Design of nanostructures based on aromatic peptide an

Chemical Society Reviews 43, 8150-8177 DOI: 10.1039/c4cs00247d

Citation Report

#	Article	IF	CITATIONS
1	Biopolymers and supramolecular polymers as biomaterials for biomedical applications. MRS Bulletin, 2015, 40, 1089-1101.	1.7	49
2	Using the hydrolysis of anhydrides to control gel properties and homogeneity in pH-triggered gelation. RSC Advances, 2015, 5, 95369-95378.	1.7	32
3	Peptide Materials Obtained by Aggregation of Polyphenylalanine Conjugates as Gadoliniumâ€Based Magnetic Resonance Imaging Contrast Agents. Advanced Functional Materials, 2015, 25, 7003-7016.	7.8	40
4	Computational Approaches to Understanding the Selfâ€assembly of Peptideâ€based Nanostructures. Israel Journal of Chemistry, 2015, 55, 724-734.	1.0	26
5	Steric Constraints Induced Frustrated Growth of Supramolecular Nanorods in Water. Chemistry - A European Journal, 2015, 21, 19257-19264.	1.7	65
6	Implications of aromatic–aromatic interactions: From protein structures to peptide models. Protein Science, 2015, 24, 1920-1933.	3.1	132
7	Solventâ€Induced Selfâ€Assembly of Highly Hydrophobic Tetra―and Pentaphenylalanine Peptides. Israel Journal of Chemistry, 2015, 55, 756-762.	1.0	11
9	The Phe-Phe Motif for Peptide Self-Assembly in Nanomedicine. Molecules, 2015, 20, 19775-19788.	1.7	131
10	Strongly fluorescent organogels and self-assembled nanostructures from pyrene coupled coumarin derivatives: application in cell imaging. Journal of Materials Chemistry B, 2015, 3, 5690-5701.	2.9	40
11	Polymerization of low molecular weight hydrogelators to form electrochromic polymers. Chemical Communications, 2015, 51, 10427-10430.	2.2	24
12	Probing gelation ability for a library of dipeptide gelators. Journal of Colloid and Interface Science, 2015, 455, 24-31.	5.0	32
13	Self-assembly and hydrogelation from multicomponent coassembly of pentafluorobenzyl-phenylalanine and pentafluorobenzyl-diphenylalanine. RSC Advances, 2015, 5, 22943-22946.	1.7	17
14	Qualitative/chiral sensing of amino acids by naked-eye fluorescence change based on morphological transformation and hierarchizing in supramolecular assemblies of pyrene-conjugated glycolipids. Chemical Communications, 2015, 51, 11104-11107.	2.2	43
15	Remarkable influence of alkyl chain lengths on supramolecular hydrogelation of naphthalene diimide-capped dipeptides. RSC Advances, 2015, 5, 48961-48964.	1.7	12
16	1,3:2,4-Dibenzylidene- <scp>d</scp> -sorbitol (DBS) and its derivatives – efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter, 2015, 11, 4768-4787.	1.2	134
17	Understanding the self-assembly of Fmoc–phenylalanine to hydrogel formation. Soft Matter, 2015, 11, 5353-5364.	1.2	85
18	Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels. ACS Applied Materials & Interfaces, 2015, 7, 25946-25954.	4.0	40
19	Short Peptides in Minimalistic Biocatalyst Design. Biocatalysis, 2015, 1, 67-81.	2.3	49

#	Article	IF	CITATIONS
20	Nanofibrous hydrogels self-assembled from naphthalene diimide (NDI)/amino acid conjugates. RSC Advances, 2015, 5, 20410-20413.	1.7	19
21	Mechanics of single peptide hydrogelator fibrils. Nanoscale, 2015, 7, 5638-5642.	2.8	9
22	Healable Luminescent Self-Assembly Supramolecular Metallogels Possessing Lanthanide (Eu/Tb) Dependent Rheological and Morphological Properties. Journal of the American Chemical Society, 2015, 137, 1983-1992.	6.6	206
23	Fluorescent carbon dot–molecular salt hydrogels. Chemical Science, 2015, 6, 6139-6146.	3.7	95
24	Photodimerisation of a coumarin-dipeptide gelator. Chemical Communications, 2015, 51, 12827-12830.	2.2	45
25	Peptide-based hydrogen sulphide-releasing gels. Chemical Communications, 2015, 51, 13131-13134.	2.2	58
26	Anodic electrogenerated chemiluminescence of self-assembled peptide nanotubes in an aqueous system. Chemical Communications, 2015, 51, 14720-14723.	2.2	2
27	Synergetic functional properties of two-component single amino acid-based hydrogels. CrystEngComm, 2015, 17, 8105-8112.	1.3	34
28	Hydrogels formed from Fmoc amino acids. CrystEngComm, 2015, 17, 8047-8057.	1.3	92
29	Macrocyclic amphiphiles. Chemical Society Reviews, 2015, 44, 3568-3587.	18.7	188
30	Reversible deformation–formation of a multistimuli responsive vesicle by a supramolecular peptide amphiphile. Soft Matter, 2015, 11, 4912-4920.	1.2	46
31	Coordination responsive tellurium-containing multilayer film for controlled delivery. Chemical Communications, 2015, 51, 5520-5522.	2.2	18
32	Using molecular rotors to probe gelation. Soft Matter, 2015, 11, 3706-3713.	1.2	27
33	Two-step naked-eye detection of lectin by hierarchical organization of soft nanotubes into liquid crystal and gel phases. Chemical Communications, 2015, 51, 6816-6819.	2.2	20
34	Alignment of nanostructured tripeptide gels by directional ultrasonication. Chemical Communications, 2015, 51, 8465-8468.	2.2	60
35	Using solution state NMR spectroscopy to probe NMR invisible gelators. Soft Matter, 2015, 11, 7739-7747.	1.2	59
36	Sequence Adaptive Peptide–Polysaccharide Nanostructures by Biocatalytic Self-Assembly. Biomacromolecules, 2015, 16, 3473-3479.	2.6	42
37	Synthetic multivalency for biological applications. Organic and Biomolecular Chemistry, 2015, 13, 10590-10599.	1.5	38

