Cellular senescence: from physiology to pathology

Nature Reviews Molecular Cell Biology

15, 482-496

DOI: 10.1038/nrm3823

Citation Report

#	Article	IF	CITATIONS
1	Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion. Oncotarget, 2014, 5, 12715-12727.	0.8	32
2	Senescence Helps Regeneration. Developmental Cell, 2014, 31, 671-672.	3.1	25
3	Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle, 2014, 13, 3183-3190.	1.3	54
4	Vitamin D puts the brakes on angiotensin II-induced oxidative stress and vascular smooth muscle cell senescence. Atherosclerosis, 2014, 236, 444-447.	0.4	13
5	Mad2 and BubR1 modulates tumourigenesis and paclitaxel response in MKN45 gastric cancer cells. Cell Cycle, 2014, 13, 3590-3601.	1.3	41
6	Primary cilia and senescence: a sensitive issue. Cell Cycle, 2014, 13, 2653-2654.	1.3	2
7	Geroconversion: irreversible step to cellular senescence. Cell Cycle, 2014, 13, 3628-3635.	1.3	119
8	Ageing as developmental decay: insights from p16INK4a. Trends in Molecular Medicine, 2014, 20, 667-674.	3.5	52
9	TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence. Cellular Signalling, 2014, 26, 2903-2911.	1.7	42
10	<scp>CBX</scp> 7 and miRâ€9 are part of an autoregulatory loop controlling p16 <scp>^{INK}</scp> ^{4a} . Aging Cell, 2015, 14, 1113-1121.	3.0	18
11	Density-gradient centrifugation enables the purification of cultured corneal endothelial cells for cell therapy by eliminating senescent cells. Scientific Reports, 2015, 5, 15005.	1.6	27
12	Phenotypic modulation of smooth muscle cells in lymphoedema. British Journal of Dermatology, 2015, 172, 1286-1293.	1.4	30
13	Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Research, 2015, 17, 106.	2.2	10
14	Systemic sclerosis-associated fibrosis. Current Opinion in Rheumatology, 2015, 27, 571-576.	2.0	33
15	Klotho, stem cells, and aging. Clinical Interventions in Aging, 2015, 10, 1233.	1.3	91
16	Blue Journal Conference. Aging and Susceptibility to Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 261-269.	2.5	149
17	NEDD8-mediated neddylation is required for human endometrial stromal proliferation and decidualization. Human Reproduction, 2015, 30, 1665-1676.	0.4	33
18	Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogeneâ€induced senescent cells. Aging Cell, 2015, 14, 689-697.	3.0	53

#	Article	IF	CITATIONS
19	Personalized medicine for cystic fibrosis: Establishing human model systems. Pediatric Pulmonology, 2015, 50, S14-23.	1.0	33
20	A simple stochastic model for the feedback circuit between p16INK4a and p53 mediated by p38MAPK: implications for senescence and apoptosis. Molecular BioSystems, 2015, 11, 2955-2963.	2.9	7
21	Role of Developmental Morphogens in Liver Regeneration. , 2015, , 137-152.		0
22	Bl2536 – A PLK inhibitor augments paclitaxel efficacy in suppressing tamoxifen induced senescence and resistance in breast cancer cells. Biomedicine and Pharmacotherapy, 2015, 74, 124-132.	2.5	17
23	A New Pathway for Senescence Regulation. Genomics, Proteomics and Bioinformatics, 2015, 13, 333-335.	3.0	14
24	Cavin Family. International Review of Cell and Molecular Biology, 2015, 320, 235-305.	1.6	43
25	Gingival Wound Healing. Journal of Dental Research, 2015, 94, 395-402.	2.5	48
26	Hallmarks of the ageing lung. European Respiratory Journal, 2015, 45, 807-827.	3.1	264
27	Role of Cellular Senescence and NOX4-Mediated Oxidative Stress in Systemic Sclerosis Pathogenesis. Current Rheumatology Reports, 2015, 17, 473.	2.1	37
28	Curcumin induces senescence of primary human cells building the vasculature in a DNA damage and ATM-independent manner. Age, 2015, 37, 9744.	3.0	34
29	PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy, 2015, 11, 547-559.	4.3	206
30	Mapping the global mRNA transcriptome during development of the murine first molar. Frontiers in Genetics, 2015, 6, 47.	1.1	7
31	Noncoding Transcriptional Landscape in Human Aging. Current Topics in Microbiology and Immunology, 2015, 394, 177-202.	0.7	6
32	The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. , 2015, 154, 36-56.		128
33	Forging a signature of in vivo senescence. Nature Reviews Cancer, 2015, 15, 397-408.	12.8	775
34	Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes, 2015, 64, 2289-2298.	0.3	294
35	PTP1B: mediating ROS signaling to silence genes. Molecular and Cellular Oncology, 2015, 2, e975633.	0.3	6
36	Chorioamniotic membrane senescence: a signal for parturition?. American Journal of Obstetrics and Gynecology, 2015, 213, 359.e1-359.e16.	0.7	125

#	Article	IF	CITATIONS
37	The Cell. , 2015, , 11-42.		2
38	SHP2: a new target for proâ€senescence cancer therapies. EMBO Journal, 2015, 34, 1439-1441.	3.5	10
39	Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5231-5236.	3.3	84
40	The longevity in the yeast Saccharomyces cerevisiae: A comparison of two approaches for assessment the lifespan. Biochemical and Biophysical Research Communications, 2015, 460, 651-656.	1.0	20
41	<i>Atg7</i> Overcomes Senescence and Promotes Growth of <i>Braf</i> V600E-Driven Melanoma. Cancer Discovery, 2015, 5, 410-423.	7.7	181
42	Impaired mitophagy leads to cigarette smoke stressâ€induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB Journal, 2015, 29, 2912-2929.	0.2	209
43	Functional Significance of Point Mutations in Stress Chaperone Mortalin and Their Relevance to Parkinson Disease. Journal of Biological Chemistry, 2015, 290, 8447-8456.	1.6	41
44	Unexpected role of CDK4 in a G2/M checkpoint. Cell Cycle, 2015, 14, 1351-1352.	1.3	5
45	MicroRNAs and IncRNAs in senescence: A reâ€view. IUBMB Life, 2015, 67, 255-267.	1.5	31
46	SIMply Better Resolution in Live Cells. Trends in Cell Biology, 2015, 25, 636-638.	3.6	4
47	Numb is required to prevent p53-dependent senescence following skeletal muscle injury. Nature Communications, 2015, 6, 8528.	5.8	58
48	The InflammTORy Powers of Senescence. Trends in Cell Biology, 2015, 25, 634-636.	3.6	12
49	Type 1 interferons contribute to the clearance of senescent cell. Cancer Biology and Therapy, 2015, 16, 1214-1219.	1.5	20
50	Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death and Disease, 2015, 6, e1821-e1821.	2.7	37
51	Telomere Dysfunction and Cell Senescence in Chronic Lung Diseases: Therapeutic Potential. , 2015, 153, 125-134.		45
52	Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radical Biology and Medicine, 2015, 79, 197-205.	1.3	65
53	Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism. BMC Genomics, 2016, 17, 695.	1.2	12
54	p38 MAPK Inhibitor Insufficiently Attenuates HSC Senescence Administered Long-Term after 6 Gy Total Body Irradiation in Mice. International Journal of Molecular Sciences, 2016, 17, 905.	1.8	17

#	Article	IF	CITATIONS
55	Principles of alternative gerontology. Aging, 2016, 8, 589-602.	1.4	6
56	Extracellular Vesicles as New Players in Cellular Senescence. International Journal of Molecular Sciences, 2016, 17, 1408.	1.8	91
57	NKG2D ligands mediate immunosurveillance of senescent cells. Aging, 2016, 8, 328-344.	1.4	211
58	Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Research, 2016, 5, 89.	0.8	64
59	Chromatin Signaling in Aging and Cellular Senescence. , 2016, , 287-309.		0
60	ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-18.	1.9	661
61	The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	1.9	49
62	Vitamin C, Antioxidant Status, and Cardiovascular Aging. , 2016, , 609-619.		7
63	Role of IncRNAs in Cellular Aging. Frontiers in Endocrinology, 2016, 7, 151.	1.5	35
64	Role of Redox Status in Development of Glioblastoma. Frontiers in Immunology, 2016, 7, 156.	2.2	108
65	Functionally Diverse NK-Like T Cells Are Effectors and Predictors of Successful Aging. Frontiers in Immunology, 2016, 7, 530.	2.2	28
66	miR-494-3p Induces Cellular Senescence and Enhances Radiosensitivity in Human Oral Squamous Carcinoma Cells. International Journal of Molecular Sciences, 2016, 17, 1092.	1.8	46
67	Unexploited Antineoplastic Effects of Commercially Available Anti-Diabetic Drugs. Pharmaceuticals, 2016, 9, 24.	1.7	19
68	RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC. PLoS Genetics, 2016, 12, e1006306.	1.5	52
69	Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS ONE, 2016, 11, e0154531.	1.1	72
70	Ion Channels in Aging and Aging-Related Diseases. , 0, , .		6
71	A steroid like phytochemical Antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1. Oncotarget, 2016, 7, 62836-62861.	0.8	37
72	A small molecule inhibitor of PAI-1 protects against doxorubicin-induced cellular senescence. Oncotarget, 2016, 7, 72443-72457.	0.8	64

#	Article	IF	CITATIONS
73	DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes. Diabetes, 2016, 65, 3062-3074.	0.3	92
74	Uses and abuses of macropinocytosis. Journal of Cell Science, 2016, 129, 2697-705.	1.2	160
75	DNMT1 is a required genomic regulator for murine liver histogenesis and regeneration. Hepatology, 2016, 64, 582-598.	3.6	45
76	Cellular Senescence and Lung Function during Aging. Yin and Yang. Annals of the American Thoracic Society, 2016, 13, S402-S406.	1.5	60
77	Induction of Therapeutic Senescence in Vemurafenib-Resistant Melanoma by Extended Inhibition of CDK4/6. Cancer Research, 2016, 76, 2990-3002.	0.4	123
78	Chromosome organisation during ageing and senescence. Current Opinion in Cell Biology, 2016, 40, 161-167.	2.6	44
79	Perspective: Targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacological Research, 2016, 111, 152-154.	3.1	54
80	The Hayflick Limit May Determine the Effective Clonal Diversity of Naive T Cells. Journal of Immunology, 2016, 196, 4999-5004.	0.4	10
81	Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle, 2016, 15, 1674-1684.	1.3	202
82	Ageing and the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, 2016, 12, 412-420.	3.5	745
83	Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow?. Mechanisms of Ageing and Development, 2016, 156, 17-24.	2.2	23
84	Circadian modulation of proteasome activity and accumulation of oxidized protein in human embryonic kidney HEK 293 cells and primary dermal fibroblasts. Free Radical Biology and Medicine, 2016, 94, 195-207.	1.3	19
85	Long Non-coding RNAs in Human Disease. Current Topics in Microbiology and Immunology, 2016, , .	0.7	4
86	BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. Cancer Discovery, 2016, 6, 612-629.	7.7	272
87	Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis. Journal of the American College of Cardiology, 2016, 67, 2018-2028.	1.2	186
88	Old cells, new tricks: chromatin structure in senescence. Mammalian Genome, 2016, 27, 320-331.	1.0	40
89	Reflections on the role of senescence during development and aging. Archives of Biochemistry and Biophysics, 2016, 598, 40-49.	1.4	15
90	Cellular Senescence and Vascular Disease: Novel Routes to Better Understanding and Therapy. Canadian Journal of Cardiology, 2016, 32, 612-623.	0.8	71

#	ARTICLE	IF	CITATIONS
91	Genomic aberrations in spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy. Pathology, 2016, 48, 113-131.	0.3	145
92	Cellular Ageing and Replicative Senescence. Healthy Ageing and Longevity, 2016, , .	0.2	10
93	Targeting Senescent Cells to Improve Human Health. Healthy Ageing and Longevity, 2016, , 313-343.	0.2	0
94	Cellular Aging and Tumor Regulation. Healthy Ageing and Longevity, 2016, , 187-201.	0.2	0
95	Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases. Radiation Research, 2016, 186, 153-161.	0.7	149
96	Alpha-1 Antitrypsin Investigations Using Animal Models of Emphysema. Annals of the American Thoracic Society, 2016, 13, S311-S316.	1.5	15
97	NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?. Clinical Science, 2016, 130, 317-335.	1.8	123
98	The Dual Role of Senescence in Pancreatic Ductal Adenocarcinoma. Advances in Cancer Research, 2016, 131, 1-20.	1.9	16
99	Senescence and Cancer: In the Name of Immunosuppression. Cancer Cell, 2016, 30, 507-508.	7.7	12
100	Myometrial cytokines and their role in the onset of labour. Journal of Endocrinology, 2016, 231, R101-R119.	1.2	54
101	Telomeres in aging and disease: lessons from zebrafish. DMM Disease Models and Mechanisms, 2016, 9, 737-748.	1.2	84
102	Natural killer cell recognition of <i>in vivo</i> drug-induced senescent multiple myeloma cells. Oncolmmunology, 2016, 5, e1218105.	2.1	40
103	Implants for the aged patient: biological, clinical and sociological considerations. Periodontology 2000, 2016, 72, 120-134.	6.3	25
104	Derepression of <i>hTERT</i> gene expression promotes escape from oncogene-induced cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5024-33.	3.3	109
105	Cellular lifespan and senescence: a complex balance between multiple cellular pathways. Inside the Cell, 2016, 1, 36-47.	0.4	1
106	To clear, or not to clear (senescent cells)? That is the question. Inside the Cell, 2016, 1, 87-95.	0.4	2
107	Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respiratory Investigation, 2016, 54, 397-406.	0.9	113
108	BTK Modulates p53 Activity to Enhance Apoptotic and Senescent Responses. Cancer Research, 2016, 76, 5405-5414.	0.4	50

	CITATION R	EPORT	
#	Article	IF	Citations
109	Cellular senescence impact on immune cell fate and function. Aging Cell, 2016, 15, 400-406.	3.0	104
110	The persistent dynamic secrets of senescence. Nature Cell Biology, 2016, 18, 913-915.	4.6	16
111	MEK Is a Therapeutic and Chemopreventative Target in Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2016, 136, 1920-1924.	0.3	12
112	The Senescence-Associated Secretory Phenotype: Critical Effector in Skin CancerÂand Aging. Journal of Investigative Dermatology, 2016, 136, 2133-2139.	0.3	109
113	To clear, or not to clear (senescent cells)? That is the question. BioEssays, 2016, 38, S56-64.	1.2	88
114	Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science, 2016, 354, .	6.0	466
115	Ku70 Serine 155 mediates Aurora B inhibition and activation of the DNA damage response. Scientific Reports, 2016, 6, 37194.	1.6	16
116	Effects of ageing and senescence on pancreatic βâ€cell function. Diabetes, Obesity and Metabolism, 2016, 18, 58-62.	2.2	57
117	Nutritional Modulators of Cellular Senescence In Vitro. , 2016, , 293-312.		3
118	Small molecule compounds that induce cellular senescence. Aging Cell, 2016, 15, 999-1017.	3.0	143
119	miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 168-178.	1.4	80
120	A comprehensive approach to the molecular determinants of lifespan using a Boolean model of geroconversion. Aging Cell, 2016, 15, 1018-1026.	3.0	16
121	Early injury of the neonatal lung contributes to premature lung aging: a hypothesis. Molecular and Cellular Pediatrics, 2016, 3, 24.	1.0	18
122	Osteopontin, a Key Mediator Expressed by Senescent Pulmonary Vascular Cells in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1879-1890.	1.1	46
123	Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. European Respiratory Journal, 2016, 48, 538-552.	3.1	96
124	Cellular lifespan and senescence: a complex balance between multiple cellular pathways. BioEssays, 2016, 38, S33-44.	1.2	25
125	Cell senescence is an antiviral defense mechanism. Scientific Reports, 2016, 6, 37007.	1.6	70
126	Isolation of Live Premature Senescent Cells Using FUCCI Technology. Scientific Reports, 2016, 6, 30705.	1.6	8

#	Article	IF	CITATIONS
127	Epigenetics and aging. Science Advances, 2016, 2, e1600584.	4.7	568
128	Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 2016, 354, 472-477.	6.0	824
129	Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science, 2016, 354, 477-481.	6.0	230
130	Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Science Translational Medicine, 2016, 8, 362ra144.	5.8	177
131	Glioblastoma, hypoxia and autophagy: a survival-prone â€~ménage-Ã-trois'. Cell Death and Disease, 2016, 7, e2434-e2434.	2.7	103
132	Macrophages in age-related chronic inflammatory diseases. Npj Aging and Mechanisms of Disease, 2016, 2, 16018.	4.5	183
133	Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nature Communications, 2016, 7, 11190.	5.8	659
134	HMCB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. Journal of Cell Biology, 2016, 215, 325-334.	2.3	132
135	Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Scientific Reports, 2016, 5, 17895.	1.6	85
137	Energetic interventions for healthspan and resiliency with aging. Experimental Gerontology, 2016, 86, 73-83.	1.2	39
138	MicroRNA-206 is differentially expressed in Brca1-deficient mice and regulates epithelial and stromal cell compartments of the mouse mammary gland. Oncogenesis, 2016, 5, e218-e218.	2.1	8
139	Identification of hub genes of pneumocyte senescence induced by thoracic irradiation using weighted gene co-expression network analysis. Molecular Medicine Reports, 2016, 13, 107-116.	1.1	10
140	Gemcitabine induces cell senescence in human pancreatic cancer cell lines. Biochemical and Biophysical Research Communications, 2016, 477, 515-519.	1.0	28
141	Anti-senescence and Anti-inflammatory Effects of the C-terminal Moiety of PTHrP Peptides in OA Osteoblasts. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 72, glw100.	1.7	7
142	Mechanisms and kinetics of proliferation and fibrosis development in a mouse model of thyrocyte hyperplasia. Cellular Immunology, 2016, 304-305, 16-26.	1.4	2
143	Cristacarpin promotes ER stress-mediated ROS generation leading to premature senescence by activation of p21waf-1. Age, 2016, 38, 62.	3.0	24
144	Suppression of autophagy impedes glioblastoma development and induces senescence. Autophagy, 2016, 12, 1431-1439.	4.3	89
145	Animal and human models to understand ageing. Maturitas, 2016, 93, 18-27.	1.0	35

#	Article	IF	CITATIONS
146	From Ancient Pathways to Aging Cells—Connecting Metabolism and Cellular Senescence. Cell Metabolism, 2016, 23, 1013-1021.	7.2	288
147	BZLF1 Attenuates Transmission of Inflammatory Paracrine Senescence in Epstein-Barr Virus-Infected Cells by Downregulating Tumor Necrosis Factor Alpha. Journal of Virology, 2016, 90, 7880-7893.	1.5	12
148	Differential influence of tacrolimus and sirolimus on mitochondrial-dependent signaling for apoptosis in pancreatic cells. Molecular and Cellular Biochemistry, 2016, 418, 91-102.	1.4	12
149	N-(2-methyl-indol-1H-5-yl)-1-naphthalenesulfonamide: A novel reversible antimitotic agent inhibiting cancer cell motility. Biochemical Pharmacology, 2016, 115, 28-42.	2.0	7
150	The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biology, 2016, 13, 690-695.	1.5	47
151	Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus. Virulence, 2016, 7, 427-442.	1.8	49
152	CSGene: a literature-based database for cell senescence genes and its application to identify critical cell aging pathways and associated diseases. Cell Death and Disease, 2016, 7, e2053-e2053.	2.7	49
153	Systemic DNA damage responses in aging and diseases. Seminars in Cancer Biology, 2016, 37-38, 26-35.	4.3	89
154	Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 2016, 22, 78-83.	15.2	1,273
155	Emerging roles of lnc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426.	2.2	50
155 156	Emerging roles of lnc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell and Melanoma Research, 2016, 29, 122-140.	2.2 1.5	50 69
155 156 157	Emerging roles of lnc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell and Melanoma Research, 2016, 29, 122-140. Mitochondrial Damage Induces Senescence with a Twisted Arm. Cell Metabolism, 2016, 23, 229-230.	2.2 1.5 7.2	50 69 6
155 156 157 158	Emerging roles of Inc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell and Melanoma Research, 2016, 29, 122-140. Mitochondrial Damage Induces Senescence with a Twisted Arm. Cell Metabolism, 2016, 23, 229-230. Out with the old. Nature, 2016, 530, 164-165.	2.2 1.5 7.2 13.7	 50 69 6 20
155 156 157 158 159	Emerging roles of Inc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell and Melanoma Research, 2016, 29, 122-140. Mitochondrial Damage Induces Senescence with a Twisted Arm. Cell Metabolism, 2016, 23, 229-230. Out with the old. Nature, 2016, 530, 164-165. MLL1 is essential for the senescence-associated secretory phenotype. Genes and Development, 2016, 30, 321-336.	2.2 1.5 7.2 13.7 2.7	 50 69 6 20 121
155 156 157 158 159	Emerging roles of Inc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell and Melanoma Research, 2016, 29, 122-140. Mitochondrial Damage Induces Senescence with a Twisted Arm. Cell Metabolism, 2016, 23, 229-230. Out with the old. Nature, 2016, 530, 164-165. MLL1 is essential for the senescence-associated secretory phenotype. Genes and Development, 2016, 30, 321-336. Metallothioneins, longevity and cancer: Comment on "Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strainã€+ Experimental Gerontology, 2016, 73, 28-30.	2.2 1.5 7.2 13.7 2.7 1.2	 50 69 6 20 121 11
 155 156 157 158 159 160 161 	Emerging roles of lnc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell and Melanoma Research, 2016, 29, 122-140. Mitochondrial Damage Induces Senescence with a Twisted Arm. Cell Metabolism, 2016, 23, 229-230. Out with the old. Nature, 2016, 530, 164-165. MLL1 is essential for the senescence-associated secretory phenotype. Genes and Development, 2016, 30, 321-336. Metallothioneins, longevity and cancer: Comment on "Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain†Experimental Gerontology, 2016, 73, 28-30. p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells. Molecular and Cellular Biology, 2016, 36, 438-451.	 2.2 1.5 7.2 13.7 2.7 1.2 1.1 	 50 69 6 20 121 11 16
 155 156 157 158 159 160 161 162 	Emerging roles of Inc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell and Melanoma Research, 2016, 29, 122-140. Mitochondrial Damage Induces Senescence with a Twisted Arm. Cell Metabolism, 2016, 23, 229-230. Out with the old. Nature, 2016, 530, 164-165. MLL1 is essential for the senescence-associated secretory phenotype. Genes and Development, 2016, 30, 321-336. Metallothioneins, longevity and cancer: Comment on â&cœDeficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strainâ& Experimental Gerontology, 2016, 73, 28-30. p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells. Molecular and Cellular Biology, 2016, 36, 438-451. Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype. International Journal of Biochemistry and Cell Biology, 2016, 74, 33-43.	 2.2 1.5 7.2 13.7 2.7 1.2 1.1 1.2 	 50 69 6 20 121 11 16 35

#	Article	IF	CITATIONS
164	Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nature Reviews Molecular Cell Biology, 2016, 17, 267-279.	16.1	234
165	Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts. International Journal of Biochemistry and Cell Biology, 2016, 71, 72-80.	1.2	17
166	The inflammatory inception of gallbladder cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 245-254.	3.3	71
167	Autophagy maintains stemness by preventing senescence. Nature, 2016, 529, 37-42.	13.7	1,013
168	Non-Cell-Autonomous Regulation of Cellular Senescence in Cancer. Trends in Cell Biology, 2016, 26, 215-226.	3.6	71
169	Aging in the Canine Kidney. Veterinary Pathology, 2016, 53, 299-308.	0.8	21
170	The homeoprotein SIX1 controls cellular senescence through the regulation of p16INK4A and differentiation-related genes. Oncogene, 2016, 35, 3485-3494.	2.6	15
171	Premature aging/senescence in cancer cells facing therapy: good or bad?. Biogerontology, 2016, 17, 71-87.	2.0	60
172	Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis and Cartilage, 2016, 24, 398-408.	0.6	306
173	IFNÎ ³ induces oxidative stress, DNA damage and tumor cell senescence via TGFÎ ² /SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene, 2016, 35, 1236-1249.	2.6	73
174	Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing. Ageing Research Reviews, 2017, 33, 76-88.	5.0	88
175	Genome instability: Linking ageing and brain degeneration. Mechanisms of Ageing and Development, 2017, 161, 4-18.	2.2	11
176	The role of cellular senescence in ageing of the placenta. Placenta, 2017, 52, 139-145.	0.7	116
177	The role of SUMOylation in ageing and senescent decline. Mechanisms of Ageing and Development, 2017, 162, 85-90.	2.2	22
178	Oncostatin M activation of Stat3:Smad3 complexes drives senescence. Cell Cycle, 2017, 16, 497-498.	1.3	2
179	Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Research and Therapy, 2017, 8, 19.	2.4	66
180	Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death and Disease, 2017, 8, e2631-e2631.	2.7	33
181	<scp>ZRF</scp> 1 is a novel S6 kinase substrate that drives the senescence programme. EMBO Journal, 2017, 36, 736-750.	3.5	33

#	Article	IF	CITATIONS
182	The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling. Cell Reports, 2017, 18, 2148-2161.	2.9	58
183	Melatonin regulates <scp>PARP</scp> 1 to control the senescenceâ€associated secretory phenotype (<scp>SASP</scp>) in human fetal lung fibroblast cells. Journal of Pineal Research, 2017, 63, e12405.	3.4	58
184	Young and Lean: Elimination of Senescent Cells Boosts Adaptive Thermogenesis. Cell Metabolism, 2017, 25, 226-228.	7.2	0
185	Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-Î ² Pathway. Cell Reports, 2017, 18, 2480-2493.	2.9	135
186	Inhibition of Bcl-2/xl With ABT-263 Selectively Kills Senescent Type II Pneumocytes and Reverses Persistent Pulmonary Fibrosis Induced by Ionizing Radiation in Mice. International Journal of Radiation Oncology Biology Physics, 2017, 99, 353-361.	0.4	172
187	Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene, 2017, 36, 4887-4900.	2.6	179
188	O-GlcNAcylation and chromatin remodeling in mammals: an up-to-date overview. Biochemical Society Transactions, 2017, 45, 323-338.	1.6	34
189	Clinicopathologic Association and Prognostic Value of Microcystic, Elongated, and Fragmented (MELF) Pattern in Endometrial Endometrioid Carcinoma. American Journal of Surgical Pathology, 2017, 41, 896-905.	2.1	39
190	SASP regulation by noncoding RNA. Mechanisms of Ageing and Development, 2017, 168, 37-43.	2.2	66
191	Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells. International Journal of Cancer, 2017, 141, 540-548.	2.3	36
192	Tools to eliminate senescent cells. Nature, 2017, 545, 294-295.	13.7	11
193	Verapamil augments carmustine- and irradiation-induced senescence in glioma cells by reducing intracellular reactive oxygen species and calcium ion levels. Tumor Biology, 2017, 39, 101042831769224.	0.8	5
194	HCSGD: An integrated database of human cellular senescence genes. Journal of Genetics and Genomics, 2017, 44, 227-234.	1.7	15
195	Integrins in senescence and aging. Cell Cycle, 2017, 16, 909-910.	1.3	21
196	Isolation and identification of senescent renal tubular epithelial cells using immunomagnetic beads based on DcR2. Experimental Gerontology, 2017, 95, 116-127.	1.2	12
197	The Role of Senescence in Hepatic Diseases. , 2017, , 295-308.		0
198	Quantitative identification of senescent cells in aging and disease. Aging Cell, 2017, 16, 661-671.	3.0	269
199	Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell, 2017, 16, 192-197.	3.0	179

