PDGF-BB secreted by preosteoclasts induces angiogene osteogenesis

Nature Medicine 20, 1270-1278

DOI: 10.1038/nm.3668

Citation Report

#	Article	IF	CITATIONS
1	Osteoclast progenitors promote bone vascularization and osteogenesis. Nature Medicine, 2014, 20, 1238-1240.	15.2	42
2	β2-adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Scientific Reports, 2015, 5, 12593.	1.6	49
3	Osteogenic capillaries orchestrate growth plate-independent ossification of the malleus. Development (Cambridge), 2015, 142, 3912-20.	1.2	20
4	MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. Journal of Clinical Investigation, 2015, 125, 1509-1522.	3.9	418
5	SnapShot: Osteoimmunology. Cell Metabolism, 2015, 21, 502-502.e1.	7.2	20
6	Secretion of PDCF isoforms during osteoclastogenesis and its modulation by anti-osteoclast drugs. Biochemical and Biophysical Research Communications, 2015, 462, 159-164.	1.0	12
7	Osteoporosis: From osteoscience to neuroscience and beyond. Mechanisms of Ageing and Development, 2015, 145, 26-38.	2.2	15
8	Two-faced immunology—from osteogenesis to bone resorption. Nature Reviews Rheumatology, 2015, 11, 74-76.	3.5	48
9	HIF targets in bone remodeling and metastatic disease. , 2015, 150, 169-177.		52
10	Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras. Biomaterials, 2015, 64, 98-107.	5.7	16
10	Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras. Biomaterials, 2015, 64, 98-107. PDGFB-based stem cell gene therapy increases bone strength in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3893-900.	5.7 3.3	16 53
10 11 12	Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras. Biomaterials, 2015, 64, 98-107. PDGFB-based stem cell gene therapy increases bone strength in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3893-900. Assessment of bone vascularization and its role in bone remodeling. BoneKEy Reports, 2015, 4, 662.	5.7 3.3 2.7	16 53 98
10 11 12 13	Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras. Biomaterials, 2015, 64, 98-107. PDGFB-based stem cell gene therapy increases bone strength in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3893-900. Assessment of bone vascularization and its role in bone remodeling. BoneKEy Reports, 2015, 4, 662. Increased risk of bone fracture among patients with urinary calculi: a nationwide longitudinal population-based study. Osteoporosis International, 2015, 26, 1261-1269.	5.7 3.3 2.7 1.3	16 53 98 9
10 11 12 13 14	Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat CFP chimeras. Biomaterials, 2015, 64, 98-107. PDCFB-based stem cell gene therapy increases bone strength in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3893-900. Assessment of bone vascularization and its role in bone remodeling. BoneKEy Reports, 2015, 4, 662. Increased risk of bone fracture among patients with urinary calculi: a nationwide longitudinal population-based study. Osteoporosis International, 2015, 26, 1261-1269. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 2015, 94, 41-52.	 5.7 3.3 2.7 1.3 6.6 	16 53 98 9 214
10 11 12 13 14 15	Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras. Biomaterials, 2015, 64, 98-107. PDGFB-based stem cell gene therapy increases bone strength in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3893-900. Assessment of bone vascularization and its role in bone remodeling. BoneKEy Reports, 2015, 4, 662. Increased risk of bone fracture among patients with urinary calculi: a nationwide longitudinal population-based study. Osteoporosis International, 2015, 26, 1261-1269. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 2015, 94, 41-52. Enzymeâ€Responsive Delivery of Multiple Proteins with Spatiotemporal Control. Advanced Materials, 2015, 27, 3620-3625.	 5.7 3.3 2.7 1.3 6.6 11.1 	16 53 98 9 214 73
10 11 12 13 14 15	Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat CFP chimeras. Biomaterials, 2015, 64, 98-107. PDCFB-based stem cell gene therapy increases bone strength in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3893-900. Assessment of bone vascularization and its role in bone remodeling. BoneKEy Reports, 2015, 4, 662. Increased risk of bone fracture among patients with urinary calculi: a nationwide longitudinal population-based study. Osteoporosis International, 2015, 26, 1261-1269. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 2015, 94, 41-52. Enzymeã€Responsive Delivery of Multiple Proteins with Spatiotemporal Control. Advanced Materials, 2015, 27, 3620-3625. Novel targets for the prevention of osteoporosis âC" lessons learned from studies of metabolic bone disorders. Expert Opinion on Therapeutic Targets, 2015, 19, 1575-1584.	 5.7 3.3 2.7 1.3 6.6 11.1 1.5 	16 53 98 9 214 73 5
10 11 12 13 14 15 16 17	Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat CFP chimeras. Biomaterials, 2015, 64, 98-107. PDCFB-based stem cell gene therapy increases bone strength in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3893-900. Assessment of bone vascularization and its role in bone remodeling. BoneKEy Reports, 2015, 4, 662. Increased risk of bone fracture among patients with urinary calculi: a nationwide longitudinal population-based study. Osteoporosis International, 2015, 26, 1261-1269. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 2015, 94, 41-52. Enzymeâ Responsive Delivery of Multiple Proteins with Spatiotemporal Control. Advanced Materials, 2015, 27, 3620-3625. Novel targets for the prevention of osteoporosis â 6 ^{cc} lessons learned from studies of metabolic bone disorders. Expert Opinion on Therapeutic Targets, 2015, 19, 1575-1584. Ginkgolide B enhances the differentiation of preosteoblastic MC3T3-E1 cells through VECF: Involvement of the p38 MAPK signaling pathway. Molecular Medicine Reports, 2016, 14, 4787-4794.	 5.7 3.3 2.7 1.3 6.6 11.1 1.5 1.1 	16 53 98 9 214 73 5 4

	Сітатіо	n Report	
# 19	ARTICLE Osteoclast Biology: Regulation of Formation and Function. , 2016, , 41-70.	IF	Citations 9
20	Tetraspanin 7 regulates sealing zone formation and the bone-resorbing activity of osteoclasts. Biochemical and Biophysical Research Communications, 2016, 477, 1078-1084.	1.0	15
21	Acute Phosphate Restriction Impairs Bone Formation and Increases Marrow Adipose Tissue in Growing Mice. Journal of Bone and Mineral Research, 2016, 31, 2204-2214.	3.1	26
22	The Multifaceted Osteoclast; Far and Beyond Bone Resorption. Journal of Cellular Biochemistry, 2016, 117, 1753-1756.	1.2	39
23	Functional Interference in the Bone Marrow Microenvironment by Disseminated Breast Cancer Cells. Stem Cells, 2016, 34, 2224-2235.	1.4	13
24	The roles of vascular endothelial growth factor in bone repair and regeneration. Bone, 2016, 91, 30-38.	1.4	411
25	Blood flow controls bone vascular function and osteogenesis. Nature Communications, 2016, 7, 13601.	5.8	261
26	Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis. Scientific Reports, 2016, 6, 24668.	1.6	41
27	Mesenchymal Stem Cells for Osteochondral Tissue Engineering. Methods in Molecular Biology, 2016, 1416, 35-54.	0.4	12
28	Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis. Progress in Biophysics and Molecular Biology, 2016, 122, 101-111.	1.4	20
29	A Naturally Derived, Growth Factor-Binding Polysaccharide for Therapeutic Angiogenesis. ACS Macro Letters, 2016, 5, 617-621.	2.3	32
30	Peptide-induced de novo bone formation after tooth extraction prevents alveolar bone loss in a murine tooth extraction model. European Journal of Pharmacology, 2016, 782, 89-97.	1.7	13
31	Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. Journal of Materials Chemistry B, 2016, 4, 6830-6841.	2.9	92
32	Blood vessel formation and function in bone. Development (Cambridge), 2016, 143, 2706-2715.	1.2	324
33	Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Acta Biomaterialia, 2016, 42, 389-399.	4.1	44
34	Regulation of Hematopoiesis and Osteogenesis by Blood Vessel–Derived Signals. Annual Review of Cell and Developmental Biology, 2016, 32, 649-675.	4.0	115
35	Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis. Scientific Reports, 2016, 6, 27093.	1.6	59
36	Platelet-derived growth factor-BB attenuates titanium-particle-induced osteolysis <i>in vivo</i> . Growth Factors, 2016, 34, 177-186.	0.5	4

#	Article	IF	CITATIONS
37	Electrochemical aptasensors for detection of small molecules, macromolecules, and cells. Reviews in Analytical Chemistry, 2016, 35, 201-211.	1.5	19
38	NPNT is Expressed by Osteoblasts and Mediates Angiogenesis via the Activation of Extracellular Signal-regulated Kinase. Scientific Reports, 2016, 6, 36210.	1.6	24
39	Osteoporosis: The Result of an â€~Aged' Bone Microenvironment. Trends in Molecular Medicine, 2016, 22, 641-644.	3.5	92
40	Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Experimental Biology and Medicine, 2016, 241, 1084-1097.	1.1	297
41	Stem and progenitor cells: advancing bone tissue engineering. Drug Delivery and Translational Research, 2016, 6, 159-173.	3.0	33
42	Systemic neutralization of TGFâ $\hat{\mathfrak{e}}^2$ attenuates osteoarthritis. Annals of the New York Academy of Sciences, 2016, 1376, 53-64.	1.8	62
43	A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration. Nanoscale, 2016, 8, 5291-5301.	2.8	128
44	Elcatonin prevents bone loss caused by skeletal unloading by inhibiting preosteoclast fusion through the unloading-induced high expression of calcitonin receptors in bone marrow cells. Bone, 2016, 85, 70-80.	1.4	13
45	The role of osteoclast differentiation and function in skeletal homeostasis. Journal of Biochemistry, 2016, 159, 1-8.	0.9	122
46	Src siRNA prevents corticosteroid-associated osteoporosis in a rabbit model. Bone, 2016, 83, 190-196.	1.4	8
47	Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Annals of the Rheumatic Diseases, 2016, 75, 1714-1721.	0.5	182
48	More than the genes, the tumor microenvironment in neuroblastoma. Cancer Letters, 2016, 380, 304-314.	3.2	64
49	Cathepsin K Inhibition: A New Mechanism for the Treatment of Osteoporosis. Calcified Tissue International, 2016, 98, 381-397.	1.5	64
50	Strategies to direct vascularisation using mesoporous bioactive glass-based biomaterials for bone regeneration. International Materials Reviews, 2017, 62, 392-414.	9.4	44
51	Biodegradable Magnesium Screws Accelerate Fibrous Tissue Mineralization at the Tendon-Bone Insertion in Anterior Cruciate Ligament Reconstruction Model of Rabbit. Scientific Reports, 2017, 7, 40369.	1.6	38
52	Angiogenesis Assays for the Evaluation of Angiogenic Properties of Orthopaedic Biomaterials – A General Review. Advanced Healthcare Materials, 2017, 6, 1600434.	3.9	48
53	Cell–matrix signals specify bone endothelial cells during developmental osteogenesis. Nature Cell Biology, 2017, 19, 189-201.	4.6	161
54	Enzymatic <i>in situ</i> formed hydrogel from gelatin–tyramine and chitosan-4-hydroxylphenyl acetamide for the co-delivery of human adipose-derived stem cells and platelet-derived growth factor towards vascularization. Biomedical Materials (Bristol), 2017, 12, 015026.	1.7	20

