Shear-Thinning Nanocomposite Hydrogels for the Treat

ACS Nano 8, 9833-9842 DOI: 10.1021/nn503719n

Citation Report

#	Article	IF	CITATIONS
1	A Highly Elastic and Rapidly Crosslinkable Elastin‣ike Polypeptideâ€Based Hydrogel for Biomedical Applications. Advanced Functional Materials, 2015, 25, 4814-4826.	7.8	201
2	Biodegradableâ€Polymerâ€Blendâ€Based Surgical Sealant with Bodyâ€Temperatureâ€Mediated Adhesion. Advanced Materials, 2015, 27, 8056-8061.	11.1	51
3	ExÂvivo engineered immune organoids for controlled germinal centerÂreactions. Biomaterials, 2015, 63, 24-34.	5.7	108
4	Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering. Nanomedicine, 2015, 10, 1371-1374.	1.7	32
5	Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach. ACS Nano, 2015, 9, 3109-3118.	7.3	547
6	The effect of particle-scale dynamics on the macroscopic properties of disk-shaped colloid–polymer systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 585-595.	2.3	12
7	Elastomeric Cell-Laden Nanocomposite Microfibers for Engineering Complex Tissues. Cellular and Molecular Bioengineering, 2015, 8, 404-415.	1.0	23
8	Biomedical applications of cationic clay minerals. RSC Advances, 2015, 5, 29467-29481.	1.7	179
9	Twoâ€Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects. Advanced Materials, 2015, 27, 7261-7284.	11.1	665
10	Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Acta Biomaterialia, 2015, 26, 34-44.	4.1	56
11	Polymeric Nanohybrids as a New Class of Therapeutic Biotransporters. Macromolecular Chemistry and Physics, 2016, 217, 1245-1259.	1.1	17
12	Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced Materials, 2016, 28, 6052-6074.	11.1	335
13	3D Biomaterial Microarrays for Regenerative Medicine: Current Stateâ€ofâ€theâ€Art, Emerging Directions and Future Trends. Advanced Materials, 2016, 28, 771-781.	11.1	80
15	Graphene-Montmorillonite Composite Sponge for Safe and Effective Hemostasis. ACS Applied Materials & Interfaces, 2016, 8, 35071-35080.	4.0	137
16	A fluorescent, self-healing and pH sensitive hydrogel rapidly fabricated from HPAMAM and oxidized alginate with injectability. RSC Advances, 2016, 6, 34254-34260.	1.7	30
17	Engineered Nanomaterials for Infection Control and Healing Acute and Chronic Wounds. ACS Applied Materials & Interfaces, 2016, 8, 10049-10069.	4.0	206
18	Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel. Colloids and Surfaces B: Biointerfaces, 2016, 145, 562-566.	2.5	15
19	Injectable shear-thinning nanoengineered hydrogels for stem cell delivery. Nanoscale, 2016, 8, 12362-12372.	2.8	150

ARTICLE IF CITATIONS # Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering, 20 1.3 518 2016, 44, 2090-2102. Emerging Trends in Biomaterials Research. Annals of Biomedical Engineering, 2016, 44, 1861-1862. 1.3 Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for 22 5.1 34 biomedical applications. Carbohydrate Polymers, 2016, 150, 408-418. Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials. Accounts of Chemical Research, 2016, 49, 2786-2795. An injectable shear-thinning biomaterial for endovascular embolization. Science Translational 24 5.8 147 Medicine, 2016, 8, 365ra156. Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications. Bioengineering and Translational Medicine, 2016, 1, 297-305. Combination of gelatin and tranexamic acid offers improved haemostasis and safe use on internal 26 1.7 15 hemorrhage control. RSC Advances, 2016, 6, 95189-95198. Two-Dimensional Magnesium Phosphate Nanosheets Form Highly Thixotropic Gels That Up-Regulate 4.5 60 Bone Formation. Nano Letters, 2016, 16, 4779-4787. 28 Biosynthetic Polymers as Functional Materials. Macromolecules, 2016, 49, 4379-4394. 2.2 67 Thermoresponsive and Mechanical Properties of Poly(<scp>l</scp>-proline) Gels. Biomacromolecules, 29 2016, 17, 399-406. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. 30 77 2.8 Nanoscale, 2016, 8, 7371-7376. Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional 149 microenvironments. Journal of Materials Chemistry B, 2016, 4, 3544-3554 Fabrication and characterization of Pluronic modified poly(hydroxybutyrate) fibers for potential 32 3.8 50 wound dressing applications. Materials Science and Engineering C, 2016, 63, 266-273. Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications. 1.7 Biomedical Materials (Bristol), 2016, 11, 014104. Polymeric Hydrogels: A Review of Recent Developments. Springer Series on Polymer and Composite 34 0.5 7 Materials, 2016, , 1-17. Microscale Technologies for Engineering Complex Tissue Structures., 2016,, 3-25. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chemical Reviews, 2016, 116, 36 23.0 580 1496-1539. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia, 2017, 57, 4.1 490 1-25.