#	Article	IF	CITATIONS
200	Transcriptional coactivator with <scp>PDZ</scp> â€binding motif is required to sustain testicular function on aging. Aging Cell, 2017, 16, 1035-1042.	3.0	15
201	An OFF–ON Two-Photon Fluorescent Probe for Tracking Cell Senescence <i>in Vivo</i> . Journal of the American Chemical Society, 2017, 139, 8808-8811.	6.6	138
202	Lipid (per) oxidation in mitochondria: an emerging target in the ageing process?. Biogerontology, 2017, 18, 859-879.	2.0	122
203	Senescence in Health and Disease. Cell, 2017, 169, 1000-1011.	13.5	1,137
204	Plasminogen Activator Inhibitor-1 Is a Marker and a Mediator of Senescence. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1446-1452.	1.1	159
205	Cerebellar Exposure to Cell-Free Hemoglobin Following Preterm Intraventricular Hemorrhage: Causal in Cerebellar Damage?. Translational Stroke Research, 2017, 8, 461-473.	2.3	29
206	p21 maintains senescent cell viability under persistent <scp>DNA</scp> damage response by restraining <scp>JNK</scp> and caspase signaling. EMBO Journal, 2017, 36, 2280-2295.	3.5	187
207	Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. GeroScience, 2017, 39, 161-173.	2.1	106
208	Programmed cell senescence: role of IL-6 in the pituitary. Journal of Molecular Endocrinology, 2017, 58, R241-R253.	1.1	26
209	miR-34a promotes fibrosis in aged lungs by inducing alveolarepithelial dysfunctions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L415-L424.	1.3	51
210	Urinary DcR2 is a novel biomarker for tubulointerstitial injury in patients with diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2017, 313, F273-F281.	1.3	16
211	A single non-synonymous NCOA5 variation in type 2 diabetic patients with hepatocellular carcinoma impairs the function of NCOA5 in cell cycle regulation. Cancer Letters, 2017, 391, 152-161.	3.2	7
212	TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022145.	2.3	390
213	Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biology, 2017, 11, 482-501.	3.9	268
214	Injury-Induced Senescence Enables InÂVivo Reprogramming in Skeletal Muscle. Cell Stem Cell, 2017, 20, 407-414.e4.	5.2	234
215	Cellular senescence in renal ageing and disease. Nature Reviews Nephrology, 2017, 13, 77-89.	4.1	243
216	The Fountain of Youth by Targeting Senescent Cells?. Trends in Molecular Medicine, 2017, 23, 6-17.	3.5	105
217	WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation. Cell Research, 2017, 27, 274-293.	5.7	34

		CITATION REPORT		
#	Article		IF	CITATIONS
218	Senescence in COPD and Its Comorbidities. Annual Review of Physiology, 2017, 79, 51	.7-539.	5.6	190
219	Oxidative Stress-Induced miR-200c Disrupts the Regulatory Loop Among SIRT1, FOXO Antioxidants and Redox Signaling, 2017, 27, 328-344.	1, and eNOS.	2.5	110
220	Regiospecific Synthesis of Ring A Fused Withaferin A Isoxazoline Analogues: Induction Senescence by W-2b in Proliferating Cancer Cells. Scientific Reports, 2017, 7, 13749.	of Premature	1.6	20
221	Evaluation of Injury-induced Senescence and In Vivo Reprogram Skeletal Muscle. Journal of Visualized Experiments, 2017, , .	ming in the	0.2	12
222	Chitosan delaying human fibroblast senescence through downregulation of TGF-β sigr Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-12.	aling pathway.	1.9	9
223	The potential of targeting Sin3B and its associated complexes for cancer therapy. Expe Therapeutic Targets, 2017, 21, 1051-1061.	rt Opinion on	1.5	7
224	Ferritin nanocages loaded with gold ions induce oxidative stress and apoptosis in MCF cancer cells. Dalton Transactions, 2017, 46, 15354-15362.	-7 human breast	1.6	37
225	Endothelial cell senescence with aging in healthy humans: prevention by habitual exerc relation to vascular endothelial function. American Journal of Physiology - Heart and Cir Physiology, 2017, 313, H890-H895.	tise and rculatory	1.5	160
226	The matricellular protein TSP1 promotes human and mouse endothelial cell senescence and Nox1. Science Signaling, 2017, 10, .	e through CD47	1.6	65
227	High-Throughput Functional Genetic and Compound Screens Identify Targets for Sene Induction in Cancer. Cell Reports, 2017, 21, 773-783.	scence	2.9	136
228	Idiopathic pulmonary fibrosis. Nature Reviews Disease Primers, 2017, 3, 17074.		18.1	786
229	Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype. M Ageing and Development, 2017, 166, 16-23.	echanisms of	2.2	34
230	DNA sensing in senescence. Nature Cell Biology, 2017, 19, 1008-1009.		4.6	18
231	SnapShot: Cellular Senescence in Pathophysiology. Cell, 2017, 170, 1044-1044.e1.		13.5	11
232	Lung Diseases of the Elderly. Clinics in Geriatric Medicine, 2017, 33, 473-490.		1.0	17
233	IPF lung fibroblasts have a senescent phenotype. American Journal of Physiology - Lung Molecular Physiology, 2017, 313, L1164-L1173.	cellular and	1.3	219
234	ATRX is a regulator of therapy induced senescence in human cells. Nature Communicat 386.	tions, 2017, 8,	5.8	59
235	Identification of HSP90 inhibitors as a novel class of senolytics. Nature Communication	ns, 2017, 8, 422.	5.8	466

#	Article	IF	CITATIONS
236	Identification of senescent cell surface targetable protein DPP4. Genes and Development, 2017, 31, 1529-1534.	2.7	168
237	Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 2017, 16, 718-735.	21.5	788
238	Haplodeficiency of Ataxia Telangiectasia Mutated Accelerates Heart Failure After Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	1.6	23
239	Analysis of individual cells identifies cellâ€ŧoâ€cell variability following induction of cellular senescence. Aging Cell, 2017, 16, 1043-1050.	3.0	182
240	Cooperation between p21 and Akt is required for p53â€dependent cellular senescence. Aging Cell, 2017, 16, 1094-1103.	3.0	87
241	Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses?. Cellular and Molecular Life Sciences, 2017, 74, 4471-4509.	2.4	55
242	Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nature Cell Biology, 2017, 19, 1061-1070.	4.6	741
243	p38 MAPK inhibits nonsense-mediated RNA decay in response to persistent DNA damage in noncycling cells. Journal of Biological Chemistry, 2017, 292, 15266-15276.	1.6	9
244	Licence to kill senescent cells in idiopathic pulmonary fibrosis?. European Respiratory Journal, 2017, 50, 1701360.	3.1	16
245	Biomarker research to improve clinical outcomes of peritoneal dialysis: consensus of the European Training and Research in Peritoneal Dialysis (EuTRiPD) network. Kidney International, 2017, 92, 824-835.	2.6	54
246	Spatial and Temporal Control of Senescence. Trends in Cell Biology, 2017, 27, 820-832.	3.6	127
247	Chromatin-Associated Protein SIN3B Prevents Prostate Cancer Progression by Inducing Senescence. Cancer Research, 2017, 77, 5339-5348.	0.4	9
248	SnapShot: Cellular Senescence Pathways. Cell, 2017, 170, 816-816.e1.	13.5	80
249	Senolytic drugs targetÂalveolar epithelial cell function and attenuate experimental lung fibrosis <i>ex vivo</i> . European Respiratory Journal, 2017, 50, 1602367.	3.1	267
250	Synergistic activity and heterogeneous acquired resistance of combined MDM2 and MEK inhibition in KRAS mutant cancers. Oncogene, 2017, 36, 6581-6591.	2.6	31
251	Caveolin-1 regulates oxidative stress-induced senescence in nucleus pulposus cells primarily via the p53/p21 signaling pathway in vitro. Molecular Medicine Reports, 2017, 16, 9521-9527.	1.1	17
252	Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence. Genes and Development, 2017, 31, 2085-2098.	2.7	53
253	Sensing the Breaks: Cytosolic Chromatin in Senescence and Cancer. Trends in Molecular Medicine, 2017, 23, 1067-1070.	3.5	8

#	Article	IF	CITATIONS
254	Overexpression of microRNA‑1470 promotes proliferation and migration, and inhibits senescence of esophageal squamous carcinoma cells. Oncology Letters, 2017, 14, 7753-7758.	0.8	11
255	Downregulation of the Apelinergic Axis Accelerates Aging, whereas Its Systemic Restoration Improves the Mammalian Healthspan. Cell Reports, 2017, 21, 1471-1480.	2.9	50
256	Integrin-linked kinase: A new actor in the ageing process?. Experimental Gerontology, 2017, 100, 87-90.	1.2	13
257	Iscador Qu inhibits doxorubicin-induced senescence of MCF7 cells. Scientific Reports, 2017, 7, 3763.	1.6	14
258	Oncogene-Expressing Senescent Melanocytes Up-Regulate MHC Class II, aÂCandidate Melanoma Suppressor Function. Journal of Investigative Dermatology, 2017, 137, 2197-2207.	0.3	30
259	Female GADD34 mice develop ageâ€related inflammation and hepatocellular carcinoma. Geriatrics and Gerontology International, 2017, 17, 2593-2601.	0.7	6
260	Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food and Function, 2017, 8, 2394-2418.	2.1	57
261	Oncogene-Induced Senescence. Methods in Molecular Biology, 2017, , .	0.4	4
262	Regulation of Transcription Factors by Reactive Oxygen Species and Nitric Oxide in Vascular Physiology and Pathology. Antioxidants and Redox Signaling, 2017, 26, 679-699.	2.5	39
263	Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Archives of Biochemistry and Biophysics, 2017, 613, 12-22.	1.4	18
264	Cellular Model of p21-Induced Senescence. Methods in Molecular Biology, 2017, 1534, 31-39.	0.4	39
265	Detection of Senescent Cells by Extracellular Markers Using a Flow Cytometry-Based Approach. Methods in Molecular Biology, 2017, 1534, 147-153.	0.4	9
266	Detecting the Senescence-Associated Secretory Phenotype (SASP) by High Content Microscopy Analysis. Methods in Molecular Biology, 2017, 1534, 99-109.	0.4	11
267	Aging, metabolism and stem cells: Spotlight on muscle stem cells. Molecular and Cellular Endocrinology, 2017, 445, 109-117.	1.6	33
268	Emerging links among Chromosome Instability (CIN), cancer, and aging. Molecular Carcinogenesis, 2017, 56, 791-803.	1.3	22
269	Shelterin Telomere Protection Protein 1 Reduction Causes Telomere Attrition and Cellular Senescence via Sirtuin 1 Deacetylase in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 38-49.	1.4	49
270	Opposing impacts on healthspan and longevity by limiting dietary selenium in telomere dysfunctional mice. Aging Cell, 2017, 16, 125-135.	3.0	30
271	What makes oncogenes mutually exclusive?. Small GTPases, 2017, 8, 187-192.	0.7	37

#	Article	IF	CITATIONS
272	TWEAK increases SIRT1 expression and promotes p53 deacetylation affecting human hepatic stellate cell senescence. Cell Biology International, 2017, 41, 147-154.	1.4	14
273	Fate of microglia during HIVâ€1 infection: From activation to senescence?. Clia, 2017, 65, 431-446.	2.5	78
274	Redox control of senescence and age-related disease. Redox Biology, 2017, 11, 91-102.	3.9	240
275	Genome-Wide Overexpression Screen Identifies Genes Able to Bypass p16-Mediated Senescence in Melanoma. SLAS Discovery, 2017, 22, 298-308.	1.4	9
276	The Function of Epithelial Cells in Pulmonary Fibrosis. , 2017, , 103-131.		3
277	Is Senescence Important in Hepatic Diseases?. , 2017, , .		0
278	Ion Channels in Breast Cancer: From Signaling to Therapy. , 0, , .		4
279	Molecular signature of anastasis for reversal of apoptosis. F1000Research, 2017, 6, 43.	0.8	30
280	The Respiratory Epithelium in COPD. , 2017, , 165-184.		3
281	Cellular Senescence Is Associated With Human Retinal Microaneurysm Formation During Aging. , 2017, 58, 2832.		35
282	Markers of T Cell Senescence in Humans. International Journal of Molecular Sciences, 2017, 18, 1742.	1.8	162
283	The Role of Kinase Modulators in Cellular Senescence for Use in Cancer Treatment. Molecules, 2017, 22, 1411.	1.7	23
284	Senescence-Inflammatory Regulation of Reparative Cellular Reprogramming in Aging and Cancer. Frontiers in Cell and Developmental Biology, 2017, 5, 49.	1.8	23
285	MYC Modulation around the CDK2/p27/SKP2 Axis. Genes, 2017, 8, 174.	1.0	58
286	The Impacts of Cellular Senescence in Elderly Pneumonia and in Age-Related Lung Diseases That Increase the Risk of Respiratory Infections. International Journal of Molecular Sciences, 2017, 18, 503.	1.8	44
287	The Role of p16INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. International Journal of Molecular Sciences, 2017, 18, 1591.	1.8	51
288	Cardiac Cell Senescence and Redox Signaling. Frontiers in Cardiovascular Medicine, 2017, 4, 38.	1.1	16
289	Cognitive Decline in Neuronal Aging and Alzheimer's Disease: Role of NMDA Receptors and Associated Proteins. Frontiers in Neuroscience, 2017, 11, 626.	1.4	43

#	Article	IF	CITATIONS
290	The Light and Shadow of Senescence and Inflammation in Cardiovascular Pathology and Regenerative Medicine. Mediators of Inflammation, 2017, 2017, 1-13.	1.4	9
291	Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-21.	1.9	82
292	Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	1.9	255
293	Aging: Molecular Pathways and Implications on the Cardiovascular System. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-19.	1.9	63
294	Gene Expression, Oxidative Stress, and Senescence of Primary Coronary Endothelial Cells Exposed to Postprandial Serum of Healthy Adult and Elderly Volunteers after Oven-Cooked Meat Meals. Mediators of Inflammation, 2017, 2017, 1-12.	1.4	1
295	Epigenetic Basis of Cellular Senescence and Its Implications in Aging. Genes, 2017, 8, 343.	1.0	42
296	Crosstalk between glial and glioblastoma cells triggers the "go-or-grow―phenotype of tumor cells. Cell Communication and Signaling, 2017, 15, 37.	2.7	35
298	ANGPTL2 ― A New Causal Player in Accelerating Heart Disease Development in the Aging ―. Circulation Journal, 2017, 81, 1379-1385.	0.7	19
299	Senescence and tumor suppression. F1000Research, 2017, 6, 2121.	0.8	40
300	Rejuvenating stem cells to restore muscle regeneration in aging. F1000Research, 2017, 6, 76.	0.8	25
302	Hallmarks of Cellular Senescence. Trends in Cell Biology, 2018, 28, 436-453.	3.6	1,474
303	Cellular senescence as a therapeutic target to improve renal transplantation outcome. Pharmacological Research, 2018, 130, 322-330.	3.1	26
304	LncRNA H19 targets miRâ€22 to modulate H ₂ O ₂ â€induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. Journal of Cellular Biochemistry, 2018, 119, 4990-5002.	1.2	69
305	Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nature Communications, 2018, 9, 1020.	5.8	105
306	Oncogene-induced senescence and tumour control in complex biological systems. Cell Death and Differentiation, 2018, 25, 1005-1006.	5.0	110
307	Osteogenic protein-1 attenuates the inflammatory cytokine-induced NP cell senescence through regulating the ROS/NF-ήB pathway. Biomedicine and Pharmacotherapy, 2018, 99, 431-437.	2.5	26
308	Par-4-dependent p53 up-regulation plays a critical role in thymoquinone-induced cellular senescence in human malignant glioma cells. Cancer Letters, 2018, 426, 80-97.	3.2	25
309	Paracrine roles of cellular senescence in promoting tumourigenesis. British Journal of Cancer, 2018, 118, 1283-1288.	2.9	125

#	Article	IF	CITATIONS
310	Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacologica Sinica, 2018, 39, 1553-1558.	2.8	97
311	MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. Cell Reports, 2018, 23, 361-375.	2.9	23
312	Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. Journal of Cell Science, 2018, 131, .	1.2	25
313	Targeting Aged Astrocytes May Be a New Therapeutic Strategy in Parkinson's Disease. Movement Disorders, 2018, 33, 758-759.	2.2	5
314	Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses. Bone, 2018, 113, 29-40.	1.4	13
315	Induction of a Senescence-Like Phenotype in Cultured Human Fetal Microglia During HIV-1 Infection. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1187-1196.	1.7	20
316	BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis. Cell Death and Disease, 2018, 9, 203.	2.7	54
317	Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell, 2018, 17, e12734.	3.0	150
318	Telomeres and telomerase in heart regeneration. Differentiation, 2018, 100, 26-30.	1.0	12
319	Recent insights into the cellular and molecular determinants of aging. Journal of Cell Science, 2018, 131, .	1.2	21
320	Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Reports, 2018, 22, 930-940.	2.9	342
321	3′ UTR lengthening as a novel mechanism in regulating cellular senescence. Genome Research, 2018, 28, 285-294.	2.4	90
322	Targeting Senescent Cells in Fibrosis: Pathology, Paradox, and Practical Considerations. Current Rheumatology Reports, 2018, 20, 3.	2.1	74
323	Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. Journal of Leukocyte Biology, 2018, 103, 509-524.	1.5	39
324	A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nature Reviews Cancer, 2018, 18, 187-201.	12.8	76
325	Senescence chips for ultrahighâ€ŧhroughput isolation and removal of senescent cells. Aging Cell, 2018, 17, e12722.	3.0	15
326	Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Scientific Reports, 2018, 8, 2410.	1.6	93
327	Depleted lamin B1: a possible marker of the involvement of senescence in endometriosis?. Archives of Gynecology and Obstetrics, 2018, 297, 977-984.	0.8	6

#	Article	IF	CITATIONS
328	Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Research Reviews, 2018, 43, 17-25.	5.0	151
329	p53 isoforms regulate premature aging in human cells. Oncogene, 2018, 37, 2379-2393.	2.6	45
330	Age-related oxidative changes in pancreatic islets are predominantly located in the vascular system. Redox Biology, 2018, 15, 387-393.	3.9	21
331	Senescence promotes inÂvivo reprogramming through p16 <scp>^{INK}</scp> ^{4a} and <scp>IL</scp> â€6. Aging Cell, 2018, 17, e12711.	3.0	133
332	Senescence-associated reprogramming promotes cancer stemness. Nature, 2018, 553, 96-100.	13.7	714
333	Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Research Reviews, 2018, 42, 56-71.	5.0	150
334	Gut flora-dependent metabolite Trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radical Biology and Medicine, 2018, 116, 88-100.	1.3	174
335	Inflammation and neutrophil immunosenescence in health and disease: Targeted treatments to improve clinical outcomes in the elderly. Experimental Gerontology, 2018, 105, 70-77.	1.2	54
336	Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends in Cell Biology, 2018, 28, 595-607.	3.6	135
338	Interleukin‴10 promotes primary rat hepatic stellate cell senescence by upregulating the expression levels of p53 and p21. Molecular Medicine Reports, 2018, 17, 5700-5707.	1.1	20
339	Diversity of CD28null T Cells in the Elderly: A Climpse in a Biological Adaptation of Aging. , 2018, , 1-33.		0
340	The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade. Cell Reports, 2018, 22, 2978-2994.	2.9	315
341	Resistance Mechanisms to Cyclin-Dependent Kinase Inhibitors. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 181-210.	0.1	3
342	p53 in Bronchial Club Cells Facilitates Chronic Lung Inflammation by Promoting Senescence. Cell Reports, 2018, 22, 3468-3479.	2.9	35
343	Cancer-Cell-Intrinsic Mechanisms Shaping the Tumor Immune Landscape. Immunity, 2018, 48, 399-416.	6.6	442
344	TGF-β1 Signaling and Tissue Fibrosis. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022293.	2.3	432
345	Senescence in chronic allograft nephropathy. American Journal of Physiology - Renal Physiology, 2018, 315, F880-F889.	1.3	12
346	Cardiac stem cell aging and heart failure. Pharmacological Research, 2018, 127, 26-32.	3.1	12

ARTICLE IF CITATIONS # Doxorubicin targets multiple players: A new view of an old problem. Pharmacological Research, 2018, 347 3.1 123 127, 4-14. Calcium signaling and cellular senescence. Cell Calcium, 2018, 70, 16-23. 348 1.1 Hypoxia driven glycation: Mechanisms and therapeutic opportunities. Seminars in Cancer Biology, 2018, 349 4.3 37 49, 75-82. Stress, cell senescence and organismal ageing. Mechanisms of Ageing and Development, 2018, 170, 2-9. 234 Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function. 351 2.5 109 Antioxidants and Redox Signaling, 2018, 29, 149-168. Replication stress in hematopoietic stem cells in mouse and man. Mutation Research - Fundamental and 0.4 Molecular Mechanisms of Mutagenesis, 2018, 808, 74-82. 353 Mechanisms driving the ageing heart. Experimental Gerontology, 2018, 109, 5-15. 1.2 41 Mechanistic understanding of the role of ATRX in senescence provides new insight for combinatorial 354 0.3 therapies with CDK4 inhibitors.. Molecular and Cellular Oncology, 2018, 5, e1384882. Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease., 2018, 183, 355 128 34-49. Acquired adenomatous hyperplasia of the rete testis: an immunohistochemical study of its 1.1 pathogenesis. Human Pathology, 2018, 73, 102-107. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive 357 235 5.7for highly efficient regenerative wound healing. Biomaterials, 2018, 151, 66-77. Type 2 immunity in tissue repair and fibrosis. Nature Reviews Immunology, 2018, 18, 62-76. 358 10.6 718 Is DNA damage indispensable for stress-induced senescence?. Mechanisms of Ageing and Development, 359 2.2 66 2018, 170, 13-21. Senotherapy for attenuation of cellular senescence in aging and organ implantation. Journal of Industrial and Engineering Chemistry, 2018, 60, 1-8. An oligoclonal antibody durably overcomes resistance of lung cancer to thirdâ€generation 361 3.3 46 <scp>EGFR</scp> inhibitors. EMBO Molecular Medicine, 2018, 10, 294-308. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology, 2018, 64, 1.4 326 127-134. Autophagy in advanced low- and high-grade tubular adenocarcinomas of the stomach: An 363 0.4 4 ultrastructural investigation. Ultrastructural Pathology, 2018, 42, 10-17. A distinct mechanism of senescence activation in amnion epithelial cells by infection, inflammation, 364 1.2 and oxidative stress. American Journal of Reproductive Immunology, 2018, 79, e12790.

#	Article	IF	CITATIONS
365	Connecting chaperone-mediated autophagy dysfunction to cellular senescence. Ageing Research Reviews, 2018, 41, 34-41.	5.0	27
366	The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Research Reviews, 2018, 41, 18-33.	5.0	36
367	Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 2018, 217, 65-77.	2.3	757
368	Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxidants and Redox Signaling, 2018, 29, 846-863.	2.5	34
369	SIPS as a model to study age-related changes in proteolysis and aggregate formation. Mechanisms of Ageing and Development, 2018, 170, 72-81.	2.2	24
370	The Hayflick Limit and Age-Related Adaptive Immune Deficiency. Gerontology, 2018, 64, 135-139.	1.4	18
371	Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Seminars in Immunology, 2018, 40, 101275.	2.7	285
372	mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight, 2018, 3, .	2.3	142
373	Doxorubicin Cardiotoxicity: Multiple Targets and Translational Perspectives. , 2018, , .		3
374	Loss of heterogeneity, quiescence, and differentiation in muscle stem cells. Stem Cell Investigation, 2018, 5, 9-9.	1.3	25
375	Uncovering the pharmacological response of novel sesquiterpene derivatives that differentially alter gene expression and modulate the cell cycle in cancer cells. International Journal of Oncology, 2018, 53, 2167-2179.	1.4	6
376	Strategies targeting cellular senescence. Journal of Clinical Investigation, 2018, 128, 1247-1254.	3.9	153
377	Role of RN Autophagy Mediated ERV Suppression in Cellular Senescence. Insights in Biomedicine, 2018, 03, .	0.1	0
378	Oxidative Stress-induced Interaction between Autophagy and Cellular Senescence in Human Keratinocytes. Journal of Hard Tissue Biology, 2018, 27, 199-208.	0.2	3
379	Low dose dinaciclib enhances doxorubicin‑induced senescence in myeloma RPMI8226 cells by transformation of the p21 and p16 pathways. Oncology Letters, 2018, 16, 6608-6614.	0.8	6
380	Administration of hydrogen-rich water prevents vascular aging of the aorta in LDL receptor-deficient mice. Scientific Reports, 2018, 8, 16822.	1.6	24
381	Deregulated Expression of Mammalian IncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Molecular Cell, 2018, 72, 970-984.e7.	4.5	140
382	Nuclear Translocation of Argonaute 2 in Cytokine-Induced Senescence. Cellular Physiology and Biochemistry, 2018, 51, 1103-1118.	1.1	13

#	Article	IF	CITATIONS
383	Influence of microgravity-induced intervertebral disc degeneration of rats on expression levels of p53/p16 and proinflammatory factors. Experimental and Therapeutic Medicine, 2019, 17, 1367-1373.	0.8	8
384	Urothelial Senescence in the Pathophysiology of Diabetic Bladder Dysfunction—A Novel Hypothesis. Frontiers in Surgery, 2018, 5, 72.	0.6	13
385	MYC and RAS are unable to cooperate in overcoming cellular senescence and apoptosis in normal human fibroblasts. Cell Cycle, 2018, 17, 2697-2715.	1.3	13
386	Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nature Communications, 2018, 9, 5435.	5.8	325
387	Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells, 2018, 7, 268.	1.8	75
388	Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death and Disease, 2018, 9, 1166.	2.7	67
389	Endocytosis in proliferating, quiescent and terminally differentiated cells. Journal of Cell Science, 2018, 131, .	1.2	53
390	ALDH2 Activity Reduces Mitochondrial Oxygen Reserve Capacity in Endothelial Cells and Induces Senescence Properties. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	1.9	23
391	Acidic pH promotes nucleus pulposus cell senescence through activating the p38 MAPK pathway. Bioscience Reports, 2018, 38, .	1.1	19
392	Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. Advances in Experimental Medicine and Biology, 2018, 1086, 55-75.	0.8	49
393	Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. International Journal of Radiation Biology, 2018, 94, 1104-1115.	1.0	21
394	The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Research Reviews, 2018, 48, 1-10.	5.0	71
395	Ageing, Cellular Senescence and Neurodegenerative Disease. International Journal of Molecular Sciences, 2018, 19, 2937.	1.8	248
396	Peripheral immune system in aging and Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 51.	4.4	143
397	Telomere dysfunction promotes transdifferentiation of human fibroblasts into myofibroblasts. Aging Cell, 2018, 17, e12838.	3.0	50
398	Loss of Ovarian Hormones and Accelerated Somatic and Mental Aging. Physiology, 2018, 33, 374-383.	1.6	35
399	Does Joint Injury Make Young Joints Old?. Journal of the American Academy of Orthopaedic Surgeons, The, 2018, 26, e455-e456.	1.1	5
400	Pkd2 deletion during embryo development does not alter mesonephric programmed cell senescence. International Journal of Developmental Biology, 2018, 62, 637-640.	0.3	4

#	Article	IF	CITATIONS
401	Epidermal Growth Factor Therapy Impact on Scar Tissue Resilience of Diabetic Lower Limbs Ulcers-An Enlightening Hypothesis. Journal of Diabetes & Metabolism, 2018, 09, .	0.2	1
402	The emerging field of senotherapeutic drugs. Future Medicinal Chemistry, 2018, 10, 2369-2372.	1.1	24
403	Reactive oxygen species mediated placental oxidative stress, mitochondrial content, and cell cycle progression through mitogen-activated protein kinases in intrauterine growth restricted pigs. Reproductive Biology, 2018, 18, 422-431.	0.9	30
405	Postinfarction Hearts Are Protected by Premature Senescent Cardiomyocytes Via GATA4â€Dependent CCN1 Secretion. Journal of the American Heart Association, 2018, 7, e009111.	1.6	34
406	Oncogenic activation of PI3K induces progenitor cell differentiation to suppress epidermal growth. Nature Cell Biology, 2018, 20, 1256-1266.	4.6	45
407	A moderate exposure to perfluorooctanoic acid causes persistent DNA damage and senescence in human epidermal HaCaT keratinocytes. Food and Chemical Toxicology, 2018, 121, 351-359.	1.8	7
408	A novel Sudan Black B-based analogue revives lipofuscin as a biomarker for in vivo senescence. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 473, 781-783.	1.4	0
409	Inflammation-induced Gro1 triggers senescence in neuronal progenitors: effects of estradiol. Journal of Neuroinflammation, 2018, 15, 260.	3.1	8
410	Heart-Breaking Telomeres. Circulation Research, 2018, 123, 787-802.	2.0	50
411	Mouse Models to Disentangle the Hallmarks of Human Aging. Circulation Research, 2018, 123, 905-924.	2.0	79
412	Angiotensinâ€converting enzyme 2 deficiency accelerates and angiotensin 1â€7 restores ageâ€related muscle weakness in mice. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 975-986.	2.9	37
413	A Quantitative Measurement of Reactive Oxygen Species and Senescence-associated Secretory Phenotype in Normal Human Fibroblasts During Oncogene-induced Senescence. Journal of Visualized Experiments, 2018, , .	0.2	0
414	Hepatocyte expression and prognostic importance of senescence marker p21 in liver histopathology samples from dogs with chronic hepatitis. Journal of Veterinary Internal Medicine, 2018, 32, 1629-1636.	0.6	7
415	The Basics of Biogerontology. , 2018, , .		1
416	PM2.5 promotes abdominal aortic aneurysm formation in angiotensin â¡-infused apoe-/- mice. Biomedicine and Pharmacotherapy, 2018, 104, 550-557.	2.5	31
417	Oxidation resistance 1 is a novel senolytic target. Aging Cell, 2018, 17, e12780.	3.0	95
418	Clustered miRNAs and their role in biological functions and diseases. Biological Reviews, 2018, 93, 1955-1986.	4.7	241
419	<scp>CD</scp> 36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Reports, 2018, 19, .	2.0	44

