Compressible Carbon Nanotube–Graphene Hybrid Ae Superoleophilicity for Oil Sorption

Environmental Science and Technology Letters 1, 214-220 DOI: 10.1021/ez500021w

Citation Report

#	Article	IF	CITATIONS
1	Continuous oil–water separation with surface modified sponge for cleanup of oil spills. RSC Advances, 2014, 4, 53514-53519.	1.7	53
2	Recent advances in the potential applications of bioinspired superhydrophobic materials. Journal of Materials Chemistry A, 2014, 2, 16319-16359.	5.2	490
3	Biodegradable Material for the Absorption of Organic Compounds and Nanoparticles. Biomacromolecules, 2014, 15, 3321-3327.	2.6	8
4	A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery. Small, 2015, 11, 5222-5229.	5.2	177
5	Synthesis and Modification of Carbon Nanomaterials utilizing Microwave Heating. Advanced Materials, 2015, 27, 4113-4141.	11.1	251
6	Bubbleâ€Decorated Honeycombâ€Like Graphene Film as Ultrahigh Sensitivity Pressure Sensors. Advanced Functional Materials, 2015, 25, 6545-6551.	7.8	189
7	Facile Approach toward the Fabrication of Superhydrophobic and Superoleophilic Sponges for the Removal of Oil from Oil/Water Mixtures. Bulletin of the Korean Chemical Society, 2015, 36, 2158-2161.	1.0	1
8	Hydrophobic and fire-resistant carbon monolith from melamine sponge: A recyclable sorbent for oil–water separation. Carbon, 2015, 84, 551-559.	5.4	84
9	Carbon foam: Preparation and application. Carbon, 2015, 87, 128-152.	5.4	347
10	A superhydrophobic monolithic material with tunable wettability for oil and water separation. Journal of Materials Science, 2015, 50, 2365-2369.	1.7	54
11	A superhydrophobic poly(dimethylsiloxane)-TiO2 coated polyurethane sponge for selective absorption of oil from water. Materials Chemistry and Physics, 2015, 162, 94-99.	2.0	49
12	Ternary silicone sponge with enhanced mechanical properties for oil–water separation. Polymer Chemistry, 2015, 6, 5869-5875.	1.9	62
13	Highly Hydrophobic, Compressible, and Magnetic Polystyrene/Fe ₃ O ₄ /Graphene Aerogel Composite for Oil–Water Separation. Industrial & Engineering Chemistry Research, 2015, 54, 5460-5467.	1.8	134
14	High internal phase emulsion (HIPE) xerogels for enhanced oil spill recovery. Journal of Materials Chemistry A, 2015, 3, 1906-1909.	5.2	66
15	A Pure Inorganic ZnO-Co3O4 Overlapped Membrane for Efficient Oil/Water Emulsions Separation. Scientific Reports, 2015, 5, 9688.	1.6	72
16	Synthesis of a Novel Highly Oleophilic and Highly Hydrophobic Sponge for Rapid Oil Spill Cleanup. ACS Applied Materials & Interfaces, 2015, 7, 25326-25333.	4.0	167
17	Versatile fabrication of magnetic superhydrophobic foams and application for oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 687-692.	2.3	55
18	Oil sorption by exfoliated graphite from dilute oil–water emulsion for practical applications in produced water treatments. Journal of Water Process Engineering, 2015, 8, 91-98.	2.6	26

