Dynamical Learning and Tracking of Tremor and Dyski

IEEE Transactions on Neural Systems and Rehabilitation Engin 22, 982-991

DOI: 10.1109/tnsre.2014.2310904

Citation Report

#	Article	IF	CITATIONS
1	Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Sensors, 2015, 15, 25055-25071.	2.1	114
2	A novel method for assessing the severity of levodopa-induced dyskinesia using wearable sensors. , 2015, 2015, 8087-90.		12
3	Body-Fixed Sensors for Parkinson Disease. JAMA - Journal of the American Medical Association, 2015, 314, 873.	3.8	24
4	Recent Advances in Wearable Sensors for Health Monitoring. IEEE Sensors Journal, 2015, 15, 3119-3126.	2.4	250
5	Assessing Motor Fluctuations in Parkinson's Disease Patients Based on a Single Inertial Sensor. Sensors, 2016, 16, 2132.	2.1	34
6	Progress in Biomedical Knowledge Discovery: A 25-year Retrospective. Yearbook of Medical Informatics, 2016, 25, S117-S29.	0.8	9
7	Wearable Wireless Sensors for Rehabilitation. , 2016, , 605-615.		3
8	Arm swing as a potential new prodromal marker of Parkinson's disease. Movement Disorders, 2016, 31, 1527-1534.	2.2	136
9	A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson's disease. Journal of Biomedical Informatics, 2016, 60, 169-176.	2.5	70
10	Weakly-supervised learning for Parkinson's Disease tremor detection. , 2017, 2017, 143-147.		14
11	Computer Assisted System for Predicting Human Behavior using Time Delay Neural Networks. , 2017, , .		1
12	Quantitative assessment of parkinsonian tremor based on a linear acceleration extraction algorithm. Biomedical Signal Processing and Control, 2018, 42, 53-62.	3.5	15
13	Rest tremor quantification based on fuzzy inference systems and wearable sensors. International Journal of Medical Informatics, 2018, 114, 6-17.	1.6	33
14	Pronation and supination analysis based on biomechanical signals from Parkinson's disease patients. Artificial Intelligence in Medicine, 2018, 84, 7-22.	3.8	20
15	Electromyogram. , 2018, , 83-100.		0
16	Seamless Healthcare Monitoring. , 2018, , .		14
17	Predicting Severity Of Parkinson's Disease Using Deep Learning. Procedia Computer Science, 2018, 132, 1788-1794.	1.2	137
18	Probabilistic Methods for Analyzing and Measuring Tremor in Humans. , 2018, , .		0

#	Article	IF	CITATIONS
19	Upper and Lower Limbs Dyskinesia Detection for Patients with Parkinsonâ \in Ms Disease. , 2018, , .		0
20	Monitoring Motor Symptoms During Activities of Daily Living in Individuals With Parkinson's Disease. Frontiers in Neurology, 2018, 9, 1036.	1.1	70
21	Wearable sensors for the monitoring of movement disorders. Biomedical Journal, 2018, 41, 249-253.	1.4	46
22	The influenza chronicles: From the 1918 pandemic to current understanding of host defense mechanisms. Biomedical Journal, 2018, 41, 211-214.	1.4	0
23	Upper Limbs Dyskinesia Detection and Classification for Patients with Parkinson's Disease based on Consumer Electronics Devices. , 2018, , .		1
24	A novel analytical approach to assess dyskinesia in patients with Parkinson disease. , 2018, , .		6
25	Personalised profiling to identify clinically relevant changes in tremor due to multiple sclerosis. BMC Medical Informatics and Decision Making, 2019, 19, 162.	1.5	7
26	Measuring Parkinson's disease over time: The realâ€world withinâ€subject reliability of the MDSâ€UPDRS. Movement Disorders, 2019, 34, 1480-1487.	2.2	100
27	Multivariate Multi-step Deep Learning Time Series Approach in Forecasting Parkinson's Disease Future Severity Progression. , 2019, , .		3
28	Evaluation of Parkinson's Disease at Home: Predicting Tremor from Wearable Sensors. , 2019, 2019, 584-587.		17
29	sEMG-Based Tremor Severity Evaluation for Parkinson's Disease Using a Light-Weight CNN. IEEE Signal Processing Letters, 2019, 26, 637-641.	2.1	26
30	Wearable Sensors System for an Improved Analysis of Freezing of Gait in Parkinson's Disease Using Electromyography and Inertial Signals. Sensors, 2019, 19, 948.	2.1	51
31	A Multi-Layer Gaussian Process for Motor Symptom Estimation in People With Parkinson's Disease. IEEE Transactions on Biomedical Engineering, 2019, 66, 3038-3049.	2.5	5
32	Computer model for leg agility quantification and assessment for Parkinson's disease patients. Medical and Biological Engineering and Computing, 2019, 57, 463-476.	1.6	10
33	Real time estimation and suppression of hand tremor for surgical robotic applications. Microsystem Technologies, 2022, 28, 305-311.	1.2	6
34	Predicting the occurrence of wrist tremor based on electromyography using a hidden Markov model and entropy based learning algorithm. Biomedical Signal Processing and Control, 2020, 57, 101739.	3.5	13
35	Comparing laboratory and in-the-wild data for continuous Parkinson's Disease tremor detection. , 2020, 2020, 5436-5441.		7
36	Classification of Fatigue Phases in Healthy and Diabetic Adults Using Wearable Sensor. Sensors, 2020, 20, 6897.	2.1	10