#	Article	IF	CITATIONS
420	Integrating the DNA damage and protein stress responses during cancer development and treatment. Journal of Pathology, 2018, 246, 12-40.	2.1	79
421	SCAMP4 enhances the senescent cell secretome. Genes and Development, 2018, 32, 909-914.	2.7	38
422	Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators of Inflammation, 2018, 2018, 1-32.	1.4	49
423	Cytosolic DNA Sensing in Organismal Tumor Control. Cancer Cell, 2018, 34, 361-378.	7.7	191
424	Cellular Senescence and Inflammaging in Age-Related Diseases. Mediators of Inflammation, 2018, 2018, 1-6.	1.4	120
425	miR-200a Modulates the Expression of the DNA Repair Protein OGG1 Playing a Role in Aging of Primary Human Keratinocytes. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-17.	1.9	28
426	TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nature Communications, 2018, 9, 2560.	5.8	124
427	Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology, 2018, 19, 325-339.	2.0	51
428	Cell-surface phenotyping identifies CD36 and CD97 as novel markers of fibroblast quiescence in lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L682-L696.	1.3	21
429	Klotho protein in neurodegenerative disorders. Neurological Sciences, 2018, 39, 1677-1682.	0.9	36
430	Selective monitoring of vascular cell senescence via β-Galactosidase detection with a fluorescent chemosensor. Sensors and Actuators B: Chemical, 2018, 274, 194-200.	4.0	32
431	Cellular Senescence in Chronic Obstructive Pulmonary Disease: Multifaceted and Multifunctional. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 135-136.	1.4	15
432	Adverse Childhood Experiences Run Deep: Toxic Early Life Stress, Telomeres, and Mitochondrial DNA Copy Number, the Biological Markers of Cumulative Stress. BioEssays, 2018, 40, e1800077.	1.2	83
433	Cellular senescence: Molecular mechanisms and pathogenicity. Journal of Cellular Physiology, 2018, 233, 9121-9135.	2.0	146
434	Targeting senescence. Nature Medicine, 2018, 24, 1092-1094.	15.2	22
435	Membrane-Bound CD40L Promotes Senescence and Initiates Senescence-Associated Secretory Phenotype via NF-κB Activation in Lung Adenocarcinoma. Cellular Physiology and Biochemistry, 2018, 48, 1793-1803.	1.1	15
436	Senescence Inducer Shikonin ROS-Dependently Suppressed Lung Cancer Progression. Frontiers in Pharmacology, 2018, 9, 519.	1.6	31
437	Automatic Screening for Perturbations in Boolean Networks. Frontiers in Physiology, 2018, 9, 431.	1.3	28

#	Article	IF	CITATIONS
438	The Pathobiology of the Meniscus: A Comparison Between the Human and Dog. Frontiers in Veterinary Science, 2018, 5, 73.	0.9	9
439	The replicative senescent mesenchymal stem / stromal cells defect in DNA damage response and anti-oxidative capacity. International Journal of Medical Sciences, 2018, 15, 771-781.	1.1	28
440	Cellular senescence links aging and diabetes in cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H448-H462.	1.5	71
441	HIV antiretroviral therapy drugs induce premature senescence and altered physiology in HUVECs. Mechanisms of Ageing and Development, 2018, 175, 74-82.	2.2	19
442	Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology, 2018, 19, 447-459.	2.0	119
443	Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nature Reviews Cardiology, 2018, 15, 543-554.	6.1	207
444	The Molecular Intersection Between Senescence and Major Depression in the Elderly. American Journal of Geriatric Psychiatry, 2018, 26, 1097-1105.	0.6	25
445	Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Frontiers in Immunology, 2018, 9, 1569.	2.2	17
446	DICER1: A Key Player in Rheumatoid Arthritis, at the Crossroads of Cellular Stress, Innate Immunity, and Chronic Inflammation in Aging. Frontiers in Immunology, 2018, 9, 1647.	2.2	14
447	Control of Cell Division. , 2018, , 176-185.		0
448	Vascular Senescence in Cardiovascular and Metabolic Diseases. Frontiers in Cardiovascular Medicine, 2018, 5, 18.	1.1	150
449	Implications of Cellular Aging in Cardiac Reprogramming. Frontiers in Cardiovascular Medicine, 2018, 5, 43.	1.1	14
450	Chromatin Architectural Changes during Cellular Senescence and Aging. Genes, 2018, 9, 211.	1.0	60
451	Senolytic drugs in respiratory medicine: is it an appropriate therapeutic approach?. Expert Opinion on Investigational Drugs, 2018, 27, 573-581.	1.9	18
452	Telomere Length Dynamics and the Evolution of Cancer Genome Architecture. International Journal of Molecular Sciences, 2018, 19, 482.	1.8	48
453	A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 2018, 10, .	3.3	204
454	Epithelial Cell Cycle Behaviour in the Injured Kidney. International Journal of Molecular Sciences, 2018, 19, 2038.	1.8	51
455	PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. Cancer Cell, 2018, 34, 85-102.e9.	7.7	152

#	Article	IF	CITATIONS
456	Taking advantage of drug resistance, a new approach in the war on cancer. Frontiers of Medicine, 2018, 12, 490-495.	1.5	31
457	The dualistic origin of human tumors. Seminars in Cancer Biology, 2018, 53, 1-16.	4.3	105
458	Senescent Microvesicles: A Novel Advance in Molecular Mechanisms of Atherosclerotic Calcification. International Journal of Molecular Sciences, 2018, 19, 2003.	1.8	41
459	Notch and Senescence. Advances in Experimental Medicine and Biology, 2018, 1066, 299-318.	0.8	14
460	Cellular senescence: a view throughout organismal life. Cellular and Molecular Life Sciences, 2018, 75, 3553-3567.	2.4	44
461	A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. BMC Genomics, 2018, 19, 37.	1.2	46
462	Ageing: from inflammation to cancer. Immunity and Ageing, 2018, 15, 1.	1.8	166
463	Expression of p16 <scp>^{INK}</scp> ^{4a} is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell, 2018, 17, e12771.	3.0	111
464	To Find and Destroy: Identification and Elimination of Senescent Cells. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 223-233.	0.3	1
465	mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. International Journal of Molecular Sciences, 2018, 19, 2325.	1.8	58
466	Involvement of Flavonoids from the Leaves of <i> Carya cathayensis </i> Sarg. in Sirtuin 1 Expression in HUVEC Senescence. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-8.	0.5	7
467	Cellular Senescence: The Sought or the Unwanted?. Trends in Molecular Medicine, 2018, 24, 871-885.	3.5	141
468	Detecting senescent fate in mesenchymal stem cells: a combined cytofluorimetric and ultrastructural approach. Biogerontology, 2018, 19, 401-414.	2.0	4
469	TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	5.8	161
470	New mechanisms driving muscle stem cell regenerative decline with aging. International Journal of Developmental Biology, 2018, 62, 583-590.	0.3	18
471	Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Alimentary Pharmacology and Therapeutics, 2018, 48, 270-280.	1.9	26
472	Cytosolic Genomic DNA functions as a Natural Antisense. Scientific Reports, 2018, 8, 8551.	1.6	12
473	Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Scientific Reports, 2018, 8, 9023.	1.6	50

#	Article	IF	CITATIONS
474	Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape. PLoS ONE, 2018, 13, e0197838.	1.1	5
475	Induction and Validation of Cellular Senescence in Primary Human Cells. Journal of Visualized Experiments, 2018, , .	0.2	27
476	Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence. Ageing Research Reviews, 2018, 47, 24-30.	5.0	10
477	Senolytic activity of piperlongumine analogues: Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2018, 26, 3925-3938.	1.4	42
478	Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. Molecular Neurobiology, 2019, 56, 1421-1436.	1.9	25
479	Effects of carnitine palmitoyltransferases on cancer cellular senescence. Journal of Cellular Physiology, 2019, 234, 1707-1719.	2.0	24
480	Oxaloacetate decarboxylase FAHD1 – a new regulator of mitochondrial function and senescence. Mechanisms of Ageing and Development, 2019, 177, 22-29.	2.2	16
481	Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death and Differentiation, 2019, 26, 276-290.	5.0	69
482	<scp>ER</scp> stress and unfolded protein response in ocular health and disease. FEBS Journal, 2019, 286, 399-412.	2.2	79
483	Combating cellular senescence by sirtuins: Implications for atherosclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1822-1830.	1.8	13
484	The ING1a model of rapid cell senescence. Mechanisms of Ageing and Development, 2019, 177, 109-117.	2.2	7
485	Senescence and senotherapeutics: a new field in cancer therapy. , 2019, 193, 31-49.		116
486	Acetylation of PGC1α by Histone Deacetylase 1 Downregulation Is Implicated in Radiation-Induced Senescence of Brain Endothelial Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 787-793.	1.7	16
487	The Molecular Physiology of Ageing: New Targets for Regenerative Medicine. , 2019, , 15-29.		0
488	How Acute Kidney Injury Contributes to Renal Fibrosis. Advances in Experimental Medicine and Biology, 2019, 1165, 117-142.	0.8	25
489	Controlled induction and targeted elimination of p16 INK4a â€expressing chondrocytes in cartilage explant culture. FASEB Journal, 2019, 33, 12364-12373.	0.2	35
490	Molecular pathways of senescence regulate placental structure and function. EMBO Journal, 2019, 38, e100849.	3.5	61
491	Moderate hyperoxia induces senescence in developing human lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L525-L536.	1.3	39

	CHATION	REPORT	
#	Article	IF	Citations
492	Autophagic Control of Skin Aging. Frontiers in Cell and Developmental Biology, 2019, 7, 143.	1.8	52
493	Curcumin induces multiple signaling pathways leading to vascular smooth muscle cell senescence. Biogerontology, 2019, 20, 783-798.	2.0	10
494	Expression of Clusterin suppresses Cr(VI)-induced premature senescence through activation of PI3K/AKT pathway. Ecotoxicology and Environmental Safety, 2019, 183, 109465.	2.9	18
495	Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16. Kidney International, 2019, 96, 1162-1175.	2.6	31
496	Mind-Body Wellness Program Benefits. , 2019, , 397-499.		0
497	Conjugated Physiological Resveratrol Metabolites Induce Senescence in Breast Cancer Cells: Role of p53/p21 and p16/Rb Pathways, and ABC Transporters. Molecular Nutrition and Food Research, 2019, 63, e1900629.	1.5	48
498	Hsp90β interacts with MDM2 to suppress p53â€dependent senescence during skeletal muscle regeneration. Aging Cell, 2019, 18, e13003.	3.0	28
499	Deciphering the mechanism for induction of senescence-associated secretory phenotype (SASP) and its role in ageing and cancer development. Journal of Biochemistry, 2019, 166, 289-295.	0.9	32
500	HMGB1 modulates the balance between senescence and apoptosis in response to genotoxic stress. FASEB Journal, 2019, 33, 10942-10953.	0.2	35
501	Mitochondrial Homeostasis and Cellular Senescence. Cells, 2019, 8, 686.	1.8	146
502	Expansion and Cell-Cycle Arrest: Common Denominators of Cellular Senescence. Trends in Biochemical Sciences, 2019, 44, 996-1008.	3.7	71
503	Re-thinking the Etiological Framework of Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 728.	1.4	56
504	A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. Aging, 2019, 11, 4011-4031.	1.4	8
505	Time for the systems-level integration of aging: Resilience enhancing strategies to prevent Alzheimer's disease. Progress in Neurobiology, 2019, 181, 101662.	2.8	38
506	Vascular smooth muscle cells in atherosclerosis. Nature Reviews Cardiology, 2019, 16, 727-744.	6.1	628
507	The role of telomeres and telomerase in cirrhosis and liver cancer. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 544-558.	8.2	154
508	Putting the brakes on the cell cycle: mechanisms of cellular growth arrest. Current Opinion in Cell Biology, 2019, 60, 106-113.	2.6	89
509	Type 2 diabetes is associated with the accumulation of senescent T cells. Clinical and Experimental Immunology, 2019, 197, 205-213.	1.1	69

	Ст	CITATION REPORT	
#	Article	IF	CITATIONS
510	Metabolic features and regulation in cell senescence. BMB Reports, 2019, 52, 5-12.	1.1	63
511	Retinoic acid inducible gene-I slows down cellular senescence through negatively regulating the integrin β3/p38 MAPK pathway. Cell Cycle, 2019, 18, 3378-3392.	1.3	9
512	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	13.5	1,551
513	Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation. Journal of Biological Chemistry, 2019, 294, 18807-18819.	1.6	34
514	To help aging populations, classify organismal senescence. Science, 2019, 366, 576-578.	6.0	42
515	TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis—Updated 2019. Cells, 2019, 8, 1419.	. 1.8	429
516	Cyclin-Dependent Kinase Inhibitor 2b Mediates Excitotoxicity-Induced Death of Retinal Ganglion Cells. , 2019, 60, 4479.	,	10
517	Vitamin K as a Powerful Micronutrient in Aging and Age-Related Diseases: Pros and Cons from Clinical Studies. International Journal of Molecular Sciences, 2019, 20, 4150.	1.8	48
518	G Protein-Coupled Receptor Systems and Their Role in Cellular Senescence. Computational and Structural Biotechnology Journal, 2019, 17, 1265-1277.	1.9	28
519	Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Science Advances, 2019, 5, eaaw8330.	4.7	182
520	DCR2, a Cellular Senescent Molecule, Is a Novel Marker for Assessing Tubulointerstitial Fibrosis in Patients with Immunoglobulin A Nephropathy. Kidney and Blood Pressure Research, 2019, 44, 1063-10)74. 0.9	9
521	Induction of Fibroblast Senescence During Mouse Corneal Wound Healing. , 2019, 60, 3669.		34
522	Rapamycin retards epigenetic ageing of keratinocytes independently of its effects on replicative senescence, proliferation and differentiation. Aging, 2019, 11, 3238-3249.	1.4	39
523	Immunology of the ageing kidney. Nature Reviews Nephrology, 2019, 15, 625-640.	4.1	73
524	PAI-1 contributes to homocysteine-induced cellular senescence. Cellular Signalling, 2019, 64, 109394.	1.7	30
525	Growth Hormone (CH) and Wound Healing. , 2019, , .		1
526	Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cel Stem Cell, 2019, 25, 514-530.e8.	5.2	96
527	Angiotensin 1-7 alleviates aging-associated muscle weakness and bone loss, but is not associated with accelerated aging in ACE2-knockout mice. Clinical Science, 2019, 133, 2005-2018.	1.8	29

#	Article	IF	CITATIONS
528	<p>"Let my liver rather heat with wineâ€⊷ a review of hepatic fibrosis pathophysiology and emerging therapeutics</p> . Hepatic Medicine: Evidence and Research, 2019, Volume 11, 109-129.	0.9	4
529	Cell Senescence and Cerebral Small Vessel Disease in the Brains of People Aged 80 Years and Older. Journal of Neuropathology and Experimental Neurology, 2019, 78, 1066-1072.	0.9	14
530	A Unique SUMO-Interacting Motif of Trx2 Is Critical for Its Mitochondrial Presequence Processing and Anti-oxidant Activity. Frontiers in Physiology, 2019, 10, 1089.	1.3	11
531	Connective tissue fibroblasts from highly regenerative mammals are refractory to ROS-induced cellular senescence. Nature Communications, 2019, 10, 4400.	5.8	56
532	Viewpoint on the role of tissue maintenance in ageing: focus on biomarkers of bone, cartilage, muscle, and brain tissue maintenance. Ageing Research Reviews, 2019, 56, 100964.	5.0	8
533	SILAC Analysis Reveals Increased Secretion of Hemostasis-Related Factors by Senescent Cells. Cell Reports, 2019, 28, 3329-3337.e5.	2.9	94
534	Cellular senescence in bone. Bone, 2019, 121, 121-133.	1.4	133
535	Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hearing Research, 2019, 376, 86-96.	0.9	17
536	Autophagy modulates lipid metabolism to maintain metabolic flexibility for <i>Lkb1</i> -deficient <i>Kras</i> -driven lung tumorigenesis. Genes and Development, 2019, 33, 150-165.	2.7	79
537	Short-term gain, long-term pain: the senescence life cycle and cancer. Genes and Development, 2019, 33, 127-143.	2.7	64
538	Telomere Biology and Human Phenotype. Cells, 2019, 8, 73.	1.8	235
539	Generation of a novel model of primary human cell senescence through Tenovin-6 mediated inhibition of sirtuins. Biogerontology, 2019, 20, 303-319.	2.0	3
540	Lysosomal trapping of palbociclib and its functional implications. Oncogene, 2019, 38, 3886-3902.	2.6	57
541	Identification of stable senescenceâ€associated reference genes. Aging Cell, 2019, 18, e12911.	3.0	37
542	Upregulation of the p53-p21 pathway by G2019S LRRK2 contributes to the cellular senescence and accumulation of α-synuclein. Cell Cycle, 2019, 18, 467-475.	1.3	26
543	Ratiometric DNA sensing with a host–guest FRET pair. Chemical Communications, 2019, 55, 671-674.	2.2	39
544	Short exposure to cold atmospheric plasma induces senescence in human skin fibroblasts and adipose mesenchymal stromal cells. Scientific Reports, 2019, 9, 8671.	1.6	25
545	XAB2 depletion induces intron retention in POLR2A to impair global transcription and promote cellular senescence. Nucleic Acids Research, 2019, 47, 8239-8254.	6.5	15

#	Article	IF	CITATIONS
546	14â€3â€3ζ targeting induced senescence in Hepâ€2 laryngeal cancer cell through deneddylation of Cullin1 in the Skp1â€Cullinâ€Fâ€box protein complex. Cell Proliferation, 2019, 52, e12654.	2.4	7
547	Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nature Communications, 2019, 10, 2757.	5.8	111
548	Unmasking senescence: context-dependent effects of SASP in cancer. Nature Reviews Cancer, 2019, 19, 439-453.	12.8	465
549	Alteration of Hypoxia-Associated Gene Expression in Replicatively Senescent Mesenchymal Stromal Cells under Physiological Oxygen Level. Biochemistry (Moscow), 2019, 84, 263-271.	0.7	12
550	Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3. Cell Reports, 2019, 27, 3956-3971.e6.	2.9	187
551	Role of melanoma inhibitory activity in melanocyte senescence. Pigment Cell and Melanoma Research, 2019, 32, 777-791.	1.5	20
552	Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nature Communications, 2019, 10, 2538.	5.8	104
553	Mechanisms underlying T cell ageing. Nature Reviews Immunology, 2019, 19, 573-583.	10.6	250
554	p16INK4A-expressing mesenchymal stromal cells restore the senescence–clearance–regeneration sequence that is impaired in chronic muscle inflammation. EBioMedicine, 2019, 44, 86-97.	2.7	22
555	β-Galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells. Chemical Communications, 2019, 55, 7175-7178.	2.2	44
556	Common Challenges in Tissue Regeneration. , 2019, , 217-229.		3
557	The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 2019, 5, eaaw0254.	4.7	93
558	The Evolving Role of CD8+CD28â^' Immunosenescent T Cells in Cancer Immunology. International Journal of Molecular Sciences, 2019, 20, 2810.	1.8	105
559	β‑catenin signalling inhibits cartilage endplate chondrocyte homeostasis in�vitro. Molecular Medicine Reports, 2019, 20, 567-572.	1.1	5
560	The chemistry of senescence. Nature Reviews Chemistry, 2019, 3, 426-441.	13.8	88
561	The clinical impact and biological mechanisms of skeletal muscle aging. Bone, 2019, 127, 26-36.	1.4	46
562	Emerging senolytic agents derived from natural products. Mechanisms of Ageing and Development, 2019, 181, 1-6.	2.2	69
563	Transient p53-Mediated Regenerative Senescence in the Injured Heart. Circulation, 2019, 139, 2491-2494.	1.6	52

ARTICLE IF CITATIONS # Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. 2.0 12 564 Life Sciences, 2019, 229, 225-232. Aging and Senescence in Canine Testes. Veterinary Pathology, 2019, 56, 715-724. 0.8 567 COPD as a Disease of Immunosenescence. Yonsei Medical Journal, 2019, 60, 407. 0.9 48 Gangliosides Contribute to Vascular Insulin Resistance. International Journal of Molecular Sciences, 1.8 <u>2019, 20,</u> 1819. Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Reports, 2019, 52, 569 1.1 134 47-55. The Role and Regulation of Autophagy and the Proteasome During Aging and Senescence in Plants. 1.0 Genes, 2019, 10, 267. Primary cilium and brain aging: role in neural stem cells, neurodegenerative diseases and 571 5.0 24 glioblastoma. Ageing Research Reviews, 2019, 52, 53-63. High mitogenic stimulation arrests angiogenesis. Nature Communications, 2019, 10, 2016. 5.8 68 573 TGFÎ²2-induced senescence during early inner ear development. Scientific Reports, 2019, 9, 5912. 42 1.6 A tale of the good and bad: Cell senescence in bone homeostasis and disease. International Review of 574 1.6 Cell and Molecular Biology, 2019, 346, 97-128. <p>MLL3 promotes the senescence of esophageal squamous cell carcinoma</p>. OncoTargets 575 1.0 1 and Therapy, 2019, Volume 12, 1575-1582. Cell senescence, apoptosis and DNA damage cooperate in the remodeling processes accounting for 0.9 heart morphogenesis. Journal of Anatomy, 2019, 234, 815-829. Emergence of Microglia Bearing Senescence Markers During Paralysis Progression in a Rat Model of 577 1.7 50 Inherited ALS. Frontiers in Aging Neuroscience, 2019, 11, 42. Identification of Cysteineâ€Rich Angiogenic Inducer 61 as a Potential Antifibrotic and Proangiogenic Mediator in Scleroderma. Arthritis and Rheumatology, 2019, 71, 1350-1359. Connective Tissue and Age-Related Diseases. Sub-Cellular Biochemistry, 2019, 91, 281-310. 579 1.0 28 Fraâ€1 plays a critical role in angiotensin Ilâ€"induced vascular senescence. FASEB Journal, 2019, 33, 580 7603-7614. 581 Pulmonary Diseases and Ageing. Sub-Cellular Biochemistry, 2019, 91, 45-74. 1.0 29 Astrocyte senescence: Evidence and significance. Aging Cell, 2019, 18, e12937.

#	Article	IF	CITATIONS
583	Radiotherapy-Induced Senescence and its Effects on Responses to Treatment. Clinical Oncology, 2019, 31, 283-289.	0.6	30
584	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	3.0	395
585	ILâ€1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescenceâ€associated secretory phenotype. Aging Cell, 2019, 18, e12946.	3.0	77
586	Seno-suppressive molecules as new therapeutic perspectives in rheumatic diseases. Biochemical Pharmacology, 2019, 165, 126-133.	2.0	9
587	Author's view: epithelial plasticity metabolically reprograms normal cells towards a neoplastic-prone state. Molecular and Cellular Oncology, 2019, 6, 1543485.	0.3	0
588	Functional screening to identify senescence regulators in cancer. Current Opinion in Genetics and Development, 2019, 54, 17-24.	1.5	5
589	Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 556-564.	2.5	282
590	FASN activity is important for the initial stages of the induction of senescence. Cell Death and Disease, 2019, 10, 318.	2.7	54
591	The resistant effect of SIRT1 in oxidative stress-induced senescence of rat nucleus pulposus cell is regulated by Akt-FoxO1 pathway. Bioscience Reports, 2019, 39, .	1.1	30
592	Drugs that target aging: how do we discover them?. Expert Opinion on Drug Discovery, 2019, 14, 541-548.	2.5	10
593	Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nature Neuroscience, 2019, 22, 719-728.	7.1	577
594	PCNA-Mediated Degradation of p21 Coordinates the DNA Damage Response and Cell Cycle Regulation in Individual Cells. Cell Reports, 2019, 27, 48-58.e7.	2.9	28
595	Cellular senescence and radiation-induced pulmonary fibrosis. Translational Research, 2019, 209, 14-21.	2.2	66
596	Natural killer cells limit the clearance of senescent lung adenocarcinoma cells. Oncogenesis, 2019, 8, 24.	2.1	14
597	Acute Leukemia Induces Senescence and Impaired Osteogenic Differentiation in Mesenchymal Stem Cells Endowing Leukemic Cells with Functional Advantages. Stem Cells International, 2019, 2019, 1-16.	1.2	20
598	Resveratrol and Its Effects on the Vascular System. International Journal of Molecular Sciences, 2019, 20, 1523.	1.8	169
599	Sirtuin signaling in cellular senescence and aging. BMB Reports, 2019, 52, 24-34.	1.1	293
600	p16lnk4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biology, 2019, 82, 54-70.	1.5	68

ARTICLE IF CITATIONS # Diabetes Impairs Angiogenesis and Induces Endothelial Cell Senescence by Up-Regulating 601 35 1.8 Thrombospondin-CD47-Dependent Signaling. International Journal of Molecular Sciences, 2019, 20, 673. SIX1 represses senescence and promotes SOX2-mediated cellular plasticity during tumorigenesis. 1.6 Scientific Reports, 2019, 9, 1412. Autofluorescence is a Reliable in vitro Marker of Cellular Senescence in Human Mesenchymal Stromal 603 1.6 66 Cells. Scientific Reports, 2019, 9, 2074. Is cellular senescence involved in cystic fibrosis?. Respiratory Research, 2019, 20, 32. 604 Detecting and targeting senescent cells using molecularly imprinted nanoparticles. Nanoscale 605 4.1 67 Horizons, 2019, 4, 757-768. Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 3.5 2019, 38, . Endothelial tollâ€like receptor 4 maintains lung integrity via epigenetic suppression of 607 3.0 16 p16^{INK4a}. Aging Cell, 2019, 18, e12914. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. International Review of Cell and Molecular Biology, 2019, 345, 173-224. 608 1.6 Mesalamine and azathioprine modulate junctional complexes and restore epithelial barrier function 609 1.6 37 in intestinal inflammation. Scientific Reports, 2019, 9, 2842. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy. Aging, 1.4 2019, 11, 6175-6198. Metformin Modulates the Mechanisms of Ageing., 2019,,. 611 0 DNA damage responses in ageing. Open Biology, 2019, 9, 190168. 1.5 46 Targeting senescent cells in translational medicine. EMBO Molecular Medicine, 2019, 11, e10234. 613 3.3 194 A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of 614 β-galactosidase. Analytical and Bioanalytical Chemistry, 2019, 411, 7957-7966. KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via 615 1.9 38 Condensin-mediated Heterochromatin Reorganization. IScience, 2019, 21, 375-390. Radiosensitization of Non-Small Cell Lung Cancer Cells by the Plk1 Inhibitor Volasertib Is Dependent on the p53 Status. Cancers, 2019, 11, 1893. Role of Nicotinamide in Genomic Stability and Skin Cancer Chemoprevention. International Journal of 617 1.8 48 Molecular Sciences, 2019, 20, 5946. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nature 5.8 94 Communications, 2019, 10, 5495.

