Photocatalytic organic pollutants degradation in metala

Energy and Environmental Science 7, 2831-2867

DOI: 10.1039/c4ee01299b

Citation Report

#	Article	IF	CITATIONS
1	Photocatalytic degradation of methylene blue in ZIF-8. RSC Advances, 2014, 4, 54454-54462.	1.7	401
2	Tailoring the Optical Absorption of Waterâ€6table Zr ^{IV} ―and Hf ^{IV} â€Based Metal–Organic Framework Photocatalysts. Chemistry - an Asian Journal, 2015, 10, 2660-2668.	1.7	62
3	Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes. Macromolecular Rapid Communications, 2015, 36, 1605-1611.	2.0	56
4	Introduction of a Fe ₃ O ₄ Core Enhances the Photocatalytic Activity of MILâ€100(Fe) with Tunable Shell Thickness in the Presence of H ₂ O ₂ . ChemCatChem, 2015, 7, 4148-4155.	1.8	90
5	Visibleâ€light photocatalytic activity of Ag@MILâ€125(Ti) microspheres. Applied Organometallic Chemistry, 2015, 29, 618-623.	1.7	60
6	Fabrication of a photo-catalytic cell using polymer-based composite films and investigation of its performance in the degradation of methyl blue. RSC Advances, 2015, 5, 25830-25839.	1.7	6
7	Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances, 2015, 5, 48433-48441.	1.7	276
8	Three coordination compounds of cobalt with organic carboxylic acids and 1,10-phenanthroline as ligands: syntheses, structures and photocatalytic properties. Transition Metal Chemistry, 2015, 40, 573-584.	0.7	10
9	Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst. Applied Surface Science, 2015, 349, 650-656.	3.1	25
10	Size-exclusive and coordination-induced selective dye adsorption in a nanotubular metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 12804-12809.	5.2	118
11	Effects of nanostructure on clean energy: big solutions gained from small features. Science Bulletin, 2015, 60, 2083-2090.	4.3	35
12	Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 2015, 36, 2071-2088.	6.9	113
13	Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties. Journal of Solid State Chemistry, 2015, 232, 200-206.	1.4	32
14	A series of d ¹⁰ metal coordination polymers based on a flexible bis(2-methylbenzimidazole) ligand and different carboxylates: synthesis, structures, photoluminescence and catalytic properties. CrystEngComm, 2015, 17, 2279-2293.	1.3	177
15	The copper(i) metal azolate framework showing unusual coordination mode for the 1,2,4-triazole derivative and photocatalytic activity. Dalton Transactions, 2015, 44, 3954-3958.	1.6	13
16	Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. Journal of Hazardous Materials, 2015, 286, 187-194.	6.5	634
17	A novel in situ preparation method for nanostructured \hat{l} ±-Fe ₂ O ₃ films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. Journal of Materials Chemistry A, 2015, 3, 4345-4353.	5.2	79
18	Preparation of photocrosslinked sol-gel composites based on urethane-acrylic matrix, silsesquioxane sequences, TiO ₂ , and Ag/Au Nanoparticles for use in photocatalytic applications. Journal of Polymer Science Part A, 2015, 53, 1189-1204.	2.5	19

#	Article	IF	CITATIONS
19	Design of a neutral photo-electro-Fenton system with 3D-ordered macroporous Fe2O3/carbon aerogel cathode: High activity and low energy consumption. Applied Catalysis B: Environmental, 2015, 174-175, 157-166.	10.8	104
20	Stepwise assembly of a semiconducting coordination polymer [Cd ₈ S(SPh) ₁₄ (DMF)(bpy)] _n and its photodegradation of organic dyes. Dalton Transactions, 2015, 44, 6400-6405.	1.6	18
21	New photocatalyst for allylic aliphatic C–H bond activation and degradation of organic pollutants: Schiff base Ti(<scp>iv</scp>) complexes. RSC Advances, 2015, 5, 58504-58513.	1.7	14
22	Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. Journal of Hazardous Materials, 2015, 299, 132-140.	6.5	130
23	Synthesis of Ce ions doped metal–organic framework for promoting catalytic H ₂ production from ammonia borane under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 14134-14141.	5.2	102
24	Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal–Organic Frameworks. ACS Catalysis, 2015, 5, 5283-5291.	5.5	212
25	An atom-scale interfacial coordination strategy to prepare hierarchically porous Fe ₃ O ₄ –graphene frameworks and their application in charge and size selective dye removal. Chemical Communications, 2015, 51, 14405-14408.	2.2	36
26	Four coordination compounds constructed from 1,10-phenanthroline and semi-flexible and flexible carboxylic acids: Hydrothermal synthesis, optical properties and photocatalytic performance. Polyhedron, 2015, 90, 58-68.	1.0	43
27	An organic–inorganic hybrid photocatalyst based on sandwich-type tetra-Co-substituted phosphotungstates with high visible light photocatalytic activity. Dalton Transactions, 2015, 44, 13818-13822.	1.6	18
28	Syntheses, characterization and properties of nine novel Zn(<scp>ii</scp>) coordination polymers based on 4,4′-(phenylazanediyl)dibenzoic acid and various N-donor ligands. CrystEngComm, 2015, 17, 5451-5467.	1.3	18
29	A polyoxometalate-based inorganic–organic hybrid polymer constructed from silver-Schiff base building block and Keggin-type cluster: Synthesis, crystal structure and photocatalytic performance for the degradation of rhodamine B. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 846-854.	2.0	23
30	Structure of a Porous Cu ₂ (pzdc) ₂ (bpp) (pzdc: Pyrazine-2,3-dicarboxylate, bpp:) Tj ETQc CO ₂ Adsorption. Crystal Growth and Design, 2015, 15, 4123-4131.	1 1 0.784 1.4	1314 rgBT <mark> </mark> 0
31	A comparison study of aliphatic and aromatic structure directing agents influencing the crystal and electronic structures, and properties of iodoplumbate hybrids: water induced structure conversion and visible light photocatalytic properties. Dalton Transactions, 2015, 44, 12561-12575.	1.6	54
32	A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg ²⁺ from water. Journal of Materials Chemistry A, 2015, 3, 11587-11595.	5.2	179
33	Multifunctional Metal–Organic Frameworks for Photocatalysis. Small, 2015, 11, 3097-3112.	5.2	538
34	Ultra-high uptake and selective adsorption of organic dyes with a novel polyoxomolybdate-based organic–inorganic hybrid compound. RSC Advances, 2015, 5, 45688-45692.	1.7	32
35	Two (3,6)-connected porous metal–organic frameworks based on linear trinuclear [Co ₃ (COO) ₆] and paddlewheel dinuclear [Cu ₂ (COO) ₄] SBUs: gas adsorption, photocatalytic behaviour, and magnetic properties. Journal of Materials Chemistry A, 2015, 3, 6962-6969.	5.2	213
36	Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Applied Catalysis B: Environmental, 2015, 174-175, 445-454.	10.8	594

#	ARTICLE	IF	CITATIONS
37	New approaches to the degradation of organic dyes, and nitro- and chloroaromatics using coordination polymers as photocatalysts. CrystEngComm, 2015, 17, 4741-4753.	1.3	74
38	Synthesis, characterization and photo catalytic studies of the composites by tantalum oxide and zinc oxide nanorods. Journal of Molecular Structure, 2015, 1091, 49-56.	1.8	27
39	Enhanced Photocatalytic Activity of the AgI/UiOâ€66(Zr) Composite for Rhodamineâ€B Degradation under Visibleâ€Light Irradiation. ChemPlusChem, 2015, 80, 1321-1328.	1.3	51
40	Multifunctional Radical-Doped Polyoxometalate-Based Host–Guest Material: Photochromism and Photocatalytic Activity. Inorganic Chemistry, 2015, 54, 4345-4350.	1.9	133
41	Photodeposition of metal sulfides on titanium metal–organic frameworks for excellent visible-light-driven photocatalytic Cr(<scp>vi</scp>) reduction. RSC Advances, 2015, 5, 32531-32535.	1.7	118
42	Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution. Chemical Engineering Journal, 2015, 275, 134-141.	6.6	103
43	Natural biological template for ZnO nanoparticle growth and photocatalytic dye degradation under visible light. RSC Advances, 2015, 5, 84406-84409.	1.7	13
44	Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. Journal of Materials Chemistry A, 2015, 3, 22484-22506.	5.2	516
45	Three silver complexes constructed from organic carboxylic acid and 1,2-bis(4-pyridyl)ethane ligands: syntheses, crystal structures, and luminescent properties. Transition Metal Chemistry, 2015, 40, 821-829.	0.7	11
46	Structures and multiple properties of two polar metal–organic frameworks based on achiral N,O-coordinated ligands: toward multifunctional materials. Dalton Transactions, 2015, 44, 18882-18892.	1.6	25
47	Two new Cul compounds with zwitterionic tetrazolate ligand: In situ synthesis, crystal structures, luminescence and photocatalytic properties. Journal of Solid State Chemistry, 2015, 232, 19-25.	1.4	15
48	Lactoferrin-assisted synthesis of zinc ferrite nanocrystal: Its magnetic performance and photocatalytic activity. Journal of Alloys and Compounds, 2015, 652, 132-138.	2.8	18
49	Modeling and thermodynamics of methylene blue and acid blue 80 adsorption onto potato residue based activated carbon. Chemical Research in Chinese Universities, 2015, 31, 627-632.	1.3	5
50	Glycol modified gadolinium oxide nanoparticles as a potential template for selective and sensitive detection of 4-nitrophenol. Journal of Materials Chemistry C, 2015, 3, 8824-8833.	2.7	15
51	Synthesis crystal structure, photoluminescence and photocatalytic property of a new three dimensional Zinc(II) tetrazole framework. Journal of Chemical Sciences, 2015, 127, 1599-1606.	0.7	7
52	Structure and photocatalytic property of a new Cu(II) based framework with jsm topology. Inorganic Chemistry Communication, 2015, 52, 9-11.	1.8	4
53	Photocatalytic CO2 reduction in metal–organic frameworks: A mini review. Journal of Molecular Structure, 2015, 1083, 127-136.	1.8	144
54	Series metalâ \in organic frameworks constructed from 1,10-phenanthroline and 3,3â \in 2,4,4â \in 2-biphenyltetracarboxylic acid: Hydrothermal synthesis, luminescence and photocatalytic properties. Journal of Molecular Structure, 2015, 1080, 44-51.	1.8	43

#	Article	IF	Citations
55	Metal Organic Frameworks as Emerging Photocatalysts. , 0, , .		5
56	Structure and Photocatalytic Property of a Novel Three-Dimensional Supramolecular $Cu(\hat{l}^{m}\hat{l}^{m})$ Coordination Polymer with pcu Topology Based on the Rigid Multifunctional Ligand. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1101-1106.	1.9	3
57	A visible-light responsive zirconium metal–organic framework for living photopolymerization of methacrylates. RSC Advances, 2016, 6, 66444-66450.	1.7	18
58	Hierarchically structured layered-double-hydroxide@zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 12526-12534.	5.2	79
59	The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices. Chemical Record, 2016, 16, 1591-1634.	2.9	58
60	Enhanced Catalytic Activity in Liquidâ€Exfoliated FeOCl Nanosheets as a Fentonâ€Like Catalyst. Chemistry - A European Journal, 2016, 22, 9321-9329.	1.7	59
61	Piezopotential″nduced Schottky Behavior of Zn _{1â^'<i>x</i>} SnO ₃ Nanowire Arrays and Piezophotocatalytic Applications. Journal of the American Ceramic Society, 2016, 99, 2593-2600.	1.9	58
62	Iron Complexes in Visibleâ€Lightâ€Sensitive Photoredox Catalysis: Effect of Ligands on Their Photoinitiation Efficiencies. ChemCatChem, 2016, 8, 2227-2233.	1.8	50
63	Fe ₃ O ₄ Anisotropic Nanostructures in Hydrogels: Efficient Catalysts for the Rapid Removal of Organic Dyes from Wastewater. ChemPhysChem, 2016, 17, 1999-2007.	1.0	19
64	Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie - International Edition, 2016, 55, 5414-5445.	7.2	888
65	Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrasonics Sonochemistry, 2016, 32, 387-397.	3.8	136
66	A panchromatic modification of the light absorption spectra of metal–organic frameworks. Chemical Communications, 2016, 52, 6665-6668.	2.2	44
67	Structural diversity of Zn(<scp>ii</scp>) coordination polymers based on bis-imidazolyl ligands and 5-R-1,3-benzenedicarboxylate and their photocatalytic properties. CrystEngComm, 2016, 18, 4851-4862.	1.3	27
68	Research trend of metal–organic frameworks: a bibliometric analysis. Scientometrics, 2016, 109, 481-513.	1.6	91
69	Controlled growth of CuO/Cu2O hollow microsphere composites as efficient visible-light-active photocatalysts. Applied Catalysis A: General, 2016, 521, 34-41.	2.2	47
70	Formation of onion-like fullerene and chemically converted graphene-like nanosheets from low-quality coals: application in photocatalytic degradation of 2-nitrophenol. RSC Advances, 2016, 6, 35177-35190.	1.7	37
71	Hydrothermal syntheses and photocatalytic performance of three Mn-based coordination complexes constructed from 1,10-phenanthroline and polycarboxylic acids. Transition Metal Chemistry, 2016, 41, 375-385.	0.7	10
72	One-Step Asymmetric Growth of Continuous Metal–Organic Framework Thin Films on Two-Dimensional Colloidal Crystal Arrays: A Facile Approach toward Multifunctional Superstructures. Crystal Growth and Design, 2016, 16, 2700-2707.	1.4	14

#	Article	IF	CITATIONS
73	Silver(<scp>i</scp>) complexes with a P–N hybrid ligand and oxyanions: synthesis, structures, photocatalysis and photocurrent responses. Dalton Transactions, 2016, 45, 9294-9306.	1.6	48
74	Magnetic double-tartaric bridging mono-lanthanide substituted phosphotungstates with photochromic and switchable luminescence properties. Journal of Materials Chemistry C, 2016, 4, 5424-5433.	2.7	80
75	Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Applied Catalysis B: Environmental, 2016, 193, 198-216.	10.8	516
76	Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper–aluminum–silica nanospheres for water purification. Journal of Materials Chemistry A, 2016, 4, 8610-8619.	5.2	73
77	A facile chemical synthesis of ZnO@multilayer graphene nanoparticles with fast charge separation and enhanced performance for application in solar energy conversion. Nano Energy, 2016, 25, 9-17.	8.2	35
78	Nanometal-Loaded Metal-Organic-Framework Photocatalysts. Nanostructure Science and Technology, 2016, , 507-522.	0.1	0
79	Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer. Journal of Solid State Chemistry, 2016, 239, 139-144.	1.4	30
80	Incorporation of <i>N</i> â€Methylâ€ <scp>d</scp> â€glucamine Functionalized Oligomer into MILâ€101(Cr) for Highly Efficient Removal of Boric Acid from Water. Chemistry - A European Journal, 2016, 22, 15290-15297.	1.7	17
81	Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catalysis, 2016, 6, 7935-7947.	5.5	445
82	Photocatalytic Properties of All Four Polymorphs of Nanostructured Iron Oxyhydroxides. ChemNanoMat, 2016, 2, 1047-1054.	1.5	38
83	Metal–Organic Framework-Templated Synthesis of Bifunctional N-Doped TiO ₂ –Carbon Nanotablets via Solid-State Thermolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 6744-6753.	3.2	35
84	Enhanced photocatalytic performance of BiOBr/NH ₂ -MIL-125(Ti) composite for dye degradation under visible light. Dalton Transactions, 2016, 45, 17521-17529.	1.6	171
85	Sonophotocatalytic Mineralization of Environmental Contaminants Present in Aqueous Solutions. , 2016, , 673-710.		3
86	Optimized design of multi-shell ZnO/TiO2/ZnSe nanowires decorated with Ag nanoparticles for photocatalytic applications. RSC Advances, 2016, 6, 71800-71806.	1.7	10
87	Selective uptake of organic dyes in a silver-based coordination polymer. RSC Advances, 2016, 6, 73595-73599.	1.7	29
88	Cadmium sulphide quantum dots with tunable electronic properties by bacterial precipitation. RSC Advances, 2016, 6, 76158-76166.	1.7	36
89	α-Ferrous oxalate dihydrate: a simple coordination polymer featuring photocatalytic and photo-initiated Fenton oxidations. Science China Materials, 2016, 59, 574-580.	3. 5	29
90	Self-assembled one-dimensional MnO ₂ @zeolitic imidazolate framework-8 nanostructures for highly efficient arsenite removal. Environmental Science: Nano, 2016, 3, 1186-1194.	2.2	72

#	Article	IF	CITATIONS
91	A One-Step and Scalable Continuous-Flow Nanoprecipitation for Catalytic Reduction of Organic Pollutants in Water. Industrial & Engineering Chemistry Research, 2016, 55, 9851-9856.	1.8	11
92	Oneâ€Pot Preparation of Hierarchical Nanosheetâ€Constructed Fe ₃ O ₄ /MILâ€88B(Fe) Magnetic Microspheres with High Efficiency Photocatalytic Degradation of Dye. ChemCatChem, 2016, 8, 3510-3517.	1.8	52
93	Ni(II)-metal–organic frameworks based on 1,4-phenylenedipropionic acid: Solvothermal syntheses, structures, and photocatalytic properties. Polyhedron, 2016, 119, 151-159.	1.0	17
94	Ironâ€Based Metalâ€Organic Frameworks (MOF) as Photocatalysts for Radical and Cationic Polymerizations under Near UV and Visible LEDs (385–405 nm). Macromolecular Chemistry and Physics, 2016, 217, 2534-2540.	1.1	50
95	Enhancement of Catalytic Activity Over AuPd Nanoparticles Loaded Metal Organic Framework Under Visible Light Irradiation. Topics in Catalysis, 2016, 59, 1765-1771.	1.3	22
96	Lanthanum molybdenum oxide as a new platform for highly selective adsorption and fast separation of organic dyes. RSC Advances, 2016, 6, 90010-90017.	1.7	7
97	Fabricate Globular Flower-like CuS/Cdln ₂ S ₄ /Znln ₂ S ₄ with High Visible Light Response via Microwave-assisted One–step Method and Its Multipathway Photoelectron Migration Properties for Hydrogen Evolution and Pollutant Degradation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6680-6688.	3.2	66
98	A cadmium(<scp>ii</scp>)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. Journal of Materials Chemistry A, 2016, 4, 16349-16355.	5.2	85
99	Influence of crystal topology and interior surface functionality of metal-organic frameworks on PFOA sorption performance. Microporous and Mesoporous Materials, 2016, 236, 202-210.	2.2	51
100	Structural diversity and photocatalytic properties of five nickel coordination polymers constructed from 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid and N-donor ligands. Inorganica Chimica Acta, 2016, 451, 148-156.	1.2	9
101	Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures. Optical Materials, 2016, 60, 86-93.	1.7	52
102	Optofluidics-Based Membrane Microreactor for Wastewater Treatment by Photocatalytic Ozonation. Industrial & Description of the Company of the	1.8	16
103	Two heterotrimetallic organic frameworks constructed using a functionalized Schiff base ligand: syntheses, structures and visible photocatalytic activities for the degradation of chlorophenols. RSC Advances, 2016, 6, 98611-98619.	1.7	4
104	The assembly of thiophene-based bis-pyridyl-bis-amide Co ^{II} coordination polymers and their polypyrrole-functionalized hybrid materials for boosting their photocatalytic performances. Dalton Transactions, 2016, 45, 19341-19350.	1.6	17
105	Pharmaceutical removal from water with iron- or manganese-based technologies: A review. Critical Reviews in Environmental Science and Technology, 2016, 46, 1584-1621.	6.6	40
106	Phosphotungstic acid supported on aminosilica functionalized perovskite-type LaFeO ₃ nanoparticles: a novel recyclable and excellent visible-light photocatalyst. RSC Advances, 2016, 6, 102984-102996.	1.7	37
107	A new five-coordinated copper compound for efficient degradation of methyl orange and Congo red in the absence of UV–visible radiation. Dalton Transactions, 2016, 45, 18566-18571.	1.6	40
108	Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 2016, 6, 23676.	1.6	196

#	Article	IF	CITATIONS
109	A simultaneous disulfide bond cleavage, N,S-bialkylation/N-protonation and self-assembly reaction: syntheses, structures and properties of two hybrid iodoargentates with thiazolyl-based heterocycles. Dalton Transactions, 2016, 45, 19062-19071.	1.6	16
110	Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation. Solid State Sciences, 2016, 62, 82-89.	1.5	60
111	Ultrafine Ag/polyoxometalate-doped AgCl nanoparticles in metal–organic framework as efficient photocatalysts under visible light. CrystEngComm, 2016, 18, 8762-8768.	1.3	29
112	Mechanistic Studies of TiO ₂ Photocatalysis and Fenton Degradation of Hydrophobic Aromatic Pollutants in Water. Chemistry - an Asian Journal, 2016, 11, 3568-3574.	1.7	14
113	[CH ₃ NH ₃] ₂ Ag ₄ Sn ^{IV} ₂ Sn ^{IIAn Open-Framework Mixed-Valent Chalcogenidostannate. Inorganic Chemistry, 2016, 55, 10855-10858.}	sup ₂ S <su< td=""><td>b>8:</td></su<>	b>8:
114	Metallâ€organische Gerù⁄4stverbindungen: Photokatalysatoren fù⁄4r Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 2016, 128, 5504-5535.	1.6	87
115	Multiple Modes of Motion: Realizing the Dynamics of CO Adsorbed in Mâ€MOFâ€₹4 (M = Mg, Zn) by Using Solidâ€State NMR Spectroscopy. European Journal of Inorganic Chemistry, 2016, 2016, 2017-2024.	1.0	28
116	Solvent-less method for efficient photocatalytic \hat{l} ±-Fe2O3 nanoparticles using macromolecular polymeric precursors. New Journal of Chemistry, 2016, 40, 6768-6776.	1.4	23
117	Investigating the Case of Titanium(IV) Carboxyphenolate Photoactive Coordination Polymers. Inorganic Chemistry, 2016, 55, 7192-7199.	1.9	72
118	Four Pb(<scp>ii</scp>) metal–organic frameworks with increasing dimensions: structural diversities by varying the ligands. New Journal of Chemistry, 2016, 40, 6867-6873.	1.4	12
119	A Facile Synthesis of Cu/Ta@SBA composite for the degradation of Methyl Orange under UV irradiation. Materials Today: Proceedings, 2016, 3, 2501-2508.	0.9	1
120	Silver-based coordination complexes of carboxylate ligands: crystal structures, luminescence and photocatalytic properties. Transition Metal Chemistry, 2016, 41, 637-645.	0.7	12
121	A series of coordination polymers assembled from p-terphenyl-2,2″,2′′,5,4″,4′′′-hexcarbox various flexible imidazole derivatives: Synthesis, structures and luminescent properties. Inorganica Chimica Acta, 2016, 450, 12-22.	ylic acid a 1.2	nd 4
122	Hierarchical Microspheres of MoS ₂ Nanosheets: Efficient and Regenerative Adsorbent for Removal of Water-Soluble Dyes. Industrial & Engineering Chemistry Research, 2016, 55, 7124-7131.	1.8	179
123	Organic Linker Defines the Excitedâ€State Decay of Photocatalytic MILâ€125(Ti)â€Type Materials. ChemSusChem, 2016, 9, 388-395.	3.6	84
124	Iron(III) Porphyrinâ€Based Porous Material as Photocatalyst for Highly Efficient and Selective Degradation of Congo Red. Macromolecular Chemistry and Physics, 2016, 217, 599-604.	1.1	53
125	Oneâ€pot selfâ€assembly and photoreduction synthesis of silver nanoparticleâ€decorated reduced graphene oxide/MILâ€125(Ti) photocatalyst with improved visible light photocatalytic activity. Applied Organometallic Chemistry, 2016, 30, 289-296.	1.7	149
126	Simple fabrication of flake-like NH 2 -MIL-53(Cr) and its application as an electrochemical sensor for the detection of Pb 2+. Chemical Engineering Journal, 2016, 289, 479-485.	6.6	101

#	ARTICLE	IF	CITATIONS
127	Robust Metal–Organic Framework Containing Benzoselenadiazole for Highly Efficient Aerobic Cross-dehydrogenative Coupling Reactions under Visible Light. Inorganic Chemistry, 2016, 55, 1005-1007.	1.9	71
128	A novel copper(<scp>ii</scp>)–lanthanum(<scp>iii</scp>) metal organic framework as a selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catalysis Science and Technology, 2016, 6, 3727-3736.	2.1	42
129	Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal. Journal of Solid State Chemistry, 2016, 235, 12-17.	1.4	6
130	Two 1D coordination polymers constructed from $3,38 \in ^2$, $4,48 \in ^2$ -biphenyltetracarboxylic acid and $4,48 \in ^2$ -bipyridine: hydrothermal syntheses and photocatalytic performance. Transition Metal Chemistry, 2016, 41, 15-24.	0.7	16
131	Ligand Induced Anionic Cuprous Cyanide Framework for Cupric Ion Turn on Luminescence Sensing and Photocatalytic Degradation of Organic Dyes. Inorganic Chemistry, 2016, 55, 75-82.	1.9	37
132	Syntheses, structures and properties of eight coordination polymers based on bis(imidazole) and biscarboxylate ligands. Polyhedron, 2016, 104, 1-8.	1.0	19
133	Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22, 149-168.	8.2	223
134	Freestanding hematite nanofiber membrane for visible-light-responsive photocatalyst. Ceramics International, 2016, 42, 3864-3875.	2.3	11
135	Facile synthesis of MOF 235 and its superior photocatalytic capability under visible light irradiation. RSC Advances, 2016, 6, 16395-16403.	1.7	66
136	Design of chiral Co(<scp>ii</scp>)-MOFs and their application in environmental remediation and waste water treatment. RSC Advances, 2016, 6, 25149-25158.	1.7	43
137	Alkyl group-directed assembly of coordination polymers based on bis-(4-imidazol-1-yl-phenyl)-amine and their photocatalytic properties. New Journal of Chemistry, 2016, 40, 2479-2488.	1.4	3
138	Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 2016, 605, 2-19.	0.8	560
139	Photocatalytic Properties and Luminescent Sensing for Cr ³⁺ Cations of Polyoxovanadates-Based Inorganic–Organic Hybrid Compounds with Multiple Lewis Basic Sites. Crystal Growth and Design, 2016, 16, 265-276.	1.4	52
140	Three 2D mixed-ligand Co(II) coordination polymers containing flexible bis(benzimidazole) ligands with different spacers. Transition Metal Chemistry, 2016, 41, 213-223.	0.7	8
141	In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2016, 186, 19-29.	10.8	538
142	Self-assembled nanoparticle-stabilized photocatalytic reactors. Nanoscale, 2016, 8, 2107-2115.	2.8	22
143	Hexagonal microspindle of NH ₂ -MIL-101(Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC Advances, 2016, 6, 4289-4295.	1.7	190
144	Multi-pathway photoelectron migration in globular flower-like In2O3/AgBr/Bi2WO6 synthesized by microwave-assisted method with enhanced photocatalytic activity. Journal of Molecular Catalysis A, 2016, 414, 27-36.	4.8	39

#	Article	IF	CITATIONS
145	Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. International Journal of Environmental Science and Technology, 2016, 13, 849-856.	1.8	52
146	Photocatalytic degradation of methylene blue and methyl orange in a Zn(II)-based Metal–Organic Framework. Desalination and Water Treatment, 2016, 57, 17844-17851.	1.0	28
147	Two Zinc Based Coordination Compounds Constructed from Two Azophenyl Ligands: Syntheses, Crystal Structure, and Photocatalytic Performance. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 276-284.	1.9	6
148	The application of heterogeneous visible light photocatalysts in organic synthesis. Catalysis Science and Technology, 2016, 6, 349-362.	2.1	201
149	Molecularly Imprinted TiO2/WO3-Coated Magnetic Nanocomposite for Photocatalytic Degradation of 4-Nitrophenol Under Visible Light. Australian Journal of Chemistry, 2016, 69, 638.	0.5	6
150	A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes. Journal of Solid State Chemistry, 2016, 233, 143-149.	1.4	22
151	Bio-sourced mesoporous carbon doped with heteroatoms (N,S) synthesised using one-step hydrothermal process for water remediation. Microporous and Mesoporous Materials, 2016, 222, 55-62.	2,2	25
152	Colorant-free coloration and superhydrophilic modification of poly(ethylene terephthalate) fabric surface by H2O2 and nano-TiO2 ultraviolet photocatalysis. Textile Reseach Journal, 2016, 86, 1009-1022.	1.1	9
153	Photoreactivity of metal-organic frameworks in the decolorization of methylene blue in aqueous solution. Catalysis Today, 2016, 266, 136-143.	2.2	36
154	Superior nanoporous graphitic carbon nitride photocatalyst coupled with CdS quantum dots for photodegradation of RhB. Catalysis Today, 2016, 264, 250-256.	2.2	101
155	New interpenetrated mixed (Co/Ni) metal–organic framework for dye removal under mild conditions. Inorganica Chimica Acta, 2016, 439, 18-23.	1.2	37
156	A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72-123.	3.1	2,318
157	Hybrid (Organic/Inorganic) Electrodes from Bacterially Precipitated CdS for PEC/Storage Applications. Journal of Physical Chemistry C, 2017, 121, 3734-3743.	1.5	13
158	Bi(<scp>iii</scp>) immobilization inside MIL-101: enhanced photocatalytic performance. New Journal of Chemistry, 2017, 41, 2255-2260.	1.4	7
159	Construction of noninterpenetrating and interpenetrating Co(<scp>ii</scp>) networks with halogenated carboxylate modulated by auxiliary N-donor co-ligands: structural diversity, electrochemical and photocatalytic properties. Dalton Transactions, 2017, 46, 1951-1964.	1.6	75
160	Recent Progress in Metalâ€Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Advanced Science, 2017, 4, 1600371.	5.6	594
161	Two novel 2D coordination polymers constructed from 5-aminoisophthalic acid and $4,4\hat{a}\in^2$ -bipyridyl ligands: Syntheses, crystal structure, and photocatalytic performance. Journal of Molecular Structure, 2017, 1135, 129-137.	1.8	13
162	In-situ ethylenediamine-assisted synthesis of a magnetic iron-based metal-organic framework MIL-53(Fe) for visible light photocatalysis. Journal of Colloid and Interface Science, 2017, 494, 32-37.	5.0	90

