mRNA-based the rapeutics $\mathbf{\hat{a}} \mathbf{\in} "$ developing a new class o

Nature Reviews Drug Discovery 13, 759-780 DOI: 10.1038/nrd4278

Citation Report

#	Article	IF	CITATIONS
1	Chimeric Receptor mRNA Transfection as a Tool to Generate Antineoplastic Lymphocytes. Human Gene Therapy, 2009, 20, 51-61.	1.4	48
2	Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Scientific Reports, 2015, 5, 15810.	1.6	80
3	Development of Smallâ€Molecule Antivirals for Ebola. Medicinal Research Reviews, 2015, 35, 1175-1194.	5.0	10
4	Telomerase Therapy to Reverse Cardiovascular Senescence. Methodist DeBakey Cardiovascular Journal, 2021, 11, 172.	0.5	17
5	Therapeutic cancer vaccines. Journal of Clinical Investigation, 2015, 125, 3401-3412.	3.9	640
6	Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity. Pharmaceutics, 2015, 7, 137-151.	2.0	76
7	Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA. PLoS ONE, 2015, 10, e0131141.	1.1	8
8	Mutanome Engineered RNA Immunotherapy: Towards Patient-Centered Tumor Vaccination. Journal of Immunology Research, 2015, 2015, 1-6.	0.9	27
9	RNA-Based Vaccines in Cancer Immunotherapy. Journal of Immunology Research, 2015, 2015, 1-9.	0.9	169
10	An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo. Nano Letters, 2015, 15, 8099-8107.	4.5	182
11	Progress in material design for biomedical applications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14444-14451.	3.3	201
12	Vaccines â€~on demand': science fiction or a future reality. Expert Opinion on Drug Discovery, 2015, 10, 101-106.	2.5	32
14	The messenger's great message for vaccination. Expert Review of Vaccines, 2015, 14, 153-156.	2.0	28
15	Lipid-based mRNA vaccine delivery systems. Expert Review of Vaccines, 2015, 14, 221-234.	2.0	165
16	Synthetic biology devices and circuits for RNA-based â€~smart vaccines': a propositional review. Expert Review of Vaccines, 2015, 14, 313-331.	2.0	33
17	Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 2015, 217, 345-351.	4.8	629
19	Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. Journal of Physical Chemistry B, 2015, 119, 8698-8706.	1.2	203
20	Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nature Biotechnology, 2015, 33, 839-841.	9.4	170

#	Article	IF	CITATIONS
21	Genome editing at the crossroads of delivery, specificity, and fidelity. Trends in Biotechnology, 2015, 33, 280-291.	4.9	121
22	Efficient expression of stabilized mRNA PEG-peptide polyplexes in liver. Gene Therapy, 2015, 22, 993-999.	2.3	30
23	"Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years― Journal of Controlled Release, 2015, 219, 457-470.	4.8	8
24	Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Letters, 2015, 15, 7300-7306.	4.5	484
25	Biomaterials for mRNA delivery. Biomaterials Science, 2015, 3, 1519-1533.	2.6	143
26	mRNA: Fulfilling the Promise of Gene Therapy. Molecular Therapy, 2015, 23, 1416-1417.	3.7	77
27	Cancer therapies activate RIC-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget, 2016, 7, 26496-26515.	0.8	141
28	<div>Lipid nanoparticles for targeted siRNA delivery – going from bench to bedside</div> . International Journal of Nanomedicine, 2016, Volume 11, 3077-3086.	3.3	129
29	Nanotechnologies Applied in Biomedicines' Vaccine. , 0, , .		8
30	Reductive Decationizable Block Copolymers for Stimuli-Responsive mRNA Delivery. Macromolecular Rapid Communications, 2016, 37, 924-933.	2.0	36
31	Viral and Synthetic RNA Vector Technologies and Applications. Molecular Therapy, 2016, 24, 1513-1527.	3.7	62
33	Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich's ataxia. Scientific Reports, 2016, 6, 20019.	1.6	104
34	Gram‣cale Chemical Synthesis of Baseâ€Modified Ribonucleosideâ€5′―O â€Triphosphates. Current Protoc in Nucleic Acid Chemistry, 2016, 67, 13.15.1-13.15.10.	ols 0.5	1
35	Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Scientific Reports, 2016, 6, 18743.	1.6	99
36	Novel roles for the radial spoke head protein 9 in neural and neurosensory cilia. Scientific Reports, 2016, 6, 34437.	1.6	18
37	FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines. Methods in Molecular Biology, 2016, 1428, 163-175.	0.4	9
38	Recent innovations in mRNA vaccines. Current Opinion in Immunology, 2016, 41, 18-22.	2.4	70
39	Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences. Methods in Molecular Biology, 2016, 1428, 3-27.	0.4	9

#	Article	IF	CITATIONS
40	Label-free analysis of mRNA capping efficiency using RNase H probes and LC-MS. Analytical and Bioanalytical Chemistry, 2016, 408, 5021-5030.	1.9	47
41	pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences. Molecular Therapy - Nucleic Acids, 2016, 5, e306.	2.3	52
42	An Efficient Protection-Free One-Pot Chemical Synthesis of Modified Nucleoside-5′-Triphosphates. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 356-362.	0.4	15
43	mRNA vaccine delivery using lipid nanoparticles. Therapeutic Delivery, 2016, 7, 319-334.	1.2	414
44	Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Experimental Hematology, 2016, 44, 991-1001.	0.2	4
45	Chimeric RNA Oligonucleotides Incorporating Triazole-Linked Trinucleotides: Synthesis and Function as mRNA in Cell-Free Translation Reactions. Journal of Organic Chemistry, 2016, 81, 8967-8976.	1.7	9
46	Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles inÂvivo. Biomaterials, 2016, 109, 78-87.	5.7	137
47	Linked CD4 T Cell Help: Broadening Immune Attack Against Cancer by Vaccination. Current Topics in Microbiology and Immunology, 2016, 405, 123-143.	0.7	6
48	Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine, 2016, 11, 2723-2734.	1.7	82
49	Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations. Gene Therapy, 2016, 23, 775-784.	2.3	31
50	Intracellular Availability of pDNA and mRNA after Transfection: A Comparative Study among Polyplexes, Lipoplexes, and Lipopolyplexes. Molecular Pharmaceutics, 2016, 13, 3153-3163.	2.3	19
51	Concepts in glioma immunotherapy. Cancer Immunology, Immunotherapy, 2016, 65, 1269-1275.	2.0	52
52	Cellular Delivery of RNA Nanoparticles. ACS Combinatorial Science, 2016, 18, 527-547.	3.8	47
53	Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses. Molecular Therapy, 2016, 24, 2012-2020.	3.7	88
54	Genome Editing with Targetable Nucleases. , 2016, , 1-29.		0
55	Distinct transcriptional changes in non-small cell lung cancer patients associated with multi-antigenic RNActive® CV9201 immunotherapy. Oncolmmunology, 2016, 5, e1249560.	2.1	18
56	Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Scientific Reports, 2016, 6, 22509.	1.6	58
57	Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Research, 2016, 44, gkw896.	6.5	52

		REPORT	
#	Article	IF	Citations
58	Biodegradable Dendronized Polymers for Efficient mRNA Delivery. ChemistrySelect, 2016, 1, 4413-4417.	0.7	8
59	Nanoparticles and the immune system: challenges and opportunities. Nanomedicine, 2016, 11, 2621-2624.	1.7	30
60	mRNA-based therapeutics–Advances and perspectives. Biochemistry (Moscow), 2016, 81, 709-722.	0.7	49
61	Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine, 2016, 34, 3882-3893.	1.7	82
62	The Human Vaccines Project: A roadmap for cancer vaccine development. Science Translational Medicine, 2016, 8, 334ps9.	5.8	162
63	Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Scientific Reports, 2016, 6, 22137.	1.6	37
64	Intracellular delivery of messenger RNA by recombinant PP7 virus-like particles carrying low molecular weight protamine. BMC Biotechnology, 2016, 16, 46.	1.7	12
65	mRNA-based therapeutics as a new medical strategy:9 th Mizushima Award, Japan Society of DDS. Drug Delivery System, 2016, 31, 343-351.	0.0	0
66	A quantum leap in cancer vaccines?. , 2016, 4, 87.		3
67	Optimization of CFTR-mRNA transfection in human nasal epithelial cells. Translational Medicine Communications, 2016, 1, .	0.5	4
68	Transfection of Human Keratinocytes with Nucleoside-Modified mRNA Encoding CPD-Photolyase to Repair DNA Damage. Methods in Molecular Biology, 2016, 1428, 219-228.	0.4	3
69	Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016, 534, 396-401.	13.7	1,243
70	From the RNA world to the clinic. Science, 2016, 352, 1417-1420.	6.0	225
72	Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery. Advanced Materials, 2016, 28, 2939-2943.	11.1	172
73	Two-headed tetraphosphate cap analogs are inhibitors of the Dcp1/2 RNA decapping complex. Rna, 2016, 22, 518-529.	1.6	10
74	Intratumoral Delivery of TriMix mRNA Results in T-cell Activation by Cross-Presenting Dendritic Cells. Cancer Immunology Research, 2016, 4, 146-156.	1.6	90
75	Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies. Bioconjugate Chemistry, 2016, 27, 280-297.	1.8	27
76	cMyc-p53 feedback mechanism regulates the dynamics of T lymphocytes in the immune response. Cell Cycle, 2016, 15, 1267-1275.	1.3	13

#	Article	IF	CITATIONS
78	Synthetic Polyamines to Regulate mRNA Translation through the Preservative Binding of Eukaryotic Initiation Factor 4E to the Cap Structure. Journal of the American Chemical Society, 2016, 138, 1478-1481.	6.6	33
79	Effects of Chemically Modified Messenger RNA on Protein Expression. Bioconjugate Chemistry, 2016, 27, 849-853.	1.8	106
80	Design of Ionizable Lipids To Overcome the Limiting Step of Endosomal Escape: Application in the Intracellular Delivery of mRNA, DNA, and siRNA. Journal of Medicinal Chemistry, 2016, 59, 3046-3062.	2.9	80
81	Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nature Reviews Cancer, 2016, 16, 219-233.	12.8	580
82	Advances in Therapeutic Cancer Vaccines. Advances in Immunology, 2016, 130, 191-249.	1.1	88
83	Materials for non-viral intracellular delivery of messenger RNA therapeutics. Journal of Controlled Release, 2016, 240, 227-234.	4.8	286
84	Strategies for modulating innate immune activation and protein production of in vitro transcribed mRNAs. Journal of Materials Chemistry B, 2016, 4, 1619-1632.	2.9	17
85	Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials, 2016, 82, 221-228.	5.7	121
86	Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 2016, 138, 704-717.	6.6	776
87	Poly(glycoamidoamine) Brushes Formulated Nanomaterials for Systemic siRNA and mRNA Delivery in Vivo. Nano Letters, 2016, 16, 842-848.	4.5	98
88	Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials, 2016, 77, 87-97.	5.7	76
89	The changing model of big pharma: impact of key trends. Drug Discovery Today, 2016, 21, 379-384.	3.2	92
90	Evading innate immunity in nonviral mRNA delivery: don't shoot the messenger. Drug Discovery Today, 2016, 21, 11-25.	3.2	89
91	Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Therapy, 2017, 24, 133-143.	2.3	270
92	Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E448-E456.	3.3	207
93	Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Therapy, 2017, 24, 157-166.	2.3	106
94	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	13.7	699
95	Structurally Programmed Assembly of Translation Initiation Nanoplex for Superior mRNA Delivery. ACS Nano, 2017, 11, 2531-2544.	7.3	74

#	Article	IF	CITATIONS
96	Hydrazone-modulated peptides for efficient gene transfection. Journal of Materials Chemistry B, 2017, 5, 4426-4434.	2.9	30
97	Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1941-E1950.	3.3	222
98	Efficient Nanovaccine Delivery in Cancer Immunotherapy. ACS Nano, 2017, 11, 2387-2392.	7.3	278
99	Integration of a CD19 CAR into the TCR Alpha Chain Locus Streamlines Production of Allogeneic Gene-Edited CAR T Cells. Molecular Therapy, 2017, 25, 949-961.	3.7	216
100	The 'anti-hype' vaccine. Nature Biotechnology, 2017, 35, 193-197.	9.4	33
101	Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nature Communications, 2017, 8, 14630.	5.8	259
102	Type I Interferons Modulate CD8 + T Cell Immunity to mRNA Vaccines. Trends in Molecular Medicine, 2017, 23, 216-226.	3.5	77
103	N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Research, 2017, 45, 6023-6036.	6.5	173
104	Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Advanced Drug Delivery Reviews, 2017, 115, 98-114.	6.6	107
105	mRNA Cancer Vaccines—Messages that Prevail. Current Topics in Microbiology and Immunology, 2017, 405, 145-164.	0.7	32
106	Arginineâ€Rich Peptideâ€Based mRNA Nanocomplexes Efficiently Instigate Cytotoxic T Cell Immunity Dependent on the Amphipathic Organization of the Peptide. Advanced Healthcare Materials, 2017, 6, 1601412.	3.9	121
107	SAMHD1 protects cancer cells from various nucleoside-based antimetabolites. Cell Cycle, 2017, 16, 1029-1038.	1.3	56
109	Rethinking cancer nanotheranostics. Nature Reviews Materials, 2017, 2, .	23.3	860
110	Translation of Angiotensin-Converting Enzyme 2 upon Liver- and Lung-Targeted Delivery of Optimized Chemically Modified mRNA. Molecular Therapy - Nucleic Acids, 2017, 7, 350-365.	2.3	57
111	Membrane-lipid therapy: A historical perspective of membrane-targeted therapies — From lipid bilayer structure to the pathophysiological regulation of cells. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1493-1506.	1.4	65
112	Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nature Medicine, 2017, 23, 815-817.	15.2	182
113	Graphene Oxide-Upconversion Nanoparticle Based Optical Sensors for Targeted Detection of mRNA Biomarkers Present in Alzheimer's Disease and Prostate Cancer. ACS Sensors, 2017, 2, 52-56.	4.0	107
114	The European Regulatory Environment of RNA-Based Vaccines. Methods in Molecular Biology, 2017, 1499, 203-222.	0.4	22

ARTICLE IF CITATIONS # Discovery and Subtyping of Neo-Epitope Specific T-Cell Responses for Cancer Immunotherapy: 115 0.4 9 Addressing the Mutanome. Methods in Molecular Biology, 2017, 1499, 223-236. Dual-functional lipid-like nanoparticles for delivery of mRNA and MRI contrast agents. Nanoscale, 2.8 23 2017, 9, 1575-1579. InÂVivo Production of Monoclonal Antibodies by Gene Transfer via Electroporation Protects against 117 Lethal Influenza and Ebola Infections. Molecular Therapy - Methods and Clinical Development, 2017, 7, 1.8 24 74-82. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Seminars in Immunology, 2017, 34, 114-122. A new developing class of gene delivery: messenger RNA-based therapeutics. Biomaterials Science, 2017, 119 2.6 69 5, 2381-2392. The promises of immunotherapy in gliomas. Current Opinion in Neurology, 2017, 30, 650-658. 1.8 Polyamineâ€Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. 121 1.6 10 Angewandte Chemie, 2017, 129, 13897-13900. The Chemistry of Oligonucleotide Delivery. Annual Reports in Medicinal Chemistry, 2017, 50, 17-59. 123 From Polymers to Functional Biomaterials. Macromolecular Bioscience, 2017, 17, 1700307. 2.1 1 Azidoâ€Functionalized 5′ Cap Analogues for the Preparation of Translationally Active mRNAs Suitable 124 for Fluorescent Labeling in Living Cells. Angewandte Chemie - International Edition, 2017, 56, 7.2 15628-15632. Boosting Intracellular Delivery of Lipid Nanoparticle-Encapsulated mRNA. Nano Letters, 2017, 17, 125 4.5167 5711-5718. RNA Therapeutics in Oncology: Advances, Challenges, and Future Directions. Journal of Clinical 1.0 46 Pharmacology, 2017, 57, S43-S59. Polyamineâ€Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. 127 7.2 50 Angewandte Chemie - International Edition, 2017, 56, 13709-13712. Antibody production by in vivo RNA transfection. Scientific Reports, 2017, 7, 10863. 1.6 Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified 129 103 2.7 mRNA therapeuticsâ€"An innate immune system standpoint. Seminars in Immunology, 2017, 34, 68-77. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials, 504 2017, 2, . Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral 131 2.0 61 diseases. Expert Review of Vaccines, 2017, 16, 883-894. Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger 11.1 174 RNA to B Lymphocytes. Advanced Materials, 2017, 29, 1606944.

#	Article	IF	CITATIONS
133	Cationic Nanoliposomes Meet mRNA: Efficient Delivery of Modified mRNA Using Hemocompatible and Stable Vectors for Therapeutic Applications. Molecular Therapy - Nucleic Acids, 2017, 8, 459-468.	2.3	31
134	Prospects of Pluripotent and Adult Stem Cells for Rare Diseases. Advances in Experimental Medicine and Biology, 2017, 1031, 371-386.	0.8	2
135	Antigen-specific oncolytic MV-based tumor vaccines through presentation of selected tumor-associated antigens on infected cells or virus-like particles. Scientific Reports, 2017, 7, 16892.	1.6	23
136	Azidoâ€Functionalized 5′ Cap Analogues for the Preparation of Translationally Active mRNAs Suitable for Fluorescent Labeling in Living Cells. Angewandte Chemie, 2017, 129, 15834-15838.	1.6	6
137	Systemic mRNA Delivery to the Lungs by Functional Polyester-based Carriers. Biomacromolecules, 2017, 18, 4307-4315.	2.6	80
138	mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Research, 2017, 45, 8661-8675.	6.5	23
139	Mechanism of action of mRNA-based vaccines. Expert Review of Vaccines, 2017, 16, 871-881.	2.0	149
140	Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange. Nature Communications, 2017, 8, 16111.	5.8	77
141	Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Medicine, 2017, 9, 60.	3.6	491
142	State of play and clinical prospects of antibody gene transfer. Journal of Translational Medicine, 2017, 15, 131.	1.8	45
143	Stem Cell Extracellular Vesicles: Extended Messages of Regeneration. Annual Review of Pharmacology and Toxicology, 2017, 57, 125-154.	4.2	223
144	A novel route for preparing 5′ cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry. Chemical Science, 2017, 8, 260-267.	3.7	32
145	Concise Review: Application of In Vitro Transcribed Messenger RNA for Cellular Engineering and Reprogramming: Progress and Challenges. Stem Cells, 2017, 35, 68-79.	1.4	56
146	<scp>RNA</scp> â€based therapies for genodermatoses. Experimental Dermatology, 2017, 26, 3-10.	1.4	28
147	Efficient exÂvivo delivery of chemically modified messenger RNA using lipofection and magnetofection. Biochemical and Biophysical Research Communications, 2017, 482, 796-801.	1.0	12
148	The Yin and Yang of nucleic acid-based therapy in the brain. Progress in Neurobiology, 2017, 155, 194-211.	2.8	22
149	Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. Nano Letters, 2017, 17, 1326-1335.	4.5	506
150	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	13.1	125

	CITATION	Report	
#	Article	IF	CITATIONS
151	<i>Ex vivo</i> and <i>in vivo</i> genome editing: a regulatory scientific framework from early development to clinical implementation. Regenerative Medicine, 2017, 12, 1015-1030.	0.8	6
152	Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia. Cell Reports, 2017, 21, 3548-3558.	2.9	173
153	A Review of Zika Virus: Hurdles toward Vaccine Development and the Way Forward. Antiviral Therapy, 2018, 23, 285-293.	0.6	11
154	Zika Virus Vaccine Development. Journal of Infectious Diseases, 2017, 216, S957-S963.	1.9	38
155	Biotechnologies Applied in Biomedical Vaccines. , 0, , .		7
156	Synthesis of oligonucleotides on a soluble support. Beilstein Journal of Organic Chemistry, 2017, 13, 1368-1387.	1.3	27
157	Synthetic mRNA capping. Beilstein Journal of Organic Chemistry, 2017, 13, 2819-2832.	1.3	68
158	When Is an Experiment Ready for the Valley of Death?. , 2017, , 85-94.		0
159	Suppression of mRNA Nanoparticle Transfection in Human Fibroblasts by Selected Interferon Inhibiting Small Molecule Compounds. Biomolecules, 2017, 7, 56.	1.8	8
160	Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Frontiers in Immunology, 2017, 8, 312.	2.2	8
161	Induction of Robust B Cell Responses after Influenza mRNA Vaccination Is Accompanied by Circulating Hemagglutinin-Specific ICOS+ PD-1+ CXCR3+ T Follicular Helper Cells. Frontiers in Immunology, 2017, 8, 1539.	2.2	114
162	Replication of Recombinant Flock House Virus RNA Encapsidated by Turnip Yellow Mosaic Virus Coat Proteins inNicotiana benthamiana. Journal of Bacteriology and Virology, 2017, 47, 87.	0.0	0
163	Nanoliposomes for Safe and Efficient Therapeutic mRNA Delivery: A Step Toward Nanotheranostics in Inflammatory and Cardiovascular Diseases as well as Cancer. Nanotheranostics, 2017, 1, 154-165.	2.7	21
164	Supramolecular Gene Transfection Agents. , 2017, , 365-389.		1
165	A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation. Nano Letters, 2018, 18, 2148-2157.	4.5	138
166	Lightâ€Activated Control of Translation by Enzymatic Covalent mRNA Labeling. Angewandte Chemie, 2018, 130, 2872-2876.	1.6	17
167	Serum Nuclease Susceptibility of mRNA Cargo in Condensed Polyplexes. Molecular Pharmaceutics, 2018, 15, 2268-2276.	2.3	39
168	Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. Nano Letters, 2018, 18, 3814-3822.	4.5	184

