Can We Reconcile the Declarative Memory and Spatial I Function?

Neuron 83, 764-770 DOI: 10.1016/j.neuron.2014.07.032

Citation Report

#	Article	IF	CITATIONS
1	The role of the hippocampus in flexible cognition and social behavior. Frontiers in Human Neuroscience, 2014, 8, 742.	1.0	310
2	Left–right dissociation of hippocampal memory processes in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15238-15243.	3.3	161
3	Time cells in the hippocampus: a new dimension for mapping memories. Nature Reviews Neuroscience, 2014, 15, 732-744.	4.9	569
4	Perspectives on 2014 Nobel Prize. Hippocampus, 2015, 25, 679-681.	0.9	4
5	The mantle of the heavens: Reflections on the 2014 nobel prize for medicine or physiology. Hippocampus, 2015, 25, 682-689.	0.9	4
6	The medial temporal lobes distinguish between within-item and item-context relations during autobiographical memory retrieval. Hippocampus, 2015, 25, 1577-1590.	0.9	19
7	The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature's foremost navigators. Hippocampus, 2015, 25, 1193-1211.	0.9	65
8	Decoding illusory self-location from activity in the human hippocampus. Frontiers in Human Neuroscience, 2015, 9, 412.	1.0	22
9	The Role of the Human Entorhinal Cortex in a Representational Account of Memory. Frontiers in Human Neuroscience, 2015, 9, 628.	1.0	47
10	Competition and Cooperation among Relational Memory Representations. PLoS ONE, 2015, 10, e0143832.	1.1	7
11	Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. ELife, 2015, 4, .	2.8	127
12	Noninvasive Functional and Anatomical Imaging of the Human Medial Temporal Lobe. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021840.	2.3	9
13	Relating Hippocampus to Relational Memory Processing across Domains and Delays. Journal of Cognitive Neuroscience, 2015, 27, 234-245.	1.1	54
14	Neural systems supporting navigation. Current Opinion in Behavioral Sciences, 2015, 1, 47-55.	2.0	109
15	The hippocampus. Current Biology, 2015, 25, R1116-R1121.	1.8	229
16	Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice. Translational Psychiatry, 2015, 5, e696-e696.	2.4	57
17	Neuronal effects of nicotine during auditory selective attention. Psychopharmacology, 2015, 232, 2017-2028.	1.5	19
18	Rest boosts the long-term retention of spatial associative and temporal order information. Hippocampus, 2015, 25, 1017-1027.	0.9	46

#	Article	IF	CITATIONS
19	A Map for Social Navigation in the Human Brain. Neuron, 2015, 87, 231-243.	3.8	414
20	Hippocampus contributes to the maintenance but not the quality of visual information over time. Learning and Memory, 2015, 22, 6-10.	0.5	21
21	The Hippocampus as a Cognitive Map $\hat{a} \in \mid$ of Social Space. Neuron, 2015, 87, 9-11.	3.8	51
22	Navigating life. Hippocampus, 2015, 25, 704-708.	0.9	30
23	A limited positioning system for memory. Hippocampus, 2015, 25, 690-696.	0.9	4
24	<i>In vivo</i> evaluation of the dentate gate theory in epilepsy. Journal of Physiology, 2015, 593, 2379-2388.	1.3	187
25	Memory, scene construction, and the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4767-4772.	3.3	60
26	Internally Recurring Hippocampal Sequences as a Population Template of Spatiotemporal Information. Neuron, 2015, 88, 357-366.	3.8	116
27	Memory and Space: Towards an Understanding of the Cognitive Map. Journal of Neuroscience, 2015, 35, 13904-13911.	1.7	247
28	Identifying the role of pre-and postsynaptic GABAB receptors in behavior. Neuroscience and Biobehavioral Reviews, 2015, 57, 70-87.	2.9	16
29	From necessity to sufficiency in memory research: when sleep helps to understand wake experiences. Current Opinion in Neurobiology, 2015, 35, 156-162.	2.0	2
30	Time and space in the hippocampus. Brain Research, 2015, 1621, 345-354.	1.1	102
31	Adult Neurogenesis: Beyond Learning and Memory. Annual Review of Psychology, 2015, 66, 53-81.	9.9	226
32	Two Distinct Scene-Processing Networks Connecting Vision and Memory. ENeuro, 2016, 3, ENEURO.0178-16.2016.	0.9	111
33	Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease. Frontiers in Systems Neuroscience, 2015, 9, 190.	1.2	187
34	Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1. Neuron, 2016, 91, 652-665.	3.8	223
35	What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage. Hippocampus, 2016, 26, 835-840.	0.9	27
36	Deficits in hippocampalâ€dependent transfer generalization learning accompany synaptic dysfunction in a mouse model of amyloidosis. Hippocampus, 2016, 26, 455-471.	0.9	8

#	Article	IF	CITATIONS
37	Dissociable contributions of amygdala and hippocampus to emotion and memory in patients with <scp>A</scp> lzheimer's disease. Hippocampus, 2016, 26, 727-738.	0.9	29
38	Hippocampal volume reduction is associated with intellectual functions in adolescents with congenital heart disease. Pediatric Research, 2016, 80, 531-537.	1.1	43
39	Coding of Event Nodes and Narrative Context in the Hippocampus. Journal of Neuroscience, 2016, 36, 12412-12424.	1.7	62
40	Chrelin: A link between memory and ingestive behavior. Physiology and Behavior, 2016, 162, 10-17.	1.0	50
41	Fast Sequences of Non-spatial State Representations in Humans. Neuron, 2016, 91, 194-204.	3.8	148
42	The effects of hippocampal lesions on MRI measures of structural and functional connectivity. Hippocampus, 2016, 26, 1447-1463.	0.9	42
43	The hippocampus: a special place for time. Annals of the New York Academy of Sciences, 2016, 1369, 93-110.	1.8	84
44	Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory. Hippocampus, 2016, 26, 1515-1524.	0.9	28
45	Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. Current Topics in Behavioral Neurosciences, 2016, 37, 43-100.	0.8	21
46	Neural Mechanism to Simulate a Scale-Invariant Future. Neural Computation, 2016, 28, 2594-2627.	1.3	16
47	Semantic congruence affects hippocampal response to repetition of visual associations. Neuropsychologia, 2016, 90, 235-242.	0.7	16
49	The role of working memory and declarative memory in trace conditioning. Neurobiology of Learning and Memory, 2016, 134, 193-209.	1.0	37
50	Retrieval-Based Model Accounts for Striking Profile of Episodic Memory and Generalization. Scientific Reports, 2016, 6, 31330.	1.6	28
51	Glucose improves object-location binding in visual-spatial working memory. Psychopharmacology, 2016, 233, 529-547.	1.5	20
52	Hippocampal Attractor Dynamics Predict Memory-Based Decision Making. Current Biology, 2016, 26, 1750-1757.	1.8	36
53	Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nature Reviews Neuroscience, 2016, 17, 513-523.	4.9	259
54	Hippocampal global remapping for different sensory modalities in flying bats. Nature Neuroscience, 2016, 19, 952-958.	7.1	65
55	Organizing conceptual knowledge in humans with a gridlike code. Science, 2016, 352, 1464-1468.	6.0	581