#	Article	IF	CITATIONS
55	Shear stress inhibits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways. Bone, 2017, 101, 10-20.	1.4	41
56	Myocyte enhancer factor 2D promotes colorectal cancer angiogenesis downstream of hypoxia-inducible factor 11±. Cancer Letters, 2017, 400, 117-126.	3.2	26
57	Human type H vessels are a sensitive biomarker of bone mass. Cell Death and Disease, 2017, 8, e2760-e2760.	2.7	95
58	Bone Formation Is Coupled to Resorption Via Suppression of Sclerostin Expression by Osteoclasts. Journal of Bone and Mineral Research, 2017, 32, 2074-2086.	3.1	55
59	Low plasma PDGF-BB levels are associated with estradiol in postmenopausal osteoporosis. Journal of International Medical Research, 2017, 45, 1332-1339.	0.4	13
60	Gsα Controls Cortical Bone Quality by Regulating Osteoclast Differentiation via cAMP/PKA and β-Catenin Pathways. Scientific Reports, 2017, 7, 45140.	1.6	24
61	Cathepsin K Controls Cortical Bone Formation by Degrading Periostin. Journal of Bone and Mineral Research, 2017, 32, 1432-1441.	3.1	62
62	Biomimetic Approaches for Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2017, 23, 480-493.	2.5	69
63	Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials, 2017, 144, 176-187.	5.7	144
64	Reflecting on Some Discoveries of 40 Years and Their Outcomes. Journal of Bone and Mineral Research, 2017, 32, 1971-1976.	3.1	4
65	Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits. Acta Biomaterialia, 2017, 63, 393-410.	4.1	55
66	Transforming Growth Factor Beta1 being considered a novel biomarker in knee osteoarthritis. Clinica Chimica Acta, 2017, 472, 96-101.	0.5	14
67	3D printed scaffolds of calcium silicate-doped Î ² -TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Scientific Reports, 2017, 7, 5588.	1.6	53
68	Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science, 2017, 357, .	6.0	497
69	Si-doped porous TiO2 coatings enhanced in vitro angiogenic behavior of human umbilical vein endothelial cells. Colloids and Surfaces B: Biointerfaces, 2017, 159, 493-500.	2.5	20
70	Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews, 2017, 97, 1295-1349.	13.1	347
71	Is Retinal Microvascular Abnormalities an Independent Risk Factor of Vertebral Fractures? A Prospective Study From a Chinese Population. JBMR Plus, 2017, 1, 107-115.	1.3	0
72	Exendin-4 Induces Bone Marrow Stromal Cells Migration Through Bone Marrow-Derived Macrophages Polarization via PKA-STAT3 Signaling Pathway. Cellular Physiology and Biochemistry, 2017, 44, 1696-1714.	1.1	24

		CITATION REPORT		
#	Article		IF	CITATIONS
73	Programmed cell senescence in skeleton during late puberty. Nature Communications,	, 2017, 8, 1312.	5.8	70
74	Declining histone acetyltransferase GCN5 represses BMSCâ€mediated angiogenesis di FASEB Journal, 2017, 31, 4422-4433.	uring osteoporosis.	0.2	45
75	CD31hiEmcnhi Vessels Support New Trabecular Bone Formation at the Frontier Growt Bone Defect Repair Process. Scientific Reports, 2017, 7, 4990.	n Area in the	1.6	29
76	elF2α signaling regulates ischemic osteonecrosis through endoplasmic reticulum stres Reports, 2017, 7, 5062.	s. Scientific	1.6	30
77	MiR-497â ⁻¹ ⁄4195 cluster regulates angiogenesis during coupling with osteogenesis by endothelial Notch and HIF-1α activity. Nature Communications, 2017, 8, 16003.	maintaining	5.8	157
78	Efficacy of freeze-dried platelet-rich plasma in bone engineering. Archives of Oral Biolog 172-178.	gy, 2017, 73,	0.8	29
79	Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, and bone regeneration. Biomaterials, 2017, 113, 203-216.	ngiogenesis	5.7	109
80	Cellâ€toâ€cell communication in guided bone regeneration: molecular and cellular me Oral Implants Research, 2017, 28, 1139-1146.	chanisms. Clinical	1.9	35
81	Tcf12, A Member of Basic Helix-Loop-Helix Transcription Factors, Mediates Bone Marro Stem Cell Osteogenic Differentiation In Vitro and In Vivo. Stem Cells, 2017, 35, 386-39	w Mesenchymal)7.	1.4	38
82	Platelet-derived growth factorÂBB enhances osteoclast formation and osteoclast preci chemotaxis. Journal of Bone and Mineral Metabolism, 2017, 35, 355-365.	ursor cell	1.3	29
83	Excessive dietary intake of vitamin A reduces skull bone thickness in mice. PLoS ONE, 2	2017, 12, e0176217.	1.1	18
84	A multifunctional bioactive material that stimulates osteogenesis and promotes the va bone marrow stem cells and their resistance to bacterial infection. PLoS ONE, 2017, 12	scularization 2, e0172499.	1.1	15
85	Zoledronate suppressed angiogenesis and osteogenesis by inhibiting osteoclasts form secretion of PDGF-BB. PLoS ONE, 2017, 12, e0179248.	ation and	1.1	49
86	TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration. Ste and Therapy, 2017, 8, 258.	m Cell Research	2.4	32
87	Harnessing the Biology of Stem Cells' Niche. , 2017, , 15-31.			4
88	Engineering Vascular Niche for Bone Tissue Regeneration. , 2017, , 517-529.			0
89	Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomi Genes, Genomes, Genetics, 2017, 7, 3449-3457.	c Strains. G3:	0.8	2
90	A novel role for cathepsin K in periosteal osteoclast precursors during fracture repair. A New York Academy of Sciences, 2018, 1415, 57-68.	nnals of the	1.8	22

#	Article	IF	CITATIONS
91	Intramembranous ossification and endochondral ossification are impaired differently between glucocorticoid-induced osteoporosis and estrogen deficiency-induced osteoporosis. Scientific Reports, 2018, 8, 3867.	1.6	25
92	Global phenotypic characterisation of human platelet lysate expanded MSCs by high-throughput flow cytometry. Scientific Reports, 2018, 8, 3907.	1.6	17
93	Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Acta Biomaterialia, 2018, 74, 489-504.	4.1	62
94	Omentin-1 prevents inflammation-induced osteoporosis by downregulating the pro-inflammatory cytokines. Bone Research, 2018, 6, 9.	5.4	108
95	Alendronate induces osteoclast precursor apoptosis via peroxisomal dysfunction mediated ER stress. Journal of Cellular Physiology, 2018, 233, 7415-7423.	2.0	23
96	Isoliquiritigenin blunts osteoarthritis by inhibition of bone resorption and angiogenesis in subchondral bone. Scientific Reports, 2018, 8, 1721.	1.6	35
97	Transforming growth factor-β in stem cells and tissue homeostasis. Bone Research, 2018, 6, 2.	5.4	262
98	Inhibition of overactive TGF-Î ² attenuates progression of heterotopic ossification in mice. Nature Communications, 2018, 9, 551.	5.8	125
99	Regulation of Bone Remodeling by Parathyroid Hormone. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031237.	2.9	148
100	Intrafibrillar silicified collagen scaffold promotes in-situ bone regeneration by activating the monocyte p38 signaling pathway. Acta Biomaterialia, 2018, 67, 354-365.	4.1	15
101	Positive-Feedback Regulation of Subchondral H-Type Vessel Formation by Chondrocyte Promotes Osteoarthritis Development in Mice. Journal of Bone and Mineral Research, 2018, 33, 909-920.	3.1	60
102	Anabolic Strategies to Augment Bone Fracture Healing. Current Osteoporosis Reports, 2018, 16, 289-298.	1.5	15
103	Deferoxamine loaded titania nanotubes substrates regulate osteogenic and angiogenic differentiation of MSCs via activation of HIF-1α signaling. Materials Science and Engineering C, 2018, 91, 44-54.	3.8	36
104	LncRNA-AK131850 Sponges MiR-93-5p in Newborn and Mature Osteoclasts to Enhance the Secretion of Vascular Endothelial Growth Factor a Promoting Vasculogenesis of Endothelial Progenitor Cells. Cellular Physiology and Biochemistry, 2018, 46, 401-417.	1.1	36
105	A new vaccine targeting RANKL, prepared by incorporation of an unnatural Amino acid into RANKL, prevents OVX-induced bone loss in mice. Biochemical and Biophysical Research Communications, 2018, 499, 648-654.	1.0	10
106	Overview of Osteoimmunology. Calcified Tissue International, 2018, 102, 503-511.	1.5	52
107	Ectopic implantation of juvenile osteochondral tissues recapitulates endochondral ossification. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 468-478.	1.3	6
108	Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cellular Immunology, 2018, 323, 19-32.	1.4	77

#	Article	IF	CITATIONS
109	Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials, 2018, 153, 1-13.	5.7	199
110	ONO-1301 Enhances in vitro Osteoblast Differentiation and in vivo Bone Formation Induced by Bone Morphogenetic Protein. Spine, 2018, 43, E616-E624.	1.0	16
111	The skeletal vascular system – Breathing life into bone tissue. Bone, 2018, 115, 50-58.	1.4	89
112	Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031559.	2.9	87
113	The synergistic effect of bone forming peptideâ€1 and endothelial progenitor cells to promote vascularization of tissue engineered bone. Journal of Biomedical Materials Research - Part A, 2018, 106, 1008-1021.	2.1	21
114	Coupling factors and exosomal packaging micro <scp>RNA</scp> s involved in the regulation of bone remodelling. Biological Reviews, 2018, 93, 469-480.	4.7	76
115	Efficacy and safety of recombinant human parathyroid hormone (1–34) are similar to those of alendronate in the treatment of postmenopausal osteoporosis. Medicine (United States), 2018, 97, e13341.	0.4	8
116	The effects of proteins released from silk mat layers on macrophages. Maxillofacial Plastic and Reconstructive Surgery, 2018, 40, 10.	0.7	9
117	RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Research, 2018, 6, 34.	5.4	104
118	The Effects of Platelet-Derived Growth Factor-BB on Bone Marrow Stromal Cell-Mediated Vascularized Bone Regeneration. Stem Cells International, 2018, 2018, 1-16.	1.2	48
119	Hesperetin Prevents Bone Resorption by Inhibiting RANKL-Induced Osteoclastogenesis and Jnk Mediated Irf-3/c-Jun Activation. Frontiers in Pharmacology, 2018, 9, 1028.	1.6	36
120	Inhibition of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase-2 Facilitates CD31 ^{hi} Endomucin ^{hi} Blood Vessel and Bone Formation in Ovariectomized Mice. Cellular Physiology and Biochemistry, 2018, 50, 1068-1083.	1.1	13
122	PDGF‑BB promotes the differentiation and proliferation of MC3T3‑E1 cells through the Src/JAK2 signaling pathway. Molecular Medicine Reports, 2018, 18, 3719-3726.	1.1	9
123	Bone Marrow–derived Endothelial Progenitor Cells Are Associated with Bone Mass and Strength. Journal of Rheumatology, 2018, 45, 1696-1704.	1.0	4
124	Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. Journal of Clinical Investigation, 2018, 128, 5251-5266.	3.9	170
125	Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice. Bone, 2018, 114, 1-13.	1.4	40
126	Targeting skeletal endothelium to ameliorate bone loss. Nature Medicine, 2018, 24, 823-833.	15.2	218
127	Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Research, 2018, 6, 16.	5.4	339

