Complementary symbiont contributions to plant decon termite

Proceedings of the National Academy of Sciences of the Unite 111, 14500-14505

DOI: 10.1073/pnas.1319718111

Citation Report

#	Article	IF	CITATIONS
2	EFFECTS OF FIVE DIVERSE LIGNOCELLULOSIC DIETS ON DIGESTIVE ENZYME BIOCHEMISTRY IN THE TERMITE <i>Reticulitermes flavipes</i> . Archives of Insect Biochemistry and Physiology, 2015, 90, 89-103.	0.6	10
3	Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environmental Microbiology, 2015, 17, 4942-4953.	1.8	55
4	Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology, 2015, 24, 5284-5295.	2.0	143
5	CCHamide-2 Is an Orexigenic Brain-Gut Peptide in Drosophila. PLoS ONE, 2015, 10, e0133017.	1.1	91
6	Acromyrmex Leaf-Cutting Ants Have Simple Gut Microbiota with Nitrogen-Fixing Potential. Applied and Environmental Microbiology, 2015, 81, 5527-5537.	1.4	91
7	Towards an integrated understanding of the consequences of fungus domestication on the fungusâ€growing termite gut microbiota. Environmental Microbiology, 2015, 17, 2562-2572.	1.8	34
8	Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 2015, 29, 108-119.	2.8	478
9	The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. Annual Review of Microbiology, 2015, 69, 145-166.	2.9	312
10	A genomic comparison of two termites with different social complexity. Frontiers in Genetics, 2015, 6, 9.	1.1	60
11	Omic research in termites: an overview and a roadmap. Frontiers in Genetics, 2015, 6, 76.	1.1	54
12	The Enterobacterium Trabulsiella odontotermitis Presents Novel Adaptations Related to Its Association with Fungus-Growing Termites. Applied and Environmental Microbiology, 2015, 81, 6577-6588.	1.4	18
13	Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Oecologia, 2015, 179, 467-485.	0.9	39
14	Genes Underlying Reproductive Division of Labor in Termites, with Comparisons to Social Hymenoptera. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	25
15	Transitional Complexity of Social Insect Immunity. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	10
16	Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi. Frontiers in Microbiology, 2016, 7, 1518.	1.5	26
17	Potential for Nitrogen Fixation in the Fungus-Growing Termite Symbiosis. Frontiers in Microbiology, 2016, 7, 1993.	1.5	37
18	Natural products from microbes associated with insects. Beilstein Journal of Organic Chemistry, 2016, 12, 314-327.	1.3	101
19	Age polyethism drives community structure of the bacterial gut microbiota in the fungusâ€cultivating termite <scp><i>O</i></scp> <i>dontotermes formosanus</i> . Environmental Microbiology, 2016, 18, 1440-1451.	1.8	33

