High Proton Conduction at above 100 °C Mediated by Metal–Organic Framework

Journal of the American Chemical Society 136, 12444-12449

DOI: 10.1021/ja5069855

Citation Report

#	Article	IF	CITATIONS
10	Protonâ€Conducting Magnetic Coordination Polymers. Chemistry - A European Journal, 2015, 21, 13793-13801.	1.7	38
11	Recent Developments on Alternative Proton Exchange Membranes: Strategies for Systematic Performance Improvement. Energy Technology, 2015, 3, 675-691.	1.8	80
12	Lithiumâ€Assisted Proton Conduction at 150 °C in a Microporous Triazineâ€Phenol Polymer. Advanced Materials Interfaces, 2015, 2, 1500301.	1.9	11
13	A terbium metal–organic framework with stable luminescent emission in a wide pH range that acts as a quantitative detection material for nitroaromatics. RSC Advances, 2015, 5, 48574-48579.	1.7	41
14	Lanthanide metal–organic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption. Journal of Materials Chemistry A, 2015, 3, 12777-12785.	5.2	171
15	Co–Ca Phosphonate Showing Humidity-Sensitive Single Crystal to Single Crystal Structural Transformation and Tunable Proton Conduction Properties. Chemistry of Materials, 2015, 27, 8116-8125.	3.2	137
16	Dielectric response and anhydrous proton conductivity in a chiral framework containing a non-polar molecular rotor. Dalton Transactions, 2015, 44, 20822-20825.	1.6	9
17	High Anhydrous Proton Conductivity of Imidazole-Loaded Mesoporous Polyimides over a Wide Range from Subzero to Moderate Temperature. Journal of the American Chemical Society, 2015, 137, 913-918.	6.6	238
18	Study of Proton Conductivity of a 2D Flexible MOF and a 1D Coordination Polymer at Higher Temperature. Inorganic Chemistry, 2015, 54, 1218-1222.	1.9	85
19	A proton-conducting cesium sulfonate metal organic framework. Canadian Journal of Chemistry, 2015, 93, 988-991.	0.6	12
20	Synthesis, crystal structure, and characterization of a cadmium(II) complex containing an octacarboxylate ligand. Journal of Coordination Chemistry, 2015, 68, 1926-1935.	0.8	0
21	Pure inorganic multi-color electrochromic thin films: vanadium-substituted Dawson type polyoxometalate based electrochromic thin films with tunable colors from transparent to blue and purple. Journal of Materials Chemistry C, 2015, 3, 5175-5182.	2.7	20
22	Norfloxacin-derivative functionalized octamolybdate: unusual carbonyl coordination and acidity sensitive luminescence. RSC Advances, 2015, 5, 40688-40691.	1.7	3
23	A tetranuclear copper cluster-based MOF with sulfonate–carboxylate ligands exhibiting high proton conduction properties. Chemical Communications, 2015, 51, 8150-8152.	2.2	96
24	High proton conductivity in cyanide-bridged metal–organic frameworks: understanding the role of water. Journal of Materials Chemistry A, 2015, 3, 22347-22352.	5.2	61
25	Unravelling the Proton Conduction Mechanism from Room Temperature to 553 K in a 3D Inorganic Coordination Framework. Inorganic Chemistry, 2015, 54, 10023-10029.	1.9	16
26	The Role of a Three Dimensionally Ordered Defect Sublattice on the Acidity of a Sulfonated Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 11498-11506.	6.6	178
27	New 2-methyl benzimidazole based zinc carboxylates: Supramolecular structures, biomimetic proton conductivities and luminescent properties. Inorganica Chimica Acta, 2015, 437, 167-176.	1.2	14

#	ARTICLE	IF	CITATIONS
28	Microporous La–Metal–Organic Framework (MOF) with Large Surface Area. Chemistry - A European Journal, 2015, 21, 2789-2792.	1.7	39