#	Αρτιςι ε	IF	CITATIONS
169	Nanoscale polyelectrolyte complexes encapsulating mRNA and long-chained siRNA for combinatorial cancer gene therapy. Journal of Industrial and Engineering Chemistry, 2018, 64, 430-437.	2.9	6
170	Design and assessment of engineered CRISPR–Cpf1 and its use for genome editing. Nature Protocols, 2018, 13, 899-914.	5.5	40
171	Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine, 2018, 36, 1689-1699.	1.7	160
172	Outbreak of Zika virus pathogenesis and quest of its vaccine development: Where do we stand now?. Microbial Pathogenesis, 2018, 116, 289-295.	1.3	2
173	Leveraging Rational Protein Engineering to Improve mRNA Therapeutics. Nucleic Acid Therapeutics, 2018, 28, 74-85.	2.0	8
174	Lightâ€Activated Control of Translation by Enzymatic Covalent mRNA Labeling. Angewandte Chemie - International Edition, 2018, 57, 2822-2826.	7.2	48
175	Programming gene and engineered-cell therapies with synthetic biology. Science, 2018, 359, .	6.0	180
176	Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Molecular Therapy, 2018, 26, 446-455.	3.7	315
177	Exploring Cytotoxic mRNAs as a Novel Class of Anti-cancer Biotherapeutics. Molecular Therapy - Methods and Clinical Development, 2018, 8, 141-151.	1.8	9
178	Rapid, Single-Cell Analysis and Discovery of Vectored mRNA Transfection InÂVivo with a loxP-Flanked tdTomato Reporter Mouse. Molecular Therapy - Nucleic Acids, 2018, 10, 55-63.	2.3	59
179	Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Molecular Therapy, 2018, 26, 801-813.	3.7	95
180	mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, 2018, 17, 261-279.	21.5	2,668
181	mRNA function after intracellular delivery and release. BioSystems, 2018, 165, 52-56.	0.9	8
182	Modified mRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs From Ebola Virus Disease. Journal of Infectious Diseases, 2018, 217, 451-455.	1.9	119
183	Comparison of the Expression Kinetics and Immunostimulatory Activity of Replicating mRNA, Nonreplicating mRNA, and pDNA after Intradermal Electroporation in Pigs. Molecular Pharmaceutics, 2018, 15, 377-384.	2.3	22
184	Delivery of modified mRNA encoding vesicular stomatitis virus matrix protein for colon cancer gene therapy. RSC Advances, 2018, 8, 12104-12115.	1.7	12
185	Intradermal Delivery of Synthetic mRNA Using Hollow Microneedles for Efficient and Rapid Production of Exogenous Proteins in Skin. Molecular Therapy - Nucleic Acids, 2018, 11, 382-392.	2.3	55
186	A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Molecular Therapy, 2018, 26, 1509-1519.	3.7	452

# 187	ARTICLE Zika virus: from an obscurity to a priority. Microbes and Infection, 2018, 20, 635-645.	IF 1.0	CITATIONS
188	An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Research, 2018, 46, 5239-5249.	6.5	123
189	Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase. Molecular Pharmaceutics, 2018, 15, 737-742.	2.3	20
190	The Promise and Challenge of <i>In Vivo</i> Delivery for Genome Therapeutics. ACS Chemical Biology, 2018, 13, 376-382.	1.6	69
191	Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly A sequences for effective vaccination. Biomaterials, 2018, 150, 162-170.	5.7	41
192	Emergence of synthetic mRNA: InÂvitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials, 2018, 156, 172-193.	5.7	122
193	Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration. Molecular Pharmaceutics, 2018, 15, 642-651.	2.3	23
194	Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes. Food Science and Biotechnology, 2018, 27, 725-733.	1.2	5
195	Safety Evaluation of Lipid Nanoparticle–Formulated Modified mRNA in the Sprague-Dawley Rat and Cynomolgus Monkey. Veterinary Pathology, 2018, 55, 341-354.	0.8	123
196	Nucleic Acid Therapies for Cystic Fibrosis. Nucleic Acid Therapeutics, 2018, 28, 1-9.	2.0	20
197	RNome in Cancer Therapy. , 2018, , 243-285.		0
198	mRNAs biotinylated within the 5′ cap and protected against decapping: new tools to capture RNA–protein complexes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180167.	1.8	8
199	Multi-experiment nonlinear mixed effect modeling of single-cell translation kinetics after transfection. Npj Systems Biology and Applications, 2018, 4, 1.	1.4	66
200	Self-Replicating RNA Viruses for RNA Therapeutics. Molecules, 2018, 23, 3310.	1.7	49
202	Synthetic materials at the forefront of gene delivery. Nature Reviews Chemistry, 2018, 2, 258-277.	13.8	215
203	Future Therapeutic Approaches for Alagille Syndrome. , 2018, , 167-193.		0
204	Biomaterials for vaccine-based cancer immunotherapy. Journal of Controlled Release, 2018, 292, 256-276.	4.8	146
205	Keratinocyte Growth Factor Modified Messenger RNA Accelerating Cell Proliferation and Migration of Keratinocytes. Nucleic Acid Therapeutics, 2018, 28, 335-347.	2.0	11

#	Article	IF	CITATIONS
206	Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Theranostics, 2018, 8, 5276-5288.	4.6	32
207	Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nature Communications, 2018, 9, 4392.	5.8	59
208	Dendrimerâ€8ased Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I. Advanced Materials, 2018, 30, e1805308.	11.1	136
209	PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. Journal of Controlled Release, 2018, 291, 106-115.	4.8	106
210	Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nature Chemical Biology, 2018, 14, 1043-1050.	3.9	52
211	Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mRNAs. Molecular Therapy - Nucleic Acids, 2018, 13, 387-398.	2.3	22
212	Optimization of the Linker Length of Mannose-Cholesterol Conjugates for Enhanced mRNA Delivery to Dendritic Cells by Liposomes. Frontiers in Pharmacology, 2018, 9, 980.	1.6	39
213	mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9153-E9161.	3.3	92
214	Moving Liposome Technology from the Bench to the Oncological Patient: Towards Performance-by-Design. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 171-211.	0.2	0
215	Evaluation of modified Interferon alpha mRNA constructs for the treatment of non-melanoma skin cancer. Scientific Reports, 2018, 8, 12954.	1.6	12
216	Designing flexible low-viscous sieving media for capillary electrophoresis analysis of ribonucleic acids. Journal of Chromatography A, 2018, 1562, 108-114.	1.8	17
217	Drug metabolism and pharmacokinetic strategies for oligonucleotide- and mRNA-based drug development. Drug Discovery Today, 2018, 23, 1733-1745.	3.2	40
218	Latest development on RNA-based drugs and vaccines. Future Science OA, 2018, 4, FSO300.	0.9	45
219	Vegf-A mRNA transfection as a novel approach to improve mouse and human islet graft revascularisation. Diabetologia, 2018, 61, 1804-1810.	2.9	20
220	A "top-down―approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery. Biomaterials, 2018, 176, 122-130.	5.7	49
221	Prospects of Gene Therapy to Treat Melanoma. Advances in Cancer Research, 2018, 138, 213-237.	1.9	17
222	Recent advances in mRNA vaccine delivery. Nano Research, 2018, 11, 5338-5354.	5.8	52
223	Development of mRNA vaccines and their prophylactic and therapeutic applications. Nano Research, 2018, 11, 5173-5192.	5.8	18

#	Article	IF	CITATIONS
224	Cancer Vaccines. , 2018, , 161-184.e6.		2
225	Prolonged engraftment of transplanted hepatocytes in the liver by transient pro-survival factor supplementation using ex vivo mRNA transfection. Journal of Controlled Release, 2018, 285, 1-11.	4.8	12
226	Lipid Polymer Hybrid Nanomaterials for mRNA Delivery. Cellular and Molecular Bioengineering, 2018, 11, 397-406.	1.0	57
227	mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PLoS ONE, 2018, 13, e0201464.	1.1	38
228	<i>In Vitro</i> Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjugate Chemistry, 2018, 29, 3072-3083.	1.8	21
229	Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing. Nano Research, 2018, 11, 5310-5337.	5.8	31
230	Biomedical applications of mRNA nanomedicine. Nano Research, 2018, 11, 5281-5309.	5.8	86
231	Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chemical Reviews, 2018, 118, 7409-7531.	23.0	490
232	Novel Platforms for the Development of a Universal Influenza Vaccine. Frontiers in Immunology, 2018, 9, 600.	2.2	85
233	Simultaneous and stoichiometric purification of hundreds of oligonucleotides. Nature Communications, 2018, 9, 2467.	5.8	22
234	Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers, 2018, 10, 444.	2.0	83
235	Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids. Journal of Controlled Release, 2018, 286, 46-54.	4.8	42
236	Transfection by cationic gemini lipids and surfactants. MedChemComm, 2018, 9, 1404-1425.	3.5	28
237	Monitoring Translation Activity of mRNA-Loaded Nanoparticles in Mice. Molecular Pharmaceutics, 2018, 15, 3909-3919.	2.3	27
238	Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy. Frontiers in Immunology, 2018, 9, 1499.	2.2	119
239	Extrahepatic Targeting of Oligonucleotides with Receptor-Binding Non-Immunoglobulin Scaffold Proteins. Nucleic Acid Therapeutics, 2018, 28, 137-145.	2.0	4
240	Testing thousands of nanoparticles inÂvivo using DNA barcodes. Current Opinion in Biomedical Engineering, 2018, 7, 1-8.	1.8	52
241	Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. Advanced Therapeutics, 2018, 1, 1800065.	1.6	52

#	Article	IF	CITATIONS
242	Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nature Communications, 2018, 9, 3417.	5.8	87
243	MicroRNAs Enable mRNA Therapeutics to Selectively Program Cancer Cells to Self-Destruct. Nucleic Acid Therapeutics, 2018, 28, 285-296.	2.0	93
244	Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. Angewandte Chemie - International Edition, 2018, 57, 13582-13586.	7.2	64
245	Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. Angewandte Chemie, 2018, 130, 13770-13774.	1.6	14
246	RNA-Based dCas9–VP64 System Improves the Viability of Cryopreserved Mammalian Cells. Nano LIFE, 2018, 08, 1850004.	0.6	1
247	Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5859-E5866.	3.3	162
248	Advances in Biomaterials for Drug Delivery. Advanced Materials, 2018, 30, e1705328.	11.1	565
249	Development of Gene-Based Vectors for Immunization. , 2018, , 1305-1319.e8.		3
250	Arginase I mRNA therapy – a novel approach to rescue arginase 1 enzyme deficiency. RNA Biology, 2018, 15, 914-922.	1.5	37
251	Nanotechnology Approaches to Improving Cancer Immunotherapy. Advances in Cancer Research, 2018, 139, 35-56.	1.9	33
252	Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA complexes. Acta Biomaterialia, 2018, 75, 358-370.	4.1	30
253	Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. Molecular Therapy, 2018, 26, 2034-2046.	3.7	184
254	M ³ RNA Drives Targeted Gene Delivery in Acute Myocardial Infarction. Tissue Engineering - Part A, 2019, 25, 145-158.	1.6	18
255	Gene Editing in Regenerative Medicine. , 2019, , 741-759.		0
256	Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Human Gene Therapy, 2019, 30, 168-178.	1.4	81
257	RNA-based therapy for osteogenesis. International Journal of Pharmaceutics, 2019, 569, 118594.	2.6	21
258	Introducing LNAzo: More Rigidity for Improved Photocontrol of Oligonucleotide Hybridization. Chemistry - A European Journal, 2019, 25, 12298-12302.	1.7	4
259	Codelivery of mRNA with α-Galactosylceramide Using a New Lipopolyplex Formulation Induces a Strong Antitumor Response upon Intravenous Administration. ACS Omega, 2019, 4, 13015-13026.	1.6	38

#	Article	IF	CITATIONS
260	Impacts of uORF codon identity and position on translation regulation. Nucleic Acids Research, 2019, 47, 9358-9367.	6.5	46
261	Efficient inhibition of RNA self-primed extension by addition of competing 3′-capture DNA-improved RNA synthesis by T7 RNA polymerase. Nucleic Acids Research, 2019, 47, e118-e118.	6.5	22
262	Molecularly imprinted gelatin nanoparticles for DNA delivery and in-situ fluorescence imaging of telomerase activity. Mikrochimica Acta, 2019, 186, 610.	2.5	8
263	Semliki Forest Virus replicon particles production in serum-free medium BHK-21 cell cultures and their use to express different proteins. Cytotechnology, 2019, 71, 949-962.	0.7	6
264	mRNA rescues neonatal acidemia while mice report no aftereffects. EBioMedicine, 2019, 46, 23-24.	2.7	0
265	Messenger RNA translation enhancement by immune evasion proteins: a comparative study between EKB (vaccinia virus) and NS1 (influenza A virus). Scientific Reports, 2019, 9, 11972.	1.6	14
266	Endocytic Profiling of Cancer Cell Models Reveals Critical Factors Influencing LNP-Mediated mRNA Delivery and Protein Expression. Molecular Therapy, 2019, 27, 1950-1962.	3.7	58
267	Improving the Repeatability and Efficacy of Intradermal Electroporated Self-Replicating mRNA. Molecular Therapy - Nucleic Acids, 2019, 17, 388-395.	2.3	11
268	RNA Therapeutics: How Far Have We Gone?. Advances in Experimental Medicine and Biology, 2019, 1157, 133-177.	0.8	35
269	Intranodal administration of mRNA encoding nucleoprotein provides cross-strain immunity against influenza in mice. Journal of Translational Medicine, 2019, 17, 242.	1.8	20
270	Clinical translation of gene medicine. Journal of Gene Medicine, 2019, 21, e3108.	1.4	33
271	Duplexâ€forming Oligonucleotide of Triazoleâ€linked RNA. Chemistry - an Asian Journal, 2019, 14, 3380-3385.	1.7	6
272	Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. Journal of Controlled Release, 2019, 314, 102-115.	4.8	117
273	Mineral-Coated Microparticles Enhance mRNA-Based Transfection of Human Bone Marrow Cells. Molecular Therapy - Nucleic Acids, 2019, 18, 455-464.	2.3	14
274	Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines, 2019, 7, 122.	2.1	60
275	Three decades of messenger RNA vaccine development. Nano Today, 2019, 28, 100766.	6.2	177
276	Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Journal of Controlled Release, 2019, 316, 404-417.	4.8	111
277	Fine-Tuning of Hydrophobicity in Amphiphilic Polyaspartamide Derivatives for Rapid and Transient Expression of Messenger RNA Directed Toward Genome Engineering in Brain. ACS Central Science, 2019, 5, 1866-1875.	5.3	48

#	Article	IF	CITATIONS
278	Neutral Lipopolyplexes for InÂVivo Delivery of Conventional and Replicative RNA Vaccine. Molecular Therapy - Nucleic Acids, 2019, 17, 767-775.	2.3	38
279	Improving cancer immunotherapy through nanotechnology. Nature Reviews Cancer, 2019, 19, 587-602.	12.8	426
280	RNA-loaded dendritic cells: more than a tour de force in cancer therapeutics. Immunotherapy, 2019, 11, 1129-1147.	1.0	2
281	Nanocarrier Lipid Composition Modulates the Impact of Pulmonary Surfactant Protein B (SP-B) on Cellular Delivery of siRNA. Pharmaceutics, 2019, 11, 431.	2.0	12
282	Immunological Analysis of a CCHFV mRNA Vaccine Candidate in Mouse Models. Vaccines, 2019, 7, 115.	2.1	35
283	Multicistronic IVT mRNA for simultaneous expression of multiple fluorescent proteins. Journal of Industrial and Engineering Chemistry, 2019, 80, 770-777.	2.9	5
284	Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. Vaccines, 2019, 7, 131.	2.1	29
285	Design concepts of polyplex micelles for <scp><i>in vivo</i></scp> therapeutic delivery of plasmid DNA and messenger RNA. Journal of Biomedical Materials Research - Part A, 2019, 107, 978-990.	2.1	72
286	Nucleotide Modification Alters MicroRNA-Dependent Silencing of MicroRNA Switches. Molecular Therapy - Nucleic Acids, 2019, 14, 339-350.	2.3	20
287	A convenient method to generate and maintain poly(A)-encoding DNA sequences required forin vitrotranscription of mRNA. BioTechniques, 2019, 66, 37-39.	0.8	7
288	Local Delivery of <i>Ox40l</i> , <i>Cd80</i> , and <i>Cd86</i> mRNA Kindles Global Anticancer Immunity. Cancer Research, 2019, 79, 1624-1634.	0.4	85
289	Chemotherapy drugs derived nanoparticles encapsulating mRNA encoding tumor suppressor proteins to treat triple-negative breast cancer. Nano Research, 2019, 12, 855-861.	5.8	39
290	PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward In Vivo Administration. Molecules, 2019, 24, 1303.	1.7	17
291	Oligonucleotide Sequence Mapping of Large Therapeutic mRNAs via Parallel Ribonuclease Digestions and LC-MS/MS. Analytical Chemistry, 2019, 91, 8500-8506.	3.2	43
292	Expression of costimulatory and inhibitory receptors in FoxP3+ regulatory T cells within the tumor microenvironment: Implications for combination immunotherapy approaches. Advances in Cancer Research, 2019, 144, 193-261.	1.9	19
293	Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles. Advanced Materials, 2019, 31, e1902575.	11.1	244
294	Messenger RNA delivery by hydrazone-activated polymers. MedChemComm, 2019, 10, 1138-1144.	3.5	11
295	RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials, 2019, 217, 119291.	5.7	50

#	Article	IF	CITATIONS
296	Emerging modes-of-action in drug discovery. MedChemComm, 2019, 10, 1550-1568.	3.5	22
297	A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation. Cell, 2019, 178, 91-106.e23.	13.5	141
298	mRNA Delivery for Therapeutic Anti-HER2 Antibody Expression InÂVivo. Molecular Therapy, 2019, 27, 1415-1423.	3.7	125
299	Bundling mRNA Strands to Prepare Nanoâ€Assemblies with Enhanced Stability Towards RNase for Inâ€Vivo Delivery. Angewandte Chemie - International Edition, 2019, 58, 11360-11363.	7.2	40
300	The obstacle course to the inner retina: Hyaluronic acid-coated lipoplexes cross the vitreous but fail to overcome the inner limiting membrane. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 161-171.	2.0	15
301	Wwp2 maintains cartilage homeostasis through regulation of Adamts5. Nature Communications, 2019, 10, 2429.	5.8	78
302	A New Era for Rare Genetic Diseases: Messenger RNA Therapy. Human Gene Therapy, 2019, 30, 1180-1189.	1.4	54
303	Bundling mRNA Strands to Prepare Nanoâ€Assemblies with Enhanced Stability Towards RNase for Inâ€Vivo Delivery. Angewandte Chemie, 2019, 131, 11482-11485.	1.6	5
304	Cancer cell killing by target antigen engagement with engineered complementary intracellular antibody single domains fused to pro-caspase3. Scientific Reports, 2019, 9, 8553.	1.6	6
305	Development of a Novel Polymer-Based mRNA Coating for Surgical Suture to Enhance Wound Healing. Coatings, 2019, 9, 374.	1.2	9
306	Tackling pharmacological response heterogeneity by PBPK modeling to advance precision medicine productivity of nanotechnology and genomics therapeutics. Expert Review of Precision Medicine and Drug Development, 2019, 4, 139-151.	0.4	21
307	Low-cost and user-friendly biosensor to test the integrity of mRNA molecules suitable for field applications. Biosensors and Bioelectronics, 2019, 137, 199-206.	5.3	8
308	Oligo(serine ester) Charge-Altering Releasable Transporters: Organocatalytic Ring-Opening Polymerization and their Use for <i>in Vitro</i> and <i>in Vivo</i> mRNA Delivery. Journal of the American Chemical Society, 2019, 141, 8416-8421.	6.6	61
309	<p>Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 2733-2751.	3.3	41
310	Peptide-mediated delivery of therapeutic mRNA in ovarian cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 180-190.	2.0	62
311	Super-resolution Imaging of Structure, Molecular Composition, and Stability of Single Oligonucleotide Polyplexes. Nano Letters, 2019, 19, 2784-2792.	4.5	27
312	Exogenous Delivery of Link N mRNA into Chondrocytes and MSCs—The Potential Role in Increasing Anabolic Response. International Journal of Molecular Sciences, 2019, 20, 1716.	1.8	8
313	A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines, 2019, 7, 37.	2.1	266