		CITATION RE	PORT	
#	Article		IF	Citations
128	Development of a centrally vascularized tissue engineering bone graft with the unique composite structure for large femoral bone defect treatment. Biomaterials, 2018, 175,	core-shell 44-60.	5.7	51
129	Early effects of parathyroid hormone on vascularized bone regeneration and implant osseointegration in aged rats. Biomaterials, 2018, 179, 15-28.		5.7	64
130	Mouse Cre Models for the Study of Bone Diseases. Current Osteoporosis Reports, 2018	3, 16, 466-477.	1.5	73
131	Osteoimmunology. , 2018, , 261-282.			1
132	Biomaterials for the Delivery of Growth Factors and Other Therapeutic Agents in Tissue Approaches to Bone Regeneration. Frontiers in Pharmacology, 2018, 9, 513.	Engineering	1.6	118
133	Harmine enhances type H vessel formation and prevents bone loss in ovariectomized m Theranostics, 2018, 8, 2435-2446.	ice.	4.6	89
134	Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair angiogenesis. Theranostics, 2018, 8, 1607-1623.	by promoting	4.6	266
135	An Optimized Method to Generate Human Active Osteoclasts From Peripheral Blood M Frontiers in Immunology, 2018, 9, 632.	onocytes.	2.2	30
136	Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and amelior via transferring multiple cellular factors. Cell Research, 2018, 28, 918-933.	ate osteopenia	5.7	165
137	The underlying pathophysiology and therapeutic approaches for osteoporosis. Medicine Reviews, 2018, 38, 2024-2057.	al Research	5.0	67
138	Topographic Reorganization of Cerebrovascular Mural Cells under Seizure Conditions. (2018, 23, 1045-1059.	Cell Reports,	2.9	57
139	Biological Fixation: The Role of Screw Surface Design. , 2018, , 381-400.			0
140	Phenotyping the Microvasculature in Critical-Sized Calvarial Defects via Multimodal Op Tissue Engineering - Part C: Methods, 2018, 24, 430-440.	tical Imaging.	1.1	8
141	Microangiopathy is associated with bone loss in female type 2 diabetes mellitus patient Vascular Disease Research, 2018, 15, 433-441.	s. Diabetes and	0.9	11
142	Grapheneâ€Based MicroRNA Transfection Blocks Preosteoclast Fusion to Increase Bone Vascularization. Advanced Science, 2018, 5, 1700578.	? Formation and	5.6	77
143	Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mech Bone Research, 2019, 7, 25.	anosensation.	5.4	47
144	Vancomycin- and Strontium-Loaded Microspheres with Multifunctional Activities agains Angiogenesis, and in Osteogenesis for Enhancing Infected Bone Regeneration. ACS App & Interfaces, 2019, 11, 30596-30609.	st Bacteria, in olied Materials	4.0	74
145	Platelet-derived growth factor B attenuates lethal sepsis through inhibition of inflamma responses. International Immunopharmacology, 2019, 75, 105792.	tory	1.7	15

ARTICLE IF CITATIONS # Chordin-Like 1 Improves Osteogenesis of Bone Marrow Mesenchymal Stem Cells Through Enhancing 146 1.5 24 BMP4-SMAD Pathway. Frontiers in Endocrinology, 2019, 10, 360. Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring 147 5.4 CTHRC1 and OPG. Bone Research, 2019, 7, 18. Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials, 2019, 218, 148 5.7 157 119334. Role of angiocrine signals in bone development, homeostasis and disease. Open Biology, 2019, 9, 190144. 149 A Jack of All Trades: Impact of Glucocorticoids on Cellular Cross-Talk in Osteoimmunology. Frontiers 150 2.2 16 in Immunology, 2019, 10, 2460. Collagen type X is essential for successful mesenchymal stem cell-mediated cartilage formation and subsequent endochondral ossification. , 2019, 38, 106-122. 24 Electrical Stimulation through Conductive Substrate to Enhance Osteo-Differentiation of Human 152 1.3 13 Dental Pulp-Derived Stem Cells. Applied Sciences (Switzerland), 2019, 9, 3938. Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic 153 1.5 mice. Metabolism: Clinical and Experimental, 2019, 95, 93-101. MicroRNAâ€130a controls bone marrow mesenchymal stem cell differentiation towards the 154 2.4 111 osteoblastic and adipogenic fate. Cell Proliferation, 2019, 52, e12688. Commercially available bone graft substitutes: the impact of origin and processing on graft 1.5 34 functionality. Drug Metabolism Reviews, 2019, 51, 533-544. The Regulatory Roles of Non-coding RNAs in Angiogenesis and Neovascularization From an Epigenetic 156 1.3 34 Perspective. Frontiers in Oncology, 2019, 9, 1091. Activation of Skeletal Stem and Progenitor Cells for Bone Regeneration Is Driven by PDGFRÎ² Signaling. 3.1 64 Developmental Cell, 2019, 51, 236-254.e12. Extracellular vesicles in bone: "dogrobbers―in the "eternal battle field― Cell Communication and 158 2.7 29 Signaling, 2019, 17, 6. PDGF Modulates BMP2â€Induced Osteogenesis in Periosteal Progenitor Cells. JBMR Plus, 2019, 3, e10127. 159 1.3 36 Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. Journal of 160 3.9 239 Clinical Investigation, 2019, 129, 1076-1093. $Kr\tilde{A}^{1}/4$ ppel-like factor 3 inhibition by mutated lncRNA <i>Reg1cp</i> results in human high bone mass syndrome. Journal of Experimental Medicine, 2019, 216, 1944-1964. Local administration of aspirin with \hat{l}^2 -tricalcium phosphate/poly-lactic-co-glycolic acid (\hat{l}^2 -TCP/PLGA) 162 could enhance osteoporotic bone regeneration. Journal of Bone and Mineral Metabolism, 2019, 37, 1.335 1026-1035. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model. FASEB Journal, 2019, 33, 8913-8924.

#	Article	IF	CITATIONS
164	A tale of the good and bad: Cell senescence in bone homeostasis and disease. International Review of Cell and Molecular Biology, 2019, 346, 97-128.	1.6	26
165	Mesenchymal Progenitors Derived from Different Locations in Long Bones Display Diverse Characteristics. Stem Cells International, 2019, 2019, 1-11.	1.2	9
166	Extracellular vesicles in bone and tooth: A stateâ€ofâ€art paradigm in skeletal regeneration. Journal of Cellular Physiology, 2019, 234, 14838-14851.	2.0	10
167	GIT1 is critical for formation of the CD31hiEmcnhi vessel subtype in coupling osteogenesis with angiogenesis via modulating preosteoclasts secretion of PDGF-BB. Bone, 2019, 122, 218-230.	1.4	19
168	Reversal of Osteoporotic Activity by Endothelial Cell-Secreted Bone Targeting and Biocompatible Exosomes. Nano Letters, 2019, 19, 3040-3048.	4.5	199
169	Current Progress on MicroRNA-Based Gene Delivery in the Treatment of Osteoporosis and Osteoporotic Fracture. International Journal of Endocrinology, 2019, 2019, 1-17.	0.6	34
170	Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nature Cell Biology, 2019, 21, 430-441.	4.6	124
171	Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale, 2019, 11, 20884-20892.	2.8	164
172	Spatial Distribution of Macrophages During Callus Formation and Maturation Reveals Close Crosstalk Between Macrophages and Newly Forming Vessels. Frontiers in Immunology, 2019, 10, 2588.	2.2	38
173	Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nature Communications, 2019, 10, 5643.	5.8	72
174	Combined treatment with Cinnamaldehyde and β-TCP had an additive effect on bone formation and angiogenesis in critical size calvarial defect in ovariectomized rats. Biomedicine and Pharmacotherapy, 2019, 109, 573-581.	2.5	20
175	Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nature Communications, 2019, 10, 181.	5.8	152
176	Regulatory mechanisms of sclerostin expression during bone remodeling. Journal of Bone and Mineral Metabolism, 2019, 37, 9-17.	1.3	32
177	An onâ€site preparable, novel boneâ€grafting complex consisting of human plateletâ€rich fibrin and porous particles made of a recombinant collagenâ€like protein. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1420-1430.	1.6	14
178	Bioengineering application using co-cultured mesenchymal stem cells and preosteoclasts may effectively accelerate fracture healing. Medical Hypotheses, 2019, 123, 24-26.	0.8	3
179	Osteoimmunology. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031245.	2.9	64
180	Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annual Review of Physiology, 2020, 82, 507-529.	5.6	154
181	Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110592.	2.5	36

#	Article	IF	Citations
182	Transforming growth factor- \hat{l}^2 and skeletal homeostasis. , 2020, , 1153-1187.		1
183	Coupling of bone formation and resorption. , 2020, , 219-243.		4
184	Osteoclasts may contribute bone substitute materials remodeling and bone formation in bone augmentation. Medical Hypotheses, 2020, 135, 109438.	0.8	4
185	Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomaterials Science, 2020, 8, 1604-1614.	2.6	10
186	Type H blood vessels in bone modeling and remodeling. Theranostics, 2020, 10, 426-436.	4.6	225
187	Functionalization of Silk Fibers by PDGF and Bioceramics for Bone Tissue Regeneration. Coatings, 2020, 10, 8.	1.2	8
188	Advances in the understanding of the role of type-H vessels in the pathogenesis of osteoporosis. Archives of Osteoporosis, 2020, 15, 5.	1.0	11
189	Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone, 2020, 141, 115628.	1.4	76
190	The Effects of Calcitonin Gene-Related Peptide on Bone Homeostasis and Regeneration. Current Osteoporosis Reports, 2020, 18, 621-632.	1.5	45
191	<i>Akkermansia muciniphila</i> promotes type H vessels formation and bone fracture healing by reducing gut permeability and inflammation. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	29
192	Bioactive Elastic Scaffolds Loaded with Neural Stem Cells Promote Rapid Spinal Cord Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 6331-6343.	2.6	24
193	A vessel subtype beneficial for osteogenesis enhanced by strontium-doped sodium titanate nanorods by modulating macrophage polarization. Journal of Materials Chemistry B, 2020, 8, 6048-6058.	2.9	32
194	Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. Science Advances, 2020, 6, .	4.7	59
195	Long non-coding RNA HCAR promotes endochondral bone repair by upregulating VEGF and MMP13 in hypertrophic chondrocyte through sponging miR-15b-5p. Genes and Diseases, 2022, 9, 456-465.	1.5	6
196	Total Flavonoids of Rhizoma Drynariae Enhances Angiogenic-Osteogenic Coupling During Distraction Osteogenesis by Promoting Type H Vessel Formation Through PDGF-BB/PDGFR-β Instead of HIF-1α/ VEGF Axis. Frontiers in Pharmacology, 2020, 11, 503524.	1.6	20
197	Blood Vessels and Vascular Niches in Bone Development and Physiological Remodeling. Frontiers in Cell and Developmental Biology, 2020, 8, 602278.	1.8	38
198	A Novel Variant in CLCN7 Regulates the Coupling of Angiogenesis and Osteogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 599826.	1.8	3
199	Characterization of the Subchondral Bone and Pain Behavior Changes in a Novel Bipedal Standing Mouse Model of Facet Joint Osteoarthritis. BioMed Research International, 2020, 2020, 1-11.	0.9	5