29	A Metal–Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection. Chemistry - A European Journal, 2016, 22, 477-480.	1.7	155
30	Tuning Proton Conductivity by Interstitial Guest Change in Sizeâ€Adjustable Nanopores of a Cu ^I â€MOF: A Potential Platform for Versatile Proton Carriers. Chemistry - A European Journal, 2016, 22, 16277-16285.	1.7	33
31	Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and its application as a sensitive luminescent sensor for Cu ²⁺ ions. Journal of Materials Chemistry A, 2016, 4, 16484-16489.	5.2	99
32	A Two-Dimensional Inorganic–Organic Hybrid Solid of Manganese(II) Hydrogenophosphate Showing High Proton Conductivity at Room Temperature. Inorganic Chemistry, 2016, 55, 8971-8975.	1.9	39
33	Significantly Dense Two-Dimensional Hydrogen-Bond Network in a Layered Zirconium Phosphate Leading to High Proton Conductivities in Both Water-Assisted Low-Temperature and Anhydrous Intermediate-Temperature Regions. Inorganic Chemistry, 2016, 55, 12508-12511.	1.9	47
34	Water assisted high proton conductance in a highly thermally stable and superior water-stable open-framework cobalt phosphate. Dalton Transactions, 2016, 45, 19466-19472.	1.6	36
35	Two new cadmium metal-organic frameworks based on a mixed-donor ligand. Chemical Research in Chinese Universities, 2016, 32, 539-544.	1.3	3
36	Two novel anionic indium–tetracarboxylate frameworks: Syntheses, structures and photoluminescent properties. Polyhedron, 2016, 117, 513-517.	1.0	5
37	Supramolecular Templating Approach for the Solvent-Free Synthesis of Open-Framework Metal Oxalates. Inorganic Chemistry, 2016, 55, 7817-7819.	1.9	32
38	Applications of water stable metal–organic frameworks. Chemical Society Reviews, 2016, 45, 5107-5134.	18.7	991
39	A "Molecular Water Pipe― A Giant Tubular Cluster {Dy ₇₂ } Exhibits Fast Proton Transport and Slow Magnetic Relaxation. Advanced Materials, 2016, 28, 10772-10779.	11.1	170
40	Hybrid Coordination Networks Constructed from É>â€Kegginâ€Type Polyoxometalates and Rigid Imidazoleâ€Based Bridging Ligands as New Carriers for Nobleâ€Metal Catalysts. Chemistry - an Asian Journal, 2016, 11, 858-867.	1.7	27
41	Robust Crystalline Hybrid Solid with Multiple Channels Showing High Anhydrous Proton Conductivity and a Wide Performance Temperature Range. Advanced Materials, 2016, 28, 1663-1667.	11.1	72
42	An Effective Strategy To Construct Novel Polyoxometalate-Based Hybrids by Deliberately Controlling Organic Ligand Transformation <i>In Situ</i> Inorganic Chemistry, 2016, 55, 6384-6393.	1.9	53
43	High Temperature Proton Conduction in Nanocellulose Membranes: Paper Fuel Cells. Chemistry of Materials, 2016, 28, 4805-4814.	3.2	134
44	Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral <i>bio</i> Chemistry of Materials, 2016, 28, 4608-4615.	3.2	105
45	Synthesis and high proton conductive performance of vanadium-substituted Dawson structure heteropoly acid H8P2W16V2O62·20H2O. Materials Letters, 2016, 181, 1-3.	1.3	9

#	ARTICLE	IF	CITATIONS
46	Waterâ€Stable Homochiral Cluster Organic Frameworks Built by Two Kinds of Large Tetrahedral Cluster Units. Chemistry - A European Journal, 2016, 22, 2611-2615.	1.7	20
47	Crystal structure of a mixed-ligand terbium(III) coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 87-91.	0.2	8
48	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	5.2	109
49	40-Fold Enhanced Intrinsic Proton Conductivity in Coordination Polymers with the Same Proton-Conducting Pathway by Tuning Metal Cation Nodes. Inorganic Chemistry, 2016, 55, 983-986.	1.9	68