#	Article	IF	CITATIONS
56	What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated. Trends in Cognitive Sciences, 2016, 20, 512-534.	4.0	386
57	A smaller amygdala is associated with anxiety in Parkinson's disease: a combined FreeSurfer—VBM study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 493-500.	0.9	62
58	Social and novel contexts modify hippocampal CA2 representations of space. Nature Communications, 2016, 7, 10300.	5.8	149
59	Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study. Neuropsychologia, 2016, 80, 90-101.	0.7	62
60	Still searching for the engram. Learning and Behavior, 2016, 44, 209-222.	0.5	60
61	Cerebellar, hippocampal, and striatal time cells. Current Opinion in Behavioral Sciences, 2016, 8, 186-192.	2.0	39
62	A hippocampal network for spatial coding during immobility and sleep. Nature, 2016, 531, 185-190.	13.7	176
63	Structural brain correlates of defective gesture performance in schizophrenia. Cortex, 2016, 78, 125-137.	1.1	36
64	Getting directions from the hippocampus: The neural connection between looking and memory. Neurobiology of Learning and Memory, 2016, 134, 135-144.	1.0	79
65	Representation of memories in the cortical–hippocampal system: Results from the application of population similarity analyses. Neurobiology of Learning and Memory, 2016, 134, 178-191.	1.0	40
66	Targeted activation of the hippocampal CA2 area strongly enhances social memory. Molecular Psychiatry, 2016, 21, 1137-1144.	4.1	179
67	Impaired acquisition of new words after left temporal lobectomy despite normal fast-mapping behavior. Neuropsychologia, 2016, 80, 165-175.	0.7	22
68	Abnormal spindle-like microcephaly-associated (ASPM) mutations strongly disrupt neocortical structure but spare the hippocampus and long-term memory. Cortex, 2016, 74, 158-176.	1.1	32
69	Remembering Preservation in Hippocampal Amnesia. Annual Review of Psychology, 2016, 67, 51-82.	9.9	63
70	Mechanisms in psychology: ripping nature at its seams. SynthÈse, 2016, 193, 1585-1614.	0.6	28
71	Scenes, Spaces, and Memory Traces. Neuroscientist, 2016, 22, 432-439.	2.6	90
72	Brains of verbal memory specialists show anatomical differences in language, memory and visual systems. NeuroImage, 2016, 131, 181-192.	2.1	30
73	Hippocampus Contributions to Food Intake Control: Mnemonic, Neuroanatomical, and Endocrine Mechanisms. Biological Psychiatry, 2017, 81, 748-756.	0.7	181

#	Article	IF	Citations
74	Hippocampalâ€like circuitry in the pallium of an electric fish: Possible substrates for recursive pattern separation and completion. Journal of Comparative Neurology, 2017, 525, 8-46.	0.9	57
75	Visual Sampling Predicts Hippocampal Activity. Journal of Neuroscience, 2017, 37, 599-609.	1.7	3
76	Aspartame and the hippocampus: Revealing a bi-directional, dose/time-dependent behavioural and morphological shift in mice. Neurobiology of Learning and Memory, 2017, 139, 76-88.	1.0	34
77	Vectorial representation of spatial goals in the hippocampus of bats. Science, 2017, 355, 176-180.	6.0	227
78	Hippocampalâ€cortical contributions to strategic exploration during perceptual discrimination. Hippocampus, 2017, 27, 642-652.	0.9	20
79	Imagining the future: The core episodic simulation network dissociates as a function of timecourse and the amount of simulated information. Cortex, 2017, 90, 12-30.	1.1	33
80	The Hippocampus from Cells to Systems. , 2017, , .		18
81	Elements of Information Processing in Hippocampal Neuronal Activity: Space, Time, and Memory. , 2017, , 69-94.		4
82	Medial Entorhinal Cortex Selectively Supports Temporal Coding by Hippocampal Neurons. Neuron, 2017, 94, 677-688.e6.	3.8	107
83	Egocentric and allocentric visuospatial working memory in premotor Huntington's disease: A double dissociation with caudate and hippocampal volumes. Neuropsychologia, 2017, 101, 57-64.	0.7	16
84	The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 2017, 117, 1785-1796.	0.9	232
85	Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behaviour Research and Therapy, 2017, 96, 14-29.	1.6	82
86	Hippocampal Activity Patterns Reflect the Topology of Spaces: Evidence from Narrative Coding. Journal of Neuroscience, 2017, 37, 5975-5977.	1.7	0
87	Temporal and Rate Coding for Discrete Event Sequences in the Hippocampus. Neuron, 2017, 94, 1248-1262.e4.	3.8	125
88	Making our way through the world: Towards a functional understanding of the brain's spatial circuits. Current Opinion in Systems Biology, 2017, 3, 186-194.	1.3	8
89	Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake?. Neuroscience Letters, 2017, 653, 126-131.	1.0	15
90	Internally generated hippocampal sequences as a vantage point to probe futureâ€oriented cognition. Annals of the New York Academy of Sciences, 2017, 1396, 144-165.	1.8	61
91	Neonatal reflexes and behavior in hypertensive rats of ISIAH strain. Physiology and Behavior, 2017, 175, 22-30.	1.0	6

#	Article	IF	CITATIONS
92	Dynamic neural architecture for social knowledge retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3305-E3314.	3.3	76
93	The avian hippocampus and the hypothetical maps used by navigating migratory birds (with some) Tj ETQq1 1 0. Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 465-474.	784314 rg 0.7	gBT /Overlock 25
94	Aging affects spatial reconstruction more than spatial pattern separation performance even after extended practice. Hippocampus, 2017, 27, 716-725.	0.9	12
95	Visual Sampling Predicts Hippocampal Activity. Journal of Neuroscience, 2017, 37, 599-609.	1.7	82
96	Tracking thoughts: Exploring the neural architecture of mental time travel during mind-wandering. NeuroImage, 2017, 147, 272-281.	2.1	91
97	The cognitive map in humans: spatial navigation and beyond. Nature Neuroscience, 2017, 20, 1504-1513.	7.1	545
98	Space and time in the brain. Science, 2017, 358, 482-485.	6.0	134
99	The persistence of memory: how the brain encodes time in memory. Current Opinion in Behavioral Sciences, 2017, 17, 178-185.	2.0	24
100	Early Tool-Making and the Evolution of Human Systems in the Brain. , 2017, , 61-120.		0
101	Characterizing the role of the hippocampus during episodic simulation and encoding. Hippocampus, 2017, 27, 1275-1284.	0.9	20
102	Details, gist and schema: hippocampal–neocortical interactions underlying recent and remote episodic and spatial memory. Current Opinion in Behavioral Sciences, 2017, 17, 114-123.	2.0	164
103	Early Evolution of Human Memory. , 2017, , .		7
104	Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. Journal of Neurophysiology, 2017, 118, 3328-3344.	0.9	114
105	Reflections on the Structural-Functional Evolution of the Hippocampus: What Is the Big Deal about a Dentate Gyrus. Brain, Behavior and Evolution, 2017, 90, 53-61.	0.9	36
106	Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience and Biobehavioral Reviews, 2017, 80, 605-621.	2.9	170
107	Dorsal hippocampus contributes to model-based planning. Nature Neuroscience, 2017, 20, 1269-1276.	7.1	177
108	Recall of semantically related word-lists in two patients with herpes simplex encephalitis. Neurology Psychiatry and Brain Research, 2017, 25, 1-8.	2.0	0
109	Distinct contributions of the fornix and inferior longitudinal fasciculus to episodic and semantic autobiographical memory. Cortex, 2017, 94, 1-14.	1.1	75