#	Article	IF	CITATIONS
163	Stable and improved visible-light photocatalytic hydrogen evolution using copper(<scp>ii</scp>)–organic frameworks: engineering the crystal structures. Journal of Materials Chemistry A, 2017, 5, 6013-6018.	5.2	93
164	Shape Controllable Preparation of Submicronic Cadmium Tetrazoleâ€Based Metal–Organic Frameworks via Solvothermal or Microwaveâ€Assisted Methods and Their Photocatalytic Studies. Chinese Journal of Chemistry, 2017, 35, 209-216.	2.6	9
165	Ultrasonic synthesis of two nanostructured cadmium(II) coordination supramolecular polymers: Solvent influence, luminescence and photocatalytic properties. Ultrasonics Sonochemistry, 2017, 37, 414-423.	3.8	48
166	Ag2O/sodium alginate supramolecular hydrogel as a film photocatalyst for removal of organic dyes in wastewater. RSC Advances, 2017, 7, 15077-15083.	1.7	22
167	Photocatalytic degradation of methylene blue in aqueous solution using ceramsite coated with micro-Cu2O under visible-light irradiation. Korean Journal of Chemical Engineering, 2017, 34, 1199-1207.	1.2	13
168	Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from an aqueous medium. Materials Chemistry Frontiers, 2017, 1, 1384-1388.	3.2	34
169	An anionic metal–organic framework with ternary building units for rapid and selective adsorption of dyes. Dalton Transactions, 2017, 46, 3332-3337.	1.6	88
170	Constructing novel WO3/Fe(III) nanofibers photocatalysts with enhanced visible-light-driven photocatalytic activity via interfacial charge transfer effect. Materials Today Energy, 2017, 3, 45-52.	2.5	24
171	Robust Ti―and Zrâ€Based Metalâ€Organic Frameworks for Photocatalysis. Chinese Journal of Chemistry, 2017, 35, 135-147.	2.6	74
172	A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p -nitrophenol. Sensors and Actuators B: Chemical, 2017, 250, 121-131.	4.0	94
173	Polydopamine-Coated Fe ₃ O ₄ Nanoparticles as Synergistic Redox Mediators for Catalytic Reduction of Azo Dyes. Nano, 2017, 12, 1750037.	0.5	12
174	Construction of Pillared-Layer MOF as Efficient Visible-Light Photocatalysts for Aqueous Cr(VI) Reduction and Dye Degradation. ACS Sustainable Chemistry and Engineering, 2017, 5, 4449-4456.	3.2	252
175	A Homochiral {Co ^{ΙΙ} ₁₆ Co ^{ΙΙΙ} ₄ } Supertetrahedral <i>T</i> ₄ Cluster from a Racemic Ligand with Ferromagnetic Behavior and High Photocatalytic Activity. Chemistry - A European Journal, 2017, 23, 8025-8031.	1.7	17
176	An Extremely Stable 2D Zinc(II) Coordination Polymer Exhibiting High Sensing Ability and Photocatalytic Degradation Activities of Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1243-1251.	1.9	17
177	Fabrication of TiO2 nanorods/nanosheets photoelectrode on Ti mesh by hydrothermal method for degradation of methylene blue:influence of calcination temperature. Applied Surface Science, 2017, 419, 409-417.	3.1	21
178	Visible Light Induced Organic Transformations Using Metalâ€Organicâ€Frameworks (MOFs). Chemistry - A European Journal, 2017, 23, 11189-11209.	1.7	176
179	Solidâ€State Gas Adsorption Studies with Discrete Palladium(II) [Pd ₂ (L) ₄] ⁴⁺ Cages. Chemistry - A European Journal, 2017, 23, 10559-10567.	1.7	53
180	Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chemical Engineering Research and Design, 2017, 123, 35-49.	2.7	126

#	Article	IF	CITATIONS
181	Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes. Scientific Reports, 2017, 7, 1303.	1.6	23
182	A catalytic approach to synthesis of PLP analogs and other environmental protocols in a single handed CaO/TiO 2 green nanoparticle. Applied Catalysis B: Environmental, 2017, 210, 276-289.	10.8	14
183	Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chemical Reviews, 2017, 117, 10623-10664.	23.0	114
184	Cu 2 ZnSnS 4 (CZTS)-ZnO: A noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO 2 to CH 4. Journal of CO2 Utilization, 2017, 20, 301-311.	3.3	77
185	Sequestration of orange G and methylene blue from aqueous solutions using a Co(<scp>ii</scp>) coordination polymer. RSC Advances, 2017, 7, 26532-26536.	1.7	9
186	Active removal of waste dye pollutants using Ta3N5/W18O49 nanocomposite fibres. Scientific Reports, 2017, 7, 4090.	1.6	29
187	Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Research, 2017, 10, 3543-3556.	5.8	65
188	An Exceptionally Water Stable Metal–Organic Framework with Amideâ€Functionalized Cages: Selective CO ₂ /CH ₄ Uptake and Removal of Antibiotics and Dyes from Water. Chemistry - A European Journal, 2017, 23, 13058-13066.	1.7	64
189	Degradation kinetics of pollutants present in a simulated wastewater matrix using UV/TiO2 photocatalysis and its microbiological toxicity assessment. Research on Chemical Intermediates, 2017, 43, 6317-6341.	1.3	41
190	Dye Wastewater Cleanup by Graphene Composite Paper for Tailorable Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21298-21306.	4.0	41
191	Extraordinary sensitizing effect of co-doped carbon nanodots derived from mate herb: Application to enhanced photocatalytic degradation of chlorinated wastewater compounds under visible light. Applied Catalysis B: Environmental, 2017, 218, 68-79.	10.8	39
192	Maximizing the Photocatalytic Activity of Metal–Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH ₂ . Journal of the American Chemical Society, 2017, 139, 8222-8228.	6.6	195
193	Facile Solvothermal Synthesis of CeO2–CuO Nanocomposite Photocatalyst Using Novel Precursors with Enhanced Photocatalytic Performance in Dye Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1342-1350.	1.9	22
194	Efficient photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs and an NTU-9 MOF. RSC Advances, 2017, 7, 29015-29024.	1.7	46
195	Effective dual role catalyst of mixed oxide heterostructure for photocatalyst and electrocatalytic sensing of isoniazid. Journal of Materials Science: Materials in Electronics, 2017, 28, 12726-12740.	1.1	10
196	A dual-functional indium–organic framework towards organic pollutant decontamination via physically selective adsorption and chemical photodegradation. Journal of Materials Chemistry A, 2017, 5, 14182-14189.	5.2	80
197	Syntheses, structures, and photocatalytic properties of two new one-dimensional chain transition metal complexes with mixed N,O-donor ligands. Inorganica Chimica Acta, 2017, 466, 291-297.	1.2	14
198	Visible-light-induced tandem reaction of o -aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy. Journal of Catalysis, 2017, 349, 156-162.	3.1	59

#	Article	IF	CITATIONS
199	Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH ₂ â€"UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. Journal of Physical Chemistry C, 2017, 121, 7015-7024.	1.5	116
200	Preparation of a novel sonocatalyst, Au/NiGa2O4-Au-Bi2O3 nanocomposite, and application in sonocatalytic degradation of organic pollutants. Ultrasonics Sonochemistry, 2017, 38, 335-346.	3.8	45
201	Defective Metal–Organic Frameworks Incorporating Iridiumâ€Based Metalloligands: Sorption and Dye Degradation Properties. Chemistry - A European Journal, 2017, 23, 6615-6624.	1.7	44
202	Thermally Induced Single-Crystal-to-Single-Crystal Transformation and Heterogeneous Catalysts for Epoxidation Reaction of Co(II) Based Metal–Organic Frameworks Containing 1,4-Phenylenediacetic Acid. Crystal Growth and Design, 2017, 17, 1824-1835.	1.4	15
203	Ceria Hollow Spheres As an Adsorbent for Efficient Removal of Acid Dye. ACS Sustainable Chemistry and Engineering, 2017, 5, 3570-3582.	3.2	50
204	Degradation of highly concentrated organic compounds over a supported Ru–Cu bimetallic catalyst. New Journal of Chemistry, 2017, 41, 3280-3289.	1.4	11
205	Various Polycarboxylate-Directed Cd(II) Coordination Polymers Based on a Semirigid Bis-pyridyl-bis-amide Ligand: Construction and Fluorescent and Photocatalytic Properties. Crystal Growth and Design, 2017, 17, 483-496.	1.4	69
206	Siloxane-based metal–organic frameworks with remarkable catalytic activity in mild environmental photodegradation of azo dyes. Applied Catalysis B: Environmental, 2017, 205, 78-92.	10.8	62
207	Surfactant-assisted synthesis of hierarchical NH ₂ -MIL-125 for the removal of organic dyes. RSC Advances, 2017, 7, 581-587.	1.7	50
208	Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. Journal of Catalysis, 2017, 345, 281-294.	3.1	147
209	Synthesis of several novel coordination complexes: ion exchange, magnetic and photocatalytic studies. New Journal of Chemistry, 2017, 41, 1046-1056.	1.4	12
210	Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899.	4.6	261
211	Synthesis and Characterization of Bismuth Oxo Compounds Supported on TiO ₂ Photocatalysts for Waste Water Treatment. Key Engineering Materials, 0, 757, 108-112.	0.4	1
212	Carbon decorated In 2 O 3 /TiO 2 heterostructures with enhanced visible-light-driven photocatalytic activity. Journal of Catalysis, 2017, 355, 26-39.	3.1	57
213	New Silver(I) Coordination Polymers with Hetero Donor Ligands: Synthesis, Structure, Luminescence Study and Photo-Catalytic Behavior. ChemistrySelect, 2017, 2, 9029-9036.	0.7	23
214	Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of Congo red from aqueous solutions. RSC Advances, 2017, 7, 46520-46528.	1.7	63
215	A one-dimensional copper(II) coordination polymer incorporating succinate and <i>N</i> , <i>N</i> ,-diethylethylenediamine ligands: crystallographic analysis, vibrational and surface features, and DFT analysis. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 517-524.	0.2	19
216	Facile sol–gel auto-combustion synthesis of β-Zn3B2O6 nanoparticles: optical and photocatalytic studies. Journal of Materials Science: Materials in Electronics, 2017, 28, 17961-17967.	1.1	1

#	Article	IF	CITATIONS
217	Facile synthesis of FeOCl/iron hydroxide hybrid nanosheets: enhanced catalytic activity as a Fenton-like catalyst. New Journal of Chemistry, 2017, 41, 10339-10346.	1.4	30
218	Anchoring NaYF ₄ :Yb,Tm upconversion nanocrystals on concave MIL-53(Fe) octahedra for NIR-light enhanced photocatalysis. Inorganic Chemistry Frontiers, 2017, 4, 1757-1764.	3.0	23
219	Charge transmission channel construction between a MOF and rGO by means of Co–Mo–S modification. Catalysis Science and Technology, 2017, 7, 4478-4488.	2.1	68
220	Nanoporous Nanocomposite Materials for Photocatalysis. Springer Series on Polymer and Composite Materials, 2017, , 129-174.	0.5	O
221	Photocatalytic Overall Water Splitting over MILâ€125(Ti) upon CoPi and Pt Coâ€catalyst Deposition. ChemistryOpen, 2017, 6, 701-705.	0.9	39
222	Metal–organic frameworks (MOFs) for photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2017, 7, 4893-4904.	2.1	258
223	A Poly(ethylenglycol) Functionalized ZIF-8 Membrane Prepared by Coordination-Based Post-Synthetic Strategy for the Enhanced Adsorption of Phenolic Endocrine Disruptors from Water. Scientific Reports, 2017, 7, 8912.	1.6	18
224	NH2-MIL-125(Ti)/graphitic carbon nitride heterostructure decorated with NiPd co-catalysts for efficient photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 219, 101-108.	10.8	102
225	Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. Journal of Colloid and Interface Science, 2017, 506, 437-441.	5.0	202
226	Fractal to monolayer growth of AgCl and Ag/AgCl nanoparticles on vanadium oxides (VO _x) for visible-light photocatalysis. Journal of Materials Chemistry A, 2017, 5, 16953-16963.	5.2	23
227	Assembly of Silver(I)/N,N-Bis(diphenylphosphanylmethyl)-3-aminopyridine/Halide or Pseudohalide Complexes for Efficient Photocatalytic Degradation of Organic Dyes in Water. Crystal Growth and Design, 2017, 17, 4826-4834.	1.4	37
228	Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. Research on Chemical Intermediates, 2017, 43, 5169-5186.	1.3	88
229	Deposition-precipitation preparation of Ag/Ag3PO4/WO3 nanocomposites for efficient Visible-light degradation of rhodamine B under strongly acidic/alkaline conditions. Journal of Colloid and Interface Science, 2017, 506, 207-216.	5.0	65
230	Fabrication of TiO ₂ -Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications. ACS Combinatorial Science, 2017, 19, 585-593.	3.8	19
231	Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis. ChemistrySelect, 2017, 2, 6163-6177.	0.7	23
232	Improved electron-hole separation and migration in V2O5/rutile-anatase photocatalyst system with homo-hetero junctions and its enhanced photocatalytic performance. Chemical Engineering Journal, 2017, 330, 294-308.	6.6	63
233	AginO2 nanoparticles: Novel solvent-free synthesis, characterization, and their visible-light-induced photocatalytic activities. Inorganic and Nano-Metal Chemistry, 2017, 47, 1695-1700.	0.9	1
234	Constructing 2D BiOCI/C3N4 layered composite with large contact surface for visible-light-driven photocatalytic degradation. Applied Surface Science, 2017, 426, 897-905.	3.1	95

#	Article	IF	Citations
235	Novel 3D Semiconducting Openâ€Frameworks based on Cuprous Bromides with Visible Light Driven Photocatalytic Properties. Chemistry - A European Journal, 2017, 23, 14547-14553.	1.7	54
236	Solarâ€Lightâ€Driven Photocatalytic Activity of Novel Sn@Câ€Dotsâ€Modified TiO ₂ Catalyst. ChemistrySelect, 2017, 2, 6683-6688.	0.7	20
237	Electrospun flexible self-standing Cu–Al ₂ O ₃ fibrous membranes as Fenton catalysts for bisphenol A degradation. Journal of Materials Chemistry A, 2017, 5, 19151-19158.	5.2	64
238	Photocatalytic Reaction NO + CO + hν → CO2 + 1/2N2 Activated on ZnO1–x in the UV–Vis Region. Journal of Physical Chemistry C, 2017, 121, 28364-28372.	1.5	5
239	A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production. Journal of Materials Chemistry A, 2017, 5, 25450-25459.	5.2	54
240	Preparation of Fe-MOFs by microwave-assisted ball milling for reducing Cr(<scp>vi</scp>) in wastewater. Dalton Transactions, 2017, 46, 16525-16531.	1.6	36
242	A copper-organic framework as scavenger towards organic dyes pollutants via physical adsorption and visible-light photodegradation. Inorganic Chemistry Communication, 2017, 85, 78-83.	1.8	15
243	Syntheses of Novel Lanthanide Metal–Organic Frameworks for Highly Efficient Visible-Light-Driven Dye Degradation. Crystal Growth and Design, 2017, 17, 4189-4195.	1.4	94
244	Preparation of hematite with an ultrathin iron titanate layer via an in situ reaction and its stable, long-lived, and excellent photoelectrochemical performance. Applied Catalysis B: Environmental, 2017, 218, 690-699.	10.8	21
245	Coordinative integration of a metal-porphyrinic framework and TiO ₂ nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities. Journal of Materials Chemistry A, 2017, 5, 15380-15389.	5.2	91
246	Magnetic Metal-Organic Framework/Graphene Oxide-Based Solid-Phase Extraction Combined with Spectrofluorimetry for the Determination of Enrofloxacin in Milk Sample. Food Analytical Methods, 2017, 10, 4094-4103.	1.3	13
247	Green sol–gel route for selective growth of 1D rutile N–TiO ₂ : a highly active photocatalyst for H ₂ generation and environmental remediation under natural sunlight. RSC Advances, 2017, 7, 33029-33042.	1.7	27
248	A new nanohybrid material constructed from Keggin-type polyoxometalate and Cd(II) semicarbazone Schiff base complex with excellent adsorption properties for the removal of cationic dye pollutants. Journal of Molecular Structure, 2017, 1130, 592-602.	1.8	39
249	Syntheses, structures, photoluminescence and photocatalysis of 2D layered lanthanide-carboxylates with 2, 2′-dithiodibenzoic acid. Journal of Solid State Chemistry, 2017, 246, 138-144.	1.4	20
250	High-performance BiVO4 photoanodes cocatalyzed with an ultrathin \hat{l}_{\pm} -Fe2O3 layer for photoelectrochemical application. Applied Catalysis B: Environmental, 2017, 204, 127-133.	10.8	133
251	Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 2448-2457.	1.1	36
252	Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers, 2017, 4, 144-153.	3.0	131
253	Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: Synergistic effect and optimization study. Ultrasonics Sonochemistry, 2017, 35, 449-457.	3.8	58

#	Article	IF	CITATIONS
254	Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metalâ€organic framework. AICHE Journal, 2017, 63, 2165-2175.	1.8	62
255	Controllable location of Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity. Applied Catalysis B: Environmental, 2017, 201, 12-21.	10.8	88
256	The influence of p-type Mn3O4 nanostructures on the photocatalytic activity of ZnO for the removal of bromo and chlorophenol in natural sunlight exposure. Applied Catalysis B: Environmental, 2017, 201, 105-118.	10.8	80
257	Post-synthetic modification of a metal-organic framework with fluorescent-tag for dual naked-eye sensing in aqueous medium. Sensors and Actuators B: Chemical, 2017, 239, 759-767.	4.0	83
258	Photocatalytic Decontamination of Wastewater Containing Organic Dyes by Metal–Organic Frameworks and their Derivatives. ChemCatChem, 2017, 9, 41-64.	1.8	219
259	Harnessing Ag nanofilm as an electrons transfer mediator for enhanced visible light photocatalytic performance of Ag@AgCl/Ag nanofilm/ZIF-8 photocatalyst. Applied Catalysis B: Environmental, 2017, 202, 64-71.	10.8	105
260	Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202, 165-174.	10.8	472
261	Oxidized g ₃ N ₄ Nanospheres as Catalytically Photoactive Linkers in MOF/g ₃ N ₄ Composite of Hierarchical Pore Structure. Small, 2017, 13, 1601758.	5.2	109
262	Three two-dimensional coordination polymers constructed from transition metals and 2,3-norbornanedicarboxylic acid: Hydrothermal synthesis, crystal structures and photocatalytic properties. Journal of Molecular Structure, 2017, 1130, 223-230.	1.8	14
263	Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and   OH generation in solar photo–electro–Fenton process. Applied Catalysis B: Environmental, 2017, 203, 127-137.	10.8	266
264	Three dimensional MOF–sponge for fast dynamic adsorption. Physical Chemistry Chemical Physics, 2017, 19, 5746-5752.	1.3	29
265	Facile Co-precipitation-calcination Synthesis of CuCo2O4 Nanostructures using Novel Precursors for Degradation of Azo Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 313-322.	1.9	24
266	Oneâ€dimensional TiO ₂ Nanotube Photocatalysts for Solar Water Splitting. Advanced Science, 2017, 4, 1600152.	5.6	405
267	Photocatalytic Cr(VI) reduction and organic-pollutant degradation in a stable 2D coordination polymer. Chinese Journal of Catalysis, 2017, 38, 2141-2149.	6.9	59
268	Construction and photocatalytic properties of two metal-mediated coordination polymers based on benzene-1,3,5-tricarboxylic acid and <i>trans</i> -1-(pyridin-3-yl)-2-(pyridin-4-yl)ethene. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 1017-1023.	0.2	4
269	Nanoparticle/Metal–Organic Framework Composites for Catalytic Applications: Current Status and Perspective. Molecules, 2017, 22, 2103.	1.7	117
270	Synthesis, Structure, and Dye Adsorption Properties of a Nickel(II) Coordination Layer Built from d-Camphorate and Bispyridyl Ligands. Polymers, 2017, 9, 661.	2.0	28
271	Development and characterization of a hybrid mesoporous material infused with metallic oxide nanoparticles for water treatment. Nanomaterials and Nanotechnology, 2017, 7, 184798041772742.	1.2	1

#	Article	IF	CITATIONS
272	Microwave-enhanced Fenton-like degradation by surface-modified metalorganic frameworks as a promising method for removal of dye from aqueous samples. Turkish Journal of Chemistry, 2017, 41, 426-439.	0.5	15
273	A microporous metal–organic framework with open metal sites for selective sensing Fe3+, CrO42- and nitrobenzene. Bulletin of the Chemical Society of Ethiopia, 2017, 31, 291.	0.5	5
274	Spray deposited Fe 2 O 3 and stratified Fe 2 O 3 /ZnO novel photoelectrode for photoelectrocatalytic degradation of benzoic acid under solar light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 72-80.	2.0	24
275	Enhancement of the photocatalytic performance and thermal stability of an iron based metal–organic-framework functionalised by Ag/Ag ₃ PO ₄ . Materials Chemistry Frontiers, 2018, 2, 942-951.	3.2	31
276	Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 2018, 362, 1-23.	9.5	737
277	Synthesis and characterization of CdS/MIL-125 (Ti) as a photocatalyst for water splitting. Materials Science in Semiconductor Processing, 2018, 80, 44-51.	1.9	46
278	Point Defect Effects on Photoelectronic Properties of the Potential Metal-Free C ₂ N Photocatalysts: Insight from First-Principles Computations. Journal of Physical Chemistry C, 2018, 122, 5291-5302.	1.5	47
279	Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catalysis Science and Technology, 2018, 8, 1696-1703.	2.1	58
280	Aerogels and metal–organic frameworks for environmental remediation and energy production. Environmental Chemistry Letters, 2018, 16, 797-820.	8.3	57
281	Fabrication of Agl/MILâ€53(Fe) Composites with Enhanced Photocatalytic Activity for Rhodamine B Degradation under Visible Light Irradiation. Applied Organometallic Chemistry, 2018, 32, e4325.	1.7	20
282	Advanced Overlap Adsorption Model of Few-Layer Boron Nitride for Aromatic Organic Pollutants. Industrial & Description of Chemistry Research, 2018, 57, 4045-4051.	1.8	26
283	AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	6
284	Visible-light-driven photocatalyst for the degradation of methylene blue over a 3D cobalt(II)-4,4′-oxybis(benzoate) framework. Inorganic Chemistry Communication, 2018, 90, 112-114.	1.8	10
285	Syntheses, structures and properties of three chiral metal–organic coordination polymers based on (R)-4-(4-(1-carboxyethoxy)phenoxy)-3-nitrobenzoic acid. Polyhedron, 2018, 149, 117-125.	1.0	9
286	Dual-Functional Conjugated Nanoporous Polymers for Efficient Organic Pollutants Treatment in Water: A Synergistic Strategy of Adsorption and Photocatalysis. Macromolecules, 2018, 51, 3443-3449.	2.2	78
287	Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. Journal of Materials Science: Materials in Electronics, 2018, 29, 10395-10410.	1.1	24
288	Base-Resistant Ionic Metal-Organic Framework as a Porous Ion-Exchange Sorbent. IScience, 2018, 3, 21-30.	1.9	50
289	Aromatic sulfonium polyoxomolybdates: tuning the photochromic properties through substitutions on the counter ion moiety. CrystEngComm, 2018, 20, 2733-2740.	1.3	11

#	Article	IF	CITATIONS
290	A luminescent zinc(<scp>ii</scp>) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor. Dalton Transactions, 2018, 47, 6189-6198.	1.6	147
291	General strategy for lanthanide coordination polymers constructed from 1,1′-ferrocenedicarboxylic acid under hydrothermal conditions. CrystEngComm, 2018, 20, 2608-2616.	1.3	21
292	Novel visible light-driven Cu-based MOFs/Ag ₂ O composite photocatalysts with enhanced photocatalytic activity toward the degradation of orange G: their photocatalytic mechanism and optimization study. New Journal of Chemistry, 2018, 42, 9720-9734.	1.4	65
293	Controlled Ag-TiO 2 heterojunction obtained by combining physical vapor deposition and bifunctional surface modifiers. Journal of Physics and Chemistry of Solids, 2018, 119, 147-156.	1.9	24
294	Photocatalytic Degradation of Binary Dyes Mixture over SrTiO3 Synthesized Using Sodium Carboxymethylcellulose Additive. Russian Journal of Physical Chemistry A, 2018, 92, 809-815.	0.1	5
295	Syntheses, structures and properties of a series of nickel(II) complexes derived from amino-5-mercapto-1,3,4-thiadiazole. Transition Metal Chemistry, 2018, 43, 103-113.	0.7	11
296	Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation. Applied Surface Science, 2018, 441, 85-98.	3.1	94
297	Mesocrystalline Cr and Sb-codoped anatase visible-light-driven photocatalyst. Ceramics International, 2018, 44, 8232-8241.	2.3	6
298	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	5.2	369
299	Adsorption and photocatalytic properties of transition metal Zinc(II) complex based on 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid. Journal of Molecular Structure, 2018, 1161, 238-245.	1.8	7
300	A facile dip-coating method for the preparation of separable MoS ₂ sponges and their high-efficient adsorption behaviors of Rhodamine B. Inorganic Chemistry Frontiers, 2018, 5, 827-834.	3.0	39
301	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
302	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	9.5	246
303	Engineered synthesis of hierarchical porous organic polymers for visible light and natural sunlight induced rapid degradation of azo, thiazine and fluorescein based dyes in a unique mechanistic pathway. Applied Catalysis B: Environmental, 2018, 227, 102-113.	10.8	79
304	Syntheses of copper–iodine cluster-based frameworks for photocatalytic degradation of methylene blue. CrystEngComm, 2018, 20, 1232-1236.	1.3	28
305	Photofunctional hybrids of TiO ₂ and titanium metalâ€"organic frameworks for dye degradation and lanthanide ion-tuned multi-color luminescence. New Journal of Chemistry, 2018, 42, 4394-4401.	1.4	17
306	New Zn/Cd Coordination Polymers Constructed from Mixed Ligands: Crystal Structures and Photocatalytic Performances Toward Organic Dyes Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1565-1573.	1.9	7
307	Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. Journal of Colloid and Interface Science, 2018, 516, 274-283.	5.0	88

#	Article	IF	CITATIONS
308	A facile strategy for fabricating Agl–MIL-53(Fe) composites: superior interfacial contact and enhanced visible light photocatalytic performance. New Journal of Chemistry, 2018, 42, 3799-3807.	1.4	44
309	Photocatalytic degradation of organic dyes by the conjugated polymer poly(1,3,4-oxadiazole)s and its photocatalytic mechanism. Journal of Materials Science, 2018, 53, 7048-7059.	1.7	13
310	2D Heterostructure Membranes with Sunlightâ€Driven Selfâ€Cleaning Ability for Highly Efficient Oil–Water Separation. Advanced Functional Materials, 2018, 28, 1706545.	7.8	182
311	Fluorescence sensing and photocatalytic properties of a 2D stable and biocompatible Zn(II)-based polymer. Journal of Molecular Structure, 2018, 1158, 264-270.	1.8	20
312	A novel dual-emitting luminescent metal-organic framework for naked-eye and microgram detection of picric acid. Dyes and Pigments, 2018, 150, 301-305.	2.0	11
313	Facile photohydroxylation of ZnS nanobelts for enhanced photocatalytic activity. Journal of Environmental Chemical Engineering, 2018, 6, 228-235.	3.3	16
314	Quantitative relationships between molecular parameters and reaction rate of organic chemicals in Fenton process in temperature range of 15.8†°C†60†°C. Chemical Engineering Journal, 2018, 350, 534-5	540 ⁶	19
315	Assembly of Zn ^{II} -coordination polymers constructed from benzothiadiazole functionalized bipyridines and V-shaped dicarboxylic acids: topology variety, photochemical and visible-light-driven photocatalytic properties. CrystEngComm, 2018, 20, 668-678.	1.3	39
316	Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Materials Research Bulletin, 2018, 100, 357-366.	2.7	174
317	Sphalerite Cu/ZnS Nanoparticles Derived from Cu/Znâ€ZIFâ€8 for the Photocatalytic Degradation and Adsorption of Dyes. European Journal of Inorganic Chemistry, 2018, 2018, 1038-1046.	1.0	11
318	Synthesis, characterization, and morphological control of Cn3B2O6 nanostructures by sol–gel process for azo dye degradation. Journal of Materials Science: Materials in Electronics, 2018, 29, 4327-4333.	1.1	5
319	Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. Dalton Transactions, 2018, 47, 1895-1902.	1.6	112
320	Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 2018, 337, 351-371.	6.6	402
321	Increased omnidirectional light absorbance by using hollow silica nanoparticles in an anti-reflective pattern for efficient organic photovoltaic devices. Organic Electronics, 2018, 53, 315-319.	1.4	1
322	Pore size distribution dependent controlling selective degradation of binary dye effluent. Journal of Molecular Liquids, 2018, 250, 388-395.	2.3	12
323	Hybrid BiOBr/UiO-66-NH ₂ composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation. RSC Advances, 2018, 8, 2048-2058.	1.7	90
324	Two new luminescence cadmium coordination polymers constructed by 4,4′-di(4 <i>H</i> -1,2,4-triazol-4-yl)-1,1′-biphenyl and polycarboxylic acids: syntheses, structures, Fe ³⁺ identifying and photo-degradable properties. RSC Advances, 2018, 8, 557-566.	1.7	14
325	A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible-light irradiation. Journal of Materials Chemistry A, 2018, 6, 2148-2156.	5.2	40