#	Article	IF	CITATIONS
19	Biodegradable polylactic acid porous monoliths as effective oil sorbents. Composites Science and Technology, 2015, 118, 9-15.	3.8	46
20	Double biomimetic fabrication of robustly superhydrophobic cotton fiber and its application in oil spill cleanup. Industrial Crops and Products, 2015, 77, 36-43.	2.5	44
21	Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 20113-20117.	5.2	101
22	Preparation and characterization of graphite foams. Journal of Industrial and Engineering Chemistry, 2015, 32, 21-33.	2.9	47
23	Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nature Communications, 2015, 6, 8849.	5.8	658
24	Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup. ACS Applied Materials & Interfaces, 2015, 7, 26184-26194.	4.0	75
25	Facile and scalable production of three-dimensional spherical carbonized bacterial cellulose/graphene nanocomposites with a honeycomb-like surface pattern as potential superior absorbents. Journal of Materials Chemistry A, 2015, 3, 24389-24396.	5.2	51
26	Under seawater superoleophobic PVDF membrane inspired by polydopamine for efficient oil/seawater separation. Journal of Membrane Science, 2015, 476, 321-329.	4.1	146
27	Graphene Foam with Switchable Oil Wettability for Oil and Organic Solvents Recovery. Advanced Functional Materials, 2015, 25, 597-605.	7.8	138
28	Environmental Applications of Three-Dimensional Graphene-Based Macrostructures: Adsorption, Transformation, and Detection. Environmental Science & Technology, 2015, 49, 67-84.	4.6	491
29	Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small, 2016, 12, 2186-2202.	5.2	719
30	A Robust Absorbent Material Based on Lightâ€Responsive Superhydrophobic Melamine Sponge for Oil Recovery. Advanced Materials Interfaces, 2016, 3, 1500683.	1.9	96
31	Toluene diisocyanate based phase-selective supramolecular oil gelator for effective removal of oil spills from polluted water. Chemosphere, 2016, 153, 485-493.	4.2	36
32	A new kinetic model for absorption of oil spill by porous materials. Microporous and Mesoporous Materials, 2016, 230, 25-29.	2.2	33
33	Perfluorosilane treated Calotropis gigantea fiber: Instant hydrophobic–oleophilic surface with efficient oil-absorbing performance. Chemical Engineering Journal, 2016, 295, 477-483.	6.6	54
34	Superhydrophobic and Superoleophilic Micro-Wrinkled Reduced Graphene Oxide as a Highly Portable and Recyclable Oil Sorbent. ACS Applied Materials & amp; Interfaces, 2016, 8, 9977-9985.	4.0	80
35	Constructing Three-Dimensional Hierarchical Architectures by Integrating Carbon Nanofibers into Graphite Felts for Water Purification. ACS Sustainable Chemistry and Engineering, 2016, 4, 2351-2358.	3.2	57
36	Synthesis of graphene oxide–SiO2 coated mesh film and its properties on oil–water separation and antibacterial activity. Water Science and Technology, 2016, 73, 1098-1103.	1.2	18

#	Article	IF	Citations
37	Superhydrophobic graphene-decorated mesh gauze: recycling oils and organic solvents enhanced by large-diameter capillary action. Science China Materials, 2016, 59, 581-588.	3.5	9
38	Polymerization under Hypersaline Conditions: A Robust Route to Phenolic Polymerâ€Đerived Carbon Aerogels. Angewandte Chemie - International Edition, 2016, 55, 14623-14627.	7.2	136
39	Polymerization under Hypersaline Conditions: A Robust Route to Phenolic Polymerâ€Đerived Carbon Aerogels. Angewandte Chemie, 2016, 128, 14843-14847.	1.6	120
40	In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. Nanoscale, 2016, 8, 18558-18564.	2.8	46
41	Advanced Sorbents for Oilâ€&pill Cleanup: Recent Advances and Future Perspectives. Advanced Materials, 2016, 28, 10459-10490.	11.1	547
42	Unpowered oil absorption by a wettability sponge based oil skimmer. RSC Advances, 2016, 6, 88001-88009.	1.7	22
43	Size fractionation of graphene oxide sheets assisted by circular flow and their graphene aerogels with size-dependent adsorption. RSC Advances, 2016, 6, 74053-74060.	1.7	14
44	A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecological Engineering, 2016, 97, 98-105.	1.6	82
45	A comparative study on superhydrophobic sponges and their application as fluid channel for continuous separation of oils and organic solvents from water. Composites Part B: Engineering, 2016, 101, 99-106.	5.9	40
46	Aerogels based on carbon nanomaterials. Journal of Materials Science, 2016, 51, 9157-9189.	1.7	82
47	Micro–Nanocomposites in Environmental Management. Advanced Materials, 2016, 28, 10443-10458.	11.1	131
48	Green fabrication of magnetic recoverable graphene/MnFe ₂ O ₄ hybrids for efficient decomposition of methylene blue and the Mn/FeÂredox synergetic mechanism. RSC Advances, 2016, 6, 104549-104555.	1.7	50
49	Three-dimensional carbon-based architectures for oil remediation: from synthesis and modification to functionalization. Journal of Materials Chemistry A, 2016, 4, 18687-18705.	5.2	77
50	A facile method to fabricate a double-layer stainless steel mesh for effective separation of water-in-oil emulsions with high flux. Journal of Materials Chemistry A, 2016, 4, 18815-18821.	5.2	86
51	Size effects of graphene oxide nanosheets on the construction of three-dimensional graphene-based macrostructures as adsorbents. Journal of Materials Chemistry A, 2016, 4, 12106-12118.	5.2	66
52	Carbon materials as oil sorbents: a review on the synthesis and performance. Journal of Materials Chemistry A, 2016, 4, 1550-1565.	5.2	298
53	Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures. Journal of Materials Chemistry A, 2016, 4, 1068-1077.	5.2	75
54	Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chemical Engineering Journal, 2016, 293, 90-101.	6.6	148