#	Article	IF	CITATIONS
38	Multi-responsive supramolecular hydrogels based on merocyanine–peptide conjugates. Organic and Biomolecular Chemistry, 2015, 13, 11492-11498.	1.5	27
39	Structural determinants in a library of low molecular weight gelators. Soft Matter, 2015, 11, 1174-1181.	1.2	35
40	Peptide self-assembly for nanomaterials: the old new kid on the block. Chemical Society Reviews, 2015, 44, 8288-8300.	18.7	212
41	Supramolecular Assemblies Responsive to Biomolecules toward Biological Applications. Chemistry - an Asian Journal, 2015, 10, 2026-2038.	1.7	35
42	Peptide π-Electron Conjugates: Organic Electronics for Biology?. Bioconjugate Chemistry, 2015, 26, 2290-2302.	1.8	104
43	Formation of functional super-helical assemblies by constrained single heptad repeat. Nature Communications, 2015, 6, 8615.	5.8	101
44	Supramolecular assembly of dipeptide functionalized benzo[ghi]perylene monoimide directs white light emission via donor–acceptor interactions. RSC Advances, 2015, 5, 90158-90167.	1.7	20
45	Multi-responsive supramolecular hydrogels for drug delivery. Chemical Communications, 2015, 51, 15265-15267.	2.2	30
46	Tuneable pH-regulated supramolecular copolymerisation by mixing mismatched dendritic peptide comonomers. Polymer Chemistry, 2015, 6, 7245-7250.	1.9	38
47	Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications. Advances in Colloid and Interface Science, 2015, 225, 177-193.	7.0	62
48	The <i>in situ</i> synthesis of Ag/amino acid biopolymer hydrogels as mouldable wound dressings. Chemical Communications, 2015, 51, 15862-15865.	2.2	54
49	Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes. Nanoscale, 2015, 7, 15873-15879.	2.8	42
50	A supramolecular hydrogel based on carbamazepine. Chemical Communications, 2015, 51, 15294-15296.	2.2	20
51	Hydrogelation Induced by Fmoc-Protected Peptidomimetics. Langmuir, 2015, 31, 12240-12250.	1.6	23
52	Controlling Cancer Cell Fate Using Localized Biocatalytic Self-Assembly of an Aromatic Carbohydrate Amphiphile. Journal of the American Chemical Society, 2015, 137, 576-579.	6.6	260
53	Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Materials Horizons, 2015, 2, 198-202.	6.4	53
54	Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nature Chemistry, 2015, 7, 30-37.	6.6	597
55	Multicomponent low molecular weight gelators. Chemical Communications, 2015, 51, 5170-5180.	2.2	206

#	Article	IF	Citations
56	Tuning the pH-triggered self-assembly of dendritic peptide amphiphiles using fluorinated side chains. Organic and Biomolecular Chemistry, 2015, 13, 1030-1039.	1.5	31
57	pH response and molecular recognition in a low molecular weight peptide hydrogel. Organic and Biomolecular Chemistry, 2015, 13, 561-569.	1.5	36
58	Multifunctional Nanoparticles Selfâ€Assembled from Small Organic Building Blocks for Biomedicine. Advanced Materials, 2016, 28, 7304-7339.	11.1	155
59	Counterionâ€Ðirected, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces. Advanced Materials Interfaces, 2016, 3, 1500327.	1.9	11
60	Long‣ived Foams Stabilized by a Hydrophobic Dipeptide Hydrogel. Advanced Materials Interfaces, 2016, 3, 1500601.	1.9	26
61	Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly. ACS Nano, 2016, 10, 7436-7442.	7.3	91
62	Stereopositional Outcome in the Packing of Dissimilar Aromatics in Designed βâ€Hairpins. Chemistry - A European Journal, 2016, 22, 4147-4156.	1.7	4
63	Simple Peptideâ€Tuned Selfâ€Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie - International Edition, 2016, 55, 3036-3039.	7.2	453
64	Mechanochemical Encapsulation of Fullerenes in Peptidic Containers Prepared by Dynamic Chiral Selfâ€Sorting and Selfâ€Assembly. Chemistry - A European Journal, 2016, 22, 3148-3155.	1.7	33
65	An Injectable Selfâ€Assembling Collagen–Cold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy. Advanced Materials, 2016, 28, 3669-3676.	11.1	700
66	Self-assembly of PEGylated tetra-phenylalanine derivatives: structural insights from solution and solid state studies. Scientific Reports, 2016, 6, 26638.	1.6	32
67	Cation Tuning toward the Inference of the Gelation Behavior of Supramolecular Gels. Scientific Reports, 2016, 6, 25390.	1.6	13
68	Enzymatic induction of supramolecular order and bioactivity. Nanoscale, 2016, 8, 10768-10773.	2.8	16
69	Linking micellar structures to hydrogelation for salt-triggered dipeptide gelators. Soft Matter, 2016, 12, 3612-3621.	1.2	69
70	Spatiotemporal control of the creation and immolation of peptide assemblies. Coordination Chemistry Reviews, 2016, 320-321, 2-17.	9.5	23
71	Reversible, Short α-Peptide Assembly for Controlled Capture and Selective Release of Enantiomers. Journal of the American Chemical Society, 2016, 138, 5773-5776.	6.6	48
72	Solubilization of Hexafluorobenzene by the Micellar Aromatic Core Formed from Aggregation of Amphiphilic (2,3- <i>O</i> -Dibenzyl-6- <i>O</i> -sulfobutyl) Cyclodextrins. Journal of Physical Chemistry B, 2016, 120, 4182-4194.	1.2	2
73	Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chemical Society Reviews, 2016, 45, 3935-3953.	18.7	366

#	Article	IF	CITATIONS
74	Low-Molecular-Weight Organo- and Hydrogelators Based on Cyclo(<scp>l</scp> -Lys- <scp>l</scp> -Glu). Langmuir, 2016, 32, 4586-4594.	1.6	44
75	Hierarchical self-assembly of di-, tri- and tetraphenylalanine peptides capped with two fluorenyl functionalities: from polymorphs to dendrites. Soft Matter, 2016, 12, 5475-5488.	1.2	26
76	Regulation of peptide-ï€-peptide nanostructure bundling: the impact of â€~cruciform' Ï€-electron segments. Tetrahedron, 2016, 72, 6084-6090.	1.0	5
77	Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles. Soft Matter, 2016, 12, 8307-8315.	1.2	31
78	Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid. Physical Chemistry Chemical Physics, 2016, 18, 30926-30930.	1.3	15
79	Will it gel? Successful computational prediction of peptide gelators using physicochemical properties and molecular fingerprints. Chemical Science, 2016, 7, 4713-4719.	3.7	81
80	Peptide self-assembly: thermodynamics and kinetics. Chemical Society Reviews, 2016, 45, 5589-5604.	18.7	760
81	Molecular nanofibers of paclitaxel form supramolecular hydrogel for preventing tumor growth in vivo. RSC Advances, 2016, 6, 80847-80850.	1.7	2
82	Synergistic Assembly of Peptide-Metal Hydroxide Hybrid Nanostructures for Electrochemical Capacitors. ChemistrySelect, 2016, 1, 715-722.	0.7	7
83	Controlling gelation with sequence: Towards programmable peptide hydrogels. Acta Biomaterialia, 2016, 43, 30-37.	4.1	15
84	Self-assembled peptide nanostructures for functional materials. Nanotechnology, 2016, 27, 402002.	1.3	76
85	Disruption of diphenylalanine assembly by a Boc-modified variant. Soft Matter, 2016, 12, 9451-9457.	1.2	23
86	Spontaneous structural transition and crystal formation in minimal supramolecular polymer model. Science Advances, 2016, 2, e1500827.	4.7	62
87	Solvent Induced Morphological Evolution of Cholesterol Based Clucose Tailored Amphiphiles: Transformation from Vesicles to Nanoribbons. Langmuir, 2016, 32, 9780-9789.	1.6	35
88	Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation. Journal of Physical Chemistry B, 2016, 120, 10243-10257.	1.2	8
89	Functional Supramolecular Polymers: A Fluorescent Microfibrous Network in a Supramolecular Hydrogel for High ontrast Live Cellâ€Material Imaging in 3D Environments. Advanced Healthcare Materials, 2016, 5, 2406-2412.	3.9	33
90	Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chemical Communications, 2016, 52, 12574-12577.	2.2	28
91	Effect of Peptide Sequences on Supramolecular Interactions of Naphthaleneimide/Tripeptide Conjugates. Langmuir, 2016, 32, 7630-7638.	1.6	31