50	Solvent-induced Keggin-based Cd(II)/Ni(II) complexes constructed from pyridyl-tetrazole: Assembly, structures and properties. Inorganica Chimica Acta, 2016, 443, 78-85.	1.2	7
51	Synthesis and conductive performance of indium-substituted ternary heteropoly acids with Keggin structures. Dalton Transactions, 2016, 45, 271-275.	1.6	19
52	Highly conductive and robust composite anion exchange membranes by incorporating quaternized MIL-101(Cr). Science Bulletin, 2017, 62, 266-276.	4.3	32
53	Indium-Based Heterometal–Organic Frameworks with Different Nanoscale Cages: Syntheses, Structures, and Gas Adsorption Properties. Crystal Growth and Design, 2017, 17, 1159-1165.	1.4	28
54	Highly Anisotropic and Water Molecule-Dependent Proton Conductivity in a 2D Homochiral Copper(II) Metal–Organic Framework. Chemistry of Materials, 2017, 29, 2321-2331.	3.2	77
55	Tunable white-light emission PMMA-supported film materials containing lanthanide coordination polymers: preparation, characterization, and properties. Dalton Transactions, 2017, 46, 4265-4277.	1.6	52
56	Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. Journal of the American Chemical Society, 2017, 139, 3505-3512.	6.6	283
57	Channel-Assisted Proton Conduction Behavior in Hydroxyl-Rich Lanthanide-Based Magnetic Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 4956-4965.	1.9	73
58	High temperature ionic conduction mediated by ionic liquid incorporated within the metal-organic framework UiO-67(Zr). Inorganic Chemistry Communication, 2017, 81, 1-4.	1.8	21
59	In Situ Encapsulation of Imidazolium Proton Carriers in Anionic Open Frameworks Leads the Way to Proton-Conducting Materials. European Journal of Inorganic Chemistry, 2017, 2017, 2295-2300.	1.0	10
60	A Metal–Organic Framework Impregnated with a Binary Ionic Liquid for Safe Proton Conduction above 100 °C. Chemistry - A European Journal, 2017, 23, 1248-1252.	1.7	89
61	Proton-conducting crystalline porous materials. Chemical Society Reviews, 2017, 46, 464-480.	18.7	530
62	Proton-conductive metal-organic frameworks: Recent advances and perspectives. Coordination Chemistry Reviews, 2017, 344, 54-82.	9.5	258
63	Synthesis, structure and proton conductivity of a metal–organic framework with rich hydrogen-bonds between the layers. Inorganic Chemistry Communication, 2017, 79, 37-40.	1.8	15

#	Article	IF	CITATIONS
64	Thermoresponsive Polyoxometalate/Ionic Liquid Supramolecular Gel Electrolytes for Supercapacitors: Fabrication, Structure, and Heteropolyanion Structure Effect. Langmuir, 2017, 33, 4242-4249.	1.6	31
65	Organic–inorganic hybrid three-dimensional metal sulfite-oxalates with honeycomb-like structures. Dalton Transactions, 2017, 46, 5911-5917.	1.6	11
66	An UV equipped box for photoactivation with a fluorescent coordination polymer for recognizing amine gases by "turn-color―in air. Sensors and Actuators B: Chemical, 2017, 247, 238-244.	4.0	9
67	A gas chromatographic stationary of homochiral metal-peptide framework material and its applications. Chemical Research in Chinese Universities, 2017, 33, 24-30.	1.3	19
68	Control of bulk homochirality and proton conductivity in isostructural chiral metal–organic frameworks. Chemical Communications, 2017, 53, 1892-1895.	2.2	47
69	Changes of coordination modes of Cu-based coordination complexes as tuneable proton-conducting solid electrolytes. Journal of Materials Chemistry A, 2017, 5, 1085-1093.	5.2	31