# 38	ARTICLE Design of Macroscopically Ordered Liquid Crystalline Hydrogel Columns Knitted with Nanosilver for Topical Applications. Bioconjugate Chemistry, 2017, 28, 1005-1015.	IF 1.8	CITATIONS 9
39	Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 590-600.	2.6	91
40	Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air. ACS Applied Materials & Interfaces, 2017, 9, 17456-17465.	4.0	183
41	Advances in engineering hydrogels. Science, 2017, 356, .	6.0	1,836
42	Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis. Acta Biomaterialia, 2017, 58, 479-491.	4.1	66
43	A highly adhesive and naturally derived sealant. Biomaterials, 2017, 140, 115-127.	5.7	188
44	Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. Nanoscale, 2017, 9, 8418-8426.	2.8	49
45	Platelet–Microcapsule Hybrids Leverage Contractile Force for Targeted Delivery of Hemostatic Agents. ACS Nano, 2017, 11, 5579-5589.	7.3	45
46	Nonswellable Injectable Hydrogels Self-Assembled Through Non-Covalent Interactions. ChemistrySelect, 2017, 2, 3009-3013.	0.7	7
47	Thermoresponsive hydrogels based on a phosphorylated star-shaped copolymer: mimicking the extracellular matrix for in situ bone repair. Journal of Materials Chemistry B, 2017, 5, 428-434.	2.9	18
48	Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production. Nature Protocols, 2017, 12, 168-182.	5.5	84
49	One-Step Fabrication of Biocompatible Multifaceted Nanocomposite Gels and Nanolayers. Biomacromolecules, 2017, 18, 386-397.	2.6	17
50	Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications. Journal of Materials Chemistry B, 2017, 5, 887-906.	2.9	90
51	Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. Carbohydrate Polymers, 2017, 176, 392-401.	5.1	189
52	Injectable nanoengineered stimuli-responsive hydrogels for on-demand and localized therapeutic delivery. Nanoscale, 2017, 9, 15379-15389.	2.8	62
53	Flow-induced gelation of microfiber suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8557-E8564.	3.3	52
54	Controlling Adult Stem Cell Behavior Using Nanodiamond-Reinforced Hydrogel: Implication in Bone Regeneration Therapy. Scientific Reports, 2017, 7, 6577.	1.6	73
55	Tough adhesives for diverse wet surfaces. Science, 2017, 357, 378-381.	6.0	1,068

	CITATION I	LEPURI	
#	ARTICLE Rapid Continuous Multimaterial Extrusion Bioprinting. Advanced Materials, 2017, 29, 1604630.	IF 11.1	Citations 275
57	Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells, 2017, 35, 51-60.	1.4	48
58	Nanoengineered Ionic–Covalent Entanglement (NICE) Bioinks for 3D Bioprinting. ACS Applied Materials & Interfaces, 2018, 10, 9957-9968.	4.0	192
59	Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomaterials Science, 2018, 6, 1604-1615.	2.6	59
60	Design and Application of Injectable Gels in Tissue Engineering and Drug Delivery. Gels Horizons: From Science To Smart Materials, 2018, , 311-339.	0.3	0
61	Polymer Gels. Gels Horizons: From Science To Smart Materials, 2018, , .	0.3	2
62	Nanoengineered injectable hydrogels for wound healing application. Acta Biomaterialia, 2018, 70, 35-47.	4.1	201
63	Nanocomposite injectable gels capable of self-replenishing regenerative extracellular microenvironments for <i>in vivo</i> tissue engineering. Biomaterials Science, 2018, 6, 550-561.	2.6	30
64	Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomaterialia, 2018, 69, 95-106.	4.1	123
65	Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials, 2018, 159, 204-214.	5.7	201
66	Blood-clotting mimetic behavior of biocompatible microgels. Journal of Industrial and Engineering Chemistry, 2018, 63, 117-123.	2.9	14
67	3D printing: prospects and challenges. , 2018, , 299-379.		8
68	Gradient nanocomposite hydrogels for interface tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2465-2474.	1.7	81
69	Nanoengineered Colloidal Inks for 3D Bioprinting. Langmuir, 2018, 34, 917-925.	1.6	145
70	Synergy in thrombin-graphene sponge for improved hemostatic efficacy and facile utilization. Colloids and Surfaces B: Biointerfaces, 2018, 161, 27-34.	2.5	40
71	Network Topology in Soft Gels: Hardening and Softening Materials. Langmuir, 2018, 34, 773-781.	1.6	63
72	Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. Advanced Materials, 2018, 30, 1700859.	11.1	326
73	Recent development and biomedical applications of self-healing hydrogels. Expert Opinion on Drug Delivery, 2018, 15, 77-91.	2.4	108