#	Article	IF	CITATIONS
20	Comparative genomic approaches to investigate molecular traits specific to social insects. Current Opinion in Insect Science, 2016, 16, 87-94.	2.2	3
21	The Mechanistic Benefits of Microbial Symbionts. Advances in Environmental Microbiology, 2016, , .	0.1	2
22	Potential applications of insect symbionts in biotechnology. Applied Microbiology and Biotechnology, 2016, 100, 1567-1577.	1.7	132
23	Lessons from Digestive-Tract Symbioses Between Bacteria and Invertebrates. Annual Review of Microbiology, 2016, 70, 375-393.	2.9	28
24	Genome and metagenome analyses reveal adaptive evolution of the host and interaction with the gut microbiota in the goose. Scientific Reports, 2016, 6, 32961.	1.6	36
25	Metatranscriptome analysis reveals bacterial symbiont contributions to lower termite physiology and potential immune functions. BMC Genomics, 2016, 17, 772.	1.2	30
26	Context-dependent expression of the <i>foraging</i> gene in field colonies of ants: the interacting roles of age, environment and task. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160841.	1.2	29
27	Why do social insect queens live so long? Approaches to unravel the sociality-aging puzzle. Current Opinion in Insect Science, 2016, 16, 104-107.	2.2	19
28	Pseudoxylallemycins A–F, Cyclic Tetrapeptides with Rare Allenyl Modifications Isolated from <i>Pseudoxylaria</i> sp. X802: A Competitor of Fungus-Growing Termite Cultivars. Organic Letters, 2016, 18, 3338-3341.	2.4	50
29	The Role of Symbionts in the Evolution of Termites and Their Rise to Ecological Dominance in the Tropics. Advances in Environmental Microbiology, 2016, , 121-172.	0.1	14
30	Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microbial Ecology, 2016, 71, 207-220.	1.4	48
31	Metabolic pathways in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis (Blattodea (Isoptera): Termitidae). Applied Entomology and Zoology, 2016, 51, 429-440.	0.6	6
32	The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility. Open Biology, 2016, 6, 160080.	1.5	8
33	Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and high-throughput sequencing. Soil Biology and Biochemistry, 2016, 96, 152-159.	4.2	42
34	Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4709-4714.	3.3	107
35	Influence of Microbial Symbionts on Plant–Insect Interactions. Advances in Botanical Research, 2017, , 225-257.	0.5	40
36	Sociality in Termites. , 2017, , 124-153.		61
37	A meta-analysis testing eusocial co-option theories in termite gut physiology and symbiosis. Communicative and Integrative Biology, 2017, 10, e1295187.	0.6	9

	CITATION	Report	
#	Article	IF	CITATIONS
38	Diversity of fungusâ€growing termites (<i>Macrotermes</i>) and their fungal symbionts (<i>Termitomyces</i>) in the semiarid Tsavo Ecosystem, Kenya. Biotropica, 2017, 49, 402-412.	0.8	21
39	Transcriptome sequencing and estimation of DNA methylation level in the subsocial wood-feeding cockroach Cryptocercus punctulatus (Blattodea: Cryptocercidae). Applied Entomology and Zoology, 2017, 52, 643-651.	0.6	9
40	Living Organisms Author Their Read-Write Genomes in Evolution. Biology, 2017, 6, 42.	1.3	44
41	Multi-Omics Analysis Reveals a Correlation between the Host Phylogeny, Gut Microbiota and Metabolite Profiles in Cyprinid Fishes. Frontiers in Microbiology, 2017, 8, 454.	1.5	57
42	A termite symbiotic mushroom maximizing sexual activity at growing tips of vegetative hyphae. , 2017, 58, 39.		5
43	Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics, 2017, 18, 681.	1.2	29
44	Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 2018, 42, 335-352.	3.9	468
45	Volatiles in Communication of Agaricomycetes. , 2018, , 149-212.		23
46	Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution, 2018, 2, 557-566.	3.4	223
47	Food Storage by the Savanna Termite Cornitermes cumulans (Syntermitinae): a Strategy to Improve Hemicellulose Digestibility?. Microbial Ecology, 2018, 76, 492-505.	1.4	12
48	Enzyme Activities at Different Stages of Plant Biomass Decomposition in Three Species of Fungus-Growing Termites. Applied and Environmental Microbiology, 2018, 84, .	1.4	31
49	By land, air, and sea: hemipteran diversity through the genomic lens. Current Opinion in Insect Science, 2018, 25, 106-115.	2.2	31
50	The genomic and functional landscapes of developmental plasticity in the American cockroach. Nature Communications, 2018, 9, 1008.	5.8	113
51	Soldierâ€biased gene expression in a subterranean termite implies functional specialization of the defensive caste. Evolution & Development, 2018, 20, 3-16.	1.1	14
52	The Fungus-Growing Termites: Biology, Damage on Tropical Crops and Specific Management. , 2018, , 1-35.		3
53	Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae). Antonie Van Leeuwenhoek, 2018, 111, 573-587.	0.7	15
54	Epigenetics and developmental plasticity in orthopteroid insects. Current Opinion in Insect Science, 2018, 25, 25-34.	2.2	26
55	Discovery of Four Novel Circular Single-Stranded DNA Viruses in Fungus-Farming Termites. Genome Announcements, 2018, 6, .	0.8	11