#	Article	IF	CITATIONS
110	Brain connectivity during encoding and retrieval of spatial information: individual differences in navigation skills. Brain Informatics, 2017, 4, 207-217.	1.8	7
111	Network mechanisms of hippocampal laterality, place coding, and goal-directed navigation. Journal of Physiological Sciences, 2017, 67, 247-258.	0.9	12
112	Persistent modifications of hippocampal synaptic function during remote spatial memory. Neurobiology of Learning and Memory, 2017, 138, 182-197.	1.0	30
113	Development of hippocampal functional connectivity during childhood. Human Brain Mapping, 2017, 38, 182-201.	1.9	57
114	Memory: Organization and Control. Annual Review of Psychology, 2017, 68, 19-45.	9.9	157
115	Pupillary responses and memory-guided visual search reveal age-related and Alzheimer's-related memory decline. Behavioural Brain Research, 2017, 322, 351-361.	1.2	22
117	Current Topics Regarding the Function of the Medial Temporal Lobe Memory System. Current Topics in Behavioral Neurosciences, 2017, 37, 13-42.	0.8	8
119	Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains. Brain Sciences, 2017, 7, 82.	1.1	43
120	From Engrams to Pathologies of the Brain. Frontiers in Neural Circuits, 2017, 11, 23.	1.4	32
121	Memory for Space, Time, and Episodes â~†. , 2017, , 255-283.		3
122	Adult Neurogenesis in the Hippocampus: A Role in Learning and Memory. , 2017, , 345-358.		1
123	The Hippocampus of Nonmammalian Vertebrates. , 2017, , 479-489.		9
124	Segregated Cell Populations Enable Distinct Parallel Encoding within the Radial Axis of the CA1 Pyramidal Layer. Experimental Neurobiology, 2017, 26, 1-10.	0.7	27
125	Autonoesis and reconstruction in episodic memory: Is remembering systematically misleading?. Behavioral and Brain Sciences, 2018, 41, e22.	0.4	0
126	Game Mechanics Matter: Differences in Video Game Conditions Influence Memory Performance. Communication Research Reports, 2018, 35, 222-231.	1.0	6
127	The sociocultural functions of episodic memory. Behavioral and Brain Sciences, 2018, 41, e14.	0.4	1
128	Epistemic authority, episodic memory, and the sense of self. Behavioral and Brain Sciences, 2018, 41, e24.	0.4	0
129	Confabulation and epistemic authority. Behavioral and Brain Sciences, 2018, 41, e29.	0.4	2

#	Article		CITATIONS
130	Encoding third-person epistemic states contributes to episodic reconstruction of memories. Behavioral and Brain Sciences, 2018, 41, e18.		1
131	Carving event and episodic memory at their joints. Behavioral and Brain Sciences, 2018, 41, e19.	0.4	2
132	Spatial scaffold effects in event memory and imagination. Wiley Interdisciplinary Reviews: Cognitive Science, 2018, 9, e1462.	1.4	56
133	Using episodic memory to gauge implicit and/or indeterminate social commitments. Behavioral and Brain Sciences, 2018, 41, e21.	0.4	2
134	The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain and Neuroscience Advances, 2018, 2, 239821281877182.	1.8	41
135	Greater caregiving risk, better infant memory performance?. Hippocampus, 2018, 28, 497-511.	0.9	17
136	More Than the Sum of Its Parts: A Role for the Hippocampus in Configural Reinforcement Learning. Neuron, 2018, 98, 645-657.e6.	3.8	49
137	Resting-state functional connectivity in children born from gestations complicated by preeclampsia: A pilot study cohort. Pregnancy Hypertension, 2018, 12, 23-28.	0.6	30
138	Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits. Neuropharmacology, 2018, 135, 474-486.	2.0	14
139	Network specialization during adolescence: Hippocampal effective connectivity in boys and girls. Neurolmage, 2018, 175, 402-412.	2.1	18
140	More to episodic memory than epistemic assertion: The role of social bonds and interpersonal connection. Behavioral and Brain Sciences, 2018, 41, e17.	0.4	2
141	Remembered events are unexpected. Behavioral and Brain Sciences, 2018, 41, e9.	0.4	3
142	Doing without metarepresentation: Scenario construction explains the epistemic generativity and privileged status of episodic memory. Behavioral and Brain Sciences, 2018, 41, e34.	0.4	2
143	Morgan's canon is not evidence. Behavioral and Brain Sciences, 2018, 41, e31.	0.4	0
144	The Primacy of Spatial Context in the Neural Representation of Events. Journal of Neuroscience, 2018, 38, 2755-2765.	1.7	63
145	CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nature Communications, 2018, 9, 294.	5.8	140
146	"Truth be toldâ€Â–ÂSemantic memory as the scaffold for veridical communication. Behavioral and Brain Sciences, 2018, 41, e15.	0.4	3
147	An adaptive function of mental time travel: Motivating farsighted decisions. Behavioral and Brain Sciences, 2018, 41, e3.	0.4	9

#	Article	IF	CITATIONS
148	Episodic memory solves both social and nonsocial problems, and evolved to fulfill many different functions. Behavioral and Brain Sciences, 2018, 41, e20.	0.4	3
149	Constructive episodic simulation, flexible recombination, and memory errors. Behavioral and Brain Sciences, 2018, 41, e32.	0.4	5
150	What is it to remember?. Behavioral and Brain Sciences, 2018, 41, e35.	0.4	6
151	Retrieval is central to the distinctive function of episodic memory. Behavioral and Brain Sciences, 2018, 41, e2.	0.4	5
152	Sleep to be social: The critical role of sleep and memory for social interaction. Behavioral and Brain Sciences, 2018, 41, e10.	0.4	2
153	Beyond communication: Episodic memory is key to the self in time. Behavioral and Brain Sciences, 2018, 41, e33.	0.4	1
154	Autonoesis and dissociative identity disorder. Behavioral and Brain Sciences, 2018, 41, e23.	0.4	6
155	What psychology and cognitive neuroscience know about the communicative function of memory. Behavioral and Brain Sciences, 2018, 41, e30.	0.4	0
156	Episodic memory isn't essentially autonoetic. Behavioral and Brain Sciences, 2018, 41, e6.	0.4	1
157	The dynamics of episodic memory functions. Behavioral and Brain Sciences, 2018, 41, e4.	0.4	5
158	Episodic memory must be grounded in reality in order to be useful in communication. Behavioral and Brain Sciences, 2018, 41, e5.	0.4	0
159	Episodic memory is as much about communicating as it is about relating to others. Behavioral and Brain Sciences, 2018, 41, e7.	0.4	1
160	The communicative function of destination memory. Behavioral and Brain Sciences, 2018, 41, e12.	0.4	9
161	Episodic memory and consciousness in antisocial personality disorder and conduct disorder. Behavioral and Brain Sciences, 2018, 41, e13.	0.4	0
162	Episodic memory and the witness trump card. Behavioral and Brain Sciences, 2018, 41, e16.	0.4	4
163	False memories, nonbelieved memories, and the unresolved primacy of communication. Behavioral and Brain Sciences, 2018, 41, e25.	0.4	1
164	Developmental roots of episodic memory. Behavioral and Brain Sciences, 2018, 41, e26.	0.4	0
165	Social place-cells in the bat hippocampus. Science, 2018, 359, 218-224.	6.0	159