#	Article	IF	CITATIONS
74	SD-chip enabled quantitative detection of HIV RNA using digital nucleic acid sequence-based amplification (dNASBA). Lab on A Chip, 2018, 18, 3501-3506.	3.1	36
75	Chitosan/rectorite nanocomposite with injectable functionality for skin hemostasis. Journal of Materials Chemistry B, 2018, 6, 6544-6549.	2.9	36
76	Tannic acid-loaded mesoporous silica for rapid hemostasis and antibacterial activity. Biomaterials Science, 2018, 6, 3318-3331.	2.6	104
77	Smart Shear-Thinning Hydrogels as Injectable Drug Delivery Systems. Polymers, 2018, 10, 1317.	2.0	52
78	Synthesis and Biomedical Applications of Self-healing Hydrogels. Frontiers in Chemistry, 2018, 6, 449.	1.8	158
79	Harnessing the Noncovalent Interactions of DNA Backbone with 2D Silicate Nanodisks To Fabricate Injectable Therapeutic Hydrogels. ACS Nano, 2018, 12, 9866-9880.	7.3	96
80	Nanocomposites used for drug delivery applications. , 2018, , 181-199.		1
81	Pre-vascularization in fibrin Gel/PLGA microsphere scaffolds designed for bone regeneration. NPG Asia Materials, 2018, 10, 827-839.	3.8	38
82	Oxidized regenerated cellulose cross-linked gelatin microparticles for rapid and biocompatible hemostasis: A versatile cross-linking agent. Carbohydrate Polymers, 2018, 200, 624-632.	5.1	31
83	Injectable Hemostat Composed of a Polyphosphate-Conjugated Hyaluronan Hydrogel. Biomacromolecules, 2018, 19, 3280-3290.	2.6	47
84	Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2018, 172, 90-97.	2.5	60
85	Reversible p <i>K</i> _a Modulation of Carboxylic Acids in Temperature-Responsive Nanoparticles through Imprinted Electrostatic Interactions. ACS Applied Materials & Interfaces, 2018, 10, 31096-31105.	4.0	11
86	Nanosilicate embedded agarose hydrogels with improved bioactivity. Carbohydrate Polymers, 2018, 201, 105-112.	5.1	38
87	Magnesium aluminum silicate nanoparticles as a high-performance rheological modifier in water-based drilling fluids. Applied Clay Science, 2018, 161, 427-435.	2.6	48
88	Effect of ionic strength on shear-thinning nanoclay–polymer composite hydrogels. Biomaterials Science, 2018, 6, 2073-2083.	2.6	89
89	Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-Based Thermogelling Hydrogel. Journal of Functional Biomaterials, 2019, 10, 36.	1.8	36
90	Injectable mechanical pillows for attenuation of load-induced post-traumatic osteoarthritis. International Journal of Energy Production and Management, 2019, 6, 211-219.	1.9	21
91	Recent Progress of Polysaccharideâ€Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Advanced Materials Interfaces, 2019, 6, 1900761.	1.9	222

		CITATION RE	PORT	
#	Article		IF	CITATIONS
92	Development of a shear-thinning biomaterial as an endovascular embolic agent for the t type B aortic dissection. Journal of the Mechanical Behavior of Biomedical Materials, 20		1.5	6
93	A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues. Nar Horizons, 2019, 4, 1333-1341.	noscale	4.1	104
94	Soft Self-Healing Nanocomposites. Frontiers in Materials, 2019, 6, .		1.2	44
95	Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials, 2019, 12,	3323.	1.3	473
96	Two-dimensional nanomaterials: fascinating materials in biomedical field. Science Bullet 1707-1727.	in, 2019, 64,	4.3	171
97	Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for uncontrolled and noncompressible hemorrhage. Acta Biomaterialia, 2019, 99, 220-235.	both	4.1	64
98	Nanomaterials From Mixed-Layer Clay Minerals: Structure, Properties, and Functional Ap 2019, , 365-413.	plications. ,		2
99	Bioionic Liquid Conjugation as Universal Approach To Engineer Hemostatic Bioadhesive Materials & Interfaces, 2019, 11, 38373-38384.	s. ACS Applied	4.0	36
100	Tuning Gel State Properties of Supramolecular Gels by Functional Group Modification. N 2019, 24, 3472.	10lecules,	1.7	13
101	Flow behavior prior to crosslinking: The need for precursor rheology for placement of hy medical applications and for 3D bioprinting. Progress in Polymer Science, 2019, 91, 126	rdrogels in 5-140.	11.8	129
102	Combined effect of Laponite and polymer molecular weight on the cell-interactive proper synthetic PEO-based hydrogels. Reactive and Functional Polymers, 2019, 136, 95-106.	erties of	2.0	19
103	On the sensitivity of alginate rheology to composition. Soft Matter, 2019, 15, 159-165.		1.2	4
104	Sustained and Prolonged Delivery of Protein Therapeutics from Two-Dimensional Nanos Applied Materials & Interfaces, 2019, 11, 6741-6750.	ilicates. ACS	4.0	54
105	Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived Carb Nanomedicine, 2019, 14, 431-446.	on Dots.	1.7	34
106	The structure–property relationship in LAPONITE® materials: from Wigner glasses to self-healing hydrogels formed by non-covalent interactions. Soft Matter, 2019, 15, 1278) strong 3-1289.	1.2	49
107	Hectorite: Synthesis, modification, assembly and applications. Applied Clay Science, 202	19, 177, 114-138.	2.6	64
108	Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. I Communications, 2019, 10, 2749.	Nature	5.8	78
109	Recent Advances in Nanostructured Polymer Composites for Biomedical Applications. ,	2019, , 21-52.		4