#	Article	IF	CITATIONS
314	Systemic mRNA Therapy for the Treatment of Fabry Disease: Preclinical Studies in Wild-Type Mice, Fabry Mouse Model, and Wild-Type Non-human Primates. American Journal of Human Genetics, 2019, 104, 625-637.	2.6	102
315	Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Molecular Therapy, 2019, 27, 735-746.	3.7	148
316	The Emerging Role of InÂVitro-Transcribed mRNA in Adoptive T Cell Immunotherapy. Molecular Therapy, 2019, 27, 747-756.	3.7	66
317	mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Molecular Therapy, 2019, 27, 757-772.	3.7	297
318	Concise Review: Application of Chemically Modified mRNA in Cell Fate Conversion and Tissue Engineering. Stem Cells Translational Medicine, 2019, 8, 833-843.	1.6	28
319	Treatment of Intervertebral Disk Disease by the Administration of mRNA Encoding a Cartilage-Anabolic Transcription Factor. Molecular Therapy - Nucleic Acids, 2019, 16, 162-171.	2.3	27
320	Advances in CRISPR/Cas9 Technology for <i>in Vivo</i> Translation. Biological and Pharmaceutical Bulletin, 2019, 42, 304-311.	0.6	4
321	Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Molecular Therapy, 2019, 27, 710-728.	3.7	685
322	Advances in mRNA Vaccines for Infectious Diseases. Frontiers in Immunology, 2019, 10, 594.	2.2	470
323	Novel approaches for the design, delivery and administration of vaccine technologies. Clinical and Experimental Immunology, 2019, 196, 189-204.	1.1	82
324	Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Molecular Therapy, 2019, 27, 803-823.	3.7	60
325	Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient InÂVivo Genome Editing of Multiple Therapeutic Gene Targets. Molecular Therapy, 2019, 27, 866-877.	3.7	64
326	A Facile Method for the Removal of dsRNA Contaminant from InÂVitro-Transcribed mRNA. Molecular Therapy - Nucleic Acids, 2019, 15, 26-35.	2.3	271
327	Lipid-mRNA Nanoparticle Designed to Enhance Intracellular Delivery Mediated by Shock Waves. ACS Applied Materials & Interfaces, 2019, 11, 10481-10491.	4.0	32
328	Messenger RNA therapy for rare genetic metabolic diseases. Gut, 2019, 68, 1323-1330.	6.1	76
329	Rapid Production of Human VEGF-A following Intradermal Injection of Modified VEGF-A mRNA Demonstrated by Cutaneous Microdialysis in the Rabbit and Pig <i> In Vivo</i> . BioMed Research International, 2019, 2019, 1-7.	0.9	10
330	Generation of Cationic Nanoliposomes for the Efficient Delivery of In Vitro Transcribed Messenger RNA. Journal of Visualized Experiments, 2019, , .	0.2	5
331	Turning the corner on therapeutic cancer vaccines. Npj Vaccines, 2019, 4, 7.	2.9	490

#	Article	IF	CITATIONS
332	Broadening the Message: A Nanovaccine Co-loaded with Messenger RNA and α-GalCer Induces Antitumor Immunity through Conventional and Natural Killer T Cells. ACS Nano, 2019, 13, 1655-1669.	7.3	44
333	Fluorescent Turnâ€On Probes for the Development of Binding and Hydrolytic Activity Assays for mRNA Capâ€Recognizing Proteins. Chemistry - A European Journal, 2019, 25, 6728-6740.	1.7	10
334	Current RNA-based Therapeutics in Clinical Trials. Current Gene Therapy, 2019, 19, 172-196.	0.9	82
336	Correlation of mRNA delivery timing and protein expression in lipid-based transfection. Integrative Biology (United Kingdom), 2019, 11, 362-371.	0.6	19
337	mRNA as a Novel Treatment Strategy for Hereditary Spastic Paraplegia Type 5. Molecular Therapy - Methods and Clinical Development, 2019, 15, 359-370.	1.8	23
338	Overcoming analytical challenges to generate data critical to understanding lipid nanoparticle-delivered modified mRNA biodistribution. Bioanalysis, 2019, 11, 1993-2001.	0.6	4
339	Hybrid nanovaccine for the co-delivery of the mRNA antigen and adjuvant. Nanoscale, 2019, 11, 21782-21789.	2.8	43
340	Delivery strategies of cancer immunotherapy: recent advances and future perspectives. Journal of Hematology and Oncology, 2019, 12, 126.	6.9	96
341	Therapeutic Prospects of mRNA-Based Gene Therapy for Glioblastoma. Frontiers in Oncology, 2019, 9, 1208.	1.3	43
342	Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Review of Vaccines, 2019, 18, 1127-1143.	2.0	23
343	DNA complexes as an efficient gene anticancer drug delivery therapy. , 2019, , 485-549.		0
344	Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid. ACS Applied Materials & Interfaces, 2019, 11, 46585-46590.	4.0	63
345	Measurement of mRNA therapeutics: method development and validation challenges. Bioanalysis, 2019, 11, 2003-2010.	0.6	5
346	Gene Therapy. Advances in Biochemical Engineering/Biotechnology, 2019, 171, 321-368.	0.6	12
347	Hearing Protection, Restoration, and Regeneration: An Overview of Emerging Therapeutics for Inner Ear and Central Hearing Disorders. Otology and Neurotology, 2019, 40, 559-570.	0.7	68
348	Proximity Ligation Assays for In Situ Detection of Innate Immune Activation: Focus on InÂVitro-Transcribed mRNA. Molecular Therapy - Nucleic Acids, 2019, 14, 52-66.	2.3	18
349	Efficient Induction of T Cells against Conserved HIV-1 Regions by Mosaic Vaccines Delivered as Self-Amplifying mRNA. Molecular Therapy - Methods and Clinical Development, 2019, 12, 32-46.	1.8	74
350	Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Advanced Materials, 2019, 31, e1805116.	11.1	212

#	Article	IF	CITATIONS
351	Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials, 2019, 195, 23-37.	5.7	132
352	Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials, 2019, 197, 255-267.	5.7	50
353	Delivery of mRNA Therapeutics for the Treatment of Hepatic Diseases. Molecular Therapy, 2019, 27, 794-802.	3.7	72
354	Improving Cancer Vaccine Efficiency by Nanomedicine. Advanced Biology, 2019, 3, e1800287.	3.0	22
355	Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Molecular Therapy, 2019, 27, 824-836.	3.7	191
356	Bispecific antibodies: Potential immunotherapies for HIV treatment. Methods, 2019, 154, 118-124.	1.9	18
357	Exploitation of Synthetic mRNA To Drive Immune Effector Cell Recruitment and Functional Reprogramming In Vivo. Journal of Immunology, 2019, 202, 608-617.	0.4	9
358	Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability. Journal of Drug Targeting, 2019, 27, 670-680.	2.1	52
359	Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Engineering - Part A, 2019, 25, 91-112.	1.6	68
360	Nanoscale platforms for messenger RNA delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1530.	3.3	121
361	Shifting Paradigms Revisited: Biotechnology and the Pharmaceutical Sciences. Journal of Pharmaceutical Sciences, 2020, 109, 30-43.	1.6	8
362	Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1582.	3.3	32
363	Comparative binding and uptake of liposomes decorated with mannose oligosaccharides by cells expressing the mannose receptor or DC-SIGN. Carbohydrate Research, 2020, 487, 107877.	1.1	17
364	Kinetic analysis of IFIT1 and IFIT5 interactions with different native and engineered RNAs and its consequences for designing mRNA-based therapeutics. Rna, 2020, 26, 58-68.	1.6	11
365	Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends in Molecular Medicine, 2020, 26, 311-323.	3.5	203
366	A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity. Molecular Therapy, 2020, 28, 119-128.	3.7	99
367	Nanoparticle cancer vaccines: Design considerations and recent advances. Asian Journal of Pharmaceutical Sciences, 2020, 15, 576-590.	4.3	58
368	Synthesis of low immunogenicity RNA with high-temperature in vitro transcription. Rna, 2020, 26, 345-360.	1.6	70

		CITATION REPORT		
#	Article		IF	CITATIONS
369	Comparison of DNA and mRNA vaccines against cancer. Drug Discovery Today, 2020, 2	25, 552-560.	3.2	105
370	The chemistry and applications ofÂRNA 2′-OH acylation. Nature Reviews Chemistry,	, 2020, 4, 22-37.	13.8	48
371	The use of design of experiments with multiple responses to determine optimal formul vivo hepatic mRNA delivery. Journal of Controlled Release, 2020, 327, 467-476.	lations for in	4.8	35
373	Nucleic acid-based therapy for coronavirus disease 2019. Heliyon, 2020, 6, e05007.		1.4	31
374	Capsaicin-Loaded Chitosan Nanocapsules for wtCFTR-mRNA Delivery to a Cystic Fibros Biomedicines, 2020, 8, 364.	sis Cell Line.	1.4	18
375	COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature	, 2020, 586, 594-599.	13.7	1,520
377	Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Pr ACS Nano, 2020, 14, 15094-15106.	imary Cells.	7.3	55
378	Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Nano-Micro Letters, 2020, 12, 185.	Photoporation.	14.4	42
379	Efficient Delivery of mRNA Using Crosslinked Nucleic Acid Nanogel as a Carrier. , 2020	, 2, 1509-1515.		27
380	Guanidine-phosphate interactions stabilize polyion complex micelles based on flexible improve mRNA delivery. European Polymer Journal, 2020, 140, 110028.	catiomers to	2.6	18
381	PhaseÂl/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 2020, 586, 589	9-593.	13.7	1,197
382	Emerging local delivery strategies to enhance bone regeneration. Biomedical Materials 15, 062001.	(Bristol), 2020,	1.7	7
383	Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor mRNA and Prote on Cerebral Ischemia. Molecular Therapy - Nucleic Acids, 2020, 21, 512-522.	in via Exosomes	2.3	84
384	Efficient hepatic delivery and protein expression enabled by optimized mRNA and ioniz nanoparticle. Bioactive Materials, 2020, 5, 1053-1061.	able lipid	8.6	49
385	Genetic and epigenetic modification of human primary NK cells for enhanced antitumo Seminars in Hematology, 2020, 57, 201-212.	or activity.	1.8	17
386	Encapsulation of mRNA into Artificial Viral Capsids via Hybridization of a β-Annulus-dT the Poly(A) Tail of mRNA. Applied Sciences (Switzerland), 2020, 10, 8004.	20 Conjugate and	1.3	13
387	Versatile, Multifunctional Block Copolymers for the Self-Assembly of Well-Defined, Nor Polyplexes. ACS Applied Polymer Materials, 2020, 2, 5469-5481.	ntoxic pDNA	2.0	4
388	Natural polyphenols in drug delivery systems: Current status and future challenges. Gia 100022.	ant, 2020, 3,	2.5	102

#	Article	IF	CITATIONS
389	Modified mRNA-LNP Vaccines Confer Protection against Experimental DENV-2 Infection in Mice. Molecular Therapy - Methods and Clinical Development, 2020, 18, 702-712.	1.8	38
390	Combined hybrid structure of siRNA tailed IVT mRNA (ChriST mRNA) for enhancing DC maturation and subsequent anticancer T cell immunity. Journal of Controlled Release, 2020, 327, 225-234.	4.8	11
391	The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Frontiers in Immunology, 2020, 11, 1817.	2.2	189
392	Progress in Neoantigen Targeted Cancer Immunotherapies. Frontiers in Cell and Developmental Biology, 2020, 8, 728.	1.8	28
393	Exosome: A New Player in Translational Nanomedicine. Journal of Clinical Medicine, 2020, 9, 2380.	1.0	47
394	Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules, 2020, 25, 5006.	1.7	31
395	Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy. Frontiers in Chemistry, 2020, 8, 589959.	1.8	157
396	Strategies and materials of "SMART" non-viral vectors: Overcoming the barriers for brain gene therapy. Nano Today, 2020, 35, 101006.	6.2	23
397	A DNA Vaccine Encoding Plasmodium falciparum PfRH5 in Cationic Liposomes for Dermal Tattooing Immunization. Vaccines, 2020, 8, 619.	2.1	6
398	Investigation of pH-Responsiveness inside Lipid Nanoparticles for Parenteral mRNA Application Using Small-Angle X-ray Scattering. Langmuir, 2020, 36, 13331-13341.	1.6	28
399	Therapeutic modalities and novel approaches in regenerative medicine for COVID-19. International Journal of Antimicrobial Agents, 2020, 56, 106208.	1.1	22
400	The Opposing Effect of Type I IFN on the T Cell Response by Non-modified mRNA-Lipoplex Vaccines Is Determined by the Route of Administration. Molecular Therapy - Nucleic Acids, 2020, 22, 373-381.	2.3	33
401	Nanotechnology Responses to COVIDâ€19. Advanced Healthcare Materials, 2020, 9, e2000979.	3.9	128
402	Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Applied Nano Materials, 2020, 3, 10634-10645.	2.4	108
403	Efficient Colorectal Cancer Gene Therapy with IL-15 mRNA Nanoformulation. Molecular Pharmaceutics, 2020, 17, 3378-3391.	2.3	39
404	Phosphodiester modifications in mRNA poly(A) tail prevent deadenylation without compromising protein expression. Rna, 2020, 26, 1815-1837.	1.6	33
405	Nanomedicine-Based Approaches for mRNA Delivery. Molecular Pharmaceutics, 2020, 17, 3654-3684.	2.3	88
406	Current Clinical Trials Protocols and the Global Effort for Immunization against SARS-CoV-2. Vaccines, 2020, 8, 474.	2.1	31

#	Article	IF	CITATIONS
407	RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacological Reviews, 2020, 72, 862-898.	7.1	192
408	Viromers as carriers for mRNA-mediated expression of therapeutic molecules under inflammatory conditions. Scientific Reports, 2020, 10, 15090.	1.6	4
409	mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection. International Journal of Molecular Sciences, 2020, 21, 6582.	1.8	179
410	COVID-19 in Human, Animal, and Environment: A Review. Frontiers in Veterinary Science, 2020, 7, 578.	0.9	54
411	Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches—An Overview. Pharmaceutics, 2020, 12, 752.	2.0	32
413	Treating Cystic Fibrosis with mRNA and CRISPR. Human Gene Therapy, 2020, 31, 940-955.	1.4	35
414	Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Science Advances, 2020, 6, .	4.7	88
415	Coronavirus vaccine development: from SARS and MERS to COVID-19. Journal of Biomedical Science, 2020, 27, 104.	2.6	287
416	Nucleic Acid Delivery by Solid Lipid Nanoparticles Containing Switchable Lipids: Plasmid DNA vs. Messenger RNA. Molecules, 2020, 25, 5995.	1.7	28
417	High resolution biosensor to test the capping level and integrity of mRNAs. Nucleic Acids Research, 2020, 48, e129-e129.	6.5	8
418	Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS Discovery, 2020, 25, 869-894.	1.4	23
419	Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery. Nano Letters, 2020, 20, 4543-4549.	4.5	193
420	Multiplexed Photoactivation of mRNA with Single-Cell Resolution. ACS Chemical Biology, 2020, 15, 1773-1779.	1.6	24
421	Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomaterialia, 2020, 110, 153-163.	4.1	36
422	Engineering monoclonal antibody-based contraception and multipurpose prevention technologiesâ€. Biology of Reproduction, 2020, 103, 275-285.	1.2	23
423	Nucleic Acid Immunotherapeutics for Cancer. ACS Applied Bio Materials, 2020, 3, 2838-2849.	2.3	18
424	mRNA Vaccines Encoding the HA Protein of Influenza A H1N1 Virus Delivered by Cationic Lipid Nanoparticles Induce Protective Immune Responses in Mice. Vaccines, 2020, 8, 123.	2.1	75
425	Engineering Caveolae-Targeted Lipid Nanoparticles To Deliver mRNA to the Lungs. ACS Chemical Biology, 2020, 15, 830-836.	1.6	45

#	Article	IF	CITATIONS
426	Caliciviral protein-based artificial translational activator for mammalian gene circuits with RNA-only delivery. Nature Communications, 2020, 11, 1297.	5.8	20
427	mRNA Transfection-Induced Activation of Primary Human Monocytes and Macrophages: Dependence on Carrier System and Nucleotide Modification. Scientific Reports, 2020, 10, 4181.	1.6	33
428	SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens, 2020, 9, 231.	1.2	513
429	Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 2020, 156, 4-22.	6.6	301
430	The delivery challenge: fulfilling the promise of therapeutic genome editing. Nature Biotechnology, 2020, 38, 845-855.	9.4	163
431	Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. Science Advances, 2020, 6, .	4.7	24
432	Polymeric Nanocarriers with Controlled Chain Flexibility Boost mRNA Delivery In Vivo through Enhanced Structural Fastening. Advanced Healthcare Materials, 2020, 9, e2000538.	3.9	33
433	The <i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> Effect of Polymer Hydrophobicity on Charge-Reversible Vectors for Self-Amplifying RNA. Biomacromolecules, 2020, 21, 3242-3253.	2.6	20
434	Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo. Journal of Controlled Release, 2020, 325, 198-205.	4.8	59
435	Effects of Tissue Pressure on Transgene Expression Characteristics via Renal Local Administration Routes from Ureter or Renal Artery in the Rat Kidney. Pharmaceutics, 2020, 12, 114.	2.0	7
436	Targeted Identification of Protein Interactions in Eukaryotic mRNA Translation. Proteomics, 2020, 20, 1900177.	1.3	2
437	Multivalent Peptide-Functionalized Bioreducible Polymers for Cellular Delivery of Various RNAs. Biomacromolecules, 2020, 21, 1613-1624.	2.6	16
438	Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials, 2020, 10, 364.	1.9	138
439	Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nature Communications, 2020, 11, 983.	5.8	221
440	The challenge and prospect of mRNA therapeutics landscape. Biotechnology Advances, 2020, 40, 107534.	6.0	221
441	Nanoparticle formulated vaccines: opportunities and challenges. Nanoscale, 2020, 12, 5746-5763.	2.8	69
442	Photochemical Internalization for Intracellular Drug Delivery. From Basic Mechanisms to Clinical Research. Journal of Clinical Medicine, 2020, 9, 528.	1.0	60
443	Rapid Delivery of Nanobodies/VHHs into Living Cells via Expressing InÂVitro-Transcribed mRNA. Molecular Therapy - Methods and Clinical Development, 2020, 17, 401-408.	1.8	18

#	Article	IF	CITATIONS
444	RNA ImmunoGenic Assay: Simple method for detecting immunogenicity of in vitro transcribed mRNA. Advances in Cell and Gene Therapy, 2020, 3, e79.	0.6	2
445	Noncationic Material Design for Nucleic Acid Delivery. Advanced Therapeutics, 2020, 3, 1900206.	1.6	32
446	Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates. Drug Delivery and Translational Research, 2020, 10, 678-689.	3.0	34
447	Chemoenzymatic Preparation of Functional Click‣abeled Messenger RNA. ChemBioChem, 2020, 21, 1641-1646.	1.3	15
448	Environmentâ€Recognizing DNAâ€Computation Circuits for the Intracellular Transport of Molecular Payloads for mRNA Imaging. Angewandte Chemie - International Edition, 2020, 59, 6099-6107.	7.2	62
449	Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Letters, 2020, 20, 1578-1589.	4.5	299
450	The identity and methylation status of the first transcribed nucleotide in eukaryotic mRNA 5′ cap modulates protein expression in living cells. Nucleic Acids Research, 2020, 48, 1607-1626.	6.5	76
451	Environmentâ€Recognizing DNAâ€Computation Circuits for the Intracellular Transport of Molecular Payloads for mRNA Imaging. Angewandte Chemie, 2020, 132, 6155-6163.	1.6	11
452	Co-delivery of p38î± MAPK and p65 siRNA by novel liposomal glomerulus-targeting nano carriers for effective immunoglobulin a nephropathy treatment. Journal of Controlled Release, 2020, 320, 457-468.	4.8	40
453	Opportunities and Challenges in the Delivery of mRNA-Based Vaccines. Pharmaceutics, 2020, 12, 102.	2.0	320
454	Progress and challenges of personalized neoantigens in the clinical treatment of tumors. Medicine in Drug Discovery, 2020, 6, 100030.	2.3	3
455	RNA-Targeted Therapies and High-Throughput Screening Methods. International Journal of Molecular Sciences, 2020, 21, 2996.	1.8	24
456	Treatment of Hemophilia A Using Factor VIII Messenger RNA Lipid Nanoparticles. Molecular Therapy - Nucleic Acids, 2020, 20, 534-544.	2.3	48
457	Fluorescenceâ€Based Quantification of Messenger RNA and Plasmid DNA Decay Kinetics in Extracellular Biological Fluids and Cell Extracts. Advanced Biology, 2020, 4, e2000057.	3.0	26
458	mRNA-activated matrices encoding transcription factors as primers of cell differentiation in tissue engineering. Biomaterials, 2020, 247, 120016.	5.7	16
459	Recent advances in mRNA vaccine technology. Current Opinion in Immunology, 2020, 65, 14-20.	2.4	295
460	Hydrophobic Domain Structure of Linear-Dendritic Poly(ethylene glycol) Lipids Affects RNA Delivery of Lipid Nanoparticles. Molecular Pharmaceutics, 2020, 17, 1575-1585.	2.3	17
461	Big Is Beautiful: Enhanced saRNA Delivery and Immunogenicity by a Higher Molecular Weight, Bioreducible, Cationic Polymer. ACS Nano, 2020, 14, 5711-5727.	7.3	92