ARTICLE IF CITATIONS # Senescent cells in the development of cardiometabolic disease. Current Opinion in Lipidology, 2019, 30, 619 1.2 7 177-185. CSB promoter downregulation via histone H3 hypoacetylation is an early determinant of replicative 5.8 28 senescence. Nature Communications, 2019, 10, 5576. Involvement of condensin in cellular senescence through gene regulation and compartmental 621 5.8 42 reorganization. Nature Communications, 2019, 10, 5688. Mesothelioma Driver Genes, Ferroptosis, and Therapy. Frontiers in Oncology, 2019, 9, 1318. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature 623 230 5.8 Communications, 2019, 10, 4731. Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism, 2019, 1, 1074-1088. 5.1 p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. 625 1.8 32 International Journal of Molecular Sciences, 2019, 20, 6023. MicroRNAâ€570 is a novel regulator of cellular senescence and inflammaging. FASEB Journal, 2019, 33, 0.2 64 1605-1616. To Cycle or Fightâ€"CDK4/6 Inhibitors at the Crossroads of Anticancer Immunity. Clinical Cancer 627 3.2 46 Research, 2019, 25, 21-28. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology, 2019, 20, 1-16. Quercetin in Idiopathic Pulmonary Fibrosis: Another Brick in the Senolytic Wall. American Journal of 629 1.4 13 Respiratory Cell and Molecular Biology, 2019, 60, 3-4. Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant glioma growth in 49 combination with temozolomide. Neuro-Oncology, 2019, 21, 189-200. Tumor cell escape from therapy-induced senescence. Biochemical Pharmacology, 2019, 162, 202-212. 631 2.0 105 Differential effects of protein kinase C-eta on apoptosis versus senescence. Cellular Signalling, 2019, 1.7 55, 1-7. The Clearance Effect of Tetrahedral DNA Nanostructures on Senescent Human Dermal Fibroblasts. 633 4.0 37 ACS Applied Materials & amp; Interfaces, 2019, 11, 1942-1950. Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular 634 senescence. Free Radical Biology and Medicine, 2019, 130, 267-277. Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow 635 0.6 67 microenvironment. Blood, 2019, 133, 446-456. A Multiparametric Assay to Evaluate Senescent Cells. Methods in Molecular Biology, 2019, 1896, 107-117.
	CHAIL	IN REPORT	
#	Article	IF	Citations
637	Mouse Models of Accelerated Cellular Senescence. Methods in Molecular Biology, 2019, 1896, 203-230.	0.4	30
638	IMR90 ER:RAS: A Cell Model of Oncogene-Induced Senescence. Methods in Molecular Biology, 2019, 1896, 83-92.	0.4	8
639	High Systolic Blood Pressure Induces Cerebral Microvascular Endothelial Dysfunction, Neurovascular Unit Damage, and Cognitive Decline in Mice. Hypertension, 2019, 73, 217-228.	1.3	77
640	Single senescent cell sequencing reveals heterogeneity in senescent cells induced by telomere erosion. Protein and Cell, 2019, 10, 370-375.	4.8	33
641	Endocrinology of Delivery. , 2019, , 425-431.		0
642	Cellular Senescence. Methods in Molecular Biology, 2019, , .	0.4	3
643	p53-Suppressed Oncogene TET1 Prevents Cellular Aging in Lung Cancer. Cancer Research, 2019, 79, 1758-1768.	0.4	38
644	Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. Cell and Bioscience, 2019, 9, 1.	2.1	141
645	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism, 2019, 29, 1061-1077.e8.	7.2	293
646	Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro-Oncology, 2019, 21, 474-485.	0.6	78
647	Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell, 2019, 18, e12841.	3.0	109
648	Hypoxia negatively affects senescence in osteoclasts and delays osteoclastogenesis. Journal of Cellular Physiology, 2019, 234, 414-426.	2.0	21
649	Hyperoxia-induced Cellular Senescence in Fetal Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 51-60.	1.4	56
650	The roles of radio-functional natural chemicals for the development of cancer radiation therapy. Reviews on Environmental Health, 2019, 34, 5-12.	1.1	7
651	Mitochondria-driven elimination of cancer and senescent cells. Biological Chemistry, 2019, 400, 141-148.	1.2	13
652	In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mechanisms of Ageing and Development, 2019, 177, 88-90.	2.2	28
653	Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells. Frontiers of Medicine, 2019, 13, 267-276.	1.5	24
654	Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. International Journal of Radiation Biology, 2020, 96, 129-144.	1.0	28

#	Article	IF	CITATIONS
655	Depletion of TRRAP Induces p53â€Independent Senescence in Liver Cancer by Downâ€Regulating Mitotic Genes. Hepatology, 2020, 71, 275-290.	3.6	43
656	Role of Senescence and Neuroprotective Effects of Telomerase in Neurodegenerative Diseases. Rejuvenation Research, 2020, 23, 150-158.	0.9	8
657	Plasma exosomes in OSA patients promote endothelial senescence: effect of long-term adherent continuous positive airway pressure. Sleep, 2020, 43, .	0.6	33
658	Aging and bone. , 2020, , 275-292.		2
659	Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. Journal of Cellular Physiology, 2020, 235, 1921-1932.	2.0	77
660	Know your enemy: Genetics, aging, exposomic and inflammation in the war against triple negative breast cancer. Seminars in Cancer Biology, 2020, 60, 285-293.	4.3	16
661	Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. Seminars in Cancer Biology, 2020, 60, 28-40.	4.3	25
662	Tunneling nanotubes mediate the expression of senescence markers in mesenchymal stem/stromal cell spheroids. Stem Cells, 2020, 38, 80-89.	1.4	28
663	The aged liver: Beyond cellular senescence. Clinics and Research in Hepatology and Gastroenterology, 2020, 44, 6-11.	0.7	15
664	Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest. Genomics, 2020, 112, 1309-1317.	1.3	21
665	Genetic and epigenetic Muller's ratchet as a mechanism of frailty and morbidity during aging: a demographic genetic model. Human Genetics, 2020, 139, 409-420.	1.8	6
666	Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell, 2020, 19, e13052.	3.0	77
667	The link between endometrial stromal cell senescence and decidualization in female fertility: the art of balance. Cellular and Molecular Life Sciences, 2020, 77, 1357-1370.	2.4	34
668	Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Research Reviews, 2020, 57, 100981.	5.0	55
669	The potential role of senescence in limiting fibrosis caused by aging. Journal of Cellular Physiology, 2020, 235, 4046-4059.	2.0	13
670	The emerging role of cellular senescence in renal diseases. Journal of Cellular and Molecular Medicine, 2020, 24, 2087-2097.	1.6	31
671	Somatic selection of poorly differentiating variant stem cell clones could be a key to human ageing. Journal of Theoretical Biology, 2020, 489, 110153.	0.8	5
672	Elevated circulating HtrA4 in preeclampsia may alter endothelial expression of senescence genes. Placenta, 2020, 90, 71-81.	0.7	17

ARTICLE IF CITATIONS # LPS-induced premature osteocyte senescence: Implications in inflammatory alveolar bone loss and 673 1.4 55 periodontal disease pathogenesis. Bone, 2020, 132, 115220. Senotherapeutics: Targeting senescence in idiopathic pulmonary fibrosis. Seminars in Cell and 674 2.3 64 Developmental Biology, 2020, 101, 104-110. Amelioration of ageâ€related brain function decline by Bruton's tyrosine kinase inhibition. Aging Cell, 675 3.0 12 2020, 19, e13079. Organismal Aging and Oxidants beyond Macromolecules Damage. Proteomics, 2020, 20, 1800400. Endothelium-mediated contributions to fibrosis. Seminars in Cell and Developmental Biology, 2020, 677 2.3 50 101, 78-86. Measuring biological aging in humans: A quest. Aging Cell, 2020, 19, e13080. 3.0 364 Activation of immunosuppressive network in the aging process. Ageing Research Reviews, 2020, 57, 679 5.0 91 100998. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nature Reviews Rheumatology, 680 3.5 320 2020, 16, 11-31. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cellular 681 1.7 140 Signalling, 2020, 66, 109482. Naive extrapolations, Âoverhyped claims and empty promises in ageing research and interventions need avoidance. Biogerontology, 2020, 21, 415-421. Effects of Breast Cancer Adjuvant Chemotherapy Regimens on Expression of the Aging Biomarker, 683 1.4 15 <i>p16INK4a</i>. JNCI Cancer Spectrum, 2020, 4, pkaa082. mTORâ€autophagy promotes pulmonary senescence through IMP1 in chronic toxicity of 684 1.6 methamphetaminé. Journal of Cellular and Molecular Medicine, 2020, 24, 12082-12093. Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during 685 5.0 9 ageing. Ageing Research Reviews, 2020, 64, 101165. Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells 1.2 International, 2020, 2020, 1-28. Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence. Frontiers in 687 1.8 24 Cell and Developmental Biology, 2020, 8, 565970. MYSM1 Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. Advanced Science, 2020, 7, 2001950. Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell 689 2.9 39 Reports, 2020, 33, 108286. 690 Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis. Cells, 2020, 9, 2146. 1.8

		CITATION REPOR	Т	
#	Article	IF	С	CITATIONS
691	Cellular senescence in cancer: from mechanisms to detection. Molecular Oncology, 2021, 1	5, 2634-2671. 2.1	. 7	8
692	Cellular Senescence as the Pathogenic Hub of Diabetes-Related Wound Chronicity. Frontier Endocrinology, 2020, 11, 573032.	rs in 1.5	4	9
693	CCN3 (NOV) Drives Degradative Changes in Aging Articular Cartilage. International Journal Molecular Sciences, 2020, 21, 7556.	of 1.8	1	3
694	Lung regeneration: implications of the diseased niche and ageing. European Respiratory Rev 29, 200222.	view, 2020, 3.0) 1	8
695	Senescence-activated enhancer landscape orchestrates the senescence-associated secretor phenotype in murine fibroblasts. Nucleic Acids Research, 2020, 48, 10909-10923.	у 6.5	; 3	5
696	Angiotensin inhibition and cellular senescence in the developing rat kidney. Experimental ar Molecular Pathology, 2020, 117, 104551.	nd o.9) 3	
697	Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Scientific Rep 10, 16385.	oorts, 2020, 1.6	. 4	0
698	AMPK alleviates oxidative stress‑induced premature senescence via inhibition of NF-κB/S axis-mediated positive feedback loop. Mechanisms of Ageing and Development, 2020, 191	ГАТЗ 2.2 111347. 2.2	1	3
699	Cellular senescence and failure of myelin repair in multiple sclerosis. Mechanisms of Ageing Development, 2020, 192, 111366.	and 2.2	! 1:	1
700	C3BP1 controls the senescence-associated secretome and its impact on cancer progression Communications, 2020, 11, 4979.	n. Nature 5.8	8 4	1
701	Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmon fibrosis. Nature Cell Biology, 2020, 22, 934-946.	ary 4.6	ò 2	96
702	The Premature Senescence in Breast Cancer Treatment Strategy. Cancers, 2020, 12, 1815.	1.7	2	3
703	Principles of Cell Circuits for Tissue Repair and Fibrosis. IScience, 2020, 23, 100841.	1.9	9	0
704	Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggre of breast cancer cells. Cancer Letters, 2020, 490, 100-110.	ssiveness 3.2	. 6	3
705	Melatonin protects INS-1 pancreatic \hat{l}^2 -cells from apoptosis and senescence induced by gluand glucolipotoxicity. Islets, 2020, 12, 87-98.	cotoxicity 0.9) 9	1
706	Aging of the cells: Insight into cellular senescence and detection Methods. European Journa Biology, 2020, 99, 151108.	l of Cell 1.6	1	00
707	Spontaneous and photosensitization-induced mutations in primary mouse cells transitionir senescence and immortalization. Journal of Biological Chemistry, 2020, 295, 9974-9985.	ig through 1.6	. 7	
708	Confluence of Cellular Degradation Pathways During Interdigital Tissue Remodeling in Emb Tetrapods. Frontiers in Cell and Developmental Biology, 2020, 8, 593761.	ryonic 1.8	1	2

#	Article	IF	CITATIONS
709	Dysfunction of B Cell Leading to Failure of Immunoglobulin Response Is Ameliorated by Dietary Silk Peptide in 14-Month-Old C57BL/6 Mice. Frontiers in Nutrition, 2020, 7, 583186.	1.6	3
710	The Δ133p53 Isoforms, Tuners of the p53 Pathway. Cancers, 2020, 12, 3422.	1.7	23
711	Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. Medicina (Lithuania), 2020, 56, 626.	0.8	8
712	Hepatocellular Senescence: Immunosurveillance and Future Senescence-Induced Therapy in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 589908.	1.3	26
713	Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells, 2020, 9, 2540.	1.8	19
714	Fibrosis and cancer: shared features and mechanisms suggest common targeted therapeutic approaches. Nephrology Dialysis Transplantation, 2022, 37, 1024-1032.	0.4	18
715	Senescence and the SASP: many therapeutic avenues. Genes and Development, 2020, 34, 1565-1576.	2.7	481
716	Prevalent intron retention fineâ€ŧunes gene expression and contributes to cellular senescence. Aging Cell, 2020, 19, e13276.	3.0	25
717	Immunosenescence: a key player in cancer development. Journal of Hematology and Oncology, 2020, 13, 151.	6.9	198
718	Silver nanoparticle-activated COX2/PGE2 axis involves alteration of lung cellular senescence in vitro and in vivo. Ecotoxicology and Environmental Safety, 2020, 204, 111070.	2.9	16
719	Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 567-576.	0.7	26
720	<i>In Vivo</i> Imaging of Senescent Vascular Cells in Atherosclerotic Mice Using a β-Galactosidase-Activatable Nanoprobe. Analytical Chemistry, 2020, 92, 12613-12621.	3.2	33
721	Multiparameter flow cytometric detection and quantification of senescent cells in vitro. Biogerontology, 2020, 21, 773-786.	2.0	15
722	Histone methyltransferase Smyd3 is a new regulator for vascular senescence. Aging Cell, 2020, 19, e13212.	3.0	24
723	Telomere Attrition in Neurodegenerative Disorders. Frontiers in Cellular Neuroscience, 2020, 14, 219.	1.8	26
724	Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB Journal, 2020, 34, 9664-9677.	0.2	8
725	Rapid senescenceâ€like response after acute injury. Aging Cell, 2020, 19, e13201.	3.0	17
726	Cellular Senescence: Mechanisms, Morphology, and Mouse Models. Veterinary Pathology, 2020, 57, 747-757.	0.8	36

#	Article	IF	CITATIONS
727	tBHP treatment as a model for cellular senescence and pollution-induced skin aging. Mechanisms of Ageing and Development, 2020, 190, 111318.	2.2	19
728	Prognostic significance of p16 expression in highâ€grade prostate adenocarcinoma. Pathology International, 2020, 70, 743-751.	0.6	1
729	Bach1 promotes muscle regeneration through repressing Smad-mediated inhibition of myoblast differentiation. PLoS ONE, 2020, 15, e0236781.	1.1	13
730	A water-soluble probe with p-hydroxybenzyl quaternary ammonium linker for selective imaging in senescent cells. Analytica Chimica Acta, 2020, 1133, 99-108.	2.6	4
731	Periodontal Disease and Senescent Cells: New Players for an Old Oral Health Problem?. International Journal of Molecular Sciences, 2020, 21, 7441.	1.8	23
732	Cellular Senescence. Hypertension, 2020, 76, 1069-1075.	1.3	29
733	Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Proliferation, 2020, 53, e12894.	2.4	98
734	Implication of Membrane Androgen Receptor (ZIP9) in Cell Senescence in Regressed Testes of the Bank Vole. International Journal of Molecular Sciences, 2020, 21, 6888.	1.8	10
735	Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death and Disease, 2020, 11, 775.	2.7	47
736	Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Frontiers in Oncology, 2020, 10, 1533.	1.3	27
737	Cellular senescence as a potential mediator of COVIDâ€19 severity in the elderly. Aging Cell, 2020, 19, e13237.	3.0	75
738	Sulfated syndecan 1 is critical to preventing cellular senescence by modulating fibroblast growth factor receptor endocytosis. FASEB Journal, 2020, 34, 10316-10328.	0.2	17
739	Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. Frontiers in Genetics, 2020, 11, 867.	1.1	16
740	A Novel Role of Growth Differentiation Factor (GDF)-15 in Overlap with Sedentary Lifestyle and Cognitive Risk in COPD. Journal of Clinical Medicine, 2020, 9, 2737.	1.0	16
741	CDK4/6 inhibitors: a novel strategy for tumor radiosensitization. Journal of Experimental and Clinical Cancer Research, 2020, 39, 188.	3.5	35
742	Cell Senescence: A Nonnegligible Cell State under Survival Stress in Pathology of Intervertebral Disc Degeneration. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	32
743	Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science, 2020, 369, .	6.0	139
744	Klf5 down-regulation induces vascular senescence through eIF5a depletion and mitochondrial fission. PLoS Biology, 2020, 18, e3000808.	2.6	44

#	Article	IF	CITATIONS
745	Biological and Functional Biomarkers of Aging: Definition, Characteristics, and How They Can Impact Everyday Cancer Treatment. Current Oncology Reports, 2020, 22, 115.	1.8	32
746	Senescent Cell Depletion Through Targeting BCL-Family Proteins and Mitochondria. Frontiers in Physiology, 2020, 11, 593630.	1.3	27
747	Nano-Based Theranostic Tools for the Detection and Elimination of Senescent Cells. Cells, 2020, 9, 2659.	1.8	13
748	Continuous Exposure to Low Doses of Ultrafine Black Carbon Reduces the Vitality of Immortalized Lung-Derived Cells and Activates Senescence. Journal of Toxicology, 2020, 2020, 1-13.	1.4	4
749	Aging and Chronic Liver Disease. Seminars in Liver Disease, 2020, 40, 373-384.	1.8	21
750	Senescent Cells in IPF: Locked in Repair?. Frontiers in Medicine, 2020, 7, 606330.	1.2	11
751	The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 583884.	1.7	14
752	The dichotomous role of TGF-β in controlling liver cancer cell survival and proliferation. Journal of Genetics and Genomics, 2020, 47, 497-512.	1.7	21
753	CCN3 Signaling Is Differently Regulated in Placental Diseases Preeclampsia and Abnormally Invasive Placenta. Frontiers in Endocrinology, 2020, 11, 597549.	1.5	14
754	Epigallocatechin Gallate Effectively Affects Senescence and Anti-SASP via SIRT3 in 3T3-L1 Preadipocytes in Comparison with Other Bioactive Substances. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	28
755	Role of tumor cell senescence in non-professional phagocytosis and cell-in-cell structure formation. BMC Molecular and Cell Biology, 2020, 21, 79.	1.0	8
756	Biology of extracellular vesicles secreted from senescent cells as senescenceâ€associated secretory phenotype factors. Geriatrics and Gerontology International, 2020, 20, 539-546.	0.7	37
757	Molecular basis of ageing in chronic metabolic diseases. Journal of Endocrinological Investigation, 2020, 43, 1373-1389.	1.8	50
758	Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation. Neuro-Oncology Advances, 2020, 2, vdaa057.	0.4	60
759	The inherent challenges of classifying senescence—Response. Science, 2020, 368, 595-596.	6.0	5
760	New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. American Journal of Physiology - Cell Physiology, 2020, 318, C1200-C1213.	2.1	27
761	Senescence and Cancer: Role of Nitric Oxide (NO) in SASP. Cancers, 2020, 12, 1145.	1.7	14
762	Dual Role of Autophagy in Regulation of Mesenchymal Stem Cell Senescence. Frontiers in Cell and Developmental Biology, 2020, 8, 276.	1.8	36

			0
#	ARTICLE	lF	CITATIONS
763	mTOR/TFE3. Molecular Nutrition and Food Research, 2020, 64, e1901231.	1.5	26
764	Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus. Molecular Metabolism, 2020, 40, 101027.	3.0	26
765	DNA Damage Regulates Senescence-Associated Extracellular Vesicle Release via the Ceramide Pathway to Prevent Excessive Inflammatory Responses. International Journal of Molecular Sciences, 2020, 21, 3720.	1.8	45
766	DNA Damage Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e193-e202.	1.1	21
767	Realâ€Time Inâ€Vivo Detection of Cellular Senescence through the Controlled Release of the NIR Fluorescent Dye Nile Blue. Angewandte Chemie, 2020, 132, 15264-15268.	1.6	3
768	Realâ€Time Inâ€Vivo Detection of Cellular Senescence through the Controlled Release of the NIR Fluorescent Dye Nile Blue. Angewandte Chemie - International Edition, 2020, 59, 15152-15156.	7.2	37
769	Tissue engineering to better understand senescence: Organotypics come of age. Mechanisms of Ageing and Development, 2020, 190, 111261.	2.2	5
770	The quest to slow ageing through drug discovery. Nature Reviews Drug Discovery, 2020, 19, 513-532.	21.5	260
771	Link between increased cellular senescence and extracellular matrix changes in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L48-L60.	1.3	36
772	Blood microparticles are a component of immune modulation in red blood cell transfusion. European Journal of Immunology, 2020, 50, 1237-1240.	1.6	10
773	Predicting direct hepatocyte toxicity in humans by combining high-throughput imaging of HepaRG cells and machine learning-based phenotypic profiling. Archives of Toxicology, 2020, 94, 2749-2767.	1.9	9
774	Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. Cell Metabolism, 2020, 32, 71-86.e5.	7.2	100
775	The NSD2/WHSC1/MMSET methyltransferase prevents cellular senescenceâ€associated epigenomic remodeling. Aging Cell, 2020, 19, e13173.	3.0	24
776	Emerging use of senolytics and senomorphics against aging and chronic diseases. Medicinal Research Reviews, 2020, 40, 2114-2131.	5.0	71
777	CDK-Independent and PCNA-Dependent Functions of p21 in DNA Replication. Genes, 2020, 11, 593.	1.0	65
778	Classical and Nonclassical Intercellular Communication in Senescence and Ageing. Trends in Cell Biology, 2020, 30, 628-639.	3.6	109
779	First-generation species-selective chemical probes for fluorescence imaging of human senescence-associated Î ² -galactosidase. Chemical Science, 2020, 11, 7292-7301.	3.7	55
780	Short Telomeres: Cause and Consequence in Liver Disease. Seminars in Liver Disease, 2020, 40, 385-391.	1.8	4

#	Article	IF	CITATIONS
781	Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword. International Journal of Molecular Sciences, 2020, 21, 4346.	1.8	32
782	Role of immune cells in the removal of deleterious senescent cells. Immunity and Ageing, 2020, 17, 16.	1.8	187
783	Mitochondrial Bioenergetics and Dynamics in Secretion Processes. Frontiers in Endocrinology, 2020, 11, 319.	1.5	19
784	Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Frontiers in Pharmacology, 2020, 11, 755.	1.6	26
785	The crosstalk between cellular reprogramming and senescence in aging and regeneration. Experimental Gerontology, 2020, 138, 111005.	1.2	13
786	Galactoseâ€modified duocarmycin prodrugs as senolytics. Aging Cell, 2020, 19, e13133.	3.0	84
787	MicroRNAs in the Functional Defects of Skin Aging. , 0, , .		2
788	Cellular Senescence as a Therapeutic Target for Age-Related Diseases: A Review. Advances in Therapy, 2020, 37, 1407-1424.	1.3	53
789	The gut microbiota metabolite urolithin A, but not other relevant urolithins, induces p53-dependent cellular senescence in human colon cancer cells. Food and Chemical Toxicology, 2020, 139, 111260.	1.8	40
790	The ECM path of senescence in aging: components and modifiers. FEBS Journal, 2020, 287, 2636-2646.	2.2	102
791	Interactions between Muscle and Bone—Where Physics Meets Biology. Biomolecules, 2020, 10, 432.	1.8	79
792	Gut microbiota and aging-A focus on centenarians. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165765.	1.8	45
793	Early vascular ageing in chronic kidney disease: impact of inflammation, vitamin K, senescence and genomic damage. Nephrology Dialysis Transplantation, 2020, 35, ii31-ii37.	0.4	53
794	The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes and Development, 2020, 34, 489-494.	2.7	64
795	Lnc RNA GUARDIN suppresses cellular senescence through a LRP 130―PGC 1α―FOXO 4â€p21â€dependent signaling axis. EMBO Reports, 2020, 21, e48796.	2.0	11
796	A Photocaged, Water-Oxidizing, and Nucleolus-Targeted Pt(IV) Complex with a Distinct Anticancer Mechanism. Journal of the American Chemical Society, 2020, 142, 7803-7812.	6.6	144
797	The roles of MTOR and miRNAs in endothelial cell senescence. Biogerontology, 2020, 21, 517-530.	2.0	12
798	Cellular senescence is a promising target for chronic wounds: a comprehensive review. Burns and Trauma, 2020, 8, tkaa021.	2.3	35

#	Article	IF	CITATIONS
799	Aging, Cellular Senescence, and Progressive Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 178.	1.8	39
800	Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells, 2020, 9, 1558.	1.8	75
801	Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis, 2020, 41, 1017-1029.	1.3	43
802	Responsiveness of dentate neurons generated throughout adult life is associated with resilience to cognitive aging. Aging Cell, 2020, 19, e13161.	3.0	13
803	Metabolic Flexibility and Innate Immunity in Renal Ischemia Reperfusion Injury: The Fine Balance Between Adaptive Repair and Tissue Degeneration. Frontiers in Immunology, 2020, 11, 1346.	2.2	56
804	Perivascular Adipose Tissue as a Target for Antioxidant Therapy for Cardiovascular Complications. Antioxidants, 2020, 9, 574.	2.2	21
805	Role for Lipids Secreted by Irradiated Peripheral Blood Mononuclear Cells in Inflammatory Resolution in Vitro. International Journal of Molecular Sciences, 2020, 21, 4694.	1.8	12
806	Liver osteopontin is required to prevent the progression of ageâ€related nonalcoholic fatty liver disease. Aging Cell, 2020, 19, e13183.	3.0	20
807	Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Science Advances, 2020, 6, eaba1972.	4.7	571
809	Biochemical Regulation of Regenerative Processes by Growth Factors and Cytokines: Basic Mechanisms and Relevance for Regenerative Medicine. Biochemistry (Moscow), 2020, 85, 11-26.	0.7	14
810	Potential Role of Cellular Senescence in Asthma. Frontiers in Cell and Developmental Biology, 2020, 8, 59.	1.8	24
811	Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends in Molecular Medicine, 2020, 26, 422-433.	3.5	22
812	A preview of selected articles. Stem Cells, 2020, 38, 1-3.	1.4	0
813	CR6 interacting factor 1 deficiency induces premature senescence via SIRT3 inhibition in endothelial cells. Free Radical Biology and Medicine, 2020, 150, 161-171.	1.3	24
814	New control of the senescence barrier in breast cancer. Molecular and Cellular Oncology, 2020, 7, 1684129.	0.3	1
815	Targeting defective pulmonary innate immunity – A new therapeutic option?. , 2020, 209, 107500.		26
816	Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	1.9	36
817	Contusion spinal cord injury upregulates p53 protein expression in rat soleus muscle at multiple timepoints but not key senescence cytokines. Physiological Reports, 2020, 8, e14357.	0.7	10

#	Article	IF	CITATIONS
818	Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle. ACS Nano, 2020, 14, 2827-2846.	7.3	45
819	Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nature Communications, 2020, 11, 889.	5.8	101
820	A new mechanistic approach for cancer fighting of resveratrol. Gene Reports, 2020, 19, 100600.	0.4	0
821	TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways. Cell Death and Disease, 2020, 11, 44.	2.7	45
822	Senescence, the Janus of Lung Injury and Repair. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 548-549.	1.4	6
823	Senescent mesenchymal stem cells remodel extracellular matrix driving breast cancer cells to more invasive phenotype. Journal of Cell Science, 2020, 133, .	1.2	27
824	Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression. RNA Biology, 2020, 17, 1693-1706.	1.5	7
825	Fibrodysplasia Ossificans Progressiva (FOP): A Segmental Progeroid Syndrome. Frontiers in Endocrinology, 2019, 10, 908.	1.5	28
826	Senolytics: A Translational Bridge Between Cellular Senescence and Organismal Aging. Frontiers in Cell and Developmental Biology, 2019, 7, 367.	1.8	40
827	Cdc6 as a novel target in cancer: Oncogenic potential, senescence and subcellular localisation. International Journal of Cancer, 2020, 147, 1528-1534.	2.3	33
828	Quercetin Attenuates Atherosclerosis via Modulating Oxidized LDL-Induced Endothelial Cellular Senescence. Frontiers in Pharmacology, 2020, 11, 512.	1.6	65
829	3′-UTR Shortening Contributes to Subtype-Specific Cancer Growth by Breaking Stable ceRNA Crosstalk of Housekeeping Genes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 334.	2.0	8
831	Expression Levels of SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and its Interacting Partners Show Region-specific Alterations During Brain Aging. Neuroscience, 2020, 436, 46-73.	1.1	7
832	Cell Senescence and Mesenchymal Stromal Cells. Human Physiology, 2020, 46, 85-93.	0.1	2
833	An Appraisal on the Value of Using Nutraceutical Based Senolytics and Senostatics in Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 218.	1.8	17
834	Chronic Intermittent Hypoxia Triggers a Senescence-like Phenotype in Human White Preadipocytes. Scientific Reports, 2020, 10, 6846.	1.6	19
835	Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nature Communications, 2020, 11, 1996.	5.8	141
836	The Muller's Ratchet and Aging. Trends in Genetics, 2020, 36, 395-402.	2.9	12