#	Article	IF	CITATIONS
110	Advances in Biomaterials and Technologies for Vascular Embolization. Advanced Materials, 2019, 31, e1901071.	11.1	133
111	Selfâ€Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?. Advanced Science, 2019, 6, 1801664.	5.6	314
112	Injectable biomaterials for translational medicine. Materials Today, 2019, 28, 81-97.	8.3	82
113	Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metalâ€Organic Frameworks with GRCDS Functionalization to Promote Antibacterial and Wound Healing Application. Small, 2019, 15, e1901065.	5.2	109
114	Cytotoxicity, bactericidal and hemostatic evaluation of oxidized cellulose microparticles: Structure and oxidation degree approach. Carbohydrate Polymers, 2019, 219, 87-94.	5.1	32
115	A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nature Communications, 2019, 10, 2060.	5.8	517
116	Cuboidal tethered cyclodextrin frameworks tailored for hemostasis and injured vessel targeting. Theranostics, 2019, 9, 2489-2504.	4.6	34
117	Bioprinting a Synthetic Smectic Clay for Orthopedic Applications. Advanced Healthcare Materials, 2019, 8, e1900158.	3.9	36
118	2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing. Advanced Materials, 2019, 31, e1900332.	11.1	237
119	Tranexamic acid-loaded starch hemostatic microspheres. RSC Advances, 2019, 9, 6245-6253.	1.7	23
120	Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. International Journal of Biological Macromolecules, 2019, 129, 936-943.	3.6	73
121	3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. International Journal of Energy Production and Management, 2019, 6, 29-37.	1.9	30
122	A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 2019, 26, 154-174.	0.6	124
123	Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Composites Communications, 2019, 12, 33-38.	3.3	19
124	Minimally Invasive and Regenerative Therapeutics. Advanced Materials, 2019, 31, e1804041.	11.1	112
125	Spongeâ€like chitosanâ€based nanostructured antibacterial material as a topical hemostat. Journal of Applied Polymer Science, 2019, 136, 47522.	1.3	31
126	Micro- and nano-formulations for bioprinting and additive manufacturing. Drug Discovery Today, 2019, 24, 163-178.	3.2	20
127	General Principle for Fabricating Natural Globular Protein-Based Double-Network Hydrogels with Integrated Highly Mechanical Properties and Surface Adhesion on Solid Surfaces. Chemistry of Materials, 2019, 31, 179-189.	3.2	102

#	Article	IF	CITATIONS
128	Recent advances in shearâ€ŧhinning and selfâ€healing hydrogels for biomedical applications. Journal of Applied Polymer Science, 2020, 137, 48668.	1.3	192
129	Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Advanced Materials, 2020, 32, e1902026.	11.1	377
130	Puff pastry-like chitosan/konjac glucomannan matrix with thrombin-occupied microporous starch particles as a composite for hemostasis. Carbohydrate Polymers, 2020, 232, 115814.	5.1	46
131	An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant. Journal of Colloid and Interface Science, 2020, 564, 155-169.	5.0	122
132	Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery. Bioengineering and Translational Medicine, 2020, 5, e10147.	3.9	55
133	Bioinspired Mineral–Organic Bone Adhesives for Stable Fracture Fixation and Accelerated Bone Regeneration. Advanced Functional Materials, 2020, 30, 1908381.	7.8	130
134	Injectable and Radiopaque Liquid Metal/Calcium Alginate Hydrogels for Endovascular Embolization and Tumor Embolotherapy. Small, 2020, 16, e1903421.	5.2	84
135	Integrated Wound Recognition in Bandages for Intelligent Treatment. Advanced Healthcare Materials, 2020, 9, e2000941.	3.9	20
136	Hemostatic nanotechnologies for external and internal hemorrhage management. Biomaterials Science, 2020, 8, 4396-4412.	2.6	49
137	Emerging bio-applications of two-dimensional nanoheterostructure materials. , 2020, , 243-255.		5
138	<p>Nano-Silicate-Reinforced and SDF-1α-Loaded Gelatin-Methacryloyl Hydrogel for Bone Tissue Engineering</p> . International Journal of Nanomedicine, 2020, Volume 15, 9337-9353.	3.3	25
139	Facile Construction of Chitin/Graphene Nanocomposite Sponges for Efficient Hemostasis. ACS Sustainable Chemistry and Engineering, 2020, 8, 18377-18385.	3.2	21
140	Neuropeptide Substance P Released from a Nonswellable Laponite-Based Hydrogel Enhances Wound Healing in a Tissue-Engineered Skin In Vitro. ACS Applied Polymer Materials, 2020, 2, 5790-5797.	2.0	11
141	Fabrication of Chitosan-Reinforced Multifunctional Graphene Nanocomposite as Antibacterial Scaffolds for Hemorrhage Control and Wound-Healing Application. ACS Biomaterials Science and Engineering, 2020, 6, 5911-5929.	2.6	41
142	Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000905.	3.9	194
143	Bloodâ€Derived Biomaterial for Catheterâ€Directed Arterial Embolization. Advanced Materials, 2020, 32, e2005603.	11.1	12
144	Research status and development potential of composite hemostatic materials. Journal of Materials Chemistry B, 2020, 8, 5395-5410.	2.9	61
145	Bioactiveâ€Tissueâ€Derived Nanocomposite Hydrogel for Permanent Arterial Embolization and Enhanced Vascular Healing. Advanced Materials, 2020, 32, e2002611.	11.1	34