#	Article	IF	CITATIONS
462	Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nature Nanotechnology, 2020, 15, 313-320.	15.6	932
463	mRNA as a Tool for Gene Transfection in 3D Cell Culture for Future Regenerative Therapy. Micromachines, 2020, 11, 426.	1.4	7
464	Efficient drug and gene delivery to liver fibrosis: rationale, recent advances, and perspectives. Acta Pharmaceutica Sinica B, 2020, 10, 1279-1293.	5.7	29
465	Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Research and Therapy, 2020, 11, 138.	2.4	49
466	Messenger RNA-Based Vaccines Against Infectious Diseases. Current Topics in Microbiology and Immunology, 2020, , 111-145.	0.7	43
467	Delivery of nucleic acid therapeutics for cancer immunotherapy. Medicine in Drug Discovery, 2020, 6, 100023.	2.3	22
468	mRNA Therapies: New Hope in the Fight against Melanoma. Biochemistry, 2020, 59, 1650-1655.	1.2	14
469	Nanoplatforms for mRNA Therapeutics. Advanced Therapeutics, 2021, 4, .	1.6	62
470	Challenges and Opportunities in Cancer Drug Resistance. Chemical Reviews, 2021, 121, 3297-3351.	23.0	203
471	Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opinion on Drug Discovery, 2021, 16, 255-274.	2.5	18
472	Non-viral strategies for delivering genome editing enzymes. Advanced Drug Delivery Reviews, 2021, 168, 99-117.	6.6	32
473	MAGT1 messenger RNA-corrected autologous T and natural killer cells for potential cell therapy in X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection and neoplasia disease. Cytotherapy, 2021, 23, 203-210.	0.3	7
474	Coronavirus Disease 2019 Vaccine Development: An Overview. Viral Immunology, 2021, 34, 134-144.	0.6	15
475	Inorganic Nanomaterialâ€Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. Advanced Functional Materials, 2021, 31, 2007096.	7.8	32
476	InÂVivo Validation of a Reversible Small Molecule-Based Switch for Synthetic Self-Amplifying mRNA Regulation. Molecular Therapy, 2021, 29, 1164-1173.	3.7	13
477	Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opinion on Drug Delivery, 2021, 18, 489-513.	2.4	11
478	Intracellular Logic Computation with Framework Nucleic <scp>Acidâ€Based</scp> Circuits for <scp>mRNA</scp> Imaging ^{â€} . Chinese Journal of Chemistry, 2021, 39, 947-953.	2.6	14
479	Off the beaten path: Novel mRNA-nanoformulations for therapeutic vaccination against HIV. Journal of Controlled Release, 2021, 330, 1016-1033.	4.8	15

#	Article	IF	CITATIONS
480	Universal Dengue Vaccine Elicits Neutralizing Antibodies against Strains from All Four Dengue Virus Serotypes. Journal of Virology, 2021, 95, .	1.5	6
481	A Systematic Study of Unsaturation in Lipid Nanoparticles Leads to Improved mRNA Transfection In Vivo. Angewandte Chemie - International Edition, 2021, 60, 5848-5853.	7.2	60
482	Synthetic human ABCB4 mRNA therapy rescues severe liver disease phenotype in a BALB/c.Abcb4 mouse model of PFIC3. Journal of Hepatology, 2021, 74, 1416-1428.	1.8	34
483	A Systematic Study of Unsaturation in Lipid Nanoparticles Leads to Improved mRNA Transfection In Vivo. Angewandte Chemie, 2021, 133, 5912-5917.	1.6	11
484	Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Advanced Drug Delivery Reviews, 2021, 168, 246-258.	6.6	39
485	SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Research, 2021, 31, 247-258.	5.7	73
486	Rational designs of in vivo CRISPR-Cas delivery systems. Advanced Drug Delivery Reviews, 2021, 168, 3-29.	6.6	125
487	Structural Insights into the Interaction of Clinically Relevant Phosphorothioate mRNA Cap Analogs with Translation Initiation Factor 4E Reveal Stabilization via Electrostatic Thio-Effect. ACS Chemical Biology, 2021, 16, 334-343.	1.6	16
488	Self-assembled PEGylated amphiphilic polypeptides for gene transfection. Journal of Materials Chemistry B, 2021, 9, 8224-8236.	2.9	7
489	Regulation of RNA Stability Through RNA Modification. RNA Technologies, 2021, , 217-246.	0.2	1
490	Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Current Topics in Microbiology and Immunology, 2021, , 1.	0.7	9
491	Investigating the consequences of mRNA modifications on protein synthesis using in vitro translation assays. Methods in Enzymology, 2021, 658, 379-406.	0.4	5
492	Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA. Nature Communications, 2021, 12, 613.	5.8	61
493	An Update on Self-Amplifying mRNA Vaccine Development. Vaccines, 2021, 9, 97.	2.1	117
494	Transient yet Robust Expression of Proteins in the Mouse Liver via Intravenous Injection of Lipid Nanoparticle-encapsulated Nucleoside-modified mRNA. Bio-protocol, 2021, 11, e4184.	0.2	7
496	Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biology and Medicine, 2021, 18, 352-371.	1.4	22
497	Surface-modified hydroxyapatite nanoparticle for microRNA delivery to regulate gene expression in human mandibular osteoblast cells. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	4
498	An RNA/DNA hybrid origami-based nanoplatform for efficient gene therapy. Nanoscale, 2021, 13, 12848-12853.	2.8	21

#	Article	IF	Citations
499	The Techniques Used on the Development of COVID-19 Vaccine. E3S Web of Conferences, 2021, 271, 01037.	0.2	0
500	Nanomedicine for combinational anticancer drug therapeutics: Recent advances, challenges, and future perspectives. , 2021, , 3-16.		1
501	Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomaterials Science, 2021, 9, 4289-4300.	2.6	52
502	Advancements in mRNA Encoded Antibodies for Passive Immunotherapy. Vaccines, 2021, 9, 108.	2.1	34
503	mRNA vaccines for COVID-19: what, why and how. International Journal of Biological Sciences, 2021, 17, 1446-1460.	2.6	185
504	SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis. Rheumatology International, 2021, 41, 509-518.	1.5	124
505	Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry, 2021, 60, 966-990.	1.2	18
508	Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	109
509	CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy. Cancers, 2021, 13, 596.	1.7	24
510	Role of Telomeres Shortening in Atherogenesis: An Overview. Cells, 2021, 10, 395.	1.8	13
511	COVID-19 vaccines for patients with cancer: benefits likely outweigh risks. Journal of Hematology and Oncology, 2021, 14, 38.	6.9	87
512	Cap 1 Messenger RNA Synthesis with Coâ€ŧranscriptional CleanCap [®] Analog by In Vitro Transcription. Current Protocols, 2021, 1, e39.	1.3	103
513	Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Science Advances, 2021, 7, .	4.7	141
514	COVID-19 mRNA vaccines. Journal of Genetics and Genomics, 2021, 48, 107-114.	1.7	59
515	mRNA vaccine: a potential therapeutic strategy. Molecular Cancer, 2021, 20, 33.	7.9	188
516	Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics, 2021, 13, 206.	2.0	122
517	Synthetic Messenger RNA-Based Vaccines: From Scorn to Hype. Viruses, 2021, 13, 270.	1.5	53
518	SARS-CoV-2 virus: Vaccines in development. Fundamental Research, 2021, 1, 131-138.	1.6	12

#	Article	IF	CITATIONS
519	An Overview on the Development of mRNA-Based Vaccines and Their Formulation Strategies for Improved Antigen Expression In Vivo. Vaccines, 2021, 9, 244.	2.1	15
520	What Is Laying the Groundwork Today for the Next Big Education Revolution?. Journal of Chemical Education, 2021, 98, 701-702.	1.1	2
521	Treatment of Cystic Fibrosis: From Gene- to Cell-Based Therapies. Frontiers in Pharmacology, 2021, 12, 639475.	1.6	20
522	Self-assembled mRNA vaccines. Advanced Drug Delivery Reviews, 2021, 170, 83-112.	6.6	248
523	Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioengineering and Translational Medicine, 2021, 6, e10213.	3.9	142
524	Recent Advancements in Nanomedicine for â€~Cold' Tumor Immunotherapy. Nano-Micro Letters, 2021, 13, 92.	14.4	41
525	The Limitless Future of RNA Therapeutics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 628137.	2.0	296
526	Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions. Molecular Therapy - Methods and Clinical Development, 2021, 20, 483-496.	1.8	21
528	RNA-based therapies: A cog in the wheel of lung cancer defense. Molecular Cancer, 2021, 20, 54.	7.9	53
529	Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sciences, 2021, 269, 119087.	2.0	108
530	SARS-CoV-2 - SYNOPTIC CHART OF THE MAIN CHARACTERISTICS OF VIRUS, PATHOGENESIS, IMMUNE RESPONSE, IMMUNOPROPHYLAXIS. Roumanian Archives of Microbiology and Immunology, 2021, 80, 51-80.	0.1	1
531	Clinical and immunological effects of mRNA vaccines in malignant diseases. Molecular Cancer, 2021, 20, 52.	7.9	90
532	Therapeutic RNA Delivery for COVID and Other Diseases. Advanced Healthcare Materials, 2021, 10, e2002022.	3.9	31
533	The EMA covid-19 data leak, and what it tells us about mRNA instability. BMJ, The, 2021, 372, n627.	3.0	29
534	Novel approaches for vaccine development. Cell, 2021, 184, 1589-1603.	13.5	145
535	mRNA vaccines take on immune tolerance. Nature Biotechnology, 2021, 39, 419-421.	9.4	15
536	Development and implementation of a potential coronavirus disease 2019 (COVID-19) vaccine: A systematic review and meta-analysis of vaccine clinical trials. Journal of College of Medical Sciences-Nepal, 2021, 11, 959-982.	0.2	17
538	LipoParticles: Lipid-Coated PLA Nanoparticles Enhanced In Vitro mRNA Transfection Compared to Liposomes. Pharmaceutics, 2021, 13, 377.	2.0	27

#	ARTICLE	IF	CITATIONS
539	Candidates for Intra-Articular Administration Therapeutics and Therapies of Osteoarthritis. International Journal of Molecular Sciences, 2021, 22, 3594.	1.8	11
540	RNA therapeutics for cardiovascular disease. Current Opinion in Cardiology, 2021, 36, 256-263.	0.8	11
541	Perspectives on RNA Vaccine Candidates for COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 635245.	1.6	44
542	Treatment of ischemic neuronal death by introducing brain-derived neurotrophic factor mRNA using polyplex nanomicelle. Biomaterials, 2021, 270, 120681.	5.7	38
543	A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Central Science, 2021, 7, 512-533.	5.3	217
546	Novel Vaccine Technologies in Veterinary Medicine: A Herald to Human Medicine Vaccines. Frontiers in Veterinary Science, 2021, 8, 654289.	0.9	47
547	Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Central Science, 2021, 7, 748-756.	5.3	196
548	Safety and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and older Chinese adults: a randomized, placebo-controlled, double-blind phase 1 study. Nature Medicine, 2021, 27, 1062-1070.	15.2	114
549	mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine, 2021, 39, 2190-2200.	1.7	214
• • •			
551	mRNA-Based Vaccines, 2021, 9, 390.	2.1	67
551 552	mRNA-Based Vaccines. Vaccines, 2021, 9, 390. Pharmaceutical Aspects and Clinical Evaluation of COVID-19 Vaccines. Immunological Investigations, 2021, 50, 743-779.	2.1 1.0	67
551 552 553	mRNA-Based Vaccines. Vaccines, 2021, 9, 390. Pharmaceutical Aspects and Clinical Evaluation of COVID-19 Vaccines. Immunological Investigations, 2021, 50, 743-779. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano, 2021, 15, 5793-5818.	2.1 1.0 7.3	67 16 32
551 552 553 554	mRNA-Based Vaccines. Vaccines, 2021, 9, 390. Pharmaceutical Aspects and Clinical Evaluation of COVID-19 Vaccines. Immunological Investigations, 2021, 50, 743-779. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano, 2021, 15, 5793-5818. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 662837.	2.11.07.31.8	67 16 32 5
551 552 553 554 555	mRNA-Based Vaccines. Vaccines, 2021, 9, 390. Pharmaceutical Aspects and Clinical Evaluation of COVID-19 Vaccines. Immunological Investigations, 2021, 50, 743-779. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano, 2021, 15, 5793-5818. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 662837. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188522.	 2.1 1.0 7.3 1.8 3.3 	67 16 32 5 69
551 552 553 554 555 556	mRNA-Based Vaccines. Vaccines, 2021, 9, 390. Pharmaceutical Aspects and Clinical Evaluation of COVID-19 Vaccines. Immunological Investigations, 2021, 50, 743-779. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano, 2021, 15, 5793-5818. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 662837. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188522. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. International Journal of Pharmaceutics, 2021, 599, 120392.	 2.1 1.0 7.3 1.8 3.3 2.6 	 67 16 32 5 69 29
551 552 553 554 555 556	mRNA-Based Vaccines. Vaccines, 2021, 9, 390. Pharmaceutical Aspects and Clinical Evaluation of COVID-19 Vaccines. Immunological Investigations, 2021, 50, 743-779. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano, 2021, 15, 5793-5818. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 662837. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188522. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. International Journal of Pharmaceutics, 2021, 599, 120392. Path to Success and Future Impact of Nucleic Acid Vaccines: DNA and mRNA. Molecular Frontiers Journal, 2021, 05, 38-57.	2.1 1.0 7.3 1.8 3.3 2.6 0.9	 67 16 32 5 69 29 6
551 552 553 554 555 556 557 558	mRNA-Based Vaccines. Vaccines, 2021, 9, 390. Pharmaceutical Aspects and Clinical Evaluation of COVID-19 Vaccines. Immunological Investigations, 2021, 50, 743-779. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano, 2021, 15, 5793-5818. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 662837. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188522. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. International Journal of Pharmaceutics, 2021, 599, 120392. Path to Success and Future Impact of Nucleic Acid Vaccines: DNA and mRNA. Molecular Frontiers Journal, 2021, 05, 38-57. Molecular and Macroscopic Therapeutic Systems for Cytokineâ€Based Cancer Immunotherapy. Advanced Therapeutics, 2021, 4, 2100026.	 2.1 1.0 7.3 1.8 3.3 2.6 0.9 1.6 	 67 16 32 5 69 29 6 1

<u></u>	- · · n	
CITATI	ON KE	PORT

#	ARTICLE	IF	CITATIONS
560	PEGylation of mRNA by Hybridization of Complementary PEG-RNA Oligonucleotides Stabilizes mRNA without Using Cationic Materials. Pharmaceutics, 2021, 13, 800.	2.0	11
561	COVID-19 vaccine platforms: Delivering on a promise?. Human Vaccines and Immunotherapeutics, 2021, 17, 2873-2893.	1.4	25
562	Chemoâ€Enzymatic Modification of the 5′ Cap Maintains Translation and Increases Immunogenic Properties of mRNA. Angewandte Chemie - International Edition, 2021, 60, 13280-13286.	7.2	34
563	Protein Expression Correlates Linearly with mRNA Dose over Up to Five Orders of Magnitude In Vitro and In Vivo. Biomedicines, 2021, 9, 511.	1.4	7
564	Pharmaceutical protein solids: Drying technology, solid-state characterization and stability. Advanced Drug Delivery Reviews, 2021, 172, 211-233.	6.6	32
565	Quantification of mRNA cap-modifications by means of LC-QqQ-MS. Methods, 2022, 203, 196-206.	1.9	12
566	Polyâ€Adenineâ€Based Spherical Nucleic Acids for Efficient Liveâ€Cell MicroRNA Capture. Angewandte Chemie - International Edition, 2021, 60, 14438-14445.	7.2	16
567	Our science and the Covid-19 pandemic—Katalin Karikó's research idea and her perseverance. Structural Chemistry, 2021, 32, 1353-1356.	1.0	3
568	A Structureâ€Activity Investigation on Modified Analogues of an Argininocalixarene Based Nonâ€viral Gene Vector. European Journal of Organic Chemistry, 2021, 2021, 4076-4087.	1.2	4
569	Anti-Coronavirus Vaccines: Past Investigations on SARS-CoV-1 and MERS-CoV, the Approved Vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against SARSCoV-2 Infection. Current Medicinal Chemistry, 2022, 29, 4-18.	1.2	49
570	Polyâ€Adenineâ€Based Spherical Nucleic Acids for Efficient Live ell MicroRNA Capture. Angewandte Chemie, 2021, 133, 14559-14566.	1.6	0
571	Non-Immunotherapy Application of LNP-mRNA: Maximizing Efficacy and Safety. Biomedicines, 2021, 9, 530.	1.4	54
572	Eine chemoâ€enzymatische Modifizierung der 5′â€Kappe erhä die Translation und erhöht die Immunogenitäder mRNA. Angewandte Chemie, 2021, 133, 13390-13397.	1.6	2
573	mRNA as a Therapeutics: Understanding mRNA Vaccines. Advanced Pharmaceutical Bulletin, 2021, , .	0.6	1
576	Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis. Molecular Therapy, 2021, 29, 1744-1757.	3.7	27
577	Construction and Immunogenicity of Modified mRNA-Vaccine Variants Encoding Influenza Virus Antigens. Vaccines, 2021, 9, 452.	2.1	16
578	mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics, 2021, 601, 120586.	2.6	647
580	BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature, 2021, 595, 572-577.	13.7	583

#	Article	IF	Citations
581	Translational precision medicine: an industry perspective. Journal of Translational Medicine, 2021, 19, 245.	1.8	51
582	In Vivo bone tissue induction by freeze-dried collagen-nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes. Journal of Controlled Release, 2021, 334, 188-200.	4.8	19
583	Gene therapy avenues and COVID-19 vaccines. Genes and Immunity, 2021, 22, 120-124.	2.2	18
584	2D MXenes with antiviral and immunomodulatory properties: A pilot study against SARS-CoV-2. Nano Today, 2021, 38, 101136.	6.2	63
585	Recent Advances in Targeted Genetic Medicines for Cystic Fibrosis. , 0, , .		0
586	Specific Treatment Exists for SARS-CoV-2 ARDS. Vaccines, 2021, 9, 635.	2.1	11
587	Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics, 2021, 4, 2100040.	1.6	23
588	Deep-learning models for lipid nanoparticle-based drug delivery. Nanomedicine, 2021, 16, 1097-1110.	1.7	18
589	Highly Efficient Transfection of Human Primary T Lymphocytes Using Droplet-Enabled Mechanoporation. ACS Nano, 2021, 15, 12888-12898.	7.3	36
590	RNA Interference and Nanotechnology: A Promising Alliance for Next Generation Cancer Therapeutics. Frontiers in Nanotechnology, 2021, 3, .	2.4	17
591	Mimicking Pathogens to Augment the Potency of Liposomal Cancer Vaccines. Pharmaceutics, 2021, 13, 954.	2.0	7
592	Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 179-187.	2.0	13
593	Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein. Molecular Therapy - Nucleic Acids, 2021, 24, 369-384.	2.3	47
594	mRNA Delivery by a pHâ€Responsive DNA Nanoâ€Hydrogel. Small, 2021, 17, e2101224.	5.2	52
595	Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics, 2021, 13, 945.	2.0	24
596	mRNAâ€Loaded Lipidâ€Like Nanoparticles for Liver Base Editing Via the Optimization of Central Composite Design. Advanced Functional Materials, 2021, 31, 2011068.	7.8	19
597	Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells, 2021, 10, 1492.	1.8	15
598	Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 2021, 15, 16982-17015.	7.3	730

#	Article	IF	CITATIONS
599	Highly Photoluminescent Nitrogen- and Zinc-Doped Carbon Dots for Efficient Delivery of CRISPR/Cas9 and mRNA. Bioconjugate Chemistry, 2021, 32, 1875-1887.	1.8	17
600	An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opinion on Drug Discovery, 2021, 16, 1307-1317.	2.5	37
601	COVID-19 and earlier pandemics, sepsis, and vaccines: A historical perspective. Journal of Intensive Medicine, 2021, 1, 4-13.	0.8	9
602	Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. Journal of Controlled Release, 2021, 335, 237-246.	4.8	146
603	Encapsulation state of messenger RNA inside lipid nanoparticles. Biophysical Journal, 2021, 120, 2766-2770.	0.2	86
604	Application of Modified mRNA in Somatic Reprogramming to Pluripotency and Directed Conversion of Cell Fate. International Journal of Molecular Sciences, 2021, 22, 8148.	1.8	16
605	In Vitro Evaluation of a Nanoparticle-Based mRNA Delivery System for Cells in the Joint. Biomedicines, 2021, 9, 794.	1.4	6
606	The m ⁶ A reader IMP2 directs autoimmune inflammation through an IL-17– and TNFα-dependent C/EBP transcription factor axis. Science Immunology, 2021, 6, .	5.6	43
607	Secreted Expression of mRNAâ€Encoded Truncated ACE2 Variants for SARSâ€CoVâ€2 via Lipidâ€Like Nanoassemblies. Advanced Materials, 2021, 33, e2101707.	11.1	19
608	mRNA-Based Anti-TCR CDR3 Tumour Vaccine for T-Cell Lymphoma. Pharmaceutics, 2021, 13, 1040.	2.0	7
609	Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics. Biochemical Pharmacology, 2021, 189, 114424.	2.0	27
610	Lipid Nanoparticle Spherical Nucleic Acids for Intracellular DNA and RNA Delivery. Nano Letters, 2021, 21, 6584-6591.	4.5	50
611	From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Molecular Aspects of Medicine, 2021, 81, 101003.	2.7	13
612	Non-Coding RNAs and Reactive Oxygen Species–Symmetric Players of the Pathogenesis Associated with Bacterial and Viral Infections. Symmetry, 2021, 13, 1307.	1.1	1
613	A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase. RNA Biology, 2021, 18, 451-466.	1.5	8
614	A Novel mRNA-Mediated and MicroRNA-Guided Approach to Specifically Eradicate Drug-Resistant Hepatocellular Carcinoma Cell Lines by Se-Methylselenocysteine. Antioxidants, 2021, 10, 1094.	2.2	9
615	Lipids and Lipid Derivatives for RNA Delivery. Chemical Reviews, 2021, 121, 12181-12277.	23.0	227
616	Insights into the Evolving Roles of Circular RNAs in Cancer. Cancers, 2021, 13, 4180.	1.7	17