0.			D	
	TAT	ON	Repo	דעו
\sim				

#	Article	IF	CITATIONS
55	Environmental Applications of Interfacial Materials with Special Wettability. Environmental Science & amp; Technology, 2016, 50, 2132-2150.	4.6	273
56	Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe ₂ Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 7077-7085.	4.0	113
57	Characteristics of fluorinated CNTs added carbon foams. Applied Surface Science, 2016, 360, 1009-1015.	3.1	8
58	Water purification: oil–water separation by nanotechnology and environmental concerns. Environmental Science: Nano, 2017, 4, 514-525.	2.2	122
59	A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated Calotropis gigantea fiber and kapok fiber. Cellulose, 2017, 24, 989-1000.	2.4	34
60	Fabrication of highly reinforced and compressible graphene/carbon nanotube hybrid foams via a facile self-assembly process for application as strain sensors and beyond. Journal of Materials Chemistry C, 2017, 5, 2723-2730.	2.7	42
61	Laserâ€Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Advanced Materials, 2017, 29, 1700496.	11.1	227
62	Superhydrophobic hBN-Regulated Sponges with Excellent Absorbency Fabricated Using a Green and Facile Method. Scientific Reports, 2017, 7, 45065.	1.6	20
63	Offenzellige SchwÄ m me mit niedrigen Dichten als Funktionsmaterialien. Angewandte Chemie, 2017, 129, 15726-15745.	1.6	7
64	Microwave-induced activation of additional active edge sites on the MoS 2 surface for enhanced Hg 0 capture. Applied Surface Science, 2017, 420, 439-445.	3.1	25
65	Lowâ€Density Open Cellular Sponges as Functional Materials. Angewandte Chemie - International Edition, 2017, 56, 15520-15538.	7.2	168
66	Highly hydrophobic and ultralight graphene aerogel as high efficiency oil absorbent material. Journal of Environmental Chemical Engineering, 2017, 5, 1957-1963.	3.3	32
67	Carbon foams produced from lignin-phenol-formaldehyde resin for oil/water separation. New Carbon Materials, 2017, 32, 86-91.	2.9	57
68	Oil loving hydrophobic gels made from glycerol propoxylate: Efficient and reusable sorbents for oil spill clean-up. Journal of Environmental Management, 2017, 196, 330-339.	3.8	22
69	Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel. Materials and Design, 2017, 117, 280-288.	3.3	94
70	Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications. Nano Today, 2017, 12, 116-135.	6.2	97
71	Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. Journal of Environmental Chemical Engineering, 2017, 5, 5025-5032.	3.3	41
72	Peristomeâ€Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Waterâ€inâ€Oil Drops. Angewandte Chemie, 2017, 129, 13811-13816.	1.6	19