<u> </u>		<u> </u>	
(17	ΓΔΤΙ	Repo	DL.
\sim			IX I

#	Article	IF	CITATIONS
146	Alginate-based composite microspheres coated by berberine simultaneously improve hemostatic and antibacterial efficacy. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111168.	2.5	41
147	Future prospects and commercial viability of two-dimensional nanostructures for biomedical technology. , 2020, , 281-302.		3
148	The recent progress of tissue adhesives in design strategies, adhesive mechanism and applications. Materials Science and Engineering C, 2020, 111, 110796.	3.8	69
149	An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Science Translational Medicine, 2020, 12, .	5.8	199
150	Engineered hydrogels for brain tumor culture and therapy. Bio-Design and Manufacturing, 2020, 3, 203-226.	3.9	24
151	Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomaterialia, 2020, 113, 1-22.	4.1	141
152	Engineered biomaterials for in situ tissue regeneration. Nature Reviews Materials, 2020, 5, 686-705.	23.3	420
153	Copolymer/Clay Nanocomposites for Biomedical Applications. Advanced Functional Materials, 2020, 30, 1908101.	7.8	115
154	In-vitro and in-vivo evaluation of modified sodium starch glycolate for exploring its haemostatic potential. Carbohydrate Polymers, 2020, 235, 115975.	5.1	8
155	Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Engineering - Part A, 2020, 26, 318-338.	1.6	104
156	Synthesis of Injectable Shearâ€Thinning Biomaterials of Various Compositions of Gelatin and Synthetic Silicate Nanoplatelet. Biotechnology Journal, 2020, 15, e1900456.	1.8	25
157	Synthesis, characterization and study of covalently modified triazole LAPONITE® edges. Applied Clay Science, 2020, 187, 105489.	2.6	19
158	Skin-Inspired Multifunctional Luminescent Hydrogel Containing Layered Rare-Earth Hydroxide with 3D Printability for Human Motion Sensing. ACS Applied Materials & Interfaces, 2020, 12, 6797-6805.	4.0	33
159	Emerging embolic agents in endovascular embolization: an overview. Progress in Biomedical Engineering, 2020, 2, 012003.	2.8	27
160	Inorganic Biomaterials for Regenerative Medicine. ACS Applied Materials & Interfaces, 2020, 12, 5319-5344.	4.0	135
161	Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. Tissue Engineering - Part B: Reviews, 2020, 26, 230-248.	2.5	153
162	Cellulose Nanocrystal Reinforced Collagen-Based Nanocomposite Hydrogel with Self-Healing and Stress-Relaxation Properties for Cell Delivery. Biomacromolecules, 2020, 21, 2400-2408.	2.6	73
163	Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Biofabrication, 2020, 12, 035010.	3.7	73

#	Article	IF	CITATIONS
164	Nanocomposite Hydrogel with Tantalum Microparticles for Rapid Endovascular Hemostasis. Advanced Science, 2021, 8, 2003327.	5.6	23
165	Polydopamine coated ZnO rod-shaped nanoparticles with noticeable biocompatibility, hemostatic and antibacterial activity. Nano Structures Nano Objects, 2021, 25, 100639.	1.9	31
166	Biomolecule-assisted synthesis of biomimetic nanocomposite hydrogel for hemostatic and wound healing applications. Green Chemistry, 2021, 23, 629-669.	4.6	56
167	Engineering 3D-printed core–shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for <i>in vivo</i> bone regeneration. Biomaterials Science, 2021, 9, 4019-4039.	2.6	23
168	Incorporation of Bioglass Improved the Mechanical Stability and Bioactivity of Alginate/Carboxymethyl Chitosan Hydrogel Wound Dressing. ACS Applied Bio Materials, 2021, 4, 1677-1692.	2.3	34
169	Hybrid Nanosystems for Biomedical Applications. ACS Nano, 2021, 15, 2099-2142.	7.3	100
170	Silk-based hybrid microfibrous mats as guided bone regeneration membranes. Journal of Materials Chemistry B, 2021, 9, 2025-2032.	2.9	24
171	Minerals in Pharmacy and Cosmetics. , 2021, , 405-441.		2
172	Bionanocomposite hydrogels for regenerative medicine and biomedical applications. , 2021, , 91-118.		1
173	Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. International Journal of Biological Macromolecules, 2021, 170, 728-750.	3.6	151
174	Injectable Selfâ€Healing Hydrogel Wound Dressing with Cysteineâ€Specific Onâ€Demand Dissolution Property Based on Tandem Dynamic Covalent Bonds. Advanced Functional Materials, 2021, 31, 2011230.	7.8	130
175	Supramolecular engineering of hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2021, 171, 240-256.	6.6	164
176	Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing. Acta Biomaterialia, 2021, 124, 191-204.	4.1	72
177	Hemostatic Self-Healing Hydrogel with Excellent Biocompatibility Composed of Polyphosphate-Conjugated Functional PNIPAM-Bearing Acylhydrazide. Biomacromolecules, 2021, 22, 2272-2283.	2.6	35
178	Graphene Quantum Dots for Fluorescent Labeling of Gelatinâ€Based Shearâ€Thinning Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2000113.	1.7	6
179	Multifaceted Design and Emerging Applications of Tissue Adhesives. Advanced Materials, 2021, 33, e2007663.	11.1	117
180	Ultrafast Selfâ€Gelling and Wet Adhesive Powder for Acute Hemostasis and Wound Healing. Advanced Functional Materials, 2021, 31, 2102583.	7.8	146
181	Development of Nanosilicate–Hydrogel Composites for Sustained Delivery of Charged Biopharmaceutics. ACS Applied Materials & Interfaces, 2021, 13, 27880-27894.	4.0	12