#	ARTICLE	IF	CITATIONS
326	Enhancement of visible-light-driven CO ₂ reduction performance using an amine-functionalized zirconium metal–organic framework. Dalton Transactions, 2018, 47, 909-915.	1.6	67
327	Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. Journal of the American Chemical Society, 2018, 140, 1812-1823.	6.6	496
328	Cu-BTC as a novel material for elemental mercury removal from sintering gas. Fuel, 2018, 217, 297-305.	3.4	55
329	Roomâ€Temperature Synthesis and Enhanced Photocatalytic Performance of BiOCl Microsphere. ChemistrySelect, 2018, 3, 4512-4521.	0.7	12
330	Exceptional synergistic enhancement of the photocatalytic activity of SnS2 by coupling with polyaniline and N-doped reduced graphene oxide. Applied Catalysis B: Environmental, 2018, 236, 53-63.	10.8	274
331	TiO2 nanodots anchored on nitrogen-doped carbon nanotubes encapsulated cobalt nanoparticles as photocatalysts with photo-enhanced catalytic activity towards the pollutant removal. Journal of Colloid and Interface Science, 2018, 526, 158-166.	5.0	32
333	PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light. Journal of Catalysis, 2018, 361, 248-254.	3.1	79
334	Synthesis of MIL-100(Fe)@MIL-53(Fe) as a novel hybrid photocatalyst and evaluation photocatalytic and photoelectrochemical performance under visible light irradiation. Journal of Solid State Chemistry, 2018, 262, 172-180.	1.4	71
335	Ag2MoO4 nanoparticles encapsulated in g-C3N4 for sunlight photodegradation of pollutants. Catalysis Today, 2018, 315, 205-212.	2.2	66
336	A visible-light driven Bi ₂ S ₃ @ZIF-8 core–shell heterostructure and synergistic photocatalysis mechanism. Dalton Transactions, 2018, 47, 684-692.	1.6	83
337	Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers. Journal of Colloid and Interface Science, 2018, 512, 730-739.	5.0	78
338	Boosting visible light photoreactivity of photoactive metal-organic framework: Designed plasmonic Z-scheme Ag/AgCl@MIL-53-Fe. Applied Catalysis B: Environmental, 2018, 224, 38-45.	10.8	195
339	Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Applied Catalysis B: Environmental, 2018, 224, 60-68.	10.8	125
340	Three coordination compounds based on tris(1-imidazolyl)benzene: Hydrothermal synthesis, crystal structure and adsorption performances toward organic dyes. Polyhedron, 2018, 139, 89-97.	1.0	12
341	Two new uranyl complexes as visible light driven photocatalysts for degradation of tetracycline. Polyhedron, 2018, 139, 63-72.	1.0	10
342	A cationic metal-organic framework based on {Zn4} cluster for rapid and selective adsorption of dyes. Chinese Chemical Letters, 2018, 29, 857-860.	4.8	38
343	Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373, 83-115.	9.5	146
344	Structural diversity, single-crystal to single-crystal transformation and photocatalytic properties of Cu(II)-metal-organic frameworks based on 1,4-phenylenedipropionic acid. Inorganica Chimica Acta, 2018, 469, 11-19.	1.2	13

#	Article	IF	CITATIONS
345	Characteristics and difference of oxidation and coagulation mechanisms for the removal of organic compounds by quantum parameter analysis. Chemical Engineering Journal, 2018, 332, 351-360.	6.6	50
346	Metal–Organic Frameworks as Platforms for Catalytic Applications. Advanced Materials, 2018, 30, e1703663.	11.1	1,210
347	A magnetically recoverable bimetallic Au-FeNPs decorated on g-C 3 N 4 for efficient photocatalytic degradation of organic contaminants. Journal of Molecular Liquids, 2018, 249, 754-763.	2.3	25
348	A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catalysis Science and Technology, 2018, 8, 679-696.	2.1	109
349	Nanoporous Conducting Covalent Organic Polymer (COP) Nanostructures as Metal-Free High Performance Visible-Light Photocatalyst for Water Treatment and Enhanced CO ₂ Capture. Journal of Physical Chemistry C, 2018, 122, 274-284.	1.5	37
350	A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Transactions, 2018, 47, 1488-1497.	1.6	58
351	ZnO-rich CdS-ZIF-8 catalyst for enhanced visible-light photocatalytic degradation of methylene blue. Research on Chemical Intermediates, 2018, 44, 2347-2364.	1.3	14
352	Enhanced visible light photodegradation of pharmaceutical pollutant, warfarin by nano-sized SnTe, effect of supporting, catalyst dose, and scavengers. Environmental Toxicology and Pharmacology, 2018, 58, 45-53.	2.0	23
353	The crystal structure and photocatalytic properties of a cobalt(II) coordination polymer based on 4,4 \hat{a} \in 2-oxy(bis)benzoic acid. Inorganic Chemistry Communication, 2018, 88, 21-24.	1.8	7
354	Enhanced charge separation of CuS and CdS quantum-dot-cosensitized porous TiO2-based photoanodes for photoelectrochemical water splitting. Ceramics International, 2018, 44, 3099-3106.	2.3	31
355	Environmental friendly natural rubber- blend -poly-vinylpyrrolidone/silver (NR- b -PVP/Ag) films for improved solar driven degradation of organic pollutants at neutral pH. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 9-18.	2.0	12
356	Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 2018, 6, 3531-3555.	3.3	536
358	Recent Progress in Constructing Plasmonic Metal/Semiconductor Hetero-Nanostructures for Improved Photocatalysis. Catalysts, 2018, 8, 634.	1.6	15
359	Photoactive metal–organic framework as a bifunctional material for 4-hydroxy-4′-nitrobiphenyl detection and photodegradation of methylene blue. Dalton Transactions, 2018, 47, 16551-16557.	1.6	30
360	ZIF-8@polyoxometalate derived Si-doped ZnWO ₄ @ZnO nanocapsules with open-shaped structures for efficient visible light photocatalysis. Chemical Communications, 2018, 54, 13786-13789.	2.2	17
361	Customizable 3D-printed architecture with ZnO-based hierarchical structures for enhanced photocatalytic performance. Nanoscale, 2018, 10, 21696-21702.	2.8	50
362	Selective photooxidation of sulfides mediated by singlet oxygen using visible-light-responsive coordination polymers. Chemical Communications, 2018, 54, 13002-13005.	2.2	54
365	Ruthenium(II) Tris($2,2\hat{a}\in^2$ -bipyridyl) Complex Incorporated in UiO-67 as Photoredox Catalyst. Journal of Physical Chemistry C, 2018, 122, 29190-29199.	1.5	26

#	Article	IF	CITATIONS
366	Photocatalytic Performance on Visible Light Induced ZnS QDsâ€MgAl Layered Double Hydroxides Hybrids for Methylene Blue Dye Degradation. ChemistrySelect, 2018, 3, 13419-13426.	0.7	31
367	Photoreduction of Carbon Dioxide to Methanol over Copper Based Zeolitic Imidazolate Framework-8: A New Generation Photocatalyst. Catalysts, 2018, 8, 581.	1.6	41
368	Bimetallic Metal Organic Frameworks as Magnetically Separable Heterogeneous Catalysts and Photocatalytic Dye Degradation. ChemPlusChem, 2019, 84, 136-141.	1.3	17
369	Design and synthesis of bandgap tailored porous Ag/NiO nanocomposite: an effective visible light active photocatalyst for degradation of organic pollutants. Journal of Materials Science: Materials in Electronics, 2018, 29, 20367-20382.	1.1	22
370	Self-sacrificing template synthesis of CdS quantum dots/Cd-Hap composite photocatalysts for excellent H2 production under visible light. International Journal of Hydrogen Energy, 2018, 43, 20616-20626.	3.8	10
371	Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	170
372	Direct <i>Z</i> -Scheme Cs ₂ O–Bi ₂ O ₃ –ZnO Heterostructures as Efficient Sunlight-Driven Photocatalysts. ACS Omega, 2018, 3, 12260-12269.	1.6	60
373	Polyoxometalate Cluster Sensitized with Copper-Viologen Framework for Efficient Degradation of Organic Dye in Ultraviolet, Visible, and Near-Infrared Light. ACS Applied Materials & Degradation of 2018, 10, 35671-35675.	4.0	50
374	Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MlLâ€125â€NH ₂ under Visible Light Irradiation. Advanced Functional Materials, 2018, 28, 1806368.	7.8	110
375	TiO ₂ Nanoparticles Anchored onto the Metal–Organic Framework NH ₂ -MIL-88B(Fe) as an Adsorptive Photocatalyst with Enhanced Fenton-like Degradation of Organic Pollutants under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 16186-16197.	3.2	133
376	High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C ₃ N ₄) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano, 2018, 12, 9441-9450.	7.3	455
377	Cluster-Based Anionic Template Assisted in the Formation of 3D Cobalt Cationic Framework: A Bridge Connecting MOFs and Halometallates?. Inorganic Chemistry, 2018, 57, 11318-11321.	1.9	18
379	Understanding the Correlation of Crystal Atoms with Photochemistry Property: Zn ₅ (OH) ₆ (CO ₃) ₂ <i>vs</i> . ZnCO ₃ . ChemistrySelect, 2018, 3, 8886-8894.	0.7	15
380	Strategies to improve metal organic frameworks photocatalyst's performance for degradation of organic pollutants. Coordination Chemistry Reviews, 2018, 376, 449-466.	9.5	139
381	The Use of Copper oxides, Supported Onto Biogenic Silica from The Leaves of Dendrocalamus asper for the degradation of Congo red. Oriental Journal of Chemistry, 2018, 34, 1303-1311.	0.1	0
382	Synthesis and Characterization of 2D and 3D Zinc(II) Coordination Polymers with High Photocatalytic Activities for Removal of Methylene Blue Dye. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1196-1202.	0.6	10
383	Efficient heterogeneous catalysis by dual ligand Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) MOFs for the Knoevenagel condensation reaction: adaptable synthetic routes, characterization, crystal structures and luminescence studies. Inorganic Chemistry Frontiers, 2018, 5, 2630-2640.	3.0	59
384	Mechanism of organic pollutants sorption from aqueous solution by cationic tunable organoclays. Journal of Colloid and Interface Science, 2018, 529, 90-99.	5.0	30

#	Article	IF	CITATIONS
385	Enhanced Photocatalytic Performance of Hierarchical ZnFe2O4/g-C3N4 Heterojunction Composite Microspheres. Catalysis Letters, 2018, 148, 2179-2189.	1.4	31
386	Two-dimensional molybdenum disulphide nanoflakes synthesized by liquid-solid phase reaction method: regenerative photocatalytic performance under UV-visible light irradiation by advance oxidation process. Materials Research Express, 2018, 5, 056206.	0.8	6
387	Nonmetal to Metal Transition and Ultrafast Charge Carrier Dynamics of Zn Clusters on p-Si(100) by fs-XUV Photoemission Spectroscopy. Nano Letters, 2018, 18, 4107-4114.	4.5	9
388	Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole. Chemical Engineering Journal, 2018, 350, 436-444.	6.6	135
389	Magnetic mesoporous \hat{I}^3 -Al2O3/ZnFe2O4 micro-bowls realizing enhanced adsorption, separation and recycle performance towards waste water. Microporous and Mesoporous Materials, 2018, 270, 120-126.	2.2	15
390	Synthesis, Crystal Structure, Luminescence Sensing, and Photocatalytic Properties of a 2D Cobalt(II) Coordination Polymer Containing Bis(benzimidazole) Moieties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 439-447.	0.3	6
391	CNTs modified graphitic C 3 N 4 with enhanced visibleâ€light photocatalytic activity for the degradation of organic pollutants. Micro and Nano Letters, 2018, 13, 752-757.	0.6	7
392	Solid State Tuning of TiO ₂ Morphology, Crystal Phase, and Size through Metal Macromolecular Complexes and Its Significance in the Photocatalytic Response. ACS Applied Energy Materials, 2018, 1, 3159-3170.	2.5	22
393	Carbon-supported photocatalysts for organic dye photodegradation., 2018,, 99-138.		5
394	Photocatalysts for hydrogen generation and organic contaminants degradation. , 2018, , 215-236.		7
395	Two anthracene-based metal–organic frameworks for highly effective photodegradation and luminescent detection in water. Journal of Materials Chemistry A, 2018, 6, 17177-17185.	5.2	95
396	The Influence of Carbon Nitride Nanosheets Doping on the Crystalline Formation of MILâ€88B(Fe) and the Photocatalytic Activities. Small, 2018, 14, e1802045.	5.2	94
397	<i>In situ</i> growth of ZIF-67 on a nickel foam as a three-dimensional heterogeneous catalyst for peroxymonosulfate activation. RSC Advances, 2018, 8, 26377-26382.	1.7	72
398	A Quantitative-Structure-Activity-Relationship (QSAR) model for the reaction rate constants of organic compounds during the ozonation process at different temperatures. Chemical Engineering Journal, 2018, 353, 288-296.	6.6	35
399	Ag ₃ PO ₄ â€MILâ€53(Fe) Composites with Visibleâ€Lightâ€Enhanced Photocatalytic Activities for Rhodamine B Degradation. ChemistrySelect, 2018, 3, 8045-8050.	0.7	16
400	Multifunctional CdSNPs@ZIF-8: Potential Antibacterial Agent against GFP-Expressing <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> and Efficient Photocatalyst for Degradation of Methylene Blue. ACS Omega, 2018, 3, 8288-8308.	1.6	49
401	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
402	Zn-based metal–organic frameworks (MOFs) of pyridinemethanol–carboxylate conjugated ligands: Deprotonation-dependent structures and CO2 adsorption. Polyhedron, 2018, 153, 218-225.	1.0	16

#	Article	IF	Citations
403	Facet, Junction and Electric Field Engineering of Bismuthâ€Based Materials for Photocatalysis. ChemCatChem, 2018, 10, 4477-4496.	1.8	89
404	Immobilization of a Full Photosystem in the Largeâ€Pore MILâ€101 Metal–Organic Framework for CO ₂ reduction. ChemSusChem, 2018, 11, 3315-3322.	3 . 6	57
405	Highly efficient photocatalytic Cr(VI) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs. Polyhedron, 2018, 152, 216-224.	1.0	56
406	The utilization of a stable 2D bilayer MOF for simultaneous study of luminescent and photocatalytic properties: experimental studies and theoretical analysis. RSC Advances, 2018, 8, 23529-23538.	1.7	24
407	A new 3D Gd-based metal-organic framework with paddle-wheel unit: Structure and photocatalytic property. Inorganic Chemistry Communication, 2018, 95, 104-106.	1.8	8
408	Photocatalytic degradation of organic dyes by a donor–acceptor type conjugated polymer: poly(thiopheneâ€1,3,4â€oxadiazole) and its photocatalytic mechanism. Polymer International, 2018, 67, 1282-1290.	1.6	4
409	Enhancement of photoredox catalytic properties of porphyrinic metal–organic frameworks based on titanium incorporation ⟨i⟩via⟨/i⟩ post-synthetic modification. Chemical Communications, 2018, 54, 8610-8613.	2.2	43
410	Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47, 8134-8172.	18.7	1,119
411	Recent progress in nanostructured magnetic framework composites (MFCs): Synthesis and applications. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 653-677.	2.7	47
412	Design of Singleâ€Site Photocatalysts by Using Metal–Organic Frameworks as a Matrix. Chemistry - an Asian Journal, 2018, 13, 1767-1779.	1.7	49
413	Synthesis, crystal structure and photocatalytic properties of a Mn (II) metal-organic framework based on a thiophene-functionalized dicarboxylate ligand. Inorganic Chemistry Communication, 2018, 96, 124-127.	1.8	16
414	One-pot synthesis of a highly porous anionic hypercrosslinked polymer for ultrafast adsorption of organic pollutants. Polymer Chemistry, 2018, 9, 4724-4732.	1.9	59
415	A new series of Cd(<scp>ii</scp>) metal–organic architectures driven by soft ether-bridged tricarboxylate spacers: synthesis, structural and topological versatility, and photocatalytic properties. Dalton Transactions, 2018, 47, 14327-14339.	1.6	88
416	Adsorption performance toward organic pollutants, odour control and anti-microbial activities of one Ag-based coordination polymer. Journal of Environmental Chemical Engineering, 2018, 6, 4961-4969.	3.3	22
417	Fabrication of superhydrophobic Cu-BiOBr surface for oil/water separation and water soluble pollutants degradation. Applied Surface Science, 2018, 462, 583-589.	3.1	41
418	Photocatalytic degradation of DOM in urban stormwater runoff with TiO2 nanoparticles under UV light irradiation: EEM-PARAFAC analysis and influence of co-existing inorganic ions. Environmental Pollution, 2018, 243, 177-188.	3.7	53
419	Smallâ€Sized Bimetallic CuPd Nanoclusters Encapsulated Inside Cavity of NH ₂ â€UiOâ€66(Zr) with Superior Performance for Lightâ€Induced Suzuki Coupling Reaction. Small Methods, 2018, 2, 1800164.	4.6	59
420	The selectively fluorescent sensing detection and adsorptive removal of Pb2+ with a stable $[\hat{l}'-Mo8O26]$ -based hybrid. Journal of Colloid and Interface Science, 2018, 532, 598-604.	5.0	22

#	Article	IF	Citations
421	Technology for the Remediation of Water Pollution: A Review on the Fabrication of Metal Organic Frameworks. Processes, 2018, 6, 122.	1.3	53
422	2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation. Chemosphere, 2018, 212, 828-836.	4.2	20
423	Highly Efficient Photocatalytic Degradation of Dyes by a Copper–Triazolate Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 16804-16813.	1.7	81
424	MOF derived Bi2MoO6/TiO2 nanohybrids: enhanced photocatalytic activity for Rhodamine B degradation under sunlike irradiation. Research on Chemical Intermediates, 2018, 44, 6431-6444.	1.3	9
425	Doping Ag/AgCl in zeolitic imidazolate framework-8 (ZIF-8) to enhance the performance of photodegradation of methylene blue. Chemosphere, 2018, 209, 44-52.	4.2	56
426	Zeolitic imidazolate framework-7: Novel ammonia atmosphere-assisted synthesis, thermal and chemical durability, phase reversibility and potential as highly efficient nanophotocatalyst. Chemical Physics, 2018, 511, 33-45.	0.9	14
427	Immobilization of polyoxometalate in a cage-based metal–organic framework towards enhanced stability and highly effective dye degradation. Polyhedron, 2018, 152, 108-113.	1.0	32
428	Synthesis, crystallographic structure, DFT calculations and Hirshfeld surface analysis of a fumarate bridged Co(II) coordination polymer. Journal of Molecular Structure, 2018, 1173, 42-51.	1.8	59
429	Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. Chemosphere, 2018, 209, 783-800.	4.2	366
430	Regulation of the surface area and surface charge property of MOFs by multivariate strategy: Synthesis, characterization, selective dye adsorption and separation. Microporous and Mesoporous Materials, 2018, 272, 101-108.	2.2	112
431	Three bulky conjugated 4-(2,6-di(pyrazin-2-yl)pyridin-4-yl)benzoate-based chains exhibiting dual photocatalytic and electrocatalytic performances. Journal of Molecular Structure, 2019, 1176, 376-385.	1.8	8
432	Keggin-type polyoxometalates supported on PANI-coated CuS: Synthesis, characterization and application as the efficient adsorbents for selective dye removal. Journal of Industrial and Engineering Chemistry, 2019, 80, 205-216.	2.9	16
433	Anisotropic CoFe ₂ O ₄ @Graphene Hybrid Aerogels with High Flux and Excellent Stability as Building Blocks for Rapid Catalytic Degradation of Organic Contaminants in a Flow-Type Setup. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34222-34231.	4.0	40
434	Water-dispersible ZnO/COFe2O4/graphene photocatalyst and their high-performance in water treatment. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 873-877.	1.0	4
435	Preparation of K8[Cu(H2O)W11CrO39]@rGO-CeO2 nanocomposite and its photodegradation of Rhodamine B. Inorganic Chemistry Communication, 2019, 108, 107506.	1.8	13
436	Green synthesis of nanoscale cobalt(<scp>ii</scp>)-based MOFs: highly efficient photo-induced green catalysts for the degradation of industrially used dyes. Dalton Transactions, 2019, 48, 13869-13879.	1.6	33
437	[Ni(2,2′-bipy)3]Cl2 activated sepiolite clay with high photocatalytic and oil–water separation abilities. Journal of Industrial and Engineering Chemistry, 2019, 80, 33-42.	2.9	6
438	Highly sensitive and selective fluorescent detection of phosphate in water environment by a functionalized coordination polymer. Water Research, 2019, 163, 114883.	5.3	48

#	Article	IF	CITATIONS
439	Cu3(BTC)2 metal organic framework as heterogeneous solid catalyst for the reduction of styrenes with silane as reducing agent. Inorganica Chimica Acta, 2019, 496, 119026.	1.2	4
440	Multi-core-shell composite SnO2NPs@ZIF-8: potential antiviral agent and effective photocatalyst for waste-water treatment. Environmental Science and Pollution Research, 2019, 26, 23346-23358.	2.7	32
441	Novel method of square wave voltammetry for deposition of Bi2S3 thin film: Photocatalytic reduction of hexavalent Cr in single and binary mixtures. Journal of Hazardous Materials, 2019, 380, 120879.	6.5	35
442	Novel Cu2O/Cu-MOF/rGO is reported as highly efficient catalyst for reduction of 4-nitrophenol. Materials Chemistry and Physics, 2019, 237, 121846.	2.0	28
443	Synthesis, structure and photocatalytic degradation of organic dyes of a copper(II) metal–organic framework (Cu–MOF) with a 4-coordinated three-dimensional CdSO ₄ topology. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1053-1059.	0.2	9
444	Novel organo modified MoCdS3 heterojunctions for enhancement of photocatalytic activity: The synergistic effects of surface modification and fast photogenerated carrier transfer. Applied Surface Science, 2019, 493, 561-568.	3.1	1
445	Modular construction, magnetism and photocatalytic properties of two new metal-organic frameworks based on a semi-rigid tetracarboxylate ligand. Journal of Solid State Chemistry, 2019, 277, 673-679.	1.4	17
446	Boosting Photocatalytic Performance in Mixed-Valence MIL-53(Fe) by Changing Fe Fe ^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> Fe^{Sup> S}}}}}}}}}}}}}}}}}}}}	4.0	121
447	Temperature induced modifications in shapes and crystal phases of MoO3 for enhanced photocatalytic degradation of dye waste water pollutants under UV irradiation. Journal of Alloys and Compounds, 2019, 806, 1368-1376.	2.8	36
448	Protonic acid-assisted universal synthesis of defect abundant multifunction carbon nitride semiconductor for highly-efficient visible light photocatalytic applications. Applied Catalysis B: Environmental, 2019, 258, 118011.	10.8	38
449	An intrinsic kinetic model for liquidâ€phase photocatalytic hydrogen production. AICHE Journal, 2019, 65, e16724.	1.8	20
450	Insights into charge transfer and solar light photocatalytic activity induced by the synergistic effect of defect state and plasmon in Au nanoparticle-decorated hierarchical 3D porous ZnO microspheres. Applied Surface Science, 2019, 494, 959-968.	3.1	24
451	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
452	Study of solvent effect on structural and photoconductive behavior of ternary chalcogenides InBiS3-In2S3-Bi2S3 composite thin films deposited via AACVD. Main Group Metal Chemistry, 2019, 42, 102-112.	0.6	14
453	Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem, 2019, 1, 100005.	10.1	289
454	Robot path planning with two-axis positioner for non-ideal sphere-pipe joint welding based on laser scanning. International Journal of Advanced Manufacturing Technology, 2019, 105, 1295-1310.	1.5	11
455	Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants. Environmental Pollution, 2019, 255, 113337.	3.7	48
456	Zr-Modified ZnO for the Selective Oxidation of Cinnamaldehyde to Benzaldehyde. Catalysts, 2019, 9, 716.	1.6	4

#	Article	IF	Citations
457	Exciton Channel of Photoactivation for Redox Reactions on the Surface of 2D ZnO Nanostructures. Journal of Physical Chemistry C, 2019, 123, 27399-27405.	1.5	7
459	A review: the utilization of mesoporous materials in wastewater treatment. Materials Research Express, 2019, 6, 122002.	0.8	18
460	A Highly Efficient Near-Infrared-Activated Photocatalyst Based on an Electron-Deficient Copper-Viologen-Polyoxometalate Framework with a Copper {Cu ₃ } Cluster Decorated Phosphotungstate as a Building Block. Crystal Growth and Design, 2019, 19, 6845-6849.	1.4	13
462	Computational Studies of Photocatalysis with Metal–Organic Frameworks. Energy and Environmental Materials, 2019, 2, 251-263.	7.3	66
463	Function–Structure Relationship in Metal–Organic Frameworks for Mild, Green, and Fast Catalytic C–C Bond Formation. Inorganic Chemistry, 2019, 58, 14429-14439.	1.9	25
464	Fabrication of Ag/Ag3PO4/WO3 ternary nanoparticles as superior photocatalyst for phenol degradation under visible light irradiation. Solid State Sciences, 2019, 96, 105967.	1.5	31
465	Nitrogen-Doped Graphene Quantum Dots as Metal-Free Photocatalysts for Near-Infrared Enhanced Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2019, 2, 7043-7050.	2.4	30
466	Sequential structural transformations via pseudohalide-anion exchange reactions in Cu(II) supramolecular complexes. Journal of Solid State Chemistry, 2019, 277, 773-778.	1.4	3
467	Efficient organic pollutant degradation under visible-light using functional polymers of intrinsic microporosity. Catalysis Science and Technology, 2019, 9, 5383-5393.	2.1	22
468	Recent Advances on Visible Light Metal-Based Photocatalysts for Polymerization under Low Light Intensity. Catalysts, 2019, 9, 736.	1.6	36
469	Effect of linker and metal on photoreduction and cascade reactions of nitroaromatics by M-UiO-66 metal organic frameworks. Inorganica Chimica Acta, 2019, 497, 119076.	1.2	14
470	Syntheses and photocatalytic properties of three new d ¹⁰ -based coordination polymers: effects of metal centres and ancillary ligands. CrystEngComm, 2019, 21, 6558-6565.	1.3	29
471	Two-fold 2D + 2D â†' 2D interweaved rhombus (4,4) grid: synthesis, structure, and dye removal properties in darkness and in daylight. Dalton Transactions, 2019, 48, 1095-1107.	1.6	6
472	Syntheses, structural diversity and photocatalytic properties of three coordination polymers assembled by different N-heterocyclic ligands. New Journal of Chemistry, 2019, 43, 320-329.	1.4	11
473	Phenol–TiO ₂ complex photocatalysis: visible light-driven selective oxidation of amines into imines in air. Sustainable Energy and Fuels, 2019, 3, 488-498.	2.5	45
474	Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews, 2019, 48, 463-487.	18.7	967
475	Trifunctional metal–organic platform for environmental remediation: structural features with peripheral hydroxyl groups facilitate adsorption, degradation and reduction processes. Dalton Transactions, 2019, 48, 915-927.	1.6	99
476	UV and Visible Light Induced Photocatalytic Degradation on p–n Cu ₂ 0/ZnO Nanowires Decorated with Au–Pd Alloy Nanoparticles. Advanced Materials Interfaces, 2019, 6, 1801744.	1.9	18