~		_	
Γιτλτι	ON	12 FD(DT
CITAT		NLFV	

#	Article		CITATIONS
166	Microglia Activation and Gene Expression Alteration of Neurotrophins in the Hippocampus Following Early-Life Exposure to E-Cigarette Aerosols in a Murine Model. Toxicological Sciences, 2018, 162, 276-286.		56
167	Current Topics Regarding the Function of the Medial Temporal Lobe Memory System. Current Topics in Behavioral Neurosciences, 2018, , 1.	0.8	7
168	Neural measures associated with configural threat acquisition. Neurobiology of Learning and Memory, 2018, 150, 99-106.	1.0	14
169	Enhanced action control as a prior function of episodic memory. Behavioral and Brain Sciences, 2018, 41, e27.	0.4	0
170	Why episodic memory may not be for communication. Behavioral and Brain Sciences, 2018, 41, e8.	0.4	1
171	Misconceptions about adaptive function. Behavioral and Brain Sciences, 2018, 41, e28.	0.4	0
172	Emotional memories and how your life may depend upon them. Behavioral and Brain Sciences, 2018, 41, e11.	0.4	3
173	Crowded environments reduce spatial memory in older but not younger adults. Psychological Research, 2018, 82, 407-428.	1.0	16
174	Scene Construction and Relational Processing: Separable Constructs?. Cerebral Cortex, 2018, 28, 1729-1732.	1.6	26
175	Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 2018, 28, 680-687.	0.9	145
176	Flexible weighting of diverse inputs makes hippocampal function malleable. Neuroscience Letters, 2018, 680, 13-22.	1.0	29
177	The social hippocampus. Hippocampus, 2018, 28, 672-679.	0.9	131
178	Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory. Hippocampus, 2018, 28, 31-41.	0.9	46
179	Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice. Toxicology and Industrial Health, 2018, 34, 23-35.	0.6	15
180	Building concepts one episode at a time: The hippocampus and concept formation. Neuroscience Letters, 2018, 680, 31-38.	1.0	125
181	Psychological Space-Time Reinforcement Sensitivity : A Possibly Missing Link in Eysenck's And Gray's Personality Theories. NeuroQuantology, 2018, 16, .	0.1	0
182	Analysis of an Attractor Neural Network's Response to Conflicting External Inputs. Journal of Mathematical Neuroscience, 2018, 8, 6.	2.4	3
183	Navigating cognition: Spatial codes for human thinking. Science, 2018, 362, .	6.0	371

		CITATION REF	PORT	
#	Article		IF	CITATIONS
184	Alzheimer's Disease, Visual Search, and Instrumental Activities of Daily Living: A Review and Perspective on Attention and Eye Movements. Journal of Alzheimer's Disease, 2018, 66, 901-92	a New 25.	1.2	11
185	A conceptual consideration of the free energy principle in cognitive maps: How cognitive maps reduce surprise. Psychology of Learning and Motivation - Advances in Research and Theory, 20, 205-240.	help 18, 69,	0.5	3
186	Navigating Social Space. Neuron, 2018, 100, 476-489.		3.8	113
187	3D Hippocampal Place Field Dynamics in Free-Flying Echolocating Bats. Frontiers in Cellular Neuroscience, 2018, 12, 270.		1.8	22
188	The cognitive nuances of surprising events: exposure to unexpected stimuli elicits firing variatic neurons of the dorsal CA1 hippocampus. Brain Structure and Function, 2018, 223, 3183-3211	ons in	1.2	8
189	Age-related changes in the relationship between visual exploration and hippocampal activity. Neuropsychologia, 2018, 119, 81-91.		0.7	22
190	Verbal Paired Associates and the Hippocampus: The Role of Scenes. Journal of Cognitive Neuro 2018, 30, 1821-1845.	science,	1.1	27
191	Temporal Dissociation of Neocortical and Hippocampal Contributions to Mental Time Travel Us Intracranial Recordings in Humans. Frontiers in Computational Neuroscience, 2018, 12, 11.	ing	1.2	11
192	The Complex Nature of Hippocampal-Striatal Interactions in Spatial Navigation. Frontiers in Hu Neuroscience, 2018, 12, 250.	nan	1.0	74
193	Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation. Scientific Reports, 2018, 8, 10110.		1.6	21
194	Human spatial representation: what we cannot learn from the studies of rodent navigation. Jou of Neurophysiology, 2018, 120, 2453-2465.	rnal	0.9	10
195	Spatial Representations in the Human Brain. Frontiers in Human Neuroscience, 2018, 12, 297.		1.0	50
196	Progesterone receptor expression in cajalâ€retzius cells of the developing rat dentate gyrus: Po role in hippocampusâ€dependent memory. Journal of Comparative Neurology, 2018, 526, 228	otential 5-2300.	0.9	12
197	The gist and details of sex differences in cognition and the brain: How parallels in sex difference across domains are shaped by the locus coeruleus and catecholamine systems. Progress in Neurobiology, 2019, 176, 120-133.	?S	2.8	23
198	Selective effects of specificity inductions on episodic details: evidence for an event constructio account. Memory, 2019, 27, 250-260.	n	0.9	37
199	Epistemic innocence and the production of false memory beliefs. Philosophical Studies, 2019, 2755-780.	.76,	0.5	4
200	Virtual Reality Visualization Model (VRVM) of the Tricarboxylic Acid (TCA) Cycle of Carbohydrat Metabolism for Medical Biochemistry Education. Journal of Science Education and Technology, 28, 602-612.	e 2019,	2.4	12
201	Hippocampal atrophy and functional connectivity disruption in cirrhotic patients with minimal hepatic encephalopathy. Metabolic Brain Disease, 2019, 34, 1519-1529.		1.4	13