#	Article	IF	CITATIONS
182	Nanoclay Suspension-Enabled Extrusion Bioprinting of Three-Dimensional Soft Structures. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	1.3	13
183	Snake extract–laden hemostatic bioadhesive gel cross-linked by visible light. Science Advances, 2021, 7,	4.7	96
184	An Injectable Hybrid Gelatin Methacryloyl (GelMA)/Phenyl Isothiocyanate-Modified Gelatin (Gel-Phe) Bioadhesive for Oral/Dental Hemostasis Applications. Polymers, 2021, 13, 2386.	2.0	16
185	The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sciences, 2021, 277, 119400.	2.0	7
186	Tranexamic acidâ€loaded hemostatic nanoclay microsphere frameworks. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 422-430.	1.6	4
187	Highly Stretchable Nanocomposite Hydrogels with Outstanding Antifatigue Fracture Based on Robust Noncovalent Interactions for Wound Healing. Chemistry of Materials, 2021, 33, 6453-6463.	3.2	53
188	An imidazolium-based supramolecular gelator enhancing interlayer adhesion in 3D printed dual network hydrogels. Materials and Design, 2021, 206, 109792.	3.3	10
189	An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA) hydrogel for skin hemostasis applications. International Journal of Biological Macromolecules, 2021, 185, 441-450.	3.6	46
190	Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomaterialia, 2021, 130, 66-79.	4.1	43
191	Fabrication of Fe3O4@PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization. Acta Biomaterialia, 2021, 131, 532-543.	4.1	27
192	Biomedical Applications of Laponite®-Based Nanomaterials and Formulations. Springer Proceedings in Physics, 2022, , 385-452.	0.1	7
193	Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111844.	2.5	46
194	Synthetic hydrogels as blood clot mimicking wound healing materials. Progress in Biomedical Engineering, 2021, 3, 042006.	2.8	11
195	Recent progress in multifunctional hydrogel-based supercapacitors. Journal of Science: Advanced Materials and Devices, 2021, 6, 338-350.	1.5	19
196	A mouse model of hypoplastic left heart syndrome demonstrating left heart hypoplasia and retrograde aortic arch flow. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	13
197	Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia, 2021, 136, 1-36.	4.1	61
198	Corn stalk/AgNPs modified chitin composite hemostatic sponge with high absorbency, rapid shape recovery and promoting wound healing ability. Chemical Engineering Journal, 2021, 421, 129815.	6.6	63
199	Injectable hydrogels for vascular embolization and cell delivery: The potential for advances in cerebral aneurysm treatment. Biomaterials, 2021, 277, 121109.	5.7	13

#	Article	IF	CITATIONS
200	Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. International Journal of Biological Macromolecules, 2021, 188, 72-81.	3.6	45
201	Collagen-based biomaterials for bone tissue engineering. Materials and Design, 2021, 210, 110049.	3.3	90
202	Engineering air-in-water emulsion as adaptable multifunctional sealant. Chemical Engineering Journal, 2022, 429, 132200.	6.6	8
203	Systematic studies on blood coagulation mechanisms of halloysite nanotubes-coated PET dressing as superior topical hemostatic agent. Chemical Engineering Journal, 2022, 428, 132049.	6.6	60
204	Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. Nanoscale, 2021, 13, 8817-8836.	2.8	39
205	Recent developments in mussel-inspired materials for biomedical applications. Biomaterials Science, 2021, 9, 6653-6672.	2.6	42
206	Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Biomaterials Science, 2021, 9, 6337-6354.	2.6	36
207	Advances in biomedical applications of self-healing hydrogels. Materials Chemistry Frontiers, 2021, 5, 4368-4400.	3.2	51
208	Nanocomposite hydrogels for tissue engineering applications. , 2020, , 499-528.		5
209	Advanced hybrid nanomaterials for biomedical applications. Progress in Materials Science, 2020, 114, 100686.	16.0	140
210	Non-Destructive Mechanical Assessment and Optimization of 3D Bioprinted Soft Tissue Scaffolds. SSRN Electronic Journal, 0, , .	0.4	0
211	Nanoengineered Shear-Thinning Hydrogel Barrier for Preventing Postoperative Abdominal Adhesions. Nano-Micro Letters, 2021, 13, 212.	14.4	28
212	Liquid embolic agents for interventional embolization. ChemPhysMater, 2022, 1, 39-50.	1.4	4
213	Chitosan and Laponite: a meta-analysis on their applications. Research, Society and Development, 2021, 10, e132101320903.	0.0	0
214	Tannic acid/clay hydrogel with time-dependent mechanical and adhesive performance enabled by molecular interaction evolution. Polymer, 2021, 235, 124261.	1.8	1
215	Deoxyribonucleic acid polymer nanoparticle hydrogels. Chemical Communications, 2021, 57, 12111-12114.	2.2	4
216	MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischemic injury. American Journal of Translational Research (discontinued), 2017, 9, 3120-3137.	0.0	26
217	Bioinspired, injectable, tissue-adhesive and antibacterial hydrogel for multiple tissue regeneration by minimally invasive therapy. Applied Materials Today, 2022, 26, 101290.	2.3	23