#	Article	IF	Citations
200	<scp>PDGF</scp> Receptor Signaling in Osteoblast Lineage Cells Controls Bone Resorption Through Upregulation of <i>Csf1</i> Expression. Journal of Bone and Mineral Research, 2020, 35, 2458-2469.	3.1	21
201	Nanoscaled Bionic Periosteum Orchestrating the Osteogenic Microenvironment for Sequential Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 36823-36836.	4.0	42
202	Gli1+ Cells Couple with Type H Vessels and Are Required for Type H Vessel Formation. Stem Cell Reports, 2020, 15, 110-124.	2.3	38
203	Niches for Skeletal Stem Cells of Mesenchymal Origin. Frontiers in Cell and Developmental Biology, 2020, 8, 592.	1.8	50
204	Motivating role of type H vessels in bone regeneration. Cell Proliferation, 2020, 53, e12874.	2.4	59
205	Effect of hierarchical porous scaffold on osteoimmunomodulation and bone formation. Applied Materials Today, 2020, 20, 100779.	2.3	9
206	Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKLâ€induced osteoclastogenesis. Journal of Cellular and Molecular Medicine, 2020, 24, 10112-10127.	1.6	13
207	The role of small leucine zipper protein in osteoclastogenesis and its involvement in bone remodeling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118827.	1.9	2
208	Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. Journal of Bone and Mineral Research, 2020, 35, 2103-2120.	3.1	80
209	Modified method for effective primary vascular smooth muscle progenitor cell culture from peripheral blood. Cytotechnology, 2020, 72, 763-772.	0.7	1
210	From the Performance to the Essence: The Biological Mechanisms of How Tantalum Contributes to Osteogenesis. BioMed Research International, 2020, 2020, 1-8.	0.9	15
211	Obesity and Bone Health: A Complex Link. Frontiers in Cell and Developmental Biology, 2020, 8, 600181.	1.8	59
212	Application of platelet-rich plasma in traumatic bone infections. Expert Review of Anti-Infective Therapy, 2021, 19, 867-875.	2.0	11
213	Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 602269.	1.8	31
214	BMSC-Derived Exosomal miR-29a Promotes Angiogenesis and Osteogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 608521.	1.8	98
215	Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy, 2021, 17, 2766-2782.	4.3	63
216	Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Theranostics, 2020, 10, 5957-5965.	4.6	55
217	Evaluation of plasma cytokine protein array profile: the highlighted PDGF-BB in rheumatoid arthritis. Clinical Rheumatology, 2020, 39, 3323-3330.	1.0	4

#	Article	IF	CITATIONS
218	Transient receptor potential vanilloid 1 and 4 double knockout leads to increased bone mass in mice. Bone Reports, 2020, 12, 100268.	0.2	12
219	Magnesium promotes bone formation and angiogenesis by enhancing MC3T3-E1 secretion of PDCF-BB. Biochemical and Biophysical Research Communications, 2020, 528, 664-670.	1.0	40
220	Bushenhuoxue formula accelerates fracture healing via upregulation of TGF-β/Smad2 signaling in mesenchymal progenitor cells. Phytomedicine, 2020, 76, 153256.	2.3	6
221	Human adipose-derived stem cell spheroids incorporating platelet-derived growth factor (PDGF) and bio-minerals for vascularized bone tissue engineering. Biomaterials, 2020, 255, 120192.	5.7	47
222	Engineered scaffolds based on mesenchymal stem cells/preosteoclasts extracellular matrix promote bone regeneration. Journal of Tissue Engineering, 2020, 11, 204173142092691.	2.3	30
223	Cathepsin K: The Action in and Beyond Bone. Frontiers in Cell and Developmental Biology, 2020, 8, 433.	1.8	111
224	Genetic and pharmacological activation of Hedgehog signaling inhibits osteoclastogenesis and attenuates titanium particle-induced osteolysis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Theranostics, 2020, 10, 6638-6660.	4.6	34
225	Osteoclast-derived apoptotic bodies show extended biological effects of parental cell in promoting bone defect healing. Theranostics, 2020, 10, 6825-6838.	4.6	33
226	Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes. ACS Applied Materials & Interfaces, 2020, 12, 16058-16075.	4.0	128
227	Friend or Foe? Essential Roles of Osteoclast in Maintaining Skeletal Health. BioMed Research International, 2020, 2020, 1-10.	0.9	9
228	Platelet Features and Derivatives in Osteoporosis: A Rational and Systematic Review on the Best Evidence. International Journal of Molecular Sciences, 2020, 21, 1762.	1.8	13
229	Hâ€ŧype blood vessels participate in alveolar bone remodeling during murine tooth extraction healing. Oral Diseases, 2020, 26, 998-1009.	1.5	21
230	Fasting before or after wound injury accelerates wound healing through the activation of pro-angiogenic SMOC1 and SCG2. Theranostics, 2020, 10, 3779-3792.	4.6	44
231	Deterioration of hematopoietic autophagy is linked to osteoporosis. Aging Cell, 2020, 19, e13114.	3.0	20
232	Targeting Local Osteogenic and Ancillary Cells by Mechanobiologically Optimized Magnesium Scaffolds for Orbital Bone Reconstruction in Canines. ACS Applied Materials & Interfaces, 2020, 12, 27889-27904.	4.0	32
233	Basic and Therapeutic Aspects of Angiogenesis Updated. Circulation Research, 2020, 127, 310-329.	2.0	251
234	The Bone's Role in Myeloid Neoplasia. International Journal of Molecular Sciences, 2020, 21, 4712.	1.8	2
235	H subtype vascular endothelial cells in human femoral head: an experimental verification. Annals of Palliative Medicine, 2020, 9, 1497-1505.	0.5	11

#	Article	IF	CITATIONS
236	Aging and menopause reprogram osteoclast precursors for aggressive bone resorption. Bone Research, 2020, 8, 27.	5.4	56
237	Magnesium-based layered double hydroxide nanosheets: a new bone repair material with unprecedented osteogenic differentiation performance. Nanoscale, 2020, 12, 19075-19082.	2.8	20
238	MicroRNAs and Osteoblasts Differentiation. , 2020, , 439-448.		0
239	Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics, 2020, 10, 2293-2308.	4.6	72
240	Ophiopogonin D promotes bone regeneration by stimulating CD31 ^{hi} EMCN ^{hi} vessel formation. Cell Proliferation, 2020, 53, e12784.	2.4	23
241	The role of bone-derived PDGF-AA in age-related pancreatic Î ² cell proliferation and function. Biochemical and Biophysical Research Communications, 2020, 524, 22-27.	1.0	14
242	Glucocorticoids Disrupt Skeletal Angiogenesis Through Transrepression of NFâ€₽B–Mediated Preosteoclast <i>Pdgfb</i> Transcription in Young Mice. Journal of Bone and Mineral Research, 2020, 35, 1188-1202.	3.1	20
243	Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial). Journal of Periodontal Research, 2020, 55, 441-452.	1.4	31
244	Osteoclasts are not a source of SLIT3. Bone Research, 2020, 8, 11.	5.4	23
245	Biodegradable Magnesiumâ€Based Implants in Orthopedics—A General Review and Perspectives. Advanced Science, 2020, 7, 1902443.	5.6	267
246	Nuciferine prevents bone loss by disrupting multinucleated osteoclast formation and promoting type H vessel formation. FASEB Journal, 2020, 34, 4798-4811.	0.2	22
247	Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-1²1. Theranostics, 2020, 10, 2229-2242.	4.6	26
248	Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis. Nature Communications, 2020, 11, 460.	5.8	93
249	Pro-inflammatory macrophages coupled with glycolysis remodel adipose vasculature by producing platelet-derived growth factor-B in obesity. Scientific Reports, 2020, 10, 670.	1.6	18
250	Hierarchical assembly of nanostructured coating for siRNA-based dual therapy of bone regeneration and revascularization. Biomaterials, 2020, 235, 119784.	5.7	45
251	Foxf1 knockdown promotes BMSC osteogenesis in part by activating the Wnt/β-catenin signalling pathway and prevents ovariectomy-induced bone loss. EBioMedicine, 2020, 52, 102626.	2.7	82
252	YAP1 and TAZ negatively control bone angiogenesis by limiting hypoxia-inducible factor signaling in endothelial cells. El ife, 2020, 9	2.8	51

ARTICLE IF CITATIONS Instability and excessive mechanical loading mediate subchondral bone changes to induce 0.7 26 254 osteoarthritis. Annals of Translational Medicine, 2020, 8, 350-350. The Role of Bone-Derived Exosomes in Regulating Skeletal Metabolism and Extraosseous Diseases. 1.8 Frontiers in Cell and Developmental Biology, 2020, 8, 89. Contribution of platelet-derived growth factor signaling to retina regeneration in zebrafish. 256 1.0 10 Neuroscience Letters, 2020, 727, 134930. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and 1.8 diseases. Annals of the New York Academy of Sciences, 2020, 1474, 5-14. Specific inhibition of FAK signaling attenuates subchondral bone deterioration and articular 258 cartilage degeneration during osteoarthritis pathogenesis. Journal of Cellular Physiology, 2020, 235, 2.0 16 8653-8666. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Annals of the Rheumatic Diseases, 2021, 80, 413-422 Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miRâ€214â€3p from bone marrowâ€derived mesenchymal stem cells. FASEB Journal, 260 0.2 30 2021, 35, e21150. A modified tape transfer approach for rapidly preparing high-quality cryosections of undecalcified 261 10 adult rodent bones. Journal of Orthopaedic Translation, 2021, 26, 92-100. Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science, 262 16.0 81 2021, 117, 100732. Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of Bone and Mineral 1.3 Metabolism, 2021, 39, 19-26. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities. Journal of Materials Science and Technology, 2021, 71, 264 5.6 15 31-43. Skeletal growth factors., 2021, , 235-256. 265 The coupling of reduced type H vessels with unloading-induced bone loss and the protection role of 266 1.4 12 Panax quinquefolium saponin in the male mice. Bone, 2021, 143, 115712. The emerging role of miRâ€128 in musculoskeletal diseases. Journal of Cellular Physiology, 2021, 236, 14 4231-4243 268 miRNAs in osteoclast biology. Bone, 2021, 143, 115757. 1.4 18 Metal-drug nanoparticles-mediated osteolytic microenvironment regulation for enhanced radiotherapy of orthotopic osteosarcoma. Chemical Engineering Journal, 2021, 417, 128103. Improved osteointegration and angiogenesis of strontium-incorporated 3D-printed tantalum scaffold 270 5.6 26 via bioinspired polydopamine coating. Journal of Materials Science and Technology, 2021, 69, 106-118. Histochemical assessment on the cellular interplay of vascular endothelial cells and septoclasts 271 during endochondral ossification in mice. Microscopy (Oxford, England), 2021, 70, 201-214.