#	Article	IF	CITATIONS
477	Syntheses, structures and properties of a new Cu(II) coordination polymer based on 4,4â \in 2-(hexafluoroisopropylidene)bis(benzoic acid) ligand. Journal of Molecular Structure, 2019, 1183, 292-297.	1.8	7
478	Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 247, 24-48.	10.8	309
479	Ultrastable Luminescent Hybrid Bromide Perovskite@MOF Nanocomposites for the Degradation of Organic Pollutants in Water. ACS Applied Nano Materials, 2019, 2, 1333-1340.	2.4	102
480	Pure Inorganic Iodocuprate Framework Embedding In Situ Generated [Pb ₄ (OH) ₄] ⁴⁺ Cubic Template. Inorganic Chemistry, 2019, 58, 1746-1749.	1.9	16
481	Porous Eleocharis@MnPE Layered Hybrid for Synergistic Adsorption and Catalytic Biodegradation of Toxic Azo Dyes from Industrial Wastewater. Environmental Science & Environmen	4.6	102
482	A Series of Iodoargentates Directed by Solvated Metal Cations Featuring Uptake and Photocatalytic Degradation of Organic Dye Pollutants. Chemistry - an Asian Journal, 2019, 14, 640-646.	1.7	12
483	Applications of inorganicâ€organic hybrid architectures based on polyoxometalates in catalyzed and photocatalyzed chemical transformations. Applied Organometallic Chemistry, 2019, 33, e4808.	1.7	42
484	Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: A correlational study. Carbon, 2019, 146, 348-363.	5.4	89
485	A stable 1D mixed-valence Cul/Cull coordination polymer with photocatalytic reduction activity toward $Cr(\hat{a}¥)$. Journal of Molecular Structure, 2019, 1183, 256-262.	1.8	12
486	Hydrolytically Stable Nanotubular Cationic Metal–Organic Framework for Rapid and Efficient Removal of Toxic Oxo-Anions and Dyes from Water. Inorganic Chemistry, 2019, 58, 2899-2909.	1.9	106
487	Two novel organic phosphorous-based MOFs: synthesis, characterization and photocatalytic properties. Dalton Transactions, 2019, 48, 523-534.	1.6	54
488	Synthesis of Graphene Oxide/Metalâ€Organic Frameworks Composite Materials for Removal of Congo Red from Wastewater. ChemistrySelect, 2019, 4, 5755-5762.	0.7	29
489	Ultrasonicâ€Assisted Linker Exchange (USALE): A Novel Postâ€Synthesis Method for Controlling the Functionality, Porosity, and Morphology of MOFs. Chemistry - A European Journal, 2019, 25, 10876-10885.	1.7	24
490	Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Applied Catalysis B: Environmental, 2019, 257, 117855.	10.8	244
491	A new Zn(<scp>ii</scp>)-based 3D metal–organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes. CrystEngComm, 2019, 21, 4578-4585.	1.3	119
492	A novel floating adsorbents system of acid orange 7 removal: Polymer grafting effect. Separation and Purification Technology, 2019, 227, 115677.	3.9	21
493	MIL-53(Fe) incorporated in the lamellar BiOBr: Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine. Chemical Engineering Journal, 2019, 374, 975-982.	6.6	130
494	Fullerene-Directed Synthesis of Flowerlike Cu ₃ (PO ₄) ₂ Crystals for Efficient Photocatalytic Degradation of Dyes. Langmuir, 2019, 35, 8806-8815.	1.6	22

#	Article	IF	Citations
495	Highly sensitive and selective detect of <i>p</i> àêersanilic acid with a new waterâ€stable europium metalâ€"organic framework. Applied Organometallic Chemistry, 2019, 33, e5021.	1.7	19
496	Highly luminescent sensing for nitrofurans and tetracyclines in water based on zeolitic imidazolate framework-8 incorporated with dyes. Talanta, 2019, 204, 344-352.	2.9	71
497	Three Anionic Indium–Organic Frameworks for Highly Efficient and Selective Dye Adsorption, Lanthanide Adsorption, and Luminescence Regulation. Inorganic Chemistry, 2019, 58, 8396-8407.	1.9	34
498	Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions. IScience, 2019, 16, 133-144.	1.9	60
499	A nested Cu ₂₄ @Cu ₇₂ -based copperâ€"organic polyhedral framework for selective adsorption of cationic dyes. Chemical Communications, 2019, 55, 7394-7397.	2.2	20
500	Four Co(II) - MOFs based on 3,3′-azodibenzoic acid ligand: Syntheses, crystal structure, photodegradation properties. Journal of Solid State Chemistry, 2019, 277, 115-122.	1.4	4
501	Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chemical Engineering Journal, 2019, 374, 1025-1045.	6.6	180
502	TiO2/SiO2 Composite for Efficient Protection of UVA and UVB Rays Through of a Solvent-Less Synthesis. Journal of Cluster Science, 2019, 30, 1511-1517.	1.7	12
503	Metal-organic frameworks for CO2 photoreduction. Frontiers in Energy, 2019, 13, 221-250.	1.2	25
504	One-step synthesis of Cu(II) metal–organic gel as recyclable material for rapid, efficient and size selective cationic dyes adsorption. Journal of Environmental Sciences, 2019, 86, 203-212.	3.2	22
505	Solar-driven advanced oxidation process catalyzed by metal–organic frameworks for water depollution. Polyhedron, 2019, 170, 325-333.	1.0	24
506	Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO. Journal of Alloys and Compounds, 2019, 802, 467-476.	2.8	66
507	Assembly of porous lanthanide metal–organic frameworks constructed by chalcone dicarboxylic acid and exploration of their properties. Polyhedron, 2019, 169, 24-31.	1.0	19
508	Metal–organic framework mixed-matrix coatings on 3D printed devices. Applied Materials Today, 2019, 16, 21-27.	2.3	54
509	A novel Sb-doped Mo(O,S)3 oxy-sulfide photocatalyst for degradation of methylene blue dye under visible light irradiation. Journal of Alloys and Compounds, 2019, 797, 986-994.	2.8	16
510	Photo-oxidative degradation of doxorubicin with siloxane MOFs by exposure to daylight. Environmental Science and Pollution Research, 2019, 26, 19684-19696.	2.7	19
511	Hydrothermal generation, structural versatility and properties of metal(<scp>ii</scp>)-organic architectures driven by a pyridine-tricarboxylic acid. Dalton Transactions, 2019, 48, 8361-8374.	1.6	16
512	Synthesis of flower-like CuS/UiO-66 composites with enhanced visible-light photocatalytic performance. Inorganic Chemistry Communication, 2019, 104, 223-228.	1.8	18

#	Article	IF	CITATIONS
513	Synthesis of DtBuCH18C6-coated magnetic metal–organic framework Fe3O4@UiO-66-NH2 for strontium adsorption. Journal of Environmental Chemical Engineering, 2019, 7, 103073.	3.3	24
514	Syntheses, crystal structures, and photocatalytic properties of two zinc(II) coordination polymers based on dicarboxylates and flexible bis(benzimidazole) ligands. Polyhedron, 2019, 167, 44-50.	1.0	12
515	Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV–vis light irradiation. Applied Catalysis B: Environmental, 2019, 254, 463-470.	10.8	83
516	Hydrogen Production from Glycerol Photoreforming on TiO2/HKUST-1 Composites: Effect of Preparation Method. Catalysts, 2019, 9, 338.	1.6	18
517	Degradation of hazardous organic dyes with solarâ€driven advanced oxidation process catalyzed by the mixed metal–organic frameworks. Applied Organometallic Chemistry, 2019, 33, e4928.	1.7	12
518	Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Applied Catalysis B: Environmental, 2019, 253, 253-262.	10.8	137
519	Strategies for Improving the Performance and Application of MOFs Photocatalysts. ChemCatChem, 2019, 11, 2978-2993.	1.8	46
520	ZIF-67 with Argon annealing treatment for visible light responsive degradation of organic dyes in a wide pH range. Microporous and Mesoporous Materials, 2019, 285, 13-20.	2.2	45
521	Use of a floating adsorbent to remove dyes from water: A novel efficient surface separation method. Journal of Hazardous Materials, 2019, 375, 138-148.	6.5	55
522	Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 136-141.	2.0	44
523	Advanced Porous Materials for Sensing, Capture and Detoxification of Organic Pollutants toward Water Remediation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7456-7478.	3.2	189
524	Surface functionalization of MIL-101(Cr) by aminated mesoporous silica and improved adsorption selectivity toward special metal ions. Dalton Transactions, 2019, 48, 5384-5396.	1.6	33
525	Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Applied Catalysis B: Environmental, 2019, 251, 66-75.	10.8	154
526	Developing superior catalysts engineered by multichannel healing strategy for advanced oxidation. Applied Catalysis B: Environmental, 2019, 250, 189-199.	10.8	26
527	Mixed-Ligand-Architected 2D Co(II)-MOF Expressing a Novel Topology for an Efficient Photoanode for Water Oxidation Using Visible Light. ACS Applied Materials & Efficient 13295-13303.	4.0	55
528	Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coordination Chemistry Reviews, 2019, 388, 63-78.	9.5	235
529	Relationship between (micro)structure and functional (photocatalytic and adsorption) properties of anatase–mordenite nanocomposite. Research on Chemical Intermediates, 2019, 45, 2869-2885.	1.3	2
530	Membrane adsorber containing a new Sm(<scp>iii</scp>)–organic framework for dye removal. Environmental Science: Nano, 2019, 6, 1067-1076.	2.2	15

#	Article	IF	CITATIONS
531	Controllable self-assembly of CdS@NH2-MIL-125(Ti) heterostructure with enhanced photodegradation efficiency for organic pollutants through synergistic effect. Materials Science in Semiconductor Processing, 2019, 97, 91-100.	1.9	62
532	Simultaneous Cr(VI) reduction and Cr(III) removal of bifunctional MOF/Titanate nanotube composites. Environmental Pollution, 2019, 249, 502-511.	3.7	97
533	A 1D Co(II) coordination polymer based on semi-rigid bis(thiabendazole) and butane-1,2,3,4-tetracarboxylic acid linkers: synthesis, crystal structure, fluorescence sensing and photocatalytic properties. Polyhedron, 2019, 166, 65-72.	1.0	12
534	TiO2-x/Ag3PO4 photocatalyst: Oxygen vacancy dependent visible light photocatalytic performance and BPA degradative pathway. Materials Science in Semiconductor Processing, 2019, 97, 1-10.	1.9	58
535	An anionic Cd-based coordination polymer exhibiting ion-exchange behavior for photoluminescence and selective dye adsorption. Journal of Luminescence, 2019, 210, 70-74.	1.5	24
536	Agl loading BiOI composites with enhanced photodegradation efficiency for bisphenol A under simulated solar light. Science of the Total Environment, 2019, 669, 194-204.	3.9	33
537	Nanomaterials for photochemical vapor generation-analytical atomic spectrometry. TrAC - Trends in Analytical Chemistry, 2019, 114, 242-250.	5.8	55
538	A novel n-CeO2/n-CdO heterojunction nanocomposite for enhanced photodegradation of organic pollutants under visible light irradiation. Journal of Rare Earths, 2019, 37, 853-860.	2.5	23
539	Photodeposition of gold nanoparticles on ZnS nanobelts for enhanced dye decomposition. Materials Research Bulletin, 2019, 116, 32-39.	2.7	9
540	Controllable synthesis of Ag/AgCl@MIL-88A <i>via in situ</i> growth method for morphology-dependent photocatalytic performance. Journal of Materials Chemistry C, 2019, 7, 5451-5460.	2.7	33
541	A 3D stable Mn(II) metal-organic framework based on a flexible tetracarboxylate precursor and its photocatalytic properties. Inorganica Chimica Acta, 2019, 492, 186-191.	1.2	14
542	One step integration of plasmonic Ag2CrO4/Ag/AgCl into HKUST-1-MOF as novel visible-light driven photocatalyst for highly efficient degradation of mixture dyes pollutants: Its photocatalytic mechanism and modeling. Polyhedron, 2019, 166, 217-225.	1.0	47
543	Stable and Highly Efficient Photocatalysis with Leadâ€Free Doubleâ€Perovskite of Cs ₂ AgBiBr ₆ . Angewandte Chemie - International Edition, 2019, 58, 7263-7267.	7.2	283
544	High-Performance TiO2 Nanotubes/Poly(aryl ether sulfone) Hybrid Self-Cleaning Anti-Fouling Ultrafiltration Membranes. Polymers, 2019, 11, 555.	2.0	12
545	A Polypyridylâ€Based Layered Complex as Dualâ€Functional Coâ€catalyst for Photoâ€Driven Organic Dyes Degradation and Water Splitting. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 623-630.	0.6	6
546	Stable and Highly Efficient Photocatalysis with Leadâ€Free Doubleâ€Perovskite of Cs ₂ AgBiBr ₆ . Angewandte Chemie, 2019, 131, 7341-7345.	1.6	187
547	In-situ growth of ZIF-8 nanocrystals to prepare cotton-based composites with dye degradation and antibacterial abilities. Materials Research Bulletin, 2019, 116, 40-43.	2.7	22
548	Silver(I)â€Based Complexes Used as Highâ€Performance Photocatalysts for the Degradation of Organic Dyes in Water. European Journal of Inorganic Chemistry, 2019, 2019, 1816-1824.	1.0	11

#	Article	IF	CITATIONS
549	S-, N- and C-doped ZnO as semiconductor photocatalysts: A review. Frontiers of Materials Science, 2019, 13, 1-22.	1.1	109
550	Synthesis, structure, spectral characteristic and photocatalytic degradation of organic dyes of a copper metal-organic framework based on tri(triazole) and pimelate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 372-377.	2.0	41
551	Agâ€Enhanced TiO _{2–<i>x</i>} /C Composites with Metalâ€Organic Frameworks as Precursors for Photodegradation of Methyl Blue. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 509-515.	0.6	5
552	Carbon Nanomaterials for Energy and Biorelated Catalysis: Recent Advances and Looking Forward. ACS Central Science, 2019, 5, 389-408.	5.3	67
553	Synthesis, structures and properties of six lanthanide complexes based on a 2-(2-carboxyphenyl)imidazo(4,5- $\langle i \rangle$ f($i \rangle$)-(1,10)phenanthroline ligand. RSC Advances, 2019, 9, 3102-3112.	1.7	24
554	Tailoring the active surface sites of ZnO nanorods on the glass substrate for photocatalytic activity enhancement. Surfaces and Interfaces, 2019, 15, 117-124.	1.5	38
555	Synthesis, characterization and antibacterial activity of Zn(II) coordination polymer. Journal of Inorganic Biochemistry, 2019, 194, 153-159.	1.5	11
556	Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 201-208.	2.0	70
557	Microwave-Assisted Synthesis of High-Energy Faceted TiO2 Nanocrystals Derived from Exfoliated Porous Metatitanic Acid Nanosheets with Improved Photocatalytic and Photovoltaic Performance. Materials, 2019, 12, 3614.	1.3	19
558	Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite. Chinese Journal of Catalysis, 2019, 40, 1912-1923.	6.9	70
559	ZnO nanorods modified with noble metal-free Co ₃ O ₄ nanoparticles as a photocatalyst for efficient ethylene degradation under light irradiation. Catalysis Science and Technology, 2019, 9, 6191-6198.	2.1	22
560	Synthesis of a novel 2D zinc(<scp>ii</scp>) metal–organic framework for photocatalytic degradation of organic dyes in water. Dalton Transactions, 2019, 48, 17626-17632.	1.6	84
561	Lanthanide-Boosted Singlet Oxygen from Diverse Photosensitizers along with Potent Photocatalytic Oxidation. ACS Nano, 2019, 13, 14152-14161.	7.3	80
562	Building MOF Nanocomposites with Oxidized Graphitic Carbon Nitride Nanospheres: The Effect of Framework Geometry on the Structural Heterogeneity. Molecules, 2019, 24, 4529.	1.7	14
563	Tris–Co(II)–H ₂ O ₂ System-Mediated Durative Hydroxyl Radical Generation for Efficient Anionic Azo Dye Degradation by Integrating Electrostatic Attraction. ACS Omega, 2019, 4, 21704-21711.	1.6	8
564	Anisotropic photogenerated charge separations between different facets of a dodecahedral α-Fe ₂ O ₃ photocatalyst. CrystEngComm, 2019, 21, 6390-6395.	1.3	5
565	Temperature tuned syntheses of two new d ¹⁰ -based Cd(<scp>ii</scp>) cluster metal–organic frameworks: luminescence sensing and photocatalytic properties. RSC Advances, 2019, 9, 29864-29872.	1.7	13
566	The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water. Chemical Engineering Journal, 2019, 357, 129-139.	6.6	129

#	Article	IF	CITATIONS
567	π–π Interaction between self-assembled perylene diimide and 3D graphene for excellent visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2019, 240, 225-233.	10.8	136
568	Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution. Applied Surface Science, 2019, 464, 396-403.	3.1	60
569	Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chemical Engineering Journal, 2019, 356, 393-399.	6.6	255
570	Three silver coordination polymers constructed from $4,4\hat{a}\in^2$ -bipyridine-like ligands and 2,5-thiophenedicarboxylic acid: crystal structures and photocatalytic performances. Transition Metal Chemistry, 2019, 44, 311-319.	0.7	11
571	A 3D metal-organic framework with isophthalic acid linker for photocatalytic properties. Inorganic Chemistry Communication, 2019, 100, 92-96.	1.8	29
572	A cationic porous organic polymer for high-capacity, fast, and selective capture of anionic pollutants. Journal of Hazardous Materials, 2019, 367, 348-355.	6.5	58
573	A new multifunctional two-dimensional cobalt(II) metal–organic framework for electrochemical detection of hydrogen peroxide, luminescent sensing of metal ions, and photocatalysis. Polyhedron, 2019, 158, 342-351.	1.0	80
574	Synthesis and structure of Anderson cluster based organic–inorganic hybrid solid, \$\$[{hbox {Cu}(2hbox {-}pzc)(hbox {H}_{2}hbox {O})_{2}}_{2}}_{4}hbox {H}_{7}hbox {AlMo}_{6}hbox {O}_{24}}]cdot 17hbox {H}_{2}hbox {O}\$\$ [{. Journal of Chemical Sciences, 2019, 131, 1.	0.7	3
575	Electrochemical Sensors Based on Au-ZnS Hybrid Nanorods with Au-Mediated Efficient Electron Relay. ACS Sustainable Chemistry and Engineering, 2019, 7, 4094-4102.	3.2	17
576	Plasmon-enhanced visible light photoelectrochemical and photocatalytic activity of gold nanoparticle-decorated hierarchical TiO2/Bi2WO6 nanorod arrays. Applied Surface Science, 2019, 469, 829-840.	3.1	39
577	Enhanced photocatalytic Cr(VI) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions. Chinese Journal of Catalysis, 2019, 40, 70-79.	6.9	136
578	A 3D binuclear salen-based multifunctional MOF: Degradation of MO dye and highly selective sensing of Fe3+. Inorganic Chemistry Communication, 2019, 99, 113-118.	1.8	24
579	Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions. Journal of Advanced Research, 2019, 16, 135-143.	4.4	49
580	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
581	Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo red. Journal of Colloid and Interface Science, 2019, 537, 736-745.	5.0	123
582	Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 2019, 380, 330-352.	9.5	447
583	Robust three-dimensional g-C3N4@cellulose aerogel enhanced by cross-linked polyester fibers for simultaneous removal of hexavalent chromium and antibiotics. Chemical Engineering Journal, 2019, 359, 119-129.	6.6	55
584	In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen. Chemical Engineering Journal, 2019, 359, 254-264.	6.6	157

#	Article	IF	CITATIONS
585	The flower-like heterostructured Fe2O3/MoS2 coated by amorphous Si-Oxyhydroxides: An effective surface modification method for sulfide photocatalysts in photo-Fenton reaction. Journal of Alloys and Compounds, 2019, 784, 1099-1105.	2.8	29
586	Construction of CulnS2@ZIF-8 nanocomposites with enhanced photocatalytic activity and durability. Materials Research Bulletin, 2019, 112, 147-153.	2.7	36
587	Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for enhanced visible-light photocatalysis. Journal of Colloid and Interface Science, 2019, 540, 115-125.	5.0	88
588	Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis. Materials Research Bulletin, 2019, 112, 297-306.	2.7	72
589	Sonochemical synthesis of two nano-sized nickel(II) coordination polymers derived from flexible bis(benzimidazole) and isophthalic acid ligands. Polyhedron, 2019, 160, 92-100.	1.0	44
590	Removal of RhB From Aqueous Solutions by Two Polyoxometalates Adsorbents. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1048-1055.	1.9	9
591	Adsorptive removal of Cr(VI) from simulated wastewater in MOF BUC-17 ultrafine powder. Journal of Environmental Chemical Engineering, 2019, 7, 102909.	3.3	39
592	Selective Photooxidation of Amines and Sulfides Triggered by a Superoxide Radical Using a Novel Visible-Light-Responsive Metal–Organic Framework. ACS Applied Materials & Diterfaces, 2019, 11, 3016-3023.	4.0	82
594	A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts, 2019, 9, 52.	1.6	215
595	Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation. Applied Surface Science, 2019, 467-468, 320-327.	3.1	37
596	A novel insight of photodegradation of dye mixture by surface analysis. Catalysis Communications, 2019, 120, 101-105.	1.6	3
597	Boosting and tuning the visible photocatalytic degradation performances towards reactive blue 21 via dyes@MOF composites. Journal of Solid State Chemistry, 2019, 269, 465-475.	1.4	22
598	Facile fabrication of BUCâ€21/g ₃ N ₄ composites and their enhanced photocatalytic Cr(VI) reduction performances under simulated sunlight. Applied Organometallic Chemistry, 2019, 33, e4621.	1.7	53
599	Two new inorganic–organic hybrid zinc phosphate frameworks and their application in fluorescence sensor and photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 2019, 269, 575-579.	1.4	18
600	Efficient detoxication of heterocyclics by layered double hydroxides contained different cobalt components as photocatalysts based on controllable application of active free radicals. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 33-43.	2.0	12
601	Core-shell dual-MOF heterostructures derived magnetic CoFe2O4/CuO (sub)microcages with superior catalytic performance. Applied Surface Science, 2019, 466, 637-646.	3.1	24
602	An acid–base resistant paddle-wheel Cu(II) coordination polymer for visible-light-driven photodegradation of organic dyes. Polyhedron, 2019, 157, 367-373.	1.0	16
603	Nanohybrid Photocatalysts for Heavy Metal Pollutant Control. , 2019, , 125-153.		12

#	Article	IF	CITATIONS
604	A mixed valence Tb(III)/Tb(IV) metal–organic framework: Crystal structure, luminescence property and selective detection of naproxen. Polyhedron, 2019, 159, 298-307.	1.0	23
605	Tripyridineâ€Derivativeâ€Derived Semiconducting Iodoâ€Argentate/Cuprate Hybrids with Excellent Visibleâ€Lightâ€Induced Photocatalytic Performance. Chemistry - an Asian Journal, 2019, 14, 269-277.	1.7	22
606	A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catalysis Today, 2019, 335, 20-30.	2.2	262
607	Evaluation of the reaction mechanism for photocatalytic degradation of organic pollutants with MIL-88A/BiOI structure under visible light irradiation. Research on Chemical Intermediates, 2019, 45, 1341-1356.	1.3	28
608	Photocatalytic Performance of H 6 P 2 W 18 O 62 /TiO 2 Nanocomposite Encapsulated into Beta Zeolite under UV Irradiation in the Degradation of Methyl Orange. Photochemistry and Photobiology, 2019, 95, 532-542.	1.3	8
609	A new magnetic hybrid based on a unique sulfur rich cadmium coordination polymer used for high selective photocatalytic degradation of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 504-514.	2.7	5
610	Core-shell Prussian blue analogues@ poly(m-phenylenediamine) as efficient peroxymonosulfate activators for degradation of Rhodamine B with reduced metal leaching. Journal of Colloid and Interface Science, 2019, 534, 586-594.	5.0	63
611	The Photocatalytic Removal of Mercury from Coal-Fired Flue Gas. Energy and Environment Research in China, 2019, , 103-140.	2.3	3
612	Efficient synergy of photocatalysis and adsorption of hexavalent chromium and rhodamine B over Al4SiC4/rGO hybrid photocatalyst under visible-light irradiation. Applied Catalysis B: Environmental, 2019, 241, 548-560.	10.8	79
613	Sustainable treatment of harmful dyeing industry pollutants using SrZnTiO3/g-C3N4 heterostructure with a light source-dependent charge transfer mechanism. Applied Catalysis B: Environmental, 2019, 242, 171-177.	10.8	36
614	Syntheses, structures and catalytic mechanisms of three new MOFs for aqueous Cr(VI) reduction and dye degradation under UV light. Polyhedron, 2019, 157, 152-162.	1.0	29
615	Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. Journal of Hazardous Materials, 2019, 372, 3-16.	6.5	318
616	Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews, 2019, 378, 17-31.	9.5	479
617	UV–vis light induced photocatalytic activity of TiO2/graphene oxide nanocomposite coatings. Catalysis Today, 2019, 321-322, 81-86.	2.2	21
618	An unusual dependency on the hole-scavengers in photocatalytic reductions mediated by a titanium-based metal-organic framework. Catalysis Today, 2020, 340, 86-91.	2.2	27
619	Synthesis, Crystal Structures, and Photocatalytic Activity of Two Nickel(II) Coordination Polymers with Flexible Bis(benzimidazol-1-yl)alkane and Polycarboxylate Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1099-1109.	1.9	2
620	Photocatalytic Decontamination of Organic Pollutants Using Advanced Materials., 2020,, 195-212.		6
621	Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants. Materials Research Bulletin, 2020, 121, 110621.	2.7	60

#	Article	IF	CITATIONS
622	Syntheses, crystal structures and photocatalytic properties of three zinc (II) coordination polymers constructed by mixed ligands. Journal of Molecular Structure, 2020, 1200, 127117.	1.8	10
623	Fabrication of bifunctional nanocomposite for dye degradation. Ceramics International, 2020, 46, 2823-2828.	2.3	6
624	Structures and photocatalytic properties of two Mn(II)-based coordination polymers. Inorganica Chimica Acta, 2020, 499, 119189.	1.2	10
625	Two new predictors combined with quantum chemical parameters for the selection of oxidants and degradation of organic contaminants: A QSAR modeling study. Chemosphere, 2020, 240, 124928.	4.2	14
626	Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 2020, 242, 125144.	4.2	186
627	Porous tube-like ZnS derived from rod-like ZIF-L for photocatalytic Cr(VI) reduction and organic pollutants degradation. Environmental Pollution, 2020, 256, 113417.	3.7	55
628	Iron mesh-supported vertically aligned Co-Fe layered double oxide as a novel monolithic catalyst for catalytic oxidation of toluene. Chemical Engineering Journal, 2020, 384, 123284.	6.6	62
629	Photocatalytic and magnetic properties of two new Co(II) cluster-based metal-organic frameworks. Inorganic Chemistry Communication, 2020, 111, 107563.	1.8	9
630	Utilization of Cucurbit[6]uril as an effective adsorbent for the remediation of Phthalocyanine and Procion golden yellow dyes. Journal of Molecular Structure, 2020, 1202, 127278.	1.8	11
631	An efficient polymer coating for highly acid-stable zeolitic imidazolate frameworks based composite sponges. Journal of Hazardous Materials, 2020, 382, 121057.	6.5	32
632	Incorporation of Nanostructured ReO3 in Silica Matrix and Their Activity Toward Photodegradation of Blue Methylene. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1726-1734.	1.9	8
633	Efficiently removal of ciprofloxacin from aqueous solution by MIL-101(Cr)-HSO3: the enhanced electrostatic interaction. Journal of Porous Materials, 2020, 27, 189-204.	1.3	35
634	Cu-S codoping TiO ₂ /SiO ₂ and TiO ₂ /SiO _{/Fe₃O₄ core-shell nanocomposites as a novel purple LED illumination active photocatalyst for degradation of diclofenac: the effect of different scavenger agents and optimization. Chemical Engineering Communications, 2020, 207, 1536-1553.}	1.5	6
635	The engineering of surface plasmon resonance and up-conversion to improve the photocatalytic performance of MIL-53(Fe) over the full solar spectrum. Journal of Materials Science, 2020, 55, 997-1011.	1.7	11
636	Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification. Ceramics International, 2020, 46, 468-475.	2.3	48
637	Two silver(I) complexes based on dicarboxylate and flexible bis(benzimidazole) ligands: synthesis, crystal structures, sensing and photocatalytic properties. Transition Metal Chemistry, 2020, 45, 19-29.	0.7	10
638	Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr(VI) reduction under white light. Chemical Engineering Journal, 2020, 389, 123431.	6.6	130
639	Hydrothermal syntheses, crystal structures, and photocatalytic properties of two Co(II) complexes with the flexible citraconic acid. Journal of the Chinese Chemical Society, 2020, 67, 744-750.	0.8	4

