Truncated and modified amyloid-beta species

Alzheimer's Research and Therapy 6, 28

DOI: 10.1186/alzrt258

Citation Report

#	Article	IF	CITATIONS
1	Proteomics of protein post-translational modifications implicated in neurodegeneration. Translational Neurodegeneration, 2014, 3, 23.	3.6	59
2	A20 suppresses vascular inflammation by recruiting proinflammatory signaling molecules to intracellular aggresomes. FASEB Journal, 2015, 29, 1869-1878.	0.2	13
3	Chloroquine and Chloroquinoline Derivatives as Models for the Design of Modulators of Amyloid Peptide Precursor Metabolism. ACS Chemical Neuroscience, 2015, 6, 559-569.	1.7	35
4	Decrease in APP and CP mRNA expression supports impairment of iron export in Alzheimer's disease patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2116-2122.	1.8	33
5	Amyloid-β as a biomarker for Alzheimer's disease: quantification methods in body fluids. Expert Review of Proteomics, 2015, 12, 343-354.	1.3	27
6	Analyzing dendritic spine pathology in Alzheimer's disease: problems and opportunities. Acta Neuropathologica, 2015, 130, 1-19.	3.9	154
7	Extracellular Vesicles in Alzheimer's Disease: Friends or Foes? Focus on Aβ-Vesicle Interaction. International Journal of Molecular Sciences, 2015, 16, 4800-4813.	1.8	73
8	Identification of amyloid beta mid-domain fragments in human cerebrospinal fluid. Biochimie, 2015, 113, 86-92.	1.3	8
9	Cellular Functions of the Amyloid Precursor Protein from Development to Dementia. Developmental Cell, 2015, 32, 502-515.	3.1	191
10	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.		4,129
	Neuronmanmation in Alzheimer 3 disease. Lancer Neurology, me, 2013, 14, 300 403.	4.9	
11	Linking Genes to Neurological Clinical Practice. Journal of Neurologic Physical Therapy, 2015, 39, 52-61.	4.9 0.7	16
11 12			16 53
	Linking Genes to Neurological Clinical Practice. Journal of Neurologic Physical Therapy, 2015, 39, 52-61. Truncated Amyloid-β(11–40/42) from Alzheimer Disease Binds Cu2+ with a Femtomolar Affinity and	0.7	
12	Linking Genes to Neurological Clinical Practice. Journal of Neurologic Physical Therapy, 2015, 39, 52-61. Truncated Amyloid-β(11–40/42) from Alzheimer Disease Binds Cu2+ with a Femtomolar Affinity and Influences Fiber Assembly. Journal of Biological Chemistry, 2015, 290, 27791-27802. Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N-truncated Abeta in sporadic Alzheimer disease cases and mouse models. Acta	0.7 1.6	53
12 13	Linking Genes to Neurological Clinical Practice. Journal of Neurologic Physical Therapy, 2015, 39, 52-61. Truncated Amyloid-Î ² (11–40/42) from Alzheimer Disease Binds Cu2+ with a Femtomolar Affinity and Influences Fiber Assembly. Journal of Biological Chemistry, 2015, 290, 27791-27802. Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N-truncated Abeta in sporadic Alzheimer disease cases and mouse models. Acta Neuropathologica, 2015, 130, 713-729. Reduction of amyloid-beta levels in mouse eye tissues byÂintra-vitreally delivered neprilysin.	0.7 1.6 3.9	53 53
12 13 14	 Linking Genes to Neurological Clinical Practice. Journal of Neurologic Physical Therapy, 2015, 39, 52-61. Truncated Amyloid-β(11–40/42) from Alzheimer Disease Binds Cu2+ with a Femtomolar Affinity and Influences Fiber Assembly. Journal of Biological Chemistry, 2015, 290, 27791-27802. Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N-truncated Abeta in sporadic Alzheimer disease cases and mouse models. Acta Neuropathologica, 2015, 130, 713-729. Reduction of amyloid-beta levels in mouse eye tissues byÂintra-vitreally delivered neprilysin. Experimental Eye Research, 2015, 138, 134-144. Isobaric Quantification of Cerebrospinal Fluid Amyloid-β Peptides in Alzheimer's Disease: C-Terminal Truncation Relates to Early Measures of Neurodegeneration. Journal of Proteome Research, 2015, 14, 	0.7 1.6 3.9 1.2	53 53 36
12 13 14 15	 Linking Genes to Neurological Clinical Practice. Journal of Neurologic Physical Therapy, 2015, 39, 52-61. Truncated Amyloid-β(11–40/42) from Alzheimer Disease Binds Cu2+ with a Femtomolar Affinity and Influences Fiber Assembly. Journal of Biological Chemistry, 2015, 290, 27791-27802. Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N-truncated Abeta in sporadic Alzheimer disease cases and mouse models. Acta Neuropathologica, 2015, 130, 713-729. Reduction of amyloid-beta levels in mouse eye tissues byÂintra-vitreally delivered neprilysin. Experimental Eye Research, 2015, 138, 134-144. Isobaric Quantification of Cerebrospinal Fluid Amyloid-β Peptides in Alzheimer's Disease: C-Terminal Truncation Relates to Early Measures of Neurodegeneration. Journal of Proteome Research, 2015, 14, 4834-4843. Beta Amyloid Peptides: Extracellular and Intracellular Mechanisms of Clearance in Alzheimer's 	0.7 1.6 3.9 1.2	53 53 36 7