#	Article	IF	CITATIONS
272	PDGF-BB exhibited therapeutic effects on rat model of bisphosphonate-related osteonecrosis of the jaw by enhancing angiogenesis and osteogenesis. Bone, 2021, 144, 115117.	1.4	41
273	Research Progress of PDCF in Promoting Fracture Healing. Advances in Clinical Medicine, 2021, 11, 2381-2386.	0.0	Ο
274	Copper-Containing Alloy as Immunoregulatory Material in Bone Regeneration via Mitochondrial Oxidative Stress. Frontiers in Bioengineering and Biotechnology, 2020, 8, 620629.	2.0	11
275	The Effect of MMP-2 Inhibitor 1 on Osteogenesis and Angiogenesis During Bone Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 596783.	1.8	11
276	The Immune Microenvironment in Cartilage Injury, Repair and Regeneration. SSRN Electronic Journal, 0, , .	0.4	0
277	Accelerated Bone Regeneration by Astragaloside IV through Stimulating the Coupling of Osteogenesis and Angiogenesis. International Journal of Biological Sciences, 2021, 17, 1821-1836.	2.6	28
278	Insights into the mechanism of vascular endothelial cells on bone biology. Bioscience Reports, 2021, 41, .	1.1	7
279	Dihydroartemisinin attenuates osteoarthritis by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone. International Journal of Molecular Medicine, 2021, 47, .	1.8	19
280	PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem Cell Research and Therapy, 2021, 12, 40.	2.4	27
281	Osteoclast-derived apoptotic bodies couple bone resorption and formation in bone remodeling. Bone Research, 2021, 9, 5.	5.4	40
282	Metformin Alleviated Bone Loss in Ovariectomized Mice Through Inhibition of Autophagy of Osteoclast Precursors Mediated by E2F1. SSRN Electronic Journal, 0, , .	0.4	0
283	Subchondral Bone Remodeling: A Therapeutic Target for Osteoarthritis. Frontiers in Cell and Developmental Biology, 2020, 8, 607764.	1.8	64
284	Biomaterials developed for facilitating healing outcome after anterior cruciate ligament reconstruction: Efficacy, surgical protocols, and assessments using preclinical animal models. Biomaterials, 2021, 269, 120625.	5.7	16
285	Prenatal caffeine exposure caused Hâ€ŧype blood vesselâ€related long bone dysplasia via miR375/CTGF signaling. FASEB Journal, 2021, 35, e21370.	0.2	5
286	Vascular endothelial cell-secreted exosomes facilitate osteoarthritis pathogenesis by promoting chondrocyte apoptosis. Aging, 2021, 13, 4647-4662.	1.4	21
287	Extracellular Vesicles from Child Gut Microbiota Enter into Bone to Preserve Bone Mass and Strength. Advanced Science, 2021, 8, 2004831.	5.6	71
288	Sulfated polysaccharide directs therapeutic angiogenesis via endogenous VEGF secretion of macrophages. Science Advances, 2021, 7, .	4.7	65
289	Exosomes derived from vascular endothelial cells antagonize glucocorticoidâ€induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts. Journal of Cellular Physiology, 2021, 236, 6691-6705.	2.0	40

#	Article	IF	CITATIONS
290	Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Research, 2021, 9, 21.	5.4	28
291	Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nature Communications, 2021, 12, 1832.	5.8	50
292	Subchondral bone microenvironment in osteoarthritis and pain. Bone Research, 2021, 9, 20.	5.4	190
293	Compression loading of osteoclasts attenuated microRNA-146a-5p expression, which promotes angiogenesis by targeting adiponectin. Science China Life Sciences, 2022, 65, 151-166.	2.3	11
294	Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. ELife, 2021, 10, .	2.8	34
295	Low-activity programming of the PDGFRβ/FAK pathway mediates H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring rats after prenatal dexamethasone exposure. Biochemical Pharmacology, 2021, 185, 114414.	2.0	18
296	Restoring Tissue Homeostasis at Metastatic Sites: A Focus on Extracellular Vesicles in Bone Metastasis. Frontiers in Oncology, 2021, 11, 644109.	1.3	13
297	From Pathogenesis to Therapy in Knee Osteoarthritis: Bench-to-Bedside. International Journal of Molecular Sciences, 2021, 22, 2697.	1.8	39
298	Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification. Bone Research, 2021, 9, 19.	5.4	32
299	Origins, Biology, and Diseases of Tissue Macrophages. Annual Review of Immunology, 2021, 39, 313-344.	9.5	88
300	Accelerated Bone Regeneration by Adrenomedullin 2 Through Improving the Coupling of Osteogenesis and Angiogenesis via I2-Catenin Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 649277.	1.8	7
301	TMT-labelled quantitative proteomic analysis to predict the target promoting human odontogenic inflammatory granulation tissue transform into reparative granulation tissue. Acta Odontologica Scandinavica, 2021, 79, 458-465.	0.9	0
302	RANKL-Induced Increase in Cathepsin K Levels Restricts Cortical Expansion in a Periostin-Dependent Fashion: A Potential New Mechanism of Bone Fragility. Journal of Bone and Mineral Research, 2020, 36, 1636-1645.	3.1	8
303	Exosomal transfer of osteoclast-derived miRNAs to chondrocytes contributes to osteoarthritis progression. Nature Aging, 2021, 1, 368-384.	5.3	28
304	Angiogenic Properties of Concentrated Growth Factors (CGFs): The Role of Soluble Factors and Cellular Components. Pharmaceutics, 2021, 13, 635.	2.0	19
305	Harmine targets inhibitor of DNA bindingâ€⊋ and activator proteinâ€1 to promote preosteoclast PDGFâ€BB production. Journal of Cellular and Molecular Medicine, 2021, 25, 5525-5533.	1.6	6
306	Cathepsin K deficiency promotes alveolar bone regeneration by promoting jaw bone marrow mesenchymal stem cells proliferation and differentiation via glycolysis pathway. Cell Proliferation, 2021, 54, e13058.	2.4	20
307	Advanced Strategies of Biomimetic Tissueâ€Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 2021, 10, e2100408	3.9	66

#	Article	IF	CITATIONS
308	Osteosarcoma-Derived Small Extracellular Vesicles Enhance Tumor Metastasis and Suppress Osteoclastogenesis by miR-146a-5p. Frontiers in Oncology, 2021, 11, 667109.	1.3	10
309	Chemotactic and Angiogenic Potential of Mineralized Collagen Scaffolds Functionalized with Naturally Occurring Bioactive Factor Mixtures to Stimulate Bone Regeneration. International Journal of Molecular Sciences, 2021, 22, 5836.	1.8	8
310	Silk Biomaterials for Bone Tissue Engineering. Macromolecular Bioscience, 2021, 21, e2100153.	2.1	28
311	FOS/GOS attenuates high-fat diet induced bone loss via reversing microbiota dysbiosis, high intestinal permeability and systemic inflammation in mice. Metabolism: Clinical and Experimental, 2021, 119, 154767.	1.5	47
312	The effects and potential applications of concentrated growth factor in dentin–pulp complex regeneration. Stem Cell Research and Therapy, 2021, 12, 357.	2.4	26
313	Fundamentals of bone vasculature: Specialization, interactions and functions. Seminars in Cell and Developmental Biology, 2022, 123, 36-47.	2.3	39
314	Light rare earth elements hinder bone development via inhibiting type H vessels formation in mice. Ecotoxicology and Environmental Safety, 2021, 218, 112275.	2.9	5
315	Evaluation of lumbar spinal fusion utilizing recombinant human platelet derived growth factorâ€B chain homodimer (<scp>rhPDGFâ€BB</scp>) combined with a bovine collagen/l²â€tricalcium phosphate (<scp>l²â€TCP</scp>) matrix in an ovine model. JOR Spine, 2021, 4, e1166.	1.5	5
316	Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Reports, 2021, 36, 109352.	2.9	59
317	Phosphorylation inhibition of protein-tyrosine phosphatase 1B tyrosine-152 induces bone regeneration coupled with angiogenesis for bone tissue engineering. Bioactive Materials, 2021, 6, 2039-2057.	8.6	10
318	Hypertension meets osteoarthritis — revisiting the vascular aetiology hypothesis. Nature Reviews Rheumatology, 2021, 17, 533-549.	3.5	38
319	Direct reprogramming induces vascular regeneration post muscle ischemic injury. Molecular Therapy, 2021, 29, 3042-3058.	3.7	21
320	EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Research and Therapy, 2021, 12, 415.	2.4	34
321	Opportunities and challenges of hydrogel microspheres for tendon–bone healing after anterior cruciate ligament reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 289-301.	1.6	9
322	Resorbable Mg2+-Containing Phosphates for Bone Tissue Repair. Materials, 2021, 14, 4857.	1.3	30
323	An antibody-like peptidic network for anti-angiogenesis. Biomaterials, 2021, 275, 120900.	5.7	6
324	Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation. Bioactive Materials, 2022, 9, 491-507.	8.6	14
325	Skeleton-secreted PDGF-BB mediates arterial stiffening. Journal of Clinical Investigation, 2021, 131, .	3.9	22