#	Article	IF	CITATIONS
56	Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11996-E12004.	3.3	90
57	Characterization of gut bacterial community associated with worker and soldier castes of Globitermes sulphureus Haviland (Blattodea: Termitidae) using 16S rRNA metagenomic. Journal of Asia-Pacific Entomology, 2018, 21, 1268-1274.	0.4	7
58	De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. Biotechnology for Biofuels, 2018, 11, 292.	6.2	28
59	Microbial Communities of the Gut and Nest of the Humus- and Litter-Feeding Termite Procornitermes araujoi (Syntermitinae). Current Microbiology, 2018, 75, 1609-1618.	1.0	13
60	Disentangling nutritional pathways linking leafcutter ants and their coâ€evolved fungal symbionts using stable isotopes. Ecology, 2018, 99, 1999-2009.	1.5	29
61	Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome, 2018, 6, 162.	4.9	70
62	Comparative Analyses of the Digestive Tract Microbiota of New Guinean Passerine Birds. Frontiers in Microbiology, 2018, 9, 1830.	1.5	47
63	An Introduction to the Diversity, Ecology, and Conservation of Saproxylic Insects. Zoological Monographs, 2018, , 1-47.	1.1	25
64	Wood-Feeding Termites. Zoological Monographs, 2018, , 339-373.	1.1	6
65	Longevity and transposon defense, the case of termite reproductives. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5504-5509.	3.3	81
66	A Genomic Outlook on Bioremediation: The Case of Arsenic Removal. Frontiers in Microbiology, 2018, 9, 820.	1.5	49
67	Reconstructed evolution of insulin receptors in insects reveals duplications in early insects and cockroaches. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 305-311.	0.6	26
68	Casteâ€specific microRNA expression in termites: insights into soldier differentiation. Insect Molecular Biology, 2019, 28, 86-98.	1.0	14
69	Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME Journal, 2019, 13, 104-117.	4.4	93
70	Molecular techniques and their limitations shape our view of the holobiont. Zoology, 2019, 137, 125695.	0.6	5
71	Environmental Sustainability: A Review of Termite Mound Soil Material and Its Bacteria. Sustainability, 2019, 11, 3847.	1.6	36
72	Taxonomic features and comparisons of the gut microbiome from two edible fungus-farming termites (Macrotermes falciger; M. natalensis) harvested in the Vhembe district of Limpopo, South Africa. BMC Microbiology, 2019, 19, 164.	1.3	17
73	Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community. MSphere, 2019, 4, .	1.3	35