			1
#	Article	IF	Citations
19	Kinetic and structural characterization of amyloidâ€Î² peptide hydrolysis by human angiotensinâ€1â€converting enzyme. FEBS Journal, 2016, 283, 1060-1076.	2.2	19
20	TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. Journal of Experimental Medicine, 2016, 213, 667-675.	4.2	565
21	Amyloid Î ² -peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Molecular Biology of the Cell, 2016, 27, 3257-3272.	0.9	87
22	Kinetics of the Interactions between Copper and Amyloidâ€Î² with FAD Mutations and Phosphorylation at the Nâ€terminus. ChemBioChem, 2016, 17, 1732-1737.	1.3	15
23	Mice are not Men: ADAM30 Findings Emphasize a Broader Look Towards Murine Alzheimer's Disease Models. EBioMedicine, 2016, 9, 19-20.	2.7	0
24	Interplay of histidine residues of the Alzheimer's disease Aβ peptide governs its Zn-induced oligomerization. Scientific Reports, 2016, 6, 21734.	1.6	81
25	An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations. ChemBioChem, 2016, 17, 657-676.	1.3	95
26	Amyloid Plaque in the Human Brain Can Decompose from Aβ(1-40/1-42) by Spontaneous Nonenzymatic Processes. Analytical Chemistry, 2016, 88, 2675-2684.	3.2	32
27	Recent progress in translational research on neurovascular and neurodegenerative disorders. Restorative Neurology and Neuroscience, 2017, 35, 87-103.	0.4	16
28	Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. International Review of Cell and Molecular Biology, 2017, 329, 145-185.	1.6	17
29	Therapeutic potential of nuclear receptor agonists in Alzheimer's disease. Journal of Lipid Research, 2017, 58, 1937-1949.	2.0	61
30	Intracerebroventricular injection of beta-amyloid in mice is associated with long-term cognitive impairment in the modified hole-board test. Behavioural Brain Research, 2017, 324, 15-20.	1.2	25
31	Posttranslational modification impact on the mechanism by which amyloidâ $\in \hat{I}^2$ induces synaptic dysfunction. EMBO Reports, 2017, 18, 962-981.	2.0	50
32	Multiple functions of insulin-degrading enzyme: a metabolic crosslight?. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 554-582.	2.3	73
33	Nâ€Terminally Truncated Amyloidâ€Î² _(11–40/42) Cofibrillizes with its Fullâ€Length Counterpart: Implications for Alzheimer's Disease. Angewandte Chemie - International Edition, 2017, 56, 9816-9819.	7.2	25
34	Glutaminyl cyclase activity correlates with levels of Aβ peptides and mediators of angiogenesis in cerebrospinal fluid of Alzheimer's disease patients. Alzheimer's Research and Therapy, 2017, 9, 38.	3.0	24
35	Emerging roles for the amyloid precursor protein and derived peptides in the regulation of cellular and systemic metabolism. Journal of Neuroendocrinology, 2017, 29, .	1.2	15
36	Preclinical to phase II amyloid beta (A _β) peptide modulators under investigation for Alzheimer's disease. Expert Opinion on Investigational Drugs, 2017, 26, 579-592.	1.9	23