#	Article	IF	CITATIONS
326	Endogenous Glucocorticoid Metabolism in Bone: Friend or Foe. Frontiers in Endocrinology, 2021, 12, 733611.	1.5	11
327	Deficiency of Omentin-1 leads to delayed fracture healing through excessive inflammation and reduced CD31hiEmcnhi vessels. Molecular and Cellular Endocrinology, 2021, 534, 111373.	1.6	7
328	Diterbutyl phthalate attenuates osteoarthritis in ACLT mice via suppressing ERK/c-fos/NFATc1 pathway, and subsequently inhibiting subchondral osteoclast fusion. Acta Pharmacologica Sinica, 2022, 43, 1299-1310.	2.8	37
329	Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials, 2021, 276, 121038.	5.7	60
330	The endothelium–bone axis in development, homeostasis and bone and joint disease. Nature Reviews Rheumatology, 2021, 17, 608-620.	3.5	67
331	The effect of genetically modified platelet-derived growth factor-BB over-expressing mesenchymal stromal cells during core decompression for steroid-associated osteonecrosis of the femoral head in rabbits. Stem Cell Research and Therapy, 2021, 12, 503.	2.4	17
332	Ectopic models recapitulating morphological and functional features of articular cartilage. Annals of Anatomy, 2021, 237, 151721.	1.0	3
333	Senescent immune cells release grancalcin to promote skeletal aging. Cell Metabolism, 2021, 33, 1957-1973.e6.	7.2	70
334	Pure Mg–Al Layered Double Hydroxide Film on Magnesium Alloys for Orthopedic Applications. ACS Omega, 2021, 6, 24575-24584.	1.6	6
335	Connective Tissue Growth Factor From Periosteal Tartrate Acid Phosphatase-Positive Monocytes Direct Skeletal Stem Cell Renewal and Fate During Bone Healing. Frontiers in Cell and Developmental Biology, 2021, 9, 730095.	1.8	1
336	Coupling induction of osteogenesis and type H vessels by pulsed electromagnetic fields in ovariectomy-induced osteoporosis in mice. Bone, 2022, 154, 116211.	1.4	11
337	Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioactive Materials, 2021, 6, 4110-4140.	8.6	191
338	Bone-targeted pH-responsive cerium nanoparticles for anabolic therapy in osteoporosis. Bioactive Materials, 2021, 6, 4697-4706.	8.6	42
339	Aspects of intercellular communication in bone and implications in therapy. Bone, 2021, 153, 116148.	1.4	2
340	Mechanical loading and parathyroid hormone effects and synergism in bone vary by site and modeling/remodeling regime. Bone, 2021, 153, 116171.	1.4	11
341	Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioactive Materials, 2021, 6, 4517-4530.	8.6	37
342	The Application of Nanomaterials in Angiogenesis. Current Stem Cell Research and Therapy, 2021, 16, 74-82.	0.6	10
343	The changes of bone vessels and their role in bone loss in tail-suspended rats. Acta Astronautica, 2021, 189, 368-378.	1.7	2

#	Article	IF	CITATIONS
344	Macrophages are requisite for angiogenesis of type H vessels during bone regeneration in mice. Bone, 2022, 154, 116200.	1.4	8
345	Bone niche and bone metastases. , 2022, , 107-119.		Ο
346	Bioprinting a cellâ€laden matrix for bone regeneration: A focused review. Journal of Applied Polymer Science, 2021, 138, 49888.	1.3	14
347	Targeting Early Healing Phase with Titania Nanotube Arrays on Tunable Diameters to Accelerate Bone Regeneration and Osseointegration. Small, 2021, 17, e2006287.	5.2	57
348	Defactinib attenuates osteoarthritis by inhibiting positive feedback loop between H-type vessels and MSCs in subchondral bone. Journal of Orthopaedic Translation, 2020, 24, 12-22.	1.9	19
349	TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Research, 2015, 3, 15005.	5.4	443
351	3D printed micro-chambers carrying stem cell spheroids and pro-proliferative growth factors for bone tissue regeneration. Biofabrication, 2021, 13, 015011.	3.7	11
352	Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight, 2020, 5, .	2.3	99
353	Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. Journal of Clinical Investigation, 2020, 130, 3483-3498.	3.9	65
354	Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. Journal of Clinical Investigation, 2016, 126, 509-526.	3.9	454
355	Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. Journal of Clinical Investigation, 2019, 129, 2578-2594.	3.9	102
356	Celastrol regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing PGC-1α signaling. Aging, 2020, 12, 16887-16898.	1.4	12
357	Substance P blocks ovariectomy-induced bone loss by modulating inflammation and potentiating stem cell function. Aging, 2020, 12, 20753-20777.	1.4	7
358	The posterior <i>HOXD</i> locus: Its contribution to phenotype and malignancy of Ewing sarcoma. Oncotarget, 0, 7, 41767-41780.	0.8	16
359	Bone health in diabetes and prediabetes. World Journal of Diabetes, 2019, 10, 421-445.	1.3	56
360	GDNF secreted by pre-osteoclasts induces migration of bone marrow mesenchymal stem cells and stimulates osteogenesis. BMB Reports, 2020, 53, 646-651.	1.1	11
361	Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair. Theranostics, 2021, 11, 9738-9751.	4.6	20
362	GDF-5 variant loading on composite scaffolds promotes spinal fusion through coupling of osteogenesis and angiogenesis: A preclinical study in rhesus monkeys. Smart Materials in Medicine, 2021, 2, 322-333.	3.7	5

#	Article	IF	CITATIONS
363	Modulation of osteoclastogenesis through adrenomedullin receptors on osteoclast precursors: initiation of differentiation by asymmetric cell division. Laboratory Investigation, 2021, 101, 1449-1457.	1.7	2
364	STING inhibition accelerates the bone healing process while enhancing type H vessel formation. FASEB Journal, 2021, 35, e21964.	0.2	12
365	The role of PDGF-BB in the bone-vascular relationship during aging. Journal of Clinical Investigation, 2021, 131, .	3.9	9
366	Osteoclasts adapt to physioxia perturbation through DNA demethylation. EMBO Reports, 2021, 22, e53035.	2.0	13
368	Bone Microenvironment and Role of Rank-Rankl-Opg in Breast Cancer Metastasis in Bone. Journal of Cancer Prevention & Current Research, 2017, 7, .	0.1	1
369	FisiologÃa del tejido óseo. EMC - Aparato Locomotor, 2019, 52, 1-25.	0.1	0
370	FisiologÃa del tejido óseo. EMC - PodologÃa, 2019, 21, 1-25.	0.1	0
371	Basic Aspects of Osteoclast Differentiation and Function. Contemporary Endocrinology, 2020, , 17-41.	0.3	1
372	Nidogen1-enriched extracellular vesicles accelerate angiogenesis and bone regeneration by targeting Myosin-10 to regulate endothelial cell adhesion. Bioactive Materials, 2022, 12, 185-197.	8.6	16
373	Novel insights into the coupling of osteoclasts and resorption to bone formation. Seminars in Cell and Developmental Biology, 2022, 123, 4-13.	2.3	26
374	Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution. Nature Communications, 2021, 12, 6219.	5.8	37
375	Effect on Osteogenic Differentiation of Genetically Modified IL4 or PDGF-BB Over-Expressing and IL4-PDGF-BB Co-Over-Expressing Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro. Bioengineering, 2021, 8, 165.	1.6	3
376	Neuronal Induction of Boneâ€Fat Imbalance through Osteocyte Neuropeptide Y. Advanced Science, 2021, 8, e2100808.	5.6	34
377	An antibody against Siglec-15 promotes bone formation and fracture healing by increasing TRAP+ mononuclear cells and PDGF-BB secretion. Bone Research, 2021, 9, 47.	5.4	20
379	Comparison between Tonifying Kidney Yang and Yin in Treating Segmental Bone Defects Based on the Induced Membrane Technique: An Experimental Study in a Rat Model. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-15.	0.5	1
380	Antenatal Corticosteroid Therapy Attenuates Angiogenesis Through Inhibiting Osteoclastogenesis in Young Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 601188.	1.8	2
381	Bone and Blood. , 2020, , 595-598.		0
382	Extracellular Vesicles from Human Urine-Derived Stem Cells Ameliorate Particulate Polyethylene-Induced Osteolysis. International Journal of Nanomedicine, 2021, Volume 16, 7479-7494. 	3.3	8

#	Article	IF	CITATIONS
383	Evaluation of nestin or osterix promoter-driven cre/loxp system in studying the biological functions of murine osteoblastic cells. American Journal of Translational Research (discontinued), 2016, 8, 1447-59.	0.0	3
385	Effects of injectable platelet rich fibrin on bone remodeling in combination with DBBM in maxillary sinus elevation: a randomized preclinical study. American Journal of Translational Research (discontinued), 2020, 12, 7312-7325.	0.0	4
386	Associations of osteoclastogenesis and nerve growth in subchondral bone marrow lesions with clinical symptoms in knee osteoarthritis. Journal of Orthopaedic Translation, 2022, 32, 69-76.	1.9	14
387	The m6A "reader―YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839. Cell Death and Disease, 2021, 12, 1078.	2.7	26
388	Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration. Bioactive Materials, 2022, 13, 9-22.	8.6	26
389	Bone morphogenetic protein 9 enhances osteogenic and angiogenic responses of human amniotic mesenchymal stem cells cocultured with umbilical vein endothelial cells through the PI3K/AKT/m-TOR signaling pathway. Aging, 2021, 13, 24829-24849.	1.4	10
390	UBE2E3 regulates cellular senescence and osteogenic differentiation of BMSCs during aging. PeerJ, 2021, 9, e12253.	0.9	7
391	Multi-functional osteoclasts in matrix-based tissue engineering bone. Chinese Journal of Traumatology - English Edition, 2022, 25, 132-137.	0.7	4
392	An improved osseointegration of metal implants by pitavastatin loaded multilayer films with osteogenic and angiogenic properties. Biomaterials, 2022, 280, 121260.	5.7	29
394	Periosteal CD68 ⁺ F4/80 ⁺ Macrophages Are Mechanosensitive for Cortical Bone Formation by Secretion and Activation of TGFâ€ <i>l²</i> 1. Advanced Science, 2022, 9, e2103343.	5.6	24
395	New Insights to the Crosstalk between Vascular and Bone Tissue in Chronic Kidney Disease–Mineral and Bone Disorder. Metabolites, 2021, 11, 849.	1.3	8
396	Construction of developmentally inspired periosteum-like tissue for bone regeneration. Bone Research, 2022, 10, 1.	5.4	30
397	miR-29cb2 promotes angiogenesis and osteogenesis by inhibiting HIF-3α in bone. IScience, 2022, 25, 103604.	1.9	3
398	Myeloidâ€derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation. EMBO Reports, 2022, 23, e53509.	2.0	12
399	The immune microenvironment in cartilage injury and repair. Acta Biomaterialia, 2022, 140, 23-42.	4.1	104
400	Improved osseointegration of strontium-modified titanium implants by regulating angiogenesis and macrophage polarization. Biomaterials Science, 2022, 10, 2198-2214.	2.6	18
401	Cyclic pressure-induced cytokines from gingival fibroblasts stimulate osteoclast activity: Clinical implications for alveolar bone loss in denture wearers. Journal of Prosthodontic Research, 2023, 67, 77-86.	1.1	5
402	Trace Element-Augmented Titanium Implant With Targeted Angiogenesis and Enhanced Osseointegration in Osteoporotic Rats. Frontiers in Chemistry, 2022, 10, 839062.	1.8	18