#	Article	IF	CITATIONS
73	Peristomeâ€Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Waterâ€inâ€Oil Drops. Angewandte Chemie - International Edition, 2017, 56, 13623-13628.	7.2	84
74	Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water. Chemical Engineering Journal, 2017, 330, 423-432.	6.6	116
75	High capacity oil adsorption by graphene capsules. Nanoscale, 2017, 9, 12647-12651.	2.8	10
76	Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 29812-29819.	4.0	119
77	Oil removing properties of exfoliated graphite in actual produced water treatment. Journal of Water Process Engineering, 2017, 20, 226-231.	2.6	22
78	Facile synthesis of reduced graphene oxide/trimethyl chlorosilaneâ€coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnology, 2017, 11, 929-934.	1.9	28
79	Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications. Synthetic Metals, 2017, 234, 53-85.	2.1	114
80	Carbon aerogel evolution: Allotrope, graphene-inspired, and 3D-printed aerogels. Journal of Materials Research, 2017, 32, 4166-4185.	1.2	71
81	A review of nanomaterials for nanofluid enhanced oil recovery. RSC Advances, 2017, 7, 32246-32254.	1.7	151
82	Robust fabrication of fluorine-free superhydrophobic steel mesh for efficient oil/water separation. Journal of Materials Science, 2017, 52, 2549-2559.	1.7	43
83	ECTFE hybrid porous membrane with hierarchical micro/nano-structural surface for efficient oil/water separation. Journal of Membrane Science, 2017, 524, 623-630.	4.1	57
84	Fabrication of recyclable carbonized asphaltâ€melamine sponges with high oilâ€absorption capability. Journal of Chemical Technology and Biotechnology, 2017, 92, 1415-1420.	1.6	19
85	Dual-layer copper mesh for integrated oil-Water separation and water purification. Applied Catalysis B: Environmental, 2017, 200, 594-600.	10.8	66
86	Highly stretchable carbon aerogels. Nature Communications, 2018, 9, 881.	5.8	202
87	A review of bio-based materials for oil spill treatment. Water Research, 2018, 135, 262-277.	5.3	455
88	Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying. Surface and Coatings Technology, 2018, 341, 15-23.	2.2	99
89	Hybridization of Al ₂ O ₃ microspheres and acrylic ester resins as a synergistic absorbent for selective oil and organic solvent absorption. Applied Organometallic Chemistry, 2018, 32, e4244.	1.7	15
90	Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon, 2018, 132, 199-209.	5.4	278

#	Article	IF	CITATIONS
91	Super high-rate fabrication of high-purity carbon nanotube aerogels from floating catalyst method for oil spill cleaning. Chemical Physics Letters, 2018, 693, 146-151.	1.2	50
92	Property control of graphene aerogels by in situ growth of silicone polymer. Applied Surface Science, 2018, 439, 946-953.	3.1	8
93	Tunable assembly of porous three-dimensional graphene oxide-corn zein composites with strong mechanical properties for adsorption of rare earth elements. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 106-114.	2.7	62
94	Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12, 376-382.	2.3	152
95	From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons. Chemosphere, 2018, 202, 686-693.	4.2	44
96	Green synthesis of amphipathic graphene aerogel constructed by using the framework of polymer-surfactant complex for water remediation. Applied Surface Science, 2018, 444, 399-406.	3.1	32
97	Amphiphilic PA-induced three-dimensional graphene macrostructure with enhanced removal of heavy metal ions. Journal of Colloid and Interface Science, 2018, 512, 853-861.	5.0	47
98	Calotropis gigantea fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Separation and Purification Technology, 2018, 192, 30-35.	3.9	35
99	Preparation of DOPA-TA coated novel membrane for multifunctional water decontamination. Separation and Purification Technology, 2018, 194, 135-140.	3.9	32
100	Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation. Advanced Composites and Hybrid Materials, 2018, 1, 135-148.	9.9	83
101	Bioinspired Assembly of Carbon Nanotube into Graphene Aerogel with "Cabbagelike―Hierarchical Porous Structure for Highly Efficient Organic Pollutants Cleanup. ACS Applied Materials & Interfaces, 2018, 10, 1093-1103.	4.0	113
102	Surface modification of polymeric foams for oil spills remediation. Journal of Environmental Management, 2018, 206, 872-889.	3.8	77
103	Oil sorbents from plastic wastes and polymers: A review. Journal of Hazardous Materials, 2018, 341, 424-437.	6.5	167
105	Fabrication of Superhydrophobic-Superoleophilic Cement-Coated Meshes and Their Applications for Oil/Water Separation. IOP Conference Series: Earth and Environmental Science, 2018, 171, 012045.	0.2	0
106	Nanoscaled Surface Modification of Poly(dimethylsiloxane) Using Carbon Nanotubes for Enhanced Oil and Organic Solvent Absorption. ACS Omega, 2018, 3, 15907-15915.	1.6	20
107	Novel 3D Network Architectured Hybrid Aerogel Comprising Epoxy, Graphene, and Hydroxylated Boron Nitride Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 40032-40043.	4.0	45
108	Multifunctional carbon aerogels from typha orientalis for oil/water separation and simultaneous removal of oil-soluble pollutants. Cellulose, 2018, 25, 5863-5875.	2.4	48
109	Silver Nanoflower Decorated Graphene Oxide Sponges for Highly Sensitive Variable Stiffness Stress Sensors. Small, 2018, 14, e1800549.	5.2	41