#	Article	IF	CITATIONS
37	Prophylactic Vaccine Based on Pyroglutamate-3 Amyloid β Generates Strong Antibody Response and Rescues Cognitive Decline in Alzheimer's Disease Model Mice. ACS Chemical Neuroscience, 2017, 8, 454-459.	1.7	8
38	Pyroglutamateâ€Modified Amyloid β (11―40) Fibrils Are More Toxic than Wildtype Fibrils but Structurally Very Similar. Chemistry - A European Journal, 2017, 23, 15834-15838.	1.7	17
39	Diversity of Amyloid-beta Proteoforms in the Alzheimer's Disease Brain. Scientific Reports, 2017, 7, 9520.	1.6	125
40	N-Terminal Acetylation Preserves α-Synuclein from Oligomerization by Blocking Intermolecular Hydrogen Bonds. ACS Chemical Neuroscience, 2017, 8, 2145-2151.	1.7	52
41	Nâ€Terminally Truncated Amyloidâ€Î² (11 – 40/42) Cofibrillizes with its Fullâ€Length Counterpart: Implications for Alzheimer's Disease. Angewandte Chemie, 2017, 129, 9948-9951.	1.6	7
42	Dimerization of the transmembrane domain of amyloid precursor protein is determined by residues around the γ-secretase cleavage sites. Journal of Biological Chemistry, 2017, 292, 15826-15837.	1.6	26
43	APP/AÎ ² structural diversity and Alzheimer's disease pathogenesis. Neurochemistry International, 2017, 110, 1-13.	1.9	78
44	Filling the void: a role for exercise-induced BDNF and brain amyloid precursor protein processing. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R585-R593.	0.9	25
45	Phosphorylation of a full length amyloid-β peptide modulates its amyloid aggregation, cell binding and neurotoxic properties. Molecular BioSystems, 2017, 13, 1545-1551.	2.9	24
46	Methodological approaches and insights on protein aggregation in biological systems. Expert Review of Proteomics, 2017, 14, 55-68.	1.3	2
47	Amyloid Î ² Modification: A Key to the Sporadic Alzheimer's Disease?. Frontiers in Genetics, 2017, 8, 58.	1.1	52
48	Non-aggregated Al̂225-35 Upregulates Primary Astrocyte Proliferation In Vitro. Frontiers in Cellular Neuroscience, 2017, 11, 301.	1.8	3
49	Non-canonical soluble amyloid-beta aggregates and plaque buffering: controversies and future directions for target discovery in Alzheimer's disease. Alzheimer's Research and Therapy, 2017, 9, 62.	3.0	62
50	N-truncated Aβ4–x peptides in sporadic Alzheimer's disease cases and transgenic Alzheimer mouse models. Alzheimer's Research and Therapy, 2017, 9, 80.	3.0	34
51	Dynamic changes of oligomeric amyloid β levels in plasma induced by spiked synthetic Aβ42. Alzheimer's Research and Therapy, 2017, 9, 86.	3.0	57
52	Alzheimer's Disease as the Product of a Progressive Energy Deficiency Syndrome in the Central Nervous System: The Neuroenergetic Hypothesis. Journal of Alzheimer's Disease, 2017, 60, 1223-1229.	1.2	32
53	Type 2 diabetes mellitus in the pathophysiology of Alzheimer's disease. Dementia E Neuropsychologia, 2017, 11, 105-113.	0.3	34
54	APP deficiency results in resistance to obesity but impairs glucose tolerance upon high fat feeding. Journal of Endocrinology, 2018, 237, 311-322.	1.2	13

#	Article	IF	CITATIONS
55	The receptor for advanced glycation endproducts is a mediator of toxicity by IAPP and other proteotoxic aggregates: Establishing and exploiting common ground for novel amyloidosis therapies. Protein Science, 2018, 27, 1166-1180.	3.1	19
56	Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease. Biomedicine and Pharmacotherapy, 2018, 98, 297-307.	2.5	110
57	Decreased cerebral <i>Irpâ€1B</i> limits impact of social isolation in wild type and Alzheimer's disease modeled in <i>Drosophila melanogaster</i> . Genes, Brain and Behavior, 2018, 17, e12451.	1.1	5
58	Profiles of β-Amyloid Peptides and Key Secretases in Brain Autopsy Samples Differ with Sex and APOE ε4 Status: Impact for Risk and Progression of Alzheimer Disease. Neuroscience, 2018, 373, 20-36.	1.1	45
59	Direct Evidence of the Presence of Cross-Linked Aβ Dimers in the Brains of Alzheimer's Disease Patients. Analytical Chemistry, 2018, 90, 4552-4560.	3.2	37
60	Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nature Reviews Neurology, 2018, 14, 22-39.	4.9	303
61	Resveratrol and Alzheimer's disease. From molecular pathophysiology to clinical trials. Experimental Gerontology, 2018, 113, 36-47.	1.2	41
62	Aβ and the dementia syndrome: Simple versus complex perspectives. European Journal of Clinical Investigation, 2018, 48, e13025.	1.7	11
63	The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 1602-1614.	0.4	305
64	Rodent models for Alzheimer disease. Nature Reviews Neuroscience, 2018, 19, 583-598.	4.9	240
65	Passive AÎ ² Immunotherapy: Current Achievements and Future Perspectives. Molecules, 2018, 23, 1068.	1.7	41
66	Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. International Journal of Molecular Sciences, 2018, 19, 2677.	1.8	103
67	Phosphorylation of the Amyloid-Beta Peptide Inhibits Zinc-Dependent Aggregation, Prevents Na,K-ATPase Inhibition, and Reduces Cerebral Plaque Deposition. Frontiers in Molecular Neuroscience, 2018, 11, 302.	1.4	33
68	Antibody Engineering for Optimized Immunotherapy in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 254.	1.4	17
69	Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation. Molecules, 2018, 23, 924.	1.7	14
70	Modified amyloid variants in pathological subgroups of <i>β</i> â€amyloidosis. Annals of Clinical and Translational Neurology, 2018, 5, 815-831.	1.7	18
71	The Properties of Amyloid-β Fibrils Are Determined by their Path of Formation. Journal of Molecular Biology, 2018, 430, 1940-1949.	2.0	17
72	Pyroglutamate and Isoaspartate modified Amyloid-Beta in ageing and Alzheimer's disease. Acta	2.4	69