#	Article	IF	CITATIONS
202	Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Auditory Research, 2019, , .	0.3	4
203	Plugging in to Human Memory: Advantages, Challenges, and Insights from Human Single-Neuron Recordings. Cell, 2019, 179, 1015-1032.	13.5	42
204	From Knowing to Remembering: The Semantic–Episodic Distinction. Trends in Cognitive Sciences, 2019, 23, 1041-1057.	4.0	177
205	Structural and Functional MRI Evidence for Distinct Medial Temporal and Prefrontal Roles in Context-dependent Relational Memory. Journal of Cognitive Neuroscience, 2019, 31, 1857-1872.	1.1	22
206	Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Frontiers in Molecular Neuroscience, 2019, 12, 101.	1.4	33
207	Know-how, intellectualism, and memory systems. Philosophical Psychology, 2019, 32, 719-758.	0.5	11
208	Spatial memory and navigation in ageing: A systematic review of MRI and fMRI studies in healthy participants. Neuroscience and Biobehavioral Reviews, 2019, 103, 33-49.	2.9	34
209	Hippocampal BDNF regulates a shift from flexible, goalâ€directed to habit memory system function following cocaine abstinence. Hippocampus, 2019, 29, 1101-1113.	0.9	8
210	Construction and disruption of spatial memory networks during development. Learning and Memory, 2019, 26, 206-218.	0.5	24
211	Remote spatial and autobiographical memory in cases of episodic amnesia and topographical disorientation. Cortex, 2019, 119, 237-257.	1.1	12
212	Forming attitudes via neural activity supporting affective episodic simulations. Nature Communications, 2019, 10, 2215.	5.8	28
213	First-person view of one's body in immersive virtual reality: Influence on episodic memory. PLoS ONE, 2019, 14, e0197763.	1.1	41
214	Functional parcellation of the hippocampus from resting-state dynamic functional connectivity. Brain Research, 2019, 1715, 165-175.	1.1	26
215	Neural representations across species. Science, 2019, 363, 1388-1389.	6.0	13
216	Post-mortem MRI-based volumetry of the hippocampus in forensic cases of decedents with severe mental illness. Forensic Science, Medicine, and Pathology, 2019, 15, 213-217.	0.6	5
217	Attachment Dimensions and Spatial Navigation in Female College Students: The Role of Comfort With Closeness and Confidence in Others. Frontiers in Psychology, 2019, 10, 235.	1.1	1
218	Refining the ecological brain: Strong relation between the ventromedial prefrontal cortex and feeding ecology in five primate species. Cortex, 2019, 118, 262-274.	1.1	23
219	Three brain states in the hippocampus and cortex. Hippocampus, 2019, 29, 184-238.	0.9	49

#	Article	IF	CITATIONS
220	An integrative memory model of recollection and familiarity to understand memory deficits. Behavioral and Brain Sciences, 2019, 42, e281.	0.4	74
221	Involvement of hippocampal subfields and anterior-posterior subregions in encoding and retrieval of item, spatial, and associative memories: Longitudinal versus transverse axis. Neurolmage, 2019, 191, 568-586.	2.1	43
222	Focusing on what matters: Modulation of the human hippocampus by relational attention. Hippocampus, 2019, 29, 1025-1037.	0.9	21
223	There is more to memory than recollection and familiarity. Behavioral and Brain Sciences, 2019, 42, e292.	0.4	0
224	Category specificity in the medial temporal lobe: A systematic review. Hippocampus, 2019, 29, 313-339.	0.9	17
225	The Hippocampus Promotes Effective Saccadic Information Gathering in Humans. Journal of Cognitive Neuroscience, 2019, 31, 186-201.	1.1	22
226	Verbal cues flexibly transform spatial representations in human memory. Memory, 2019, 27, 465-479.	0.9	5
227	What, where and when: spatial foraging decisions in primates. Biological Reviews, 2019, 94, 483-502.	4.7	82
228	Emergence of preconfigured and plastic time-compressed sequences in early postnatal development. Science, 2019, 363, 168-173.	6.0	97
229	Brain activation during human defensive behaviour: A systematic review and preliminary meta-analysis. Neuroscience and Biobehavioral Reviews, 2019, 98, 71-84.	2.9	10
230	Gas chromatographyâ€mass spectrometry based metabolomics profile of hippocampus and cerebellum in mice after chronic arsenic exposure. Environmental Toxicology, 2019, 34, 103-111.	2.1	4
231	Event memory uniquely predicts memory for large-scale space. Memory and Cognition, 2019, 47, 212-228.	0.9	4
232	Using hippocampalâ€dependent eyeblink conditioning to predict individual differences in spatial reorientation strategies in 3―to 6â€yearâ€olds. Developmental Science, 2020, 23, e12867.	1.3	4
233	A review of hippocampal activation in postâ€traumatic stress disorder. Psychophysiology, 2020, 57, e13357.	1.2	36
234	Analyzing trajectories of learning processes through behaviour-based entropy. Journal of Experimental and Theoretical Artificial Intelligence, 2020, 32, 465-501.	1.8	0
235	Update on temporal lobeâ€dependent information processing, in health and disease. European Journal of Neuroscience, 2020, 51, 2159-2204.	1.2	15
236	The Method of Loci in Virtual Reality: Explicit Binding of Objects to Spatial Contexts Enhances Subsequent Memory Recall. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2020, 4, 12-30.	0.8	25
237	Modulation of local field potentials and neuronal activity in primate hippocampus during saccades. Hippocampus, 2020, 30, 192-209.	0.9	22

#	Article	IF	CITATIONS
238	Spatial relational memory in individuals with traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 2020, 42, 14-27.	0.8	11
239	Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nature Communications, 2020, 11, 135.	5.8	102
240	Context-dependent representations of objects and space in the primate hippocampus during virtual navigation. Nature Neuroscience, 2020, 23, 103-112.	7.1	74
241	Grid coding, spatial representation, and navigation: Should we assume an isomorphism?. Hippocampus, 2020, 30, 422-432.	0.9	20
242	The dimensions of episodic simulation. Cognition, 2020, 196, 104085.	1.1	24
243	The core episodic simulation network dissociates as a function of subjective experience and objective content. Neuropsychologia, 2020, 136, 107263.	0.7	32
244	The contributions of spatial context and imagery to the recollection of single words. Hippocampus, 2020, 30, 865-878.	0.9	1
245	Ageâ€related impairment of declarative memory: linking memorization of temporal associations to GluN2B redistribution in dorsal CA1. Aging Cell, 2020, 19, e13243.	3.0	9
246	Map Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps. Neuron, 2020, 107, 1226-1238.e8.	3.8	115
247	Flexible use of allocentric and egocentric spatial memories activates differential neural networks in mice. Scientific Reports, 2020, 10, 11338.	1.6	19
248	Tactile modulation of memory and anxiety requires dentate granule cells along the dorsoventral axis. Nature Communications, 2020, 11, 6045.	5.8	30
249	Efficient Inference in Structured Spaces. Cell, 2020, 183, 1147-1148.	13.5	0
251	Internal threats to police wellness. , 2020, , 29-36.		0
252	The neurobiology of police health, resilience, and wellness. , 2020, , 77-96.		0
253	Relational Memory at Short and Long Delays in Individuals With Moderate-Severe Traumatic Brain Injury. Frontiers in Human Neuroscience, 2020, 14, 270.	1.0	11
254	Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 2020, 21, 453-470.	4.9	93
255	HippoBellum: Acute Cerebellar Modulation Alters Hippocampal Dynamics and Function. Journal of Neuroscience, 2020, 40, 6910-6926.	1.7	31
256	Calcium Imaging in Drug Discovery for Psychiatric Disorders. Frontiers in Psychiatry, 2020, 11, 713.	1.3	6

