, 2020, 10, 154.	2.3	5
146	Analysis of multiple mycotoxins-contaminated wheat by a smart analysis platform. Analytical Biochemistry, 2020, 610, 113928.	1.1	22

#	Article	IF	CITATIONS
147	Prediction, evaluation, confirmation, and elimination of matrix effects for lateral flow test strip based rapid and on-site detection of aflatoxin B1 in tea soups. Food Chemistry, 2020, 328, 127081.	4.2	42
148	Nanoparticle-based lateral flow assays. Comprehensive Analytical Chemistry, 2020, 89, 313-359.	0.7	5
149	Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control, 2020, 117, 107331.	2.8	45
150	Preparation of monoclonal antibody against penicillic acid (PA) and its application in the immunological detection. Food Chemistry, 2020, 319, 126505.	4.2	18
151	Gold nanostars-enhanced Raman fingerprint strip for rapid detection of trace tetracycline in water samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 232, 118146.	2.0	16
152	Challenges and perspectives in the development of paper-based lateral flow assays. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	63
153	One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains. Food Control, 2020, 117, 107107.	2.8	54
154	Label-free electrochemical immunosensor based on biocompatible nanoporous Fe ₃ O ₄ and biotin–streptavidin system for sensitive detection of zearalenone. Analyst, The, 2020, 145, 1368-1375.	1.7	50
155	Simply converting color signal readout into thermal signal readout for breaking the color resolution limitation of colorimetric sensor. Sensors and Actuators B: Chemical, 2020, 309, 127707.	4.0	29
156	Development of a Flow-Free Automated Colorimetric Detection Assay Integrated with Smartphone for Zika NS1. Diagnostics, 2020, 10, 42.	1.3	26
157	Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosensors and Bioelectronics, 2020, 157, 112168.	5.3	84
158	Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods, 2020, 9, 518.	1.9	101
159	Washing-free centrifugal microchip fluorescence immunoassay for rapid and point-of-care detection of protein. Analytica Chimica Acta, 2020, 1118, 18-25.	2.6	34
160	Highly sensitive visual detection of nucleic acid based on a universal strand exchange amplification coupled with lateral flow assay strip. Talanta, 2020, 216, 120978.	2.9	19
161	Indirect Competitive Immunoassay on a Blu-ray Disc for Digitized Quantitation of Food Toxins. ACS Sensors, 2020, 5, 1239-1245.	4.0	6
162	Dual near-infrared fluorescence-based lateral flow immunosensor for the detection of zearalenone and deoxynivalenol in maize. Food Chemistry, 2021, 336, 127718.	4.2	48
163	Paper-based multiplex analytical device for simultaneous detection of Clostridioides difficile toxins and glutamate dehydrogenase. Biosensors and Bioelectronics, 2021, 176, 112894.	5.3	10
164	A novel α-Fe2O3 nanocubes-based multiplex immunochromatographic assay for simultaneous detection of deoxynivalenol and aflatoxin B1 in food samples. Food Control, 2021, 123, 107811.	2.8	26