#	Article	IF	CITATIONS
73	An inorganic overview of natural AÎ ² fragments: Copper(II) and zinc(II)-mediated pathways. Coordination Chemistry Reviews, 2018, 369, 1-14.	9.5	14
74	The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aβ) species on long-term potentiation (LTP). Neuropharmacology, 2018, 140, 184-192.	2.0	22
75	Differential Modulation of the Aggregation of Nâ€Terminal Truncated Aβ using Cucurbiturils. Chemistry - A European Journal, 2018, 24, 13647-13653.	1.7	19
76	Effect of ferric citrate on amyloidâ€beta peptides behavior. Biopolymers, 2018, 109, e23224.	1.2	11
77	Transthyretin Interferes with Aβ Amyloid Formation by Redirecting Oligomeric Nuclei into Non-Amyloid Aggregates. Journal of Molecular Biology, 2018, 430, 2722-2733.	2.0	23
78	Investigation of plasma metabolomics and neurotransmitter dysfunction in the process of Alzheimer's disease rat induced by amyloid beta 25-35. RSC Advances, 2019, 9, 18308-18319.	1.7	5
79	Cu ^{II} Binding Properties of N-Truncated AÎ ² Peptides: In Search of Biological Function. Inorganic Chemistry, 2019, 58, 13561-13577.	1.9	34
80	Structure of amyloid-β (20-34) with Alzheimer's-associated isomerization at Asp23 reveals a distinct protofilament interface. Nature Communications, 2019, 10, 3357.	5.8	45
81	Dual Bioorthogonal Labeling of the Amyloid-β Protein Precursor Facilitates Simultaneous Visualization of the Protein and Its Cleavage Products. Journal of Alzheimer's Disease, 2019, 72, 537-548.	1.2	13
82	Female Sex Hormones and Cardiac Pressure Overload Independently Contribute to the Cardiogenic Dementia Profile in Yucatan Miniature Swine. Frontiers in Cardiovascular Medicine, 2019, 6, 129.	1.1	7
83	Effect of Post-Translational Modifications and Mutations on Amyloid-β Fibrils Dynamics at NÂTerminus. Biophysical Journal, 2019, 117, 1524-1535.	0.2	15
84	Seeding and Cross-Seeding Aggregations of Aβ ₄₀ and Its N-Terminal-Truncated Peptide Aβ _{11–40} . Langmuir, 2019, 35, 2821-2831.	1.6	13
85	Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer's disease development: An up-to-date review. European Journal of Pharmacology, 2019, 856, 172415.	1.7	64
86	Regulation of the alternative β-secretase meprin β by ADAM-mediated shedding. Cellular and Molecular Life Sciences, 2019, 76, 3193-3206.	2.4	19
87	Molecular structure of an N-terminal phosphorylated β-amyloid fibril. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11253-11258.	3.3	43
88	Structure-Based Peptide Inhibitor Design of Amyloid-β Aggregation. Frontiers in Molecular Neuroscience, 2019, 12, 54.	1.4	58
89	The antiâ€prion RNA aptamer R12 disrupts the Alzheimer's diseaseâ€related complex between prion and amyloid β. FEBS Journal, 2019, 286, 2355-2365.	2.2	9
90	Systematically Characterize the Anti-Alzheimer's Disease Mechanism of Lignans from S. chinensis based on In-Vivo Ingredient Analysis and Target-Network Pharmacology Strategy by UHPLC–Q-TOF-MS. Molecules, 2019, 24, 1203.	1.7	21