70	A novel oxalate-based three-dimensional coordination polymer showing magnetic ordering and high proton conductivity. Dalton Transactions, 2017, 46, 15130-15137.	1.6	15
71	A coordination polymer based on dinuclear (pyrazinyl tetrazolate) copper(⟨scp⟩ii⟨/scp⟩) cations and Wells–Dawson anions for high-performance supercapacitor electrodes. Dalton Transactions, 2017, 46, 13897-13902.	1.6	55
72	Inorganic Acidâ€Impregnated Covalent Organic Gels as Highâ€Performance Protonâ€Conductive Materials at Subzero Temperatures. Advanced Functional Materials, 2017, 27, 1701465.	7.8	80
73	Highly Waterâ€Stable Lanthanide–Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence. Advanced Materials, 2017, 29, 1701804.	11.1	106
74	Lanthanide Organophosphate Spiro Polymers: Synthesis, Structure, and Magnetocaloric Effect in the Gadolinium Polymer. Inorganic Chemistry, 2017, 56, 9071-9083.	1.9	24
75	Ultrahigh Ionic Conduction in Water-Stable Close-Packed Metal-Carbonate Frameworks. Inorganic Chemistry, 2017, 56, 9710-9715.	1.9	1
76	Highly tuneable proton-conducting coordination polymers derived from a sulfonate-based ligand. CrystEngComm, 2017, 19, 7050-7056.	1.3	28
77	Anisotropic Proton Conductivity Arising from Hydrogen-Bond Patterns in Anhydrous Organic Single Crystals, Imidazolium Carboxylates. Journal of Physical Chemistry C, 2018, 122, 11623-11632.	1.5	37
78	Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity. Journal of the American Chemical Society, 2018, 140, 6146-6155.	6.6	181
79	Multicomponent metal–organic framework derivatives for optimizing the selective catalytic performance of styrene epoxidation reaction. Nanoscale, 2018, 10, 8772-8778.	2.8	40
80	Coordination polymers from bent ligands or how to obtain rare topologies with simple linkers and nodes. Inorganica Chimica Acta, 2018, 474, 73-80.	1.2	8
81	Open-Framework Chalcogenide Showing Both Intrinsic Anhydrous and Water-Assisted High Proton Conductivity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2619-2627.	4.0	57

#	ARTICLE	IF	CITATIONS
82	Imidazole-doped nanocrystalline cellulose solid proton conductor: synthesis, thermal properties, and conductivity. Cellulose, 2018, 25, 281-291.	2.4	39
83	Unprecedented application of the oxazolo–containing ligand to construct a new Anderson-type polyoxometalate-based copper(II) complex: Electrocatalytic and adsorption properties. Inorganic Chemistry Communication, 2018, 88, 42-46.	1.8	7
84	Tailor-Made Pyrazolide-Based Metal–Organic Frameworks for Selective Catalysis. Journal of the American Chemical Society, 2018, 140, 6383-6390.	6.6	124
85	Achieving Amphibious Superprotonic Conductivity in a Cu ^I Metal–Organic Framework by Strategic Pyrazinium Salt Impregnation. Chemistry - A European Journal, 2018, 24, 872-880.	1.7	28
86	Luminescent metal–organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coordination Chemistry Reviews, 2018, 373, 116-147.	9.5	169
87	Exploration of new water stable proton-conducting materials in an amino acid-templated metal phosphate system. Dalton Transactions, 2018, 47, 654-658.	1.6	26
88	3D isomorphous lanthanide coordination polymers displaying magnetic refrigeration, slow magnetic relaxation and tunable proton conduction. Dalton Transactions, 2018, 47, 15405-15415.	1.6	48
89	Enhanced mechanical, thermal, and UV-shielding properties of poly(vinyl alcohol)/metal–organic framework nanocomposites. RSC Advances, 2018, 8, 38681-38688.	1.7	63
90	Composite cluster-organic frameworks based on polyoxometalates and copper/cobalt–oxygen clusters. Dalton Transactions, 2018, 47, 16408-16412.	1.6	24