		CITATION REPC	DRT	
#	Article	II	F	Citations
165	Paper-Based Kits for Food Analysis and Authentication. , 2021, , 249-281.			0
166	Advances in gold nanoparticles for mycotoxin analysis. Analyst, The, 2021, 146, 1793-1806.	1	.7	15
167	Single-Line Flow Assay Platform Based on Orthogonal Emissive Upconversion Nanoparticles. Analytical Chemistry, 2021, 93, 3010-3017.	3	3.2	25
168	Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detec Systematic Review. Molecules, 2021, 26, 454.	tion: A 1	7	58
169	Aptamer-Based Fluorescence Quenching Approach for Detection of Aflatoxin M1 in Milk. Frontie Chemistry, 2021, 9, 653869.	rs in 1	8	17
170	The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagr Devices. Advanced Materials, 2021, 33, e2006104.	iostic 1	1.1	24
171	Rapid, simultaneous detection of mycotoxins with smartphone recognition-based immune microspheres. Analytical and Bioanalytical Chemistry, 2021, 413, 3683-3693.	1	.9	9
172	Sensing Methodologies in Agriculture for Monitoring Biotic Stress in Plants Due to Pathogens ar Pests. Inventions, 2021, 6, 29.	d 1	.3	17
173	Recent progress in visual methods for aflatoxin detection. Critical Reviews in Food Science and Nutrition, 2022, 62, 7849-7865.	5	5. 4	10
174	AlEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B1 cyclopiazonic acid as an example. Biosensors and Bioelectronics, 2021, 182, 113188.	and 5	i.3	109
175	Simultaneous Detection of Inflammatory Biomarkers by SERS Nanotag-Based Lateral Flow Assay Portable Cloud Raman Spectrometer. Nanomaterials, 2021, 11, 1496.	with 1	.9	19
176	Polystyrene Microsphere-Based Immunochromatographic Assay for Detection of Aflatoxin B1 in Biosensors, 2021, 11, 200.	Maize. 2	2.3	8
177	The Existing Methods and Novel Approaches in Mycotoxins' Detection. Molecules, 2021, 26,	3981. 1	7	34
178	Functional Microâ€INanomaterials for Multiplexed Biodetection. Advanced Materials, 2021, 33, 6	2004734. 1	1.1	35
179	Development and validation of the one-step purification method coupled to LC-MS/MS for simultaneous determination of four aflatoxins in fermented tea. Food Chemistry, 2021, 354, 129	⁴ 97. ⁴	.2	32
180	A fluorescent and colorimetric dual-channel sensor based on acid phosphatase–triggered block internal filtration effect. Mikrochimica Acta, 2021, 188, 282.	king of 2	2.5	8
181	A Novel Multiplex Mycotoxin Surface-Enhanced Raman Spectroscopy Immunoassay Using Functi Gold Nanotags on a Silica Photonic Crystal Microsphere Biochip. Journal of Agricultural and Food Chemistry, 2021, 69, 11494-11501.	onal 2	2.4	30
182	Point of care testing of sports biomarkers: Potential applications, recent advances and future outlook. TrAC - Trends in Analytical Chemistry, 2021, 142, 116327.	5	.8	25

#	Article	IF	CITATIONS
183	Trends in Multiplex Immunoassays for In Vitro Diagnostics and Point-of-Care Testing. Diagnostics, 2021, 11, 1630.	1.3	5
184	Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations—A Review. Biosensors, 2021, 11, 316.	2.3	48
185	Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta, 2021, 233, 122540.	2.9	31
186	Simultaneous and accurate screening of multiple genetically modified organism (GMO) components in food on the same test line of SERS-integrated lateral flow strip. Food Chemistry, 2022, 366, 130595.	4.2	11
187	Rose petals-like Bi semimetal embedded on the zeolitic imidazolate frameworks based-immunochromatographic strip to sensitively detect acetamiprid. Journal of Hazardous Materials, 2022, 423, 127202.	6.5	22
188	Novel strategy to prepare fluorescent polymeric nanoparticles based on aggregation-induced emission <i>via</i> precipitation polymerization for fluorescent lateral flow assay. Materials Chemistry Frontiers, 2021, 5, 2452-2458.	3.2	25
189	Chromogenic Platform-Based Lateral Flow Immunoassay. , 2019, , 3-11.		1
190	Site-directed mutations of anti-amantadine scFv antibody by molecular dynamics simulation: prediction and validation. Journal of Molecular Modeling, 2020, 26, 49.	0.8	15
191	Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal, 2017, 15, e04718.	0.9	218
192	A Review on Lateral Flow Test Strip for Food Safety. Journal of Biosystems Engineering, 2015, 40, 277-283.	1.2	23
193	Antibody-based Sensors for the Detection of Pathogens of Potato and Barley. Food Chemistry, Function and Analysis, 2019, , 282-307.	0.1	0
194	Application of UPT-POCT in Detection of Food Safety Related Mycotoxins. , 2019, , 179-186.		0
195	Designing Appropriate Immunoassays for Food Analysis. Food Chemistry, Function and Analysis, 2019, , 46-74.	0.1	0
196	Aflatoxin and Ochratoxin A Detection: Traditional and Current Methods. , 2019, , 377-404.		0
197	The Development of a Multiparametric Immunochromatographic Test System for the Analysis of Cardiomarkers. Moscow University Chemistry Bulletin, 2019, 74, 315-321.	0.2	0
198	Quantum Dots-Based Lateral Flow Test Strip for Glutathione Detection. Methods in Molecular Biology, 2020, 2135, 249-257.	0.4	2
199	Semi-quantitative detection of inflammatory biomarkers using a laser-patterned multiplexed lateral flow device. Talanta, 2022, 237, 122944.	2.9	3
200	Multiâ€Color Au/Ag Nanoparticles for Multiplexed Lateral Flow Assay Based on Spatial Separation and Color Coâ€Localization. Advanced Functional Materials, 2022, 32, .	7.8	15