#	Article	IF	CITATIONS
403	BMP-2 Enhances Osteogenic Differentiation of Human Adipose-Derived and Dental Pulp Stem Cells in 2D and 3D In Vitro Models. Stem Cells International, 2022, 2022, 1-15.	1.2	3
404	Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. International Journal of Molecular Sciences, 2022, 23, 2871.	1.8	41
405	Sialylation of TLR2 initiates osteoclast fusion. Bone Research, 2022, 10, 24.	5.4	12
406	PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Research, 2022, 10, 27.	5.4	40
407	Antagonism Between PEDF and TGF-Î ² Contributes to Type VI Osteogenesis Imperfecta Bone and Vascular Pathogenesis. Journal of Bone and Mineral Research, 2020, 37, 925-937.	3.1	7
408	Smart, Biomimetic Periosteum Created from the Cerium(III, IV) Oxide-Mineralized Eggshell Membrane. ACS Applied Materials & Interfaces, 2022, 14, 14103-14119.	4.0	20
409	The role of sphingosine-1-phosphate in bone remodeling and osteoporosis. Bone Research, 2022, 10, 34.	5.4	18
410	SHIP1 Activator AQX-1125 Regulates Osteogenesis and Osteoclastogenesis Through PI3K/Akt and NF-î®b Signaling. Frontiers in Cell and Developmental Biology, 2022, 10, 826023.	1.8	5
411	Evidence for the major contribution of remodeling-based bone formation in sclerostin-deficient mice. Bone, 2022, 160, 116401.	1.4	5
412	Cubic multi-ions-doped Na2TiO3 nanorod-like coatings: Structure-stable, highly efficient platform for ions-exchanged release to immunomodulatory promotion on vascularized bone apposition. Bioactive Materials, 2022, 18, 72-90.	8.6	6
413	Wearable Bioelectronics for Chronic Wound Management. Advanced Functional Materials, 2022, 32, .	7.8	64
415	Recent Advances in Osteoclast Biological Behavior. Frontiers in Cell and Developmental Biology, 2021, 9, 788680.	1.8	31
416	Multinucleated Giant Cells: Current Insights in Phenotype, Biological Activities, and Mechanism of Formation. Frontiers in Cell and Developmental Biology, 2022, 10, 873226.	1.8	28
417	Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis. Science Advances, 2022, 8, eabg8335.	4.7	41
418	Acacetin Prevents Bone Loss by Disrupting Osteoclast Formation and Promoting Type H Vessel Formation in Ovariectomy-Induced Osteoporosis. Frontiers in Cell and Developmental Biology, 2022, 10, 796227.	1.8	12
433	Effect of Angiogenesis in Bone Tissue Engineering. Annals of Biomedical Engineering, 2022, 50, 898-913.	1.3	22
434	The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	4
435	Reinforced Blood-Derived Protein Hydrogels Enable Dual-Level Regulation of Bio-Physiochemical Microenvironments for Personalized Bone Regeneration with Remarkable Enhanced Efficacy. Nano Letters, 2022, 22, 3904-3913.	4.5	16

#	Article	IF	CITATIONS
436	Association of M2 Macrophages, Th2, and B Cells With Pathomechanism in Microscopic Polyangiitis Complicated by Interstitial Lung Disease. Journal of Rheumatology, 2022, 49, 913-921.	1.0	1
438	SM22α-lineage niche cells regulate intramembranous bone regeneration via PDGFRβ-triggered hydrogen sulfide production. Cell Reports, 2022, 39, 110750.	2.9	3
439	The Osteoclast Traces the Route to Bone Tumors and Metastases. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	12
440	Immunolocalization of endomucin-reactive blood vessels and α-smooth muscle actin-positive cells in murine nasal conchae. Journal of Oral Biosciences, 2022, , .	0.8	0
441	Network pharmacology explores the mechanisms of Eucommia ulmoides cortex against postmenopausal osteoporosis. Medicine (United States), 2022, 101, e29257.	0.4	4
442	Identification of combined biomarkers for predicting the risk of osteoporosis using machine learning. Aging, 2022, 14, 4270-4280.	1.4	4
443	Zuo-Gui-Wan Aqueous Extract Ameliorates Glucocorticoid-Induced Spinal Osteoporosis of Rats by Regulating let-7f and Autophagy. Frontiers in Endocrinology, 2022, 13, 878963.	1.5	7
444	Signature of the vascular tumor microenvironment as a marker of the therapeutic response to doxorubicin in a preclinical model of osteosarcoma American Journal of Cancer Research, 2022, 12, 1843-1854.	1.4	0
445	miR-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death and Disease, 2022, 13, .	2.7	6
446	DEPTOR exacerbates bone–fat imbalance in osteoporosis by transcriptionally modulating BMSC differentiation. Biomedicine and Pharmacotherapy, 2022, 151, 113164.	2.5	10
447	Inhibition of Subchondral PDGFR-β Ameliorates Aging-Related Osteoarthritis Through PAK1/NICD Axis. SSRN Electronic Journal, 0, , .	0.4	0
448	Characterization of Dental Pulp Stem Cells Response to Bone Substitutes Biomaterials in Dentistry. Polymers, 2022, 14, 2223.	2.0	3
449	A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	3
450	Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials, 2022, 286, 121604.	5.7	39
451	Enhanced PDGFR/Wnt/β-catenin activity of mesenchymal stem cells with high migration ability rescue bone loss of osteoporosis. Cellular Signalling, 2022, 97, 110394.	1.7	2
452	miRNA-Gene Interaction Network Construction Strategy to Discern Promising Traditional Chinese Medicine against Osteoporosis. BioMed Research International, 2022, 2022, 1-12.	0.9	1
453	Mechanisms of bone pain: Progress in research from bench to bedside. Bone Research, 2022, 10, .	5.4	15
454	A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metabolism, 2022, 34, 1168-1182.e6.	7.2	32

#	Article	IF	CITATIONS
455	Biodegradable Mg-based alloys: biological implications and restorative opportunities. International Materials Reviews, 2023, 68, 365-403.	9.4	16
456	Simvastatin-loaded sulfonated PEEK enhances angiogenesis and osteogenesis via miR-29cb2-mediated HIF-31± downregulation. Chemical Engineering Journal, 2022, 448, 137738.	6.6	4
457	Effect of natural-based biological hydrogels combined with growth factors on skin wound healing. Nanotechnology Reviews, 2022, 11, 2493-2512.	2.6	11
458	Editorial: Differentiation and Regulation of Bone Marrow Mesenchymal Stromal Cells. Frontiers in Molecular Biosciences, 0, 9, .	1.6	Ο
459	Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Research, 2022, 10, .	5.4	85
460	Extracellular matrix derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. Stem Cell Research and Therapy, 2022, 13, .	2.4	6
461	Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
462	Total flavonoids of Rhizoma Drynariae enhances CD31 ^{hi} Emcn ^{hi} vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis byÂactivating PDGFâ€BB/VEGF/RUNX2/OSX signaling axis. International Journal of Molecular Medicine, 2022, 50, .	1.8	3
463	AAV-mediated delivery of osteoblast/osteoclast-regulating miRNAs for osteoporosis therapy. Molecular Therapy - Nucleic Acids, 2022, 29, 296-311.	2.3	9
464	Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. ELife, 0, 11, .	2.8	17
465	A Bilayer Membrane Doped with Struvite Nanowires for Guided Bone Regeneration. Advanced Healthcare Materials, 2022, 11, .	3.9	9
466	Exploring the effect of the "quaternary regulation―theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis―on osteoporosis based on neuropeptides. Frontiers in Endocrinology, 0, 13, .	1.5	9
467	Targeted inhibition of osteoclastogenesis reveals the pathogenesis and therapeutics of bone loss under sympathetic neurostress. International Journal of Oral Science, 2022, 14, .	3.6	9
468	Senescent cells: A therapeutic target for osteoporosis. Cell Proliferation, 2022, 55, .	2.4	8
469	TGFβ1-modified MSC-derived exosome attenuates osteoarthritis by inhibiting PDGF-BB secretion and H-type vessel activity in the subchondral bone. Acta Histochemica, 2022, 124, 151933.	0.9	16
470	Potential Use of 3D CORAGRAF-Loaded PDGF-BB in PLGA Microsphere Seeded Mesenchymal Stromal Cells in Enhancing the Repair of Calvaria Critical-Size Bone Defect in Rat Model. Marine Drugs, 2022, 20, 561.	2.2	0
471	Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Research, 2022, 10, .	5.4	17
472	The landscape of aging. Science China Life Sciences, 2022, 65, 2354-2454.	2.3	110

#	Article	IF	CITATIONS
473	Single-cell spatiotemporal analysis reveals cell fates and functions of transplanted mesenchymal stromal cells during bone repair. Stem Cell Reports, 2022, 17, 2318-2333.	2.3	3
474	Endothelial Cells Promote Migration of Mesenchymal Stem Cells via PDGF-BB/PDGFRÎ ² -Src-Akt in the Context of Inflammatory Microenvironment upon Bone Defect. Stem Cells International, 2022, 2022, 1-15.	1.2	5
475	Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	46
476	PDGF-loaded microneedles promote tendon healing through p38/cyclin D1 pathway mediated angiogenesis. Materials Today Bio, 2022, 16, 100428.	2.6	4
477	Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomaterialia, 2022, 153, 108-123.	4.1	10
478	The Bioactive Mg-Zn-Gd Wire Enhances Musculoskeletal Regeneration: An In Vitro Study. Crystals, 2022, 12, 1287.	1.0	2
479	Modified Qing' e Pills exerts anti-osteoporosis effects and prevents bone loss by enhancing type H blood vessel formation. Frontiers in Endocrinology, 0, 13, .	1.5	0
480	Type H vessels—a bridge connecting subchondral bone remodelling and articular cartilage degeneration in osteoarthritis development. Rheumatology, 2023, 62, 1436-1444.	0.9	6
481	Osteoclasts: Other functions. Bone, 2022, 165, 116576.	1.4	6
482	Metformin alleviates bone loss in ovariectomized mice through inhibition of autophagy of osteoclast precursors mediated by E2F1. Cell Communication and Signaling, 2022, 20, .	2.7	10
483	Osteoclast-Driven Osteogenesis, Bone Remodeling and Biomaterial Resorption: A New Profile of BMP2-CPC-Induced Alveolar Bone Regeneration. International Journal of Molecular Sciences, 2022, 23, 12204.	1.8	7
484	Bone-targeting delivery of platelet lysate exosomes ameliorates glucocorticoid-induced osteoporosis by enhancing bone-vessel coupling. Journal of Nanobiotechnology, 2022, 20, .	4.2	12
485	Skeletal interoception in bone homeostasis and pain. Cell Metabolism, 2022, 34, 1914-1931.	7.2	17
486	Stem cell-derived exosomes in bone healing: focusing on their role in angiogenesis. Cytotherapy, 2022, , .	0.3	5
487	Metallic Nanoparticle-Doped Oxide Semiconductor Film for Bone Tumor Suppression and Bone Regeneration. ACS Applied Materials & Interfaces, 2022, 14, 47369-47384.	4.0	9
488	Recent advances in gene therapy for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 1121-1137.	1.3	6
489	Ginsenoside Rg1 interferes with the progression of diabetic osteoporosis by promoting type H angiogenesis modulating vasculogenic and osteogenic coupling. Frontiers in Pharmacology, 0, 13, .	1.6	8
490	Angiogenetic and anti-inflammatory effects of photobiomodulation on bone regeneration in rat: A histopathological, immunohistochemical, and molecular analysis. Journal of Photochemistry and Photobiology B: Biology, 2023, 238, 112599.	1.7	2