#	Article	IF	Citations
92	Hierarchical Analysis of Selfâ€Assembled PEGylated Hexaphenylalanine Photoluminescent Nanostructures. Chemistry - A European Journal, 2016, 22, 16586-16597.	1.7	38
93	Gelation of Novel Pyrene ored Chiral Dendrimers: Dendritic Effect in Gelation and Shear Thinning Behavior. Macromolecular Symposia, 2016, 369, 14-18.	0.4	5
94	Water ordering controls the dynamic equilibrium of micelle–fibre formation in self-assembly of peptide amphiphiles. Nature Communications, 2016, 7, 12367.	5.8	55
95	Selective aliphatic/aromatic organogelation controlled by the side chain of serine amphiphiles. RSC Advances, 2016, 6, 108093-108104.	1.7	5
96	Exfoliated sheets of MoS ₂ trigger formation of aqueous gels with acute NIR light responsiveness. Chemical Communications, 2016, 52, 14043-14046.	2.2	11
97	Non-standard amino acids and peptides: From self-assembly to nanomaterials. Tetrahedron Letters, 2016, 57, 5540-5550.	0.7	42
98	Metastable hydrogels from aromatic dipeptides. Chemical Communications, 2016, 52, 13889-13892.	2.2	55
99	Salt metathesis for developing injectable supramolecular metallohydrogelators as a multi-drug-self-delivery system. Chemical Communications, 2016, 52, 13811-13814.	2.2	12
100	Covalent Selfâ€Assembly and Oneâ€Step Photocrosslinking of Tyrosineâ€Rich Oligopeptides to Form Diverse Nanostructures. Angewandte Chemie, 2016, 128, 7039-7042.	1.6	7
101	Self-assembly of small peptide amphiphiles, the structures formed and their applications. (A foods and) Tj ETQq1 Engineering Sciences, 2016, 374, 20150138.	1 0.78431 1.6	4 rgBT /Over 13
102	Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides. Acta Biomaterialia, 2016, 38, 11-22.	4.1	56
103	Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chemical Society Reviews, 2016, 45, 4797-4824.	18.7	135
104	Heteropoly acids triggered self-assembly of cationic peptides into photo- and electro-chromic gels. Soft Matter, 2016, 12, 5572-5580.	1.2	17
105	Solvothermally Mediated Selfâ€Assembly of Ultralong Peptide Nanobelts Capable of Optical Waveguiding. Small, 2016, 12, 2575-2579.	5.2	50
107	Simple Peptideâ€Tuned Selfâ€Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie, 2016, 128, 3088-3091.	1.6	85
108	Covalent Selfâ€Assembly and Oneâ€Step Photocrosslinking of Tyrosineâ€Rich Oligopeptides to Form Diverse Nanostructures. Angewandte Chemie - International Edition, 2016, 55, 6925-6928.	7.2	46
109	Enzymatically activated emulsions stabilised by interfacial nanofibre networks. Soft Matter, 2016, 12, 2623-2631.	1.2	23
110	Photoresponsive self-healing supramolecular hydrogels for light-induced release of DNA and doxorubicin. Chemical Communications, 2016, 52, 3143-3146.	2.2	98

		CITATION REPORT	
#	Article	IF	CITATIONS
111	Enzyme–substrate interactions promote the self-assembly of amino acid derivatives into supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 844-851.	2.9	17
112	Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly. ACS Nano, 2016, 10, 2138-2143.	7.3	156
113	CHARMM force field parameterization protocol for self-assembling peptide amphiphiles: the Fmoc moiety. Physical Chemistry Chemical Physics, 2016, 18, 4659-4667.	1.3	17
114	Supramolecular biomaterials. Nature Materials, 2016, 15, 13-26.	13.3	1,226
115	Optimized Ratiometric Fluorescent Probes by Peptide Self-Assembly. Analytical Chemistry, 2016, 88, 740-745.	3.2	24
116	Electrostatic-Driven Lamination and Untwisting of Î ² -Sheet Assemblies. ACS Nano, 2016, 10, 880-888.	7.3	133
117	Self-assembly of a 5-fluorouracil-dipeptide hydrogel. Chemical Communications, 2016, 52, 5254-5257.	2.2	60
118	In situ enzymatic formation of supramolecular nanofibers for efficiently killing cancer cells. RSC Advances, 2016, 6, 32519-32522.	1.7	19
119	Supramolecular Fibers in Gels Can Be at Thermodynamic Equilibrium: A Simple Packing Model Reveals Preferential Fibril Formation <i>versus</i> Crystallization. ACS Nano, 2016, 10, 2661-2668.	7.3	79
120	Influence of C–H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly. ACS Applied Materials & Interfaces, 2016, 8, 5188-5195.	4.0	27
121	π–π Stacking Mediated Chirality in Functional Supramolecular Filaments. Macromolecules, 2016, 49, 994-1001.	2.2	41
122	Supramolecular Gelation of Rigid Triangular Macrocycles through Rings of Multiple C–H•••O Interactions Acting Cooperatively. Journal of Organic Chemistry, 2016, 81, 2581-2588.	1.7	27
123	Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial. Chemical Communications, 2016, 52, 5912-5915.	2.2	58
124	Probing the self-assembly and stability of oligohistidine based rod-like micelles by aggregation induced luminescence. Organic and Biomolecular Chemistry, 2016, 14, 5574-5579.	1.5	20
125	Analysis of enzyme-responsive peptide surfaces by Raman spectroscopy. Chemical Communications, 2016, 52, 4698-4701.	2.2	9
126	Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. Soft Matter, 2016, 12, 2700-2707.	1.2	37
127	Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016, 11, 41-60.	6.2	472
128	Supramolecular Polymers in Aqueous Media. Chemical Reviews, 2016, 116, 2414-2477.	23.0	625