#	Article	IF	CITATIONS
617	Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. Biomaterials, 2021, 275, 120966.	5.7	54
618	Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration. Stem Cell Research and Therapy, 2021, 12, 442.	2.4	38
619	Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics, 2021, 13, 1365.	2.0	61
620	2021: an immunotherapy odyssey and the rise of nucleic acid nanotechnology. Nanomedicine, 2021, 16, 1635-1640.	1.7	12
621	How RNA modifications regulate the antiviral response. Immunological Reviews, 2021, 304, 169-180.	2.8	17
622	Development and Characterization of High Efficacy Cell-Penetrating Peptide via Modulation of the Histidine and Arginine Ratio for Gene Therapy. Materials, 2021, 14, 4674.	1.3	14
623	In Vitro Investigations on Optimizing and Nebulization of IVT-mRNA Formulations for Potential Pulmonary-Based Alpha-1-Antitrypsin Deficiency Treatment. Pharmaceutics, 2021, 13, 1281.	2.0	7
624	Heartworm disease – Overview, intervention, and industry perspective. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 65-89.	1.4	45
625	Genetic in situ engineering of myeloid regulatory cells controls inflammation in autoimmunity. Journal of Controlled Release, 2021, 339, 553-561.	4.8	3
626	Pharma 4.0 Continuous mRNA Drug Products Manufacturing. Pharmaceutics, 2021, 13, 1371.	2.0	17
627	Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. Journal of Chromatography A, 2021, 1651, 462283.	1.8	12
628	The Novel Platform of mRNA COVID-19 Vaccines and Myocarditis: Clues into the Potential Underlying Mechanism. Vaccine, 2021, 39, 4925-4927.	1.7	35
629	Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 2021, 6, 1078-1094.	23.3	1,256
630	mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery, 2021, 20, 817-838.	21.5	577
632	The infinite possibilities of RNA therapeutics. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	15
633	Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Science Translational Medicine, 2021, 13, eabc7804.	5.8	79
634	In Gratitude for mRNA Vaccines. New England Journal of Medicine, 2021, 385, 1436-1438.	13.9	24
635	Biomaterial-based delivery of nucleic acids for tissue regeneration. Advanced Drug Delivery Reviews, 2021, 176, 113885.	6.6	53

	CHAHON	REPORT	
#	Article	IF	CITATIONS
636	Engineered mRNA and the Rise of Next-Generation Antibodies. Antibodies, 2021, 10, 37.	1.2	8
637	Construction of Messenger RNA (mRNA) Probes Delivered By Lipid Nanoparticles to Visualize Intracellular Protein Expression and Localization at Organelles. Advanced Materials, 2021, 33, 2103131.	11.1	6
638	Pre-existing immunity to cytomegalovirus in macaques influences human CMV vaccine responses in preclinical models. Vaccine, 2021, 39, 5358-5367.	1.7	9
639	Nanopore Dwell Time Analysis Permits Sequencing and Conformational Assignment of Pseudouridine in SARS-CoV-2. ACS Central Science, 2021, 7, 1707-1717.	5.3	46
640	Chimeric RNA-binding protein-based killing switch targeting hepatocellular carcinoma cells. Molecular Therapy - Nucleic Acids, 2021, 25, 683-695.	2.3	8
641	From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomaterialia, 2021, 131, 16-40.	4.1	140
642	CpG Oligodeoxynucleotide Developed to Activate Primate Immune Responses Promotes Antitumoral Effects in Combination with a Neoantigen-Based mRNA Cancer Vaccine. Drug Design, Development and Therapy, 2021, Volume 15, 3953-3963.	2.0	19
643	RNA Therapeutics - Research and Clinical Advancements. Frontiers in Molecular Biosciences, 2021, 8, 710738.	1.6	39
644	Nucleic acid delivery and nanoparticle design for COVID vaccines. MRS Bulletin, 2021, 46, 832-839.	1.7	12
645	ADAR RNA Modifications, the Epitranscriptome and Innate Immunity. Trends in Biochemical Sciences, 2021, 46, 758-771.	3.7	65
646	Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Molecular and Cellular Toxicology, 2022, 18, 1-8.	0.8	73
647	Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathology Research and Practice, 2021, 227, 153618.	1.0	16
648	Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Advanced Drug Delivery Reviews, 2021, 176, 113889.	6.6	48
649	Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Advanced Drug Delivery Reviews, 2021, 176, 113900.	6.6	59
650	mRNA delivery via non-viral carriers for biomedical applications. International Journal of Pharmaceutics, 2021, 607, 121020.	2.6	17
651	Nucleic acid delivery for therapeutic applications. Advanced Drug Delivery Reviews, 2021, 178, 113834.	6.6	122
652	Synthetic modified messenger RNA for therapeutic applications. Acta Biomaterialia, 2021, 131, 1-15.	4.1	34
654	Polyplex nanomicelle delivery of self-amplifying RNA vaccine. Journal of Controlled Release, 2021, 338, 694-704.	4.8	7

#	Article	IF	CITATIONS
655	Editing the immune system in vivo in mice using CRISPR/Cas9 ribonucleoprotein (RNP)-mediated gene editing of transplanted hematopoietic stem cells. Methods, 2021, 194, 30-36.	1.9	4
656	Self-assembled polymeric micelle as a novel mRNA delivery carrier. Journal of Controlled Release, 2021, 338, 537-547.	4.8	40
657	Advances in mRNA non-viral delivery approaches. Advanced Drug Delivery Reviews, 2021, 177, 113930.	6.6	57
658	Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Advanced Drug Delivery Reviews, 2021, 177, 113927.	6.6	34
659	The mystery behind the nostrils – technical clues for successful nasal epithelial cell cultivation. Annals of Anatomy, 2021, 238, 151748.	1.0	1
660	A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. International Immunopharmacology, 2021, 100, 108162.	1.7	65
661	mRNA-engineered mesenchymal stromal cells expressing CXCR2 enhances cell migration and improves recovery in IBD. Molecular Therapy - Nucleic Acids, 2021, 26, 222-236.	2.3	19
662	Delivery of therapeutic oligonucleotides in nanoscale. Bioactive Materials, 2022, 7, 292-323.	8.6	29
663	Genome editing. , 2022, , 339-355.		0
664	pDNA and mRNA vaccines. , 2022, , 157-205.		1
664 665	pDNA and mRNA vaccines. , 2022, , 157-205. Engineering Protein-Based Parts for Genetic Devices in Mammalian Cells. Methods in Molecular Biology, 2021, 2229, 331-346.	0.4	1
664 665 666	pDNA and mRNA vaccines., 2022, , 157-205. Engineering Protein-Based Parts for Genetic Devices in Mammalian Cells. Methods in Molecular Biology, 2021, 2229, 331-346. Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics, 2021, 13, 74.	0.4	1 2 4
664 665 666	pDNA and mRNA vaccines., 2022, , 157-205. Engineering Protein-Based Parts for Genetic Devices in Mammalian Cells. Methods in Molecular Biology, 2021, 2229, 331-346. Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics, 2021, 13, 74. Dual Roles of Metal–Organic Frameworks as Nanocarriers for miRNA Delivery and Adjuvants for Chemodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 6034-6042.	0.4 2.0 4.0	1 2 4 73
 664 665 666 667 668 	pDNA and mRNA vaccines., 2022, , 157-205. Engineering Protein-Based Parts for Genetic Devices in Mammalian Cells. Methods in Molecular Biology, 2021, 2229, 331-346. Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics, 2021, 13, 74. Dual Roles of Metal〓Organic Frameworks as Nanocarriers for miRNA Delivery and Adjuvants for Chemodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 6034-6042. Current State of the First COVID-19 Vaccines. Vaccines, 2021, 9, 30.	0.4 2.0 4.0 2.1	1 2 4 73 64
 664 665 666 668 669 	pDNA and mRNA vaccines. , 2022, , 157-205.Engineering Protein-Based Parts for Genetic Devices in Mammalian Cells. Methods in Molecular Biology, 2021, 2229, 331-346.Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics, 2021, 13, 74.Dual Roles of Metal〓Organic Frameworks as Nanocarriers for miRNA Delivery and Adjuvants for Chemodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 6034-6042.Current State of the First COVID-19 Vaccines. Vaccines, 2021, 9, 30.An update of anti-viral treatment of COVID-19. Turkish Journal of Medical Sciences, 2021, 51, 3372-3390.	0.4 2.0 4.0 2.1 0.4	1 2 4 73 64 55
 664 665 666 668 669 670 	pDNA and mRNA vaccines., 2022, , 157-205. Engineering Protein-Based Parts for Genetic Devices in Mammalian Cells. Methods in Molecular Biology, 2021, 2229, 331-346. Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics, 2021, 13, 74. Dual Roles of Metal–Organic Frameworks as Nanocarriers for miRNA Delivery and Adjuvants for Chemodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 6034-6042. Current State of the First COVID-19 Vaccines. Vaccines, 2021, 9, 30. An update of anti-viral treatment of COVID-19. Turkish Journal of Medical Sciences, 2021, 51, 3372-3390. Engineered ε-decalactone lipomers bypass the liver to selectively <i>in vivo</i> deliver mRNA to the lungs without targeting ligands. Materials - M	0.4 2.0 4.0 2.1 0.4 6.4	1 2 4 73 64 55 18
 664 665 666 667 668 669 670 671 	pDNA and mRNA vaccines., 2022,, 157-205.Engineering Protein-Based Parts for Genetic Devices in Mammalian Cells. Methods in Molecular Biology, 2021, 2229, 331-346.Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics, 2021, 13, 74.Dual Roles of Metal–Organic Frameworks as Nanocarriers for miRNA Delivery and Adjuvants for Chemodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 6034-6042.Current State of the First COVID-19 Vaccines. Vaccines, 2021, 9, 30.An update of anti-viral treatment of COVID-19. Turkish Journal of Medical Sciences, 2021, 51, 3372-3390.Engineered ε-decalactone lipomers bypass the liver to selectively (1) in vivoIn Vitro-Transcribed (IVT)-mRNA CAR Therapy Development. Methods in Molecular Biology, 2020, 2086, 87-117.	0.4 2.0 4.0 2.1 0.4 6.4	1 2 4 73 64 55 18 20

#	Article	IF	CITATIONS
673	Vaccination with Messenger RNA: A Promising Alternative to DNA Vaccination. Methods in Molecular Biology, 2021, 2197, 13-31.	0.4	33
674	Introduction to RNA Vaccines. Methods in Molecular Biology, 2017, 1499, 1-11.	0.4	37
675	The Advances of Biomacromolecule-based Nanomedicine in Brain Disease. , 2019, , 181-208.		2
676	Preclinical and Clinical Drug-metabolism, Pharmacokinetics and Safety of Therapeutic Oligonucleotides. RSC Drug Discovery Series, 2019, , 474-531.	0.2	7
677	The Race for a COVID-19 Vaccine: Current Trials, Novel Technologies, and Future Directions. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e3206.	0.3	9
683	Arrayed CRISPR Screening Identifies Novel Targets That Enhance the Productive Delivery of mRNA by MC3-Based Lipid Nanoparticles. SLAS Discovery, 2020, 25, 605-617.	1.4	14
684	An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs. PLoS Neglected Tropical Diseases, 2016, 10, e0004746.	1.3	153
685	Nebulisation of IVT mRNA Complexes for Intrapulmonary Administration. PLoS ONE, 2015, 10, e0137504.	1.1	36
686	Synthetic mRNA is a more reliable tool for the delivery of DNA-targeting proteins into the cell nucleus than fusion with a protein transduction domain. PLoS ONE, 2017, 12, e0182497.	1.1	6
687	A narrative review on the basic and clinical aspects of the novel SARS-CoV-2, the etiologic agent of COVID-19. Annals of Translational Medicine, 2020, 8, 1686-1686.	0.7	6
688	Lipid-Based Vectors for Therapeutic mRNA-Based Anti-Cancer Vaccines. Current Pharmaceutical Design, 2019, 25, 1443-1454.	0.9	39
689	Research and Patents on Coronavirus and COVID-19: A Review. Recent Patents on Nanotechnology, 2020, 14, 328-350.	0.7	6
690	Molecular Mechanisms Involved in the Progression and Protection of Osteoarthritis. Current Molecular Pharmacology, 2020, 14, 165-169.	0.7	4
691	aYAP modRNA reduces cardiac inflammation and hypertrophy in a murine ischemia-reperfusion model. Life Science Alliance, 2020, 3, e201900424.	1.3	24
692	Resources, Production Scales and Time Required for Producing RNA Vaccines for the Global Pandemic Demand. Vaccines, 2021, 9, 3.	2.1	74
693	Therapies for galactosemia: a patent landscape. Pharmaceutical Patent Analyst, 2020, 9, 45-51.	0.4	8
694	Cancer Nanoimmunotherapy: Recent Advances and New Opportunities. Nanotechnology in the Life Sciences, 2021, , 155-173.	0.4	0
695	Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nature Biomedical Engineering, 2021, 5, 1059-1068.	11.6	165

	CITATIO	on Report	
#	Article	IF	Citations
696	Nucleic Acid Drugs—Current Status, Issues, and Expectations for Exosomes. Cancers, 2021, 13, 5002.	1.7	42
697	Delivery of synthetic mRNAs for tissue regeneration. Advanced Drug Delivery Reviews, 2021, 179, 114007.	6.6	18
698	The RNA World: The Best of Times, the Worst of Times. Human Gene Therapy, 2021, 32, 975-977.	1.4	0
699	Rational preparation and application of a mRNA delivery system with cytidinyl/cationic lipid. Journal of Controlled Release, 2021, 340, 114-124.	4.8	11
700	Immunogenicity of <i>In Vitro</i> -Transcribed RNA. Accounts of Chemical Research, 2021, 54, 4012-4023.	7.6	44
701	CRISPR-derived genome editing therapies: Progress from bench to bedside. Molecular Therapy, 2021, 29, 3125-3139.	3.7	14
702	Selective Encapsulation of Therapeutic mRNA in Engineered Extracellular Vesicles by DNA Aptamer. Nano Letters, 2021, 21, 8563-8570.	4.5	24
703	DNA tiling enables precise acylationâ€based labeling and control of mRNA. Angewandte Chemie, 2021, 13 27002.	^{3,} 1.6	1
704	Bioinspired Silicification of mRNA-Loaded Polyion Complexes for Macrophage-Targeted mRNA Delivery. ACS Applied Bio Materials, 2021, 4, 7790-7799.	2.3	7
705	Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS Nano, 2021, 15, 17080-17123.	7.3	73
706	Small-scale manufacturing of neoantigen-encoding messenger RNA for early-phase clinical trials. Cytotherapy, 2022, 24, 213-222.	0.3	8
707	Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing. Accounts of Chemical Research, 2021, 54, 4001-4011.	7.6	59
708	DNA Tiling Enables Precise Acylationâ€Based Labeling and Control of mRNA. Angewandte Chemie - International Edition, 2021, 60, 26798-26805.	7.2	17
709	Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery. Pharmaceutics, 2021, 13, 1675.	2.0	33
710	mRNA – A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Advanced Drug Delivery Reviews, 2021, 179, 114002.	6.6	25
711	Renin angiotensin aldosterone system in pulmonary fibrosis: Pathogenesis to therapeutic possibilities. Pharmacological Research, 2021, 174, 105924.	3.1	19
712	Messenger RNA. , 2018, , 1-5.		0
715	Delivery of messenger RNA using polyplex micelles for therapeutic application: 10 th Young Scientist Award, Japan Society of DDS. Drug Delivery System, 2018, 33, 335-340.	0.0	0

#	Article	IF	CITATIONS
716	Immunotherapy with mRNA vaccination and immunomodulation nanomedicine for cancer therapy. , 2019, , 551-600.		0
718	DNA and RNA Vaccines: Current Status, Quality Requirements and Specific Aspects of Preclinical Studies. BIOpreparations Prevention Diagnosis Treatment, 2019, 19, 72-80.	0.2	6
722	A REVIEW ON CORONAVIRUS DISEASE 2019. British Journal of Medical and Health Research, 2020, 7, 40-50.	0.1	0
724	Chemically modified mRNA beyond COVID-19: Potential preventive and therapeutic applications for targeting chronic diseases. Biomedicine and Pharmacotherapy, 2022, 145, 112385.	2.5	14
725	Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs, 2021, 35, 643-671.	2.2	8
726	Vaccine development and technology for SARS oVâ€2: Current insight. Journal of Medical Virology, 2022, 94, 878-896.	2.5	8
727	Inflammationâ€modulating nanoparticles for pneumonia therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1763.	3.3	17
728	Efficient Messenger RNA Delivery to the Kidney Using Renal Pelvis Injection in Mice. Pharmaceutics, 2021, 13, 1810.	2.0	12
729	An mRNA vaccine industry in the making. Nature, 2021, 598, S30-S31.	13.7	2
730	Discovery, Screening Methods, Design Considerations, and Scale-up Aspects of Immunotherapeutic Drugs. , 2021, , 173-194.		0
732	Functional and computational identification of a rescue mutation near the active site of an mRNA methyltransferase. Scientific Reports, 2020, 10, 21841.	1.6	1
733	The nano delivery systems and applications of mRNA. European Journal of Medicinal Chemistry, 2022, 227, 113910.	2.6	52
734	Principles for designing an optimal mRNA lipid nanoparticle vaccine. Current Opinion in Biotechnology, 2022, 73, 329-336.	3.3	102
735	Synthetic mRNA – emerging new class of drug for tissue regeneration. Current Opinion in Biotechnology, 2022, 74, 8-14.	3.3	18
737	CORONAVIRUS VACCINE DEVELOPMENT: FROM SARS AND MERS TO COVID-19 (RUSSIAN TRANSLATION). Juvenis Scientia, 2020, 6, 41-80.	0.1	0
738	RNA ImmunoGenic Assay: A Method to Detect Immunogenicity of in vitro Transcribed mRNA in Human Whole Blood. Bio-protocol, 2020, 10, e3850.	0.2	2
739	Development of DDS for mRNA therapeutics: Polyplex nanomicelle. Drug Delivery System, 2020, 35, 27-34.	0.0	0
740	Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111075118.	3.3	9

ARTICLE IF CITATIONS Digital Twins for Continuous mRNA Production. Processes, 2021, 9, 1967. 741 1.3 21 Investigating the Fate of MP1000-LPX In Vivo by Adding Serum to Transfection Medium. Pharmaceutical 742 Nanotechnology, 2020, 8, 399-408. The oral and craniofacial relevance of chemically modified RNA therapeutics. Discovery Medicine, 743 0.5 6 2016, 21, 35-9. Design and Development of Modified mRNA Encoding Core Antigen of Hepatitis C Virus: a Possible 744 Application in Vaccine Production. Iranian Biomedical Journal, 2019, 23, 57-67. Effects of Selected Non-biological and Biological Disease-Modifying Anti-rheumatic Drugs, and mRNA 745 0 Vaccines on Mononuclear Phagocyte System., 2021,,. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. 746 4.8 Journal of Controlled Release, 2022, 341, 206-214. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in 747 4.8 32 imaging, gene-editing, and RNA-sequencing. Journal of Controlled Release, 2022, 341, 166-183. Hydrophobic Optimization of Functional Poly(TPAE-co-suberoyl chloride) for Extrahepatic mRNA 748 2.0 Delivery following Intravenous Administration. Pharmaceutics, 2021, 13, 1914. The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines, 2021, 9, 749 2.1 22 1345. Lipid Nanoparticle–mRNA Formulations for Therapeutic Applications. Accounts of Chemical Research, 2021, 54, 4283-4293. Novel N7-Arylmethyl Substituted Dinucleotide mRNA 5â€² cap Analogs: Synthesis and Evaluation as 751 2.0 11 Modulators of Translation. Pharmaceutics, 2021, 13, 1941. Polymers Strive for Accuracy: From Sequence-Defined Polymers to mRNA Vaccines against COVID-19 and Polymers in Nucleic Acid Therapeutics. Journal of the American Chemical Society, 2021, 143, 6.6 20529-20545. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Advanced Drug 754 6.6 26 Delivery Reviews, 2022, 181, 114041. Recent Advances in the Noninvasive Delivery of mRNA. Accounts of Chemical Research, 2021, 54, 4262-4271. An Episomal CRISPR/Cas12a System for Mediating Efficient Gene Editing. Life, 2021, 11, 1262. 756 1.1 4 Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta 33 Pharmaceutica Sinica B, 2022, 12, 2950-2962. Development of Lipid Nanoparticles for the Delivery of Macromolecules Based on the Molecular 758 0.6 14 Design of pH-Sensitive Cationic Lipids. Chemical and Pharmaceutical Bulletin, 2021, 69, 1141-1159. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and 759 development of a scalable production process to support early phase clinical trials. Translational 2.2 Research, 2022, 242, 38-55.