#	ARTICLE Coimmunocapture and Electrochemical Quantitation of Total and Phosphorylated	IF	Citations
91	Amyloid-Î ² ₄₀ Monomers. Analytical Chemistry, 2019, 91, 3539-3545.	3.2	23
92	Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-1² fibrils. Journal of Biological Chemistry, 2019, 294, 5840-5853.	1.6	24
93	Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Human Molecular Genetics, 2019, 28, 2014-2029.	1.4	5
94	Neuro biomarker levels measured with high-sensitivity digital ELISA differ between serum and plasma. Bioanalysis, 2019, 11, 2087-2094.	0.6	23
95	Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2019, 23, 991-1004.	1.5	32
96	The metalloprotease ADAMTS4 generates N-truncated Al̂²4–x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease. Acta Neuropathologica, 2019, 137, 239-257.	3.9	44
97	Amyloid precursor proteinâ€mediated mitochondrial regulation and Alzheimer's disease. British Journal of Pharmacology, 2019, 176, 3464-3474.	2.7	28
98	Intracerebroventricular injection of resveratrol ameliorated AÎ ² -induced learning and cognitive decline in mice. Metabolic Brain Disease, 2019, 34, 257-266.	1.4	58
99	Amyloid-Î ² and Parkinson's disease. Journal of Neurology, 2019, 266, 2605-2619.	1.8	79
100	A vaccine against Alzheimer`s disease: anything left but faith?. Expert Opinion on Biological Therapy, 2019, 19, 73-78.	1.4	27
101	Complete identification of all 20 relevant epimeric peptides in β-amyloid: a new HPLC-MS based analytical strategy for Alzheimer's research. Chemical Communications, 2020, 56, 1537-1540.	2.2	20
102	Proteomic and Unbiased Post-Translational Modification Profiling of Amyloid Plaques and Surrounding Tissue in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 73, 393-411.	1.2	9
103	Phosphorylation Signaling in APP Processing in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 209.	1.8	51
104	From Stroke to Dementia: a Comprehensive Review Exposing Tight Interactions Between Stroke and Amyloid-β Formation. Translational Stroke Research, 2020, 11, 601-614.	2.3	82
105	Computational Analysis of Alzheimer Amyloid Plaque Composition in 2D- and Elastically Reconstructed 3D-MALDI MS Images. Analytical Chemistry, 2020, 92, 14484-14493.	3.2	15
106	Fast Purification of Recombinant Monomeric Amyloid-β from <i>E. coli</i> and Amyloid-β-mCherry Aggregates from Mammalian Cells. ACS Chemical Neuroscience, 2020, 11, 3204-3213.	1.7	4
107	Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nature Structural and Molecular Biology, 2020, 27, 1125-1133.	3.6	123
108	Caenorhabditis elegans as a possible model to screen anti-Alzheimer's therapeutics. Journal of Pharmacological and Toxicological Methods, 2020, 106, 106932.	0.3	14

#	Article	IF	CITATIONS
109	Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation. International Journal of Biological Macromolecules, 2020, 165, 1323-1330.	3.6	15
110	Structural characteristics of oligomers formed by pyroglutamate-modified amyloid β peptides studied by solid-state NMR. Physical Chemistry Chemical Physics, 2020, 22, 16887-16895.	1.3	11
111	N-Terminal Modified Aβ Variants Enable Modulations to the Structures and Cytotoxicity Levels of Wild-Type Aβ Fibrils through Cross-Seeding. ACS Chemical Neuroscience, 2020, 11, 2058-2065.	1.7	10
112	Analyzing microglial-associated Aβ in Alzheimer's disease transgenic mice with a novel mid-domain Aβ-antibody. Scientific Reports, 2020, 10, 10590.	1.6	3
113	Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer's disease-like pathology. Alzheimer's Research and Therapy, 2020, 12, 149.	3.0	10
114	The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer's disease. Acta Neuropathologica, 2021, 142, 17-39.	3.9	35
115	The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer's disease. Acta Neuropathologica, 2020, 140, 811-830.	3.9	45
116	Novel fluid biomarkers to differentiate frontotemporal dementia and dementia with Lewy bodies from Alzheimer's disease: A systematic review. Journal of the Neurological Sciences, 2020, 415, 116886.	0.3	13
117	Dynamics of Serine-8 Side-Chain in Amyloid-β Fibrils and Fluorenylmethyloxycarbonyl Serine Amino Acid, Investigated by Solid-State Deuteron NMR. Journal of Physical Chemistry B, 2020, 124, 4723-4731.	1.2	3
118	Biophysical studies of protein misfolding and aggregation inin vivomodels of Alzheimer's and Parkinson's diseases. Quarterly Reviews of Biophysics, 2020, 53, e22.	2.4	13
119	Nâ€ŧerminal heterogeneity of parenchymal and vascular amyloidâ€Ĵ² deposits in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2020, 46, 673-685.	1.8	20
120	Effects of N-Terminal Residues on the Assembly of Constrained β-Hairpin Peptides Derived from Aβ. Journal of the American Chemical Society, 2020, 142, 11593-11601.	6.6	12
121	Incorporation of the Nonproteinogenic Amino Acid β-Methylamino-alanine Affects Amyloid β Fibril Properties and Toxicity. ACS Chemical Neuroscience, 2020, 11, 1038-1047.	1.7	15
122	Computational Model to Unravel the Function of Amyloid-β Peptides in Contact with a Phospholipid Membrane. Journal of Physical Chemistry B, 2020, 124, 3300-3314.	1.2	7
123	Application of electrochemical method to a comparative study of spontaneous aggregation of amyloid-β isoforms. Journal of Electroanalytical Chemistry, 2020, 861, 113938.	1.9	7
124	Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 82, S335-S357.	1.2	65
125	Amyloid-β, tau, and the cholinergic system in Alzheimer's disease: seeking direction in a tangle of clues. Reviews in the Neurosciences, 2020, 31, 391-413.	1.4	56
126	Halogenation of the N â€Terminus Tyrosine 10 Promotes Supramolecular Stabilization of the Amyloidâ€Î² Sequence 7–12. ChemistryOpen, 2020, 9, 253-260.	0.9	6