#	Article	IF	CITATIONS
129	Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives. Langmuir, 2016, 32, 787-799.	1.6	84
130	Tailoring luminescence color conversion via affinitive co-assembly of glutamates appended with pyrene and naphthalene dicarboximide units. Chemical Communications, 2016, 52, 1246-1249.	2.2	31
131	Gelation capability of cysteine-modified cyclo(L-Lys-L-Lys)s dominated by Fmoc and Trt protecting groups. Science China Chemistry, 2016, 59, 293-302.	4.2	7
132	A water-soluble metal–organic complex array as a multinuclear heterometallic peptide amphiphile that shows unconventional anion dependency in its self-assembly. Chemical Communications, 2016, 52, 1579-1581.	2.2	11
133	Tunable Aggregationâ€Induced Emission of Tetraphenylethylene via Short Peptideâ€Directed Selfâ€Assembly. Advanced Materials Interfaces, 2017, 4, 1600183.	1.9	18
134	Gasotransmitter delivery via self-assembling peptides: Treating diseases with natural signaling gases. Advanced Drug Delivery Reviews, 2017, 110-111, 137-156.	6.6	69
135	Template-free hierarchical self-assembly of a pyrene derivative into supramolecular nanorods. Chemical Communications, 2017, 53, 1973-1976.	2.2	18
136	Melting Behavior of Zipper-Structured Lipopeptides in Lipid Bilayer. Langmuir, 2017, 33, 1478-1485.	1.6	7
137	Amino Acids and Peptideâ€Based Supramolecular Hydrogels for Threeâ€Dimensional Cell Culture. Advanced Materials, 2017, 29, 1604062.	11.1	260
138	A novel H2O2responsive supramolecular hydrogel for controllable drug release. RSC Advances, 2017, 7, 1313-1317.	1.7	25
139	One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents. ACS Nano, 2017, 11, 797-805.	7.3	95
140	Transformation of Dipeptideâ€Based Organogels into Chiral Crystals by Cryogenic Treatment. Angewandte Chemie - International Edition, 2017, 56, 2660-2663.	7.2	106
141	Transformation of Dipeptideâ€Based Organogels into Chiral Crystals by Cryogenic Treatment. Angewandte Chemie, 2017, 129, 2704-2707.	1.6	25
142	Ionâ€Dependent Modulation of Selfâ€Healing Hydrogels. ChemistrySelect, 2017, 2, 451-457.	0.7	18
143	Surface Mediated Hierarchical Assemblies of Highly Hydrophobic Phenylalanineâ€Based Peptides. ChemistrySelect, 2017, 2, 1133-1139.	0.7	7
144	Supramolecular Gels from Conjugates of Bile Acids and Amino Acids and Their Applications. European Journal of Organic Chemistry, 2017, 2017, 1713-1720.	1.2	23
145	Halogen bonding modulates hydrogel formation from Fmoc amino acids. CrystEngComm, 2017, 19, 1870-1874.	1.3	37
146	Sensitive and selective ratiometric fluorescent detection of monosaccharides in aqueous solutions at physiological pH using self-assembled peptides with different aromatic side chains. New Journal of Chemistry, 2017, 41, 2593-2603.	1.4	1

#	Article	IF	CITATIONS
147	Direct Formation of Large-Area 2D Nanosheets from Fluorescent Semiconducting Homopolymer with Orthorhombic Crystalline Orientation. Journal of the American Chemical Society, 2017, 139, 3082-3088.	6.6	58
148	Co-assembly of Fmoc-tripeptide and gold nanoparticles as a facile approach to immobilize nanocatalysts. RSC Advances, 2017, 7, 15736-15741.	1.7	10
149	Controlling the network type in self-assembled dipeptide hydrogels. Soft Matter, 2017, 13, 1914-1919.	1.2	65
150	Gd(III)-induced Supramolecular Hydrogelation with Enhanced Magnetic Resonance Performance for Enzyme Detection. Scientific Reports, 2017, 7, 40172.	1.6	17
151	Conformational Effects through Hydrogen Bonding in a Constrained Î ³ -Peptide Template: From Intraresidue Seven-Membered Rings to a Gel-Forming Sheet Structure. Journal of Organic Chemistry, 2017, 82, 4819-4828.	1.7	19
152	Role of Hydrophobic/Aromatic Residues on the Stability of Double-Wall β-Sheet Structures Formed by a Triblock Peptide. Journal of Physical Chemistry B, 2017, 121, 4115-4128.	1.2	5
153	Studying structure and dynamics of self-assembled peptide nanostructures using fluorescence and super resolution microscopy. Chemical Communications, 2017, 53, 7294-7297.	2.2	23
154	Temperature and ion dual responsive biphenyl-dipeptide supramolecular hydrogels as extracellular matrix mimic-scaffolds for cell culture applications. Journal of Materials Chemistry B, 2017, 5, 3667-3674.	2.9	19
155	Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure. Biomaterials Science, 2017, 5, 1526-1530.	2.6	27
156	Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly. Physical Chemistry Chemical Physics, 2017, 19, 23614-23631.	1.3	48
157	Biocatalytic Selfâ€Assembly Cascades. Angewandte Chemie - International Edition, 2017, 56, 6828-6832.	7.2	65
158	Biocatalytic Self-Assembly of Tripeptide Gels and Emulsions. Langmuir, 2017, 33, 4986-4995.	1.6	26
159	Molecular Insights into Gelation of Di-Fmoc- <scp>l</scp> -Lysine in Organic Solvent–Water Mixtures. ACS Omega, 2017, 2, 1864-1874.	1.6	30
160	Supramolecularly Engineered π-Amphiphile. Langmuir, 2017, 33, 4789-4795.	1.6	25
161	Tunable Supramolecular Assembly and Photoswitchable Conversion of Cyclodextrin/Diphenylalanineâ€Based 1D and 2D Nanostructures. Angewandte Chemie, 2017, 129, 7168-7171.	1.6	15
162	Tunable Supramolecular Assembly and Photoswitchable Conversion of Cyclodextrin/Diphenylalanineâ€Based 1D and 2D Nanostructures. Angewandte Chemie - International Edition, 2017, 56, 7062-7065.	7.2	88
163	Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow. Organic and Biomolecular Chemistry, 2017, 15, 5484-5502.	1.5	19
164	Partially Acetylated or Benzoylated Arabinose Derivatives as Structurally Simple Organogelators: Effect of the Ester Protecting Group on Gel Properties. Chemistry - A European Journal, 2017, 23, 11323-11329.	1.7	5

#	Article	IF	Citations
165	Tuning Supramolecular Structure and Functions of Peptide <i>bola</i> -Amphiphile by Solvent Evaporation–Dissolution. ACS Applied Materials & Interfaces, 2017, 9, 21390-21396.	4.0	32
166	Structural analysis of the foldecture derived from racemic peptide foldamers. Solid State Sciences, 2017, 70, 1-5.	1.5	6
167	Exploring the role of molecular chirality in the photo-responsiveness of dipeptide-based gels. Journal of Materials Chemistry B, 2017, 5, 3163-3171.	2.9	20
168	Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids. ACS Nano, 2017, 11, 4206-4216.	7.3	53
169	Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids. Langmuir, 2017, 33, 4036-4048.	1.6	31
170	Supramolecular biofunctional materials. Biomaterials, 2017, 129, 1-27.	5.7	196
171	Choice of Capping Group in Tripeptide Hydrogels Influences Viability in the Threeâ€Đimensional Cell Culture of Tumor Spheroids. ChemPlusChem, 2017, 82, 383-389.	1.3	19
172	Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications. ACS Symposium Series, 2017, , 123-152.	0.5	17
173	Self-assembled RGD dehydropeptide hydrogels for drug delivery applications. Journal of Materials Chemistry B, 2017, 5, 8607-8617.	2.9	35
174	Self-assembly of single amino acid/pyrene conjugates with unique structure–morphology relationship. Soft Matter, 2017, 13, 8402-8407.	1.2	12
175	Trace Water as Prominent Factor to Induce Peptide Selfâ€Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids. Small, 2017, 13, 1702175.	5.2	49
176	Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition. Scientific Reports, 2017, 7, 12897.	1.6	25
177	Molecular packing and the handedness of the self-assemblies of C ₁₇ H ₃₅ CO-Ala-Phe sodium salts. New Journal of Chemistry, 2017, 41, 13253-13259.	1.4	4
178	Morphologyâ€Dependent Cell Imaging by Using a Selfâ€Assembled Diacetylene Peptide Amphiphile. Angewandte Chemie, 2017, 129, 14718-14722.	1.6	9
179	Structure-Dependent Antimicrobial Theranostic Functions of Self-Assembled Short Peptide Nanoagents. Biomacromolecules, 2017, 18, 3600-3610.	2.6	17
180	Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material. Biomacromolecules, 2017, 18, 3551-3556.	2.6	64
181	Drug delivery by supramolecular design. Chemical Society Reviews, 2017, 46, 6600-6620.	18.7	551
182	Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1194-1211.	2.0	7