#	Article	IF	CITATIONS
760	Membrane-dependent relief of translation elongationÂarrest on pseudouridine- and <i>N</i> 1-methyl-pseudouridine-modified mRNAs. Nucleic Acids Research, 2022, 50, 7202-7215.	6.5	14
761	Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnology Reviews, 2021, 10, 1941-1977.	2.6	43
762	Review: RNA-Based Diagnostic Markers Discovery and Therapeutic Targets Development in Cancer. SSRN Electronic Journal, 0, , .	0.4	0
763	Microneedle systems for delivering nucleic acid drugs. Journal of Pharmaceutical Investigation, 2022, 52, 273-292.	2.7	10
764	Runx1 Messenger RNA Delivered by Polyplex Nanomicelles Alleviate Spinal Disc Hydration Loss in a Rat Disc Degeneration Model. International Journal of Molecular Sciences, 2022, 23, 565.	1.8	12
765	Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages. Molecular Therapy - Nucleic Acids, 2022, 27, 854-869.	2.3	21
766	Clinical translation of nanomedicines: Challenges, opportunities, and keys. Advanced Drug Delivery Reviews, 2022, 181, 114083.	6.6	91
767	Fine-tuning of polyaspartamide derivatives with alicyclic moieties for systemic mRNA delivery. Journal of Controlled Release, 2022, 342, 148-156.	4.8	10
768	Development of Flexible Polycation-Based mRNA Delivery Systems for In Vivo Applications. Materials Proceedings, 2020, 4, .	0.2	2
769	Ribozyme Assays to Quantify the Capping Efficiency of In Vitro-Transcribed mRNA. Pharmaceutics, 2022, 14, 328.	2.0	20
770	Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter, 2022, 5, 975-987.	5.0	48
771	Recent Advances in RNA Therapy and Its Carriers to Treat the Single-Gene Neurological Disorders. Biomedicines, 2022, 10, 158.	1.4	11
773	Innovative approaches for treatment of osteosarcoma. Experimental Biology and Medicine, 2022, 247, 310-316.	1.1	18
774	Hantavirus Induced Kidney Disease. Frontiers in Medicine, 2021, 8, 795340.	1.2	9
775	Synthetic mRNA for exÂvivo therapeutic applications. Drug Metabolism and Pharmacokinetics, 2022, 44, 100447.	1.1	4
776	An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses. Virologica Sinica, 2022, 37, 266-276.	1.2	10
777	Single-dose SARS-CoV-2 vaccinations with either BNT162b2 or AZD1222 induce disparate Th1 responses and IgA production. BMC Medicine, 2022, 20, 29.	2.3	20
778	Identification of Tumor Antigens and Design of mRNA Vaccine for Colorectal Cancer Based on the Immune Subtype. Frontiers in Cell and Developmental Biology, 2021, 9, 783527.	1.8	14

#	ARTICLE	IF	CITATIONS
779	Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. Nanomaterials, 2022, 12, 226.	1.9	20
780	MicroRNAs: Emerging Regulators of Metastatic Bone Disease in Breast Cancer. Cancers, 2022, 14, 729.	1.7	12
781	Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics, 2022, 14, 141.	2.0	35
782	Intravenous Delivery of RNA Encoding Anti-PD-1 Human Monoclonal Antibody for Treating Intestinal Cancer. Journal of Cancer, 2022, 13, 579-588.	1.2	18
783	Effect of mRNA Delivery Modality and Formulation on Cutaneous mRNA Distribution and Downstream eGFP Expression. Pharmaceutics, 2022, 14, 151.	2.0	1
784	OUP accepted manuscript. Briefings in Bioinformatics, 2022, , .	3.2	11
785	RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics, 2022, 14, 317.	2.0	7
786	Non-viral delivery of the CRISPR/Cas system: DNA <i>versus</i> RNA <i>versus</i> RNP. Biomaterials Science, 2022, 10, 1166-1192.	2.6	40
787	Manufacturing of CAR-T Cells: The Assembly Line. Cancer Drug Discovery and Development, 2022, , 121-139.	0.2	1
788	Chemically Modified mocRNAs for Highly Efficient Protein Expression in Mammalian Cells. ACS Chemical Biology, 2022, 17, 3352-3366.	1.6	8
789	Therapeutic potential of induced pluripotent stem cell–derived extracellular vesicles. , 2022, , 393-449.		0
790	HIV and SARS-CoV-2: Tracing a Path of Vaccine Research and Development. Current HIV/AIDS Reports, 2022, 19, 86.	1.1	6
791	Opportunities and Challenges for mRNA Delivery Nanoplatforms. Journal of Physical Chemistry Letters, 2022, 13, 1314-1322.	2.1	11
792	Frequency and Associations of Adverse Reactions of COVID-19 Vaccines Reported to Pharmacovigilance Systems in the European Union and the United States. Frontiers in Public Health, 2021, 9, 756633.	1.3	36
793	Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. , 2022, 234, 108123.		37
794	In Vitro Engineering Chimeric Antigen Receptor Macrophages and T Cells by Lipid Nanoparticle-Mediated mRNA Delivery. ACS Biomaterials Science and Engineering, 2022, 8, 722-733.	2.6	32
795	Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. Nano Today, 2022, 43, 101403.	6.2	26
796	Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Annals of Medicine, 2022, 54, 524-540.	1.5	225

	CHATON	TEPORI	
#	Article	IF	CITATIONS
797	Toward rational vaccine engineering. Advanced Drug Delivery Reviews, 2022, 183, 114142.	6.6	10
798	Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomedicine and Pharmacotherapy, 2022, 147, 112700.	2.5	18
799	Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. Npj Vaccines, 2021, 6, 153.	2.9	46
800	Increased Photostability of the Integral mRNA Vaccine Component N ₁ â€Methylpseudouridine Compared to Uridine. Chemistry - A European Journal, 2022, 28, .	1.7	4
801	Machine Learning for Designing Next-Generation mRNA Therapeutics. Accounts of Chemical Research, 2022, 55, 24-34.	7.6	25
802	On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	285
803	mRNA, a Revolution in Biomedicine. Pharmaceutics, 2021, 13, 2090.	2.0	26
804	Development of drugs and vaccines. , 2022, , 29-34.		0
805	Recent advances in biomaterial-boosted adoptive cell therapy. Chemical Society Reviews, 2022, 51, 1766-1794.	18.7	29
806	COVID-19—The disease. , 2022, , 35-69.		0
807	Functional nanomaterials and nanocomposite in cancer vaccines. , 2022, , 241-258.		0
809	Nanotechnology-based interventions for interactions with the immune system. , 2022, , 379-412.		0
810	Lipopolyplex-based delivery system for cancer vaccine delivery. , 2022, , 193-216.		1
811	The Potential of Nanomedicine to Unlock the Limitless Applications of mRNA. Pharmaceutics, 2022, 14, 460.	2.0	11
812	In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. Science Advances, 2022, 8, eabm7950.	4.7	22
813	RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Molecular Cancer, 2022, 21, 58.	7.9	33
815	COVID-19 Vaccination and Mental Disorders, What Has Been Accomplished and Future Direction. Brain Sciences, 2022, 12, 292.	1.1	8
816	Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	156

#	ARTICLE	IF	CITATIONS
817	Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2. Science Advances, 2022, 8, eabl6242.	4.7	29
818	COVID-19 mRNA vaccines: Platforms and current developments. Molecular Therapy, 2022, 30, 1850-1868.	3.7	102
819	Nonviral Delivery Systems of mRNA Vaccines for Cancer Gene Therapy. Pharmaceutics, 2022, 14, 512.	2.0	19
820	Polyester materials for mRNA delivery. Exploration of Targeted Anti-tumor Therapy, 0, , 117-127.	0.5	2
821	AMD Genomics: Non-Coding RNAs as Biomarkers and Therapeutic Targets. Journal of Clinical Medicine, 2022, 11, 1484.	1.0	8
823	Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102550.	1.7	5
824	COVIDâ \in 19 mRNA vaccines and myopericarditis. Internal Medicine Journal, 2022, , .	0.5	0
825	Gene Therapy for Neurological Disease: State of the Art and Opportunities for Next-generation Approaches. Neuroscience, 2022, 490, 309-314.	1.1	16
826	Advanced Biomaterials for Cell‧pecific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	5.6	26
827	Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. Biochip Journal, 2022, 16, 128-145.	2.5	23
828	Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. Journal of Pharmaceutical Investigation, 2022, 52, 415-426.	2.7	21
829	Cancer vaccines as promising immuno-therapeutics: platforms and current progress. Journal of Hematology and Oncology, 2022, 15, 28.	6.9	216
830	Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biology, 2022, 19, 386-410.	1.5	19
831	Insights for Oncology Trials Garnered From the Rapid Development of an mRNA COVID-19 Vaccine. Cancer Journal (Sudbury, Mass), 2022, 28, 146-150.	1.0	0
832	Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nature Communications, 2022, 13, 1536.	5.8	93
833	Clinical development and approval of COVID-19 vaccines. Expert Review of Vaccines, 2022, 21, 609-619.	2.0	26
834	Rapid Surface Display of mRNA Antigens by Bacteriaâ€Derived Outer Membrane Vesicles for a Personalized Tumor Vaccine. Advanced Materials, 2022, 34, e2109984.	11.1	82
835	LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer. Nature Cancer, 2022, 3, 355-370.	5.7	21

#	Article	IF	CITATIONS
836	Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends in Genetics, 2022, 38, 920-943.	2.9	13
837	mRNA cancer vaccines: Advances, trends and challenges. Acta Pharmaceutica Sinica B, 2022, 12, 2969-2989.	5.7	55
838	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration, 2022, 2, .	5.4	30
839	Effective mRNA Protection by Poly(<scp>l</scp> â€ornithine) Synergizes with Endosomal Escape Functionality of a Charge onversion Polymer toward Maximizing mRNA Introduction Efficiency. Macromolecular Rapid Communications, 2022, 43, e2100754.	2.0	27
841	RNA Therapeutics: the Next Generation of Drugs for Cardiovascular Diseases. Current Atherosclerosis Reports, 2022, 24, 307-321.	2.0	12
842	Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Annual Review of Biomedical Engineering, 2022, 24, 231-248.	5.7	9
843	mRNA and gene editing: Late breaking therapies in liver diseases. Hepatology, 2022, 76, 869-887.	3.6	11
844	A global survey in the developmental landscape of possible vaccination strategies for COVID-19. Clinical Immunology, 2022, 237, 108958.	1.4	11
845	Messenger ribonucleic acid vaccines for severe acute respiratory syndrome coronavirus-2 – a review. Translational Research, 2022, 242, 1-19.	2.2	3
846	Multimeric RNAs for efficient RNA-based therapeutics and vaccines. Journal of Controlled Release, 2022, 345, 770-785.	4.8	3
847	Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophysical Chemistry, 2022, 285, 106780.	1.5	14
848	A flexible, thermostable nanostructured lipid carrier platform for RNA vaccine delivery. Molecular Therapy - Methods and Clinical Development, 2022, 25, 205-214.	1.8	33
849	Immunotherapy for neuroblastoma using mRNA vaccines. Advances in Cancer Biology Metastasis, 2022, 4, 100033.	1.1	3
850	mRNA Therapeutics and mRNA Vaccines. Trends in the Sciences, 2021, 26, 10_38-10_43.	0.0	0
851	COVID-19 Vaccine Development in Japan: Why Does It Fall Behind?. Trends in the Sciences, 2021, 26, 10_58-10_64.	0.0	0
852	mRNA痗法的ç"ç©¶èį›å±•与挑æ~. Scientia Sinica Vitae, 2023, 53, 30-49.	0.1	1
853	Local radiotherapy and E7 RNA-LPX vaccination show enhanced therapeutic efficacy in preclinical models of HPV16+ cancer. Cancer Immunology, Immunotherapy, 2022, 71, 1975-1988.	2.0	11
854	Zwitterionic Phospholipidation of Cationic Polymers Facilitates Systemic mRNA Delivery to Spleen and Lymph Nodes. Journal of the American Chemical Society, 2021, 143, 21321-21330.	6.6	66

#	ARTICLE	IF	CITATIONS
855	Together is Better: mRNA Coâ€Encapsulation in Lipoplexes is Required to Obtain Ratiometric Coâ€Delivery and Protein Expression on the Single Cell Level. Advanced Science, 2022, 9, e2102072.	5.6	13
856	Antigenic characterization of influenza and SARS-CoV-2 viruses. Analytical and Bioanalytical Chemistry, 2022, 414, 2841-2881.	1.9	11
857	Engineered mRNA-expressed bispecific antibody prevent intestinal cancer via lipid nanoparticle delivery. Bioengineered, 2021, 12, 12383-12393.	1.4	7
858	QnAs with Katalin KarikÃ ³ . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	4
859	mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines, 2022, 10, 50.	1.4	30
860	Enhancing Stem Cell Therapy for Cartilage Repair in Osteoarthritis—A Hydrogel Focused Approach. Gels, 2021, 7, 263.	2.1	10
862	Modified mRNA-Based Vaccines Against Coronavirus Disease 2019. Cell Transplantation, 2022, 31, 096368972210902.	1.2	3
863	Nucleoside modifications of in vitro transcribed mRNA to reduce immunogenicity and improve translation of prophylactic and therapeutic antigens. , 2022, , 141-169.		4
864	The Impact of mRNA Technology in Regenerative Therapy: Lessons for Oral Tissue Regeneration. Journal of Dental Research, 2022, 101, 1015-1024.	2.5	3
865	Myocarditis following COVID-19 vaccination: incidence, mechanisms, and clinical considerations. Expert Review of Cardiovascular Therapy, 2022, 20, 241-251.	0.6	15
866	mRNA vaccines: the most recent clinical applications of synthetic mRNA. Archives of Pharmacal Research, 2022, 45, 245-262.	2.7	27
867	Accelerating clinical trial development in vaccinology: COVID-19 and beyond. Current Opinion in Immunology, 2022, 76, 102206.	2.4	4
868	mRNA Vaccines: Why Is the Biology of Retroposition Ignored?. Genes, 2022, 13, 719.	1.0	16
869	Chemo-Enzymatic Modification of the 5′ Cap To Study mRNAs. Accounts of Chemical Research, 2022, 55, 1249-1261.	7.6	13
870	Therapeutic Vaccines Targeting Neoantigens to Induce T-Cell Immunity against Cancers. Pharmaceutics, 2022, 14, 867.	2.0	9
873	Codon optimality-mediated mRNA degradation: Linking translational elongation to mRNA stability. Molecular Cell, 2022, 82, 1467-1476.	4.5	34
874	Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy, 2022, 7, 94.	7.1	177
875	Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. Nano Convergence, 2022, 9, 19.	6.3	12

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
876	Universal Flu mRNA Vaccine: Promises, Prospects, and Problems. Vaccines, 2022, 10, 709.	2.1	7
877	A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections. Molecular Therapy - Nucleic Acids, 2022, 28, 743-754.	2.3	9
878	Amphiphilic Dendrimer Vectors for RNA Delivery: State-of-the-Art and Future Perspective. Accounts of Materials Research, 2022, 3, 484-497.	5.9	19
879	Oral mRNA Vaccines Against Infectious Diseases- A Bacterial Perspective [Invited]. Frontiers in Immunology, 2022, 13, 884862.	2.2	10
880	An imidazole modified lipid confers enhanced mRNA-LNP stability and strong immunization properties in mice and non-human primates. Biomaterials, 2022, 286, 121570.	5.7	26
881	Adverse Events and Safety of SARS-CoV-2 Vaccines: What's New and What's Next. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 2254-2266.	2.0	4
882	The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. Journal of Medicinal Chemistry, 2022, 65, 6975-7015.	2.9	42
883	Brain somatic mutations as RNA therapeutic targets in neurological disorders. Annals of the New York Academy of Sciences, 2022, 1514, 11-20.	1.8	2
884	The Current Landscape of mRNA Vaccines Against Viruses and Cancer–A Mini Review. Frontiers in Immunology, 2022, 13, .	2.2	12
885	The potential of RNA-based therapy for kidney diseases. Pediatric Nephrology, 2023, 38, 327-344.	0.9	14
886	The clinical progress of mRNA vaccines and immunotherapies. Nature Biotechnology, 2022, 40, 840-854.	9.4	248
888	Identifying novel tumor-related antigens and immune phenotypes for developing mRNA vaccines in lung adenocarcinoma. International Immunopharmacology, 2022, 109, 108816.	1.7	4
889	mRNA based vaccines as an alternative to conventional vaccine approaches. Open Journal of Environmental Biology, 2022, 7, 001-005.	0.1	0
890	Biological and Immune Responses to Current Anti-SARS-CoV-2 mRNA Vaccines beyond Anti-Spike Antibody Production. Journal of Immunology Research, 2022, 2022, 1-7.	0.9	4
891	Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. International Review of Cell and Molecular Biology, 2022, , .	1.6	5
892	Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. International Review of Cell and Molecular Biology, 2022, , 65-122.	1.6	4
893	Identifiability analysis for models of the translation kinetics after mRNA transfection. Journal of Mathematical Biology, 2022, 84, 56.	0.8	1
894	Funding Risky Research. , 2022, 1, 103-133.		9

ARTICLE

IF CITATIONS

895	Messenger RNA. , 2022, , 4193-4197.		0
896	Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment. Journal of the American Chemical Society, 2022, 144, 9926-9937.	6.6	46
897	Precision medicine: InÂvivo CAR therapy as a showcase for receptor-targeted vector platforms. Molecular Therapy, 2022, 30, 2401-2415.	3.7	28
898	Overcoming the limitations of cytokines to improve cancer therapy. International Review of Cell and Molecular Biology, 2022, , 107-141.	1.6	7
899	mRNA-based therapies: Preclinical and clinical applications. International Review of Cell and Molecular Biology, 2022, , 1-54.	1.6	7
900	A covalently conjugated branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery. Nanoscale, 2022, 14, 9369-9378.	2.8	8
901	Case Report: New-Onset Rheumatoid Arthritis Following COVID-19 Vaccination. Frontiers in Immunology, 2022, 13, .	2.2	17
902	mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	160
904	Toward Rapid Aspartic Acid Isomer Localization in Therapeutic Peptides Using Cyclic Ion Mobility Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1204-1212.	1.2	6
905	A tEMTing target? Clinical and experimental evidence for epithelial-mesenchymal transition in the progression of cutaneous squamous cell carcinoma (a scoping systematic review). Discover Oncology, 2022, 13, .	0.8	7
906	mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Frontiers in Immunology, 2022, 13, .	2.2	34
908	A case of cutaneous arteritis after administration of <scp>mRNA</scp> coronavirus disease 2019 vaccine. Dermatologic Therapy, 2022, 35, .	0.8	2
909	Homing of mRNA-Modified Endothelial Progenitor Cells to Inflamed Endothelium. Pharmaceutics, 2022, 14, 1194.	2.0	0
911	The roles of polymers in mRNA delivery. Matter, 2022, 5, 1670-1699.	5.0	20
912	Messenger ribonucleic acid vaccines against infectious diseases: current concepts and future prospects. Current Opinion in Immunology, 2022, 77, 102214.	2.4	7
913	Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. Journal of Controlled Release, 2022, 348, 34-41.	4.8	40
914	Advances in mRNA vaccines. International Review of Cell and Molecular Biology, 2022, , 295-316.	1.6	9
915	Photocaged 5′ cap analogues for optical control of mRNA translation in cells. Nature Chemistry, 2022, 14, 905-913.	6.6	29