	CHATION	REPORT	
#	Article	IF	CITATIONS
257	Piecing Together Cognitive Maps One Dimension at a Time. Neuron, 2020, 107, 996-999.	3.8	2
258	Neural Circuits of Innate Behaviors. Advances in Experimental Medicine and Biology, 2020, , .	0.8	3
259	Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Brain Stimulation, 2020, 13, 1535-1547.	0.7	14
260	Primary Cognitive Categories Are Determined by Their Invariances. Frontiers in Psychology, 2020, 11, 584017.	1.1	1
261	Mapping Worlds: Tolkien's Cartographic Imagination. , 2020, , 199-236.		0
263	Historicising the Fictional Map. , 2020, , 44-91.		0
264	Doubleness and Silence in Adventure and Spy Fiction. , 2020, , 92-126.		0
265	Playspace: Spatialising Children's Fiction. , 2020, , 164-198.		0
266	No Pattern Separation in the Human Hippocampus. Trends in Cognitive Sciences, 2020, 24, 994-1007.	4.0	36
267	Fearing the Map: Representational Priorities and Referential Assumptions. , 2020, , 237-272.		0
268	Mapping Murder. , 2020, , 127-163.		0
269	The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell, 2020, 183, 1249-1263.e23.	13.5	259
271	The Medial Temporal Lobe Is Critical for Spatial Relational Perception. Journal of Cognitive Neuroscience, 2020, 32, 1780-1795.	1.1	17
272	Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations. Nature Communications, 2020, 11, 2217.	5.8	54
273	The role of the pre-commissural fornix in episodic autobiographical memory and simulation. Neuropsychologia, 2020, 142, 107457.	0.7	20
274	Episodic mindreading: Mentalizing guided by scene construction of imagined and remembered events. Cognition, 2020, 203, 104325.	1.1	13
275	Dynamic causal modeling of hippocampal activity measured via mesoscopic voltage-sensitive dye imaging. NeuroImage, 2020, 213, 116755.	2.1	1
276	Distinct Mechanisms of Over-Representation of Landmarks and Rewards in the Hippocampus. Cell Reports, 2020, 32, 107864.	2.9	45

#	Article	IF	Citations
277	A Shifting Relationship: From Literary Geography to Critical Literary Mapping. , 2020, , 16-43.		1
278	Reading As Mapping, or, What Cannot Be Visualised. , 2020, , 273-306.		0
279	The Hippocampal Cognitive Map: One Space or Many?. Trends in Cognitive Sciences, 2020, 24, 168-170.	4.0	28
280	Elucidating the role of protein synthesis in hippocampusâ€dependent memory consolidation across the day and night. European Journal of Neuroscience, 2021, 54, 6972-6981.	1.2	14
281	Developmental regulation and lateralisation of the α7 and α4 subunits of nicotinic acetylcholine receptors in developing rat hippocampus. International Journal of Developmental Neuroscience, 2020, 80, 303-318.	0.7	14
282	Contextual Codes in the Hippocampus. Trends in Neurosciences, 2020, 43, 357-359.	4.2	1
283	Searching for the neural correlates of human intelligence. Current Biology, 2020, 30, R335-R338.	1.8	3
284	Sirt7-p21 Signaling Pathway Mediates Glucocorticoid-Induced Inhibition of Mouse Neural Stem Cell Proliferation. Neurotoxicity Research, 2021, 39, 444-455.	1.3	6
285	An Important Step toward Understanding the Role of Body-based Cues on Human Spatial Memory for Large-Scale Environments. Journal of Cognitive Neuroscience, 2021, 33, 167-179.	1.1	13
286	The Ontogeny of Hippocampus-Dependent Memories. Journal of Neuroscience, 2021, 41, 920-926.	1.7	33
287	Meta-Analysis of white matter diffusion tensor imaging alterations in borderline personality disorder. Psychiatry Research - Neuroimaging, 2021, 307, 111205.	0.9	3
288	Altered structure and functional connectivity of the hippocampus are associated with social and mathematical difficulties in nonverbal learning disability. Hippocampus, 2021, 31, 79-88.	0.9	10
289	Crucial role for CA2 inputs in the sequential organization of CA1 time cells supporting memory. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
290	Vision-Based Topological Mapping and Navigation With Self-Organizing Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7101-7113.	7.2	4
291	Aha! I know where I am: the contribution of visuospatial cues to reorientation in urban environments. Spatial Cognition and Computation, 0, , 1-38.	0.6	4
292	Goalâ€directed interaction of stimulus and task demand in the parahippocampal region. Hippocampus, 2021, 31, 717-736.	0.9	14
293	Cholinergic modulation of hippocampally mediated attention and perception Behavioral Neuroscience, 2021, 135, 51-70.	0.6	6
294	Predictive learning as a network mechanism for extracting low-dimensional latent space representations. Nature Communications, 2021, 12, 1417.	5.8	35

#	Article	IF	CITATIONS
295	Activation of the dorsal, but not the ventral, hippocampus relieves neuropathic pain in rodents. Pain, 2021, 162, 2865-2880.	2.0	27
296	Mental representations distinguish value-based decisions from perceptual decisions. Psychonomic Bulletin and Review, 2021, 28, 1413-1422.	1.4	7
297	Concept formation as a computational cognitive process. Current Opinion in Behavioral Sciences, 2021, 38, 83-89.	2.0	18
298	Characterising the hippocampal response to perception, construction and complexity. Cortex, 2021, 137, 1-17.	1.1	18
299	Effects of orbitofrontal cortex and ventral hippocampus disconnection on spatial reversal learning. Neuroscience Letters, 2021, 750, 135711.	1.0	4
300	Binding objects to their spatiotemporal context: Age gradient and neuropsychological correlates of <i>What-Where-When</i> task performance. Applied Neuropsychology Adult, 2023, 30, 214-226.	0.7	0
301	Local circuit allowing hypothalamic control of hippocampal area CA2 activity and consequences for CA1. ELife, 2021, 10, .	2.8	22
302	Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Molecular Psychiatry, 2022, 27, 403-421.	4.1	35
303	Exposure to RF-EMF Alters Postsynaptic Structure and Hinders Neurite Outgrowth in Developing Hippocampal Neurons of Early Postnatal Mice. International Journal of Molecular Sciences, 2021, 22, 5340.	1.8	11
304	Extensive long-term verbal memory training is associated with brain plasticity. Scientific Reports, 2021, 11, 9712.	1.6	2
305	Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Research Reviews, 2021, 67, 101307.	5.0	62
306	Parcellation of the Hippocampus According to Its Connection Probability with Prefrontal Cortex Subdivisions in a Malaysian Malay Population: Preliminary Findings. The Malaysian Journal of Medical Sciences, 2021, 28, 65-76.	0.3	1
307	How Are Memories Stored in the Human Hippocampus?. Trends in Cognitive Sciences, 2021, 25, 425-426.	4.0	5
309	Geometry of abstract learned knowledge in the hippocampus. Nature, 2021, 595, 80-84.	13.7	155
310	Do hippocampal pyramidal cells respond to nonspatial stimuli?. Physiological Reviews, 2021, 101, 1427-1456.	13.1	49
311	Common and Distinct Roles of Frontal Midline Theta and Occipital Alpha Oscillations in Coding Temporal Intervals and Spatial Distances. Journal of Cognitive Neuroscience, 2021, 33, 2311-2327.	1.1	19
313	A Second Wave for the Neurokinin Tac2 Pathway in Brain Research. Biological Psychiatry, 2021, 90, 156-164.	0.7	6
314	The grid code for ordered experience. Nature Reviews Neuroscience, 2021, 22, 637-649.	4.9	31