#	Article	IF	CITATIONS
127	Enhanced self-assembly of the 7–12 sequence of amyloid-β peptide by tyrosine bromination. Supramolecular Chemistry, 2020, 32, 247-255.	1.5	8
128	FAM222A encodes a protein which accumulates in plaques in Alzheimer's disease. Nature Communications, 2020, 11, 411.	5.8	16
129	PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation. Molecular Biology of the Cell, 2020, 31, 244-260.	0.9	8
130	Cerebrospinal Fluid Biomarkers in Cerebral Amyloid Angiopathy. Journal of Alzheimer's Disease, 2020, 74, 1189-1201.	1.2	38
131	Impact of Nâ€Truncated Aβ Peptides on Cu―and Cu(Aβ)â€Generated ROS: Cu ^I Matters!. Chemistr A European Journal, 2021, 27, 1777-1786.	У _{1.7}	21
132	Functions of amyloid precursor protein in metabolic diseases. Metabolism: Clinical and Experimental, 2021, 115, 154454.	1.5	38
133	The Aggregation Pattern of Al² _{1–40} is Altered by the Presence of <i>N</i> â€Truncated Al² _{4–40} and/or Cu ^{II} in a Similar Way through Ionic Interactions. Chemistry - A European Journal, 2021, 27, 2798-2809.	1.7	12
134	Drug design targeting active posttranslational modification protein isoforms. Medicinal Research Reviews, 2021, 41, 1701-1750.	5.0	33
135	Microbiota modulation as preventative and therapeutic approach in Alzheimer's disease. FEBS Journal, 2021, 288, 2836-2855.	2.2	60
136	Reproducibility Problems of Amyloid- $\hat{1}^2$ Self-Assembly and How to Deal With Them. Frontiers in Chemistry, 2020, 8, 611227.	1.8	13
137	Insights Into the Mechanism of Tyrosine Nitration in Preventing β-Amyloid Aggregation in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2021, 14, 619836.	1.4	4
139	Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain Communications, 2021, 3, fcab028.	1.5	25
140	Probing the Structure of Toxic Amyloid-β Oligomers with Electron Spin Resonance and Molecular Modeling. ACS Chemical Neuroscience, 2021, 12, 1150-1161.	1.7	9
141	Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry, 2021, 13, 455.	1.1	9
142	Mitochondrial Permeability Transition: A Pore Intertwines Brain Aging and Alzheimer's Disease. Cells, 2021, 10, 649.	1.8	27
143	Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 645334.	1.7	10
144	Inhibitory mechanism of an antifungal drug, caspofungin against amyloid β peptide aggregation: Repurposing via neuroinformatics and an experimental approach. Molecular and Cellular Neurosciences, 2021, 112, 103612.	1.0	3
145	In vivo Characterization of Biochemical Variants of Amyloid-β in Subjects with Idiopathic Normal Pressure Hydrocephalus and Alzheimer's Disease Neuropathological Change. Journal of Alzheimer's Disease, 2021, 80, 1003-1012.	1.2	3