#	Article	IF	CITATIONS
916	mRNA Delivery and Storage by Co-Assembling Nanostructures with Designer Oligopeptides. ACS Applied Bio Materials, 2022, 5, 3476-3486.	2.3	2
917	The Potential of Cell-Penetrating Peptides for mRNA Delivery to Cancer Cells. Pharmaceutics, 2022, 14, 1271.	2.0	23
918	Treatment with Living Drugs: Pharmaceutical Aspects of CAR T Cells. Pharmacology, 2022, 107, 446-463.	0.9	8
919	Cytokine release syndrome-like serum responses after COVID-19 vaccination are frequent and clinically inapparent under cancer immunotherapy. Nature Cancer, 2022, 3, 1039-1051.	5.7	12
920	Polymeric Micelles with pH-Responsive Cross-Linked Core Enhance In Vivo mRNA Delivery. Pharmaceutics, 2022, 14, 1205.	2.0	10
921	Comparison of Physicochemical Properties of LipoParticles as mRNA Carrier Prepared by Automated Microfluidic System and Bulk Method. Pharmaceutics, 2022, 14, 1297.	2.0	2
922	Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. Journal of Nanobiotechnology, 2022, 20, .	4.2	52
923	A Biopharmaceutical Perspective on Higher-Order Structure and Thermal Stability of mRNA Vaccines. Molecular Pharmaceutics, 2022, 19, 2022-2031.	2.3	24
924	Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. Journal of Drug Delivery Science and Technology, 2022, 74, 103533.	1.4	12
925	On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic device. Journal of Controlled Release, 2022, 348, 648-659.	4.8	18
926	To infinity and beyond: Strategies for fabricating medicines in outer space. International Journal of Pharmaceutics: X, 2022, 4, 100121.	1.2	3
927	mRNA delivery technologies: Toward clinical translation. International Review of Cell and Molecular Biology, 2022, , 207-293.	1.6	5
928	Analysis and Purification of Ssrna and Dsrna Molecules Using Asymmetrical Flow Field Flow Fractionation. SSRN Electronic Journal, 0, , .	0.4	0
929	Simple synthesis of massively parallel RNA microarrays via enzymatic conversion from DNA microarrays. Nature Communications, 2022, 13, .	5.8	4
931	N1-methylpseudouridine-incorporated mRNA enhances exogenous protein expression and suppresses immunogenicity in primary human fibroblast-like synoviocytes. Cytotechnology, 2022, 74, 503-514.	0.7	4
932	mRNA vaccines: Past, present, future. Asian Journal of Pharmaceutical Sciences, 2022, 17, 491-522.	4.3	24
933	Immune Persistence and Safety After SARS-CoV-2 BNT162b1 mRNA Vaccination in Chinese Adults: A Randomized, Placebo-Controlled, Double-Blind Phase 1 Trial. Advances in Therapy, 2022, 39, 3789-3798.	1.3	3
934	The legacy of mRNA engineering: A lineup of pioneers for the Nobel Prize. Molecular Therapy - Nucleic Acids, 2022, 29, 272-284.	2.3	7

#	Article	IF	CITATIONS
935	Nonclinical safety evaluation of a novel ionizable lipid for mRNA delivery. Toxicology and Applied Pharmacology, 2022, 451, 116143.	1.3	4
936	Effects of Different Lengths of a Nucleic Acid Binding Region and Bound Nucleic Acids on the Phase Behavior and Purification Process of HBcAg Virus-Like Particles. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
937	Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Frontiers in Immunology, 0, 13, .	2.2	7
939	Imaging-guided/improved diseases management for immune-strategies and beyond. Advanced Drug Delivery Reviews, 2022, 188, 114446.	6.6	8
940	Optimization of Lipid Nanoformulations for Effective mRNA Delivery. International Journal of Nanomedicine, 0, Volume 17, 2893-2905.	3.3	13
941	In Cellulo and In Vivo Comparison of Cholesterol, Beta-Sitosterol and Dioleylphosphatidylethanolamine for Lipid Nanoparticle Formulation of mRNA. Nanomaterials, 2022, 12, 2446.	1.9	6
942	Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. Frontiers in Nanotechnology, 0, 4, .	2.4	2
943	The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
944	RNA solutions to treat inborn errors of metabolism. Molecular Genetics and Metabolism, 2022, 136, 289-295.	0.5	6
945	Lipid-peptide nanocomplexes for mRNA delivery in vitro and in vivo. Journal of Controlled Release, 2022, 348, 786-797.	4.8	16
946	Novel branched amphiphilic peptides for nucleic acids delivery. International Journal of Pharmaceutics, 2022, 624, 121983.	2.6	1
947	Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Advanced Drug Delivery Reviews, 2022, 188, 114417.	6.6	42
948	Analysis of therapeutic nucleic acids by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2022, 219, 114928.	1.4	10
949	An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery. TrAC - Trends in Analytical Chemistry, 2022, 157, 116728.	5.8	11
950	RNA-based therapeutics: an overview and prospectus. Cell Death and Disease, 2022, 13, .	2.7	137
951	mRNA-based modalities for infectious disease management. Nano Research, 2023, 16, 672-691.	5.8	7
952	Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression. Nature Communications, 2022, 13, .	5.8	14
953	Tools shaping drug discovery and development. Biophysics Reviews, 2022, 3, .	1.0	3

#	Article	IF	CITATIONS
955	N1-methyl-pseudouridine is incorporated with higher fidelity than pseudouridine in synthetic RNAs. Scientific Reports, 2022, 12, .	1.6	13
956	Comparative immunogenicity of an mRNA/LNP and a DNA vaccine targeting HIV gag conserved elements in macaques. Frontiers in Immunology, 0, 13, .	2.2	10
957	Efficient and Improved Solution-Phase Synthesis of Modified RNA Dinucleotides: Versatile Synthons in Cap 1 mRNA Therapeutics. Organic Process Research and Development, 2022, 26, 2771-2778.	1.3	4
958	Mobile On Demand COVID-19 Vaccine Production Units for Developing Countries. Industrial & Engineering Chemistry Research, 2022, 61, 13191-13204.	1.8	4
959	Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. Polymer Reviews, 2023, 63, 394-436.	5.3	5
960	More-than-national and less-than-global: The biochemical infrastructure of vaccine manufacturing. Economy and Society, 2023, 52, 9-36.	1.3	3
961	Gene therapy to enhance angiogenesis in chronic wounds. Molecular Therapy - Nucleic Acids, 2022, 29, 871-899.	2.3	18
962	Nanoparticles in clinical trials of COVID-19: An update. International Journal of Surgery, 2022, 104, 106818.	1.1	22
963	Vaccines platforms and COVID-19: what you need to know. Tropical Diseases, Travel Medicine and Vaccines, 2022, 8, .	0.9	16
964	Immunogenicity, effectiveness, safety and psychological impact of COVID-19 mRNA vaccines. Human Immunology, 2022, 83, 755-767.	1.2	10
966	Efficient Gene Silencing in Intact Plant Cells Using siRNA Delivered By Functional Graphene Oxide Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
967	Pressureâ€dependent fouling behavior during sterile filtration of mRNAâ€containing lipid nanoparticles. Biotechnology and Bioengineering, 2022, 119, 3221-3229.	1.7	6
968	Latest in COVID-19 Vaccine 'Candidates' Race. Infectious Disorders - Drug Targets, 2022, 22, .	0.4	0
969	Noncoding RNAs and RNA-binding proteins: emerging governors of liver physiology and metabolic diseases. American Journal of Physiology - Cell Physiology, 2022, 323, C1003-C1017.	2.1	8
970	Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: A novel therapeutic solution to treat ulcerative colitis. Biomaterials, 2022, 288, 121707.	5.7	25
971	Dry powder inhalation, part 1: ancient history and precursors to modern dry powder inhalers. Expert Opinion on Drug Delivery, 2022, 19, 1033-1044.	2.4	1
972	Kinetics of anti-SARS-CoV-2 antibody titer in healthy adults up to 6Âmonths after BNT162b2 vaccination measured by two immunoassays: A prospective cohort study in Japan. Vaccine, 2022, 40, 5631-5640.	1.7	9
973	SARS-CoV-2 Subunit Virus-like Vaccine Demonstrates High Safety Profile and Protective Efficacy: Preclinical Study. Vaccines, 2022, 10, 1290.	2.1	2

#	Article	IF	CITATIONS
974	Emerging trends of research on mRNA vaccines: A co-citation analysis. Human Vaccines and Immunotherapeutics, 2022, 18, .	1.4	1
976	Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization. Nano Letters, 2022, 22, 6580-6589.	4.5	11
977	Cardiovascular Manifestation of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents. Tropical Medicine and Infectious Disease, 2022, 7, 196.	0.9	32
978	Harnessing nucleic acid technologies for human health on earth and in space. Life Sciences in Space Research, 2022, 35, 113-126.	1.2	2
979	N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Reports, 2022, 40, 111300.	2.9	22
980	Application of mRNA Technology in Cancer Therapeutics. Vaccines, 2022, 10, 1262.	2.1	7
981	Efficient Gene Silencing in Intact Plant Cells Using siRNA Delivered By Functional Graphene Oxide Nanoparticles. Angewandte Chemie, 0, , .	1.6	1
982	The Delivery of mRNA Vaccines for Therapeutics. Life, 2022, 12, 1254.	1.1	23
983	Chemically modified in-vitro-transcribed mRNA encoding thrombopoietin stimulates thrombopoiesis in mice. Molecular Therapy - Nucleic Acids, 2022, 29, 657-671.	2.3	4
984	Recent advances in the vaccine development for the prophylaxis of SARS Covid-19. International Immunopharmacology, 2022, 111, 109175.	1.7	5
985	Targeted therapy in Coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. International Immunopharmacology, 2022, 111, 109161.	1.7	9
986	A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. Journal of Controlled Release, 2022, 350, 256-270.	4.8	23
987	mRNA produced by VSW-3 RNAP has high-level translation efficiency with low inflammatory stimulation. , 2022, 1, 100056.		9
988	Intracellular delivery of messenger RNA to macrophages with surfactant-derived lipid nanoparticles. Materials Today Advances, 2022, 16, 100295.	2.5	3
989	Medical Use of mRNA-Based Directed Gene Delivery. RNA Technologies, 2022, , 93-112.	0.2	0
990	Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomaterials Science, 2022, 10, 6077-6115.	2.6	3
991	Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy. Theranostics, 2022, 12, 6576-6594.	4.6	31
992	Basic biotechnology applications in viral diseases. , 2022, , 105-113.		0

#	Article	IF	CITATIONS
993	Lipid Nanoparticle-Mediated Delivery of Therapeutic and Prophylactic mRNA: Immune Activation by Ionizable Cationic Lipids. RNA Technologies, 2022, , 237-255.	0.2	1
994	Advances in mRNA Delivery and Clinical Applications. RNA Technologies, 2022, , 277-305.	0.2	0
995	RNA/Polymer-Based Supramolecular Approaches for mRNA Delivery. RNA Technologies, 2022, , 337-354.	0.2	0
996	Condon Optimization: Codon Optimization of Therapeutic Proteins: Suggested Criteria for Increased Efficacy and Safety. , 2022, , 197-224.		0
997	In Vitro-Transcribed mRNAs as a New Generation of Therapeutics in the Dawn of Twenty-First Century: Exploitation of Peptides as Carriers for Their Intracellular Delivery. RNA Technologies, 2022, , 209-235.	0.2	2
998	Synthetic mRNA Gene Therapies and Hepatotropic Non-viral Vectors for the Treatment of Chronic HBV Infections. RNA Technologies, 2022, , 157-179.	0.2	0
999	Gemini lipid nanoparticle (GLNP)-mediated oral delivery of TNF-α siRNA mitigates gut inflammation <i>via</i> inhibiting the differentiation of CD4 ⁺ T cells. Nanoscale, 2022, 14, 14717-14731.	2.8	4
1000	Messenger RNA Therapeutics: Start of a New Era in Medicine. RNA Technologies, 2022, , 41-71.	0.2	0
1001	Delivery Vehicles for Self-amplifying RNA. RNA Technologies, 2022, , 355-370.	0.2	2
1002	Vaccine History: From Smallpox to Covid-19. Engineering Materials, 2022, , 519-543.	0.3	0
1003	Applications and challenges of biomaterial mediated mRNA delivery. Exploration of Targeted Anti-tumor Therapy, 0, , 428-444.	0.5	5
1004	The mRNA Vaccine Heralds a New Era in Vaccinology. Asian Journal of Pharmacy and Technology, 2022, , 257-265.	0.2	3
1005	Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules, 2022, 27, 5607.	1.7	12
1006	Anti-Inflammatory Therapy for Temporomandibular Joint Osteoarthritis Using mRNA Medicine Encoding Interleukin-1 Receptor Antagonist. Pharmaceutics, 2022, 14, 1785.	2.0	5
1007	A Pan-RNase Inhibitor Enabling CRISPR-mRNA Platforms for Engineering of Primary Human Monocytes. International Journal of Molecular Sciences, 2022, 23, 9749.	1.8	0
1008	RNA therapeutics: updates and future potential. Science China Life Sciences, 2023, 66, 12-30.	2.3	31
1009	Analysis and purification of ssRNA and dsRNA molecules using asymmetrical flow field flow field flow fractionation. Journal of Chromatography A, 2022, 1683, 463525.	1.8	4
1010	Recent developments in the significant effect of mRNA modification (M6A) in glioblastoma and esophageal cancer. Scientific African, 2022, 17, e01347.	0.7	0

#	Article	IF	CITATIONS
1011	Comprehensive studies on building a scalable downstream process for <scp>mRNAs</scp> to enable <scp>mRNA</scp> therapeutics. Biotechnology Progress, 2023, 39, .	1.3	6
1012	Nonviral Delivery of CRISPR/Cas Systems in mRNA Format. Advanced NanoBiomed Research, 2022, 2, .	1.7	8
1013	Exploring the epitranscriptome by native RNA sequencing. Rna, 2022, 28, 1430-1439.	1.6	21
1014	Molecular Dynamics Simulations of Protein RNA Complexes by Using an Advanced Electrostatic Model. Journal of Physical Chemistry B, 2022, 126, 7343-7353.	1.2	5
1015	Synthesis of point-modified mRNA. Nucleic Acids Research, 2022, 50, e115-e115.	6.5	8
1016	mRNA Treatment Rescues Niemann–Pick Disease Type C1 in Patient Fibroblasts. Molecular Pharmaceutics, 2022, 19, 3987-3999.	2.3	4
1017	How far are the new wave of mRNA drugs from us? mRNA product current perspective and future development. Frontiers in Immunology, 0, 13, .	2.2	4
1018	Sensitive Imaging of Cellular RNA via Cascaded Proximity-Induced Fluorogenic Reactions. ACS Applied Materials & Interfaces, 2022, 14, 44054-44064.	4.0	4
1019	Nanomaterialsâ€Mediated Coâ€Stimulation of Tollâ€Like Receptors and CD40 for Antitumor Immunity. Advanced Materials, 2022, 34, .	11.1	19
1020	Formulation of Lipid-Free Polymeric Mesoscale Nanoparticles Encapsulating mRNA. Pharmaceutical Research, 2022, 39, 2699-2707.	1.7	1
1022	COVIDâ€19: Clinical status of vaccine development to date. British Journal of Clinical Pharmacology, 2023, 89, 114-149.	1.1	8
1023	Nanoparticles (NPs)-mediated systemic mRNA delivery to reverse trastuzumab resistance for effective breast cancer therapy. Acta Pharmaceutica Sinica B, 2023, 13, 955-966.	5.7	6
1024	The role of artificial cells in the fight against COVID-19: deliver vaccine, hemoperfusion removes toxic cytokines, nanobiotherapeutics lower free radicals and pCO ₂ and replenish blood supply. Artificial Cells, Nanomedicine and Biotechnology, 2022, 50, 240-251.	1.9	3
1025	mRNA vaccines: A novel weapon to control infectious diseases. Frontiers in Microbiology, 0, 13, .	1.5	10
1026	New vector and vaccine platforms: mRNA, DNA, viral vectors. Current Opinion in HIV and AIDS, 2022, 17, 338-344.	1.5	7
1027	Tumor antigens and vaccines in colorectal cancer. Medicine in Drug Discovery, 2022, 16, 100144.	2.3	1
1028	Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of <i>in vivo</i> imaging. Theranostics, 2022, 12, 7509-7531.	4.6	43
1029	TREAT: Therapeutic RNAs exploration inspired by artificial intelligence technology. Computational and Structural Biotechnology Journal, 2022, 20, 5680-5689.	1.9	1

		EPORI	
# 1030	ARTICLE mRNA therapeutics for central nervous system disorders. Drug Delivery System, 2022, 37, 247-252.	IF 0.0	Citations
1031	The current situation and perspectives of mRNA delivery to the kidney. Drug Delivery System, 2022, 37, 253-262.	0.0	0
1032	Broadening the Horizons of RNA Delivery Strategies in Cancer Therapy. Bioengineering, 2022, 9, 576.	1.6	4
1033	Virus-like Particles (VLPs) as Important Tools for Flavivirus Vaccine Development. Biologics, 2022, 2, 226-242.	2.3	2
1035	Current advances of CRISPR-Cas technology in cell therapy. , 2022, 1, 100067.		10
1036	COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. Journal of Biomedical Science, 2022, 29, .	2.6	77
1037	RNA-based drugs and regulation: Toward a necessary evolution of the definitions issued from the European union legislation. Frontiers in Medicine, 0, 9, .	1.2	14
1038	Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nature Protocols, 2023, 18, 265-291.	5.5	89
1039	Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharmaceutica Sinica B, 2023, 13, 916-941.	5.7	50
1040	mRNA-Based Approaches to Treating Liver Diseases. Cells, 2022, 11, 3328.	1.8	4
1041	Nanotechnology-Driven Delivery Systems in Inoculation Therapies. Methods in Molecular Biology, 2023, , 39-57.	0.4	0
1042	mRNA Manufacturing and Singleâ€use Technology – A Perfect Liaison. Chemie-Ingenieur-Technik, 2022, 94, 1920-1927.	0.4	2
1043	Modified Nucleotides for Chemical and Enzymatic Synthesis of Therapeutic RNA. Current Medicinal Chemistry, 2023, 30, 1320-1347.	1.2	3
1044	Nucleic Acid Delivery to the Vascular Endothelium. Molecular Pharmaceutics, 2022, 19, 4466-4486.	2.3	2
1045	IL-7: A promising adjuvant ensuring effective T cell responses and memory in combination with cancer vaccines?. Frontiers in Immunology, 0, 13, .	2.2	34
1046	Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. Small, 2022, 18, .	5.2	4
1047	Injectable Immunotherapeutic Hydrogel Containing RNA-Loaded Lipid Nanoparticles Reshapes Tumor Microenvironment for Pancreatic Cancer Therapy. Nano Letters, 2022, 22, 8801-8809.	4.5	39
1048	Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS Communications, 2022, 12, 1119-1139.	0.8	8

#	Article	IF	Citations
1051	Efficacy increase of lipid nanoparticles <i>in vivo</i> by inclusion of bis(monoacylglycerol)phosphate. Nanomedicine, 0, , .	1.7	0
1052	RNA sensor response in HeLa cells for transfected mRNAs prepared in vitro by SP6 and HiT7 RNA polymerases: A comparative study. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
1053	Nanomedicine for advanced cancer immunotherapy. Journal of Controlled Release, 2022, 351, 1017-1037.	4.8	7
1054	Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and inÂvivo. Molecular Therapy - Nucleic Acids, 2022, 30, 300-310.	2.3	14
1055	Endothelial Progenitor Cells from Bench to Antitumor Therapy and Diagnostic Imaging. , 2022, , 1389-1419.		0
1056	mRNA vaccines for COVID-19. , 2023, , 611-624.		0
1057	Reports of New and Recurrent Keratitis following mRNA-based COVID-19 Vaccination. Ocular Immunology and Inflammation, 2023, 31, 1169-1174.	1.0	2
1058	An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nature Biotechnology, 2023, 41, 560-568.	9.4	33
1059	Human type I IFN deficiency does not impair B cell response to SARS-CoV-2 mRNA vaccination. Journal of Experimental Medicine, 2023, 220, .	4.2	17
1060	Solutionâ€Phase Chemical Synthesis of Modified RNA Dinucleotides. Current Protocols, 2022, 2, .	1.3	0
1061	Advances in mRNA nanomedicines for malignant brain tumor therapy. Smart Materials in Medicine, 2022, , .	3.7	3
1062	On the Influence of Nucleic Acid Backbone Modifications on Lipid Nanoparticle Morphology. Langmuir, 2022, 38, 14036-14043.	1.6	5
1063	The landscape of mRNA nanomedicine. Nature Medicine, 2022, 28, 2273-2287.	15.2	152
1064	The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case. Journal of Pharmaceutical Sciences, 2023, 112, 386-403.	1.6	40
1065	Detecting emerging technologies and their evolution using deep learning and weak signal analysis. Journal of Informetrics, 2022, 16, 101344.	1.4	3
1066	Current strategies employed in the manipulation of gene expression for clinical purposes. Journal of Translational Medicine, 2022, 20, .	1.8	12
1067	Lipid Nanoparticle Delivery System for mRNA Encoding B7H3â€redirected Bispecific Antibody Displays Potent Antitumor Effects on Malignant Tumors. Advanced Science, 2023, 10, .	5.6	17
1068	Measurements of drugs and metabolites in biological matrices using SFC and SFE-SFC-MS. Separation Science and Technology, 2022, , 73-99.	0.0	0