#	Article	IF	CITATIONS
218	Silicate-Based Electro-Conductive Inks for Printing Soft Electronics and Tissue Engineering. Gels, 2021, 7, 240.	2.1	6
219	Injectable Hydrogel Capable of In Situ Covalent Crosslinking for Permanent Embolization. ACS Applied Materials & Interfaces, 2021, 13, 56988-56999.	4.0	6
220	Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Scientific Reports, 2021, 11, 23094.	1.6	27
221	Engineering a naturally derived hemostatic sealant for sealing internal organs. Materials Today Bio, 2022, 13, 100199.	2.6	26
222	Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio, 2022, 13, 100186.	2.6	129
223	Laponiteâ€Based Nanomaterials for Drug Delivery. Advanced Healthcare Materials, 2022, 11, e2102054.	3.9	48
224	Bioink Rheology Regulates Stability of Bioprinted Strands. Journal of Biomechanical Engineering, 2022, , .	0.6	0
225	pH-Responsive doxorubicin delivery using shear-thinning biomaterials for localized melanoma treatment. Nanoscale, 2022, 14, 350-360.	2.8	15
226	Supramolecular Reinforcement of Polymer–Nanoparticle Hydrogels for Modular Materials Design. Advanced Materials, 2022, 34, e2106941.	11.1	28
227	Macroporous Adhesive Nanoâ€Enabled Hydrogels Generated from Airâ€inâ€Water Emulsions. Macromolecular Bioscience, 2022, 22, e2100491.	2.1	9
228	3D bioprintable methacrylated carrageenan/sodium alginate dual network hydrogel for vascular tissue engineering scaffolding. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 550-560.	1.8	6
229	Engineered Clay Nanomaterials for Biomedical Applications. Nanotechnology in the Life Sciences, 2022, , 277-314.	0.4	1
230	Classification of nanomaterials and their physical and chemical nature. , 2022, , 7-34.		1
231	Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Frontiers in Pharmacology, 2022, 13, 815479.	1.6	13
232	Biomaterials for Hemostasis. Annual Review of Biomedical Engineering, 2022, 24, 111-135.	5.7	20
233	Recent Advances in Polymer Additive Engineering for Diagnostic and Therapeutic Hydrogels. International Journal of Molecular Sciences, 2022, 23, 2955.	1.8	6
234	Bioactive inorganic particlesâ€based biomaterials for skin tissue engineering. Exploration, 2022, 2, .	5.4	41
235	Unscrambling the Influence of Sodium Cation on the Structure, Bioactivity, and Erythrocyte Compatibility of 45S5 Bioactive Glass, ACS Applied Bio Materials, 2022, 5, 1576-1590.	2.3	12

#	Article	IF	CITATIONS
236	A review of treatments for non-compressible torso hemorrhage (NCTH) and internal bleeding. Biomaterials, 2022, 283, 121432.	5.7	19
237	Assessing the aneurysm occlusion efficacy of a shear-thinning biomaterial in a 3D-printed model. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105156.	1.5	3
238	Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780187.	2.0	29
239	Adhesive Hemostatic Hydrogel with Ultrafast Gelation Arrests Acute Upper Gastrointestinal Hemorrhage in Pigs. Advanced Functional Materials, 2022, 32, .	7.8	48
240	Dual crosslinking hydrogels with tunable injectability and stability for bone repair. Journal of Materials Chemistry B, 2022, 10, 4386-4394.	2.9	5
241	Non-destructive mechanical assessment for optimization of 3D bioprinted soft tissue scaffolds. IScience, 2022, 25, 104251.	1.9	8
242	Shape-Recoverable Macroporous Nanocomposite Hydrogels Created via Ice Templating Polymerization for Noncompressible Wound Hemorrhage. ACS Biomaterials Science and Engineering, 2022, 8, 2076-2087.	2.6	5
243	A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1595-1622.	1.9	16
244	Development of Biodegradable Osteopromotive Citrateâ€Based Bone Putty. Small, 2022, 18, .	5.2	9
245	Engineered Hemostatic Biomaterials for Sealing Wounds. Chemical Reviews, 2022, 122, 12864-12903.	23.0	79
246	Emerging Polymer Materials in Trackable Endovascular Embolization and Cell Delivery: From Hype to Hope. Biomimetics, 2022, 7, 77.	1.5	2
246 247		1.5 5.7	2
	Hope. Biomimetics, 2022, 7, 77.		
247	 Hope. Biomimetics, 2022, 7, 77. Recent progress in liquid embolic agents. Biomaterials, 2022, 287, 121634. A Bionic Self-Assembly Hydrogel Constructed by Peptides With Favorable Biosecurity, Rapid Hemostasis 	5.7	10
247 248	 Hope. Biomimetics, 2022, 7, 77. Recent progress in liquid embolic agents. Biomaterials, 2022, 287, 121634. A Bionic Self-Assembly Hydrogel Constructed by Peptides With Favorable Biosecurity, Rapid Hemostasis and Antibacterial Property for Wound Healing. Frontiers in Bioengineering and Biotechnology, 0, 10, . Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. 	5.7 2.0	10 8
247 248 249	 Hope. Biomimetics, 2022, 7, 77. Recent progress in liquid embolic agents. Biomaterials, 2022, 287, 121634. A Bionic Self-Assembly Hydrogel Constructed by Peptides With Favorable Biosecurity, Rapid Hemostasis and Antibacterial Property for Wound Healing. Frontiers in Bioengineering and Biotechnology, 0, 10, . Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydrate Polymers, 2022, 294, 119824. Phaseâ€Transitional Bismuthâ€Based Metals enable Rapid Embolotherapy, Hyperthermia, and Biomedical 	5.7 2.0 5.1	10 8 56
247 248 249 250	Hope. Biomimetics, 2022, 7, 77. Recent progress in liquid embolic agents. Biomaterials, 2022, 287, 121634. A Bionic Self-Assembly Hydrogel Constructed by Peptides With Favorable Biosecurity, Rapid Hemostasis and Antibacterial Property for Wound Healing. Frontiers in Bioengineering and Biotechnology, 0, 10, . Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydrate Polymers, 2022, 294, 119824. Phaseâ€Transitional Bismuthâ€Based Metals enable Rapid Embolotherapy, Hyperthermia, and Biomedical Imaging. Advanced Materials, 2022, 34, . A Shear-Thinning Biomaterial-Mediated Immune Checkpoint Blockade. ACS Applied Materials & amp;	5.7 2.0 5.1 11.1	10 8 56 15