ARTICLE IF CITATIONS # Synthesis and gelation property of a series of disaccharide triazole derivatives. Carbohydrate 183 1.1 17 Résearch, 2017, 451, 81-94. Self-assembly of diphenylalanine with preclick components as capping groups. Physical Chemistry 184 1.3 Chemical Physics, 2017, 19, 27038-27051. Morphologyâ€Dependent Cell Imaging by Using a Selfâ€Assembled Diacetylene Peptide Amphiphile. 185 7.2 40 Angewandte Chemie - International Edition, 2017, 56, 14526-14530. Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug 1.2 186 amphiphile filaments. Soft Matter, 2017, 13, 7721-7730. Low-Molecular-Weight Gels: The State of the Art. CheM, 2017, 3, 390-410. 187 5.8 466 Biomoleculeâ€Enabled Chiral Assembly of Plasmonic Nanostructures. ChemNanoMat, 2017, 3, 685-697. 1.5 Chameleonic Dye Adapts to Various Environments Shining on Macrocycles or Peptide and 189 4.0 15 Polysaccharide Aggregates. ACS Applied Materials & amp; Interfaces, 2017, 9, 33220-33228. Supramolecular helical nanofibers formed by an achiral monopyrrolotetrathiafulvalene derivative: water-triggered gelation and chiral evolution. New Journal of Chemistry, 2017, 41, 11060-11068. 1.4 Hydrogelation of a Naphthalene Diimide Appended Peptide Amphiphile and Its Application in Cell Imaging 191 2.6 42 and Intracellular pH Sensing. Biomacromolecules, 2017, 18, 3630-3641. Opening a Can of Worm(â€like Micelle)s: The Effect of Temperature of Solutions of Functionalized 1.6 Dipeptides. Angewandte Chemie, 2017, 129, 10603-10606. Structural and Spectroscopic Properties of Assemblies of Self-Replicating Peptide Macrocycles. ACS 193 7.336 Nano, 2017, 11, 7858-7868. Self-Assembly and Associated Photophysics of Dendron-Appended Peptide-ï€-Peptide Triblock Macromolecules. Macromolecules, 2017, 50, 5315-5322. 194 2.2 Probing Gelation and Rheological Behavior of a Self-Assembled Molecular Gel. Langmuir, 2017, 33, 195 1.6 40 7769-7779. Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. Langmuir, 2017, 33, 7947-7956. 1.6 Molecular co-assembly as a strategy for synergistic improvement of the mechanical properties of hydrogels. Chemical Communications, 2017, 53, 9586-9589. 197 2.2 78 Nano Cu interaction with single amino acid tyrosine derived self-assemblies; study through XRD, AFM, confocal Raman microscopy, SERS and DFT methods. Journal of Physics and Chemistry of Solids, 2017, 111, 123-134. Tuning the pH $\hat{a}\in S$ witch of Supramolecular Polymer Carriers for siRNA to Physiologically Relevant pH. 199 2.118 Macromolecular Bioscience, 2017, 17, 1700111. Pathway-dependent gold nanoparticle formation by biocatalytic self-assembly. Nanoscale, 2017, 9, 2.8 12330-12334.

#	Article	IF	CITATIONS
201	Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization. ACS Nano, 2017, 11, 12840-12848.	7.3	26
202	Design, synthesis, and characterisation of glyoxylamide-based short peptides as self-assembled gels. New Journal of Chemistry, 2017, 41, 13462-13471.	1.4	9
203	Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release <i>via</i> host–guest interaction. Chemical Communications, 2017, 53, 12450-12453.	2.2	53
204	Biocatalytic Selfâ€Assembly Cascades. Angewandte Chemie, 2017, 129, 6932-6936.	1.6	26
205	Opening a Can of Worm(â€like Micelle)s: The Effect of Temperature of Solutions of Functionalized Dipeptides. Angewandte Chemie - International Edition, 2017, 56, 10467-10470.	7.2	62
206	Synthesis and gelation capability of mono- and disubstituted cyclo(L-Glu-L-Glu) derivatives with tyramine, tyrosine and phenylalanine. Colloid and Polymer Science, 2017, 295, 1549-1561.	1.0	9
207	A chiral BINOL-based Gemini amphiphilic gelator and its specific discrimination of native arginine by gelation in water. Soft Matter, 2017, 13, 5453-5462.	1.2	10
208	Controlling supramolecular polymerization through multicomponent selfâ€assembly. Journal of Polymer Science Part A, 2017, 55, 34-78.	2.5	117
209	Gadolinium containing telechelic PEGâ€polymers endâ€capped by diâ€phenylalanine motives as potential supramolecular MRI contrast agents. Journal of Peptide Science, 2017, 23, 122-130.	0.8	17
210	Investigating the effects of peptoid substitutions in selfâ€assembly of Fmocâ€diphenylalanine derivatives. Biopolymers, 2017, 108, e22994.	1.2	20
211	Peptideâ€Based Molecular Hydrogels as Supramolecular Protein Mimics. Chemistry - A European Journal, 2017, 23, 981-993.	1.7	147
212	Oxazolidinoneâ€containing pseudopeptides: Supramolecular materials, fibers, crystals, and gels. Biopolymers, 2017, 108, e22898.	1.2	12
213	A dipeptideâ€based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water. Biopolymers, 2017, 108, e22915.	1.2	36
214	Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics, 2017, 7, 2003-2014.	4.6	52
215	4.16 Surface Engineering Using Amphiphilic Peptides â [°] †. , 2017, , 272-291.		0
216	Short peptide self-assembled nanostructures for therapeutics innovative delivery. , 2017, , 227-250.		5
217	Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. Chemical Society Reviews, 2018, 47, 3406-3420.	18.7	241
218	Photon management in supramolecular peptide nanomaterials. Bioinspiration and Biomimetics, 2018, 13, 015004.	1.5	6

