CITATION REPORT List of articles citing

DOI: 10.1039/c4cy00646a Catalysis Science and Technology, 2014, 4, 2871-2876.

Source: https://exaly.com/paper-pdf/59398154/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
20	The Nitrile-Forming Enzyme 7-Cyano-7-Deazaguanine Synthase from Geobacillus kaustophilus: A Reverse Nitrilase?. <i>ChemBioChem</i> , 2015 , 16, 2373-8	3.8	4
19	Insight into Enzymatic Nitrile Reduction: QM/MM Study of the Catalytic Mechanism of QueF Nitrile Reductase. <i>ACS Catalysis</i> , 2015 , 5, 3740-3751	13.1	28
18	A convenient synthetic route to substituted pyrrolo[2,3-b]pyridines via a novel ethylene-bridged compound. <i>Tetrahedron Letters</i> , 2015 , 56, 6606-6609	2	4
17	Enantioselective conjugate addition of cyanide to chalcones catalyzed by a magnesium-Py-BINMOL complex. <i>Catalysis Science and Technology</i> , 2015 , 5, 4755-4759	5.5	15
16	Substrate and cofactor binding to nitrile reductase: a mass spectrometry based study. <i>Catalysis Science and Technology</i> , 2016 , 6, 7391-7397	5.5	5
15	Recyclable bifunctional aluminum salen catalyst for CO2 fixation: the efficient formation of five-membered heterocyclic compounds. <i>Science China Chemistry</i> , 2017 , 60, 979-989	7.9	21
14	Iron-Catalyzed Ring-Opening/Allylation of Cyclobutanone Oxime Esters with Allylic Sulfones. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1775-1779	5.6	53
13	Redox-Neutral Cyanoalkylation/Cyclization of Olefinic 1,3-Dicarbonyls with Cycloketone Oxime Esters: Access to Cyanoalkylated Dihydrofurans. <i>Journal of Organic Chemistry</i> , 2018 , 83, 4239-4249	4.2	38
12	A Single Mutation Increases the Activity and Stability of Pectobacterium carotovorum Nitrile Reductase. <i>ChemBioChem</i> , 2018 , 19, 521-526	3.8	3
11	A photoredox catalyzed iminyl radical-triggered C-C bond cleavage/addition/Kornblum oxidation cascade of oxime esters and styrenes: synthesis of ketonitriles. <i>Chemical Communications</i> , 2018 , 54, 12	:2 <i>&</i> 2-12	:26 3
10	Generation of novel family of reductases from PCR based library for the synthesis of chiral alcohols and amines. <i>Enzyme and Microbial Technology</i> , 2018 , 118, 83-91	3.8	
9	Design and Development of a Heterogeneous Catalyst for the Michael Addition of Malononitrile to 2-Enoylpyridines: Influence of the Primary Amide Decorated Framework on Catalytic Activity and Selectivity. <i>Inorganic Chemistry</i> , 2019 , 58, 12547-12554	5.1	6
8	Interplay of nucleophilic catalysis with proton transfer in the nitrile reductase QueF from Escherichia coli. <i>Catalysis Science and Technology</i> , 2019 , 9, 842-853	5.5	2
7	Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. <i>ChemSusChem</i> , 2019 , 12, 2859-	28%3,	140
6	A Novel Ketonitrile Synthesis by Palladium-Catalyzed Carbonylative Coupling Reactions of Amides with Arylboronic Acids. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 7814-7819	3.2	1
5	New Role for a Commercially Available Bioinsecticide: Berliner Biodegrades the Pyrethroid Cypermethrin. <i>Environmental Science & Environmental Science</i>	10.3	7
4	Synthesis of Phenanthridine and Quinoxaline Derivatives via Copper-Catalyzed Radical Cyanoalkylation of Cyclobutanone Oxime Esters and Vinyl Azides. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 1948-1952	4.9	2

CITATION REPORT

3	A copper-catalyzed three-component reaction of alkenes, cycloketone oximes and DABCO[[SO2]2: Direct C(sp2)-H cyanoalkylsulfonylation. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	3
2	Development of an Operationally Simple, Scalable, and HCN-Free Transfer Hydrocyanation Protocol Using an Air-Stable Nickel Precatalyst. <i>Organic Process Research and Development</i> ,	3.9	1
1	A GFET Nitrile Sensor Using a Graphene-Binding Fusion Protein. 2207669		1