#	Article	IF	CITATIONS
316	Inferences on a multidimensional social hierarchy use a grid-like code. Nature Neuroscience, 2021, 24, 1292-1301.	7.1	66
317	Cognitive maps of social features enable flexible inference in social networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
318	Orientation selectivity enhances context generalization and generative predictive coding in the hippocampus. Neuron, 2021, 109, 3688-3698.e6.	3.8	6
319	Hippocampal Influences on Movements, Sensory, and Language Processing: A Role in Cognitive Control?. , 0, , .		1
320	The influence of estradiol andÂprogesterone on neurocognition during three phases of the menstrual cycle: Modulating factors. Behavioural Brain Research, 2022, 417, 113593.	1.2	16
321	Hippocampal asymmetry and regional dispersal of nAChRs alpha4 and alpha7 subtypes in the adult rat. Journal of Chemical Neuroanatomy, 2021, 116, 101977.	1.0	3
322	Beyond Long-Term Declarative Memory: Evaluating Hippocampal Contributions to Unconscious Memory Expression, Perception, and Short-Term Retention. , 2017, , 281-336.		11
323	Memory, Relational Representations, and the Long Reach of the Hippocampus. , 2017, , 337-366.		3
324	Escaping the Past: Contributions of the Hippocampus to Future Thinking and Imagination. , 2017, , 439-465.		32
325	The Hippocampus and Social Cognition. , 2017, , 537-558.		22
326	Sportaktivitä, Stress und das Gehirn. , 2018, , 275-291.		2
327	Empathic responding and hippocampal volume in young children Developmental Psychology, 2019, 55, 1908-1920.	1.2	14
328	Relational processing demands and the role of spatial context in the construction of episodic simulations Journal of Experimental Psychology: Learning Memory and Cognition, 2020, 46, 1424-1441.	0.7	14
329	Sleep Supports Memory and Learning: Implications for Clinical Practice in Speech-Language Pathology. American Journal of Speech-Language Pathology, 2020, 29, 577-585.	0.9	10
330	New Directions in Cognitive-Environmental Research. Journal of the American Planning Association, 2018, 84, 263-275.	0.9	21
341	Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. Korean Journal of Physiology and Pharmacology, 2018, 22, 277.	0.6	18
342	Canine emotions as seen through human social cognition. Animal Sentience, 2017, 2, .	0.3	16
343	What can vigilance tell us about fear?. Animal Sentience, 2017, 2, .	0.3	16

#		IC	CITATIONS
# 344	Hippocampal place cells construct reward related sequences through unexplored space. ELife, 2015, 4, e06063.	2.8	206
345	Cell-specific synaptic plasticity induced by network oscillations. ELife, 2016, 5, .	2.8	35
346	An event map of memory space in the hippocampus. ELife, 2016, 5, .	2.8	180
347	A map of abstract relational knowledge in the human hippocampal–entorhinal cortex. ELife, 2017, 6, .	2.8	259
348	Grid-cell representations in mental simulation. ELife, 2016, 5, .	2.8	123
349	How many neurons are sufficient for perception of cortical activity?. ELife, 2020, 9, .	2.8	82
350	Convergence of cortical types and functional motifs in the human mesiotemporal lobe. ELife, 2020, 9, .	2.8	46
351	Mixing memory and desire: How memory reactivation supports deliberative decisionâ€making. Wiley Interdisciplinary Reviews: Cognitive Science, 2022, 13, e1581.	1.4	6
352	Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus. Neuron, 2022, 110, 96-108.e4.	3.8	33
353	How Animals Find Their Way in Space. Experiments and Modeling. Mathematical Biology and Bioinformatics, 2015, 10, 88-115.	0.1	1
354	Sportaktivitä, Stress und das Gehirn. , 2016, , 1-22.		0
356	Optogenetic Methods to Study Lateralized Synaptic Function. Neuromethods, 2017, , 331-365.	0.2	0
357	Medial Temporal Lobe. , 2017, , 1-4.		0
359	The fish in the creek is sentient, even if I can't speak with it. Trans/Form/Acao, 2018, 41, 119-152.	0.0	0
364	Lines and Boxes: The Geometry of Thought. The Frontiers Collection, 2019, , 247-251.	0.1	0
373	Hippocampal acidity and volume are differentially associated with spatial navigation in older adults. NeuroImage, 2021, 245, 118682.	2.1	3
374	Spatial Navigation. Advances in Experimental Medicine and Biology, 2020, 1284, 63-90.	0.8	4
375	Themes of advanced information processing in the primate brain Running title: Information processing across cerebral cortex . AIMS Neuroscience, 2020, 7, 373-388.	1.0	5