# 219	ARTICLE Oxidoreductaseâ€Initiated Radical Polymerizations to Design Hydrogels and Micro/Nanogels: Mechanism, Molding, and Applications. Advanced Materials, 2018, 30, e1705668.	IF 11.1	CITATIONS
220	Supramolecular self assembly of nanodrill-like structures for intracellular delivery. Journal of Controlled Release, 2018, 282, 76-89.	4.8	21
222	Waterâ€Bindingâ€Mediated Gelation/Crystallization and Thermosensitive Superchirality. Angewandte Chemie - International Edition, 2018, 57, 7774-7779.	7.2	45
223	Glycosylation-enhanced biocompatibility of the supramolecular hydrogel of an anti-inflammatory drug for topical suppression of inflammation. Acta Biomaterialia, 2018, 73, 275-284.	4.1	20
224	Peptideâ€Based Scaffold for Nitric Oxide Induced Differentiation of Neuroblastoma Cells. ChemBioChem, 2018, 19, 1127-1131.	1.3	4
225	Energy landscaping in supramolecular materials. Current Opinion in Structural Biology, 2018, 51, 9-18.	2.6	23
226	Supramolecular bimetallogels: a nanofiber network for bimetal/nitrogen co-doped carbon electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 8227-8232.	5.2	24
227	Dynamic Protein–Metal Ion Networks: A Unique Approach to Injectable and Selfâ€Healable Metal Sulfide/Protein Hybrid Hydrogels with High Photothermal Efficiency. Chemistry - A European Journal, 2018, 24, 6557-6563.	1.7	38
228	Immunoengineering with Supramolecular Peptide Biomaterials. Journal of the Indian Institute of Science, 2018, 98, 69-79.	0.9	7
229	Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels. Journal of the American Chemical Society, 2018, 140, 2869-2874.	6.6	117
230	Supramolecular nanofibers of dexamethasone derivatives to form hydrogel for topical ocular drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 164, 436-443.	2.5	36
231	Iron nanoparticles-based supramolecular hydrogels to originate anisotropic hybrid materials with enhanced mechanical strength. Materials Chemistry Frontiers, 2018, 2, 686-699.	3.2	46
233	Peptide-Based Hydrogels/Organogels: Assembly and Application. , 2018, , 205-226.		2
234	Peptides with regularly alternating enantiomeric sequence: From ion channel models to bioinspired nanotechnological applications. Peptide Science, 2018, 110, e24043.	1.0	4
235	The Physical Chemistry for the Self-assembly of Peptide Hydrogels. Chinese Journal of Polymer Science (English Edition), 2018, 36, 366-378.	2.0	27
236	Enzymatically-stable oxetane-based dipeptide hydrogels. Chemical Communications, 2018, 54, 1793-1796.	2.2	15
237	Nanodrugs based on peptide-modulated self-assembly: Design, delivery and tumor therapy. Current Opinion in Colloid and Interface Science, 2018, 35, 17-25.	3.4	55
238	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie, 2018, 130, 1553-1558.	1.6	28

#	Article	IF	CITATIONS
239	A Photoinduced Reversible Phase Transition in a Dipeptide Supramolecular Assembly. Angewandte Chemie - International Edition, 2018, 57, 1903-1907.	7.2	86
240	Dual Role of a Fluorescent Peptidyl Probe Based on Self-Assembly for the Detection of Heparin and for the Inhibition of the Heparin-Digestive Enzyme Reaction. ACS Applied Materials & Interfaces, 2018, 10, 2282-2290.	4.0	36
241	A Photoinduced Reversible Phase Transition in a Dipeptide Supramolecular Assembly. Angewandte Chemie, 2018, 130, 1921-1925.	1.6	29
242	Photoresponsive Coumarinâ€Based Supramolecular Hydrogel for Controllable Dye Release. Macromolecular Chemistry and Physics, 2018, 219, 1700398.	1.1	18
243	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie - International Edition, 2018, 57, 1537-1542.	7.2	192
244	Studies on hydroquinone based maleate bolaamphiphile organogels and their drug formulations. Soft Materials, 2018, 16, 108-116.	0.8	7
245	Terminal aspartic acids promote the self-assembly of collagen mimic peptides into nanospheres. RSC Advances, 2018, 8, 2404-2409.	1.7	8
246	New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines. Nanoscale, 2018, 10, 3212-3224.	2.8	28
247	Comparison of the Self-Assembly Behavior of Fmoc-Phenylalanine and Corresponding Peptoid Derivatives. Crystal Growth and Design, 2018, 18, 623-632.	1.4	23
248	3D bioprinting for cell culture and tissue fabrication. Bio-Design and Manufacturing, 2018, 1, 45-61.	3.9	56
249	Multicomponent peptide assemblies. Chemical Society Reviews, 2018, 47, 3659-3720.	18.7	264
250	Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nature Chemistry, 2018, 10, 696-703.	6.6	189
251	Design of Pyrene–Fatty Acid Conjugates for Real-Time Monitoring of Drug Delivery and Controllability of Drug Release. ACS Omega, 2018, 3, 3572-3580.	1.6	6
252	Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. ACS Nano, 2018, 12, 3253-3262.	7.3	72
253	Self-Assembled Peptide Hydrogel With Porphyrin as a Dopant for Enhanced Photocurrent Generation. Colloids and Interface Science Communications, 2018, 23, 29-33.	2.0	16
254	Tailor-Made Self-Assemblies from Functionalized Amphiphiles: Diversity and Applications. Langmuir, 2018, 34, 10449-10468.	1.6	25
255	<scp>F</scp> rom selfâ€assembled peptideâ€ynes to peptide polyacetylenes and polydiacetylenes. Peptide Science, 2018, 110, e24036.	1.0	2
256	Site-specific determination of TTR-related functional peptides by using scanning tunneling microscopy. Nano Research, 2018, 11, 577-585.	5.8	7