	CITATION	N REPORT	
#	Article	IF	CITATIONS
74	Duplication and soldier-specific expression of geranylgeranyl diphosphate synthase genes in a nasute termite Nasutitermes takasagoensis. Insect Biochemistry and Molecular Biology, 2019, 111, 103177.	1.2	16
75	Caste-specific nutritional differences define carbon and nitrogen fluxes within symbiotic food webs in African termite mounds. Scientific Reports, 2019, 9, 16698.	1.6	10
76	Effects of termites growth on litter decomposition: a modeling approach. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 415-421.	2.0	3
77	Transcriptomic and Functional Analyses of Phenotypic Plasticity in a Higher Termite, Macrotermes barneyi Light. Frontiers in Genetics, 2019, 10, 964.	1.1	11
78	Mechanistic characterization of three sesquiterpene synthases from the termite-associated fungus <i>Termitomyces</i> . Organic and Biomolecular Chemistry, 2019, 17, 3348-3355.	1.5	32
79	Fungal nutrition allocation enhances mutualism with fungus-growing termite. Fungal Ecology, 2019, 41, 92-100.	0.7	19
80	No "Gadgil effect― Temperate tree roots and soil lithology are effective predictors of wood decomposition. Forest Pathology, 2019, 49, e12506.	0.5	8
81	Symbiotic Plant Biomass Decomposition in Fungus-Growing Termites. Insects, 2019, 10, 87.	1.0	38
82	Degradation of bamboo lignocellulose by bamboo snout beetle Cyrtotrachelus buqueti in vivo and vitro: efficiency and mechanism. Biotechnology for Biofuels, 2019, 12, 75.	6.2	23
83	Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti. Biotechnology for Biofuels, 2019, 12, 70.	6.2	48
84	The de novo transcriptome of workers head of the higher group termite Globitermes sulphureus Haviland (Blattodea: Termitidae). Heliyon, 2019, 5, e02969.	1.4	0
85	Plant cell wall degradation in insects: Recent progress on endogenous enzymes revealed by multi-omics technologies. Advances in Insect Physiology, 2019, , 97-136.	1.1	33
86	Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecology and Evolution, 2019, 9, 13450-13467.	0.8	21
87	Gut microbial compositions mirror casteâ€specific diets in a major lineage of social insects. Environmental Microbiology Reports, 2019, 11, 196-205.	1.0	34
88	Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop?. Fungal Ecology, 2019, 38, 54-61.	0.7	15
89	Cryptic niche differentiation in West African savannah termites as indicated by stable isotopes. Ecological Entomology, 2019, 44, 190-196.	1.1	7
90	The evolution of abdominal microbiomes in fungusâ€growing ants. Molecular Ecology, 2019, 28, 879-899.	2.0	25
91	Genome analyses of uncultured TG2/ZB3 bacteria in â€~Margulisbacteria' specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME Journal, 2019, 13, 455-467.	4.4	55

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
92	Ecology and Evolution of Insect–Fungus Mutualisms. Annual Review of Entomology, 2020, 65, 431-455.	5.7	174
93	A Natural High-Sugar Diet Has Different Effects on the Prokaryotic Community Structures of Lower and Higher Termites (Blattaria). Environmental Entomology, 2020, 49, 21-32.	0.7	4
94	SMRT sequencing of the full-length transcriptome of Odontotermes formosanus (Shiraki) under Serratia marcescens treatment. Scientific Reports, 2020, 10, 15909.	1.6	13
95	Multipartite symbioses in fungusâ€growing termites (Blattodea: Termitidae, Macrotermitinae) for the degradation of lignocellulose. Insect Science, 2021, 28, 1512-1529.	1.5	8
96	Challenges and physiological implications of wood feeding in termites. Current Opinion in Insect Science, 2020, 41, 79-85.	2.2	7
97	Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Scientific Reports, 2020, 10, 12384.	1.6	31
98	Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis. MSystems, 2020, 5, .	1.7	23
99	You don't have the guts: a diverse set of fungi survive passage through Macrotermes bellicosus termite guts. BMC Evolutionary Biology, 2020, 20, 163.	3.2	7
100	Blattella germanica displays a large arsenal of antimicrobial peptide genes. Scientific Reports, 2020, 10, 21058.	1.6	8
101	High-Throughput Cultivation for the Selective Isolation of Acidobacteria From Termite Nests. Frontiers in Microbiology, 2020, 11, 597628.	1.5	13
102	Exploring the effect of plant substrates on bacterial community structure in termite fungus-combs. PLoS ONE, 2020, 15, e0232329.	1.1	12
103	Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Communications Biology, 2020, 3, 275.	2.0	47
104	Draft genome sequence of the termite, Coptotermes formosanus: Genetic insights into the pyruvate dehydrogenase complex of the termite. Journal of Asia-Pacific Entomology, 2020, 23, 666-674.	0.4	24
105	Targeted Discovery of Tetrapeptides and Cyclic Polyketideâ€Peptide Hybrids from a Fungal Antagonist of Farming Termites. ChemBioChem, 2020, 21, 2991-2996.	1.3	8
106	Comparison of Gut Microbiota Between Golden and Brown Noble Scallop Chlamys nobilis and Its Association With Carotenoids. Frontiers in Microbiology, 2020, 11, 36.	1.5	16
107	Who is eating fructose within the <scp><i>Aedes albopictus</i></scp> gut microbiota?. Environmental Microbiology, 2020, 22, 1193-1206.	1.8	22
108	No Evidence for Single-Copy Immune-Gene Specific Signals of Selection in Termites. Frontiers in Ecology and Evolution, 2020, 8, .	1,1	5
109	On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. Journal of Inorganic Biochemistry, 2021, 216, 111316.	1.5	16