91	Water stable oxalate-based coordination polymers with <i>in situ</i> generated cyclic dipeptides showing high proton conductivity. Dalton Transactions, 2018, 47, 15288-15292.	1.6	10
92	Synthesis and proton conductivity of two novel molybdate polymers. New Journal of Chemistry, 2018, 42, 16516-16522.	1.4	7
93	High Proton Mobility with High Directionality in Isolated Channels of MOF-74. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 35354-35360.	4.0	55
94	Synthesis of an ultra-stable metal–organic framework for proton conduction. CrystEngComm, 2018, 20, 3158-3161.	1.3	20
95	An ultra-stable porous coordination polymer for water-mediated proton conduction. Inorganic Chemistry Communication, 2018, 96, 153-158.	1.8	12
96	Conductive Supramolecular Architecture Constructed from Polyoxovanadate Cluster and Heterocyclic Surfactant. Crystals, 2018, 8, 57.	1.0	5
97	A Multifunctional Lanthanide Carbonate Cluster Based Metal–Organic Framework Exhibits High Proton Transport and Magnetic Entropy Change. Inorganic Chemistry, 2018, 57, 9020-9027.	1.9	47
98	Highly luminescent lanthanide complexes constructed by Bis-tridentate ligand and as sensor for Et2O. Inorganic Chemistry Communication, 2018, 95, 95-99.	1.8	6
99	Multifunctional Lanthanideâ€Based Metal–Organic Frameworks with a Polyheterotopic Ligand: Doped with Ytterbium(III) for Luminescence Enhancement and Selective Dye Adsorption. Chemistry - an Asian Journal, 2018, 13, 2126-2134.	1.7	17

#	Article	IF	CITATIONS
100	Structure variation and luminescence of 3D, 2D and 1D lanthanide coordination polymers with 1,3-adamantanediacetic acid. Inorganica Chimica Acta, 2018, 482, 340-346.	1.2	9
101	Lamellar columnar liquid-crystalline mesophases as a 2D platform for anhydrous proton conduction. Journal of Materials Chemistry C, 2019, 7, 10318-10330.	2.7	11
102	Proton Transportation Behavior in Lanthanide Tartrate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2019, 2019, 3424-3429.	1.0	5
103	Lanthanideâ€Based Layerâ€Type Twoâ€Dimensional Coordination Polymers Featuring Slow Magnetic Relaxation, Magnetocaloric Effect and Proton Conductivity. Chemistry - an Asian Journal, 2019, 14, 3702-3711.	1.7	32
104	High proton conduction in an excellent water-stable gadolinium metal–organic framework. Chemical Communications, 2019, 55, 1241-1244.	2.2	88
105	Cations mediating proton conductivity in an oxalate based microporous coordination polymer. New Journal of Chemistry, 2019, 43, 24-27.	1.4	20
106	Designed synthesis of a proton-conductive Ho-MOF with reversible dehydration and hydration. Dalton Transactions, 2019, 48, 9930-9934.	1.6	10
107	Calix[4]resorcinarene-based [Co16] coordination cages mediated by isomorphous auxiliary ligands for enhanced proton conduction. Chemical Communications, 2019, 55, 6277-6280.	2.2	31
108	Development of anion conducting zeolitic imidazolate framework bottle around ship incorporated with ionic liquids. International Journal of Hydrogen Energy, 2019, 44, 14481-14492.	3.8	25
109	Enhancement of Intrinsic Proton Conductivity and Aniline Sensitivity by Introducing Dye Molecules into the MOF Channel. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16490-16495.	4.0	65
110	Facile one-pot construction of Polyoxometalate-based lanthanide-amino acid coordination polymers for proton conduction. Inorganic Chemistry Communication, 2019, 105, 147-150.	1.8	7
111	Functionality in metal–organic framework minerals: proton conductivity, stability and potential for polymorphism. Chemical Science, 2019, 10, 4923-4929.	3.7	32