# 201	ARTICLE Organic Cation Receptor for Colorimetric Lateral Flow Device: Detection of Zearalenone in Food Samples. ACS Applied Materials & Interfaces, 2022, 14, 910-919.	IF 4.0	CITATIONS
202	Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO2@Au nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 41, 102522.	1.7	15
203	Multiple functionalities of functional nucleic acids for developing high-performance lateral flow assays. TrAC - Trends in Analytical Chemistry, 2022, 148, 116529.	5.8	7
204	Toward Safe Food Systems: Analyses of Mycotoxin Contaminants in Food and Preventive Strategies Thereof for Their Formation and Toxicity. , 0, , .		Ο
205	Development of Immunochromatographic Strip for Detection of αB-VxXXIVA-Conotoxin Based on 5E4 Monoclonal Antibody. Toxins, 2022, 14, 191.	1.5	2
206	Simultaneous Detection of Four Mycotoxins in Cereals and Edible Oils by Using a Colorimetric Protein Microarray. ACS Food Science & Technology, 2022, 2, 993-999.	1.3	4
207	Triplex Lateral Flow Immunoassay for Rapid Diagnosis of Tobacco Mosaic Virus, Tobacco Vein Banding Mosaic Virus, and Potato Virus Y. Plant Disease, 2022, 106, 3033-3039.	0.7	2
208	Sensitive and rapid determination of heat shock protein 70 using lateral flow immunostrips and upconversion nanoparticle fluorescence probes. Analyst, The, 2022, 147, 3444-3450.	1.7	3
209	The control of <i>Fusarium</i> growth and decontamination of produced mycotoxins by lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 2023, 63, 11125-11152.	5.4	12
210	Deoxynivalenol fluorescence aptasensor based on AuCu bimetallic nanoclusters and MoS2. Mikrochimica Acta, 2022, 189, .	2.5	7
211	Multiplex Lateral Flow Assay and the Sample Preparation Method for the Simultaneous Detection of Three Marine Toxins. Environmental Science & Technology, 2022, 56, 12210-12217.	4.6	12
212	Development of a Lateral Flow Strip with a Positive Readout for the On-Site Detection of Aflatoxin B1. Molecules, 2022, 27, 4949.	1.7	6
213	A Novel Lateral Flow Immunochromatographic Assay for Rapid and Simultaneous Detection of Aflatoxin B1 and Zearalenone in Food and Feed Samples Based on Highly Sensitive and Specific Monoclonal Antibodies. Toxins, 2022, 14, 615.	1.5	5
214	Using an Ultra-Compact Optical System to Improve Lateral Flow Immunoassay Results Quantitatively. SSRN Electronic Journal, 0, , .	0.4	0
215	A monoclonal antibody-based time-resolved fluorescence microsphere lateral flow immunoassay for paclobutrazol detection. Current Research in Food Science, 2022, 5, 1395-1402.	2.7	4
216	Development of a highly sensitive lateral flow strip device for nucleic acid detection using molecular beacons. Frontiers in Sensors, 0, 3, .	1.7	2
217	Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Critical Reviews in Food Science and Nutrition, 0, , 1-29.	5.4	6
218	Establishment and application of multiple immunoassays for environmental estrogens based on recombinant Japanese flounder (Paralichthys olivaceus) choriogenin protein. Talanta, 2023, 254, 124135.	2.9	2

#	Article	IF	CITATIONS
219	Chromatographic methods for rapid aflatoxin B1 analysis in food: a review. Critical Reviews in Food Science and Nutrition, 0, , 1-18.	5.4	4
220	Using an ultra-compact optical system to improve lateral flow immunoassay results quantitatively. Heliyon, 2022, 8, e12116.	1.4	2
221	Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins, 2023, 15, 85.	1.5	10
222	"Green―Extraction and On-Site Rapid Detection of Aflatoxin B1, Zearalenone and Deoxynivalenol in Corn, Rice and Peanut. Molecules, 2023, 28, 3260.	1.7	1
223	Development and application of lateral flow strip with three test lines for detection of devention devention devention of devention of devention of the strip and the strip and the strip and the strip are strip as the strip and the strip are strip as the strip as th	4.2	0