#	Article	IF	Citations
837	Regulation of senescence traits by MAPKs. GeroScience, 2020, 42, 397-408.	2.1	84
838	Heterochronic parabiosis regulates the extent of cellular senescence in multiple tissues. GeroScience, 2020, 42, 951-961.	2.1	48
839	A Novel Biochemical Study of Anti-Ageing Potential of Eucalyptus Camaldulensis Bark Waste Standardized Extract and Silver Nanoparticles. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111004.	2.5	21
840	UTMD inhibit EMT of breast cancer through the ROS/miR-200c/ZEB1 axis. Scientific Reports, 2020, 10, 6657.	1.6	24
841	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	3.0	131
842	Current perspectives on the cellular and molecular features of epigenetic ageing. Experimental Biology and Medicine, 2020, 245, 1532-1542.	1.1	44
843	Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2020, 21, 2269.	1.8	202
844	miR-1468-3p Promotes Aging-Related Cardiac Fibrosis. Molecular Therapy - Nucleic Acids, 2020, 20, 589-605.	2.3	20
845	From Development to Aging: The Path to Cellular Senescence. Antioxidants and Redox Signaling, 2021, 34, 294-307.	2.5	15
846	A general model for cell death and biomarker release from injured tissues. Journal of Pharmacokinetics and Pharmacodynamics, 2021, 48, 69-82.	0.8	1
847	Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Archiv European Journal of Physiology, 2021, 473, 753-774.	1.3	67
848	Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. Journal of Molecular Medicine, 2021, 99, 1-20.	1.7	61
849	Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cellular and Molecular Life Sciences, 2021, 78, 1329-1354.	2.4	39
850	Silencing p53 inhibits interleukin 10-induced activated hepatic stellate cell senescence and fibrotic degradation in vivo. Experimental Biology and Medicine, 2021, 246, 447-458.	1.1	10
851	Interleukin-8 Receptors CXCR1 and CXCR2 Are Not Expressed by Endothelial Colony-forming Cells. Stem Cell Reviews and Reports, 2021, 17, 628-638.	1.7	0
852	The combination of mitogenic stimulation and DNA damage induces chondrocyte senescence. Osteoarthritis and Cartilage, 2021, 29, 402-412.	0.6	21
853	Natural killers of cognition. Nature Neuroscience, 2021, 24, 2-4.	7.1	7
854	Cellular and molecular features of senescence in acute lung injury. Mechanisms of Ageing and Development, 2021, 193, 111410.	2.2	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
855	Senescent cell accumulation mechanisms inferred from parabiosis. GeroScience, 2021	, 43, 329-341.	2.1	29
856	Methoxyeugenol regulates the p53/p21 pathway and suppresses human endometrial or proliferation. Journal of Ethnopharmacology, 2021, 267, 113645.	cancer cell	2.0	12
857	Principles of the Molecular and Cellular Mechanisms of Aging. Journal of Investigative [2021, 141, 951-960.	Dermatology,	0.3	36
858	CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP transcriptional activity. Nature Cancer, 2021, 2, 34-48.	-1	5.7	48
859	COPD-derived fibroblasts secrete higher levels of senescence-associated secretory phe proteins. Thorax, 2021, 76, 508-511.	notype	2.7	27
860	Senescent cells exacerbate chronic inflammation and contribute to periodontal disease in old mice. Journal of Periodontology, 2021, 92, 1483-1495.	e progression	1.7	29
861	Beyond cells: The extracellular circulating 20S proteasomes. Biochimica Et Biophysica / Molecular Basis of Disease, 2021, 1867, 166041.	Acta -	1.8	24
862	Epilipidomics of Senescent Dermal Fibroblasts Identify Lysophosphatidylcholines as Ple Senescence-Associated Secretory Phenotype (SASP) Factors. Journal of Investigative D 2021, 141, 993-1006.e15.	iotropic ermatology,	0.3	37
863	Breed-related expression patterns of Ki67, Î ³ H2AX, and p21 during ageing in the canine Research Communications, 2021, 45, 21-30.	e liver. Veterinary	0.6	5
864	Aurora kinase inhibition sensitizes melanoma cells to T-cell-mediated cytotoxicity. Can Immunology, Immunotherapy, 2021, 70, 1101-1113.	cer	2.0	18
865	The Interplay of the Genetic Architecture, Aging, and Environmental Factors in the Path Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biolc 163-172.	nogenesis of ogy, 2021, 64,	1.4	56
866	A guide to assessing cellular senescence <i>inÂvitro</i> and <i>inÂvivo</i> . FEBS Jourr	nal, 2021, 288, 56-80.	2.2	251
867	The Secretome of Aged Fibroblasts Promotes EMT-Like Phenotype in Primary Keratinoc Donors through BDNF-TrkB Axis. Journal of Investigative Dermatology, 2021, 141, 105	:ytes from Elderly 2-1062.e12.	0.3	10
868	Autophagy and senescence: Insights from normal and cancer stem cells. Advances in C 2021, 150, 147-208.	ancer Research,	1.9	5
869	Low Concentration of Etoposide Induces Enhanced Osteogenesis in MG63 Cells via Pir Journal of Hard Tissue Biology, 2021, 30, 175-182.	1 Activation.	0.2	1
870	mTOR as a senescence manipulation target: A forked road. Advances in Cancer Resear 335-363.	ch, 2021, 150,	1.9	14
871	Tubular decoy receptor 2 as a predictor of prognosis in patients with immunoglobulin CKJ: Clinical Kidney Journal, 2021, 14, 1458-1468.	A nephropathy.	1.4	1
872	Harnessing α- <scp>l</scp> -fucosidase for <i>in vivo</i> cellular senescence imaging. 2021, 12, 10054-10062.	Chemical Science,	3.7	25

#	Article	IF	CITATIONS
873	Senescence. , 2021, , 1-12.		0
874	Targeting the stress support network regulated by autophagy and senescence for cancer treatment. Advances in Cancer Research, 2021, 150, 75-112.	1.9	4
875	Acute kidney injury and aging. Pediatric Nephrology, 2021, 36, 2997-3006.	0.9	17
876	The intricate nature of senescence in development and cell plasticity. Seminars in Cancer Biology, 2022, 87, 214-219.	4.3	6
877	Bipolar disorder and accelerated aging: Shared mechanisms and implications. , 2021, , 319-328.		0
878	Skeletal muscle cell aging and stem cells. , 2021, , 125-145.		6
879	Suppression of MyoD induces spontaneous adipogenesis in skeletal muscle progenitor cell culture. Animal Science Journal, 2021, 92, e13573.	0.6	9
880	CK2 Down-Regulation Increases the Expression of Senescence-Associated Secretory Phenotype Factors through NF-ήB Activation. International Journal of Molecular Sciences, 2021, 22, 406.	1.8	17
881	Severe COVID-19 Lung Infection in Older People and Periodontitis. Journal of Clinical Medicine, 2021, 10, 279.	1.0	35
882	Targeting senescent cell clearance: An approach to delay aging and age-associated disorders. Translational Medicine of Aging, 2021, 5, 1-9.	0.6	1
883	The Jekyll and Hyde of Cellular Senescence in Cancer. Cells, 2021, 10, 208.	1.8	25
884	Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development?. Frontiers in Cell and Developmental Biology, 2021, 9, 623175.	1.8	53
885	Aging and stability of cardiomyocytes. , 2021, , 147-156.		0
886	Cellular Senescence in Liver Disease and Regeneration. Seminars in Liver Disease, 2021, 41, 050-066.	1.8	26
887	Mechanisms of cell senescence in aging. , 2021, , 53-67.		1
888	Biological functions of supramolecular assemblies of small molecules in the cellular environment. RSC Chemical Biology, 2021, 2, 289-305.	2.0	10
889	Prediction of SARS-CoV Interaction with Host Proteins during Lung Aging Reveals a Potential Role for TRIB3 in COVID-19. , 2021, 12, 42.		13
890	Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Current Topics in Developmental Biology, 2021, 145, 235-275.	1.0	11

#	Article	IF	CITATIONS
892	Bcl-xL as a Modulator of Senescence and Aging. International Journal of Molecular Sciences, 2021, 22, 1527.	1.8	20
893	Folic acid supplementation acts as a chemopreventive factor in tumorigenesis of hepatocellular carcinoma by inducing H3K9Me2-dependent transcriptional repression of LCN2. Oncotarget, 2021, 12, 00-00.	0.8	3
894	Quantitative Proteomic Analysis of the Senescenceâ€Associated Secretory Phenotype by Dataâ€Independent Acquisition. Current Protocols, 2021, 1, e32.	1.3	25
895	The Enigmatic Vascular NOX: From Artifact to Double Agent of Change. Hypertension, 2021, 77, 275-283.	1.3	3
896	Splicing alterations in healthy aging and disease. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1643.	3.2	29
898	Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathology and Applied Neurobiology, 2021, 47, 359-378.	1.8	34
899	Isolation methodology is essential to the evaluation of the extracellular vesicle component of the senescenceâ€associated secretory phenotype. Journal of Extracellular Vesicles, 2021, 10, e12041.	5.5	11
900	Probing cell metabolism on insulin like growth factor(IGF)â€1/tumor necrosis factor(TNF)â€Î± and chargeable polymers coâ€immobilized conjugates. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 256-268.	1.3	2
901	Calcium channel ITPR2 and mitochondria–ER contacts promote cellular senescence and aging. Nature Communications, 2021, 12, 720.	5.8	75
902	Chromo-fluorogenic probes for Î ² -galactosidase detection. Analytical and Bioanalytical Chemistry, 2021, 413, 2361-2388.	1.9	16
903	An antioxidant suppressed lung cellular senescence and enhanced pulmonary function in aged mice. Biochemical and Biophysical Research Communications, 2021, 541, 43-49.	1.0	3
904	Evidence of the Cellular Senescence Stress Response in Mitotically Active Brain Cells—Implications for Cancer and Neurodegeneration. Life, 2021, 11, 153.	1.1	16
906	T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers, 2021, 13, 598.	1.7	19
907	Amphiregulin Regulates Melanocytic Senescence. Cells, 2021, 10, 326.	1.8	13
908	DNASE1L3 arrests tumor angiogenesis by impairing the senescence-associated secretory phenotype in response to stress. Aging, 2021, 13, 9874-9899.	1.4	7
909	Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nature Communications, 2021, 12, 1832.	5.8	50
910	Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion. Mechanisms of Ageing and Development, 2021, 194, 111425.	2.2	30
911	Adamantinomatous craniopharyngioma as a model to understand paracrine and senescence-induced tumourigenesis. Cellular and Molecular Life Sciences, 2021, 78, 4521-4544.	2.4	10

#	Article	IF	CITATIONS
912	Mathematical modelling of ageing acceleration of the human follicle due to oxidative stress and other factors. Mathematical Medicine and Biology, 2021, 38, 273-291.	0.8	3
913	Metastatic suppression by DOC2B is mediated by inhibition of epithelial-mesenchymal transition and induction of senescence. Cell Biology and Toxicology, 2022, 38, 237-258.	2.4	13
914	Senolytics: Potential for Alleviating Diabetes and Its Complications. Endocrinology, 2021, 162, .	1.4	21
915	Twoâ€Ðimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angewandte Chemie - International Edition, 2021, 60, 10756-10765.	7.2	65
916	Lipid peroxidation and the subsequent cell death transmitting from ferroptotic cells to neighboring cells. Cell Death and Disease, 2021, 12, 332.	2.7	50
918	Genes and pathways involved in senescence bypass identified by functional genetic screens. Mechanisms of Ageing and Development, 2021, 194, 111432.	2.2	8
919	Bmi-1 alleviates adventitial fibroblast senescence by eliminating ROS in pulmonary hypertension. BMC Pulmonary Medicine, 2021, 21, 80.	0.8	16
920	The function of small extracellular vesicles secreted from senescent cells. Drug Delivery System, 2021, 36, 130-137.	0.0	0
921	Implication of Dietary Iron-Chelating Bioactive Compounds in Molecular Mechanisms of Oxidative Stress-Induced Cell Ageing. Antioxidants, 2021, 10, 491.	2.2	16
922	Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. Biology, 2021, 10, 253.	1.3	48
923	Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 645593.	1.8	608
924	NAD ⁺ supplementation prevents STINGâ€induced senescence in ataxia telangiectasia by improving mitophagy. Aging Cell, 2021, 20, e13329.	3.0	58
926	Tissue-resident macrophage inflammaging aggravates homeostasis dysregulation in age-related diseases. Cellular Immunology, 2021, 361, 104278.	1.4	11
927	Twoâ€Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angewandte Chemie, 2021, 133, 10851-10860.	1.6	6
928	Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas. Molecules and Cells, 2021, 44, 136-145.	1.0	11
929	Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1. Aging, 2021, 13, 12308-12333.	1.4	11
930	Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nature Protocols, 2021, 16, 2471-2498.	5.5	92
931	Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biology, 2021, 40, 101863.	3.9	27

#	Article	IF	CITATIONS
932	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. Journal of the National Cancer Institute, 2021, 113, 1285-1298.	3.0	156
933	Senolytic targets and new strategies for clearing senescent cells. Mechanisms of Ageing and Development, 2021, 195, 111468.	2.2	30
934	Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Frontiers in Neuroscience, 2021, 15, 666881.	1.4	9
935	Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight, 2021, 6, .	2.3	42
936	Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respiratory Research, 2021, 22, 109.	1.4	65
937	Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis. Npj Aging and Mechanisms of Disease, 2021, 7, 7.	4.5	32
938	ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging, 2021, 13, 10703-10723.	1.4	29
939	Toll-like receptor 2 induced senescence in intervertebral disc cells of patients with back pain can be attenuated by o-vanillin. Arthritis Research and Therapy, 2021, 23, 117.	1.6	17
940	Recent advances in radiobiology with respect to pleiotropic aspects of tissue reaction. Journal of Radiation Research, 2021, 62, i30-i35.	0.8	1
941	Epithelial stem cells at the intersection of tissue regeneration and pulmonary fibrosis. , 2021, , 290-305.		3
942	ITPKA induces cell senescence, inhibits ovarian cancer tumorigenesis and can be downregulated by miR-203. Aging, 2021, 13, 11822-11832.	1.4	3
943	Connective Tissue and Fibroblast Senescence in Skin Aging. Journal of Investigative Dermatology, 2021, 141, 985-992.	0.3	108
944	Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Frontiers in Medicine, 2021, 8, 644678.	1.2	31
945	Utilizing Developmentally Essential Secreted Peptides Such as Thymosin Beta-4 to Remind the Adult Organs of Their Embryonic State—New Directions in Anti-Aging Regenerative Therapies. Cells, 2021, 10, 1343.	1.8	3
946	Senescenceâ€associated βâ€galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell, 2021, 20, e13344.	3.0	78
947	The twilight of the immune system: The impact of immunosenescence in aging. Maturitas, 2021, 147, 7-13.	1.0	32
948	B7-H3 suppresses doxorubicin-induced senescence-like growth arrest in colorectal cancer through the AKT/TM4SF1/SIRT1 pathway. Cell Death and Disease, 2021, 12, 453.	2.7	18
949	Immunomodulatory Effects of BRAF, MEK, and CDK4/6 Inhibitors: Implications for Combining Targeted Therapy and Immune Checkpoint Blockade for the Treatment of Melanoma. Frontiers in Immunology, 2021, 12, 661737.	2.2	29

ARTICLE IF CITATIONS Radiation-Induced Senescence Reprograms Secretory and Metabolic Pathways in Colon Cancer HCT-116 950 1.8 13 Cells. International Journal of Molecular Sciences, 2021, 22, 4835. Effects of anagliptin on the stress induced accelerated senescence of human umbilical vein endothelial cells. Annals of Translational Medicine, 2021, 9, 750-750. 953 Signaling levels mold the RAS mutation tropism of urethane. ELife, 2021, 10, . 2.8 10 Extracellular Vesicles as Potential Theranostic Platforms for Skin Diseases and Aging. Pharmaceutics, 954 2.0 2021, 13, 760. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomedicine and 955 2.5 52 Pharmacotherapy, 2021, 137, 111327. Longâ€term exposure to cigarette smoke influences characteristics in human gingival fibroblasts. Journal of Periodontal Research, 2021, 56, 951-963. 1.4 957 Redd1 knockdown prevents doxorubicin-induced cardiac senescence. Aging, 2021, 13, 13788-13806. 1.4 12 Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment 958 5.8 promoting repair. Science Translational Medicine, 2021, 13, . BRAFV600E-induced senescence drives Langerhans cell histiocytosis pathophysiology. Nature Medicine, 959 15.2 38 2021, 27, 851-861. Cell Culture Studies: A Promising Approach to the Metabolomic Study of Human Aging. Current Metabolomics and Systems Biology, 2021, 8, 1-26. Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and 962 17 2.6 fibrosis in the Mdr2Âmouse. JHEP Reports, 2021, 3, 100250. NFâ€î®B/IKK activation by small extracellular vesicles within the SASP. Aging Cell, 2021, 20, e13426. 3.0 Regenerative Medicine and the Hope for a Cure. Clinics in Chest Medicine, 2021, 42, 365-373. 964 0.8 0 Cellular Senescence in Lung Fibrosis. International Journal of Molecular Sciences, 2021, 22, 7012. 1.8 Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, 966 1.3 29 Challenges and Therapeutic Opportunities. Frontiers in Physiology, 2021, 12, 693067. Inhibition of SIRT1 Limits Self-Renewal and Oncogenesis by Inducing Senescence of Liver Cancer Stem 1.8 Cells. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 685-699. The Role of Ageing and Parenchymal Senescence on Macrophage Function and Fibrosis. Frontiers in 968 2.211 Immunology, 2021, 12, 700790. Immune Aging and Immunotherapy in Cancer. International Journal of Molecular Sciences, 2021, 22, 1.8 7016.

#	Article	IF	CITATIONS
970	Interventional Strategies to Delay Aging-Related Dysfunctions of the Musculoskeletal System. , 0, , .		0
971	MMP1 drives tumor progression in large cell carcinoma of the lung through fibroblast senescence. Cancer Letters, 2021, 507, 1-12.	3.2	33
972	The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients, 2021, 13, 2045.	1.7	53
973	Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. , 2021, 222, 107795.		32
974	Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduction and Targeted Therapy, 2021, 6, 245.	7.1	119
975	The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. , 2022, 230, 107943.		79
976	Cellular Senescence: Pathogenic Mechanisms in Lung Fibrosis. International Journal of Molecular Sciences, 2021, 22, 6214.	1.8	46
977	Flavonoids in Skin Senescence Prevention and Treatment. International Journal of Molecular Sciences, 2021, 22, 6814.	1.8	49
978	Liver regeneration and inflammation: from fundamental science to clinical applications. Nature Reviews Molecular Cell Biology, 2021, 22, 608-624.	16.1	122
979	Acid ceramidase promotes senescent cell survival. Aging, 2021, 13, 15750-15769.	1.4	11
980	The combination of ADSCs and 10% PRP increases Rb protein expression on senescent human dermal fibroblasts. F1000Research, 0, 10, 516.	0.8	0
981	Myofibroblast fate plasticity in tissue repair and fibrosis: Deactivation, apoptosis, senescence and reprogramming. Wound Repair and Regeneration, 2021, 29, 678-691.	1.5	20
982	Therapy-Induced Tumor Cell Death: Friend or Foe of Immunotherapy?. Frontiers in Oncology, 2021, 11, 678562.	1.3	15
983	Die idiopathische pulmonale Fibrose jenseits der Lunge: Krankheitsmechanismen verstehen, um Diagnose und Therapie zu verbessern. Karger Kompass Pneumologie, 0, , 1-12.	0.0	0
984	Licochalcone D Ameliorates Oxidative Stress-Induced Senescence via AMPK Activation. International Journal of Molecular Sciences, 2021, 22, 7324.	1.8	20
985	Trends in Natural Nutrients for Oxidative Stress and Cell Senescence. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-7.	1.9	15
986	Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation. Translational Research, 2021, 233, 104-116.	2.2	14
987	Akt Isoforms: A Family Affair in Breast Cancer. Cancers, 2021, 13, 3445.	1.7	31

	_	
CITAI	DEDC	NDT.
CHAI	REPU	ואו

#	Article	IF	CITATIONS
989	Neutralization of oxidized phospholipids attenuates ageâ€associated bone loss in mice. Aging Cell, 2021, 20, e13442.	3.0	17
990	Estrogen prevents cellular senescence and bone loss through Usp10-dependent p53 degradation in osteocytes and osteoblasts: the role of estrogen in bone cell senescence. Cell and Tissue Research, 2021, 386, 297-308.	1.5	13
991	Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology, 2021, 29, 1033-1048.	1.9	24
992	Altered endocytosis in cellular senescence. Ageing Research Reviews, 2021, 68, 101332.	5.0	25
993	LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biology, 2021, 43, 101963.	3.9	53
994	Therapeutic Potential of EWSR1–FLI1 Inactivation by CRISPR/Cas9 in Ewing Sarcoma. Cancers, 2021, 13, 3783.	1.7	15
995	Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 592118.	2.0	32
996	To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Frontiers in Cell and Developmental Biology, 2021, 9, 708763.	1.8	15
997	Wild-Type and Mutant FUS Expression Reduce Proliferation and Neuronal Differentiation Properties of Neural Stem Progenitor Cells. International Journal of Molecular Sciences, 2021, 22, 7566.	1.8	4
998	The cell cycle inhibitor P21 promotes the development of pulmonary fibrosis by suppressing lung alveolar regeneration. Acta Pharmaceutica Sinica B, 2022, 12, 735-746.	5.7	18
999	The dual distinct role of telomerase in repression of senescence and myofibroblast differentiation. Aging, 2021, 13, 16957-16973.	1.4	4
1000	Targeting Aging: Lessons Learned From Immunometabolism and Cellular Senescence. Frontiers in Immunology, 2021, 12, 714742.	2.2	14
1001	The Emergence of Senescent Surface Biomarkers as Senotherapeutic Targets. Cells, 2021, 10, 1740.	1.8	28
1002	Adipose tissue senescence is mediated by increased ATP content after a shortâ€ŧerm highâ€fat diet exposure. Aging Cell, 2021, 20, e13421.	3.0	16
1003	Monoallelic IDH1 R132H Mutation Mediates Glioma Cell Response to Anticancer Therapies via Induction of Senescence. Molecular Cancer Research, 2021, 19, 1878-1888.	1.5	2
1004	Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators of Inflammation, 2021, 2021, 1-21.	1.4	36
1005	Aging, Cell Senescence, the Pathogenesis and Targeted Therapies of Osteoarthritis. Frontiers in Pharmacology, 2021, 12, 728100.	1.6	31
1006	Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38

#	Article	IF	CITATIONS
1007	Classification and Treatment of Diseases in the Age of Genome Medicine Based on Pathway Pathology. International Journal of Molecular Sciences, 2021, 22, 9418.	1.8	3
1008	Future prospects for mitosis-targeted antitumor therapies. Biochemical Pharmacology, 2021, 190, 114655.	2.0	24
1009	Cellular Senescence in Idiopathic Pulmonary Fibrosis. Current Molecular Biology Reports, 2021, 7, 31-40.	0.8	29
1010	Dysregulated Phenylalanine Catabolism Plays a Key Role in the Trajectory of Cardiac Aging. Circulation, 2021, 144, 559-574.	1.6	38
1011	Delayed Senescence of Human Vascular Endothelial Cells by Molecular Mobility of Supramolecular Biointerfaces. Macromolecular Bioscience, 2021, 21, 2100216.	2.1	6
1012	Engineered Aging Cardiac Tissue Chip Model for Studying Cardiovascular Disease. Cells Tissues Organs, 2022, 211, 348-359.	1.3	5
1013	COPD, Pulmonary Fibrosis and ILAs in Aging Smokers: The Paradox of Striking Different Responses to the Major Risk Factors. International Journal of Molecular Sciences, 2021, 22, 9292.	1.8	14
1014	Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radical Biology and Medicine, 2021, 171, 169-190.	1.3	103
1016	Balancing DNA repair to prevent ageing and cancer. Experimental Cell Research, 2021, 405, 112679.	1.2	14
1017	Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunology, Immunotherapy, 2022, 71, 507-526.	2.0	91
1018	COVID-19 Immunobiology: Lessons Learned, New Questions Arise. Frontiers in Immunology, 2021, 12, 719023.	2.2	28
1019	Heme Oxygenase-1 at the Nexus of Endothelial Cell Fate Decision Under Oxidative Stress. Frontiers in Cell and Developmental Biology, 2021, 9, 702974.	1.8	3
1020	Gasotransmitters: Potential Therapeutic Molecules of Fibrotic Diseases. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	1.9	22
1021	Non-targeting control for MISSION shRNA library silences SNRPD3 leading to cell death or permanent growth arrest. Molecular Therapy - Nucleic Acids, 2021, 26, 711-731.	2.3	6
1022	Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells, 2021, 10, 2562.	1.8	13
1023	Understanding of sarcopenia: from definition to therapeutic strategies. Archives of Pharmacal Research, 2021, 44, 876-889.	2.7	34
1024	WNT10A induces apoptosis of senescent synovial resident stem cells through Wnt/calcium pathway-mediated HDAC5 phosphorylation in OA joints. Bone, 2021, 150, 116006.	1.4	8
1025	Cellular Plasticity: A Route to Senescence Exit and Tumorigenesis. Cancers, 2021, 13, 4561.	1.7	32

#	Article	IF	CITATIONS
1026	Dietary Nucleotides Retard Oxidative Stress-Induced Senescence of Human Umbilical Vein Endothelial Cells. Nutrients, 2021, 13, 3279.	1.7	7
1027	Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer's disease. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 2167-2185.	1.4	7
1028	Reproductive aging and telomeres: Are women and men equally affected?. Mechanisms of Ageing and Development, 2021, 198, 111541.	2.2	11
1029	Senescence in HBV-, HCV- and NAFLD- Mediated Hepatocellular Carcinoma and Senotherapeutics: Current Evidence and Future Perspective. Cancers, 2021, 13, 4732.	1.7	12
1030	Assessment of the structural and functional characteristics of human mesenchymal stem cells associated with a prolonged exposure of morphine. Scientific Reports, 2021, 11, 19248.	1.6	1
1031	Identification of a small molecule SR9009 that activates NRF2 to counteract cellular senescence. Aging Cell, 2021, 20, e13483.	3.0	8
1032	The Contribution of Physiological and Accelerated Aging to Cancer Progression Through Senescence-Induced Inflammation. Frontiers in Oncology, 2021, 11, 747822.	1.3	5
1033	Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. ELife, 2021, 10, .	2.8	100
1035	Cellular senescence promotes cancer metastasis by enhancing soluble E-cadherin production. IScience, 2021, 24, 103022.	1.9	16
1036	Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Research Reviews, 2021, 70, 101413.	5.0	62
1037	Associations Between Plasma Growth and Differentiation Factor-15 with Aging Phenotypes in Muscle, Adipose Tissue, and Bone. Calcified Tissue International, 2022, 110, 236-243.	1.5	12
1038	Nutrition and cellular senescence in obesity-related disorders. Journal of Nutritional Biochemistry, 2022, 99, 108861.	1.9	14
1039	Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Research, 2021, 9, 41.	5.4	58
1040	Macrophages in Atherosclerosis, First or Second Row Players?. Biomedicines, 2021, 9, 1214.	1.4	11
1041	Diverse Roles of Cellular Senescence in Skeletal Muscle Inflammation, Regeneration, and Therapeutics. Frontiers in Pharmacology, 2021, 12, 739510.	1.6	23
1042	Role of Oxidative Stress in the Senescence Pattern of Auditory Cells in Age-Related Hearing Loss. Antioxidants, 2021, 10, 1497.	2.2	12
1043	Mitochondrial Membrane Disrupting Molecules for Selective Killing of Senescent Cells. ChemBioChem, 2021, 22, 3391-3397.	1.3	9
1044	Effects of Berberine on the Chondrogenic Differentiation of Embryonic Limb Skeletal Progenitors. Journal of Inflammation Research, 2021, Volume 14, 5001-5011.	1.6	1