112	Strategic hierarchical improvement of superprotonic conductivity in a stable metal–organic framework system. Journal of Materials Chemistry A, 2019, 7, 25165-25171.	5.2	76
113	Vapochromic luminescent proton conductors: switchable vapochromism and proton conduction of luminescent Pt(<scp>ii</scp>) complexes with proton-exchangeable sites. Journal of Materials Chemistry C, 2019, 7, 14923-14931.	2.7	19
114	Proton Conduction in 2D Aza-Fused Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 819-825.	3.2	181
115	Metalo Hydrogenâ€Bonded Organic Frameworks (MHOFs) as New Class of Crystalline Materials for Protonic Conduction. Chemistry - A European Journal, 2019, 25, 1691-1695.	1.7	92
116	Remarkable Enhancement of Proton Conductivity by Introducing Imidazole into MOFs and Forming Composite Membranes. European Journal of Inorganic Chemistry, 2019, 2019, 794-799.	1.0	14
117	Proton conductive carboxylate-based metal–organic frameworks. Coordination Chemistry Reviews, 2020, 403, 213100.	9.5	222

#	ARTICLE	IF	CITATIONS
118	Highly Proton-Conducting Mixed Proton-Transferred [(H2PO4–)(H3PO4)]â^ž Networks Supported by 2,2′-Diaminobithiazolium in Crystals. Journal of Physical Chemistry C, 2020, 124, 1861-1871.	1.5	10
119	Experimental and theoretical validations of a one-pot sequential sensing of Hg2+ and biothiols by a 3D Cu-based zwitterionic metalâ^'organic framework. Talanta, 2020, 210, 120596.	2.9	34
120	A facile and efficient method to improve the proton conductivity of open-framework metal phosphates under aqueous condition. Inorganic Chemistry Communication, 2020, 120, 108128.	1.8	1
121	Rare-earth metal–organic frameworks: from structure to applications. Chemical Society Reviews, 2020, 49, 7949-7977.	18.7	244
122	High 3D Proton Conductivity of a 2D Zn(II) Metal–Organic Framework Synthesized via Water-Assisted Single-Crystal-to-Single-Crystal Phase Transformation. Journal of Physical Chemistry C, 2020, 124, 18901-18910.	1.5	15
123	Structural features of proton-conducting metal organic and covalent organic frameworks. CrystEngComm, 2020, 22, 6425-6443.	1.3	23
124	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467.	23.0	382
125	The 50-Fold Enhanced Proton Conductivity Brought by Aqueous-Phase Single-Crystal-to-Single-Crystal Central Metal Exchange. Inorganic Chemistry, 2020, 59, 8361-8368.	1.9	14
126	Luminescent lanthanide metal–organic framework nanoprobes: from fundamentals to bioapplications. Nanoscale, 2020, 12, 15021-15035.	2.8	65
127	A Highâ€Capacity Negative Electrode for Asymmetric Supercapacitors Based on a PMo ₁₂ Coordination Polymer with Novel Waterâ€Assisted Proton Channels. Small, 2020, 16, e2001626.	5.2	124
128	Anisotropic proton conduction realized by a layered vanadium selenite single crystal. Inorganic Chemistry Frontiers, 2020, 7, 1699-1703.	3.0	9
129	Conductive MOFs. EnergyChem, 2020, 2, 100029.	10.1	264
130	Metal–Organic Frameworks as a Versatile Platform for Proton Conductors. Advanced Materials, 2020, 32, e1907090.	11.1	255
131	Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. Journal of Materials Chemistry A, 2020, 8, 7474-7494.	5.2	122
132	Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Topics in Current Chemistry, 2020, 378, 27.	3.0	57
133	Supramolecular Nonâ€Helical Oneâ€Dimensional Channels and Microtubes Assembled from Enantiomers of Difluorenol. Angewandte Chemie, 2021, 133, 4025-4029.	1.6	1