#	Article	IF	CITATIONS
110	Insects' potential: Understanding the functional role of their gut microbiome. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113787.	1.4	32
111	Expression profiles of neotropical termites reveal microbiotaâ€associated, casteâ€biased genes and biotechnological targets. Insect Molecular Biology, 2021, 30, 152-164.	1.0	1
112	Inoculum microbiome composition impacts fatty acid product profile from cellulosic feedstock. Bioresource Technology, 2021, 323, 124532.	4.8	16
113	Symbiont-Mediated Digestion of Plant Biomass in Fungus-Farming Insects. Annual Review of Entomology, 2021, 66, 297-316.	5.7	37
114	Termites and Chinese agricultural system: applications and advances in integrated termite management and chemical control. Insect Science, 2021, 28, 2-20.	1.5	43
115	A Century of Synergy in Termite Symbiosis Research: Linking the Past with New Genomic Insights. Annual Review of Entomology, 2021, 66, 23-43.	5.7	15
116	GNPS-guided discovery of xylacremolide C and D, evaluation of their putative biosynthetic origin and bioactivity studies of xylacremolide A and B. RSC Advances, 2021, 11, 18748-18756.	1.7	2
117	The chemical ecology of the fungus-farming termite symbiosis. Natural Product Reports, 2022, 39, 231-248.	5.2	28
118	Comparative Genomics Reveals Prophylactic and Catabolic Capabilities of <i>Actinobacteria</i> within the Fungus-Farming Termite Symbiosis. MSphere, 2021, 6, .	1.3	17
119	Gut microbiota in two recently diverged passerine species: evaluating the effects of species identity, habitat use and geographic distance. Bmc Ecology and Evolution, 2021, 21, 41.	0.7	6
120	Polyene-Producing Streptomyces spp. From the Fungus-Growing Termite Macrotermes barneyi Exhibit High Inhibitory Activity Against the Antagonistic Fungus Xylaria. Frontiers in Microbiology, 2021, 12, 649962.	1.5	11
121	Potential of termite gut microbiota for biomethanation of lignocellulosic wastes: current status and future perspectives. Reviews in Environmental Science and Biotechnology, 2021, 20, 419-438.	3.9	12
122	Complementary Contribution of Fungi and Bacteria to Lignocellulose Digestion in the Food Stored by a Neotropical Higher Termite. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9
125	The Termite Fungal Cultivar <i>Termitomyces</i> Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion. MBio, 2021, 12, e0355120.	1.8	16
126	Genome reduction and relaxed selection is associated with the transition to symbiosis in the basidiomycete genus Podaxis. IScience, 2021, 24, 102680.	1.9	9
127	Insights into the genomic evolution of insects from cricket genomes. Communications Biology, 2021, 4, 733.	2.0	41
129	Ancestral predisposition toward a domesticated lifestyle in the termite-cultivated fungus Termitomyces. Current Biology, 2021, 31, 4413-4421.e5.	1.8	10
130	Evolutionary transition of doublesex regulation from sex-specific splicing to male-specific transcription in termites. Scientific Reports, 2021, 11, 15992.	1.6	15