#	Article	IF	CITATIONS
254	Underwater instant adhesion mechanism of self-assembled amphiphilic hemostatic granular hydrogel from Andrias davidianus skin secretion. IScience, 2022, 25, 105106.	1.9	9
255	The preparation of lactoferrin/magnesium silicate lithium injectable hydrogel and application in promoting wound healing. International Journal of Biological Macromolecules, 2022, 220, 1501-1511.	3.6	5
256	Nanoclays in medicine: a new frontier of an ancient medical practice. Materials Advances, 2022, 3, 7484-7500.	2.6	11
257	Protein–inorganic hybrid porous scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2022, 10, 6546-6556.	2.9	5
258	Hydrogels for localized drug delivery: A special emphasis on dermatologic applications. Dermatologic Therapy, 2022, 35, .	0.8	4
259	Clay-Based Nanocomposite Hydrogels for Biomedical Applications: A Review. Nanomaterials, 2022, 12, 3308.	1.9	9
260	A Cohesive Shear-Thinning Biomaterial for Catheter-Based Minimally Invasive Therapeutics. ACS Applied Materials & Interfaces, 2022, 14, 42852-42863.	4.0	5
261	Sodium Phytateâ€Incorporated Gelatinâ€Silicate Nanoplatelet Composites for Enhanced Cohesion and Hemostatic Function of Shearâ€Thinning Biomaterials. Macromolecular Bioscience, 2023, 23, .	2.1	3
262	Gluing blood into gel by electrostatic interaction using a water-soluble polymer as an embolic agent. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
264	Nanoparticle-Reinforced Tough Hydrogel as a Versatile Platform for Pharmaceutical Drug Delivery: Preparation and <i>in Vitro</i> Characterization. Molecular Pharmaceutics, 2023, 20, 767-774.	2.3	10
265	Piezoelectric MoS2 Nanoflowers (NF's) for Targeted Cancer Therapy by Gelatin-based Shear Thinning Hydrogels. In vitro and In vivo trials. Reactive and Functional Polymers, 2022, 181, 105435.	2.0	3
266	Emerging materials for hemostasis. Coordination Chemistry Reviews, 2023, 475, 214823.	9.5	31
267	An injectable bioactive dressing based on platelet-rich plasma and nanoclay: Sustained release of deferoxamine to accelerate chronic wound healing. Acta Pharmaceutica Sinica B, 2023, 13, 4318-4336.	5.7	6
268	Multistimuli-Responsive PNIPAM-Based Double Cross-Linked Conductive Hydrogel with Self-Recovery Ability for Ionic Skin and Smart Sensor. Biomacromolecules, 2022, 23, 5239-5252.	2.6	6
269	PEG-mediated hybrid hemostatic gauze with in-situ growth and tightly-bound mesoporous silicon. , 2022, 143, 213179.		3
270	Thermoresponsive shear-thinning hydrogel (T-STH) hemostats for minimally invasive treatment of external hemorrhages. Biomaterials Science, 2023, 11, 949-963.	2.6	4
271	Tissue adhesive hemostatic microneedle arrays for rapid hemorrhage treatment. Bioactive Materials, 2023, 23, 314-327.	8.6	27
272	Silicate Clay-Hydrogel Nanoscale Composites for Sustained Delivery of Small Molecules. ACS Applied Nano Materials, 2022, 5, 18940-18954.	2.4	7

#	Article	IF	CITATIONS
273	Biomimetic Natural Biopolymerâ€Based Wetâ€Tissue Adhesive for Tough Adhesion, Seamless Sealed, Emergency/Nonpressing Hemostasis, and Promoted Wound Healing. Advanced Functional Materials, 2023, 33, .	7.8	35
274	Nanosheet–hydrogel composites: from preparation and fundamental properties to their promising applications. Soft Matter, 2023, 19, 1465-1481.	1.2	5
275	Biocompatible dual network bovine serum albumin-loaded hydrogel-accelerates wound healing. European Polymer Journal, 2023, 185, 111820.	2.6	1
276	Peptide and protein-based hydrogels. , 2023, , 137-173.		1
277	Nano-enabled DNA supramolecular sealant for soft tissue surgical applications. Nano Today, 2023, 50, 101825.	6.2	5
278	Progressive use of nanocomposite hydrogels materials for regeneration of damaged cartilage and their tribological mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 0, , 239779142311514.	0.5	2
279	Liquid Metalâ€Enabled Microspheres with High Drug Loading and Multimodal Imaging for Artery Embolization. Advanced Functional Materials, 2023, 33, .	7.8	7
280	Recent Progress in Advanced Hydrogelâ€Based Embolic Agents: From Rational Design Strategies to Improved Endovascular Embolization. Advanced Healthcare Materials, 2023, 12, .	3.9	4