134	Supramolecular Nonâ€Helical Oneâ€Dimensional Channels and Microtubes Assembled from Enantiomers of Difluorenol. Angewandte Chemie - International Edition, 2021, 60, 3979-3983.	7.2	3
135	â€~Proton escalator' PEI and phosphotungstic acid containing nanofiber membrane with remarkable proton conductivity. Inorganic Chemistry Frontiers, 2021, 8, 3149-3155.	3.0	7

#	ARTICLE	IF	Citations
136	Polyoxovanadate-surfactant hybrid layered crystals toward anhydrous proton conductors. Journal of Molecular Structure, 2021, 1226, 129355.	1.8	3
137	MOF Nanosheet Reconstructed Twoâ€Dimensional Bionic Nanochannel for Protonic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 10019-10023.	1.6	6
138	Control of Protonâ€Conductive Behavior with Nanoenvironment within Metal–Organic Materials. Small, 2021, 17, e2006189.	5.2	18
139	MOF Nanosheet Reconstructed Twoâ€Dimensional Bionic Nanochannel for Protonic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 9931-9935.	7.2	51
140	A Tellurium-Substituted Heteropolyniobate with Unique π–π Stacking and Ionic Conduction Property. Inorganic Chemistry, 2021, 60, 6162-6166.	1.9	6
141	Anhydrous Superprotonic Conductivity of a Uranyl-Based MOF from Ambient Temperature to 110 ${\hat {\sf A}}^{\sf o}$ C. , 2021, 3, 744-751.		27
142	Synthesis and conductive performance about a kind of high-proton conductor, Dawson structure heteropoly acid H6P2W16Mo2O40 â 29H2O. Functional Materials Letters, 2021, 14, 2150019.	0.7	0
143	Energy related ion transports in coordination polymers. Nano Select, 0, , .	1.9	6
144	Real-time and visual sensing devices based on pH-control assembled lanthanide-barium nano-cluster. Journal of Hazardous Materials, 2021, 413, 125291.	6.5	23
145	Lanthanideâ€Based Metalâ€Organicâ€Frameworks for Proton Conduction and Magnetic Properties. European Journal of Inorganic Chemistry, 2021, 2021, 4610-4618.	1.0	15
146	A typical solid high-protonic conductor: A kind of vanadium-substituted heteropoly acid H5PW10V2O40Å·15H2O. Materials Letters, 2021, 302, 130372.	1.3	1
147	Two highly stable inorganic–organic hybrid 3D frameworks based on Cu–Ln incorporated polyoxometalates for selective dye removal and proton conduction. CrystEngComm, 2021, 23, 2973-2981.	1.3	10
149	Synthesis and high proton conductivity of an indium-substituted Keggin-type quaternary heteropoly acid. Dalton Transactions, 2021, 50, 6793-6796.	1.6	1
150	Construction of Strandbergâ€Type Polyoxometalateâ€Based Inorganicâ€Organic Hybrid Material with Waterâ€Assisted Proton Conductivity. ChemistrySelect, 2020, 5, 5883-5888.	0.7	11
151	Water-Free Proton Conduction in Discotic Pyridylpyrazolate-based Pt(II) and Pd(II) Metallomesogens. Inorganic Chemistry, 2016, 55, 6995-7002.	1.9	15
152	Vanadium substituted Keggin-type POM-based electrochromic films showing high performance in a Li+-based neutral non-aqueous electrolyte. RSC Advances, 2016, 6, 38782-38789.	1.7	10
153	Persistent Superprotonic Conductivity in the Order of 10â^1 S·cmâ^1 Achieved Through Thermally Induced Structural Transformation of a Uranyl Coordination Polymer. CCS Chemistry, 2019, 1, 197-206.	4.6	63
154	Indium phosphate oxalates with layered structures: Solvent-free approach, hydrothermal stability, and proton conduction. Inorganic Chemistry Communication, 2021, 133, 108975.	1.8	5

#	Article	IF	CITATIONS
155	Trifluoromethyl functionalized sulfonated polytriazoles from diphenylphosphine oxide-based dialkyne via click polymerization: Effect of high content of phosphorus on the proton exchange membrane properties. European Polymer Journal, 2022, 162, 110869.	2.6	6