#	Article	IF	CITATIONS
110	Cotton Cellulose-Derived Hydrogels with Tunable Absorbability: Research Advances and Prospects. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	0
111	Three-Dimensional Graphene-Based Macroscopic Assemblies as Super-Absorbents for Oils and Organic Solvents. , 2019, , 43-68.		4
112	Scalable Top-to-Bottom Design on Low Tortuosity of Anisotropic Carbon Aerogels for Fast and Reusable Passive Capillary Absorption and Separation of Organic Leakages. ACS Applied Materials & Interfaces, 2019, 11, 47846-47857.	4.0	38
113	Fast and efficient oil-water separation under harsh conditions of the flexible polyimide aerogel containing benzimidazole structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123809.	2.3	30
114	Green preparation of nonflammable carbonized asphalt-melamine sponges as recyclable oil absorbents. Materials Chemistry and Physics, 2019, 226, 235-243.	2.0	9
115	Superhydrophobic and superoleophilic carbon nanofiber grafted polyurethane for oil-water separation. Chemical Engineering Research and Design, 2019, 123, 327-334.	2.7	56
116	A three-dimensional porous Co@C/carbon foam hybrid monolith for exceptional oil–water separation. Nanoscale, 2019, 11, 12161-12168.	2.8	33
117	Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass. Food Hydrocolloids, 2019, 96, 151-160.	5.6	62
118	One-step synthesis of a steel-polymer wool for oil-water separation and absorption. Npj Clean Water, 2019, 2, .	3.1	17
119	Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environment International, 2019, 128, 37-45.	4.8	68
120	Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review. Polymers, 2019, 11, 726.	2.0	108
121	Acrylic acid-grafted pre-plasma nanofibers for efficient removal of oil pollution from aquatic environment. Journal of Hazardous Materials, 2019, 371, 165-174.	6.5	64
122	Fabrication of Ecofriendly Recycled Marimo-like Hierarchical Micronanostructure Superhydrophobic Materials for Effective and Selective Separation of Oily Pollutants from Water. Industrial & Engineering Chemistry Research, 2019, 58, 5613-5621.	1.8	14
123	Controllable synthesis of pomelo peel-based aerogel and its application in adsorption of oil/organic pollutants. Royal Society Open Science, 2019, 6, 181823.	1.1	30
124	Stearic acid treated polypyrrole-encapsulated melamine formaldehyde superhydrophobic sponge for oil recovery. Advanced Composites and Hybrid Materials, 2019, 2, 70-82.	9.9	56
125	Ultrasonic treatment in the production of classical composites and carbon nanocomposites. , 2019, , 733-780.		3
126	High performance graphene-melamine sponge prepared via eco-friendly and cost-effective process. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	5
127	Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. Journal of Environmental Management, 2019, 237, 128-138.	3.8	266