#	Article	IF	CITATIONS
257	Antitumor Photodynamic Therapy Based on Dipeptide Fibrous Hydrogels with Incorporation of Photosensitive Drugs. ACS Biomaterials Science and Engineering, 2018, 4, 2046-2052.	2.6	82
258	Negishi cross-couplings in the synthesis of amino acids. Organic and Biomolecular Chemistry, 2018, 16, 10-20.	1.5	41
259	Selective Coassembly of Aromatic Amino Acids to Fabricate Hydrogels with Light Irradiationâ€Induced Emission for Fluorescent Imprint. Advanced Materials, 2018, 30, 1705633.	11.1	63
260	Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation. ACS Applied Materials & Interfaces, 2018, 10, 308-317.	4.0	41
261	Spectral investigations and DFT studies of 3,7-dihydro-1,3,7-trimethyl-1 H -purine-2,6-dione (caffeine) interaction and recognition by single amino acid derived self-assembled nanostructures. Journal of Molecular Structure, 2018, 1156, 51-61.	1.8	3
263	A novel fluorescent peptidyl probe for highly sensitive and selective ratiometric detection of Cd(<scp>ii</scp>) in aqueous and bio-samples <i>via</i> metal ion-mediated self-assembly. New Journal of Chemistry, 2018, 42, 18143-18151.	1.4	10
264	Hierarchical fibrous microfiltration membranes by self-assembling DBS nanofibrils in solution-blown nanofibers. Soft Matter, 2018, 14, 8879-8882.	1.2	7
265	Aromatic identity, electronic substitution, and sequence in amphiphilic tripeptide self-assembly. Soft Matter, 2018, 14, 9168-9174.	1.2	24
267	Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides. ACS Nano, 2018, 12, 12305-12314.	7.3	53
268	Amyloid-like Fibrils from a Diphenylalanine Capped with an Aromatic Fluorenyl. Langmuir, 2018, 34, 15551-15559.	1.6	10
269	Self-assembled Diphenylalanine Peptide Fibrils with Ultra-High Aspect Ratio: A Platform for Sensitive Electrochemical H2O2 Sensor. International Journal of Electrochemical Science, 2018, 13, 8518-8529.	0.5	8
270	Catalytic and Electron Conducting Carbon Nanotube–Reinforced Lysozyme Crystals. Advanced Functional Materials, 2019, 29, 1807351.	7.8	25
271	Peptideâ€Templated Synthesis of TiO ₂ Nanofibers with Tunable Photocatalytic Activity. Chemistry - A European Journal, 2018, 24, 18123-18129.	1.7	17
272	Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. Journal of Physical Chemistry B, 2018, 122, 10403-10423.	1.2	116
273	Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Materials Chemistry Frontiers, 2018, 2, 2152-2174.	3.2	102
274	UV Light–Responsive Peptideâ€Based Supramolecular Hydrogel for Controlled Drug Delivery. Macromolecular Rapid Communications, 2018, 39, e1800588.	2.0	85
275	A supramolecular hydrogel for spatial-temporal release of auxin to promote plant root growth. Chemical Communications, 2018, 54, 11721-11724.	2.2	10
276	Amyloid-like staining property of RADA16-I nanofibers and its potential application in detecting and imaging the nanomaterial. International Journal of Nanomedicine, 2018, Volume 13, 2477-2489.	3.3	16

#	Article	IF	CITATIONS
277	Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. Journal of Physical Chemistry B, 2018, 122, 10219-10236.	1.2	19
278	Glyoxylamide-based self-assembly hydrogels for sustained ciprofloxacin delivery. Journal of Materials Chemistry B, 2018, 6, 6089-6098.	2.9	16
279	Unravelling the 2D self-assembly of Fmoc-dipeptides at fluid interfaces. Soft Matter, 2018, 14, 9343-9350.	1.2	20
280	Assembly modes of hexaphenylalanine variants as function of the charge states of their terminal ends. Soft Matter, 2018, 14, 8219-8230.	1.2	18
281	Opal-like Multicolor Appearance of Self-Assembled Photonic Array. ACS Applied Materials & Interfaces, 2018, 10, 20783-20789.	4.0	17
282	Tunable Pentapeptide Selfâ€Assembled βâ€Sheet Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 7709-7713.	7.2	93
283	Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters!. ACS Nano, 2018, 12, 5530-5538.	7.3	61
284	Tunable Pentapeptide Selfâ€Assembled βâ€&heet Hydrogels. Angewandte Chemie, 2018, 130, 7835-7839.	1.6	16
285	Tuning the Morphology of Nanostructured Peptide Films by the Introduction of a Secondary Structure Conformational Constraint: A Case Study of Hierarchical Self-Assembly. Journal of Physical Chemistry B, 2018, 122, 6305-6313.	1.2	10
286	Cation instructed steroidal prodrug supramolecular hydrogel. Journal of Colloid and Interface Science, 2018, 528, 10-17.	5.0	10
287	Mesoscopic Heterogeneity in Pore Size of Supramolecular Networks. Langmuir, 2018, 34, 7503-7508.	1.6	8
288	Biogelx: Cell Culture on Self-Assembling Peptide Gels. Methods in Molecular Biology, 2018, 1777, 283-303.	0.4	13
289	Biomedical applications of functional peptides in nano-systems. Materials Today Chemistry, 2018, 9, 91-102.	1.7	37
290	Self-Assembly of Monomeric Hydrophobic Photosensitizers with Short Peptides Forming Photodynamic Nanoparticles with Real-Time Tracking Property and without the Need of Release in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 28420-28427.	4.0	51
291	Hybrid Polypeptide/Polylactide Copolymers with Short Phenylalanine Blocks. Macromolecular Chemistry and Physics, 2018, 219, 1800168.	1.1	9
292	Glucose oxidase mediated targeted cancer-starving therapy by biotinylated self-assembled vesicles. Chemical Communications, 2018, 54, 9929-9932.	2.2	64
293	Construction of supramolecular hydrogels using photo-generated nitric oxide radicals. Soft Matter, 2018, 14, 5950-5954.	1.2	6
294	Alignment of twisted nanoribbons formed by C ₁₇ H ₃₅ CO-Val-Ala sodium salts. Soft Matter, 2018, 14, 6353-6359.	1.2	4

#	Article	IF	CITATIONS
295	Functional Assemblies Emerging in Complex Mixtures of Peptides and Nucleic Acid–Peptide Chimeras. Chemistry - A European Journal, 2018, 24, 10128-10135.	1.7	24
296	Guiding principles for peptide nanotechnology through directed discovery. Chemical Society Reviews, 2018, 47, 3737-3758.	18.7	116
297	H2S Delivery from Aromatic Peptide Amphiphile Hydrogels. Methods in Molecular Biology, 2018, 1758, 193-208.	0.4	0
298	Self-Assembly and Mechanical Properties of a Triblock Copolymer Gel in a Mid-block Selective Solvent. ACS Symposium Series, 2018, , 157-197.	0.5	4
299	Can percolation theory explain the gelation behavior of diblock copolymer worms?. Chemical Science, 2018, 9, 7138-7144.	3.7	66
300	Advances and Biomedical Applications of Polypeptide Hydrogels Derived from αâ€Amino Acid <i>N</i> â€Carboxyanhydride (NCA) Polymerizations. Advanced Healthcare Materials, 2018, 7, e1800020.	3.9	59
301	Waterâ€Bindingâ€Mediated Gelation/Crystallization and Thermosensitive Superchirality. Angewandte Chemie, 2018, 130, 7900-7905.	1.6	16
302	Cucurbit[<i>n</i>]uril-based amphiphiles that self-assemble into functional nanomaterials for therapeutics. Chemical Communications, 2019, 55, 10654-10664.	2.2	28
303	Catalytic Nanoassemblies Formed by Short Peptides Promote Highly Enantioselective Transfer Hydrogenation. ACS Nano, 2019, 13, 9292-9297.	7.3	25
304	Hydrogen bonded co-assembly of aromatic amino acids and bipyridines that serves as a sacrificial template in superstructure formation. Soft Matter, 2019, 15, 6596-6603.	1.2	3
305	Entropy-Based Rational Modulation of the p <i>K</i> _a of a Synthetic pH-Dependent Nanoswitch. Journal of the American Chemical Society, 2019, 141, 11367-11371.	6.6	21
306	Sequence isomerism-dependent self-assembly of glycopeptide mimetics with switchable antibiofilm properties. Chemical Science, 2019, 10, 8171-8178.	3.7	18
307	Designer Peptide Amphiphiles: Self-Assembly to Applications. Langmuir, 2019, 35, 10704-10724.	1.6	119
308	Composite of Peptideâ€Supramolecular Polymer and Covalent Polymer Comprises a New Multifunctional, Bioâ€Inspired Soft Material. Macromolecular Rapid Communications, 2019, 40, e1900175.	2.0	37
309	Hydrogen sulfide-releasing peptide hydrogel limits the development of intimal hyperplasia in human vein segments. Acta Biomaterialia, 2019, 97, 374-384.	4.1	50
310	Enhanced Stability against Radiation Damage of Lysozyme Crystals Grown in Fmoc-CF Hydrogels. Crystal Growth and Design, 2019, 19, 4229-4233.	1.4	8
311	Using chirality to influence supramolecular gelation. Chemical Science, 2019, 10, 7801-7806.	3.7	40
312	Amyloidogenic model peptides as catalysts for stereoselective aldol reactions. Catalysis Science and Technology, 2019, 9, 4304-4313.	2.1	19