#	Article	IF	CITATIONS
1069	Lessons learned from COVID-19 pandemic: Vaccine platform is a key player. Process Biochemistry, 2023, 124, 269-279.	1.8	2
1070	Nucleic acid-based artificial nanocarriers for gene therapy. Journal of Materials Chemistry B, 2023, 11, 261-279.	2.9	6
1071	A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Materials Horizons, 2023, 10, 466-472.	6.4	4
1072	Lipid nanoparticle-based mRNA candidates elicit potent T cell responses. Biomaterials Science, 2023, 11, 964-974.	2.6	15
1073	Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioactive Materials, 2023, 23, 438-470.	8.6	13
1074	Diving into the Structural Details of In Vitro Transcribed mRNA Using Liquid Chromatography–Mass Spectrometry-Based Oligonucleotide Profiling. Lc-gc Europe, 2022, , 220-236.	0.2	1
1075	Development of the mRNA vaccines to prevent COVID-19. Journal of Applied Biotechnology & Bioengineering, 2022, 9, 109-111.	0.0	0
1076	Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	12
1077	DNA and mRNA Vaccines for Chronic Viral Infections and Cancer: Rationale, Mechanisms, and Progress. Cancers, 2022, 14, 5874.	1.7	1
1078	Using nanomaterials to address SARS-CoV-2 variants through development of vaccines and therapeutics. Frontiers in Materials, 0, 9, .	1.2	0
1079	Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B, 2023, 13, 4105-4126.	5.7	13
1080	N2 modified dinucleotide cap analogs as a potent tool for mRNA engineering. Rna, 2023, 29, 200-216.	1.6	7
1081	Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications. Acta Biomaterialia, 2023, 155, 370-385.	4.1	5
1082	Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Archives of Pharmacal Research, 2022, 45, 865-893.	2.7	11
1083	Lichtâ€aktivierte Translation verschiedener mRNAs in Zellen durch wellenlägenabhägiges Photoentschützen. Angewandte Chemie, 2023, 135, .	1.6	2
1084	A tale of nucleic acid–ionizable lipid nanoparticles: Design and manufacturing technology and advancement. Expert Opinion on Drug Delivery, 2023, 20, 75-91.	2.4	6
1085	Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Science Advances, 2022, 8, .	4.7	24
1087	Catalysis medicine: Participating in the chemical networks of living organisms through catalysts. Tetrahedron, 2022, , 133227.	1.0	0

#	Article	IF	CITATIONS
1088	Targeted Treatment against Lipoprotein (a): The Coming Breakthrough in Lipid Lowering Therapy. Pharmaceuticals, 2022, 15, 1573.	1.7	11
1089	Delivering mRNA to Secondary Lymphoid Tissues by Phosphatidylserine‣oaded Lipid Nanoparticles. Advanced Healthcare Materials, 2023, 12, .	3.9	10
1090	Cell-Derived Vesicles for mRNA Delivery. Pharmaceutics, 2022, 14, 2699.	2.0	3
1091	Immuno-engineered mRNA combined with cell adhesive niche for synergistic modulation of the MSC secretome. Biomaterials, 2022, , 121971.	5.7	1
1092	Telomere Length: A Cardiovascular Biomarker and a Novel Therapeutic Target. International Journal of Molecular Sciences, 2022, 23, 16010.	1.8	16
1093	Nanotechnology in COVID-19 Vaccines. , 2023, , 14-26.		0
1095	Utilizing chemotherapy-induced tumor RNA nanoparticles to improve cancer chemoimmunotherapy. Acta Biomaterialia, 2023, 158, 698-707.	4.1	3
1096	A Thermal and Enzymatic Dualâ€Stimuli Responsive DNAâ€Based Nanomachine for Controlled mRNA Delivery. Advanced Science, 2023, 10, .	5.6	8
1098	Messenger RNA Nanovaccine in Cancer Immunotherapy. , 2023, , 253-269.		0
1099	Lightâ€Activated Translation of Different mRNAs in Cells via Wavelengthâ€Dependent Photouncaging. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
1100	mRNA vaccines for cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	33
1101	MicroRNA-dependent suppression of biological pacemaker activity induced by TBX18. Cell Reports Medicine, 2022, 3, 100871.	3.3	1
1102	Modulating the expression of tumor suppressor genes using activating oligonucleotide technologies as a therapeutic approach in cancer. Molecular Therapy - Nucleic Acids, 2023, 31, 211-223.	2.3	6
1103	mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines, 2022, 10, 2150.	2.1	25
1104	Gene Therapy and Cardiovascular Diseases. Advances in Experimental Medicine and Biology, 2023, , 235-254.	0.8	1
1105	Efficacy and Short-Term Safety of COVID-19 Vaccines: A Cross-Sectional Study on Vaccinated People in the UAE. Vaccines, 2022, 10, 2157.	2.1	4
1106	PEGylation and folic-acid functionalization of cationic lipoplexes—Improved nucleic acid transfer into cancer cells. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
1107	Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomarker Research, 2023, 11, .	2.8	12

		CITATION REPORT		
#	Article		IF	CITATIONS
1108	mRNA in the Context of Protein Replacement Therapy. Pharmaceutics, 2023, 15, 166.		2.0	22
1109	Development of Synthetic mRNAs Encoding Split Cytotoxic Proteins for Selective Cell Based on Specific Protein Detection. Pharmaceutics, 2023, 15, 213.	Elimination	2.0	0
1110	Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacer Nature Biomedical Engineering, 2023, 7, 887-900.	nent therapy.	11.6	36
1111	Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Deve Pathogens, 2023, 12, 138.	lopment.	1.2	15
1112	Optimal delivery strategies for nanoparticle-mediated mRNA delivery. Journal of Materi B, 2023, 11, 2063-2077.	als Chemistry	2.9	4
1113	Synthetic circular RNA switches and circuits that control protein expression in mamma Nucleic Acids Research, 2023, 51, e24-e24.	lian cells.	6.5	16
1114	Lipid nanoparticle-mediated mRNA delivery in lung fibrosis. European Journal of Pharma Sciences, 2023, 183, 106370.	aceutical	1.9	9
1115	A single vaccination of nucleoside-modified Rabies mRNA vaccine induces prolonged h immune responses in mice. Frontiers in Immunology, 0, 13, .	ighly protective	2.2	4
1116	Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transdu Targeted Therapy, 2023, 8, .	uction and	7.1	19
1117	Improper preanalytical processes on peripheral blood compromise RNA quality and ske transcriptional readouts of mRNA and LncRNA. Frontiers in Genetics, 0, 13, .	w the	1.1	1
1118	What Can RNA-Based Therapy Do for Monogenic Diseases?. Pharmaceutics, 2023, 15,	260.	2.0	1
1119	Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Diso of Sco2 Deficiency. Pharmaceutics, 2023, 15, 286.	Transcribed rders: The Case	2.0	1
1120	Bioinspired Lipid Nanocarriers for RNA Delivery. ACS Bio & Med Chem Au, 2023, 3, 114	-136.	1.7	8
1121	Characterization of BNT162b2 mRNA to Evaluate Risk of Off-Target Antigen Translatio Pharmaceutical Sciences, 2023, 112, 1364-1371.	n. Journal of	1.6	5
1122	Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable l nanoparticles. International Journal of Pharmaceutics, 2023, 632, 122565.	ipid	2.6	14
1123	From Challenges to Opportunities and Open Questions. , 2023, , 87-130.			0
1124	Appraisal of Some of the Key Postulates Underlying mRNA Vaccines. , 2023, , 13-40.			0
1126	Relevance for mRNA Vaccine Safety. , 2023, , 41-85.			0

#	ARTICLE Reduced Cytotoxicity by Repetitive mRNA Transfection in Differentiated Neurons. International	IF	CITATIONS
1128 1129	Journal of Stem Cells, 2023, 16, 117-122.	0.8	1
1130	Nanomaterials for Therapeutic Nucleic Acid Delivery. , 2022, , 1-29.		0
1131	Development of mRNA Vaccines/Therapeutics and Their Delivery System. Molecules and Cells, 2023, 46, 41-47.	1.0	6
1132	The Singapore National Precision Medicine Strategy. Nature Genetics, 2023, 55, 178-186.	9.4	9
1133	Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines, 2023, 11, 251.	2.1	6
1134	Insights on drug and gene delivery systems in liver fibrosis. Asian Journal of Pharmaceutical Sciences, 2023, 18, 100779.	4.3	6
1135	mRNA—From COVID-19 Treatment to Cancer Immunotherapy. Biomedicines, 2023, 11, 308.	1.4	3
1136	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300.	23.3	88
1137	Safe and Effective Delivery of mRNA Using Modified PEI-Based Lipopolymers. Pharmaceutics, 2023, 15, 410.	2.0	3
1138	Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering. Lab on A Chip, 2023, 23, 1758-1767.	3.1	7
1139	Novel Ionizable Lipid Nanoparticles for SARS oVâ€2 Omicron mRNA Delivery. Advanced Healthcare Materials, 2023, 12, .	3.9	11
1140	Block catiomers with flanking hydrolyzable tyrosinate groups enhance <i>in vivo</i> mRNA delivery <i>via</i> π–΀ stacking-assisted micellar assembly. Science and Technology of Advanced Materials, 2023, 24, .	2.8	11
1141	The DAMP-Driven Host Immune Defense Program Against Pathogens. , 2023, , 203-284.		0
1142	Polymerâ€Based mRNA Delivery Strategies for Advanced Therapies. Advanced Healthcare Materials, 2023, 12, .	3.9	32
1143	Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics, 2023, 15, 620.	2.0	5
1144	Hydrogels for RNA delivery. Nature Materials, 2023, 22, 818-831.	13.3	41
1145	An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. Progress in Biophysics and Molecular Biology, 2023, 178, 32-49.	1.4	16

#	Article	IF	CITATIONS
1146	Canine adipose tissue-derived MSCs engineered with mRNA to overexpress TSG-6 and enhance the anti-inflammatory effects in canine macrophages. Frontiers in Veterinary Science, 0, 10, .	0.9	0
1147	Visible Light Conjugation with Triazolinediones as a Route to Degradable Poly(ethylene glycol)–Lipids for mRNA Lipid Nanoparticle Formulation. Angewandte Chemie, 2023, 135, .	1.6	0
1148	Progress in vaccine development for infectious diseases—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2023, 1524, 65-86.	1.8	3
1149	Cationic surfactants: A review. Journal of Molecular Liquids, 2023, 375, 121335.	2.3	26
1150	In utero delivery of mRNA to the heart, diaphragm and muscle with lipid nanoparticles. Bioactive Materials, 2023, 25, 387-398.	8.6	6
1151	Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnology Advances, 2023, 65, 108130.	6.0	10
1152	Potential health risks of mRNA-based vaccine therapy: A hypothesis. Medical Hypotheses, 2023, 171, 111015.	0.8	4
1153	Development of a Library of Disulfide Bond-Containing Cationic Lipids for mRNA Delivery. Pharmaceutics, 2023, 15, 477.	2.0	0
1154	Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5′ cap-modified mRNAs. Nucleic Acids Research, 2023, 51, e34-e34.	6.5	8
1155	Highâ€Precision Synthesis of RNA‣oaded Lipid Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	11
1156	Das COVID19â€NMRâ€Konsortium: Ein öffentlicher Bericht über den Einfluss dieser neuen globalen Kollaboration. Angewandte Chemie, 2023, 135, .	1.6	0
1157	The COVID19â€NMR Consortium: A Public Report on the Impact of this New Global Collaboration. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1159	Identification of tumor antigens and immune subtypes of acute myeloid leukemia for mRNA vaccine development. Clinical and Translational Oncology, 2023, 25, 2204-2223.	1.2	2
1160	Liver Cancer and the Curative Potential of Nanomedicine. , 2023, , 283-306.		0
1161	AN EIF4G-RECRUITING APTAMER INCREASES THE FUNCTIONALITY OF IN VITRO TRANSCRIBED MRNA. , 2023, 4, 29-34.		5
1162	Single-domain antibody delivery using an mRNA platform protects against lethal doses of botulinum neurotoxin A. Frontiers in Immunology, 0, 14, .	2.2	6
1163	Domestic Animals as Potential Reservoirs of Zoonotic Viral Diseases. Annual Review of Animal Biosciences, 2023, 11, 33-55.	3.6	14
1164	RNA modification in mRNA cancer vaccines. Clinical and Experimental Medicine, 2023, 23, 1917-1931.	1.9	7

		CITATION REPORT		
#	Article		IF	CITATIONS
1166	mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown!. Vaccines, 2023,	11, 507.	2.1	11
1168	mRNA Vaccine - A New Cancer Treatment Strategy. Current Cancer Drug Targets, 2023	, 23, 669-681.	0.8	4
1170	Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. Op 100132.	enNano, 2023, 11,	1.8	16
1171	Development of a selection assay for small guide RNAs that drive efficient site-directed Nucleic Acids Research, O, , .	RNA editing.	6.5	3
1172	Ionizable drug delivery systems for efficient and selective gene therapy. Military Medica 2023, 10, .	ıl Research,	1.9	2
1173	Optimization of 5′UTR to evade SARS-CoV-2 Nonstructural protein 1-directed inhibit synthesis in cells. Applied Microbiology and Biotechnology, 2023, 107, 2451-2468.	tion of protein	1.7	2
1174	Inhalable mRNA nanoparticles. Nature Materials, 2023, 22, 278-279.		13.3	1
1175	Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control I tumors in mice. Science Translational Medicine, 2023, 15, .	HPV-associated	5.8	23
1176	Advances in RNA cancer therapeutics: New insight into exosomes as miRNA delivery. , 2	2023, 1, 100005.		4
1177	mRNA delivery in cancer immunotherapy. Acta Pharmaceutica Sinica B, 2023, 13, 1348	-1357.	5.7	9
1178	Effect of SARS-CoV-2 mRNA-Vaccine on the Induction of Myocarditis in Different Murin Models. International Journal of Molecular Sciences, 2023, 24, 5011.	e Animal	1.8	1
1180	Visible Light Conjugation with Triazolinediones as a Route to Degradable Poly(ethylene for mRNA Lipid Nanoparticle Formulation. Angewandte Chemie - International Edition, 2	glycol)–Lipids 2023, 62, .	7.2	8
1181	Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression cancer. Nature Communications, 2023, 14, .	of colorectal	5.8	10
1182	Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: advances and future directions. Biomedical Microdevices, 2023, 25, .	recent	1.4	7
1183	Evolution and Progress of mRNA Vaccines in the Treatment of Melanoma: Future Prosp 2023, 11, 636.	ects. Vaccines,	2.1	9
1184	Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines. Vaccir	ies, 2023, 11, 658.	2.1	8
1185	mRNA therapeutics: New vaccination and beyond. Fundamental Research, 2023, 3, 749	J-759.	1.6	6
1186	Drug discovery processes: When and where the rubber meets the road. , 2023, , 339-4	15.		1

#	Article	IF	CITATIONS
1187	Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. Journal of Controlled Release, 2023, 356, 580-594.	4.8	17
1190	Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Frontiers in Oncology, 0, 13, .	1.3	5
1191	Tuberculosis vaccines update: Is an RNA-based vaccine feasible for tuberculosis?. International Journal of Infectious Diseases, 2023, 130, S47-S51.	1.5	6
1192	FKBP11 improves the malignant property of osteosarcoma cells and acts as a prognostic factor of osteosarcoma. Aging, 2023, 15, 2450-2459.	1.4	0
1193	Efficient mRNA Delivery with mRNA Lipoplexes Prepared Using a Modified Ethanol Injection Method. Pharmaceutics, 2023, 15, 1141.	2.0	4
1194	Revolutionizing viral disease vaccination: the promising clinical advancements of non-replicating mRNA vaccines. Virology Journal, 2023, 20, .	1.4	1
1195	Nonreplicating synthetic mRNA vaccines: A journey through the European (Journal of Immunology) history. European Journal of Immunology, 2023, 53, .	1.6	2
1196	Smuggling on the Nanoscale—Fusogenic Liposomes Enable Efficient RNA-Transfer with Negligible Immune Response In Vitro and In Vivo. Pharmaceutics, 2023, 15, 1210.	2.0	1
1198	Nanotechnology Lighting the Way for Gene Therapy in Ophthalmopathy: From Opportunities toward Applications. Molecules, 2023, 28, 3500.	1.7	1
1199	Proof-of-concept for effective antiviral activity of an in silico designed decoy synthetic mRNA against SARS-CoV-2 in the Vero E6 cell-based infection model. Frontiers in Microbiology, 0, 14, .	1.5	2
1200	A concise review on miRNAs as regulators of colon cancer stem cells and associated signalling pathways. Clinical and Translational Oncology, 2023, 25, 3345-3356.	1.2	2
1201	Self-replicating RNA nanoparticle vaccine elicits protective immune responses against SARS-CoV-2. Molecular Therapy - Nucleic Acids, 2023, 32, 650-666.	2.3	3
1205	Nucleic Acid Therapeutics. , 2022, , 350-402.		0
1206	New Therapeutic Chemical Modalities: Compositions, Modes-of-action, and Drug Discovery. , 2023, , 911-961.		0
1242	A New Era of RNA Personalized Vaccines for Cancer and Cancer-Causing Infectious Diseases. , 0, , .		0
1252	Messenger RNA-Based Therapeutics and Vaccines: What's beyond COVID-19?. ACS Pharmacology and Translational Science, 2023, 6, 943-969.	2.5	10
1257	Learning from cancer to address COVID-19. Biologia Futura, 2023, 74, 29-43.	0.6	0
1260	Knife's edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Experimental and Molecular Medicine, 2023, 55, 1305-1313.	3.2	11

#	Article	IF	CITATIONS
1261	Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Applied Biochemistry and Biotechnology, 2024, 196, 1685-1711.	1.4	1
1272	Genetic-Based Vaccine Vectors. , 2023, , 1374-1396.e11.		0
1281	Nanomaterials for Therapeutic Nucleic Acid Delivery. , 2023, , 2005-2033.		0
1298	mRNA-Based Nanomedicine: A New Strategy for Treating Infectious Diseases and Beyond. European Journal of Drug Metabolism and Pharmacokinetics, 2023, 48, 515-529.	0.6	1
1302	mRNA vaccines in disease prevention and treatment. Signal Transduction and Targeted Therapy, 2023, 8,	7.1	9
1314	N2 modified cap analogues as translation inhibitors and substrates for preparation of therapeutic mRNA. European Biophysics Journal, 0, , .	1.2	1
1342	Emerging Therapeutics and Delivery. , 2024, , 437-469.		0
1355	Looking to the Future: Drug Delivery and Targeting in the Prophylaxis and Therapy of Severe and Chronic Diseases. Handbook of Experimental Pharmacology, 2023, , .	0.9	Ο
1367	Tailor made: the art of therapeutic mRNA design. Nature Reviews Drug Discovery, 2024, 23, 67-83.	21.5	1
1374	RNA-based nanomedicines and their clinical applications. Nano Research, O, , .	5.8	0
1379	Modified and Unmodified mRNA: For What Purpose?. , 2023, , 67-76.		0
1380	A Very Progressive Diffusion in Scientific Circles. , 2023, , 121-132.		0
1381	Solutions for mRNA Optimization. , 2023, , 53-65.		0
1382	Experiments and Clinical Trials Conducted: The Power of Therapeutic mRNA. , 2023, , 77-83.		0
1393	Immunization: Unveiling the Power of Vaccines in Shaping Global Health. , 0, , .		0
1395	Life-saving vaccines awarded. Nature Materials, 2023, 22, 1431-1431.	13.3	0
1403	Delivery of nucleic acids using nanomaterials. Molecular Biomedicine, 2023, 4, .	1.7	2
1417	Development of polypeptide-based materials toward messenger RNA delivery. Nanoscale, 0, ,	2.8	Ο

#	Article	IF	CITATIONS
1421	Therapeutic synthetic and natural materials for immunoengineering. Chemical Society Reviews, 2024, 53, 1789-1822.	18.7	0
1426	Breaking the mold with RNA—a "RNAissance―of life science. Npj Genomic Medicine, 2024, 9, .	1.7	0
1431	An oncolytic circular RNA therapy. Nature Cancer, 2024, 5, 5-7.	5.7	0
1434	mRNA vaccines: a promising solution for incurable diseases. , 2024, , .		0
1436	Nucleoside modification-based flexizymes with versatile activity for tRNA aminoacylation. Chemical Communications, 2024, 60, 1607-1610.	2.2	0
1442	Advances in RNA therapeutics for modulation of â€~undruggable' targets. Progress in Molecular Biology and Translational Science, 2024, , 249-294.	0.9	0
1445	Neoantigen vaccine nanoformulations based on Chemically synthesized minimal mRNA (CmRNA): small molecules, big impact. Npj Vaccines, 2024, 9, .	2.9	0
1446	Pulmonary Delivery of Nucleic Acids. AAPS Introductions in the Pharmaceutical Sciences, 2023, , 93-122.	0.1	0
1450	RNA therapeutics for diarrhea. Progress in Molecular Biology and Translational Science, 2024, , 295-309.	0.9	0
1452	Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech, 2024, 25, .	1.5	0
1453	RNA therapeutics for metabolic disorders. Progress in Molecular Biology and Translational Science, 2024, , 181-196.	0.9	0
1454	Types of RNA therapeutics. Progress in Molecular Biology and Translational Science, 2024, , 41-63.	0.9	0
1455	RNA therapeutics: Molecular mechanisms, and potential clinical translations. Progress in Molecular Biology and Translational Science, 2024, , 65-82.	0.9	0