#	Article	IF	CITATIONS
640	Hydroxyl-regulated BiOI nanosheets with a highly positive valence band maximum for improved visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2020, 268, 118390.	10.8	74
641	Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coordination Chemistry Reviews, 2020, 403, 213097.	9.5	233
642	H2O2-free photo-Fenton degradation of organic pollutants on thermally exfoliated g-C3N4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124190.	2.3	37
643	Construction of Iodoargentates with Diverse Architectures: Template Syntheses, Structures, and Photocatalytic Properties. Crystal Growth and Design, 2020, 20, 1130-1138.	1.4	52
644	Conjugated polymers for visible-light-driven photocatalysis. Energy and Environmental Science, 2020, 13, 24-52.	15.6	452
645	An LSPR-based "push–pull―synergetic effect for the enhanced photocatalytic performance of a gold nanoparticle ternary composite. Nanoscale, 2020, 12, 1912-1920.	2.8	20
646	A Co-MOF with a (4,4)-connected binodal two-dimensional topology: synthesis, structure and photocatalytic properties. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 23-29.	0.2	8
647	Highly effective and fast removal of anionic carcinogenic dyes <i>via</i> an In ₃ -cluster-based cationic metal–organic framework with nitrogen-rich ligand. Materials Chemistry Frontiers, 2020, 4, 182-188.	3.2	37
648	A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. Journal of Materials Chemistry A, 2020, 8, 1904-1910.	5.2	89
649	Schiff base and azido coordinated di-/poly-nuclear cadmium(II) complexes: Crystal structure, photocatalytic degradation of methylene blue and thermal analysis. Polyhedron, 2020, 177, 114296.	1.0	14
650	Photochromic inorganic–organic complex derived from low-cost deep eutectic solvents with tunable photocurrent responses and photocatalytic properties. CrystEngComm, 2020, 22, 1078-1085.	1.3	18
651	Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers, 2020, 7, 300-339.	3.0	429
652	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	5.2	170
653	A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: Facile synthesis and kinetic investigations. Journal of Molecular Liquids, 2020, 301, 112427.	2.3	32
654	A Self-Assembled Iron(II) Metallacage as a Trap for Per- and Polyfluoroalkyl Substances in Water. Inorganic Chemistry, 2020, 59, 6697-6708.	1.9	15
655	A novel oxalate-based three dimensional polymorphs supramolecular compounds: Synthesis, spectroscopic characterization, magnetic and photocatalytic properties. Journal of Molecular Structure, 2020, 1205, 127573.	1.8	2
656	Synthesis of tubular g-C3N4 via a H2SO4-assisted precursor self-assembly strategy for enhanced photocatalytic degradation of organic pollutant. Journal of Materials Science: Materials in Electronics, 2020, 31, 2022-2029.	1.1	4
657	Syntheses and photocatalytic properties of two new d10- and d9-based 2D coordination polymers. Inorganica Chimica Acta, 2020, 502, 119334.	1.2	5

#	Article	IF	CITATIONS
658	Polyaniline modified MIL-100(Fe) for enhanced photocatalytic Cr(VI) reduction and tetracycline degradation under white light. Chemosphere, 2020, 245, 125659.	4.2	139
659	Fluorescence detection of laccases activity by the photoinduced electron transfer (PET) process. Journal of Biological Inorganic Chemistry, 2020, 25, 151-159.	1.1	6
660	Formation of Supraparticles and Their Application in Catalysis. , 2020, 2, 95-106.		42
661	Visible lightâ€Driven AgBr/AgCl@MILâ€101(Fe) Composites For Removal of Organic Contaminant From Wastewater. Photochemistry and Photobiology, 2020, 96, 4-13.	1.3	6
662	Highly selective surface adsorption-induced efficient photodegradation of cationic dyes on hierarchical ZnO nanorod-decorated hydrolyzed PIM-1 nanofibrous webs. Journal of Colloid and Interface Science, 2020, 562, 29-41.	5.0	17
663	Conductive Black Titania Nanomaterials for Efficient Photocatalytic Degradation of Organic Pollutants. Catalysis Letters, 2020, 150, 1346-1354.	1.4	16
664	The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chemical Engineering Journal, 2020, 391, 123601.	6.6	155
665	Strategies for the formation of oxygen vacancies in zinc oxide nanoparticles used for photocatalytic degradation of phenol under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112202.	2.0	44
666	Greatly enhanced photocatalytic activity over Bi2WO6 by MIL-53(Fe) modification. Optical Materials, 2020, 110, 110500.	1.7	23
667	Re-usable self-poled piezoelectric/piezocatalytic films with exceptional energy harvesting and water remediation capability. Nano Energy, 2020, 78, 105339.	8.2	90
668	Single-molecule mapping of catalytic reactions on heterostructures. Nano Today, 2020, 34, 100957.	6.2	15
669	Biomimetic Durable Multifunctional Self-Cleaning Nanofibrous Membrane with Outstanding Oil/Water Separation, Photodegradation of Organic Contaminants, and Antibacterial Performances. ACS Applied Materials & Diterfaces, 2020, 12, 34999-35010.	4.0	202
670	Simple and Continuous Fabrication of Self-Propelled Micromotors with Photocatalytic Metalâ€"Organic Frameworks for Enhanced Synergistic Environmental Remediation. ACS Applied Materials & Diterraces, 2020, 12, 35120-35131.	4.0	67
671	Polymer Precursors Effect in the Macromolecular Metal-Polymer on the Rh/RhO2/Rh2O3 Phase Using Solvent-Less Synthesis and Its Photocatalytic Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4702-4708.	1.9	4
672	Metal-organic frameworks derived Bi2O2CO3/porous carbon nitride: A nanosized Z-scheme systems with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2020, 267, 118700.	10.8	131
673	Increased Photocatalytic Activity of Post Synthetically Modified Coordination Polymer Derived from Bisâ€pyridyldiamide. European Journal of Inorganic Chemistry, 2020, 2020, 3174-3186.	1.0	2
674	Effect of molar ration of Ti/Ligand on the synthesis of MIL-125(Ti) and its adsorption and photocatalytic properties. Journal of Industrial and Engineering Chemistry, 2020, 90, 166-177.	2.9	22
675	Sonochemical synthesis of Zr-fumaric based metal-organic framework (MOF) and its performance evaluation in methyl violet 2B decolorization by photocatalysis. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 1009-1021.	0.8	23

#	Article	IF	CITATIONS
676	Enzyme-like MOFs: synthetic molecular receptors with high binding capacity and their application in selective photocatalysis. Journal of Materials Chemistry A, 2020, 8, 25931-25940.	5.2	21
677	Transition Metal Ionâ€Directed Coordination Polymers with Mixed Ligands: Synthesis, Structure, and Photocatalytic Activity for Hydrogen Production and Rhodamine B Degradation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1765-1773.	0.6	3
678	Construction of In ₂ S ₃ @NH ₂ -MIL-68(In)@In ₂ S ₃ Sandwich Homologous Heterojunction for Efficient CO ₂ Photoreduction. Industrial & Engineering Chemistry Research, 2020, 59, 20711-20718.	1.8	29
679	Modeling of Degradation of Diazo Dye in Swirl-Flow Photocatalytic Reactor: Response Surface Approach. Catalysts, 2020, 10, 1418.	1.6	2
680	Metal–organic frameworks containing xanthene dyes for photocatalytic applications. Dalton Transactions, 2020, 49, 17520-17526.	1.6	13
681	Recent Progress in Heavy Metal Ion Decontamination Based on Metal–Organic Frameworks. Nanomaterials, 2020, 10, 1481.	1.9	37
682	Surface engineered 2D materials for photocatalysis. Chemical Communications, 2020, 56, 11000-11013.	2.2	61
683	Photofunctional metal-organic framework thin films for sensing, catalysis and device fabrication. Inorganica Chimica Acta, 2020, 513, 119926.	1.2	15
684	Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 44, 100355.	5.6	32
685	Construction of an anionic porous framework via a post-synthesis strategy to regulate the adsorption behavior of organic pollutants. Journal of Materials Science, 2020, 55, 14751-14760.	1.7	9
686	Ultrasensitive detection of Cr(VI) (Cr2O72â^'/CrO42â^') ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots. Analytica Chimica Acta, 2020, 1131, 68-79.	2.6	59
687	Facile Synthesis of Metal–Organic Framework (ZIFâ€11) and Ag NPs Encapsulatedâ€ZIFâ€11 Composite as an Effective Heterogeneous Catalyst for Photodegradation of Methylene Blue. Applied Organometallic Chemistry, 2020, 34, e5951.	1.7	14
688	New Insights into The Photoactivity of Shape-Tailored BiVO4 Semiconductors via Photocatalytic Degradation Reactions and Classical Reduction Processes. Molecules, 2020, 25, 4842.	1.7	7
689	Highly Active Binary Exfoliated <scp>MoS₂</scp> Sheet– <scp>Cu₂O</scp> Nanocrystal Hybrids for Efficient Photocatalytic Pollutant Degradation. Bulletin of the Korean Chemical Society, 2020, 41, 1147-1152.	1.0	7
690	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	5.2	46
691	An Anionic Metalâ€organic Framework for Selective Adsorption Separation toward Methylene Blue and Rhodamine B. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1408-1411.	0.6	13
692	Synthesis, structure and photocatalytic properties of coordination polymers based on pyrazole carboxylic acid ligands. CrystEngComm, 2020, 22, 6847-6855.	1.3	20
693	Zn(II)-Coordination Polymers with a Right- and Left-Handed Twist: Multifunctional Metal–Organic Hybrid for Dye Adsorption and Drug Delivery. Crystal Growth and Design, 2020, 20, 7411-7420.	1.4	17

#	Article	IF	CITATIONS
694	Visible-light-driven photocatalytic selective organic oxidation reactions. Journal of Materials Chemistry A, 2020, 8, 20897-20924.	5.2	60
695	Introducing a flexible tetracarboxylic acid linker into functional coordination polymers: synthesis, structural traits, and photocatalytic dye degradation. New Journal of Chemistry, 2020, 44, 16082-16091.	1.4	21
696	Metal-Organic Framework Materials for Perovskite Solar Cells. Polymers, 2020, 12, 2061.	2.0	45
697	Synthesis, structure and properties of a 3D coordination polymer based on tetranuclear copper(I) and a tetra(triazole) ligand. Journal of Coordination Chemistry, 2020, 73, 2042-2054.	0.8	2
698	Highly efficient visible-light-driven reduction of Cr(<scp>vi</scp>) from water by porphyrin-based metal–organic frameworks: effect of band gap engineering on the photocatalytic activity. Catalysis Science and Technology, 2020, 10, 7724-7733.	2.1	41
699	Enhanced Photocatalytic Performance of Nanosized Mixed-Ligand Metal–Organic Frameworks through Sequential Energy and Electron Transfer Process. Inorganic Chemistry, 2020, 59, 12947-12953.	1.9	28
700	Incorporation of NiO into SiO2, TiO2, Al2O3, and Na4.2Ca2.8(Si6O18) Matrices: Medium Effect on the Optical Properties and Catalytic Degradation of Methylene Blue. Nanomaterials, 2020, 10, 2470.	1.9	8
701	Low energy photocatalytic glycerol conversion to high valuable products via Bi2O3 polymorphs in the presence of H <mml:math altimg="si7.svg" display="inline" id="d1e68" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow mml:mrow=""></mml:mrow></mml:msub><td>2.5</td><td>4</td></mml:math>	2.5	4
702	6, 95-101. Graphene Oxide Coated Zinc Oxide Core–Shell Nanofibers for Enhanced Photocatalytic Performance and Durability. Coatings, 2020, 10, 1183.	1.2	10
703	Construction of porous carbon for the highly efficient visible light-driven degradation methyl violet. Bulletin of the Chemical Society of Ethiopia, 2020, 34, 277-284.	0.5	1
704	An efficiently heterogeneous photocatalyst for degradation of cation and neutral dyes under UV light based on size-dependent effects of tetracarboxyate complex. Journal of Solid State Chemistry, 2020, 292, 121681.	1.4	3
705	Two Ln-based metal–organic frameworks based on the 5-(1 <i>+(1)-1,2,4-triazol-1-yl)-1,3-benzenedicarboxylic acid ligand: syntheses, structures, and photocatalytic properties. RSC Advances, 2020, 10, 39771-39778.</i>	1.7	4
706	SnO2â^x/Sb2O3 composites synthesized by mechanical milling method with excellent photocatalytic properties for isopropyl alcohol oxidation. Journal of Materials Science: Materials in Electronics, 2020, 31, 8564-8577.	1,1	3
707	Structures and photocatalytic properties of two new Zn(<scp>ii</scp>) coordination polymers based on semi-rigid V-shaped multicarboxylate ligands. RSC Advances, 2020, 10, 18721-18727.	1.7	16
708	Synthesis of Copper(II) Trimesinate Coordination Polymer and Its Use as a Sorbent for Organic Dyes and a Precursor for Nanostructured Material. Polymers, 2020, 12, 1024.	2.0	43
709	Metal–organic framework-based nanomaterials for photocatalytic hydrogen peroxide production. Physical Chemistry Chemical Physics, 2020, 22, 14404-14414.	1.3	43
710	A General Approach to Shaped MOFâ€Containing Aerogels toward Practical Water Treatment Application. Advanced Sustainable Systems, 2020, 4, 2000060.	2.7	43
711	lridium nanostructured metal oxide, its inclusion in silica matrix and their activity toward photodegradation of methylene blue. Materials Chemistry and Physics, 2020, 252, 123276.	2.0	10

#	ARTICLE	IF	Citations
712	Three Functionalized Zinc(II)/Cobalt(II) Coordination Complexes Demonstrating Fluorescent Sensing Activities towards Fe ³⁺ lons and Photocatalytic Selectivity for Organic Dyes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 514-522.	0.6	5
713	Enhanced photocatalytic degradation of organic pollutants mediated by Zn(II)-porphyrin/poly(acrylic) Tj ETQq1	1 0.78431 10.8	4 rgBT /Overl
714	A Selfâ€Cleaning Heterostructured Membrane for Efficient Oilâ€inâ€Water Emulsion Separation with Stable Flux. Advanced Materials, 2020, 32, e2001265.	11.1	144
715	A serial of 2D Coâ€Zn isomorphous metal–organic frameworks for photodegradation and luminescent detection properties. Applied Organometallic Chemistry, 2020, 34, e5743.	1.7	13
717	Two new coordination polymers driven by polycarboxylate and N-donor spacers: Photocatalytic performance and theoretical analysis. Inorganica Chimica Acta, 2020, 508, 119647.	1.2	6
718	Mo-ion doping evoked visible light response in TiO2 nanocrystals for highly-efficient removal of benzene. Chemical Engineering Journal, 2020, 397, 125444.	6.6	22
719	Efficient and selective adsorption and separation of methylene blue (MB) from mixture of dyes in aqueous environment employing a $Cu(II)$ based metal organic framework. Inorganica Chimica Acta, 2020, 511, 119787.	1.2	52
720	A novel 3D cobalt(II) metal–organic framework to activate peroxymonosulfate for degradation of organic dyes in water. Journal of Solid State Chemistry, 2020, 289, 121443.	1.4	22
721	Synthesis of MIL-100(Fe)/SBA-15 composite as a novel and ultrafast adsorbent for removal of methylene blue dye from aqueous solution. Inorganic Chemistry Communication, 2020, 118, 108032.	1.8	19
722	Synthesis of Lanthanum metal-organic frameworks (La-MOFs) as degradation photocatalyst of Rhodamine-B. AIP Conference Proceedings, 2020, , .	0.3	4
723	S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr(VI) reduction and bisphenol A degradation under LED visible light. Journal of Hazardous Materials, 2020, 399, 123085.	6.5	125
724	Magnetic Fe ₃ O ₄ -encapsulated VAN@MIL-101(Fe) with mixed-valence sites and mesoporous structures as efficient bifunctional water splitting photocatalysts. Nanoscale, 2020, 12, 12551-12560.	2.8	32
725	In situ growth of four MOF/LZH composites on layered zinc hydroxide and their photocatalytic performance in decomposition of organic dyes. Mendeleev Communications, 2020, 30, 282-284.	0.6	8
726	Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. Environmental Pollution, 2020, 265, 114908.	3.7	65
727	Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater. Materials Chemistry and Physics, 2020, 253, 123246.	2.0	56
728	Synthesis and characterization of a novel microporous lanthanide based metal-organic framework (MOF) using napthalenedicarboxylate acid. Journal of Materials Research and Technology, 2020, 9, 7409-7417.	2.6	36
729	Accelerated generation of hydroxyl radical through surface polarization on BiVO4 microtubes for efficient chlortetracycline degradation. Chemical Engineering Journal, 2020, 400, 125871.	6.6	49
730	Catalytic activity of Mn(III) and Co(III) complexes: evaluation of catechol oxidase enzymatic and photodegradation properties. Research on Chemical Intermediates, 2020, 46, 2985-3006.	1.3	19

#	Article	IF	CITATIONS
731	Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chemical Reviews, 2020, 120, 12175-12216.	23.0	620
732	Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 2020, 412, 213262.	9.5	401
733	Synthesis, structure and photocatalytic property of a novel Zn(II) coordination polymer based on in situ synthetized pyridine-3,4-dicarboxylhydrazidate ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 233, 118232.	2.0	9
734	Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	5.2	140
735	Recent progress on heterostructures of photocatalysts for environmental remediation. Materials Today: Proceedings, 2020, 32, 584-593.	0.9	7
736	Ultrastable Thorium Metal–Organic Frameworks for Efficient Iodine Adsorption. Inorganic Chemistry, 2020, 59, 4435-4442.	1.9	98
737	Metal-organic framework@polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin. Materials Chemistry and Physics, 2020, 247, 122875.	2.0	41
738	Development of highly efficient, renewable and durable alginate composite aerogels for oil/water separation. Surface and Coatings Technology, 2020, 388, 125551.	2.2	31
739	Fabrication of TiO2-SrCO3 Composite Coatings by Suspension Plasma Spraying: Microstructure and Enhanced Visible Light Photocatalytic Performances. Journal of Thermal Spray Technology, 2020, 29, 1172-1182.	1.6	9
740	Fabrication of NH ₂ -MIL-125 nanocrystals for high performance photocatalytic oxidation. Sustainable Energy and Fuels, 2020, 4, 2823-2830.	2.5	27
741	Design of metal-organic framework-based photocatalysts for hydrogen generation. Coordination Chemistry Reviews, 2020, 413, 213266.	9.5	106
742	Photocatalytic Reduction and Recognition of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal—Organic Framework as Catalytic Surface. Industrial & Description of Cr(VI): New Zn(II)-Based Metal⧠(New Zn(II)-Based Metal⧠(New Zn(II)-Based Metal⧠(New Zn(II)-Based Metal⧠(New Zn(II)-Based Metal⧠(New Zn(II)-Based Metal⧠(New Zn(II)-Based Me	1.8	63
743	Synthesis, structure and physical properties of a new two-dimensional polymer based on tri(imidazole) and dicarboxylate as co-ligands. Inorganic and Nano-Metal Chemistry, 2020, 50, 1201-1206.	0.9	1
744	Zero/one-dimensional coordination complexes constructed from the carboxylate and multi-nitrogen chelating ligands: structural insights and photocatalytic degradation of organic dye. Inorganic and Nano-Metal Chemistry, 2020, 50, 796-800.	0.9	0
745	Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Progress in Energy and Combustion Science, 2020, 81, 100870.	15.8	156
746	Polyimide-based photocatalysts: rational design for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 14441-14462.	5.2	38
747	Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: The effect of copper loading and reaction temperature. Materials Science in Semiconductor Processing, 2020, 119, 105257.	1.9	76
748	Superfast flow reactor derived from the used cigarette filter for the degradation of pollutants in water. Journal of Hazardous Materials, 2020, 400, 123303.	6.5	15

#	ARTICLE	IF	CITATIONS
749	A multifunctional pseudo-polyrotaxane coordination polymer based on the trinuclear cluster [Co3(COOâ^')4(OHâ^')2]: Synthesis, structure and properties. Polyhedron, 2020, 186, 114611.	1.0	2
750	Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & mp; interface. Applied Catalysis B: Environmental, 2020, 268, 118740.	10.8	173
751	Preparation of Spryâ€Liked CdSâ€TiO 2 Oneâ€Dimensional Composite Nanomaterial and Its Photocatalytic Degradation Efficiency. ChemistrySelect, 2020, 5, 2142-2147.	0.7	4
752	Preparation of MoS ₂ nanoflowers with rich active sites as an efficient adsorbent for aqueous organic dyes. New Journal of Chemistry, 2020, 44, 4558-4567.	1.4	29
753	Construction of an Aminated MIL-53(Al)-Functionalized Carbon Nanotube for the Efficient Removal of Bisphenol AF and Metribuzin. Inorganic Chemistry, 2020, 59, 2667-2679.	1.9	32
754	Light-induced organic transformations over some MOF materials. , 2020, , 339-352.		0
755	Peculiar synergetic effect of \hat{i}^3 -Fe2O3 nanoparticles and graphene oxide on MIL-53 (Fe) for boosting photocatalysis. Chemical Engineering Journal, 2020, 390, 124615.	6.6	72
756	The Nanosized Dye Adsorbents for Water Treatment. Nanomaterials, 2020, 10, 295.	1.9	114
757	Direct synthesis of nitrogen-doped mesoporous carbons from triazine-functionalized resol for CO2 uptake and highly efficient removal of dyes. Journal of Hazardous Materials, 2020, 391, 122163.	6. 5	77
758	Visible-light-driven self-coupling and oxidative dehydrogenation of amines to imines <i>via</i> a Mn(<scp>ii</scp>)-based coordination polymer. Inorganic Chemistry Frontiers, 2020, 7, 1016-1025.	3.0	29
759	Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 2020, 408, 213180.	9 . 5	389
760	Advances and prospects of rare earth metal-organic frameworks in catalytic applications. Journal of Rare Earths, 2020, 38, 801-818.	2.5	66
761	Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale, 2020, 12, 4790-4815.	2.8	269
762	Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Applied Catalysis B: Environmental, 2020, 267, 118686.	10.8	149
763	Direct Z-scheme Ag3PO4/Bi4Ti3O12 heterojunction with enhanced photocatalytic performance for sulfamethoxazole degradation. Separation and Purification Technology, 2020, 241, 116622.	3.9	40
764	Highly efficient removal of As(V) using metal–organic framework BUC-17. SN Applied Sciences, 2020, 2, 1.	1.5	13
765	Construction of visibleâ€lightâ€responsive metal–organic framework with pillared structure for dye degradation and Cr(VI) reduction. Applied Organometallic Chemistry, 2020, 34, e5487.	1.7	11
766	Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid. Chemical Engineering Journal, 2020, 395, 125184.	6.6	90

#	Article	IF	CITATIONS
767	A Novel of PTA/ZIFâ€8@Cellulose Aerogel Composite Materials for Efficient Photocatalytic Degradation of Organic Dyes in Water. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 444-450.	0.6	18
768	The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis. Environmental Science and Pollution Research, 2020, 27, 19265-19284.	2.7	20
769	2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Science China Materials, 2020, 63, 2119-2152.	3.5	71
770	Metal–organic frameworks for photocatalysis. Interface Science and Technology, 2020, 31, 541-579.	1.6	13
771	Imidazole framework based metal oxide nanoparticles photocatalysts: An approach towards amputation of organic pollutants from water., 2020,, 173-193.		0
772	ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chemical Engineering Journal, 2020, 392, 124851.	6.6	192
773	One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Progress in Materials Science, 2020, 113, 100671.	16.0	64
774	Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20354-20365.	4.0	80
775	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	18.7	327
776	Structurally and Compositionally Tunable Absorption Properties of AgCl@AgAu Nanocatalysts for Plasmonic Photocatalytic Degradation of Environmental Pollutants. Catalysts, 2020, 10, 405.	1.6	3
777	A facile one-pot and alkali-free synthetic procedure for binary SnO2/g-C3N4 composites with enhanced photocatalytic behavior. Materials Science in Semiconductor Processing, 2020, 115, 105112.	1.9	18
778	Excellent Photocatalytic Efficiency of t-ZrO2/g-C3N4 Photocatalyst for Pollutants Degradation: Experiment and theory. Solid State Sciences, 2020, 104, 106202.	1.5	7
779	Synthesis of Ni2+ cation modified TS-1 molecular sieve nanosheets as effective photocatalysts for alcohol oxidation and pollutant degradation. Chinese Journal of Catalysis, 2020, 41, 1589-1602.	6.9	29
780	Controlled synthesis of AgNPs@ZIF-8 composite: Efficient heterogeneous photocatalyst for degradation of methylene blue and congo red. Journal of Water Process Engineering, 2020, 36, 101266.	2.6	43
781	Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A(Fe) decorated on cotton fibers. Chemosphere, 2020, 254, 126829.	4.2	93
782	Robust photocatalytic benzene degradation using mesoporous disk-like N-TiO2 derived from MIL-125(Ti). Chinese Journal of Catalysis, 2020, 41, 1186-1197.	6.9	62
783	Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coordination Chemistry Reviews, 2020, 415, 213299.	9.5	158
784	Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society, 2020, 24, 461-473.	2.4	75

#	Article	IF	CITATIONS
785	An acid-base resistant polyoxometalate-based metal–organic framework constructed from {Cu4Cl}7+ and {Cu2(CO2)4} clusters for photocatalytic degradation of organic dye. Journal of Solid State Chemistry, 2020, 287, 121384.	1.4	15
786	New 2D Lanthanide MOFs Constructed from Bis(imide) Pyromellitic Alanine Ligands with Enhanced Fluorescence toward Activation and Modulation of Microstructure. Crystal Growth and Design, 2020, 20, 4273-4292.	1.4	10
787	Metal-Organic Framework-Based Engineered Materialsâ€"Fundamentals and Applications. Molecules, 2020, 25, 1598.	1.7	75
788	Sunlight driven decomposition of toxic organic compound, coumarin, p-nitrophenol, and photo reduction of Cr(VI) ions, using a bridge structure of Au@CNT@TiO2 nanocomposite. Applied Catalysis B: Environmental, 2020, 272, 118991.	10.8	80
789	Recent developments of doped g-C ₃ N ₄ photocatalysts for the degradation of organic pollutants. Critical Reviews in Environmental Science and Technology, 2021, 51, 751-790.	6.6	346
790	Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications. Journal of Energy Chemistry, 2021, 54, 770-785.	7.1	75
791	Visible light responsive 2DCeO2-CdSQDs binary hybrid towards photocatalytic degradation of phenol. Materials Today: Proceedings, 2021, 35, 263-267.	0.9	0
792	Effect of metal ions doping on structural, optical properties and photocatalytic activity of anatase TiO ₂ thin films. Surface and Interface Analysis, 2021, 53, 194-205.	0.8	16
793	Bandgap-tuned ultra-small SnO2-nanoparticle-decorated 2D-Bi2WO6 nanoplates for visible-light-driven photocatalytic applications. Chemosphere, 2021, 263, 128185.	4.2	18
794	Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coordination Chemistry Reviews, 2021, 429, 213620.	9.5	117
795	Assembly of co coordination polymers tuned by the N-donor ligands with different spacer: Syntheses, structures and photocatalytic properties. Inorganica Chimica Acta, 2021, 514, 119995.	1.2	9
796	Fast photocatalytic organic dye by two metal-organic frameworks with 3D two-fold interpenetrated feature. Journal of Molecular Structure, 2021, 1227, 129538.	1.8	10
797	Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation. Science of the Total Environment, 2021, 752, 141901.	3.9	175
798	Porous Metal-Organic Frameworks for Advanced Applications. , 2021, , 590-616.		5
800	Boosted bisphenol A and Cr(VI) cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light. Journal of Cleaner Production, 2021, 279, 123408.	4.6	92
801	Strategies to enhance catalytic performance of metal–organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal. Chemical Engineering Journal, 2021, 403, 126346.	6.6	119
802	Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chemical Engineering Journal, 2021, 407, 127191.	6.6	212
803	Four new coordination complexes prepared for the degradation of methyl violent dye based on flexible dicarboxylate and different N-donor coligands. Journal of Molecular Structure, 2021, 1225, 129181.	1.8	16

#	Article	IF	CITATIONS
804	Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Applied Catalysis B: Environmental, 2021, 281, 119474.	10.8	208
805	Tuning the photocatalytic activity of nanocomposite ZnO nanorods by shape-controlling the bimetallic AuAg nanoparticles. Applied Surface Science, 2021, 536, 147847.	3.1	22
806	Tuning the properties of Fe-BTC metal-organic frameworks (MOFs) by swift heavy ion (SHI) irradiation. Radiation Effects and Defects in Solids, 2021, 176, 274-283.	0.4	8
807	Anisotropic heteronanocrystals of Cu2O–2D MoS2 for efficient visible light driven photocatalysis. Applied Surface Science, 2021, 538, 148159.	3.1	19
808	Two diverse temperature-directed cobalt-based coordination polymers: environmentally friendly photocatalysts for degradation of organic dyes. Transition Metal Chemistry, 2021, 46, 103-109.	0.7	1
809	Synthesis, crystal structure and photocatalytic properties of two new coordination polymers based on flexible dicarboxylate and $1,1\hat{a}\in^2$ - $(1,4$ -butanediyl)bis(imidazole) ligands. Inorganica Chimica Acta, 2021, 515, 120063.	1.2	3
810	Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Chemical Engineering Journal, 2021, 421, 127845.	6.6	85
811	Efficient MO Dye Degradation Catalyst of Cu(I)-Based Coordination Complex from Dissolution–Recrystallization Structural Transformation. Crystal Growth and Design, 2021, 21, 333-343.	1.4	12
812	Encapsulated anion-dominated photocatalytic and adsorption performances for organic dye degradation and oxoanion pollutant capture over cationic Cu(<scp>i</scp>)-organic framework semiconductors. Dalton Transactions, 2021, 50, 197-207.	1.6	19
813	Solvent dependent Zinc(II) coordination polymers with 1,3,5-benzenetricarboxylic acid and the selective photocatalytic degradation for organic dyes. Journal of Molecular Structure, 2021, 1227, 129540.	1.8	10
814	Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environment International, 2021, 146, 106273.	4.8	117
815	Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review. Chemical Engineering Journal, 2021, 421, 127863.	6.6	129
816	Efficient self-photo-degradation of cationic textile dyes involved triethylamine and degradation pathway. Chemosphere, 2021, 266, 129209.	4.2	19
817	Structural diversity and photocatalytic properties of two new coordination polymers based on a semi-rigid tetracarboxylate ligand. Journal of Molecular Structure, 2021, 1224, 129067.	1.8	2
818	Robust charge carrier by Fe3O4 in Fe3O4/WO3 core-shell photocatalyst loaded on UiO-66(Ti) for urea photo-oxidation. Chemosphere, 2021, 267, 129206.	4.2	16
819	Three new copper(II) coordination polymers constructed from isomeric sulfo-functionalized phthalate tectonics: Synthesis, crystal structure, photocatalytic and proton conduction properties. Journal of Solid State Chemistry, 2021, 294, 121860.	1.4	23
820	The practical application and electron transfer mechanism of SR-Fenton activation by FeOCl. Research on Chemical Intermediates, 2021, 47, 795-811.	1.3	12
821	Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. International Journal of Biological Macromolecules, 2021, 167, 101-116.	3.6	41