#	ARTICLE Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent	IF	CITATIONS
1045	intervertebral disc degeneration in mice. Nature Communications, 2021, 12, 5213. The role of lipid-based signalling in wound healing and senescence. Mechanisms of Ageing and	5 .8 2.2	148
1047	Biallelic variants in YRDC cause a developmental disorder with progeroid features. Human Genetics, 2021, 140, 1679-1693.	1.8	3
1048	Sexual Differentiation Specifies Cellular Responses to DNA Damage. Endocrinology, 2021, 162, .	1.4	7
1049	Evaluation of senescent cells in intervertebral discs by lipofuscin staining. Mechanisms of Ageing and Development, 2021, 199, 111564.	2.2	9
1050	Breathe it in – Spotlight on senescence and regeneration in the lung. Mechanisms of Ageing and Development, 2021, 199, 111550.	2.2	5
1051	Keeping zombies alive: The ER-mitochondria Ca2+ transfer in cellular senescence. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119099.	1.9	18
1052	Methods of detection of β-galactosidase enzyme in living cells. Enzyme and Microbial Technology, 2021, 150, 109885.	1.6	6
1053	Senescent cells in cancer therapy: why and how to remove them. Cancer Letters, 2021, 520, 68-79.	3.2	18
1054	Nanomaterials and Aging. Current Stem Cell Research and Therapy, 2021, 16, 57-65.	0.6	7
1055	Accelerated Lung Aging and Cellular Senescence in COPD. , 2022, , 583-593.		0
1056	Targeting senescent cells for vascular aging and related diseases. Journal of Molecular and Cellular Cardiology, 2022, 162, 43-52.	0.9	15
1057	Role of autophagy in dysregulation of oral mucosal homeostasis. , 2022, , 101-125.		0
1058	An ultrasensitive chemiluminescence strategy based on a microchip platform for telomerase detection at a single-cell level. Chemical Communications, 2021, 57, 3095-3098.	2.2	16
1059	Methods to Study Myc-Regulated Cellular Senescence: An Update. Methods in Molecular Biology, 2021, 2318, 241-254.	0.4	3
1061	Phospholipase A2 receptor 1 promotes lung cell senescence and emphysema in obstructive lung disease. European Respiratory Journal, 2021, 58, 2000752.	3.1	11
1062	Senescence under appraisal: hopes and challenges revisited. Cellular and Molecular Life Sciences, 2021, 78, 3333-3354.	2.4	27
1063	A Two-Photon Probe Based on Naphthalimide-Styrene Fluorophore for the <i>In Vivo</i> Tracking of Cellular Senescence. Analytical Chemistry, 2021, 93, 3052-3060.	3.2	29

		CITATION REPORT		
#	Article		IF	CITATIONS
1064	Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer Mutation Research - Reviews in Mutation Research, 2021, 787, 108365.		2.4	181
1065	Autophagy and senescence, converging roles in pathophysiology as seen through mouse models. Advances in Cancer Research, 2021, 150, 113-145.		1.9	10
1066	Senotherapeutics: Experimental therapy of cellular senescence. , 2021, , 251-284.			0
1067	Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast. Frontiers in Cell and Developmental Biology, 2020, 8, 619126.		1.8	9
1068	Metformin Hydrochloride Encapsulation by Alginate Strontium Hydrogel for Cartilage Regeneration by Reliving Cellular Senescence. Biomacromolecules, 2021, 22, 671-680.		2.6	19
1069	Rejuvenating Stem Cells to Restore Muscle Regeneration in Aging. , 2019, , 311-324.			1
1070	An Update on the Molecular Pillars of Aging. , 2020, , 1-25.			2
1071	Interconnection Between Cellular Senescence, Regeneration and Ageing in Salamanders. Healthy Ageing and Longevity, 2020, , 43-62.		0.2	2
1072	Targeted Senolytic Strategies Based on the Senescent Surfaceome. Healthy Ageing and Longevity, 2 , 103-130.	2020,	0.2	3
1073	Diversity of CD28null T Cells in the Elderly: A Glimpse in a Biological Adaptation of Aging. , 2019, , 449-481.			1
1074	Pathogenesis of COPD 4 – Cell Death, Senescence, and Autophagy: Is There a Possibility of Devel New Drugs from the Standpoint of This Pathogenetic Mechanism?. Respiratory Disease Series, 2017 95-111.	oping 7, ,	0.1	1
1075	Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic Journal of Controlled Release, 2020, 323, 624-634.	2.	4.8	64
1076	Lipidomics reveals carnitine palmitoyltransferase 1C protects cancer cells from lipotoxicity and senescence. Journal of Pharmaceutical Analysis, 2021, 11, 340-350.		2.4	22
1077	The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mechanisms of Ageing and Development, 2020, 189, 111263.		2.2	49
1078	Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 81-95.	;	8.2	62
1079	CHAPTER 5. Oxidative Stress, Metabolism and Photoaging $\hat{a} \in \mathcal{C}$ The Role of Mitochondria. Comprehe Series in Photochemical and Photobiological Sciences, 2019, , 105-144.	nsive	0.3	1
1080	The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clinical Science, 2020, 134, 315-330.		1.8	71
1081	Pharmacological inactivation of CDK2 inhibits MYC/BCL-XL-driven leukemia in vivo through inductic of cellular senescence. Cell Cycle, 2021, 20, 23-38.	n	1.3	7

# 1082	ARTICLE Similarities and interplay between senescent cells and macrophages. Journal of Cell Biology, 2021, 220,	IF 2.3	CITATIONS
1083	The microglial component of amyotrophic lateral sclerosis. Brain, 2020, 143, 3526-3539.	3.7	72
1084	Senescent cells and macrophages: key players for regeneration?. Open Biology, 2020, 10, 200309.	1.5	50
1101	ls exercise a senolytic medicine? A systematic review. Aging Cell, 2021, 20, e13294.	3.0	46
1102	Cellular senescence and senescenceâ€associated secretory phenotype via the cGASâ€STING signaling pathway in cancer. Cancer Science, 2020, 111, 304-311.	1.7	117
1103	Senescence research from historical theory to future clinical application. Geriatrics and Gerontology International, 2021, 21, 125-130.	0.7	6
1104	Long noncoding RNA <i>SNHG12</i> integrates a DNA-PK–mediated DNA damage response and vascular senescence. Science Translational Medicine, 2020, 12, .	5.8	91
1105	Aberrant Induction of a Mesenchymal/Stem Cell Program Engages Senescence in Normal Mammary Epithelial Cells. Molecular Cancer Research, 2021, 19, 651-666.	1.5	6
1106	The senescence-associated secretome as an indicator of age and medical risk. JCI Insight, 2020, 5, .	2.3	175
1107	Elimination of p19ARF-expressing cells enhances pulmonary function in mice. JCI Insight, 2016, 1, e87732.	2.3	112
1108	Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. Journal of Clinical Investigation, 2019, 129, 712-726.	3.9	117
1109	Resolution of organ fibrosis. Journal of Clinical Investigation, 2018, 128, 97-107.	3.9	245
1110	O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. Journal of Clinical Investigation, 2018, 128, 4924-4937.	3.9	51
1111	Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. Journal of Clinical Investigation, 2018, 128, 1208-1216.	3.9	289
1112	Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 2018, 128, 1238-1246.	3.9	696
1113	Role of sphingolipids in senescence: implication in aging and age-related diseases. Journal of Clinical Investigation, 2018, 128, 2702-2712.	3.9	125
1114	New challenges of geriatric cardiology: from clinical to preclinical research. Journal of Geriatric Cardiology, 2017, 14, 223-232.	0.2	10
1115	Basic Science of Frailty—Biological Mechanisms of Age-Related Sarcopenia. Anesthesia and Analgesia, 2021, 132, 293-304.	1.1	15

CITATION REPORT ARTICLE IF CITATIONS Accelerated Glomerular Cell Senescence in Experimental Lupus Nephritis. Medical Science Monitor, 0.5 21 1116 2018, 24, 6882-6891. Molecular signature of anastasis for reversal of apoptosis. F1000Research, 2017, 6, 43. 0.8 A Model for p38MAPK-Induced Astrocyte Senescence. PLoS ONE, 2015, 10, e0125217. 1118 1.1 36 MERTK Inhibition Induces Polyploidy and Promotes Cell Death and Cellular Senescence in 1.1 Glioblastoma Multiforme. PLóS ONÉ, 2016, 11, e0165107. Age, gender and UV-exposition related effects on gene expression in in vivo aged short term cultivated 1120 1.1 29 human dermal fibroblasts. PLoS ONE, 2017, 12, e0175657. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS ONE, 2017, 12, e0185794. 1121 1.1 Cytoplasmic Retention Of CDC6 Induces Premature Senescence In Immortalized Cells And Suppresses 1122 1.8 1 Tumor Formation In Mice. Journal of Hematology and Oncology Research, 2016, 2, 27-42. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Molecules and Cells, 2017, 40, 607-612. 1.0 Senolytics and Senostatics: A Two-Pronged Approach to Target Cellular Senescence for Delaying 1124 1.0 61 Aging and Age-Related Diseases. Molecules and Cells, 2019, 42, 821-827. It Takes Four to Tango: Long Noncoding RNA PANDA, SAF-A, Polycomb Repressive Complexes and NF-Y in 1.0 Senescence Regulation. RNA & Disease (Houston, Tex), 0, , . Continuous One Year Oral Administration of the Radiation Mitigator, MMS350, after Total-Body Irradiation, Restores Bone Marrow Stromal Cell Proliferative Capacity and Reduces Senescence in 1126 0.7 10 Fanconi Anemia (Fanca-/-) Mice. Radiation Research, 2018, 191, 139. Autophagy and Cellular Senescence in Lung Diseases. Journal of Biochemistry and Molecular Biology Research, 2015, 1, 54-66. The rules of aging: are they universal? Is the yeast model relevant for gerontology?. Acta Biochimica 1128 0.3 4 Polonica, 2014, 61, . Apoptosis during embryonic tissue remodeling is accompanied by cell senescence. Aging, 2015, 7, 1.4 974-985. Screening of a kinase library reveals novel pro-senescence kinases and their common NF-Î^oB-dependent 1130 1.4 36 transcriptional program. Aging, 2015, 7, 986-999. Placental membrane aging and HMCB1 signaling associated with human parturition. Aging, 2016, 8, 216-230. Inducing cellular senescence in vitro by using genetically encoded photosensitizers. Aging, 2016, 8, 1132 1.4 12

Calcium alterations signal either to senescence or to autophagy induction in stem cells upon 1.4 oxidative stress. Aging, 2016, 8, 3400-3418.

2449-2462.

#	Article	IF	CITATIONS
1134	Induction, regulation and roles of neural adhesion molecule L1CAM in cellular senescence. Aging, 2018, 10, 434-462.	1.4	14
1135	Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion. Aging, 2018, 10, 747-763.	1.4	26
1136	Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging, 2018, 10, 1103-1132.	1.4	162
1137	Effects of senescent secretory phenotype acquisition on human retinal pigment epithelial stem cells. Aging, 2018, 10, 3173-3184.	1.4	11
1138	c-Met as a new marker of cellular senescence. Aging, 2019, 11, 2889-2897.	1.4	11
1139	Dynamic PML protein nucleolar associations with persistent DNA damage lesions in response to nucleolar stress and senescence-inducing stimuli. Aging, 2019, 11, 7206-7235.	1.4	11
1140	Oxidative stress-induced cellular senescence desensitizes cell growth and migration of vascular smooth muscle cells through down-regulation of platelet-derived growth factor receptor-beta. Aging, 2019, 11, 8085-8102.	1.4	8
1141	Targeting senescent cells: approaches, opportunities, challenges. Aging, 2019, 11, 12844-12861.	1.4	67
1142	Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR. Aging, 2020, 12, 1087-1103.	1.4	66
1143	Survey of senescent cell markers with age in human tissues. Aging, 2020, 12, 4052-4066.	1.4	88
1144	Establishing a density-based method to separate proliferating and senescent cells from bone marrow stromal cells. Aging, 2020, 12, 15050-15057.	1.4	5
1145	Transient metabolic improvement in obese mice treated with navitoclax or dasatinib/quercetin. Aging, 2020, 12, 11337-11348.	1.4	25
1146	Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging, 2020, 12, 15882-15905.	1.4	29
1147	D-galactose induces senescence of glioblastoma cells through YAP-CDK6 pathway. Aging, 2020, 12, 18501-18521.	1.4	23
1148	Developmentally-programmed cellular senescence is conserved and widespread in zebrafish. Aging, 2020, 12, 17895-17901.	1.4	12
1149	mTOR signaling orchestrates the expression of cytoprotective factors during cellular senescence. Oncotarget, 2016, 7, 48859-48859.	0.8	4
1150	NOX4 downregulation leads to senescence of human vascular smooth muscle cells. Oncotarget, 2016, 7, 66429-66443.	0.8	39
1151	Premature senescence of cardiac fibroblasts and atrial fibrosis in patients with atrial fibrillation. Oncotarget, 2017, 8, 57981-57990.	0.8	36

#	Article	IF	CITATIONS
1152	ETS1, nucleolar and non-nucleolar TERT expression in nevus to melanoma progression. Oncotarget, 2017, 8, 104408-104417.	0.8	8
1153	Preclinical study of a Kv11.1 potassium channel activator as antineoplastic approach for breast cancer. Oncotarget, 2018, 9, 3321-3337.	0.8	41
1154	Ganglioside GM1 contributes to extracellular/intracellular regulation of insulin resistance, impairment of insulin signaling and down-stream eNOS activation, in human aortic endothelial cells after short- or long-term exposure to TNFα. Oncotarget, 2018, 9, 5562-5577.	0.8	9
1155	The function of cux1 in oxidative dna damage repair is needed to prevent premature senescence of mouse embryo fibroblasts. Oncotarget, 2015, 6, 3613-3626.	0.8	25
1156	hERG1/Kv11.1 activation stimulates transcription of p21waf/cip in breast cancer cells <i>via</i> a calcineurin-dependent mechanism. Oncotarget, 2016, 7, 58893-58902.	0.8	26
1157	Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc. Oncotarget, 2016, 7, 21786-21798.	0.8	28
1158	An update on molecular alterations in melanocytic tumors with emphasis on Spitzoid lesions. Annals of Translational Medicine, 2018, 6, 249-249.	0.7	24
1159	Establishment and Characterization of Pemetrexed-resistant NCI-H460/PMT Cells. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 731-739.	0.9	5
1160	Stress-induced Cellular Senescence Contributes to Chronic Inflammation and Cancer Progression. Thermal Medicine, 2019, 35, 41-58.	0.0	6
1161	"Social Life―of Senescent Cells: What Is SASP and Why Study It?. Acta Naturae, 2018, 10, 4-14.	1.7	114
1162	Cellular Senescence in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 16.	1.8	164
1163	A Bibliometric Review of Publications on Oxidative Stress and Chemobrain: 1990–2019. Antioxidants, 2020, 9, 439.	2.2	8
1164	The Link Between Inflammaging and Degenerative Joint Diseases. International Journal of Molecular Sciences, 2019, 20, 614.	1.8	71
1165	Effects of Oleo Gum Resin of Ferula assa-foetida L. on Senescence in Human Dermal Fibroblasts. Journal of Pharmacopuncture, 2017, 20, 213-219.	0.4	6
1166	IGFâ€ʿ1 induces cellular senescence in rat articular chondrocytes via Akt pathway activation. Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	7
1167	Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K‑AKT‑mTOR pathway in osteoarthritic chondrocytes. International Journal of Molecular Medicine, 2020, 45, 1225-1236.	1.8	24
1168	Involvement of Klotho, TNFâ€ʿα and ADAMs in radiationâ€ʿinduced senescence of renal epithelial cells. Molecular Medicine Reports, 2020, 23, 1-1.	1.1	6
1169	Protective effect of hydrogen sulfide on oxidative stress-induced neurodegenerative diseases. Neural Regeneration Research, 2020, 15, 232.	1.6	23

#	Article	IF	CITATIONS
1170	Therapeutic importance of hydrogen sulfide in age-associated neurodegenerative diseases. Neural Regeneration Research, 2020, 15, 653.	1.6	41
1171	Senescence and Cancer. Cancer Translational Medicine, 2018, 4, 70.	0.2	65
1172	Effect of 2LMISEN [®] on Long-Term Hippocampal Neurons Culture as a Screening Senescent Cells Model: p16 ^{INK4A} and Caspase 3 Quantification. Advances in Aging Research, 2019, 08, 155-164.	0.3	2
1173	Immunological aspects of age-related diseases. World Journal of Biological Chemistry, 2017, 8, 129.	1.7	13
1174	Role of senescence induction in cancer treatment. World Journal of Clinical Oncology, 2018, 9, 180-187.	0.9	30
1175	MicroRNA controls of cellular senescence. BMB Reports, 2018, 51, 493-499.	1.1	68
1176	Cellular senescence in cancer. BMB Reports, 2019, 52, 42-46.	1.1	32
1177	Autophagy, Cellular Aging and Age-related Human Diseases. Experimental Neurobiology, 2019, 28, 643-657.	0.7	54
1178	Effects of 5-Aza-2'-Deoxycytidine, Bromodeoxyuridine, Interferons and Hydrogen Peroxide on Cellular Senescence in Cholangiocarcinoma Cells. Asian Pacific Journal of Cancer Prevention, 2016, 17, 957-963.	0.5	6
1179	Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. ELife, 2017, 6, .	2.8	193
1180	Religiosity, Well-Being and â€~Slowing Down' Ageing Damage: A Literature Review. Cureus, 2020, 12, e9910.	0.2	2
1181	Amphiregulin Mediates Non-Cell-Autonomous Effect of Senescence on Reprogramming. SSRN Electronic Journal, 0, , .	0.4	0
1182	Histone H2A Ubiquitination Resulting From Brap Loss of Function Connects Multiple Aging Hallmarks and Accelerates Neurodegeneration. SSRN Electronic Journal, 0, , .	0.4	0
1183	Silica Induced Lung Fibrosis Is Associated With Senescence, Fgr, and Recruitment of Bone Marrow Monocyte/Macrophages. In Vivo, 2021, 35, 3053-3066.	0.6	5
1184	Role of mismatch repair in aging. International Journal of Biological Sciences, 2021, 17, 3923-3935.	2.6	5
1185	IER2-induced senescence drives melanoma invasion through osteopontin. Oncogene, 2021, 40, 6494-6512.	2.6	13
1186	Shear stress–induced cellular senescence blunts liver regeneration through Notch–sirtuin 1–P21/P16 axis. Hepatology, 2022, 75, 584-599.	3.6	44
1187	Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Scientific Reports, 2021, 11, 20358.	1.6	45

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1188	Strategies for targeting senescent cells in human disease. Nature Aging, 2021, 1, 870-8	379.	5.3	192
1189	Targeted Therapeutics Delivery by Exploiting Biophysical Properties of Senescent Cells. Functional Materials, 2022, 32, 2107990.	Advanced	7.8	5
1190	Gemcitabine radiosensitization primes irradiated malignant meningioma cells for senol elimination by navitoclax. Neuro-Oncology Advances, 2021, 3, vdab148.	ytic	0.4	7
1191	Acetyltransferase p300 Is a Putative Epidrug Target for Amelioration of Cellular Aging-F Cardiovascular Disease. Cells, 2021, 10, 2839.	lelated	1.8	10
1192	Senescence and Type 2 Diabetic Cardiomyopathy: How Young Can You Die of Old Age? Pharmacology, 2021, 12, 716517.	'. Frontiers in	1.6	9
1193	Recent advances in the discovery of senolytics. Mechanisms of Ageing and Developme 111587.	nt, 2021, 200,	2.2	41
1194	The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for therapeutic interventions. Seminars in Cancer Biology, 2022, 81, 132-144.	novel	4.3	23
1195	Local Delivery of Senolytic Drug Inhibits Intervertebral Disc Degeneration and Restores Intervertebral Disc Structure. Advanced Healthcare Materials, 2022, 11, e2101483.		3.9	36
1196	Clearance of Senescent Cells From Injured Muscle Abrogates Heterotopic Ossification Models of Fibrodysplasia Ossificans Progressiva. Journal of Bone and Mineral Research, 95-107.	n Mouse 2020, 37,	3.1	6
1197	Effects of Curcumin on Aging: Molecular Mechanisms and Experimental Evidence. BioM International, 2021, 2021, 1-13.	led Research	0.9	11
1198	Cellular senescence—an aging hallmark in chronic obstructive pulmonary disease pat Respiratory Investigation, 2022, 60, 33-44.	nogenesis.	0.9	11
1199	The Role of Epithelial Damage in the Pulmonary Immune Response. Cells, 2021, 10, 270	53.	1.8	44
1201	Promises and challenges of senolytics in skin regeneration, pathology and ageing. Mec Ageing and Development, 2021, 200, 111588.	nanisms of	2.2	17
1202	Molecular modelling of the FOXO4-TP53 interaction to design senolytic peptides for th of senescent cancer cells. EBioMedicine, 2021, 73, 103646.	e elimination	2.7	21
1203	IL-1beta promotes the age-associated decline of beta cell function. IScience, 2021, 24,	103250.	1.9	10
1205	Cellular Senescence as a Novel Mechanism of Chronic Inflammation and Cancer Progre 187-200.	ssion. , 2016, ,		0
1206	Exploiting Senescence for Cancer Treatment. Molecular Biology (Los Angeles, Calif), 20)16, 05, .	0.0	1
1207	Protección celular antioxidante y respuesta adaptativa inducida por estÃmulos oxidat Actualidades Biológicas, 2016, 38, .	vos crÃ ³ nicos.	0.1	0

#	ARTICLE Senescence Markers: One is not Good Enough, We Need More!. Open Access Journal of Microbiology &	IF	CITATIONS
1208	Biotechnology, 2016, 1, . Grundlagen der Biogerontologie. , 2018, , 105-135.	0.1	0
1212	Breast Cancer and Immunosenescence. , 2018, , 1-31.		0
1213	SILAC Analysis Reveals a Role for the Senescence-Associated Secretory Phenotype in Hemostasis. SSRN Electronic Journal, 0, , .	0.4	0
1214	Inflammaging. The Japanese Journal of SURGICAL METABOLISM and NUTRITION, 2018, 52, 5-10.	0.1	0
1215	Activation and Function of Innate Lymphoid Cells. , 2018, , 665-691.		0
1219	Future Directions for IPF Research. Respiratory Medicine, 2019, , 455-467.	0.1	0
1220	Cell Damage and Transformation in Aging. , 2019, , 1-3.		1
1221	Breast Cancer and Immunosenescence. , 2019, , 2115-2145.		0
1222	Mutation Load and Aging. , 2019, , 1-6.		0
1223	Aging of Cells In Vitro. , 2019, , .		0
1224	Aging and Cardiovascular Diseases: The Role of Cellular Senescence. , 2019, , 207-233.		1
1225	Cell Senescence. , 2019, , 1-15.		0
1228	In silico clinical trials for anti-aging therapies. Aging, 2019, 11, 6591-6601.	1.4	3
1232	El papel del envejecimiento en el desarrollo de enfermedades cardiovasculares asociadas a patologÃas renales. Revista De Investigación Y Educación En Ciencias De La Salud (RIECS), 2020, 5, 106-120.	0.0	0
1233	High-throughput and label-free isolation of senescent murine mesenchymal stem cells. Biomicrofluidics, 2020, 14, 034106.	1.2	7
1234	The Pivotal Role of Senescence in Cell Death and Aging: Where Do We Stand?. Current Molecular Biology Reports, 2020, 6, 91-101.	0.8	0
1235	Cellular Senescence in Pterygium. Journal of Korean Ophthalmological Society, 2020, 61, 861-867.	0.0	0

#	Article	IF	CITATIONS
1237	Genistein suppresses oxâ€LDLâ€elicited oxidative stress and senescence in HUVECs through the SIRT1â€p66shcâ€Foxo3a pathways. Journal of Biochemical and Molecular Toxicology, 2022, 36, e22939.	1.4	5
1238	Apoptosis resistance of senescent cells is an intrinsic barrier for senolysis induced by cardiac glycosides. Cellular and Molecular Life Sciences, 2021, 78, 7757-7776.	2.4	18
1240	CAMSAP3 depletion induces lung cancer cell senescenceâ€associated phenotypes through extracellular signalâ€regulated kinase inactivation. Cancer Medicine, 2021, 10, 8961-8975.	1.3	7
1241	In Situ Detection of miRNAs in Senescent Cells in Archival Material. Healthy Ageing and Longevity, 2020, , 147-162.	0.2	Ο
1242	The Effects of Continuous and Withdrawal Voluntary Wheel Running Exercise on the Expression of Senescence-Related Genes in the Visceral Adipose Tissue of Young Mice. International Journal of Molecular Sciences, 2021, 22, 264.	1.8	6
1244	Potential Applications of Aptamers for Targeting Senescent Cells. Healthy Ageing and Longevity, 2020, , 181-200.	0.2	0
1245	Senolysis and Senostasis Through the Plasma Membrane. Healthy Ageing and Longevity, 2020, , 131-143.	0.2	1
1246	Cellular Senescence in Aging Mucosal Tissues Is Accentuated byÂPeriodontitis. , 2020, , 97-111.		0
1247	Discovery of Senolytics and the Pathway to Early Phase Clinical Trials. Healthy Ageing and Longevity, 2020, , 21-40.	0.2	0
1248	Novel Probes and Carriers to Target Senescent Cells. Healthy Ageing and Longevity, 2020, , 163-180.	0.2	2
1250	Intrarenal arteriosclerosis and telomere attrition associate with dysregulation of the cholesterol pathway. Aging, 2020, 12, 7830-7847.	1.4	0
1251	Extracellular Vesicles as Central Mediators of COPD Pathophysiology. Annual Review of Physiology, 2022, 84, 631-654.	5.6	9
1252	Accumulation of Senescent Neural Cells in Murine Lupus With Depression-Like Behavior. Frontiers in Immunology, 2021, 12, 692321.	2.2	15
1253	Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury. International Journal of Molecular Sciences, 2021, 22, 11967.	1.8	26
1254	Senescence as a trade-off between successful land colonisation and longevity: critical review and analysis of a hypothesis. PeerJ, 2021, 9, e12286.	0.9	4
1255	ROS/TGF-β signal mediated accumulation of SOX4 in OA-FLS promotes cell senescence. Experimental Gerontology, 2021, 156, 111616.	1.2	9
1258	"Social Life" of Senescent Cells: What Is SASP and Why Study It?. Acta Naturae, 2018, 10, 4-14.	1.7	38
1261	Expression of p16 in nodular fasciitis: an implication for self-limited and inflammatory nature of the lesion. International Journal of Clinical and Experimental Pathology, 2019, 12, 1029-1034.	0.5	2

# 1262	ARTICLE Impact of Ovarian Aging in Reproduction: From Telomeres and Mice Models to Ovarian Rejuvenation. Yale Journal of Biology and Medicine, 2020, 93, 561-569.	IF 0.2	CITATIONS
1263	β-elemene promotes the senescence of glioma cells through regulating YAP-CDK6 signaling. American Journal of Cancer Research, 2021, 11, 370-388.	1.4	3
1265	Cellular senescence in neurodegenerative diseases. , 2022, , 363-381.		1
1266	Lung aging and senescence in health and disease. , 2022, , 61-80.		1
1267	Liver diseases fibrosis and cirrhosis. , 2022, , 107-153.		0
1268	Cellular senescence. , 2022, , 3-26.		0
1269	Cellular senescence and its impact on the circadian clock. Journal of Biochemistry, 2022, 171, 493-500.	0.9	10
1270	N6-Methyladenosine Methylation of mRNA in Cell Senescence. Cellular and Molecular Neurobiology, 2023, 43, 27-36.	1.7	5
1271	Linking In Vitro Models of Endothelial Dysfunction with Cell Senescence. Life, 2021, 11, 1323.	1.1	5
1272	Skin Aging, Cellular Senescence and Natural Polyphenols. International Journal of Molecular Sciences, 2021, 22, 12641.	1.8	79
1273	The right time for senescence. ELife, 2021, 10, .	2.8	56
1274	Genetic and Epigenetic Influences on Cutaneous Cellular Senescence. Physiology, 0, , .	4.0	0
1275	Heterogeneity analysis of the immune microenvironment in laryngeal carcinoma revealed potential prognostic biomarkers. Human Molecular Genetics, 2022, 31, 1487-1499.	1.4	5
1276	Cellular Senescence: Mechanisms and Therapeutic Potential. Biomedicines, 2021, 9, 1769.	1.4	13
1277	Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease. Cells, 2021, 10, 3367.	1.8	42
1278	Inhibition of ERK5 Elicits Cellular Senescence in Melanoma via the Cyclin-Dependent Kinase Inhibitor p21. Cancer Research, 2022, 82, 447-457.	0.4	16
1279	Cellular senescence links mitochondria-ER contacts and aging. Communications Biology, 2021, 4, 1323.	2.0	24
1281	PBX1 Attenuates Hair Follicle-Derived Mesenchymal Stem Cell Senescence and Apoptosis by Alleviating Reactive Oxygen Species-Mediated DNA Damage Instead of Enhancing DNA Damage Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 739868.	1.8	11