#	Article	IF	CITATIONS
128	Methyltrichlorosilane functionalized silica nanoparticles-treated superhydrophobic cotton for oil–water separation. Journal of Coatings Technology Research, 2019, 16, 1021-1032.	1.2	29
129	Tin Oxide Nanofiber and 3D Sponge Structure by Blow Spinning. IOP Conference Series: Earth and Environmental Science, 2019, 358, 052015.	0.2	3
130	Directional preparation of superhydrophobic magnetic CNF/PVA/MWCNT carbon aerogel. IET Nanobiotechnology, 2019, 13, 565-570.	1.9	16
131	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
132	Utilization of ultra-light carbon foams for the purification of emulsified oil wastewater and their adsorption kinetics. Chemical Physics, 2019, 516, 139-146.	0.9	26
133	Preparation of porous graphene/carbon nanotube composite and adsorption mechanism of methylene blue. SN Applied Sciences, 2019, 1, 1.	1.5	22
134	In-syringe extraction using compressible and self-recoverable, amphiphilic graphene aerogel as sorbent for determination of phenols. Talanta, 2019, 195, 165-172.	2.9	37
135	Cotton Cellulose-Derived Hydrogels with Tunable Absorbability: Research Advances and Prospects. Polymers and Polymeric Composites, 2019, , 331-356.	0.6	0
136	Environmental performance of graphene-based 3D macrostructures. Nature Nanotechnology, 2019, 14, 107-119.	15.6	286
137	Electrospun Nanofibers for Oil–Water Separation. , 2019, , 391-417.		6
138	Ultralight 3D-Î ³ -MnOOH porous materials fabricated by hydrothermal treatment and freeze-drying. Science China Materials, 2019, 62, 527-535.	3.5	12
139	Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-water separation. Applied Surface Science, 2019, 466, 937-945.	3.1	73
140	Polydopamine-clay functionalized <i>Calotropis gigantea</i> fiber: A recyclable oil-absorbing material with large lumens. Journal of Natural Fibers, 2019, 16, 1156-1165.	1.7	6
141	Approaches for Remediation of Sites Contaminated with Total Petroleum Hydrocarbons. , 2020, , 167-205.		10
142	Overview on nanocarbon sponges in polymeric nanocomposite. Materials Research Innovations, 2020, 24, 309-320.	1.0	7
143	Synthesis of magnetite nanoparticles anchored cellulose and lignin-based carbon nanotube composites for rapid oil spill cleanup. Materials Today Communications, 2020, 22, 100746.	0.9	13
144	Ultralight, highly elastic and bioinspired capillary-driven graphene aerogels for highly efficient organic pollutants absorption. Applied Surface Science, 2020, 509, 144818.	3.1	34
145	β-FeOOH self-supporting electrode for efficient electrochemical anodic oxidation process. Chemosphere, 2020, 261, 127674.	4.2	15