#	Article	IF	CITATIONS
822	Mild and large-scale synthesis of nanoscale metal-organic framework used as a potential adenine-based drug nanocarrier. Journal of Drug Delivery Science and Technology, 2021, 61, 102135.	1.4	10
823	Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles. Journal of Materials Science and Technology, 2021, 76, 33-40.	5.6	21
824	NH2-MIL-125(Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution. Chemical Engineering Journal, 2021, 420, 127643.	6.6	30
825	The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment. Chemical Engineering Journal, 2021, 417, 127914.	6.6	62
826	1Â+Â1Â>Â2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chemical Engineering Journal, 2021, 417, 128022.	6.6	73
827	Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water. Journal of Environmental Chemical Engineering, 2021, 9, 104932.	3.3	21
828	Copper mixed-triazolate frameworks featuring the thiophene-containing ligand towards enhanced photodegradation of organic contaminants in water. Journal of Hazardous Materials, 2021, 406, 124757.	6.5	11
829	Multifunctional self-assembly 3D Ag/g-C3N4/RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater. Applied Surface Science, 2021, 542, 148584.	3.1	57
830	The visible light-driven highly efficient photocatalytic properties of Cu ₂ ZnSnS ₄ nanoparticles synthesized by a hydrothermal method. New Journal of Chemistry, 2021, 45, 1743-1752.	1.4	19
831	Two 2D uranyl coordination complexes showing effective photocatalytic degradation of Rhodamine B and mechanism study. Chinese Chemical Letters, 2021, 32, 604-608.	4.8	20
832	Heterocyclic reaction inducted by Brønsted–Lewis dual acidic Hf-MOF under microwave irradiation. Molecular Catalysis, 2021, 499, 111291.	1.0	13
833	Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers. CrystEngComm, 2021, 23, 741-747.	1.3	104
834	The synergistic photocatalytic effects of surface-modified g-C ₃ N ₄ in simple and complex pollution systems based on a macro-thermodynamic model. Environmental Science: Nano, 2021, 8, 217-232.	2.2	11
835	Pyrolysis conversion of metal organic frameworks to form uniform codoped C/N-Titania photocatalyst for H2 production through simulated solar light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113037.	2.0	20
836	Heterogeneous activation of peroxymonosulfate by bimetallic MOFs for efficient degradation of phenanthrene: Synthesis, performance, kinetics, and mechanisms. Separation and Purification Technology, 2021, 259, 118217.	3.9	60
837	Visible Light–Initiated Synergistic/Cascade Reactions over Metal–Organic Frameworks. Solar Rrl, 2021, 5, 2000454.	3.1	24
838	Recent Development of Porous Porphyrinâ€based Nanomaterials for Photocatalysis. ChemCatChem, 2021, 13, 140-152.	1.8	48
839	Comparative study on the removal of different-type organic pollutants on three-dimensional hexagonal-tungsten trioxide/reduced graphene oxide nanorod arrays: adsorption and visible light photodegradation. Journal of Materials Science: Materials in Electronics, 2021, 32, 2268-2282.	1.1	6

#	Article	IF	CITATIONS
840	Titanium-based metal-organic frameworks for photocatalytic applications., 2021,, 37-63.		2
841	Role of nanostructured metal oxides in photocatalysis: An overview. , 2021, , 145-167.		12
842	Efficient photodegradation of 2-chloro-4-nitrophenol over Fe-doped BiOCl nanosheets with oxygen vacancy. Catalysis Science and Technology, 0 , , .	2.1	9
843	Post-synthetic modifications (PSM) on metal–organic frameworks (MOFs) for visible-light-initiated photocatalysis. Dalton Transactions, 2021, 50, 13201-13215.	1.6	32
844	Crystal facet and surface defect engineered low dimensional CeO ₂ (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement. Materials Advances, 2021, 2, 6942-6983.	2.6	18
845	Sisal-like Sn ²⁺ doped ZnO hierarchical structures: synthesis, growth mechanism, and their application in photocatalysis. CrystEngComm, 2021, 23, 7314-7323.	1.3	3
846	Recent advances in metal–organic frameworks as adsorbent materials for hazardous dye molecules. Dalton Transactions, 2021, 50, 3083-3108.	1.6	88
847	Prospective of functionalized nanomaterials in environmental science: A nanotechnological approach., 2021,, 13-60.		1
848	Modified metal-organic frameworks as photocatalysts. , 2021, , 231-270.		3
849	Modification of graphene aerogel with titania nanotubes for efficient methylene blue adsorption kinetics. Journal of Sol-Gel Science and Technology, 2021, 97, 271-280.	1.1	7
850	Graphdiyne: an emerging two-dimensional (2D) carbon material for environmental remediation. Environmental Science: Nano, 2021, 8, 1863-1885.	2.2	22
851	Photochemistry of carbon nitrides and heptazine derivatives. Chemical Communications, 2021, 57, 9330-9353.	2.2	15
852	Hairy silica nanosphere supported metal nanoparticles for reductive degradation of dye pollutants. Nanoscale Advances, 2021, 3, 2879-2886.	2.2	13
853	1,3-Bis(4′-carboxylatophenoxy)benzene and 3,5-bis(1-imidazoly)pyridine derived Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) coordination polymers: synthesis, structure and photocatalytic properties. CrystEngComm, 2021, 23, 3981-3988.	1.3	8
854	New materials and equipment for photocatalytic degradation processes. Interface Science and Technology, 2021, 32, 673-723.	1.6	1
855	Bismuth-based Z-scheme photocatalytic systems for solar energy conversion. Materials Chemistry Frontiers, 2021, 5, 2484-2505.	3.2	33
856	Layered Cs ₄ CuSb ₂ Cl ₁₂ Nanocrystals for Sunlight-Driven Photocatalytic Degradation of Pollutants. ACS Applied Nano Materials, 2021, 4, 1305-1313.	2.4	23
857	Digital-intellectual design of microporous organic polymers. Physical Chemistry Chemical Physics, 2021, 23, 22835-22853.	1.3	2

#	Article	IF	CITATIONS
858	Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes. Inorganic Chemistry Frontiers, 2021, 8, 4107-4148.	3.0	18
859	ZnO@ZIF-8 core–shell heterostructures with improved photocatalytic activity. CrystEngComm, 2021, 23, 4327-4335.	1.3	12
860	Novel prism shaped C ₃ N ₄ -doped Fe@Co ₃ O ₄ nanocomposites and their dye degradation and bactericidal potential with molecular docking study. RSC Advances, 2021, 11, 23330-23344.	1.7	26
861	Magnetic photocatalytic systems. , 2021, , 503-536.		3
862	Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes. Catalysis Science and Technology, 2021, 11, 3946-3989.	2.1	134
863	Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Advances, 2021, 3, 4646-4658.	2.2	67
864	Four structural diversity MOF-photocatalysts readily prepared for the degradation of the methyl violet dye under UV-visible light. New Journal of Chemistry, 2021, 45, 551-560.	1.4	26
865	New Cd(<scp>ii</scp>) coordination polymers bearing Y-shaped tricarboxylate ligands as photocatalysts for dye degradation. CrystEngComm, 2021, 23, 6400-6408.	1.3	4
866	Metal–organic frameworks of linear trinuclear cluster secondary building units: structures and applications. Dalton Transactions, 2021, 50, 12692-12707.	1.6	12
867	An Overview of Recent Development in Visible Light-mediated Organic Synthesis over Heterogeneous Photo-nanocatalysts. Current Organic Synthesis, 2021, 18, 23-36.	0.7	6
868	Influence of Gd3+ lons Substitution on the Structure and Properties of Bi-BTC for Photocatalysts. Integrated Ferroelectrics, 2021, 213, 67-74.	0.3	0
869	Enhanced photocatalytic performance of UiO-66-NH2/TiO2 composite for dye degradation. Environmental Science and Pollution Research, 2021, 28, 25552-25565.	2.7	30
870	Construction of 3D N-CQD/MOF-5 photocatalyst to improve the photocatalytic performance of MOF-5 by changing the electron transfer path. Microporous and Mesoporous Materials, 2021, 315, 110889.	2.2	40
871	Enhanced photocatalytic performance of novel MIL53Sr metal-organic framework (MOF) for RhB dye degradation and H2 evolution by coupling MIL53Fe. Solar Energy, 2021, 215, 121-130.	2.9	26
872	Functional Porous Organic Polymers with Conjugated Triaryl Triazine as the Core for Superfast Adsorption Removal of Organic Dyes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6359-6366.	4.0	98
874	Photocatalytic Reduction of CO2 to Methanol Using a Copper-Zirconia Imidazolate Framework. Catalysts, 2021, 11, 346.	1.6	5
875	Metal-organic frameworks based on tetra(imidazole) and multicarboxylate: Syntheses, structures, luminescence, photocatalytic and sonocatalytic degradation of methylene blue. Polyhedron, 2021, 197, 115052.	1.0	10
876	Efficient degradation of perfluorooctanoic acid by electrospun lignin-based bimetallic MOFs nanofibers composite membranes with peroxymonosulfate under solar light irradiation. International Journal of Biological Macromolecules, 2021, 174, 319-329.	3.6	37

#	Article	IF	CITATIONS
877	Engineered Bifunctional Luminescent Pillared‣ayer Frameworks for Adsorption of CO 2 and Sensitive Detection of Nitrobenzene in Aqueous Media. Chemistry - A European Journal, 2021, 27, 6529-6537.	1.7	13
878	Insights into the Stability and Activity of MIL-53(Fe) in Solar Photocatalytic Oxidation Processes in Water. Catalysts, 2021, 11, 448.	1.6	22
879	Light-Harvesting Metal-Organic Frameworks (MOFs) La-PTC for Photocatalytic Dyes Degradation. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 170-178.	0.5	14
880	Photocatalytic Activities of FeNbO4/NH2-MIL-125(Ti) Composites toward the Cycloaddition of CO2 to Propylene Oxide. Molecules, 2021, 26, 1693.	1.7	14
881	Toward efficient removal of organic pollutants in water: A tremella-like iron containing metal-organic framework in Fenton oxidation. Environmental Technology (United Kingdom), 2022, 43, 2785-2795.	1.2	4
882	Two new diverse 3D MOFs induced by ligand salt type: Photocatalytic performance. Dyes and Pigments, 2021, 187, 109071.	2.0	5
883	An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti). Microporous and Mesoporous Materials, 2021, 316, 110957.	2.2	43
884	Two New 3D Metal-Organic Frameworks Constructed by Polycarboxylate and N-Donor Ligands: Crystal Structure, Photocatalytic Performances, and DFT Calculation. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 296-305.	0.3	5
885	Synthesis and characterization of two water stable coordination polymers with better photocatalytic property towards the organic pollutant in waste water. Journal of Molecular Structure, 2021, 1230, 129914.	1.8	4
886	Nâ€donorâ€induced Two Co(II) Coordination Polymers Derived from the Flexible Citraconic Acid as Photocatalysts for the Decomposition of Organic Dyes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	4
887	Conferring Tiâ€Based MOFs with Defects for Enhanced Sonodynamic Cancer Therapy. Advanced Materials, 2021, 33, e2100333.	11.1	195
888	Meso-erythritol-regulated BiOBr nanosheets with surface hydroxyl imprinting sites for considerably improved photocatalytic capability. Applied Surface Science, 2021, 546, 149116.	3.1	12
889	Non-aqueous synthesis of AuCu@ZnO alloy-semiconductor heteroparticles for photocatalytical degradation of organic dyes. Journal of Saudi Chemical Society, 2021, 25, 101210.	2.4	6
890	Photocatalysis Driven by Near-Infrared Light: Materials Design and Engineering for Environmentally Friendly Photoreactions. ACS ES&T Engineering, 2021, 1, 947-964.	3.7	66
891	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie, 2021, 133, 10901-10908.	1.6	8
892	Unique MIL-53(Fe)/PDI Supermolecule Composites: Z-Scheme Heterojunction and Covalent Bonds for Uprating Photocatalytic Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16364-16373.	4.0	37
893	A Tunable Multivariate Metal–Organic Framework as a Platform for Designing Photocatalysts. Journal of the American Chemical Society, 2021, 143, 6333-6338.	6.6	69
894	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie - International Edition, 2021, 60, 10806-10813.	7.2	63

#	Article	IF	CITATIONS
895	Photocatalytic organic dye by two new coordination polymers with flexible dicarboxylate and different N-donor linkage. Inorganica Chimica Acta, 2021, 519, 120284.	1.2	5
896	Two-Dimensional Metal–Organic Framework Nanostructures Based on 4,4′-Sulfonyldibenzoate for Photocatalytic Degradation of Organic Dyes. Crystal Growth and Design, 2021, 21, 3364-3374.	1.4	26
897	Oxygen-doped carbon nitride/red phosphorus composite photocatalysts for effective visible-light-driven purification of wastewater. Materials Chemistry and Physics, 2021, 264, 124440.	2.0	8
898	Recent Advances in Metal–Organic Frameworks Derived Nanocomposites for Photocatalytic Applications in Energy and Environment. Advanced Science, 2021, 8, e2100625.	5.6	118
899	Removal of organic pollutants in water by the MCM-41 anchored with nickel(II) and copper(II) complexes. Environmental Technology and Innovation, 2021, 22, 101492.	3.0	7
900	Flexible Ag@LiNbO ₃ /PVDF Composite Film for Piezocatalytic Dye/Pharmaceutical Degradation and Bacterial Disinfection. ACS Applied Materials & Interfaces, 2021, 13, 22914-22925.	4.0	90
901	MIL-100 (Fe) with mix-valence coordinatively unsaturated metal site as Fenton-like catalyst for efficiently removing tetracycline hydrochloride: Boosting Fe(III)/Fe(II) cycle by photoreduction. Separation and Purification Technology, 2021, 262, 118334.	3.9	47
902	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	10.2	68
903	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	2.8	123
904	Rapid water purification using modified graphitic carbon nitride and visible light. Applied Catalysis B: Environmental, 2021, 285, 119864.	10.8	30
905	Interfacial heterojunction construction by introducing Pd into W18O49 nanowires to promote the visible light-driven photocatalytic degradation of environmental organic pollutants. Journal of Colloid and Interface Science, 2021, 590, 518-526.	5.0	15
906	Green water-based fabrication of SiO2–TiO2 aerogels with superhydrophobic and photocatalytic properties and their application on cotton fabric. Journal of Porous Materials, 2021, 28, 1501-1510.	1.3	9
907	Efficient degradation of perfluorooctanoic acid by solar photo-electro-Fenton like system fabricated by MOFs/carbon nanofibers composite membrane. Chemical Engineering Journal, 2021, 414, 128940.	6.6	64
908	Two 3D supramolecular isomeric Zn(II)-MOFs as photocatalysts for photodegradation of methyl violet dye. Dyes and Pigments, 2021, 190, 109285.	2.0	63
909	Effective removal of hazardous pollutants from water and deactivation of water-borne pathogens using multifunctional synthetic adsorbent materials: A review. Journal of Cleaner Production, 2021, 302, 126735.	4.6	36
910	Green synthesis of lignin nanorods/g-C3N4 nanocomposite materials for efficient photocatalytic degradation of triclosan in environmental water. Chemosphere, 2021, 272, 129801.	4.2	22
911	Construction of Novel Polyoxometalate/Perylenediimide Hybrid Heterostructures for Enhanced Photocatalytic Oxidation of Mustard Gas Simulants. Crystal Growth and Design, 2021, 21, 4738-4745.	1.4	10
912	Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst. Materials Research Bulletin, 2021, 138, 111204.	2.7	12

#	Article	IF	CITATIONS
913	Two new metalâ€organic frameworks constructed by 4,5â€bis(pyrazolâ€1â€yl) phthalic acid for photocatalytic properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1560-1567.	0.6	4
914	Iron-doped zinc oxide for photocatalyzed degradation of humic acid from municipal wastewater. Applied Materials Today, 2021, 23, 101047.	2.3	18
915	A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere, 2021, 272, 129501.	4.2	293
916	Construction of C-C bonds via photoreductive coupling of ketones and aldehydes in the metal-organic-framework MFM-300(Cr). Nature Communications, 2021, 12, 3583.	5.8	35
917	Nitrogen-rich covalent triazine frameworks for high-efficient removal of anion dyes and the synergistic adsorption of cationic dyes. Chemosphere, 2021, 272, 129622.	4.2	38
918	Two new coordination polymers with tetracarboxylate as photocatalysts for dye degradation. Polyhedron, 2021, 203, 115216.	1.0	8
919	Adsorptive capture of perrhenate (ReO4â^') from simulated wastewater by cationic 2D-MOF BUC-17. Polyhedron, 2021, 202, 115218.	1.0	23
920	Syntheses, structures and photocatalysis properties of two Cu(II)-based coordination polymers based on flexible tricarboxylate ligand. Journal of Molecular Structure, 2021, 1235, 130220.	1.8	7
921	Photodegradation of Brilliant Green Dye by a Zinc bioMOF and Crystallographic Visualization of Resulting CO2. Molecules, 2021, 26, 4098.	1.7	5
922	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engineering, 2021, 7, 1115-1139.	3.2	94
923	Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials, 2021, 11, 1804.	1.9	192
924	Role of graphene in improving catalytic behaviors of AuNPs/MoS ₂ /Gr/Ni-F structure in hydrogen evolution reaction*. Chinese Physics B, 2021, 30, 088801.	0.7	2
925	Therapeutic gas delivery strategies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1744.	3.3	18
926	Engineering Durable Superhydrophobic Photocatalyst for Oilâ€Water Separation and Degradation of Chemical Pollutants. ChemistrySelect, 2021, 6, 7271-7277.	0.7	3
927	The application of MOFs-based materials for antibacterials adsorption. Coordination Chemistry Reviews, 2021, 440, 213970.	9.5	101
928	Concurrent first- and second-order photodegradation of azo dyes using TMU-16 pillared-layer microporous metal organic framework under visible light. Journal of Solid State Chemistry, 2021, 300, 122210.	1.4	4
929	Solar-driven high-efficiency remediation of wastewater containing small dye molecules. Science China Technological Sciences, 2021, 64, 2237-2245.	2.0	11
930	BiPO4/Fe-metal organic framework composite: A promising photocatalyst toward the abatement of tetracycline hydrochloride, Indigo Carmine and reduction of 4-nitrophenol. Journal of Industrial and Engineering Chemistry, 2021, 100, 220-232.	2.9	24

#	Article	IF	CITATIONS
931	Facile hydrothermal synthesis of SnO2 quantum dots with enhanced photocatalytic degradation activity: Role of surface modification with chloroacetic acid. Journal of Environmental Chemical Engineering, 2021, 9, 105618.	3.3	23
932	0D/3D Znln2S4/Ag6Si2O7 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 evolution under visible light. International Journal of Hydrogen Energy, 2021, 46, 28043-28052.	3.8	74
933	The degradation of organic dye contaminants in wastewater and solution from highly visible light responsive ZIF-67 monodisperse photocatalyst. Journal of Solid State Chemistry, 2021, 300, 122287.	1.4	40
934	Rational design of MIL-88A(Fe)/Bi2WO6 heterojunctions as an efficient photocatalyst for organic pollutant degradation under visible light irradiation. Optical Materials, 2021, 118, 111260.	1.7	30
935	Rapid degradation of metamitron and highly complex mixture of pollutants using MIL-53(Al) integrated combustion synthesized TiO2. Advanced Powder Technology, 2021, 32, 3125-3135.	2.0	9
936	Converting Organic Wastewater into CO Using MOFs-Derived Co/In ₂ O ₃ Double-Shell Photocatalyst. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40754-40765.	4.0	21
937	Series of new coordination polymers based flexible tricarboxylate as photocatalysts for Rh B dye degradation. Journal of Solid State Chemistry, 2021, 300, 122233.	1.4	5
938	New Hybrid Feâ€based MOFs/Polymer Composites for the Photodegradation of Organic Dyes. ChemistrySelect, 2021, 6, 8120-8132.	0.7	23
939	Zn(II)-MOF with flexible dicarboxylate ligand with different N-donor linkage as photocatalyst for aromatic dye degradation. Inorganic Chemistry Communication, 2021, 130, 108685.	1.8	8
940	Synthesis of 0D SnO2 nanoparticles/2D g-C3N4 nanosheets heterojunction: improved charge transfer and separation for visible-light photocatalytic performance. Journal of Alloys and Compounds, 2021, 871, 159561.	2.8	28
941	Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation. Journal of Colloid and Interface Science, 2021, 596, 376-383.	5.0	47
942	Electrospun graphene oxide/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofiber: A high-efficient and reusable integrated photocatalytic adsorbents for removal of dye pollutant from water samples. Journal of Colloid and Interface Science, 2021, 597, 196-205.	5.0	42
943	Facile fabrication of Bi2GeO5/Ag@Ag3PO4 for efficient photocatalytic RhB degradation. Journal of Solid State Chemistry, 2021, 301, 122309.	1.4	15
944	Cerium oxide and its nanocomposites: Structure, synthesis, and wastewater treatment applications. Materials Today Communications, 2021, 28, 102562.	0.9	36
945	Defect-Rich Hierarchical Porous UiO-66(Zr) for Tunable Phosphate Removal. Environmental Science & Envi	4.6	27
946	CdSe QDs@ Fe-based metal organic framework composites for improved photocatalytic RhB degradation under visible light. Microporous and Mesoporous Materials, 2021, 324, 111291.	2.2	22
947	Structural Modulation on NiCo ₂ S ₄ Nanoarray by N Doping to Enhance 2eâ€ORR Selectivity for Photothermal AOPs and Znâ^'O ₂ Batteries**. Chemistry - A European Journal, 2021, 27, 14451-14460.	1.7	6
948	Photocatalytic Degradation of Diazo Dye over Suspended and Immobilized TiO2 Catalyst in Swirl Flow Reactor: Kinetic Modeling. Processes, 2021, 9, 1741.	1.3	10

#	Article	IF	Citations
949	Single-atom engineering of metal-organic frameworks toward healthcare. CheM, 2021, 7, 2635-2671.	5.8	55
950	High selectivity and reusability of coordination polymer adsorbents: Synthesis, adsorption properties and activation energy. Microporous and Mesoporous Materials, 2021, 324, 111309.	2.2	15
951	Triazine crystalline framework complexes with flexible arms bearing carboxylate coordinating moieties: Synthesis, structure, spectroscopy and photocatalytic property. Polyhedron, 2021, 205, 115314.	1.0	5
952	Hydroxyapatite Coated with Co-Based Metal Organic Framework Nanoparticles as Heterojunctions for Catalytic Degradation of Organics. ACS Applied Nano Materials, 2021, 4, 9370-9381.	2.4	15
953	A 3D supramolecular Ag(I)-based coordination polymer as stable photocatalyst for dye degradation. Inorganic Chemistry Communication, 2021, 131, 108805.	1.8	7
954	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
955	Shining photocatalysis by gold-based nanomaterials. Nano Energy, 2021, 88, 106306.	8.2	64
956	In-situ growth of molecularly imprinted metal–organic frameworks on 3D carbon foam as an efficient adsorbent for selective removal of antibiotics. Journal of Molecular Liquids, 2021, 340, 117232.	2.3	12
957	Z-Scheme heterojunction Ag/NH2-MIL-125(Ti)/CdS with enhanced photocatalytic activity for ketoprofen degradation: Mechanism and intermediates. Chemical Engineering Journal, 2021, 422, 130105.	6.6	52
958	Efficient degradation of dyes in water by two Ag-based coordination polymers containing 1,3-bis(3,5-dicarboxylphenoxy)benzene and N-donor linkers. Polyhedron, 2021, 207, 115362.	1.0	11
959	Highly efficient and stable Ag-g-C3N4/AC photocatalyst for photocatalytic degradation, Cr(VI) reduction and bacteriostasis under visible light irradiation. Journal of Environmental Chemical Engineering, 2021, 9, 105879.	3.3	4
960	Simultaneous introduction of oxygen vacancies and hierarchical pores into titanium-based metal-organic framework for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2021, 599, 785-794.	5.0	23
961	Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: Mechanism insight, pathway analysis and toxicity evaluation. Journal of Hazardous Materials, 2021, 419, 126466.	6.5	169
962	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	3.3	47
963	An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. Chemosphere, 2021, 280, 130907.	4.2	84
964	Supramolecular precursor derived loofah sponge-like Fe2Ox/C for effective synergistic reaction of Fenton and photocatalysis. Nano Research, 2022, 15, 1949-1958.	5.8	9
965	Synthesis and characterization of TiO2/CNT/Pd: An effective sunlight photocatalyst for neonicotinoids degradation. Journal of Environmental Chemical Engineering, 2021, 9, 106278.	3.3	26
966	Biopolymer-PAA and surfactant-CTAB assistant solvothermal synthesis of Zn-based MOFs: design, characterization for removal of toxic dyes, copper and their biological activities― Inorganic Chemistry Communication, 2021, 133, 108928.	1.8	6

#	Article	IF	CITATIONS
967	Structural diversity in four Zn(II)/Cd(II) coordination polymers tuned by flexible pentacarboxylate and N-donor coligands: Photocatalysts for enhanced degradation of dyes. Dyes and Pigments, 2021, 195, 109695.	2.0	12
968	Synergistic effects in ordered Co oxides for boosting catalytic activity in advanced oxidation processes. Applied Catalysis B: Environmental, 2021, 297, 120463.	10.8	30
969	Fabrication of graphene oxide/polydopamine adsorptive membrane by stepwise in-situ growth for removal of rhodamine B from water. Desalination, 2021, 516, 115220.	4.0	35
970	Two photochromic hybrid materials assembled from naphthalene diimide as photocatalysts for the degradation of carcinogenic dye basic red 9 under visible light. Journal of Molecular Structure, 2021, 1243, 130804.	1.8	2
971	Layer by layer self-assembly MoS2/ZIF-8 composites on carboxyl cotton fabric for enhanced visible light photocatalysis and recyclability. Applied Surface Science, 2021, 565, 150458.	3.1	17
972	High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of Ag/g-C3N4/ZnO nanocomposite materials. Chemosphere, 2021, 282, 130971.	4.2	39
973	A new 3D high connection Cu-based MOF introducing a flexible tetracarboxylic acid linker: Photocatalytic dye degradation. Polyhedron, 2021, 208, 115441.	1.0	25
974	Structure and photocatalytic performance of a metallacycle complex based on flexible carboxylic acid ligand. Polyhedron, 2021, 209, 115480.	1.0	0
975	A multi-functional Cd(II)-based coordination polymer for the highly sensitive detection of nitrofurazone and photocatalytic efficiency of Rhodamine B. Inorganica Chimica Acta, 2021, 527, 120566.	1.2	5
976	A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. Journal of CO2 Utilization, 2021, 53, 101715.	3.3	58
977	TiO2 derived from NTU-9 metal-organic framework as highly efficient photocatalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115424.	1.7	3
978	Phosphorus-doping CdS@NiFe layered double hydroxide as Z-Scheme heterojunction for enhanced photocatalytic and photo-fenton degradation performance. Separation and Purification Technology, 2021, 274, 119066.	3.9	26
979	Temperature-responsive polymer-tethered Zr-porphyrin MOFs encapsulated carbon dot nanohybrids with boosted visible-light photodegradation for organic contaminants in water. Chemical Engineering Journal, 2021, 426, 131794.	6.6	51
980	Two novel Co (II) bifunctional MOFs: Syntheses and applications in photocatalytic degradation of dyes and electrocatalytic water oxidation. Journal of Solid State Chemistry, 2021, 304, 122562.	1.4	13
981	Construction of ultra-stable and Z-scheme Fe-Graphdiyne/MIL-100(Fe) photo-Fenton catalyst with CÂ=ÂC-Fe O interface for the highly enhanced catalytic degradation of Dinotefuran. Chemical Engineering Journal, 2021, 426, 131621.	6.6	41
982	Intimately coupling photocatalysis with phenolics biodegradation and photosynthesis. Chemical Engineering Journal, 2021, 425, 130666.	6.6	40
983	Metal organic framework as "turn-on―fluorescent sensor for Zr(IV) ions and selective adsorbent for organic dyes. Microchemical Journal, 2021, 171, 106824.	2.3	22
984	Boosting Photo-Fenton reactions by amidoxime chelated ferrous iron (Fe(III)) catalyst for highly efficient pollutant control. Applied Catalysis B: Environmental, 2021, 298, 120574.	10.8	11