#	Article	IF	CITATIONS
146	The Diagnostic Potential of Amyloidogenic Proteins. International Journal of Molecular Sciences, 2021, 22, 4128.	1.8	7
147	Aβ43 aggregates exhibit enhanced prion-like seeding activity in mice. Acta Neuropathologica Communications, 2021, 9, 83.	2.4	14
148	Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. Journal of Neurochemistry, 2021, 159, 234-257.	2.1	8
149	The complexity of Alzheimer's disease: an evolving puzzle. Physiological Reviews, 2021, 101, 1047-1081.	13.1	110
150	Differential interaction with <scp>TREM2</scp> modulates microglial uptake of modified AÎ ² species. Glia, 2021, 69, 2917-2932.	2.5	9
151	Cross-Seeded Fibrillation Induced by Pyroglutamate-3 and Truncated Aβ ₄₀ Variants Leads to Aβ ₄₀ Structural Polymorphism Modulation and Elevated Toxicity. ACS Chemical Neuroscience, 2021, 12, 3625-3637.	1.7	11
152	The Absence of Myelin Basic Protein Reduces Non-Amyloidogenic Processing of Amyloid Precursor Protein. Current Alzheimer Research, 2021, 18, 326-334.	0.7	3
154	Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines, 2021, 9, 86.	1.4	35
157	Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries, 2017, 5, e79.	1.5	9
158	Aβ Plaques. Free Neuropathology, 2020, 1, .	2.4	21
159	Inhalational Anesthetics Do Not Deteriorate Amyloid-β-Derived Pathophysiology in Alzheimer's Disease: Investigations on the Molecular, Neuronal, and Behavioral Level. Journal of Alzheimer's Disease, 2021, 84, 1193-1218.	1.2	1
160	TREM2 modulates differential deposition of modified and non-modified AÎ ² species in extracellular plaques and intraneuronal deposits. Acta Neuropathologica Communications, 2021, 9, 168.	2.4	12
161	The cellular modifier MOAGâ€4/SERF drives amyloid formation through charge complementation. EMBO Journal, 2021, 40, e107568.	3.5	15
163	Imaging Modalities: Neuropathology. , 2019, , 57-118.		0
164	Neurodegeneration: General Aspects. , 2019, , 827-870.		0
165	The New Insight for Novel Antimicrobial Peptides Designing by Computational Design and Improvement of an Antimicrobial Peptide Derivate of LL-37. Avicenna Journal of Clinical Microbiology and Infection, 2019, 6, 15-20.	0.2	2
168	Neurotoxicity of different amyloid beta subspecies in mice and their interaction with isoflurane anaesthesia. PLoS ONE, 2020, 15, e0242989.	1.1	5
169	Deuterium solidâ€state NMR quadrupolar order rotating frame relaxation with applications to amyloidâ€Î² fibrils. Magnetic Resonance in Chemistry, 2021, 59, 853-863.	1.1	2

#	Article	IF	CITATIONS
170	Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotoxicity Research, 2022, 40, 298-318.	1.3	5
172	Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease—A Non-Systematic Review. International Journal of Molecular Sciences, 2022, 23, 1212.	1.8	6
173	Downregulation of PIK3CB Involved in Alzheimer's Disease via Apoptosis, Axon Guidance, and FoxO Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	5
174	Relationship between Plasma Level of Beta-amyloid, Alpha-synuclein, and Tau Protein with Cognitive Impairment in Parkinson Disease. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 663-667.	0.1	2
175	Meprin β knockout reduces brain Aβ levels and rescues learning and memory impairments in the APP/lon mouse model for Alzheimer's disease. Cellular and Molecular Life Sciences, 2022, 79, 168.	2.4	3
176	Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer's Disease Patients. International Journal of Molecular Sciences, 2022, 23, 3245.	1.8	13
177	Mass spectrometric studies of the variety of betaâ€amyloid proteoforms in Alzheimer's disease. Mass Spectrometry Reviews, 2022, , e21775.	2.8	7
178	Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling. Bioengineering, 2021, 8, 211.	1.6	6
179	The Dynamics of β-Amyloid Proteoforms Accumulation in the Brain of a 5xFAD Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 27.	1.8	7
180	Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Progress in Neurobiology, 2022, 214, 102270.	2.8	77
183	A Chemical Mutagenesis Approach to Insert Post-translational Modifications in Aggregation-Prone Proteins. ACS Chemical Neuroscience, 2022, 13, 1714-1718.	1.7	1
184	Electrochemical Aptasensors for Parkinson's Disease Biomarkers Detection. Current Medicinal Chemistry, 2022, 29, 5795-5814.	1.2	2
186	Amyloid Beta Peptide-Mediated Alterations in Mitochondrial Dynamics and its Implications for Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2023, 22, 1039-1056.	0.8	1
187	Establishing In-House Cutoffs of CSF Alzheimer's Disease Biomarkers for the AT(N) Stratification of the Alzheimer Center Barcelona Cohort. International Journal of Molecular Sciences, 2022, 23, 6891.	1.8	13
189	Proteomic Markers and Early Prediction of Alzheimer's Disease. Biochemistry (Moscow), 2022, 87, 762-776.	0.7	2
190	Inhibition of PLK2 activity affects APP and tau pathology and improves synaptic content in a sex-dependent manner in a 3xTg mouse model of Alzheimer's disease. Neurobiology of Disease, 2022, 172, 105833.	2.1	3
191	Post-translational Modifications in Brain Diseases: A Future for Biomarkers. Advances in Experimental Medicine and Biology, 2022, , 129-141.	0.8	0
192	Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radical Biology and Medicine, 2022, 193, 134-157.	1.3	46