#	Article	IF	CITATIONS
131	A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter. Environmental Science & Technology, 2021, 55, 12136-12152.	4.6	91
132	Isolation, characterization, and genome assembly of <i>Barnettozyma botsteinii</i> sp. nov. and novel strains of <i>Kurtzmaniella quercitrusa</i> isolated from the intestinal tract of the termite <i>Macrotermes bellicosus</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	7
133	Molecular underpinnings of division of labour among workers in a socially complex termite. Scientific Reports, 2021, 11, 18269.	1.6	8
134	Mutualistic relation of termites with associated microbes for their harmonious survival. Symbiosis, 2021, 85, 145.	1.2	2
136	The Functional Evolution of Termite Gut Microbiota. SSRN Electronic Journal, 0, , .	0.4	0
137	A Review of Termite Pheromones: Multifaceted, Context-Dependent, and Rational Chemical Communications. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	20
138	Investigation of Physicochemical Indices and Microbial Communities in Termite Fungus-Combs. Frontiers in Microbiology, 2020, 11, 581219.	1.5	7
139	Contribution of sample processing to gut microbiome analysis in the model Lepidoptera, silkworm Bombyx mori. Computational and Structural Biotechnology Journal, 2021, 19, 4658-4668.	1.9	16
143	Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability. PLoS ONE, 2016, 11, e0151840.	1.1	29
144	Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture. PLoS ONE, 2016, 11, e0156847.	1.1	65
145	Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189.	1.1	20
146	Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. ELife, 2017, 6, .	2.8	152
147	Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. ELife, 2018, 7, .	2.8	39
148	Genomeâ€wide transcriptome signatures of antâ€farmed <i>Squamellaria</i> epiphytes reveal key functions in a unique symbiosis. Ecology and Evolution, 2021, 11, 15882-15895.	0.8	3
152	Worker-dependent gut symbiosis in an ant. ISME Communications, 2021, 1, .	1.7	6
153	Impacts of fungus-growing termites on surficial geology parameters: A review. Earth-Science Reviews, 2021, 223, 103862.	4.0	9
156	Microbial diversity in termite gut ecosystem and their role in lignocellulosic degradation. , 2022, , 155-175.		3
158	Comparative Genomic and Metabolomic Analysis of <i>Termitomyces</i> Species Provides Insights into the Terpenome of the Fungal Cultivar and the Characteristic Odor of the Fungus Garden of <i>Macrotermes natalensis</i> Termites. MSystems, 2022, 7, e0121421.	1.7	8

#	Article	IF	CITATIONS
159	Distribution patterns of four Termitomyces species cultivated by a fungus-growing termite, Odontotermes formosanus, in Taiwan. Fungal Ecology, 2022, 56, 101136.	0.7	0
161	Lifespan prolonging mechanisms and insulin upregulation without fat accumulation in long-lived reproductives of a higher termite. Communications Biology, 2022, 5, 44.	2.0	27
162	Genomic and transcriptomic analyses of the subterranean termite <i>Reticulitermes speratus</i> : Gene duplication facilitates social evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	37
163	Termite sociogenomics: evolution and regulation of caste-specific expressed genes. Current Opinion in Insect Science, 2022, 50, 100880.	2.2	7
164	The effect of amending soils with biochar on the microhabitat preferences of Coptotermes formosanus (Blattodea: Rhinotermitidae). Ecotoxicology and Environmental Safety, 2022, 232, 113240.	2.9	4
166	Cricket: The third domesticated insect. Current Topics in Developmental Biology, 2022, 147, 291-306.	1.0	2
170	Long-Term Cellulose Enrichment Selects for Highly Cellulolytic Consortia and Competition for Public Goods. MSystems, 2022, 7, e0151921.	1.7	5
171	You eat what you find – Local patterns in vegetation structure control diets of African fungusâ€growing termites. Ecology and Evolution, 2022, 12, e8566.	0.8	4
172	Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? AAcritical state-of-the-artÂreview. , 2022, 15, 35.		14
173	Species- and Caste-Specific Gut Metabolomes in Fungus-Farming Termites. Metabolites, 2021, 11, 839.	1.3	5
192	Evolution and functionalization of <i>vitellogenin</i> genes in the termite <i>Reticulitermes speratus</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 68-80.	0.6	5
193	A Minimally Invasive Approach Towards "Ecosystem Hacking―With Honeybees. Frontiers in Robotics and Al, 2022, 9, 791921.	2.0	11
194	Using ultraconserved elements to reconstruct the termite tree of life. Molecular Phylogenetics and Evolution, 2022, 173, 107520.	1.2	11
195	The functional evolution of termite gut microbiota. Microbiome, 2022, 10, .	4.9	35
196	Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Frontiers in Microbiology, 2022, 13, .	1.5	5
197	Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. Microbiome, 2022, 10, .	4.9	18
198	Termite-engineered microbial communities of termite nest structures: a new dimension to the extended phenotype. FEMS Microbiology Reviews, 2022, 46, .	3.9	3
199	Complex regulatory role of DNA methylation in caste- and age-specific expression of a termite. Open Biology, 2022, 12, .	1.5	6