#	Article	IF	CITATIONS
985	Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments. Journal of Hazardous Materials, 2022, 422, 126843.	6.5	220
986	Efficient removal of emerging organic contaminants via photo-Fenton process over micron-sized Fe-MOF sheet. Chemical Engineering Journal, 2022, 429, 132495.	6.6	97
987	Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A(Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation. Chemical Engineering Journal, 2022, 428, 131028.	6.6	92
988	Advanced applications and current status of green nanotechnology in the environmental industry. , 2022, , 303-340.		1
989	A new 3D supramolecular 2-fold interpenetrating Ag(I)-based coordination polymer as photocatalyst for aromatic dye degradation. Journal of Molecular Structure, 2022, 1248, 131510.	1.8	2
990	The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance. Journal of Colloid and Interface Science, 2022, 606, 1745-1757.	5.0	32
991	Photocatalytic activity of new nanostructures of an Ag(<scp>i</scp>) metal–organic framework (Ag-MOF) for the efficient degradation of MCPA and 2,4-D herbicides under sunlight irradiation. New Journal of Chemistry, 2021, 45, 3408-3417.	1.4	71
992	Self-supported CPs Materials for Photodegrading Toxic Organics in Water. Nanostructure Science and Technology, 2021, , 215-232.	0.1	1
993	Construction of porous 2D MOF nanosheets for rapid and selective adsorption of cationic dyes. Dalton Transactions, 2021, 50, 3348-3355.	1.6	24
994	Visible light active g-C3N4 sheets/CdS heterojunction photocatalyst for decolourisation of acid blue (AB-25). Journal of Nanoparticle Research, 2021, 23, 1.	0.8	6
995	Removal of tetracycline hydrochloride from wastewater by Zr/Fe-MOFs/GO composites. RSC Advances, 2021, 11, 9977-9984.	1.7	40
996	Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow. Journal of Materials Chemistry A, 2021, 9, 15704-15713.	5.2	19
997	The synthesis and characterization of Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) based MOFs by a mixed ligand strategy: a Zn(<scp>ii</scp>) MOF as a dual functional material for reversible dye adsorption and as a heterogeneous catalyst for the Biginelli reaction. Materials Chemistry Frontiers, 2021, 5, 304-314.	3.2	52
999	Construction of a mixed ligand MOF as "green catalyst―for the photocatalytic degradation of organic dye in aqueous media. RSC Advances, 2021, 11, 23838-23845.	1.7	28
1000	Controllable selfâ€assembly from homonuclear Mn (II)â€MOF to heteronuclear Mn (II)â€K(I)â€MOF by alkaliâ€regulation: A novel mode of structural and luminescent regulation for off–on sensing ascorbic acid. Applied Organometallic Chemistry, 2021, 35, e6160.	1.7	0
1001	Heterogeneous photocatalysis. , 2021, , 1-38.		0
1002	Syntheses of a series of lanthanide metal–organic frameworks for efficient UV-light-driven dye degradation: experiment and simulation. CrystEngComm, 2021, 23, 2404-2413.	1.3	11
1003	Photocatalytic Performance of the MOF-Coating Layer on SPR-Excited Ag Nanowires. ACS Omega, 2021, 6, 2882-2889.	1.6	14

#	Article	IF	CITATIONS
1004	Metal–organic frameworks forÂheterogeneous photocatalysisÂof organicÂdyes. , 2021, , 489-508.		2
1005	Water-Stable Zn(II) Coordination Polymers Regulated by Polysubstituted Benzenes and Their Photocatalytic Performance toward Methylene Blue Degradation Dominated by Ligand-Field Effects. Crystal Growth and Design, 2021, 21, 1218-1232.	1.4	22
1006	Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Applied Catalysis B: Environmental, 2020, 277, 119136.	10.8	452
1007	Green Reduction of Graphene Oxide using Kaffir Lime Peel Extract (Citrus hystrix) and Its Application as Adsorbent for Methylene Blue. Scientific Reports, 2020, 10, 667.	1.6	54
1008	Synthesis of NiTiO ₃ â€"Bi ₂ MoO ₆ coreâ€"shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts. New Journal of Chemistry, 2018, 42, 411-419.	1.4	24
1009	Zinc-tetracarboxylate framework material with nano-cages and one-dimensional channels for excellent selective and effective adsorption of methyl blue dye. RSC Advances, 2020, 10, 3539-3543.	1.7	7
1010	Two new hexa-Ni-substituted polyoxometalates in the form of an isolated cluster and 1-D chain: syntheses, structures, and properties. CrystEngComm, 2020, 22, 8387-8393.	1.3	11
1011	Advances in layered double hydroxide-based ternary nanocomposites for photocatalysis of contaminants in water. Nanotechnology Reviews, 2020, 9, 1381-1396.	2.6	16
1012	Review of Perovskite Solar Cells Using Metal-Organic Framework Materials. Ceramist, 2020, 23, 358-388.	0.0	1
1013	Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine. Korean Journal of Materials Research, 2018, 28, 68-74.	0.1	9
1014	Chapter 14. The Potential Applications of MOF-based Materials in Wastewater Treatment. Chemistry in the Environment, 2021, , 405-425.	0.2	0
1015	Fenton-like Nanocatalysts for Water Purification. Chemistry in the Environment, 2021, , 268-319.	0.2	0
1016	Experimental and Density Functional Theory Studies on a Zinc(II) Coordination Polymer Constructed with 1,3,5-Benzenetricarboxylic Acid and the Derived Nanocomposites from Activated Carbon. ACS Omega, 2021, 6, 28967-28982.	1.6	20
1017	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	10.1	25
1018	Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catalysis, 2021, 11, 13374-13396.	5.5	121
1019	High photocatalytic activity for the degradation of rhodamine B in water. International Journal of Environmental Science and Technology, 2022, 19, 8825-8834.	1.8	1
1020	Cellulose based hyper-crosslinked polymer for efficiently recovering valuable materials from PO/SM wastewater. International Journal of Biological Macromolecules, 2021, 193, 71-80.	3.6	5
1021	Sonophotocatalytic Mineralization of Environmental Contaminants Present in Aqueous Solutions. , 2015, , 1-38.		0

#	Article	IF	CITATIONS
1022	Preparation and Characterization of Titanium-Based Photocatalysts. Energy and Environment Research in China, 2019, , 13-44.	2.3	0
1023	Assembly, Structure, and Properties of Six Coordination Polymers Based on 1,3,5-Tri-4-pyridyl-1,2-ethenylbenzene. Australian Journal of Chemistry, 2019, 72, 751.	0.5	1
1024	Plasmonic Zr-based metal-organic frameworks for accelerated de-colorization of methylene blue under LED light irradiation. Hacettepe Journal of Biology and Chemistry, 0, , .	0.3	0
1025	Anion-Dominated Copper Salicyaldimine Complexesâ€"Structures, Coordination Mode of Nitrate and Decolorization Properties toward Acid Orange 7 Dye. Polymers, 2020, 12, 1910.	2.0	4
1026	Stateâ€ofâ€theâ€Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metalâ€Organic Framework (MOF)â€Based Catalysts. Advanced Science, 2022, 9, e2103361.	5.6	47
1027	Molybdenumâ€based heterogeneous catalysts for the control of environmental pollutants. EcoMat, 2021, 3, e12155.	6.8	44
1028	Facile high yield, excellent catalytic performance of polyoxometalate-based lanthanide phosphine oxide complexes: Syntheses, structures, photocatalysis and THz spectra. Environmental Research, 2022, 206, 112267.	3.7	6
1029	Efficient degradation of methylene blue: A comparative study using hydrothermally synthesised SnS2, WS2 and VS2 nanostructures. Materials Research Bulletin, 2022, 146, 111623.	2.7	11
1030	In situ solvothermal method of C3N5@NH2-MIL-125 composites with enhanced visible-light photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 388-398.	1.1	8
1032	Assembly, photocatalytic and fluorescence properties of three new coordination complexes of zinc(II) and nickel(II) with two kinds of flexible bis(pyridyl)-bis(amide) ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 55-63.	0.3	0
1033	[Fe(CN) ₅ NO] ^{2â€"} -Based MOIFs for Adsorption of Organic Pollutants and as a Self-Rotatory Motor. ACS Omega, 2021, 6, 456-464.	1.6	10
1034	Two mesoporous anionic metal–organic frameworks for selective and efficient adsorption of a cationic organic dye. Dalton Transactions, 2021, 50, 17603-17610.	1.6	7
1035	Structural diversity in four coordination polymers based on polypyridyl ligand regulated by metal centers for photodegradation of methylene blue and methyl orange. Journal of Solid State Chemistry, 2022, 305, 122664.	1.4	10
1036	Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coordination Chemistry Reviews, 2022, 450, 214245.	9.5	64
1037	A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. Journal of Environmental Management, 2022, 301, 113908.	3.8	67
1038	A new Cu(II) metal–organic architecture driven by ether-bridged dicarboxylate: Photocatalytic properties and Hirshfeld surface analysis. Journal of Molecular Structure, 2022, 1249, 131627.	1.8	3
1039	Ag bridged Z-scheme AgVO3/Bi4Ti3O12 heterojunction for enhanced antibiotic degradation. Journal of Physics and Chemistry of Solids, 2022, 161, 110428.	1.9	17
1040	Introducing a flexible and Y-shaped tricarboxylic acid linker into functional complex: Photocatalytic dye degradation. Journal of Molecular Structure, 2022, 1250, 131867.	1.8	2

#	Article	IF	CITATIONS
1041	A 3D 8-connected bcu topological metal–organic framework built by trinuclear Cd(II) units: Photocatalysis and LC-MS studies. Polyhedron, 2022, 211, 115571.	1.0	6
1042	Applications of copper based metal organic frameworks. Materials Today: Proceedings, 2021, 50, 1906-1906.	0.9	4
1043	Photocatalytic Treatment of Environmental Pollutants using Multilevel- Structure TiO2-based Organic and Inorganic Nanocomposites. Current Organocatalysis, 2020, 7, 161-178.	0.3	0
1044	Catalytic Wet Air Oxidation of Sewage Sludge: A Review. Current Organocatalysis, 2020, 7, 199-211.	0.3	11
1045	Pyrochlore oxides as visible light-responsive photocatalysts. New Journal of Chemistry, 2021, 45, 22531-22558.	1.4	22
1046	Optimizing the metal ion release and antibacterial activity of ZnO@ZIF-8 by modulating its synthesis method. New Journal of Chemistry, 2021, 45, 22924-22931.	1.4	20
1047	A bifunctional 3D porous Zn-MOF: Fluorescence recognition of Fe3+ and adsorption of congo red/methyl orange dyes in aqueous medium. Dyes and Pigments, 2022, 197, 109945.	2.0	53
1048	Synthesis of novel HKUST-1-based SnO2 porous nanocomposite with the photocatalytic capability for degradation of metronidazole. Materials Science in Semiconductor Processing, 2022, 138, 106310.	1.9	14
1049	Construction of a 2D Polymer by Rigid Dicarboxylate and Methylimidazol Derivatives: Structure and Photocatalytic Feature. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 875-882.	1.9	7
1050	A Critical Review on Photoreduction Using Metal–Organic Frameworks: Kinetics, pH and Mechanistic Studies and Anthropogenic/Natural Sources of Cr(VI). Chemistry Africa, 2022, 5, 1783-1796.	1.2	10
1051	Tetranuclear clusterâ€based coordination polymer templated by [Ca(H ₂ O) ₆] ²⁺ cations for the photocatalytic application. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	0
1052	Transfer of molecular oxygen and electrons improved by the regulation of C-N/CÂ=ÂO for highly efficient 2e-ORR. Chemical Engineering Journal, 2022, 433, 133591.	6.6	21
1053	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	16.0	161
1054	Heterogeneous Single Atom Environmental Catalysis: Fundamentals, Applications, and Opportunities. Advanced Functional Materials, 2022, 32, 2108381.	7.8	51
1055	Emerging Nano-Structured Metal Oxides for Detoxification of Organic Pollutants Towards Environmental Remediation: Overview and Future Aspects. Environmental Chemistry for A Sustainable World, 2022, , 151-186.	0.3	0
1056	Negatively charged hollow crosslinked aromatic polymer fiber membrane for high-efficiency removal of cationic dyes in wastewater. Chemical Engineering Journal, 2022, 433, 133650.	6.6	21
1057	Metal-Organic Frameworks With Variable Valence Metal-Photoactive Components: Emerging Platform for Volatile Organic Compounds Photocatalytic Degradation. Frontiers in Chemistry, 2021, 9, 749839.	1.8	10
1058	Shape-controlled synthesis of CuS as a Fenton-like photocatalyst with high catalytic performance and stability. Journal of Alloys and Compounds, 2022, 896, 163045.	2.8	24

#	ARTICLE	IF	CITATIONS
1059	Bismuth silicates: preparation by pulsed laser ablation and photocatalytic activity., 2021,,.		0
1060	Applications of 1D Mesoporous Inorganic Nanomaterials in Photocatalysis. Springer Series in Materials Science, 2022, , 143-156.	0.4	0
1061	Synthesis, structures and properties of metal–organic frameworks prepared using a semi-rigid tricarboxylate linker. CrystEngComm, 2022, 24, 863-876.	1.3	5
1062	Synthesis of porous chlorophyll coated SiO2/Fe3O4 nanocomposites for the photocatalytic degradation of organic pollutants. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 555-570.	0.8	5
1063	Rapid adsorption and selective capture of methylene blue by anionic Inâ€based MOF with carboxylâ€decorated pore surface. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , e202100329.	0.6	2
1064	Strategies and perspectives of tailored SnS2 photocatalyst for solar driven energy applications. Solar Energy, 2022, 231, 546-565.	2.9	32
1065	Metal-organic frameworks based on heterocyclic ligands and some transition metals as effective carbon steel corrosion inhibitors in aqueous environment. Journal of Molecular Liquids, 2022, 348, 118402.	2.3	11
1066	Recent advances in adsorptive removal and catalytic reduction of hexavalent chromium by metal–organic frameworks composites. Journal of Molecular Liquids, 2022, 347, 118274.	2.3	36
1067	Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. Science of the Total Environment, 2022, 810, 152279.	3.9	28
1068	Unraveling highly efficient nanomaterial photocatalyst for pollutant removal: a comprehensive review and future progress. Materials Today Chemistry, 2022, 23, 100692.	1.7	26
1069	Ultra-highly photocatalytic removal of pollutants by polypyrrole/cadmium sulfide/polyether sulfone hybrid porous membrane in single-pass mode. Chemical Engineering Journal, 2022, 432, 134300.	6.6	19
1070	The extra-large calixarene-based MOFs-derived hierarchical composites for photocatalysis of dye: Facile syntheses and contribution of carbon species. Journal of Alloys and Compounds, 2022, 897, 163178.	2.8	95
1071	Ultralight and porous cellulose nanofibers/polyethyleneimine composite aerogels with exceptional performance for selective anionic dye adsorption. Industrial Crops and Products, 2022, 177, 114513.	2.5	37
1072	Green synthesis of multilayer Graphene/ZnO nanocomposite for photocatalytic applications. Journal of Alloys and Compounds, 2022, 900, 163526.	2.8	17
1073	Quantum dots modified bismuth-based hierarchical dual Z-scheme heterojunction for photocatalytic performance enhancement: Mineralization, degradation pathways and mechanism. Chemical Engineering Journal Advances, 2022, 9, 100240.	2.4	2
1074	In-situ fabrication of ionic liquids/MIL-68(In)–NH2 photocatalyst for improving visible-light photocatalytic degradation of doxycycline hydrochloride. Chemosphere, 2022, 292, 133461.	4.2	25
1075	Magnetic Lu ₂ Cu ₂ O ₅ -based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Advances, 2021, 11, 40100-40111.	1.7	68
1076	Solid-State Preparation of Metal and Metal Oxides Nanostructures and Their Application in Environmental Remediation. International Journal of Molecular Sciences, 2022, 23, 1093.	1.8	12

#	Article	IF	CITATIONS
1077	How to Build a Microplasticsâ€Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. Advanced Science, 2022, 9, e2103764.	5.6	87
1078	Fabrication of an efficient ternary TiO2/Bi2WO6 nanocomposite supported on g-C3N4 with enhanced visible-light- photocatalytic activity: Modeling and systematic optimization procedure. Arabian Journal of Chemistry, 2022, 15, 103729.	2.3	11
1079	Hybrid Organic–Inorganic Membranes for Photocatalytic Water Remediation. Catalysts, 2022, 12, 180.	1.6	15
1080	The enhanced photocatalytic activity of TiO ₂ (B)/MIL-100(Fe) composite <i>via</i> Fe–O clusters. New Journal of Chemistry, 2022, 46, 739-746.	1.4	7
1081	Metal-Organic Frameworks (MOFs): A Promising Photocatalytic Material Current Chinese Chemistry, 2022, 02, .	0.3	0
1082	Postsynthetic Modification of Metalâ^'Organic Frameworks for Photocatalytic Applications. Small Structures, 2022, 3, .	6.9	30
1083	MOFs in photoelectrochemical water splitting: New horizons and challenges. International Journal of Hydrogen Energy, 2022, 47, 5192-5210.	3.8	14
1084	Development of magnesium oxide@carbon fiber paper composite film for the removal of methyl orange from aqueous phase. Nanotechnology for Environmental Engineering, 2022, 7, 49-56.	2.0	2
1085	Synthesis of novel carbon dots from taurine for Cu2+ sensing and nanohybrid with ceria for visible light photocatalysis. Optical Materials, 2022, 124, 111995.	1.7	9
1086	Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review. Chemosphere, 2022, 295, 133835.	4.2	47
1087	Robust and sustainable Mg1-xCexNiyFe2-yO4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants. Chemosphere, 2022, 294, 133706.	4.2	43
1088	Coordination framework materials fabricated by the self-assembly of Sn(<scp>iv</scp>) porphyrins with Ag(<scp>i</scp>) ions for the photocatalytic degradation of organic dyes in wastewater. Inorganic Chemistry Frontiers, 2022, 9, 1270-1280.	3.0	21
1089	Synthesis, crystal structure and photocatalytic properties of a three-dimensional copper(II) metal–organic framework based on 1,3,5-tris(2-methylimidazol-1-yl)benzene. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 164-168.	0.2	0
1090	Photocatalytic degradation and reusable SERS detection by Ag nanoparticles immobilized on g-C3N4/graphene oxide nanosheets. Surface and Coatings Technology, 2022, 435, 128212.	2.2	19
1091	ZnO-based heterostructure constructed using HKUST-1 for enhanced visible-light photocatalytic hydrogen evolution. Applied Catalysis A: General, 2022, 633, 118533.	2.2	9
1092	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	7.3	37
1093	Visible-light-driven sonophotocatalysis for enhanced Cr(<scp>vi</scp>) reduction over mixed-linker zirconium-porphyrin MOFs. Catalysis Science and Technology, 2022, 12, 2176-2183.	2.1	20
1094	Synthesis of Pvdf Membrane Loaded with Wrinkled AU Nps for Sensitive Detection of R6g. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1098	Unveiling a Three Phase Mixed Heterojunction via Phaseâ€Selective Anchoring of Polymer for Efficient Photocatalysis. Advanced Energy Materials, 2022, 12, .	10.2	11
1099	Copper Sulfide Nanosheets for Photocatalytic Oxidation of Benzyl Alcohols and Hydroxylation of Arylboronic Acids. ACS Applied Nano Materials, 2022, 5, 4413-4422.	2.4	10
1100	Remarkably enhanced piezo-photocatalytic performance of Z-scheme Bi2WO6/Black TiO2 heterojunction via piezoelectric effect. Ceramics International, 2022, 48, 15899-15907.	2.3	30
1101	Synthesis of MOFs for RhB Adsorption from Wastewater. Inorganics, 2022, 10, 27.	1.2	17
1102	Highly selective adsorption and efficient recovery of cationic micropollutants from aqueous solution via ultrathin indium vanadate nanoribbons. Separation and Purification Technology, 2022, 293, 120952.	3.9	6
1103	CdS-Based Catalysts Derived from TMeQ[6]/[Cd _{<i>x</i>} Cl _{<i>y</i>}] ^{<i>n</i>ê^'} -Based Frameworks for Oxidation Benzylamine. Inorganic Chemistry, 2022, 61, 5607-5615.	1.9	4
1104	Boosting Reactive Oxygen Species Generation by Regulating Excitonic Effects in Porphyrinic Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 2814-2823.	2.1	9
1105	Metalâ€Organic Frameworks as Unique Platforms to Gain Insight of Ïfâ€Hole Interactions for the Removal of Organic Dyes from Aquatic Ecosystems. Chemistry - A European Journal, 2022, , .	1.7	4
1106	Citrus lemon mediated green synthesis of ZnTiO ₃ nanospheres for the degradation of petrochemical wastewater. Environmental Quality Management, 2022, 32, 159-169.	1.0	5
1107	Collocation of MnFe2O4 and UiO-66-NH2: An efficient and reusable nanocatalyst for achieving high-performance in hexavalent chromium reduction. Journal of Molecular Structure, 2022, 1263, 132994.	1.8	13
1108	Efficient Ni and Fe doping process in ZnO with enhanced photocatalytic activity: A theoretical and experimental investigation. Materials Research Bulletin, 2022, 152, 111849.	2.7	14
1109	Seignette salt induced defects in Zr-MOFs for boosted Pb(â;) adsorption: universal strategy and mechanism insight. Chemical Engineering Journal, 2022, 442, 136276.	6.6	82
1110	Synthesis of Reduced Graphene Oxide/Copper Tin Sulfide (Cu2SnS3) Composite for the Photocatalytic Degradation of Tetracycline. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2578-2590.	1.9	4
1111	Heterogeneous Fenton system with dual working mechanisms for aqueous pollutants degradation. Journal of Environmental Chemical Engineering, 2022, 10, 107686.	3.3	6
1112	Nanoarchitectonics of vanadium carbide MXenes for separation and catalytic degradation of contaminants. Separation and Purification Technology, 2022, 292, 121032.	3.9	33
1113	The design of praseodymium galena nanospheres: An effective photocatalyst for the remediation of carcinogenic phenothiazine and chromium contaminants. Journal of Physics and Chemistry of Solids, 2022, 165, 110660.	1.9	3
1114	Visible-light driven photocatalytic performance of eco-friendly cobalt-doped ZnO nanoarrays: Influence of morphology, cobalt doping, and photocatalytic efficiency. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121103.	2.0	18
1115	Recent progress of functional metal–organic framework materials for water treatment using sulfate radicals. Environmental Research, 2022, 211, 112956.	3.7	25

#	Article	IF	CITATIONS
1116	Fabrication of ultrathin lily-like NiCo2O4 nanosheets via mooring NiCo bimetallic oxide on waste biomass-derived carbon for highly efficient removal of phenolic pollutants. Chemical Engineering Journal, 2022, 441, 136066.	6.6	42
1117	A Thermally Stable Undulated Coordination Layer Showing a Sequentially Interweaving 2D → 3D Net as a Turn-On Sensor for Luminescence Detection of Al ³⁺ in Water. Crystal Growth and Design, 2022, 22, 228-236.	1.4	8
1118	First-Principles Design and Preparation of Ag3PO4 Materials and Their Photocatalytic Properties. Russian Journal of Physical Chemistry A, 2021, 95, 2675-2682.	0.1	0
1119	Semiconducting MOF@ZnS Heterostructures for Photocatalytic Hydrogen Peroxide Production: Heterojunction Coverage Matters. Advanced Functional Materials, 2022, 32, .	7.8	59
1120	Green Nanomaterials for Photocatalytic Degradation of Toxic Organic Compounds. Current Pharmaceutical Biotechnology, 2023, 24, 118-144.	0.9	3
1121	Co ₄ N–WN _{<i>x</i>} composite for efficient piezocatalytic hydrogen evolution. Dalton Transactions, 2022, 51, 7127-7134.	1.6	9
1122	CHAPTER 8. Photocatalysis: Past Achievements and Future Trends. RSC Green Chemistry, 0, , 227-269.	0.0	0
1123	Recent Advances in the Application and Mechanism of Carbon Dots/Metalâ€Organic Frameworks Hybrids in Photocatalysis and the Detection of Environmental Pollutants. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
1125	Highly Selective Adsorption and Efficient Recovery of Cationic Micropollutants from Aqueous Solution Via Ultrathin Indium Vanadate Nanoribbons. SSRN Electronic Journal, 0, , .	0.4	0
1126	Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants. Frontiers of Chemical Science and Engineering, 2022, 16, 939-949.	2.3	4
1127	The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review. Chinese Chemical Letters, 2023, 34, 107478.	4.8	13
1128	Encapsulation-Led Adsorption of Neutral Dyes and Complete Photodegradation of Cationic Dyes and Antipsychotic Drugs by Lanthanide-Based Macrocycles. Inorganic Chemistry, 2022, 61, 7682-7699.	1.9	12
1129	The state of the art review on photocatalytic Cr(VI) reduction over MOFs-based photocatalysts: From batch experiment to continuous operation. Chemosphere, 2022, 303, 134949.	4.2	41
1130	Biomass-derived nanocellulose aerogel enable highly efficient immobilization of laccase for the degradation of organic pollutants. Bioresource Technology, 2022, 356, 127311.	4.8	19
1131	Developments and Perspectives on Robust Nano―and Microstructured Binderâ€Free Electrodes for Bifunctional Water Electrolysis and Beyond. Advanced Energy Materials, 2022, 12, .	10.2	63
1133	Donor–Acceptor Hybrid Heterostructures: An Emerging Class of Photoactive Materials with Inorganic and Organic Semiconductive Components. Small, 2022, 18, e2201159.	5. 2	15
1134	Colloidal synthesis of AgGa(S _{1â^²<i>x</i>} Se _{<i>x</i>}) ₂ solid solution nanocrystals with composition-dependent crystal phase for efficient photocatalytic degradation of methyl violet. CrystEngComm, 2022, 24, 4540-4545.	1.3	2
1135	Development of Efficient Photocatalyst MIL-68(Ga)_NH2 Metal-Organic Framework for the Removal of Cr(VI) and Cr(VI)/RhB from Wastewater under Visible Light. Materials, 2022, 15, 3761.	1.3	3

#	Article	IF	Citations
1136	Superwetting Ag \hat{l} ±-Fe2O3 anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification. Green Energy and Environment, 2024, 9, 89-103.	4.7	4
1137	Synthesis, characterization and catalytic studies of bimetallic heteronuclear complexes for the reduction of nitroaromatic compounds. Inorganic and Nano-Metal Chemistry, 2023, 53, 501-512.	0.9	0
1138	Graphitic Carbon Nitride -Based Panchromatic Composite Photocatalysts: Visible Light-Driven Elimination of Nicotine and Pathogenic Microorganisms. SSRN Electronic Journal, 0, , .	0.4	0
1139	ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation. Journal of Environmental Chemical Engineering, 2022, 10, 107997.	3.3	14
1140	Bimetallic Fe–Cu metal organic frameworks for room temperature catalysis. Applied Organometallic Chemistry, 2022, 36, .	1.7	15
1141	Metalâ^'Organic Frameworks for Light-Driven Photocatalysis of Synthetic Dyes. ACS Symposium Series, 0, , 217-247.	0.5	2
1142	Multi-functional metal–organic frameworks for detection and removal of water pollutions. Chemical Communications, 2022, 58, 7890-7908.	2.2	25
1143	Photochemistry of Metal-Organic Frameworks. Springer Handbooks, 2022, , 691-732.	0.3	2
1144	Topologically and Chemically Engineered Conjugated Polymer with Synergistically Intensified Electron Generation, Transfer and Utilization for Photocatalytic Nicotinamide Cofactor Regeneration. SSRN Electronic Journal, 0, , .	0.4	0
1146	Microwave catalytic activities of supported catalysts MFe2O4@CMT (M=Ni, Co) for dimethyl phthalate degradation. Environmental Science Advances, 0, , .	1.0	1
1147	MOF-based photocatalytic degradation of the antibiotic lincomycin enhanced by hydrogen peroxide and persulfate: Kinetics, elucidation of transformation products and toxicity assessment. Journal of Environmental Chemical Engineering, 2022, 10, 108112.	3.3	12
1148	Removal of tetracycline hydrochloride by Z-scheme heterojunction sono-catalyst acting on ultrasound/H2O2 system. Chemical Engineering Research and Design, 2022, 165, 93-101.	2.7	13
1149	Microstructure Engineering of Al Doped SrTiO ₃ /TiO ₂ Heterostructure Nanorod Arrays Boosting Piezoâ€Photocatalytic Performances. Advanced Materials Technologies, 2022, 7, .	3.0	12
1150	Role of Cl• • •Cl halogen bonds in tuning the crystals of Uranyl-Dicholorothiophene carboxylate based hybrid cluster materials through N-donor counter ions. Journal of Molecular Structure, 2022, 1266, 133524.	1.8	1
1151	Octakis(Carboxyalkyl-Thioethyl)Silsesquioxanes and Derived Metal Complexes: Synthesis, Characterization and Catalytic Activity Assessments. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3955-3970.	1.9	2
1152	Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. Chemosphere, 2022, 304, 135261.	4.2	34
1153	Incorporating Fe-O cluster in multivariate (MTV) metal–organic frameworks for promoting visible-light photo-Fenton degradation of micropollutants from water. Chemical Engineering Journal, 2022, 446, 137446.	6.6	13
1154	Photocatalysis, terahertz time domain spectroscopy and weak interactions of six polyoxometalate-based lanthanide phosphine oxide complexes. CrystEngComm, 0, , .	1.3	0