#	Article	IF	Citations
193	Pathophysiology of Alzheimerâ \in Ms Disease. Psychiatric Clinics of North America, 2022, , .	0.7	9
194	Mixed Pathologies in a Subject with a Novel PSEN1 G206R Mutation. Journal of Alzheimer's Disease, 2022, 90, 1601-1614.	1.2	1
195	The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells, 2022, 11, 3421.	1.8	3
196	Amyloid Beta in Aging and Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 12924.	1.8	50
197	Structural Determinant of \hat{l}^2 -Amyloid Formation: From Transmembrane Protein Dimerization to \hat{l}^2 -Amyloid Aggregates. Biomedicines, 2022, 10, 2753.	1.4	8
198	Targeting amyloid proteins for clinical diagnosis of neurodegenerative diseases. Fundamental Research, 2023, 3, 505-519.	1.6	4
199	Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood–Brain Barrier Endothelium. International Journal of Molecular Sciences, 2023, 24, 183.	1.8	6
202	Phosphorylation and Dephosphorylation of Beta-Amyloid Peptide in Model Cell Cultures: The Role of Cellular Protein Kinases and Phosphatases. Life, 2023, 13, 147.	1.1	2
203	Jacobâ€induced transcriptional inactivation of <scp>CREB</scp> promotes Aβâ€induced synapse loss in Alzheimer's disease. EMBO Journal, 2023, 42, .	3.5	9
204	Aggregation of Disordered Proteins Associated with Neurodegeneration. International Journal of Molecular Sciences, 2023, 24, 3380.	1.8	16
205	Mixed pathology as a rule, not exception: Time to reconsider disease nosology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 57-71.	1.0	6
206	Structural polymorphism and cytotoxicity of brainâ€derived βâ€amyloid extracts. Protein Science, 2023, 32, ·	3.1	4
207	Protein Interactome of Amyloid- \hat{l}^2 as a Therapeutic Target. Pharmaceuticals, 2023, 16, 312.	1.7	4
208	How Single Site Mutations Can Help Understanding Structure Formation of Amyloid <i>β</i> _{1â^'40} . Macromolecular Bioscience, 2023, 23, .	2.1	3
209	Aβ ₈₋₂₀ Fragment as an Anti-Fibrillogenic and Neuroprotective Agent: Advancing toward Efficient Alzheimer's Disease Treatment. ACS Chemical Neuroscience, 2023, 14, 1126-1136.	1.7	3
210	Mass Spectrometry Imaging in Alzheimer's Disease. Brain Connectivity, 2023, 13, 319-333.	0.8	4
211	Alleviating the unwanted effects of oxidative stress on AÎ ² clearance: a review of related concepts and strategies for the development of computational modelling. Translational Neurodegeneration, 2023, 12, .	3.6	2
212	Alzheimer's Disease and Alzheimer's Disease-Related Dementias in African Americans: Focus on Caregivers. Healthcare (Switzerland), 2023, 11, 868.	1.0	2

#	Article	IF	CITATIONS
213	Effect of Cross-Seeding of Wild-Type Amyloid-β _{1–40} Peptides with Post-translationally Modified Fibrils on Internal Dynamics of the Fibrils Using Deuterium Solid-State NMR. Journal of Physical Chemistry B, 2023, 127, 2887-2899.	1.2	3
215	Brain Region-Specific Differences in Amyloid- \hat{I}^2 Plaque Composition in 5XFAD Mice. Life, 2023, 13, 1053.	1.1	3
216	Clinical Peptidomics: Advances in Instrumentation, Analyses, and Applications. BME Frontiers, 2023, 4, .	2.2	5
219	Copper trafficking system in cells: insights into coordination chemistry and toxicity. Dalton Transactions, 0, , .	1.6	0