#	Article	IF	CITATIONS
146	Mixed-dimensional assembled superhydrophilic graphene-based aerogel with enhanced mass/charge transportation for efficient photoredox catalysis. Separation and Purification Technology, 2020, 252, 117454.	3.9	7
147	Reusable Graphitic Carbon Nitride Nanosheet-Based Aerogels as Sorbents for Oils and Organic Solvents. ACS Applied Nano Materials, 2020, 3, 8176-8181.	2.4	9
148	Materials and Technologies for the Tertiary Treatment of Produced Water Contaminated by Oil Impurities through Nonfibrous Deep-Bed Media: A Review. Water (Switzerland), 2020, 12, 3419.	1.2	13
149	Response Surface Optimization of Oil Removal Using Synthesized Polypyrrole-Silica Polymer Composite. Molecules, 2020, 25, 4628.	1.7	11
150	Silane Functionalized Polyvinyl-Alcohol Formaldehyde Sponges on Fast Oil Absorption. ACS Applied Polymer Materials, 2020, 2, 5309-5317.	2.0	16
151	Water decontamination by 3D graphene based materials: A review. Journal of Water Process Engineering, 2020, 36, 101404.	2.6	37
152	Chemical properties and applications. , 2020, , 251-371.		2
153	3D graphene aerogel based photocatalysts: Synthesized, properties, and applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124666.	2.3	24
154	Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy and Environment, 2020, 5, 303-321.	4.7	57
155	Absorption of organic compounds by mesoporous silica discoids. Microporous and Mesoporous Materials, 2020, 306, 110379.	2.2	3
156	Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills. Journal of Colloid and Interface Science, 2020, 570, 61-71.	5.0	83
157	An aerogel adsorbent with bio-inspired interfacial adhesion between graphene and MoS2 sheets for water treatment. Applied Surface Science, 2020, 512, 145717.	3.1	35
158	Carbon-based aerogels and xerogels: Synthesis, properties, oil sorption capacities, and DFT simulations. Journal of Environmental Chemical Engineering, 2021, 9, 104886.	3.3	36
159	Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. Journal of Hazardous Materials, 2021, 407, 124842.	6.5	64
160	Delignified Wood from Understanding the Hierarchically Aligned Cellulosic Structures to Creating Novel Functional Materials: A Review. Advanced Sustainable Systems, 2021, 5, 2000251.	2.7	70
161	Carbon nanotube promoted porous nanocomposite based on PVA and recycled PET fibers for efficient oil spills cleanup applications. Chemical Papers, 2021, 75, 3443-3456.	1.0	10
162	Facile hydrophilic modification of polydimethylsiloxane-based sponges for efficient oil–water separation. Journal of Industrial and Engineering Chemistry, 2021, 96, 144-155.	2.9	15
163	Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties. Carbon, 2021, 175, 312-321.	5.4	37

#	Article	IF	CITATIONS
164	Recent progress in the use of graphene/po lymer composites to remove oil contaminants from water. New Carbon Materials, 2021, 36, 235-252.	2.9	17
165	Manufacturing of robust superhydrophobic Wood surfaces based on PEG–Functionalized SiO2/PVA/PAA/Fluoropolymer hybrid transparent coating. Progress in Organic Coatings, 2021, 154, 106186.	1.9	20
166	Wastewater Remediation Technologies Using Macroscopic Graphene-Based Materials: A Perspective. Frontiers in Nanotechnology, 2021, 3, .	2.4	10
167	Synthesis and application of bisurea derivatives: Effect of structural differences on the gelation properties. Journal of Environmental Chemical Engineering, 2021, 9, 105220.	3.3	0
168	Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing. Nano Energy, 2021, 85, 106027.	8.2	50
169	A high lignin-content, ultralight, and hydrophobic aerogel for oil-water separation: preparation and characterization. Journal of Porous Materials, 2021, 28, 1881-1894.	1.3	8
170	Effects of PbO2/Pb3O4 ratio alteration for enhanced electrochemical advanced oxidation performance. Journal of Solid State Chemistry, 2021, 301, 122277.	1.4	11
171	Adsorption performance of reduced graphene-oxide/cellulose nano-crystal hybrid aerogels reinforced with waste-paper extracted cellulose-fibers for the removal of toluene pollution. Materials Today Communications, 2021, 28, 102610.	0.9	9
172	Zirconia aerogels for thermal management: Review of synthesis, processing, and properties information architecture. Advances in Colloid and Interface Science, 2021, 295, 102464.	7.0	24
173	Polarity dependent electrowetting for directional transport of water through patterned superhydrophobic laser induced graphene fibers. Carbon, 2021, 182, 605-614.	5.4	21
174	Manipulating the elasticity of chemically modified graphene aerogel through water surface plasticization. Carbon, 2021, 184, 43-52.	5.4	5
175	Aramid nanofiber aerogel membrane extract from waste plastic for efficient separation of surfactant-stabilized oil-in-water emulsions. Journal of Environmental Chemical Engineering, 2021, 9, 106137.	3.3	23
176	Facile fabrication of porous waste-derived carbon-polyethylene terephthalate composite sorbent for separation of free and emulsified oil from water. Separation and Purification Technology, 2021, 279, 119664.	3.9	14
177	Facile fabrication of 3D hierarchical micro-nanostructure fluorine-free superhydrophobic materials by a simple and low-cost method for efficient separation of oil-water mixture and emulsion. Journal of Environmental Chemical Engineering, 2021, 9, 106400.	3.3	9
178	Carbon nanostructure-based superhydrophobic surfaces and coatings. Nanotechnology Reviews, 2021, 10, 518-571.	2.6	42
179	Carbon aerogels for environmental remediation. , 2021, , 217-243.		1
180	Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small, 2016, , n/a-n/a.	5.2	2
181	About aerogels based on carbon nanomaterials. Chemical Bulletin of Kazakh National University, 2014, , 67-82.	0.1	4