#	Article	IF	CITATIONS
1155	Selective detection of sulfasalazine antibiotic and its controllable photodegradation into 5-aminosalicylic acid by visible-light-responsive metal–organic framework. Dalton Transactions, 2022, 51, 11730-11736.	1.6	1
1156	Photocatalytic Degradation of Paracetamol Using Photo-Fenton-Like Metal-Organic Framework-Derived Cuo@C Under Visible Led. SSRN Electronic Journal, 0, , .	0.4	2
1157	Preparation of metal–organic frameworks by microwave-assisted ball milling for the removal of CR from wastewater. Green Processing and Synthesis, 2022, 11, 595-603.	1.3	13
1158	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4, 100078.	10.1	232
1159	ZnO nanostructures for photocatalytic degradation of methylene blue: effect of different anodization parameters. Journal of the Korean Ceramic Society, 2022, 59, 859-868.	1.1	6
1160	<i>In situ</i> synthesis of Cuâ€doped ZIFâ€8 for efficient photocatalytic water splitting. Applied Organometallic Chemistry, 2022, 36, .	1.7	11
1161	Enhanced photocatalytic degradation of Reactive Red 120 dye under solar light using BiPO4@g-C3N4 nanocomposite photocatalyst. Environmental Science and Pollution Research, 2022, 29, 84325-84344.	2.7	6
1162	Significant enhancement of surface area and structural distortion of carbon nitride by recrystallization method. Journal of Materials Science, 2022, 57, 12886-12893.	1.7	0
1163	A Bismuth-Based Metal–Organic Framework for Visible-Light-Driven Photocatalytic Decolorization of Dyes and Oxidation of Phenylboronic Acids. Inorganic Chemistry, 2022, 61, 11110-11117.	1.9	6
1164	Polyhedral Co3O4@ZnO nanostructures as proficient photocatalysts for vitiation of organic dyes from waste water. Journal of Molecular Liquids, 2022, 362, 119765.	2.3	40
1165	Metal-Organic Frameworks for Wastewater Decontamination: Discovering Intellectual Structure and Research Trends. Materials, 2022, 15, 5053.	1.3	8
1166	Sn(IV) Porphyrin-Based Ionic Self-Assembled Nanostructures and Their Application in Visible Light Photo-Degradation of Malachite Green. Catalysts, 2022, 12, 799.	1.6	11
1167	A comprehensive study on heterogeneous single atom catalysis: Current progress, and challengesâ [†] . Coordination Chemistry Reviews, 2022, 470, 214710.	9.5	27
1168	Topologically and chemically engineered conjugated polymer with synergistically intensified electron generation, transfer and utilization for photocatalytic nicotinamide cofactor regeneration. Applied Catalysis B: Environmental, 2022, 317, 121772.	10.8	12
1169	Preparation of Fe ₂ O ₃ /WS ₂ heterostructures with enhanced photocatalytic performances for dye degradation and Cr (â¥) reduction. Ferroelectrics, 2022, 594, 33-43.	0.3	1
1170	In-situ-construction of BiOl/UiO-66 heterostructure via nanoplate-on-octahedron: A novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination. Chemical Engineering Journal, 2023, 451, 138624.	6.6	26
1171	Specific Recognition of In Situ Self-Assembly Prepared and Molecularly Imprinted Metal–Organic Frameworks in Selective Removal of Norfloxacin. Industrial & Engineering Chemistry Research, 2022, 61, 12609-12618.	1.8	1
1172	Solid State Nanostructured Metal Oxides as Photocatalysts and Their Application in Pollutant Degradation: A Review. Photochem, 2022, 2, 609-627.	1.3	7

#	Article	IF	CITATIONS
1173	Controlled synthesis of CuS-decorated CuO pillars over Cu mesh with improved wettability, photothermal and photocatalytic properties. Journal of Materials Science, 2022, 57, 15314-15330.	1.7	4
1174	Ordered macroporous MOF-based materials for catalysis. Molecular Catalysis, 2022, 529, 112568.	1.0	16
1175	Design and syntheses of hybrid zeolitic imidazolate frameworks. Coordination Chemistry Reviews, 2022, 471, 214759.	9.5	20
1176	Enhanced full-spectrum photocatalytic activity of 3D carbon-coated C3N4 nanowires via giant interfacial electric field. Applied Catalysis B: Environmental, 2022, 318, 121829.	10.8	34
1177	Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy conversion for environmental remediation. Journal of Saudi Chemical Society, 2022, 26, 101544.	2.4	27
1178	Hierarchical SiO2@FeCo2O4 core–shell nanoparticles for catalytic reduction of 4-nitrophenol and degradation of methylene blue. Journal of Molecular Liquids, 2022, 365, 120123.	2.3	7
1179	Enhanced photocatalytic crystal-violet degradation performances of sonochemically-synthesized AC-CeO2 nanocomposites. Ultrasonics Sonochemistry, 2022, 90, 106177.	3.8	21
1180	Co3O4@Fe3O4/cellulose blend membranes for efficient degradation of perfluorooctanoic acid in the visible light-driven photo-Fenton system. Surfaces and Interfaces, 2022, 34, 102302.	1.5	8
1181	Visible-light-driven photocatalytic CO ₂ reduction to formate over a zirconium-porphyrin metal†organic framework with <i>shp-a</i> topology. New Journal of Chemistry, 2022, 46, 16297-16302.	1.4	5
1182	Efficient dye degradation and THz spectra of {PMo ₁₂ } based rare earth phosphine oxide complexes. CrystEngComm, 2022, 24, 7166-7175.	1.3	1
1183	Boosting Fe (Ii) Generation in Mofs Under Visible-Light Irradiation for Accumulated Micropollutants Decomposition. SSRN Electronic Journal, 0, , .	0.4	0
1184	Semimetal Bi/Cof-Based Adsorptive Catalyst for Plasmon-Enhanced Photodegradation of Phenolic Pollutants. SSRN Electronic Journal, 0, , .	0.4	0
1185	Designing SnS/MoS ₂ van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation. Physical Chemistry Chemical Physics, 2022, 24, 21321-21330.	1.3	3
1186	Sensing and photocatalytic properties of a new 3D Co(<scp>ii</scp>) coordination polymer based on 1,1′-di(<i>p</i> -carboxybenzyl)-2,2′-biimidazole. New Journal of Chemistry, 2022, 46, 18848-18853.	1.4	2
1187	2d Cu-Porphyrin Mof S ÂNanosheet Supported Flaky Tio 2 ÂAs an Efficient Visible-Light-Driven Photocatalyst ForÂDye Degradation and Cr(Vi)ÂReduction. SSRN Electronic Journal, 0, , .	0.4	0
1188	Bi-functional water-purification materials derived from natural wood modified TiO ₂ by photothermal effect and photocatalysis. RSC Advances, 2022, 12, 26245-26250.	1.7	4
1189	The Role of the Bridge in Single-Ion Magnet Behaviour: Reinvestigation of Cobalt(II) Succinate and Fumarate Coordination Polymers with Nicotinamide. Inorganics, 2022, 10, 128.	1.2	3
1190	Recent Advances in Photocatalytic Oxidation of Methane to Methanol. Molecules, 2022, 27, 5496.	1.7	9

#	Article	IF	CITATIONS
1191	Spindle-like MIL101(Fe) decorated with Bi ₂ O ₃ nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation. Beilstein Journal of Nanotechnology, 0, 13, 1038-1050.	1.5	8
1192	Porous Metal Organic Frameworks as Multifunctional Catalysts for Cyclohexane Oxidation. ChemCatChem, 2022, 14, .	1.8	8
1193	Titanium–Porphyrin Metal–Organic Frameworks as Visible-Light-Driven Catalysts for Highly Efficient Sonophotocatalytic Reduction of Cr(VI). Langmuir, 2022, 38, 12292-12299.	1.6	7
1194	Photocatalytic degradation of diclofenac using hybrid <scp>MIL</scp> â€53(Al)@ <scp>TiO₂</scp> and <scp>MIL</scp> â€53(Al)@ <scp>ZnO</scp> catalysts. Canadian Journal of Chemical Engineering, 2023, 101, 2660-2676.	0.9	2
1195	Growth of BiOBr/ZIF-67 Nanocomposites on Carbon Fiber Cloth as Filter-Membrane-Shaped Photocatalyst for Degrading Pollutants in Flowing Wastewater. Advanced Fiber Materials, 2022, 4, 1620-1631.	7.9	91
1196	Ag-decorated ZnO-based nanocomposites for visible light-driven photocatalytic degradation: basic understanding and outlook. Journal Physics D: Applied Physics, 2022, 55, 483001.	1.3	17
1197	Photocatalytic Remediation of Industrial Dye Waste Streams Using Biochar and Metal-Biochar Hybrids: A Critical Review. Chemistry Africa, 2023, 6, 609-628.	1.2	16
1199	The photocatalytic process in the treatment of polluted water. Chemical Papers, 2023, 77, 677-701.	1.0	69
1200	A Cu(II)-tetra(imidazole) coordination polymer and its g-C3N4 composite of photodegradation of organic dyes. Journal of Solid State Chemistry, 2022, 316, 123615.	1.4	3
1201	Molybdenum and chitosan-doped MnO2 nanostructures used as dye degrader and antibacterial agent. Applied Nanoscience (Switzerland), 2022, 12, 3909-3924.	1.6	5
1202	Historical Developments in Synthesis Approaches and Photocatalytic Perspectives of Metal-Organic Frameworks. , 0, , .		1
1203	In Situ Assembly of Hydrogenâ€Bonded Organic Framework on Metal–Organic Framework: An Effective Strategy for Constructing Core–Shell Hybrid Photocatalyst. Advanced Science, 2022, 9, .	5.6	18
1204	Synthesis and Characterization of Poly(2-vinylpyridine) and Poly(4-vinylpyridine) with Metal Oxide (TiO2, ZnO) Films for the Photocatalytic Degradation of Methyl Orange and Benzoic Acid. Polymers, 2022, 14, 4666.	2.0	3
1206	Graphite-Like C3N4 Nanocatalysts Containing Ru, Ni, Co, Fe, Au, Ag, Cu or Zn for Photocatalytic Degradation of Organic Dyes. Russian Journal of Inorganic Chemistry, 0, , .	0.3	0
1207	Boosting Fe (II) generation in MOFs under visible-light irradiation for accumulated micropollutants decomposition. Journal of Environmental Chemical Engineering, 2022, 10, 108833.	3.3	3
1208	Novel RuSe2/Black-TiO2 photocatalysts for boosted photocatalytic degradation of rhodamine B: Preparation, performance and mechanistic investigation. Optical Materials, 2022, 134, 113182.	1.7	1
1209	Selective fluorescent sensing and photocatalytic properties of a new 2D Co coordination polymer based on $1,1\hat{a}\in^2$ -di(p-carbonylbenzyl)-2,2 $\hat{a}\in^2$ -biimidazoline. Polyhedron, 2022, 228, 116182.	1.0	3
1210	Selective and moisture-sensitive degradation of bromocresol green for isostructural MOFs assembled with D-camphorate and bipyridine. Inorganic Chemistry Communication, 2022, 146, 110044.	1.8	0

#	Article	IF	Citations
1211	Photocatalytic degradation of paracetamol using photo-Fenton-like metal-organic framework-derived CuO@C under visible LED. Journal of Cleaner Production, 2022, 379, 134571.	4.6	20
1212	Turning hydroxyapatite from insulator to visible-light induced photocatalytic membrane through oxygen vacancy introduction and hetero-junction forming with chitosan. Carbohydrate Polymers, 2023, 300, 120235.	5.1	12
1213	A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents. Chemosphere, 2023, 311, 136933.	4.2	19
1214	Synergistic role of in-situ Zr-doping and cobalt oxide cocatalysts on photocatalytic bacterial inactivation and organic pollutants removal over template-free Fe2O3 nanorods. Chemosphere, 2023, 310, 136825.	4.2	16
1215	Formulation of heterometallic ZIF-8@Cu/Ni/ZnO@CNTs heterostructure photocatalyst for Ultra-Deep desulphurization of coal and fuels. Chemical Engineering Journal, 2023, 453, 139846.	6.6	21
1216	Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater. Chemical Engineering Journal, 2023, 453, 139812.	6.6	41
1217	Design of novel M(MnNi)V2O6 NPs via combution synthesis for photocatalytic performance on dual dye and dopamine biosensing. Optik, 2023, 272, 170231.	1.4	1
1218	A perspective on graphene based aerogels and their environmental applications. FlatChem, 2022, 36, 100449.	2.8	11
1219	A Review on Carbon Quantum Dots Modified g-C3N4-Based Photocatalysts and Potential Application in Wastewater Treatment. Applied Sciences (Switzerland), 2022, 12, 11286.	1.3	16
1220	Hypercrosslinking porous polymer layers on TiO2-graphene photocatalyst: Enhanced adsorption of water pollutants for efficient degradation. Water Research, 2022, 227, 119341.	5. 3	23
1221	Metal organic frameworks derived functional materials for energy and environment related sustainable applications. Chemosphere, 2023, 313, 137330.	4.2	6
1222	Progress in all-inorganic heterometallic halide layered double perovskites. Trends in Chemistry, 2023, 5, 29-44.	4.4	9
1223	Development of high-performance bi-functional novel CdSnS ₂ atom clusters for adsorption of rose Bengal and AOP-assisted degradation of methylene blue. Environmental Science: Water Research and Technology, 2023, 9, 586-602.	1.2	25
1224	Two Cu(<scp>i</scp>) coordination polymers based on a new benzimidazolyl-tetrazolyl heterotopic ligand for visible-light-driven photocatalytic dye degradation. CrystEngComm, 0, , .	1.3	1
1225	The NH2-UiO-66/3,4,9,10-perylenetetracarboxylicdiimide for Cr(VI) reduction: DFT calculation, performance, and mechanism. Journal of Environmental Chemical Engineering, 2023, 11, 109205.	3.3	2
1226	Computational insight into spatial and electronic structure of bis-diketonate cobalt complexes with triphenodioxazine ligands. Chemical Physics Letters, 2023, 813, 140286.	1.2	0
1227	Efficient atrazine degradation via photoactivated SR-AOP over S-BUC-21(Fe): The formation and contribution of different reactive oxygen species. Separation and Purification Technology, 2023, 307, 122864.	3.9	23
1228	Fabrication of hierarchical hollow BiOBr@Znln2S4 heterojunction to enhance the visible-light-driven photodegradation of dyes. Applied Surface Science, 2023, 612, 155807.	3.1	12

#	Article	IF	CITATIONS
1229	More than One Century of History for Photocatalysis, from Past, Present and Future Perspectives. Catalysts, 2022, 12, 1572.	1.6	3
1230	Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chemical Reviews, 2023, 123, 445-490.	23.0	84
1231	Facile Synthesis of Regenerative Framework Adsorbent for Organic Dyes: Experimental and Artificial Neural Modeling Studies. ChemistrySelect, 2022, 7, .	0.7	0
1232	Construction of Z-scheme CuBi2O4/MIL-88A(Fe) heterojunctions with enhanced LED light driven photocatalytic Cr(VI) reduction and antibacterial performance. Applied Surface Science, 2023, 614, 156249.	3.1	17
1233	3D flower-like sulfide-based heterostructures with high photocatalytic efficiency on dye degradation and Cr (VI) reduction. Journal of the Australian Ceramic Society, 2023, 59, 179-185.	1.1	2
1234	Coupling ultrafine plasmonic Co3O4 with thin-layer carbon over SiO2 nanosphere for dual-functional PMS activation and solar interfacial water evaporation. Journal of Alloys and Compounds, 2023, 940, 168816.	2.8	13
1235	Versatile preparation strategy of negatively charged saccharide-based polymers for selective removal of cationic organic pollutants. Applied Surface Science, 2023, 616, 156428.	3.1	2
1236	Metal–organic framework-based materials: emerging high-efficiency catalysts for the heterogeneous photocatalytic degradation of pollutants in water. Environmental Science: Water Research and Technology, 2023, 9, 669-695.	1.2	9
1237	<i>In situ</i> fabrication of MIL-68(In)@ZnIn ₂ S ₄ heterojunction for enhanced photocatalytic hydrogen production. Nanoscale, 2023, 15, 2425-2434.	2.8	11
1238	Solar photocatalytic performance of glass substrates coated with Ag3PO4 thin films. Applied Surface Science, 2023, 614, 156239.	3.1	0
1239	A photocatalytic degradation self-cleaning composite membrane for oil-water separation inspired by light-trapping effect of moth-eye. Journal of Membrane Science, 2023, 669, 121337.	4.1	16
1240	Construction of Bi/Polyoxometalate doped TiO2 composite with efficient visible-light photocatalytic performance: Mechanism insight, degradation pathway and toxicity evaluation. Applied Surface Science, 2023, 615, 156310.	3.1	10
1241	Effective enhancement of performances on photo-assisted dye degradation using a Zn coordination polymer and its post-modified Cu/Zn bimetallic analogue under natural environments. Journal of Environmental Chemical Engineering, 2023, 11, 109258.	3.3	3
1242	Green Synthesis of C-quantum Dots Modified ZnO Nanophotocatalyst: The Effect of Different Solvents Used in Production of C-quantum Dots Modified ZnO Nanophotocatalyst on Photocatalytic Performance. Cumhuriyet Science Journal, 2022, 43, 606-612.	0.1	0
1243	Efficient Removal of High-Concentration Dye Pollutants in Wastewater Using Composite Photocatalyst NH ₂ -MIL-125 (Ti)/g-C ₃ N ₄ Nanosheets Under Visible Light. ECS Journal of Solid State Science and Technology, 2022, 11, 123012.	0.9	3
1244	Facile synthesis of hyperbranched Eu-MOF structures for the construction of a CsPbBr ₃ /Eu-MOF composite and its application as a ratiometric fluorescent probe. Journal of Materials Chemistry C, 2023, 11, 2995-3002.	2.7	6
1245	Semiconducting three-dimensional polymeric frameworks with full sp/sp ² -carbon skeletons for efficient photocatalysis. Polymer Chemistry, 0, , .	1.9	0
1246	Anion-Directed Self-Assembly of Calix[4]arene-Based Silver(I) Coordination Polymers and Photocatalytic Degradation of Organic Pollutants. Inorganic Chemistry, 2023, 62, 2652-2662.	1.9	3

#	Article	IF	CITATIONS
1247	Luminescent and photocatalytic properties of a 6-connected msw-type 3D CdII metal–organic framework. Mendeleev Communications, 2023, 33, 58-60.	0.6	0
1248	Electrodeposition of Ag/ZIF-8-Modified Membrane for Water Remediation. Langmuir, 2023, 39, 2291-2300.	1.6	5
1249	Construction of Z-scheme Ti/Ga co-doped ZnO heterostructure photocatalyst with graphitic carbon nitride for efficient visible-light-driven dye degradation. Environmental Science and Pollution Research, 2023, 30, 43702-43713.	2.7	2
1250	Embedding Lanthanide Organic Polyhedra into Mesoporous Silica Nanoparticles for the Photocatalytic Degradation of Organic Dyes. Chemistry - an Asian Journal, 0, , .	1.7	1
1251	Magnesium: properties and rich chemistry for new material synthesis and energy applications. Chemical Society Reviews, 2023, 52, 2145-2192.	18.7	17
1252	Enhanced photo-electro-Fenton degradation performance using graphene structure-oriented MOFs (2Fe/Co)/CNF cathode membrane. Journal of Cleaner Production, 2023, 401, 136782.	4.6	6
1253	Efficient ciprofloxacin removal over Z-scheme ZIF-67/V-BiOIO3 heterojunctions: Insight into synergistic effect between adsorption and photocatalysis. Separation and Purification Technology, 2023, 313, 123511.	3.9	40
1254	Experimental study of the rheology of cellulose nanocrystals-enhanced C22-tailed zwitterionic wormlike micelles. Journal of Molecular Liquids, 2023, 378, 121648.	2.3	0
1255	NH2-MIL-125(Ti)/amorphous TiO2 microspheres for enhanced visible light photocatalytic selective oxidation of amines. Materials Today Chemistry, 2023, 30, 101505.	1.7	1
1256	Interaction between MIL-101(Cr) and natural organic matter in an integrated MOF-UF system. Separation and Purification Technology, 2023, 314, 123476.	3.9	2
1257	Mineralization of fipronil using solar light-induced ZnO/Co3O4 photocatalyst@ceramic substrate: Optimization of parameters by RSM. Materials Research Bulletin, 2023, 162, 112206.	2.7	0
1258	Photocatalytic properties insight of Sm-doped LiNbO3 in ferroelectric Li1â^' xNbSm1/3xO3 system. Journal of Environmental Chemical Engineering, 2023, 11, 109732.	3.3	9
1259	In-situ growth of Cs2AgBiBr6 perovskite nanocrystals on Ti3C2Tx MXene nanosheets for enhanced photocatalytic activity. Applied Surface Science, 2023, 621, 156877.	3.1	6
1260	Supramolecular artificial photosynthetic systems: From assembly to bionics. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100808.	3.2	0
1261	Active sites rich manganese doped MoS2 nanostructures with enhanced photodegradation of methylene blue dye. Journal of Alloys and Compounds, 2023, 951, 169856.	2.8	3
1262	High atom utility of robust Ca-Co bimetallic catalyst for efficient Fenton-like catalysis in advanced oxidation processes. Applied Catalysis B: Environmental, 2023, 331, 122698.	10.8	11
1263	Construction of two new Zn(II)-based coordination polymers as photocatalyst for degradation of antibiotic. Journal of Molecular Structure, 2023, 1284, 135385.	1.8	2
1264	A novel adsorptive and photocatalytic system for dye degradation using ZIF-8 derived carbon (ZIF-C)-modified graphene oxide nanosheets. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143, 104674.	2.7	14

#	Article	lF	CITATIONS
1265	Conversion of polyphenolic polymers in aerobic biochemical treatment. Journal of Environmental Chemical Engineering, 2023, 11, 109343.	3.3	0
1266	Insight into the adsorption of magnetic microspheres with large mesopores: Tailoring mesoporous structure and ethylenediamine functionalization for ultrahigh Congo red removal. Separation and Purification Technology, 2023, 311, 123265.	3.9	12
1267	Reduced Fe, Mn-based catalyst with dual reaction sites for rapid decolorization treatment via Fenton-like reactions. Applied Surface Science, 2023, 616, 156522.	3.1	6
1268	Selective oxidation of aqueous organic pollutants over MOFs-based catalysts: A mini review. Chemical Engineering Journal, 2023, 459, 141538.	6.6	30
1269	A Z-scheme photocatalysis for phenol eradication from water using peroxymonosulfate activation Ag/AgBr/SCN nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144, 104722.	2.7	4
1270	AOP-Based Transformation of Abacavir in Different Environments: Evolution Profile of Descyclopropyl-Abacavir and In Silico Toxicity Assessment of the Main Transformation Products. Molecules, 2023, 28, 1866.	1.7	3
1271	The Exact Morphology of Metal Organic Framework MILâ€53(Fe) Influences its Photocatalytic Performance**. ChemistrySelect, 2023, 8, .	0.7	1
1272	Elemental semiconductor red phosphorus/ZnO nanohybrids as high performance photocatalysts. Ceramics International, 2023, 49, 17746-17752.	2.3	5
1273	Metal–Organic Frameworks (MOF)-Assisted Sonodynamic Therapy in Anticancer Applications. ACS Nano, 2023, 17, 4102-4133.	7.3	37
1274	Constructing NaYF4: Yb, Tm@NH2-MIL-125(Ti) with up-conversion photoluminescence for enhanced full-spectrum photocatalytic performance. Research on Chemical Intermediates, 2023, 49, 2625-2637.	1.3	1
1275	Recent progress in polyoxometalate–viologen photochromic hybrids: structural design, photochromic mechanism, and applications. Inorganic Chemistry Frontiers, 2023, 10, 1965-1985.	3.0	19
1276	Modeling of Solar Photocatalytic Degradation of Rhodamine B Dye by TiO ₂ Nanoparticles Using an Artificial Neural Network. Chemical Engineering and Technology, 2023, 46, 1587-1595.	0.9	1
1277	A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. Journal of Environmental Sciences, 2024, 139, 389-417.	3.2	27
1278	Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. Journal of the American Chemical Society, 2023, 145, 6112-6122.	6.6	30
1279	Efficient synthesis of 3D/2D CeO $<$ sub $>2<$ sub $>$ /MoS $<$ sub $>2<$ sub $>$ nanocomposites with enhanced photocatalytic activity to degrade organic dye in wastewater and statistical optimization of reaction parameters. Inorganic and Nano-Metal Chemistry, 0, , 1-14.	0.9	2
1280	Facile fabrication of a visible-light stable metal-free g-C ₃ N ₄ /COF heterojunction with efficiently enhanced photocatalytic activity. New Journal of Chemistry, 2023, 47, 7538-7547.	1.4	1
1281	Synthesis and characterization of new Schiff base bearing bis(pyrano[3,2-c]quinolinone): Efficient cationic dye adsorption from aqueous solution. Journal of Molecular Structure, 2023, 1284, 135364.	1.8	10
1282	Fabrication strategies of metal–organic frameworks derivatives for catalytic aqueous pollutants elimination. Chemical Engineering Journal, 2023, 463, 142466.	6.6	13

#	Article	IF	CITATIONS
1283	Pillared‣ayer Metalâ€Organic Frameworks (MOFs) for Photodegradation of Methyl Orange in Wastewater. Advanced Optical Materials, 2023, 11, .	3.6	5
1284	Eco-Friendly Synthesis of TiO2/ZIF-8 Composites: Characterization and Application for the Removal of Imidacloprid from Wastewater. Processes, 2023, 11, 963.	1.3	0
1285	Comparative study of the photocatalytic degradation of tetracycline under visible light irradiation using Bi ₂₄ O ₃₁ Br ₁₁ -anchored carbonaceous and silicates catalyst support. ChemistrySelect, 2023, .	0.7	0
1286	Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis. Materials, 2023, 16, 2709.	1.3	3
1287	Phosphates and Phosphonates as Photocatalysts for Environmental and Energy Applications. Engineering Materials, 2023, , 227-243.	0.3	1
1288	Visible light photocatalytic activity of a FeCo metal-organic framework for degradation of acetaminophen and 2,4-dichlorophenoxyacetic acid and a nematode-based ecological assessment. Chemical Engineering Journal, 2023, 464, 142676.	6.6	9
1289	Degradation of organic contaminants by peroxymonosulfate activated with zeolitic imidazolate framework-based catalysts: performances, mechanisms and stability. Environmental Science: Nano, 2023, 10, 1528-1552.	2.2	24
1290	Metal-organic framework CAU-17 derived Bi/BiVO4 photocatalysts for the visible light-driven degradation of tetracycline hydrochloride. Catalysis Communications, 2023, 177, 106657.	1.6	3
1291	2D/2D nitrogen-doped graphitic carbon nitride/cobalt sulfide nanostructures for fast photodegradation of methylene blue dye and real industrial sewage effluents. Environmental Science Advances, 2023, 2, 795-814.	1.0	3
1292	Activated carbon from chili straw: K2CO3 activation mechanism, adsorption of dyes, and thermal regeneration. Biomass Conversion and Biorefinery, 0, , .	2.9	1
1293	Application of Recently used Green Solvents in Sample Preparation Techniques: A Comprehensive Review of Existing Trends, Challenges, and Future Opportunities. Critical Reviews in Analytical Chemistry, 0, , 1-20.	1.8	5
1294	A new application of salamo-type compounds: As a photocatalyst of designed self-assembling Cu(II) dimer and tetranuclear Co(II) cuboidal cluster. Journal of Molecular Structure, 2023, 1286, 135594.	1.8	25
1295	Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. Nanoscale, 2023, 15, 7640-7675.	2.8	11
1296	Two novel metal-organic frameworks constructed by pyridinyl-derived and carboxylate mixed ligands for photocatalytic dye degradation. New Journal of Chemistry, 0, , .	1.4	0
1297	Green synthesis of ZnO NPs using Timur (Zanthoxylum armatum DC.) plant extract for antimicrobial and dye degradation applications. Chemical Papers, 2023, 77, 5587-5597.	1.0	9
1298	Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Research, 2023, 16, 10326-10341.	5.8	3
1302	Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. Nanoscale, 2023, 15, 9242-9255.	2.8	12
1318	Principles of photocatalysis. Interface Science and Technology, 2023, , 1-52.	1.6	0

#	Article	IF	CITATIONS
1359	Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. Journal of Materials Chemistry A, 2023, 11, 22656-22687.	5.2	4
1384	Removal of pesticide pollutants from aqueous waste utilizing nanomaterials via photocatalytic process: a review. International Journal of Environmental Science and Technology, 0, , .	1.8	0
1409	Recent Advances and Applications of Modified-Semiconductor Photocatalyst in Pollutant Degradation. Advances in Material Research and Technology, 2024, , 171-219.	0.3	0