#	Article	IF	CITATIONS
200	Metagenomic insight into the microbial degradation of organic compounds in fermented plant leaves. Environmental Research, 2022, 214, 113902.	3.7	18
201	Bacterial species metabolic interaction network for deciphering the lignocellulolytic system in fungal cultivating termite gut microbiota. BioSystems, 2022, 221, 104763.	0.9	2
202	Association between parasite microbiomes and caste development and colony structure in a social trematode. Molecular Ecology, 2022, 31, 5608-5617.	2.0	4
203	The Comparison of Antioxidant Performance, Immune Performance, IIS Activity and Gut Microbiota Composition between Queen and Worker Bees Revealed the Mechanism of Different Lifespan of Female Casts in the Honeybee. Insects, 2022, 13, 772.	1.0	3
205	The metamicrobiome: key determinant of the homeostasis of nutrient recycling. Trends in Ecology and Evolution, 2023, 38, 183-195.	4.2	6
206	Tripartite Symbiotic Digestion of Lignocellulose in the Digestive System of a Fungus-Growing Termite. Microbiology Spectrum, 2022, 10, .	1.2	7
207	Eusocial Transition in Blattodea: Transposable Elements and Shifts of Gene Expression. Genes, 2022, 13, 1948.	1.0	2
208	More effective transposon regulation in fertile, longâ€lived termite queens than in sterile workers. Molecular Ecology, 2023, 32, 369-380.	2.0	5
210	Community structure and antifungal activity of actinobacteria in a fungusâ€growing termite. Ecological Entomology, 2023, 48, 251-262.	1.1	3
211	Succession of the microbiota in the gut of reproductives of Macrotermes subhyalinus (Termitidae) at colony foundation gives insights into symbionts transmission. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3
212	Termitomyces fungus combs—formation, structure, and functional aspects. , 2023, , 659-677.		0
213	Genome-scale community modeling for deciphering the inter-microbial metabolic interactions in fungus-farming termite gut microbiome. Computers in Biology and Medicine, 2023, 154, 106600.	3.9	4
214	Genome analysis and genomic comparison of a fungal cultivar of the nonsocial weevil Euops chinensis reveals its plant decomposition and protective roles in fungus-farming mutualism. Frontiers in Microbiology, 0, 14, .	1.5	1
215	Adaptations of <i>Pseudoxylaria</i> towards a comb-associated lifestyle in fungus-farming termite colonies. ISME Journal, 2023, 17, 733-747.	4.4	4
216	A holobiont approach towards polysaccharide degradation by the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. BMC Genomics, 2023, 24, .	1.2	3
217	A genetic linkage map and improved genome assembly of the termite symbiont Termitomyces cryptogamus. BMC Genomics, 2023, 24, .	1.2	Ο
218	Host-Specific Diversity of Culturable Bacteria in the Gut Systems of Fungus-Growing Termites and Their Potential Functions towards Lignocellulose Bioconversion. Insects, 2023, 14, 403.	1.0	11
239	The gut microbiota of insects: a potential source of bacteria and metabolites. International Journal of Tropical Insect Science, 2024, 44, 13-30.	0.4	0

ARTICLE

IF CITATIONS