#	Article	IF	CITATIONS
1282	Ageâ€related cellular and microstructural changes in the rotator cuff enthesis. Journal of Orthopaedic Research, 2022, 40, 1883-1895.	1.2	11
1283	Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants, 2021, 10, 1799.	2.2	14
1284	Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metabolism, 2022, 34, 75-89.e8.	7.2	68
1285	Noninvasive NIR Imaging of Senescence <i>via In Situ</i> Labeling. Journal of Medicinal Chemistry, 2021, 64, 17969-17978.	2.9	28
1286	Comparable Number of Genes Having Experienced Positive Selection among Great Ape Species. Animals, 2021, 11, 3264.	1.0	0
1287	LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Reports, 2021, 37, 110038.	2.9	31
1288	Gene regulatory network analysis defines transcriptome landscape with alternative splicing of human umbilical vein endothelial cells during replicative senescence. BMC Genomics, 2021, 22, 869.	1.2	4
1289	A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Molecular Cell, 2021, 81, 4907-4923.e8.	4.5	28
1290	Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Scientific Reports, 2021, 11, 23237.	1.6	32
1291	The chromosomeâ€level genome provides insight into the molecular mechanism underlying the tortuousâ€branch phenotype of <i>Prunus mume</i> . New Phytologist, 2022, 235, 141-156.	3.5	15
1292	Cell Senescence. , 2021, , 849-864.		0
1293	Mutation Load and Aging. , 2021, , 3365-3370.		0
1294	Cell Damage and Transformation in Aging. , 2021, , 841-843.		0
1295	The hyperfunction theory: An emerging paradigm for the biology of aging. Ageing Research Reviews, 2022, 74, 101557.	5.0	49
1296	Sex, ancestry, senescence, and aging (SAnSA) are stark drivers of nontuberculous mycobacterial pulmonary disease. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2022, 26, 100297.	0.6	3
1297	Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mechanisms of Ageing and Development, 2022, 202, 111618.	2.2	16
1298	Potassium and Chloride Ion Channels in Cancer: A Novel Paradigm for Cancer Therapeutics. Reviews of Physiology, Biochemistry and Pharmacology, 2021, , 135-155.	0.9	4
1299	Senescence. , 2021, , 1391-1402.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1300	Obesity, Senescence, and Senolytics. Handbook of Experimental Pharmacology, 2021,	, 165-180.	0.9	10
1301	Tumor spheroids and organoids as preclinical model systems. Medizinische Genetik, 20	021, 33, 229-234.	0.1	0
1302	DNA-PK Inhibitor Peposertib Amplifies Radiation-Induced Inflammatory Micronucleatio TGFβ/PD-L1 Targeted Cancer Immunotherapy. Molecular Cancer Research, 2022, 20, 5	n and Enhances 568-582.	1.5	13
1303	Cytofluorometric assessment of cell cycle progression in irradiated cells. Methods in C 2022, , 1-16.	ell Biology,	0.5	2
1304	Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. I Journal of Molecular Sciences, 2022, 23, 963.	nternational	1.8	29
1305	Breaking barriers: Neurodegenerative repercussions of radiotherapy induced damage c blood-brain and blood-tumor barrier. Free Radical Biology and Medicine, 2022, 178, 18	on the 9-201.	1.3	15
1306	Unfolded protein response alleviates acidâ€induced premature senescence by promot nucleus pulposus cells. Cell Biology International, 2022, 46, 568-578.	ing autophagy in	1.4	5
1307	Nrg1/ErbB signalingâ€mediated regulation of fibrosis after myocardial infarction. FASE 36, e22150.	B Journal, 2022,	0.2	17
1308	Editorial: Apoptosis and Senescence in Vertebrate Development. Frontiers in Cell and I Biology, 2021, 9, 834517.	Developmental	1.8	2
1309	Molecular Mechanisms of Kidney Injury and Repair. International Journal of Molecular S 23, 1542.	sciences, 2022,	1.8	29
1310	Novel Antioxidant Peptides from Crassostrea Hongkongensis Improve Photo-Oxidatior HaCaT Cells. Marine Drugs, 2022, 20, 100.	ו in UV-Induced	2.2	8
1311	Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney. Antioxidant	cs, 2022, 11, 301.	2.2	21
1312	The effect of lactoferrin in aging: role and potential. Food and Function, 2022, 13, 501	-513.	2.1	8
1313	Cellular Senescence in Sarcopenia: Possible Mechanisms and Therapeutic Potential. Fro and Developmental Biology, 2021, 9, 793088.	ontiers in Cell	1.8	19
1314	The Potential Role of Cellular Senescence in Non-Alcoholic Fatty Liver Disease. Internat of Molecular Sciences, 2022, 23, 652.	ional Journal	1.8	27
1315	Regulation of Developmental Cell Death in the Animal Kingdom: A Critical Analysis of E versus Genetic Factors. International Journal of Molecular Sciences, 2022, 23, 1154.	pigenetic	1.8	1
1316	Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk betwee Senescence and Neuroprotection. Molecules, 2022, 27, 738.	en Cell	1.7	25
1317	Femtosecond-laser stimulation induces senescence of tumor cells in vitro and in vivo. I Optics Express, 2022, 13, 791.	Biomedical	1.5	5

ARTICLE IF CITATIONS Atrial Fibrillation Underlies Cardiomyocyte Senescence and Contributes to Deleterious Atrial 1318 7 Remodeling during Disease Progression., 2022, 13, 298. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet?., 2022, 13, 175. p53 SUMOylation Mediates AOPP-Induced Endothelial Senescence and Apoptosis Evasion. Frontiers in 1320 1.1 8 Cardiovascular Medicine, 2021, 8, 795747. Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 876-877, 503448. 0.9 Alzheimer's Disease: From Pathogenesis to Mesenchymal Stem Cell Therapy â€" Bridging the Missing Link. 1322 1.8 11 Frontiers in Cellular Neuroscience, 2021, 15, 811852. How green investment drives sustainable business performance for food manufacturing small―and mediumâ€sized enterprises? Evidence from an emerging economy. Corporate Social Responsibility and 5.0 Environmental Management, 2022, 29, 1034-1049. MicroRNA-Mediated Downregulation of HMGB2 Contributes to Cellular Senescence in Microvascular 1324 1.8 7 Endothelial Cells. Cells, 2022, 11, 584. Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Seminars in 4.3 Cancer Biology, 2022, 86, 827-845. Generation of mice for evaluating endogenous p16Ink4a protein expression. Biochemical and 1326 1.0 3 Biophysical Research Communications, 2022, 599, 43-50. The Role of Decidual Subpopulations in Implantation, Menstruation and Miscarriage. Frontiers in Reproductive Health, 2021, 3, . Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging 1328 1.8 28 Therapeutic Target. International Journal of Molecular Sciences, 2022, 23, 77. A geroscience approach for osteosarcopenia: Autophagy and senescence as therapeutic targets. , 2022, 51-75. 1331 The relevance of organelle interactions in cellular senescence. Theranostics, 2022, 12, 2445-2464. 4.6 15 Cellular senescence and other aging mechanisms in bone and muscle., 2022, , 19-37. Deciphering the endometrial niche of human thin endometrium at single-cell resolution. Proceedings 1333 3.3 47 of the National Academy of Sciences of the United States of America, 2022, 119, . Altered p16Ink4a, IL-1Î², and Lamin b1 Protein Expression Suggest Cellular Senescence in Deep 1334 1.8 Endometriotic Lesions. International Journal of Molecular Sciences, 2022, 23, 2476. Pericentromeric repetitive ncRNA regulates chromatin interaction and inflammatory gene expression. 1335 0.6 1 Nucleus, 2022, 13, 74-78. Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Frontiers in Aging Neuroscience, 2022, 14, 824921.
#	Article	IF	CITATIONS
1337	Engineering Antibodies Targeting p16 MHC-Peptide Complexes. ACS Chemical Biology, 2022, 17, 545-555.	1.6	3
1338	Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells, 2022, 11, 675.	1.8	6
1339	Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 811518.	1.1	16
1340	Cellular senescence in neuroblastoma. British Journal of Cancer, 2022, 126, 1529-1538.	2.9	5
1341	Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis. Cells, 2022, 11, 877.	1.8	13
1342	Genotoxic stress signalling as a driver of macrophage diversity. Cell Stress, 2022, 6, 30-44.	1.4	5
1343	Metabolic Regulation: A Potential Strategy for Rescuing Stem Cell Senescence. Stem Cell Reviews and Reports, 2022, 18, 1728-1742.	1.7	7
1344	Cellular Senescence and Ageing: Mechanisms and Interventions. Frontiers in Aging, 2022, 3, .	1.2	34
1345	A Human Conditionally Immortalized Proximal Tubule Epithelial Cell Line as a Novel Model for Studying Senescence and Response to Senolytics. Frontiers in Pharmacology, 2022, 13, 791612.	1.6	8
1346	Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 823945.	2.0	17
1347	Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. Journal of Nanomaterials, 2022, 2022, 1-19.	1.5	38
1348	Exploiting senescence for the treatment of cancer. Nature Reviews Cancer, 2022, 22, 340-355.	12.8	254
1349	Editorial: The Role of Cellular Senescence in Health and Disease. Frontiers in Cellular Neuroscience, 2022, 16, 882417.	1.8	1
1350	Radiotherapy orchestrates natural killer cell dependent antitumor immune responses through CXCL8. Science Advances, 2022, 8, eabh4050.	4.7	55
1351	Dynamic regulation of myofibroblast phenotype in cellular senescence. Aging Cell, 2022, 21, e13580.	3.0	17
1352	Osteoarthritis: Mechanistic Insights, Senescence, and Novel Therapeutic Opportunities. Bioelectricity, 2022, 4, 39-47.	0.6	1
1353	Cytokine-Induced Senescence in the Tumor Microenvironment and Its Effects on Anti-Tumor Immune Responses. Cancers, 2022, 14, 1364.	1.7	13
1354	Senotherapeutics in Cancer and HIV. Cells, 2022, 11, 1222.	1.8	7

#	Article	IF	CITATIONS
1355	An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Advanced Drug Delivery Reviews, 2022, 183, 114175.	6.6	9
1356	Cell Senescence and Central Regulators of Immune Response. International Journal of Molecular Sciences, 2022, 23, 4109.	1.8	8
1357	Mitochondrially targeted tamoxifen alleviates markers of obesity and type 2 diabetes mellitus in mice. Nature Communications, 2022, 13, 1866.	5.8	8
1358	Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Communications Biology, 2022, 5, 310.	2.0	14
1359	Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochemical Pharmacology, 2022, 199, 114989.	2.0	9
1360	Influence of alectinib and crizotinib on ionizing radiation - in vitro analysis of ALK/ROS1-wildtype lung tissue cells. Neoplasia, 2022, 27, 100780.	2.3	2
1361	Contribution of Interleukinâ€4–Induced Epithelial Cell Senescence to Glandular Fibrosis in <scp>IgG4â€Related</scp> Sialadenitis. Arthritis and Rheumatology, 2022, 74, 1070-1082.	2.9	7
1362	p‑Coumaric acid suppresses reactive oxygen species‑induced senescence in nucleus pulposus cells. Experimental and Therapeutic Medicine, 2021, 23, 183.	0.8	10
1363	Ionizing Radiation-Induced Brain Cell Aging and the Potential Underlying Molecular Mechanisms. Cells, 2021, 10, 3570.	1.8	17
1365	Stressor-Induced "Inflammaging―of Vascular Smooth Muscle Cells via NIrp3-Mediated Pro-inflammatory Auto-Loop. Frontiers in Cardiovascular Medicine, 2021, 8, 752305.	1.1	9
1366	Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. International Journal of Molecular Sciences, 2022, 23, 254.	1.8	33
1367	Mechanisms and Regulation of Cellular Senescence. International Journal of Molecular Sciences, 2021, 22, 13173.	1.8	116
1368	Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina (Lithuania), 2022, 58, 61.	0.8	7
1370	Loss of laminâ€B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell, 2022, 21, e13521.	3.0	53
1371	IMMUNE AGING AND SERIOUS CLINICAL IMPLICATIONS IN THE ELDERLY IN COVID-19. Recisatec, 2021, 1, e1553.	0.0	0
1372	Senescent tumor cells: an overlooked adversary in the battle against cancer. Experimental and Molecular Medicine, 2021, 53, 1834-1841.	3.2	35
1373	nc886, a Non-Coding RNA, Is a New Biomarker and Epigenetic Mediator of Cellular Senescence in Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 13673.	1.8	6
1374	Adult Neural Stem Cell Migration Is Impaired in a Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2022, 59, 1168-1182	1.9	9

#	Article	IF	CITATIONS
1375	Senescence Alterations in Pulmonary Hypertension. Cells, 2021, 10, 3456.	1.8	11
1376	Human MSC-Derived Exosomes Reduce Cellular Senescence in Renal Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 13562.	1.8	21
1377	Aging, Senescence, and Dementia. journal of prevention of Alzheimer's disease, The, 0, , 1.	1.5	6
1378	Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. International Journal of Molecular Sciences, 2022, 23, 4168.	1.8	36
1379	Short-term senolytic treatment: a paradigm to promote fracture repair during aging. Journal of Clinical Investigation, 2022, 132, .	3.9	5
1380	Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence. Ageing Research Reviews, 2022, 78, 101634.	5.0	20
1381	The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. International Journal of Molecular Sciences, 2022, 23, 4387.	1.8	7
1382	Growth Hormone Stimulates Murine Macrophage Migration during Aging. Current Aging Science, 2022, 15, 266-273.	0.4	2
1383	Lung toxicity of particulates and gaseous pollutants using ex-vivo airway epithelial cell culture systems. Environmental Pollution, 2022, 305, 119323.	3.7	9
1384	Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer. Nature Communications, 2022, 13, 2177.	5.8	35
1385	Life and death of microglia: Mechanisms governing microglial states and fates. Immunology Letters, 2022, 245, 51-60.	1.1	14
1409	Feedback amplification of senolysis using caspase-3-cleavable peptide-doxorubicin conjugate and 2DG. Journal of Controlled Release, 2022, 346, 158-168.	4.8	4
1410	Dysregulated RNA processing and metabolism: a new hallmark of ageing and provocation for cellular senescence. FEBS Journal, 2023, 290, 1221-1234.	2.2	15
1411	Fibroblast Senescence and Apoptosis. "One-Two Punch―to Slow Down Lung Fibrosis?. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 145-146.	1.4	6
1413	The mTOR inhibitor Rapamycin protects from premature cellular senescence early after experimental kidney transplantation. PLoS ONE, 2022, 17, e0266319.	1.1	6
1414	CB2R Attenuates Intervertebral Disc Degeneration by Delaying Nucleus Pulposus Cell Senescence through AMPK/GSK3β Pathway. , 2022, 13, 552.		25
1415	Editorial: Cellular Senescence: Causes, Consequences and Therapeutic Opportunities. Frontiers in Cell and Developmental Biology, 2022, 10, 884910.	1.8	0
1418	Aging entails distinct requirements for Rb at maintaining adult neurogenesis. Aging Brain, 2022, 2, 100041.	0.7	1

#	ARTICLE	IF	Citations
1419	Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. Journal of Personalized Medicine, 2022, 12, 716.	1.1	8
1420	IFN-Î ³ and TNF Induce Senescence and a Distinct Senescence-Associated Secretory Phenotype in Melanoma. Cells, 2022, 11, 1514.	1.8	14
1421	Resolvin E1 attenuates doxorubicin-induced endothelial senescence by modulating NLRP3 inflammasome activation. Biochemical Pharmacology, 2022, 201, 115078.	2.0	6
1422	Lipofuscin labeling through biorthogonal strainâ€promoted azideâ€elkyne cycloaddition for the detection of senescent cells. FEBS Journal, 2023, 290, 1314-1325.	2.2	3
1423	Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. European Journal of Pharmacology, 2022, 928, 174991.	1.7	7
1424	Radiobiological effects of wound fluid on breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic culture. Scientific Reports, 2022, 12, 7668.	1.6	3
1425	The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Developmental Cell, 2022, 57, 1083-1101.	3.1	19
1426	The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal–fetal homeostasis. Reproduction, 2022, 164, R11-R45.	1.1	37
1427	Senescence-mediated anticancer effects of quercetin. Nutrition Research, 2022, 104, 82-90.	1.3	13
1429	Non-canonical genomic driver mutations of urethane carcinogenesis. PLoS ONE, 2022, 17, e0267147.	1.1	0
1430	Cellular senescence due to physical inactivity: A review. , 2019, 8, 1.		0
1431	miRâ€181b regulates vascular endothelial aging by modulating an MAP3K3 signaling pathway. FASEB Journal, 2022, 36, e22353.	0.2	5
1432	The senescence-associated secretory phenotype in ovarian cancer dissemination. American Journal of Physiology - Cell Physiology, 2022, 323, C125-C132.	2.1	2
1433	Cells, cytokines, and factors involved in profibrogenic pathways. , 2022, , 55-83.		0
1434	Albumin induced premature senescence in human renal proximal tubular cells and its relationship with intercellular fibrosis. Acta Biochimica Et Biophysica Sinica, 2022, , .	0.9	5
1436	Antioxidants Attenuate Heat Shock Induced Premature Senescence of Bovine Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2022, 23, 5750.	1.8	7
1437	Kill two birds with one stone: A near-infrared ratiometric fluorescent probe for simultaneous detection of β-galactosidase in senescent and cancer cells. Sensors and Actuators B: Chemical, 2022, 367, 132061.	4.0	15
1438	S-adenosylhomocysteine induces cellular senescence in rat aorta vascular smooth muscle cells via NF-κB-SASP pathway. Journal of Nutritional Biochemistry, 2022, 107, 109063.	1.9	5

#	Article	IF	CITATIONS
1439	p16INK4A dependent senescence in the bone marrow niche drives age-related metabolic changes of hematopoietic progenitors. Blood Advances, 0, , .	2.5	4
1440	Age-Related Changes in the Fibroblastic Differon of the Dermis: Role in Skin Aging. International Journal of Molecular Sciences, 2022, 23, 6135.	1.8	13
1442	Histone H2A ubiquitination resulting from Brap loss of function connects multiple aging hallmarks and accelerates neurodegeneration. IScience, 2022, 25, 104519.	1.9	3
1444	Cellular Senescence in Normal Mammary Gland and Breast Cancer. Implications for Cancer Therapy. Genes, 2022, 13, 994.	1.0	7
1446	Cytofluorometric assessment of acute cell death responses driven by radiation therapy. Methods in Cell Biology, 2022, , .	0.5	0
1448	Biological aging mediates the associations between urinary metals and osteoarthritis among U.S. adults. BMC Medicine, 2022, 20, .	2.3	37
1449	Human primary skeletal muscleâ€derived myoblasts and fibroblasts reveal different senescent phenotypes. JCSM Rapid Communications, 2022, 5, 226-238.	0.6	4
1450	Aryl hydrocarbon receptor: From pathogenesis to therapeutic targets in aging-related tissue fibrosis. Ageing Research Reviews, 2022, 79, 101662.	5.0	11
1451	Role of Nrf2 and HO-1 in intervertebral disc degeneration. Connective Tissue Research, 2022, 63, 559-576.	1.1	6
1452	Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. Medicina (Lithuania), 2022, 58, 817.	0.8	8
1453	Doxorubicin-induced senescence in normal fibroblasts promotes in vitro tumour cell growth and invasiveness: The role of Quercetin in modulating these processes. Mechanisms of Ageing and Development, 2022, 206, 111689.	2.2	12
1454	Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight, 2022, 7, .	2.3	16
1455	Aberrant induction of p19Arf-mediated cellular senescence contributes to neurodevelopmental defects. PLoS Biology, 2022, 20, e3001664.	2.6	7
1457	Dietary strategies with anti-aging potential: Dietary patterns and supplements. Food Research International, 2022, 158, 111501.	2.9	15
1458	Endothelial cells give a boost to senescence surveillance. Genes and Development, 2022, 36, 511-513.	2.7	1
1459	Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment. Frontiers in Immunology, 0, 13, .	2.2	7
1461	Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. Biology, 2022, 11, 996.	1.3	3
1462	WNT signaling and cancer stemness. Essays in Biochemistry, 2022, 66, 319-331.	2.1	28

#	Article	IF	CITATIONS
1463	Autophagy at the intersection of aging, senescence, and cancer. Molecular Oncology, 2022, 16, 3259-3275.	2.1	23
1465	Hepatocyte growth factor derived from senescent cells attenuates cell competition-induced apical elimination of oncogenic cells. Nature Communications, 2022, 13, .	5.8	12
1466	Pharmacological senolysis reduces doxorubicin-induced cardiotoxicity and improves cardiac function in mice. Pharmacological Research, 2022, 183, 106356.	3.1	26
1467	A Four-Cell-Senescence-Regulator-Gene Prognostic Index Verified by Genome-Wide CRISPR Can Depict the Tumor Microenvironment and Guide Clinical Treatment of Bladder Cancer. Frontiers in Immunology, 0, 13, .	2.2	6
1468	Contextâ€dependent roles of cellular senescence in normal, aged, and disease states. FEBS Journal, 2023, 290, 1161-1185.	2.2	6
1469	Emerging Role of Non-Coding RNAs in Senescence. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
1470	Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. European Respiratory Journal, 2022, 60, 2102307.	3.1	23
1471	SARS-CoV-2-induced senescence as a potential therapeutic target. European Respiratory Journal, 2022, 60, 2201101.	3.1	2
1472	Colorectal Cancer Chemotherapy Drug Bevacizumab May Induce Muscle Atrophy Through CDKN1A and TIMP4. Frontiers in Oncology, 0, 12, .	1.3	1
1474	High glucose and palmitic acid induces neuronal senescence by NRSF/REST elevation and the subsequent mTOR-related autophagy suppression. Molecular Brain, 2022, 15, .	1.3	7
1475	Intersection of Inflammation and Senescence in the Aging Lung Stem Cell Niche. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
1476	Amphiregulin mediates non-cell-autonomous effect of senescence on reprogramming. Cell Reports, 2022, 40, 111074.	2.9	9
1477	Nicotinamide Mononucleotide Ameliorates Cellular Senescence and Inflammation Caused by Sodium Iodate in RPE. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-23.	1.9	8
1478	Cyclin-dependent kinase inhibition and its intersection with immunotherapy in breast cancer: more than CDK4/6 inhibition. Expert Opinion on Investigational Drugs, 2022, 31, 933-944.	1.9	0
1479	The BR2 peptide associated with 2-aminoethyl dihydrogen phosphate is a formulation with antiproliferative potential for a triple-negative breast cancer model. Biomedicine and Pharmacotherapy, 2022, 153, 113398.	2.5	4
1480	Involvement of astrocyte senescence in Alzheimer's disease. Current Opinion in Neurobiology, 2022, 76, 102594.	2.0	3
1481	Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mechanisms of Ageing and Development, 2022, 206, 111711.	2.2	14
1482	Biliverdin Reductase A Protects Lens Epithelial Cells against Oxidative Damage and Cellular Senescence in Age-Related Cataract. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-18.	1.9	12

#	Article	IF	CITATIONS
1483	Quercetin Alleviates Pulmonary Fibrosis in Mice Exposed to Silica by Inhibiting Macrophage Senescence. Frontiers in Pharmacology, 0, 13, .	1.6	12
1484	Black Ginseng Ameliorates Cellular Senescence via p53-p21/p16 Pathway in Aged Mice. Biology, 2022, 11, 1108.	1.3	4
1485	Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Research and Therapy, 2022, 24, .	1.6	40
1487	Senolytics in the treatment of diabetic retinopathy. Frontiers in Pharmacology, 0, 13, .	1.6	9
1488	Gonadal sex patterns p21-induced cellular senescence in mouse and human glioblastoma. Communications Biology, 2022, 5, .	2.0	9
1489	Immunosenescence in atherosclerosis: A role for chronic viral infections. Frontiers in Immunology, 0, 13, .	2.2	14
1490	Interactive Effects of Copper and Functional Substances in Wine on Alcoholic Hepatic Injury in Mice. Foods, 2022, 11, 2383.	1.9	1
1491	The role of extracellular vesicles in cellular senescence. FEBS Journal, 2023, 290, 1203-1211.	2.2	8
1492	Cellular senescence and senolytics: the path to the clinic. Nature Medicine, 2022, 28, 1556-1568.	15.2	257
1493	Unraveling the effect of intra- and intercellular processes on acetaminophen-induced liver injury. Npj Systems Biology and Applications, 2022, 8, .	1.4	6
1494	Nuclear morphology is a deep learning biomarker of cellular senescence. Nature Aging, 2022, 2, 742-755.	5.3	41
1495	Diagnostic and Therapeutic Roles of Extracellular Vesicles in Aging-Related Diseases. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	8
1496	From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Experimental Cell Research, 2022, 420, 113275.	1.2	7
1497	Simple Detection of Unstained Live Senescent Cells with Imaging Flow Cytometry. Cells, 2022, 11, 2506.	1.8	5
1499	Long term high glucose exposure induces premature senescence in retinal endothelial cells. Frontiers in Physiology, 0, 13, .	1.3	20
1500	Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. , 2022, 1, 103-119.		41
1501	Senescence of alveolar epithelial cells impacts initiation and chronic phases of murine fibrosing interstitial lung disease. Frontiers in Immunology, 0, 13, .	2.2	13
1502	Skin-Aging Pigmentation: Who Is the Real Enemy?. Cells, 2022, 11, 2541.	1.8	20

#	Article	IF	CITATIONS
1503	Ezh2 Inhibits Replicative Senescence of Atrial Fibroblasts Through Promotion of H3K27me3 in the Promoter Regions of CDKN2a and Timp4 Genes. Journal of Inflammation Research, 0, Volume 15, 4693-4708.	1.6	7
1504	Senescent cells: A therapeutic target for osteoporosis. Cell Proliferation, 2022, 55, .	2.4	8
1505	Exogenous Klotho ameliorates extracellular matrix degradation and angiogenesis in intervertebral disc degeneration via inhibition of the Rac1/PAK1/MMP-2 signaling axis. Mechanisms of Ageing and Development, 2022, 207, 111715.	2.2	6
1506	The non-modifiable factors age, gender, and genetics influence resistance exercise. Frontiers in Aging, 0, 3, .	1.2	6
1507	Inorganic arsenic exposure-induced premature senescence and senescence-associated secretory phenotype (SASP) in human hepatic stellate cells. Toxicology and Applied Pharmacology, 2022, 454, 116231.	1.3	5
1508	Targeted delivery strategy: A beneficial partner for emerging senotherapy. Biomedicine and Pharmacotherapy, 2022, 155, 113737.	2.5	3
1509	Targeting cellular senescence in metabolic disease. Molecular Metabolism, 2022, 66, 101601.	3.0	17
1510	Cellular senescence during aging. , 2023, , 311-332.		0
1511	Stem cells, fitness, and aging. , 2023, , 385-405.		0
1512	Comparative study on the impact on mouse livers of different amounts of Chinese Baijiu, beer, and wine consumption. Food Science and Technology, 0, 42, .	0.8	1
1513	Telomeres and telomerase. , 2024, , 947-960.		0
1514	The Potential Role of Cytokines in Diabetic Intervertebral Disc Degeneration. , 2022, 13, 1323.		8
1515	DNA methylation changes and inflammaging in aging-associated diseases. Epigenomics, 2022, 14, 965-986.	1.0	6
1516	The landscape of aging. Science China Life Sciences, 2022, 65, 2354-2454.	2.3	110
1517	Cellular Senescence and Periodontitis: Mechanisms and Therapeutics. Biology, 2022, 11, 1419.	1.3	4
1518	Cellular senescence and cardiovascular diseases: moving to the "heart―of the problem. Physiological Reviews, 2023, 103, 609-647.	13.1	26
1519	The intersection between toxicology and aging research: A toxic aging coin perspective. Frontiers in Aging, 0, 3, .	1.2	1
1520	Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	30