#	Article	IF	CITATIONS
491	Antioxidant PDA-PEG nanoparticles alleviate early osteoarthritis by inhibiting osteoclastogenesis and angiogenesis in subchondral bone. Journal of Nanobiotechnology, 2022, 20, .	4.2	6
492	Aucubin Impeded Preosteoclast Fusion and Enhanced CD31hi EMCNhi Vessel Angiogenesis in Ovariectomized Mice. Stem Cells International, 2022, 2022, 1-19.	1.2	1
493	Carnosine and bone (Review). Molecular Medicine Reports, 2022, 27, .	1.1	4
494	Comparison of Cytokine Profile between Postmenopausal Women with and without Osteoporosis – A Case-control Study. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 23, .	0.6	1
495	Emerging roles of growth factors in osteonecrosis of the femoral head. Frontiers in Genetics, 0, 13, .	1.1	2
496	A sustained-release PDGF-BB nanocomposite hydrogel for DM-associated bone regeneration. Journal of Materials Chemistry B, 2023, 11, 974-984.	2.9	3
497	PDGF-BB prevents destructive repair and promotes reparative osteogenesis of steroid-associated osteonecrosis of the femoral head in rabbits. Bone, 2023, 167, 116645.	1.4	2
498	Network pharmacology-based strategy to investigate pharmacological mechanism of Liuwei Dihuang Pill against postmenopausal osteoporosis. Medicine (United States), 2022, 101, e31387.	0.4	5
499	Current progress and trends in musculoskeletal research: Highlights of NSFC-CUHK academic symposium on bone and joint degeneration and regeneration. Journal of Orthopaedic Translation, 2022, 37, 175-184.	1.9	0
500	Vitexin Regulates Angiogenesis and Osteogenesis in Ovariectomy-Induced Osteoporosis of Rats via the VDR/PI3K/AKT/eNOS Signaling Pathway. Journal of Agricultural and Food Chemistry, 2023, 71, 546-556.	2.4	5
501	Skeletal stem cells: origins, definitions, and functions in bone development and disease. , 2022, 1, 276-293.		4
502	Suppression of Pathological Ocular Neovascularization by a Small Molecular Multi-Targeting Kinase Inhibitor, DCZ19903. Translational Vision Science and Technology, 2022, 11, 8.	1.1	2
503	SGLT2 inhibitor empagliflozin promotes revascularization in diabetic mouse hindlimb ischemia by inhibiting ferroptosis. Acta Pharmacologica Sinica, 2023, 44, 1161-1174.	2.8	2
504	Spatiotemporal Regulation of Injectable Heterogeneous Silk Gel Scaffolds for Accelerating Guided Vertebral Repair. Advanced Healthcare Materials, 2023, 12, .	3.9	2
505	Platelet-Derived Growth Factor B Is a Key Element in the Pathological Bone Formation of Ankylosing Spondylitis. Journal of Bone and Mineral Research, 2020, 38, 300-312.	3.1	9
506	Distinct pathological changes of osteochondral units in early OVX-OA involving TGF-β signaling. Frontiers in Endocrinology, 0, 13, .	1.5	2
507	Bibliometric insights from publications on subchondral bone research in osteoarthritis. Frontiers in Physiology, 0, 13, .	1.3	2
508	Stem Cell Membraneâ€Coated Microribbon Scaffolds Induce Regenerative Innate and Adaptive Immune Responses in a Criticalâ€6ize Cranial Bone Defect Model. Advanced Materials, 2023, 35, .	11.1	12

# 509	ARTICLE A MgFeâ€LDH Nanosheetâ€Incorporated Smart Thermoâ€Responsive Hydrogel with Controllable Growth Factor Releasing Capability for Bone Regeneration. Advanced Materials, 2023, 35, .	IF 11.1	CITATIONS
510	Magnesium alloys for orthopedic applications:A review on the mechanisms driving bone healing. Journal of Magnesium and Alloys, 2022, 10, 3327-3353.	5.5	21
511	Ternary regulation mechanism of Rhizoma drynariae total flavonoids on induced membrane formation and bone remodeling in Masquelet technique. PLoS ONE, 2022, 17, e0278688.	1.1	0
512	Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. ACS Applied Materials & Interfaces, 2023, 15, 249-264.	4.0	4
513	Bioengineering Boneâ€onâ€aâ€Chip Model Harnessing Osteoblastic and Osteoclastic Resolution. Advanced Engineering Materials, 2023, 25, .	1.6	2
514	Combined application of BMP-2 and naturally occurring bioactive factor mixtures for the optimized therapy of segmental bone defects. Acta Biomaterialia, 2023, 157, 162-174.	4.1	3
515	PDGF inhibits BMP2-induced bone healing. Npj Regenerative Medicine, 2023, 8, .	2.5	6
516	The efficiency of genetically modified mesenchymal stromal cells combined with a functionally graded scaffold for bone regeneration in corticosteroidâ€induced osteonecrosis of the femoral head in rabbits. Journal of Biomedical Materials Research - Part A, O, , .	2.1	0
517	Targeting soluble epoxide hydrolase promotes osteogenic–angiogenic coupling via activating <scp>SLIT3</scp> / <scp>HIF</scp> â€1α signalling pathway. Cell Proliferation, 2023, 56, .	2.4	2
518	Targeting STING: From antiviral immunity to treat osteoporosis. Frontiers in Immunology, 0, 13, .	2.2	3
519	Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles. Bioorganic and Medicinal Chemistry, 2023, 78, 117135.	1.4	9
520	Artificial cilia for soft and stable surface covalent immobilization of bone morphogenetic protein-2. Bioactive Materials, 2023, 24, 551-562.	8.6	3
521	A BMP-2–triggered in vivo osteo-organoid for cell therapy. Science Advances, 2023, 9, .	4.7	5
522	Osteoclasts may play key roles in initiating biomaterial-induced ectopic bone formation. Medical Hypotheses, 2023, 172, 111033.	0.8	0
523	Oxylipin-PPARÎ ³ -initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metabolism, 2023, 35, 667-684.e6.	7.2	17
524	Targeting autophagy receptors OPTN and SQSTM1 as a novel therapeutic strategy for osteoporosis complicated with Alzheimer's disease. Chemico-Biological Interactions, 2023, 377, 110462.	1.7	2
525	N-acetyl-L-cysteine attenuates oxidative stress-induced bone marrow endothelial cells apoptosis by inhibiting BAX/caspase 3 pathway. Biochemical and Biophysical Research Communications, 2023, 656, 115-121.	1.0	2
526	Bone marrow lesions in osteoarthritis: From basic science to clinical implications. Bone Reports, 2023, 18, 101667.	0.2	2

#	Article	IF	CITATIONS
527	Matrix stiffness regulates osteoclast fate through integrin-dependent mechanotransduction. Bioactive Materials, 2023, 27, 138-153.	8.6	2
528	Regulation of hypoxic stress and oxidative stress in bone grafting: Current trends and future perspectives. Journal of Materials Science and Technology, 2023, 157, 144-153.	5.6	3
529	Platelet-derived growth factor PDGF-AA upregulates connexin 43 expression and promotes gap junction formations in osteoblast cells through p-Akt signaling. Biochemistry and Biophysics Reports, 2023, 34, 101462.	0.7	1
530	Type H vessel/plateletâ€derived growth factor receptor β ⁺ perivascular cell disintegration is involved in vascular injury and bone loss in radiationâ€induced bone damage. Cell Proliferation, 2023, 56, .	2.4	4
532	Overcoming chemoresistance in non-angiogenic colorectal cancer by metformin via inhibiting endothelial apoptosis and vascular immaturity. Journal of Pharmaceutical Analysis, 2023, 13, 262-275.	2.4	1
533	Inhibition of Sphingosine-1-Phosphate Receptor 2 by JTE013 Enhanced Alveolar Bone Regeneration by Promoting Angiogenesis. International Journal of Molecular Sciences, 2023, 24, 3401.	1.8	5
534	Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Frontiers in Pharmacology, 0, 14, .	1.6	5
536	Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury. ACS Nano, 2023, 17, 3818-3837.	7.3	21
537	PDGFR in PDGF-BB/PDGFR Signaling Pathway Does Orchestrates Osteogenesis in a Temporal Manner. Research, 2023, 6, .	2.8	4
538	Application of the neuropeptide NPVF to enhance angiogenesis and osteogenesis in bone regeneration. Communications Biology, 2023, 6, .	2.0	1
539	Pulsed electromagnetic fields as a promising therapy for glucocorticoid-induced osteoporosis. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	2
540	Type H blood vessels in coupling angiogenesisâ€osteogenesis and its application in bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 1434-1446.	1.6	9
541	Rational polyelectrolyte nanoparticles endow preosteoclast-targeted siRNA transfection for anabolic therapy of osteoporosis. Science Advances, 2023, 9, .	4.7	2
543	The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Research, 2023, 11, .	5.4	3
544	Network pharmacology-based mechanism prediction and pharmacological validation of Bushenhuoxue formula attenuating postmenopausal osteoporosis in ovariectomized mice. Journal of Orthopaedic Surgery and Research, 2023, 18, .	0.9	3
545	Microfibril-Associated Glycoprotein-2 Promoted Fracture Healing via Integrin αvβ3/PTK2/AKT Signaling. Laboratory Investigation, 2023, 103, 100121.	1.7	2
546	Regulating Type H Vessel Formation and Bone Metabolism via Boneâ€Targeting Oral Micro/Nanoâ€Hydrogel Microspheres to Prevent Bone Loss. Advanced Science, 2023, 10, .	5.6	10
547	Cancer Cell-Derived PDGFB Stimulates mTORC1 Activation in Renal Carcinoma. International Journal of Molecular Sciences, 2023, 24, 6447.	1.8	0

#	Article	IF	CITATIONS
548	Mesenchymal Stem Cell Aggregationâ€Released Extracellular Vesicles Induce CD31 ⁺ EMCN ⁺ Vessels in Skin Regeneration and Improve Diabetic Wound Healing. Advanced Healthcare Materials, 2023, 12, .	3.9	6
549	Modulating osteoclasts with nanoparticles: A path for osteoporosis management?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	2
550	A Critical Role of the Bone Marrow Envelope in Human Bone Remodeling. Journal of Bone and Mineral Research, 2020, 38, 918-928.	3.1	4
551	Application of biomaterials in treating early osteonecrosis of the femoral head: Research progress and future perspectives. Acta Biomaterialia, 2023, 164, 15-73.	4.1	6
558	Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	8