156	New aspects of vapochromic metal complexes: Cooperative phenomena in functions and structures. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100477.	5.6	13
157	Highly water-soluble dimeric and trimeric lanthanide carbonates with ethylenediaminetetraacetates as precursors of catalysts for the oxidative coupling reaction of methane. New Journal of Chemistry, 2022, 46, 3707-3715.	1.4	5
158	Manganese(II)-based coordination polymer as a bi-responsive luminescent sensor for highly selective detection of picric acid and CrO42â^ ion. Transition Metal Chemistry, 2022, 47, 85-92.	0.7	3
159	Proton Conductive Lanthanide-Based Metal–Organic Frameworks: Synthesis Strategies, Structural Features, and Recent Progress. Topics in Current Chemistry, 2022, 380, 9.	3.0	23
160	Multifunctional Chiral Three-Dimensional Phosphite Frameworks Showing Dielectric Anomaly and High Proton Conductivity. Frontiers in Chemistry, 2021, 9, 778687.	1.8	0
161	Hydrated metal ions as weak Brønsted acids show promoting effects on proton conduction. CrystEngComm, 2022, 24, 3886-3893.	1.3	8
162	Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances. Chemosphere, 2022, 303, 134987.	4.2	64
163	POMCPs with Novel Two Waterâ€Assisted Proton Channels Accommodated by MXenes for Asymmetric Supercapacitors. Small, 2022, 18, .	5.2	13
164	Metal–Organic Frameworks for Ion Conduction. Angewandte Chemie, 2022, 134, .	1.6	5
165	Metal–Organic Frameworks for Ion Conduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
166	Multifunctional Sulfonated Polytriazoles: Proton-Exchange Membrane Properties, Molecular Logic Gates, and Modeling of Stimuli-Responsive Behaviors. ACS Applied Polymer Materials, 2022, 4, 5583-5595.	2.0	4
167	Porous coordination polymer-based composite membranes for high-temperature polymer exchange membrane fuel cells. Matter, 2022, 5, 2031-2053.	5.0	16
168	Improvement of the Proton Conduction of Copper(II)-Mesoxalate Metal–Organic Frameworks by Strategic Selection of the Counterions. Inorganic Chemistry, 2022, 61, 11651-11666.	1.9	2
169	Two-dimensional dysprosium (III) coordination polymer: Structure, single-molecule magnetic behavior, proton conduction, and luminescence. Frontiers in Chemistry, $0,10,1$	1.8	4
170	Fabrication of high proton conducting composite membranes from amino group functionalized MOF and semi-fluorinated sulfonated poly(arylene ether sulfone)s. European Polymer Journal, 2022, 179, 111574.	2.6	3
171	A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays. Journal of the American Chemical Society, 2022, 144, 17723-17736.	6.6	21
172	Metal–Organic Frameworks and Their Composites for Environmental Applications. Advanced Science, 2022, 9, .	5.6	26

#	Article	IF	CITATIONS
173	A Heniconuclear {Mn ₂₁ } Cluster-Based Coordination Polymer with Manganese(II) Linkers Showing High Proton Conductivity. Inorganic Chemistry, 2022, 61, 16038-16044.	1.9	2
174	A Proton Conducting Cobalt(II) Spin Crossover Complex. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
175	Metal-organic framework membranes for proton exchange membrane fuel cells: A mini-review. Inorganica Chimica Acta, 2023, 546, 121304.	1.2	7
176	Sustainable Plant-Based Biopolymer Membranes for PEM Fuel Cells. International Journal of Molecular Sciences, 2022, 23, 15245.	1.8	6
177	Thermal cure-induced crosslinked polybenzimidazole containing 4,5-diazafluorene and pyridine for high-temperature proton exchange membrane. Journal of Power Sources, 2023, 567, 232972.	4.0	8