#	Article	IF	CITATIONS
376	Human variation in error-based and reinforcement motor learning is associated with entorhinal volume. Cerebral Cortex, 2022, 32, 3423-3440.	1.6	7
380	Long-lasting Postnatal Sensory Deprivation Alters Dendritic Morphology of Pyramidal Neurons in the Rat Hippocampus: Behavioral Correlates. Neuroscience, 2022, 480, 79-96.	1.1	3
381	Differential association of cortisol with visual memory/learning and executive function in Bipolar Disorder. Psychiatry Research, 2022, 307, 114301.	1.7	2
382	Are metaphors embodied? The neural evidence. Psychological Research, 2022, 86, 2417-2433.	1.0	14
383	Should context hold a special place in hippocampal memory?. Psychology of Learning and Motivation - Advances in Research and Theory, 2021, 75, 1-35.	0.5	3
384	Functional outcomes of copy number variations of Chrna7 gene. , 2022, , 269-306.		0
385	Novel measures of Morris water maze performance that use vector field maps to assess accuracy, uncertainty, and intention of navigational searches. Hippocampus, 2022, 32, 264-285.	0.9	2
386	Planning in the brain. Neuron, 2022, 110, 914-934.	3.8	37
387	Multiple-Timescale Representations of Space: Linking Memory to Navigation. Annual Review of Neuroscience, 2022, 45, 1-21.	5.0	5
388	Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping. Neuron, 2022, 110, 1547-1558.e8.	3.8	50
389	Transforming social perspectives with cognitive maps. Social Cognitive and Affective Neuroscience, 2022, 17, 939-955.	1.5	3
390	Distinct networks coupled with parietal cortex for spatial representations inside and outside the visual field. NeuroImage, 2022, 252, 119041.	2.1	5
391	From Action to Cognition: Neural Reuse, Network Theory and the Emergence of Higher Cognitive Functions. Brain Sciences, 2021, 11, 1652.	1.1	12
393	A Virtual Navigation Training Promotes the Remapping of Space in Allocentric Coordinates: Evidence From Behavioral and Neuroimaging Data. Frontiers in Human Neuroscience, 2022, 16, 693968.	1.0	7
404	Abstract task representations for inference and control. Trends in Cognitive Sciences, 2022, 26, 484-498.	4.0	19
405	Taking stock of value in the orbitofrontal cortex. Nature Reviews Neuroscience, 2022, 23, 428-438.	4.9	32
406	The Neural Circuit Architecture of Social Hierarchy in Rodents and Primates. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	11
407	Medial Temporal Lobe. , 2022, , 4157-4161.		0

#	Article	IF	Citations
408	Investigating the relationship between spatial and social cognitive maps in humans. Journal of Environmental Psychology, 2022, 81, 101827.	2.3	2
409	What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Current Opinion in Neurobiology, 2022, 75, 102568.	2.0	7
410	Virtual navigation in healthy aging: Activation during learning and deactivation during retrieval predicts successful memory for spatial locations. Neuropsychologia, 2022, 173, 108298.	0.7	0
411	The role of serotonin in declarative memory: A systematic review of animal and human research. Neuroscience and Biobehavioral Reviews, 2022, 139, 104729.	2.9	14
412	A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. Cerebellum, 2022, 21, 826-837.	1.4	16
414	Neural Oscillations in Aversively Motivated Behavior. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	12
415	Temporal order memory impairments in individuals with moderate-severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 0, , 1-16.	0.8	1
416	Episodic representation: A mental models account. Frontiers in Psychology, 0, 13, .	1.1	2
417	Trace classical conditioning impairment after lesion of the lateral part of the goldfish telencephalic pallium suggests a long ancestry of the episodic memory function of the vertebrate hippocampus. Brain Structure and Function, 0, , .	1.2	1
418	How Imagination and Memory Shape the Moral Mind. Personality and Social Psychology Review, 2023, 27, 226-249.	3.4	3
419	Non-spatial similarity can bias spatial distances in a cognitive map. Cognition, 2022, 229, 105251.	1.1	1
420	Episodic Memory and Schizophrenia: From Characterization of Relational Memory Impairments to Neuroimaging Biomarkers. Current Topics in Behavioral Neurosciences, 2022, , 115-136.	0.8	1
421	How songs from growing up and viewers' attachment styles affect video ads' effectiveness. Psychology and Marketing, 0, , .	4.6	5
422	Imagination as a fundamental function of the hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	15
424	Neural Correlates of Spatial Navigation in Primate Hippocampus. Neuroscience Bulletin, 2023, 39, 315-327.	1.5	4
425	Reconciling neuronal representations of schema, abstract task structure, and categorization under cognitive maps in the entorhinal-hippocampal-frontal circuits. Current Opinion in Neurobiology, 2022, 77, 102641.	2.0	7
426	Object weight can be rapidly predicted, with low cognitive load, by exploiting learned associations between the weights and locations of objects. Journal of Neurophysiology, 2023, 129, 285-297.	0.9	2
428	Does path integration contribute to human navigation in large-scale space?. Psychonomic Bulletin and Review, 0, , .	1.4	3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
429	Mental navigation and the neural mechanisms of insight. Trends in Neurosciences, 202	3, 46, 100-109.	4.2	7
430	The chicken and egg problem of grid cells and place cells. Trends in Cognitive Sciences, 125-138.	2023, 27,	4.0	9
431	Empowering episodic memory through a model-based egocentric navigational training. Research, 0, , .	Psychological	1.0	1
432	Kinematic strategies for obstacle-crossing in older adults with mild cognitive impairmer in Aging Neuroscience, 0, 14, .	nt. Frontiers	1.7	2
433	Age, Education Years, and Biochemical Factors Are Associated with Selective Neuronal Elderly Hippocampus. Cells, 2022, 11, 4033.	Changes in the	1.8	3
434	Compensatory cognition in neurological diseases and aging: A review of animal and hu Aging Brain, 2023, 3, 100061.	man studies.	0.7	3
435	Contextual and pure time coding for self and other in the hippocampus. Nature Neuros 285-294.	cience, 2023, 26,	7.1	3
436	Verbal recall in amnesia: Does scene construction matter?. Neuropsychologia, 2023, 18	34, 108543.	0.7	0
439	Voluntary running-induced activation of ventral hippocampal GABAergic interneurons c exercise-induced hypoalgesia in neuropathic pain model mice. Scientific Reports, 2023,	ontributes to 13, .	1.6	1
441	A local circuit-basis for spatial navigation and memory processes in hippocampal area C Opinion in Neurobiology, 2023, 79, 102701.	A1. Current	2.0	6
442	Hippocampal conjunctive and complementary CA1 populations relate sensory events to IScience, 2023, 26, 106481.	o movement.	1.9	2
443	An integrative view of human hippocampal function: Differences with other species and considerations. Hippocampus, 2023, 33, 616-634.	l capacity	0.9	7
444	"Mental mapsâ€ $$$ Between memorial transcription and symbolic projection. Frontier 14, .	s in Psychology, 0,	1.1	0
445	Generalization of cognitive maps across space and time. Cerebral Cortex, 2023, 33, 79	71-7992.	1.6	3
447	From safety to frustration: The neural substrates of inhibitory learning in aversive and a conditioning procedures. Neurobiology of Learning and Memory, 2023, 202, 107757.	ppetitive	1.0	1
448	Using multiâ€ŧask experiments to test principles of hippocampal function. Hippocampi	us, 0, , .	0.9	1
449	Every individual makes a difference: A trinity derived from linking individual brain morph connectivity and mentalising ability. Human Brain Mapping, 2023, 44, 3343-3358.	iometry,	1.9	3
450	Single neurons in the human medial temporal lobe flexibly shift representations across memory tasks. Hippocampus, 2023, 33, 600-615.	spatial and	0.9	6

#	Article	IF	CITATIONS
463	Introductory Chapter: A Brief Survey of the Functional Roles of the Hippocampus. , 0, , .		0
471	Electrophysiological recordings in rodents during spatial navigation: Single neuron recordings. , 2023, , .		0
477	The generative grammar of the brain: a critique of internally generated representations. Nature Reviews Neuroscience, 2024, 25, 60-75.	4.9	1
491	Studies of hippocampal function in non-human primates. , 2024, , .		0