#	Article	IF	CITATIONS
182	Spongy Structures Coated with Carbon Nanomaterials for Efficient Oil/Water Separation. Eurasian Chemico-Technological Journal, 2017, 19, 127.	0.3	11
183	Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity. Carbon Letters, 2016, 17, 65-69.	3.3	4
184	Recent advances in oil-water separation materials with special wettability modified by graphene and its derivatives: A review. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108678.	1.8	20
186	3D carbon aerogel from waste corrugated cardboard as a photothermal reservoir for solar steam generation. Environmental Science and Pollution Research, 2022, 29, 23936-23948.	2.7	6
187	Uncertainty quantification and prediction for mechanical properties of graphene aerogels via Gaussian process metamodels. Nano Futures, 2021, 5, 045004.	1.0	3
188	Recent Advances in the Synthesis and Application of Three-Dimensional Graphene-Based Aerogels. Molecules, 2022, 27, 924.	1.7	14
189	Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere, 2022, 293, 133572.	4.2	59
190	Green Preparation of Robust Hydrophobic β-Cyclodextrin/Chitosan Sponges for Efficient Removal of Oil from Water. Langmuir, 2021, 37, 14380-14389.	1.6	7
191	Solar-Assisted High-Efficient Cleanup of Viscous Crude Oil Spill Using an Ink-Modified Plant Fiber Sponge. SSRN Electronic Journal, 0, , .	0.4	0
192	Oil spills adsorption and cleanup by polymeric materials: A review. Polymers for Advanced Technologies, 2022, 33, 1353-1384.	1.6	19
193	Three-dimensional layered porous graphene aerogel hydrogen getters. International Journal of Hydrogen Energy, 2022, 47, 15296-15307.	3.8	5
194	Solar-assisted high-efficient cleanup of viscous crude oil spill using an ink-modified plant fiber sponge. Journal of Hazardous Materials, 2022, 432, 128740.	6.5	23
195	Fabrication of superhydrophobic Enteromorpha-derived carbon aerogels via NH4H2PO4 modification for multi-behavioral oil/water separation. Science of the Total Environment, 2022, 837, 155869.	3.9	14
196	Application of fibrous structures in separation of water and oil emulsions: A review. Journal of Environmental Chemical Engineering, 2022, 10, 107999.	3.3	11
197	Highly compressible and hydrophobic anisotropic cellulose-based aerogel fabricated by bidirectional freeze-drying for selective oil absorption. Journal of Materials Science, 2022, 57, 13097-13108.	1.7	9
198	A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech, 2022, 12, .	1.1	9
199	Functional carbon materials addressing dendrite problems in metal batteries: surface chemistry, multi-dimensional structure engineering, and defects. Science China Chemistry, 2022, 65, 2351-2368.	4.2	11
200	Materials and Methodologies for Tuning Surface Wettability and Oil/Water Separation Mechanisms. ACS Symposium Series, 0, , 165-244.	0.5	0

#	Article	IF	CITATIONS
201	Intercalation Engineering of 2D Materials at Macroscale for Smart Human–Machine Interface and Double‣ayer to Faradaic Charge Storage for Ions Separation. Advanced Materials Interfaces, 2023, 10, .	1.9	4
202	Improvement in compressive stiffness of graphene aerogels by sandwiching carbon nanotubes. Diamond and Related Materials, 2023, 135, 109897.	1.8	2
206	Nanocarbons: Diamond, Fullerene, Nanotube, Graphite, and Graphene Aerogels. Springer Handbooks, 2023, , 941-970.	0.3	1
210	Environmental impact of nanomaterials. , 2024, , 25-47.		0