CITATION REPORT

	Сітатіої	CITATION REPORT	
#	Article	IF	CITATIONS
37	Automated Stage Discrimination of Parkinson $\hat{a} \in \mathbb{M}$ s Disease. BIO Integration, 2020, 1, .	0.9	2
38	Fuzzy inference model based on triaxial signals for pronation and supination assessment in Parkinson's disease patients. Artificial Intelligence in Medicine, 2020, 105, 101873.	3.8	5
39	Remote tracking of Parkinson's Disease progression using ensembles of Deep Belief Network and Self-Organizing Map. Expert Systems With Applications, 2020, 159, 113562.	4.4	49
40	Monitoring and Assessment of Rehabilitation Progress on Range of Motion After Total Knee Replacement by Sensor-Based System. Sensors, 2020, 20, 1703.	2.1	18
41	Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. Npj Digital Medicine, 2020, 3, 5.	5.7	78
42	Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson's Disease in the Home or a Home-like Environment. Journal of Parkinson's Disease, 2020, 10, 429-454.	1.5	43
43	Role of data measurement characteristics in the accurate detection of Parkinson's disease symptoms using wearable sensors. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 52.	2.4	49
44	Validation of Inertial Sensing-Based Wearable Device for Tremor and Bradykinesia Quantification. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 997-1005.	3.9	37
45	Automatic Resting Tremor Assessment in Parkinson's Disease Using Smartwatches and Multitask Convolutional Neural Networks. Sensors, 2021, 21, 291.	2.1	43
46	Ambulatory surface electromyography with accelerometry for evaluating daily motor fluctuations in Parkinson's disease. Clinical Neurophysiology, 2021, 132, 469-479.	0.7	4
47	Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson's disease. Science Translational Medicine, 2021, 13, .	5.8	108
49	A-WEAR Bracelet for Detection of Hand Tremor and Bradykinesia in Parkinson's Patients. Sensors, 2021, 21, 981.	2.1	34
50	SVM-Based Gait Analysis and Classification for Patients with Parkinsonâ \in $^{ m Ms}$ Disease. , 2021, , .		0
51	Prediction of Parkinson's disease and severity of the disease using Machine Learning and Deep Learning algorithm. , 2021, , .		9
52	Wearable Devices for Assessment of Tremor. Frontiers in Neurology, 2021, 12, 680011.	1.1	22
53	Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artificial Intelligence in Medicine, 2021, 117, 102081.	3.8	53
54	Task-Oriented Intelligent Solution to Measure Parkinson's Disease Tremor Severity. Journal of Healthcare Engineering, 2021, 2021, 1-15.	1.1	4
55	Prediction of Parkinson's Disease Severity Based on Gait Signals Using a Neural Network and the Fast Fourier Transform. Advances in Intelligent Systems and Computing, 2021, , 3-18.	0.5	10

CITATION REPORT

#	Article	IF	CITATIONS
56	A classification system for assessment and home monitoring of tremor in patients with Parkinson's disease. Journal of Medical Signals and Sensors, 2018, 8, 65.	0.5	16
57	Telemedicine for Hyperkinetic Movement Disorders. Tremor and Other Hyperkinetic Movements, 2020, 10, .	1.1	25
58	Sensors for Context-Aware Smart Healthcare: A Security Perspective. Sensors, 2021, 21, 6886.	2.1	23
60	Keyboard typing for the detection of early Parkinson's disease. , 2020, , 331-344.		0
61	Learning fine-grained estimation of physiological states from coarse-grained labels by distribution restoration. Scientific Reports, 2020, 10, 21947.	1.6	3
62	A Classification System for Assessment and Home Monitoring of Tremor in Patients with Parkinson's Disease. Journal of Medical Signals and Sensors, 2018, 8, 65-72.	0.5	12
63	Enhanced Parkinson's Disease Tremor Severity Classification by Combining Signal Processing with Resampling Techniques. SN Computer Science, 2022, 3, 1.	2.3	8
64	Gesture Recognition Wristband Device with Optimised Piezoelectric Energy Harvesters. , 2020, , .		0
65	Internet of Things Technologies and Machine Learning Methods for Parkinson's Disease Diagnosis, Monitoring and Management: A Systematic Review. Sensors, 2022, 22, 1799.	2.1	33
66	Remote Assessments of Hand Function in Neurological Disorders: Systematic Review. JMIR Rehabilitation and Assistive Technologies, 2022, 9, e33157.	1.1	12
67	Machine learning in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine, 2022, 145, 105458.	3.9	155
68	Parkinson's disease aided diagnosis: online symptoms detection by a low-cost wearable Inertial Measurement Unit. , 2022, , .		4
69	Development and Assessment of a Movement Disorder Simulator Based on Inertial Data. Sensors, 2022, 22, 6341.	2.1	5
70	A comparison of an implanted accelerometer with a wearable accelerometer for closed-loop DBS. , 2022, , .		1
71	In-Memory Tactile Sensor with Tunable Steep-Slope Region for Low-Artifact and Real-Time Perception of Mechanical Signals. ACS Nano, 2023, 17, 2134-2147.	7.3	5
72	Hand Movement Recognition and Salient Tremor Feature Extraction With Wearable Devices in Parkinson's Patients. IEEE Transactions on Cognitive and Developmental Systems, 2024, 16, 284-295.	2.6	1
73	A Novel System to Monitor Tic Attacks for Tourette Syndrome Using Machine Learning and Wearable Technology: Preliminary Survey Study and Proposal for a New Sensing Device. , 0, 2, e43351.		0
74	Machine Learning in Tremor Analysis: Critique and Directions. Movement Disorders, 2023, 38, 717-731.	2.2	7

	CITATION	on Report	
#	Article	IF	CITATIONS
75	Specific Distribution of Digital Gait Biomarkers in Parkinson's disease Using Body-Worn Sensors and Machine Learning. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 0, , .	1.7	0
82	Medical professional's viewpoint and clinical adoption. , 2024, , 27-37.		0