#		IF	CITATIONS
#			CHAHONS
1521	ls a€œcellular senescencea€•a misnomer?. GeroScience, 2022, 44, 2461-2469.	2.1	12
1522	Potential Role of Polyphenolic Flavonoids as Senotherapeutic Agents in Degenerative Diseases and Geroprotection. Pharmaceutical Medicine, 2022, 36, 331-352.	1.0	9
1523	La epigenética como protagonista en la senescencia celular. Revista Universitas Medica, 2022, 63, .	0.0	0
1524	3-Deazaadenosine alleviates senescence to promote cellular fitness and cell therapy efficiency in mice. Nature Aging, 2022, 2, 851-866.	5.3	3
1525	Transcriptional regulation of <i>CDKN2A/p16</i> by sirtuin 7 in senescence. Molecular Medicine Reports, 2022, 26, .	1.1	3
1526	Targeting senescence as an anticancer therapy. Molecular Oncology, 2022, 16, 3855-3880.	2.1	19
1528	The Immune System as a Therapeutic Target for Alzheimer's Disease. Life, 2022, 12, 1440.	1.1	6
1529	Emerging role of microtubule-associated proteins on cancer metastasis. Frontiers in Pharmacology, 0, 13, .	1.6	14
1530	The common <i>IL1A</i> single nucleotide polymorphism rs17561 is a hypomorphic mutation that significantly reduces interleukinâ€1α release from human blood cells. Immunology, 2023, 168, 459-472.	2.0	1
1531	Delayed effects of radiation in adipose tissue reflect progenitor damage and not cellular senescence. GeroScience, 0, , .	2.1	2
1532	Factors and Pathways Modulating Endothelial Cell Senescence in Vascular Aging. International Journal of Molecular Sciences, 2022, 23, 10135.	1.8	20
1533	Telomeres as dynamic structures of human genome: the effect of endogenous and exogenous factors. Ecological Genetics, 2022, 20, 111-140.	0.1	2
1534	Nutritional Niches of Cancer Therapy-Induced Senescent Cells. Nutrients, 2022, 14, 3636.	1.7	7
1535	Role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity: A systematic review. IScience, 2022, 25, 105283.	1.9	5
1536	Critical role of IncEPAT in coupling dysregulated EGFR pathway and histone H2A deubiquitination during glioblastoma tumorigenesis. Science Advances, 2022, 8, .	4.7	7
1537	Nanozymeâ€Enabled Treatment of Cardio―and Cerebrovascular Diseases. Small, 2023, 19, .	5.2	28
1538	Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Archives of Biochemistry and Biophysics, 2022, 730, 109416.	1.4	6
1539	Snapshot imprinting as a tool for surface mapping and identification of novel biomarkers of senescent cells. Nanoscale Advances, 2022, 4, 5304-5311.	2.2	1

#	Article	IF	CITATIONS
1540	Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity. Cancer Discovery, 2023, 13, 432-453.	7.7	46
1541	Senotherapeutics and Their Molecular Mechanism for Improving Aging. Biomolecules and Therapeutics, 2022, 30, 490-500.	1.1	8
1542	Targeting Immune Senescence in Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 13059.	1.8	13
1543	Dedifferentiation and <i>inÂvivo</i> reprogramming of committed cells in wound repair (Review). Molecular Medicine Reports, 2022, 26, .	1.1	2
1544	Colocalization of senescent biomarkers in deep, superficial, and ovarian endometriotic lesions: a pilot study. Scientific Reports, 2022, 12, .	1.6	2
1545	Is microglial dystrophy a form of cellular senescence? An analysis of senescence markers in the aged human brain. Glia, 2023, 71, 377-390.	2.5	14
1546	A BDNF-TrkB autocrine loop enhances senescent cell viability. Nature Communications, 2022, 13, .	5.8	11
1547	Cellular senescence in ischemia/reperfusion injury. Cell Death Discovery, 2022, 8, .	2.0	3
1548	An enzyme-activatable dual-readout probe for sensitive β-galactosidase sensing and Escherichia coli analysis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
1549	Ageing decreases the healing of wounds in the skin of alcohol-preferring rats. Journal of Wound Care, 2022, 31, 872-881.	0.5	0
1550	Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly. Biomolecules, 2022, 12, 1456.	1.8	14
1551	Osteocytes regulate senescence of bone and bone marrow. ELife, 0, 11, .	2.8	21
1552	Yiqi Huayu decoction alleviates bleomycin-induced pulmonary fibrosis in rats by inhibiting senescence. Frontiers in Pharmacology, 0, 13, .	1.6	5
1553	Therapeutic Antiaging Strategies. Biomedicines, 2022, 10, 2515.	1.4	11
1554	Therapy-Induced Senescence Enhances the Efficacy of HER2-Targeted Antibody–Drug Conjugates in Breast Cancer. Cancer Research, 2022, 82, 4670-4679.	0.4	5
1556	Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation. Cell Death and Disease, 2022, 13, .	2.7	17
1558	A study of the molecular mechanism of quercetin and dasatinib combination as senolytic in alleviating ageâ€related and kidney diseases. Journal of Food Biochemistry, 2022, 46, .	1.2	4
1559	ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-23.	1.9	29

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
1560	Induction and Characterization of Cellular Senescence in Salamanders. Methods in Molecular Biology, 2023, , 135-154.	0.4	1
1561	Association between atherogenic risk-modulating proteins and endothelium-dependent flow-mediated dilation in coronary artery disease patients. European Journal of Applied Physiology, 2023, 123, 367-380.	1.2	2
1562	Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discovery, 2023, 13, 410-431.	7.7	70
1563	Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature, 2022, 611, 358-364.	13.7	102
1564	Age-related mechanisms in the context of rheumatic disease. Nature Reviews Rheumatology, 2022, 18, 694-710.	3.5	10
1565	Orchestration of mesenchymal plasticity and immune evasiveness via rewiring of the metabolic program in pancreatic ductal adenocarcinoma. Frontiers in Oncology, 0, 12, .	1.3	1
1566	Inside the β Cell: Molecular Stress Response Pathways in Diabetes Pathogenesis. Endocrinology, 2022, 164, .	1.4	15
1567	What programs the size of animal cells?. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
1568	Canonical and novel strategies to delay or reverse aging. , 2023, , 225-239.		0
1569	Senescence in aging. , 2023, , 149-195.		0
1570	Senescent AECâ; and the implication for idiopathic pulmonary fibrosis treatment. Frontiers in Pharmacology, 0, 13, .	1.6	4
1571	Inhibition of cellular senescence hallmarks by mitochondrial transplantation in senescence-induced ARPE-19 cells. Neurobiology of Aging, 2023, 121, 157-165.	1.5	5
1572	Associations between exercise capacity, p16INK4a expression and inflammation among adult survivors of childhood cancer. Frontiers in Oncology, 0, 12, .	1.3	4
1573	Targeting of non-apoptotic cancer cell death mechanisms by quercetin: Implications in cancer therapy. Frontiers in Pharmacology, 0, 13, .	1.6	6
1574	The Role of WRAP53 in Cell Homeostasis and Carcinogenesis Onset. Current Issues in Molecular Biology, 2022, 44, 5498-5515.	1.0	2
1575	The role of ageing and oxidative stress in intervertebral disc degeneration. Frontiers in Molecular Biosciences, 0, 9, .	1.6	12
1576	Oxidative Stress-Induced Cellular Senescence in Aging Retina and Age-Related Macular Degeneration. Antioxidants, 2022, 11, 2189.	2.2	10

1577	Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
------	---	-----	---

		CITATION REPORT		
#	Article		IF	CITATIONS
1578	Anthracycline-induced cardiotoxicity and senescence. Frontiers in Aging, 0, 3, .		1.2	3
1579	Novel cellular senescence-related risk model identified as the prognostic biomarkers fo squamous cell carcinoma. Frontiers in Oncology, 0, 12, .	r lung	1.3	2
1580	A potential role of autophagy-mediated vascular senescence in the pathophysiology of Frontiers in Endocrinology, 0, 13, .	HFpEF.	1.5	4
1581	Associations between biomarkers of cellular senescence and physical function in huma observations from the lifestyle interventions for elders (LIFE) study. GeroScience, 2022	ns: , 44, 2757-2770.	2.1	17
1582	A Glb1-2A-mCherry reporter monitors systemic aging and predicts lifespan in middle-ag Communications, 2022, 13, .	ged mice. Nature	5.8	6
1583	The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatme hepatocellular carcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	ent of	1.8	4
1584	Senescent cells and SASP in cancer microenvironment: New approaches in cancer ther Protein Chemistry and Structural Biology, 2023, , 115-158.	apy. Advances in	1.0	4
1585	The role of NAD+ metabolism in macrophages in age-related macular degeneration. Me Ageing and Development, 2023, 209, 111755.	chanisms of	2.2	2
1586	Engineering nanoparticle communication in living systems by stigmergy: An application antitumor therapy in triple-negative breast cancer. Nano Today, 2023, 48, 101692.	ו to enhance	6.2	9
1587	Combined use of dasatinib and quercetin alleviates overtraining-induced deficits in lear memory through eliminating senescent cells and reducing apoptotic cells in rat hippoc Behavioural Brain Research, 2023, 440, 114260.	ning and ampus.	1.2	3
1588	Cellular senescence marker p16INK4a and NFKB1 gene polymorphisms in lower gastrograft versus host disease. Transplant Immunology, 2023, 76, 101768.	intestinal acute	0.6	0
1589	TNFα/TNFR1 signal induces excessive senescence of decidua stromal cells in recurrent Journal of Reproductive Immunology, 2023, 155, 103776.	pregnancy loss.	0.8	4
1590	Cellular mechanisms in brain aging: Focus on physiological and pathological aging. Jou Chemical Neuroanatomy, 2023, 128, 102210.	rnal of	1.0	6
1591	Bortezomib induces cellular senescence in A549 lung cancer cells by stimulating telom shortening. Human and Experimental Toxicology, 2022, 41, 096032712211240.	ere	1.1	2
1592	Quantification of beta-galactosidase activity as a marker of radiation-driven cellular ser Methods in Cell Biology, 2023, , 113-126.	iescence.	0.5	0
1593	Dynamic and scalable assessment of the senescence-associated secretory phenotype (Cell Biology, 2024, , 181-195.	SASP). Methods in	0.5	0
1594	The DARC Side of Inflamm-Aging: Duffy Antigen Receptor for Chemokines (DARC/ACK Biomarker of Aging, Immunosenescence, and Breast Oncogenesis among High-Risk Su Cells, 2022, 11, 3818.	≀1) as a Potential bpopulations.	1.8	6
1595	Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduc Targeted Therapy, 2022, 7, .	tion and	7.1	24

#	Article	IF	CITATIONS
1596	Effective-component compatibility of Bufei Yishen formula III ameliorated COPD by improving airway epithelial cell senescence by promoting mitophagy via the NRF2/PINK1 pathway. BMC Pulmonary Medicine, 2022, 22, .	0.8	5
1597	Biological and clinical review of IORT-induced wound fluid in breast cancer patients. Frontiers in Oncology, 0, 12, .	1.3	0
1598	FFAR4 improves the senescence of tubular epithelial cells by AMPK/SirT3 signaling in acute kidney injury. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	16
1599	HCMV carriage in the elderly diminishes anti-viral functionality of the adaptive immune response resulting in virus replication at peripheral sites. Frontiers in Immunology, 0, 13, .	2.2	1
1600	Sirt6 attenuates chondrocyte senescence and osteoarthritis progression. Nature Communications, 2022, 13, .	5.8	34
1601	Comprehensive Analysis of Cellular Senescence-Related Genes in Prognosis, Molecular Characterization and Immunotherapy of Hepatocellular Carcinoma. Biological Procedures Online, 2022, 24, .	1.4	2
1602	<i>Helicobacter pylori</i> â€positive chronic atrophic gastritis and cellular senescence. Helicobacter, 2023, 28, .	1.6	5
1603	The function of p53 and its role in Alzheimer's and Parkinson's disease compared to age-related macular degeneration. Frontiers in Neuroscience, 0, 16, .	1.4	8
1604	Dietary restriction in senolysis and prevention and treatment of disease. Critical Reviews in Food Science and Nutrition, 0, , 1-27.	5.4	1
1605	Molecular investigation of mechanisms considered to cause preterm premature membrane rupture. Cukurova Medical Journal, 2022, 47, 1500-1506.	0.1	0
1606	Cellular senescence in cancer: clinical detection and prognostic implications. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	14
1608	The Relationship between Reactive Oxygen Species and the cGAS/STING Signaling Pathway in the Inflammaging Process. International Journal of Molecular Sciences, 2022, 23, 15182.	1.8	17
1610	Reduction in Lens Epithelial Cell Senescence Burden through Dasatinib plus Quercetin or Rapamycin Alleviates D-Galactose-Induced Cataract Progression. Journal of Functional Biomaterials, 2023, 14, 6.	1.8	0
1611	Engineering Hierarchical Recognitionâ€Mediated Senolytics for Reliable Regulation of Cellular Senescence and Antiâ€Atherosclerosis Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1612	Senolytic treatment preserves biliary regenerative capacity lost through cellular senescence during cold storage. Science Translational Medicine, 2022, 14, .	5.8	10
1613	Joint inference of physiological network and survival analysis identifies factors associated with aging rate. Cell Reports Methods, 2022, 2, 100356.	1.4	0
1615	Eliminating Senescent Cells Can Promote Pulmonary Hypertension Development and Progression. Circulation, 2023, 147, 650-666.	1.6	28
1616	Macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through IL-1β/STAT3 signaling. Communications Biology, 2022, 5, .	2.0	11

#	ARTICLE	IF	Citations
1617	Engineering Hierarchical Recognitiona€Mediated Senolytics for Reliable Regulation of Cellular Senescence and Antiâ€Atherosclerosis Therapy. Angewandte Chemie, 0, , .	1.6	0
1618	Bioactive Oligopeptides from Ginseng (Panax ginseng Meyer) Suppress Oxidative Stress-Induced Senescence in Fibroblasts via NAD+/SIRT1/PGC-11± Signaling Pathway. Nutrients, 2022, 14, 5289.	1.7	9
1619	COVID-19 inhibits spermatogenesis in the testes by inducing cellular senescence. Frontiers in Genetics, 0, 13, .	1.1	4
1620	Ageing Skeletal Muscle: The Ubiquitous Muscle Stem Cell. Sub-Cellular Biochemistry, 2023, , 365-377.	1.0	1
1621	The Double-Edged Role of Extracellular Vesicles in the Hallmarks of Aging. Biomolecules, 2023, 13, 165.	1.8	4
1622	The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. International Journal of Molecular Sciences, 2023, 24, 851.	1.8	3
1624	ATOH8 binds SMAD3 to induce cellular senescence and prevent Ras-driven malignant transformation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
1625	Higher Oxidative Stress in Endometriotic Lesions Upregulates Senescence-Associated p16ink4a and β-Galactosidase in Stromal Cells. International Journal of Molecular Sciences, 2023, 24, 914.	1.8	2
1626	A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Research Reviews, 2023, 86, 101852.	5.0	12
1627	Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling. Nature Communications, 2023, 14, .	5.8	7
1628	The Role of Metallodrugs in Cellular Senescence. European Journal of Inorganic Chemistry, 0, , .	1.0	0
1629	Senescent cardiac fibroblasts: A key role in cardiac fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166642.	1.8	4
1630	Selenylated Imidazo[1,2-a]pyridine Induces Cell Senescence and Oxidative Stress in Chronic Myeloid Leukemia Cells. Molecules, 2023, 28, 893.	1.7	5
1631	Ablation of miRNA-22 protects against obesity-induced adipocyte senescence and ameliorates metabolic disorders in middle-aged mice. Mechanisms of Ageing and Development, 2023, 210, 111775.	2.2	3
1632	RNaseH2A downregulation drives inflammatory gene expression via genomic DNA fragmentation in senescent and cancer cells. Communications Biology, 2022, 5, .	2.0	7
1633	Liverâ€specific deletion of <scp>microRNA</scp> â€34a alleviates ductular reaction and liver fibrosis during experimental cholestasis. FASEB Journal, 2023, 37, .	0.2	2
1634	ML216 Prevents DNA Damage-Induced Senescence by Modulating DBC1–BLM Interaction. Cells, 2023, 12, 145.	1.8	2
1635	Obesity triggers tumoral senescence and renders poorly immunogenic malignancies amenable to senolysis. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8

#	Article	IF	CITATIONS
1636	β-Galactosidase-Activatable Nile Blue-Based NIR Senoprobe for the Real-Time Detection of Cellular Senescence. Analytical Chemistry, 0, , .	3.2	2
1638	Omics approaches in aging research. , 2023, , 41-70.		0
1639	Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants, 2023, 12, 239.	2.2	15
1640	Melanocortin therapies to resolve fibroblast-mediated diseases. Frontiers in Immunology, 0, 13, .	2.2	1
1641	NIR-excited imaging and in vivo visualization of β-galactosidase activity using a pyranonitrile-modified upconversion nanoprobe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 292, 122411.	2.0	2
1642	Advances in cellular senescence in idiopathic pulmonary fibrosis (Review). Experimental and Therapeutic Medicine, 2023, 25, .	0.8	6
1643	New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Molecular Cancer, 2023, 22, .	7.9	24
1644	ls the anti-aging effect of ACE2 due to its role in the renin-angiotensin system?—Findings from a comparison of the aging phenotypes of ACE2-deficient, Tsukuba hypertensive, and Mas-deficient mice—. Hypertension Research, 2023, 46, 1210-1220.	1.5	2
1645	TGF-Î ² in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Reports, 2023, 42, 112129.	2.9	9
1646	Further Characterization of Multi-Organ DEARE and Protection by 16,16 Dimethyl Prostaglandin E2 in a Mouse Model of the Hematopoietic Acute Radiation Syndrome. Radiation Research, 2023, 199, .	0.7	1
1647	Oxylipin-PPAR ^{î3} -initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metabolism, 2023, 35, 667-684.e6.	7.2	17
1648	Aging and diabetic retinopathy: Inherently intertwined pathophysiological processes. Experimental Gerontology, 2023, 175, 112138.	1.2	7
1649	Interleukin-23 mediates the reduction of GADD45a expression to attenuate oxidative stress-induced cellular senescence in human fibroblasts. Mechanisms of Ageing and Development, 2023, 212, 111808.	2.2	1
1650	β-Hydroxybutyrate alleviates cartilage senescence through hnRNP A1-mediated up-regulation of PTEN. Experimental Gerontology, 2023, 175, 112140.	1.2	2
1651	Novel Strategies for Metformin as an Anti-aging Drug in Skin Aging. , 2023, , 99-116.		0
1652	CELLULAR SENESCENCE IMPLICATED IN SEPSIS-INDUCED MUSCLE WEAKNESS AND AMELIORATED WITH METFORMIN. Shock, 2023, 59, 646-656.	1.0	4
1653	Cellular Senescence: From Mechanisms to Current Biomarkers and Senotherapies. Pharmacological Reviews, 2023, 75, 675-713.	7.1	12
1654	Biomarkers for biosensors to monitor space-induced cardiovascular ageing. Frontiers in Sensors, 0, 4,	1.7	1

#	Article	IF	CITATIONS
1656	Targeting Senescence as a Therapeutic Opportunity for Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2023, 22, 583-598.	1.9	4
1657	Salt-driven chromatin remodeling associated with senescence dysregulation plays a crucial role in the carcinogenesis of gastric cancer subtype. Computational Toxicology, 2023, 25, 100262.	1.8	2
1658	Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. Journal of Radiation Research, 2023, 64, 228-249.	0.8	1
1659	Role of cellular senescence in inflammatory lung diseases. Cytokine and Growth Factor Reviews, 2023, 70, 26-40.	3.2	5
1660	Disease mechanisms as Subtypes: Mitochondrial and bioenergetic dysfunction. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 53-66.	1.0	0
1661	Modeling of Respiratory Diseases Evolving with Fibrosis from Organoids Derived from Human Pluripotent Stem Cells. International Journal of Molecular Sciences, 2023, 24, 4413.	1.8	0
1662	Identification of a cellular senescence-related-IncRNA (SRIncRNA) signature to predict the overall survival of glioma patients and the tumor immune microenvironment. Frontiers in Genetics, 0, 14, .	1.1	0
1663	Selective photodynamic eradication of senescent cells with a β-galactosidase-activated photosensitiser. Chemical Communications, 2023, 59, 3471-3474.	2.2	5
1664	Derivation and comprehensive analysis of ageing-related genes in intervertebral disc degeneration for prediction and immunology. Mechanisms of Ageing and Development, 2023, 211, 111794.	2.2	4
1665	Comprehensive genomics analysis of aging related gene signature to predict the prognosis and drug resistance of colon adenocarcinoma. Frontiers in Pharmacology, 0, 14, .	1.6	2
1666	Thyroid-stimulating hormone receptor signaling restores skeletal muscle stem cell regeneration in rats with muscular dystrophy. Science Translational Medicine, 2023, 15, .	5.8	14
1667	Antioxidants prevent particulate matter-induced senescence of lung fibroblasts. Heliyon, 2023, 9, e14179.	1.4	1
1668	Cellular senescence and developmental defects. FEBS Journal, 2023, 290, 1303-1313.	2.2	5
1669	Dynamic chromatin accessibility tuning by the long noncoding RNA ELDR accelerates chondrocyte senescence and osteoarthritis. American Journal of Human Genetics, 2023, 110, 606-624.	2.6	4
1670	Panic at the Bile Duct. American Journal of Pathology, 2023, 193, 1440-1454.	1.9	3
1671	Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Frontiers in Immunology, 0, 14, .	2.2	5
1672	Inhibition of protein kinase C delta leads to cellular senescence to induce antiâ€ŧumor effects in colorectal cancer. Cancer Science, 2023, 114, 2471-2484.	1.7	1
1673	Impact of Cellular Senescence on Cellular Clocks. Healthy Ageing and Longevity, 2023, , 105-125.	0.2	0

#	Article	IF	CITATIONS
1674	Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes and Metabolism Journal, 2023, 47, 441-453.	1.8	4
1675	cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Frontiers in Immunology, 0, 14, .	2.2	13
1676	Sleep Hormone Melatonin, Inflammation and Aging. Healthy Ageing and Longevity, 2023, , 259-276.	0.2	0
1677	Cell cycle exits and U-turns: Quiescence as multiple reversible forms of arrest. Faculty Reviews, 0, 12, .	1.7	2
1678	Vitamin D, Cellular Senescence and Chronic Kidney Diseases: What Is Missing in the Equation?. Nutrients, 2023, 15, 1349.	1.7	3
1679	The role of sirtuins in dermal fibroblast function. Frontiers in Medicine, 0, 10, .	1.2	1
1680	The Emerging Role of Accelerated Cellular Senescence in Periodontitis. Journal of Dental Research, 2023, 102, 854-862.	2.5	4
1682	Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells, 2023, 12, 915.	1.8	6
1683	Reduction of senescenceâ€associated secretory phenotype and exosomeâ€shuttled <scp>miRNAs</scp> by <i>Haritaki</i> fruit extract in senescent dermal fibroblasts. International Journal of Cosmetic Science, 2023, 45, 488-499.	1.2	1
1686	Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. Journal of Hematology and Oncology, 2023, 16, .	6.9	5
1687	KRT5 ⁺ /p63 ⁺ Stem Cells Undergo Senescence in the Human Lung with Pathological Aging. , 2023, 14, 1013.		0
1688	Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. , 2023, 14, 670.		8
1689	Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices?. Cancers, 2023, 15, 1927.	1.7	2
1690	The Uremic Toxin Indoxyl Sulfate Accelerates Senescence in Kidney Proximal Tubule Cells. Toxins, 2023, 15, 242.	1.5	5
1691	Targeting Vascular Smooth Muscle Cell Senescence: A Novel Strategy for Vascular Diseases. Journal of Cardiovascular Translational Research, 2023, 16, 1010-1020.	1.1	1
1692	DNA Damage-Mediated Neurotoxicity in Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 6313.	1.8	8
1693	Senotherapeutics: An emerging approach to the treatment of viral infectious diseases in the elderly. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	2
1694	p21 facilitates chronic lung inflammation via epithelial and endothelial cells. Aging, 2023, 15, 2395-2417.	1.4	0

#	Article	IF	CITATIONS
1695	Targeting Hepatic Stellate Cell Death to Reverse Hepatic Fibrosis. Current Drug Targets, 2023, 24, 568-583.	1.0	6
1696	Metformin Ameliorates D-Galactose-Induced Senescent Human Bone Marrow-Derived Mesenchymal Stem Cells by Enhancing Autophagy. Stem Cells International, 2023, 2023, 1-14.	1.2	2
1697	Schisandrin B promotes senescence of activated hepatic stellate cell via NCOA4-mediated ferritinophagy. Pharmaceutical Biology, 2023, 61, 621-629.	1.3	3
1698	Drugs against metabolic diseases as potential senotherapeutics for aging-related respiratory diseases. Frontiers in Endocrinology, 0, 14, .	1.5	2
1699	Spurious intragenic transcription is a feature of mammalian cellular senescence and tissue aging. Nature Aging, 2023, 3, 402-417.	5.3	9
1700	Recent insights into the crosstalk between senescent cells and CD8 T lymphocytes. , 2023, 9, .		5
1701	Dysfunction of programmed embryo senescence is linked to genetic developmental defects. Development (Cambridge), 2023, 150, .	1.2	1
1703	Targeting senescent hepatocytes using the thrombomodulin-PAR1 inhibitor vorapaxar ameliorates NAFLD progression. Hepatology, 2023, 78, 1209-1222.	3.6	2
1705	Senescence-Related IncRNA Signature Predicts Prognosis, Response to Immunotherapy and Chemotherapy in Skin Cutaneous Melanoma. Biomolecules, 2023, 13, 661.	1.8	1
1706	Epimorphic Regeneration of Elastic Cartilage: Morphological Study into the Role of Cellular Senescence. Biology, 2023, 12, 565.	1.3	0
1707	Schizophrenia and cell senescence candidate genes screening, machine learning, diagnostic models, and drug prediction. Frontiers in Psychiatry, 0, 14, .	1.3	3
1708	Cellular senescence-related gene signature as a valuable predictor of prognosis in hepatocellular carcinoma. Aging, 0, , .	1.4	1
1709	Therapeutic potential of nitric oxide in vascular aging due to the promotion of angiogenesis. Chemical Biology and Drug Design, 0, , .	1.5	1
1710	Effect of Thymbra capitata (L.) Cav. on Inflammation, Senescence and Cell Migration. Nutrients, 2023, 15, 1930.	1.7	3
1711	Genetic Deletion of FXR1 Reduces Intimal Hyperplasia and Induces Senescence in Vascular Smooth Muscle Cells. American Journal of Pathology, 2023, 193, 638-653.	1.9	1
1713	Biomarkers of aging. Science China Life Sciences, 2023, 66, 893-1066.	2.3	60
1714	Connecting the dots: Neuronal senescence, stress granules, and neurodegeneration. Gene, 2023, 871, 147437.	1.0	5
1715	Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest. ELife, 0, 12, .	2.8	4

# 1721	ARTICLE Principles of gliopathology. , 2023, , 473-532.	IF	CITATIONS 0
1724	Cellular senescence in aging: Molecular basis, implications and therapeutic interventions. Advances in Protein Chemistry and Structural Biology, 2023, , .	1.0	0
1725	Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Sub-Cellular Biochemistry, 2023, , 341-435.	1.0	2
1736	Studying Hepatic Stellate Cell Senescence. Methods in Molecular Biology, 2023, , 79-109.	0.4	0
1738	Mechanismen der Nierenalterung. , 2023, , 15-22.		0
1739	Advances in PET imaging of cancer. Nature Reviews Cancer, 2023, 23, 474-490.	12.8	20
1771	Mitochondria in cell senescence: A Friend or Foe?. Advances in Protein Chemistry and Structural Biology, 2023, , 35-91.	1.0	2
1793	Cellular senescence in glioma. Journal of Neuro-Oncology, 2023, 164, 11-29.	1.4	4
1815	Cadmium, Cellular Senescence, and Cancer. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.7	0
1819	Extracellular Vesicles and Cardiac Aging. Advances in Experimental Medicine and Biology, 2023, , 33-56.	0.8	0
1830	Cellular senescence and frailty: a comprehensive insight into the causal links. GeroScience, 0, , .	2.1	1
1840	Flow cytometry-assisted quantification of cell cycle arrest in cancer cells treated with CDK4/6 inhibitors. Methods in Cell Biology, 2024, , 197-212.	0.5	0
1849	Clinical Radiobiology for Radiation Oncology. , 2023, , 237-309.		0
1859	Cellular Aging from Physiological and Economical Perspectives. Physiology, 0, , .	4.0	0
1906	TXNRD1 drives the innate immune response in senescent cells with implications for age-associated inflammation. Nature Aging, 2024, 4, 185-197.	5.3	0
1923	HBOT in Aging and Regeneration. , 2023, , 129-133.		0
1924	Cellular senescence and aging at the crossroad between immunity and cancer. Methods in Cell Biology, 2024, , xvii-xxiv.	0.5	0
1931	Emerging roles of circular RNAs in regulating the hallmarks of thyroid cancer. Cancer Gene Therapy, 2024, 31, 507-516.	2.2	0

CITATIONS

0

#	Article	IF
1959	Age-related disease: Joints. , 2024, , 73-90.	

1960 Age-related disease: Diabetes. , 2024, , 175-193.