#	Article	IF	CITATIONS
313	Chirality-Dependent Growth of Self-Assembled Diphenylalanine Microtubes. Crystal Growth and Design, 2019, 19, 6414-6421.	1.4	38
316	Fibrous Aggregates of Short Peptides Containing Two Distinct Aromatic Amino Acid Residues. Chemistry and Biodiversity, 2019, 16, e1900339.	1.0	5
317	Lipid-assembled Nanotubes for Analytical Chemistry. Bunseki Kagaku, 2019, 68, 683-697.	0.1	0
318	The effect of endâ€group substitution on surface selfâ€assembly of peptides. Journal of Peptide Science, 2019, 25, e3212.	0.8	4
319	Multifunctional Polydiacetylenic Complex Films: Preferential Host-Guest Interaction with Specific Small Molecules and Recognition of Aldehyde Derivatives. Journal of Nanomaterials, 2019, 2019, 1-6.	1.5	1
320	Selfâ€Assembly of PEGylated Diphenylalanines into Photoluminescent Fibrillary Aggregates. ChemPhysChem, 2019, 20, 2774-2782.	1.0	22
321	NT3P75-2 gene-modified bone mesenchymal stem cells improve neurological function recovery in mouse TBI model. Stem Cell Research and Therapy, 2019, 10, 311.	2.4	21
322	Solvent-Assisted Tyrosine-Based Dipeptide Forms Low-Molecular Weight Gel: Preparation and Its Potential Use in Dye Removal and Oil Spillage Separation from Water. ACS Omega, 2019, 4, 14411-14419.	1.6	13
323	Electrostatic-driven self-sorting and nanostructure speciation in self-assembling tetrapeptides. Nanoscale, 2019, 11, 16534-16543.	2.8	28
324	Amino Acids and Peptides as Functional Components in Arylenediimide-Based Molecular Architectonics. Bulletin of the Chemical Society of Japan, 2019, 92, 1883-1901.	2.0	69
325	Drug Delivery with Designed Peptide Assemblies. Trends in Pharmacological Sciences, 2019, 40, 747-762.	4.0	79
326	Morphological Transformation of Peptide Nanoassemblies through Conformational Transition of Core-forming Peptides. Polymers, 2019, 11, 39.	2.0	3
327	Probing the self-assembled structures and p <i>K</i> _a of hydrogels using electrochemical methods. Soft Matter, 2019, 15, 1522-1528.	1.2	15
328	Designer aromatic peptide amphiphiles for self-assembly and enzymatic display of proteins with morphology control. Chemical Communications, 2019, 55, 640-643.	2.2	23
329	Perfluoroarene induces a pentapeptidic hydrotrope into a pH-tolerant hydrogel allowing naked eye sensing of Ca ²⁺ ions. Nanoscale, 2019, 11, 2223-2230.	2.8	14
330	Applications of self-assembling ultrashort peptides in bionanotechnology. RSC Advances, 2019, 9, 844-852.	1.7	41
331	Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials. Soft Matter, 2019, 15, 487-496.	1.2	70
332	Customizing Morphology, Size, and Response Kinetics of Matrix Metalloproteinase-Responsive Nanostructures by Systematic Peptide Design. ACS Nano, 2019, 13, 1555-1562.	7.3	34

#	Article	IF	Citations
333	Spacer nature and composition as key factors for structural tailoring of anionic/cationic mixed gemini micelles: Interaction and solubilization studies. Journal of Molecular Liquids, 2019, 279, 108-119.	2.3	14
334	One-step co-assembly method to fabricate photosensitive peptide nanoparticles for two-photon photodynamic therapy. Chemical Communications, 2019, 55, 3191-3194.	2.2	28
335	Residue-Specific Solvation-Directed Thermodynamic and Kinetic Control over Peptide Self-Assembly with 1D/2D Structure Selection. ACS Nano, 2019, 13, 1900-1909.	7.3	40
336	Supramolecular Tuning of H ₂ S Release from Aromatic Peptide Amphiphile Gels: Effect of Core Unit Substituents. Biomacromolecules, 2019, 20, 1077-1086.	2.6	22
337	Thin peptide hydrogel membranes suitable as scaffolds for engineering layered biostructures. Acta Biomaterialia, 2019, 88, 293-300.	4.1	17
338	Annealing multicomponent supramolecular gels. Nanoscale, 2019, 11, 3275-3280.	2.8	31
339	Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. Communications Chemistry, 2019, 2, .	2.0	40
340	Photoactive properties of supramolecular assembled short peptides. Chemical Society Reviews, 2019, 48, 4387-4400.	18.7	150
341	Amyloid fibrils from organic solutions of an amphiphilic dipeptide. Chemical Communications, 2019, 55, 8556-8559.	2.2	5
342	Aryl-viologen pentapeptide self-assembled conductive nanofibers. Chemical Communications, 2019, 55, 7354-7357.	2.2	12
343	Supramolecular Assemblies of Peptides or Nucleopeptides for Gene Delivery. Theranostics, 2019, 9, 3213-3222.	4.6	46
344	Fabrication, Characterization, and Optimization of Mn O Nanofibers for Improved Supercapacitive Properties. , 2019, , 451-481.		7
346	Occurrence of Chiral Nanostructures Induced by Multiple Hydrogen Bonds. Journal of the American Chemical Society, 2019, 141, 9946-9954.	6.6	81
347	Inducing Differential Self-Assembling Behavior in Ultrashort Peptide Hydrogelators Using Simple Metal Salts. Biomacromolecules, 2019, 20, 2610-2624.	2.6	46
348	Peptideâ€Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. Advanced Therapeutics, 2019, 2, 1900048.	1.6	43
349	Design and Characterization of Nucleopeptides for Hydrogel Self-Assembly. ACS Applied Bio Materials, 2019, 2, 2812-2821.	2.3	28
350	Extending the pool of compatible peptide hydrogels for protein crystallization. Crystals, 2019, 9, 244.	1.0	3
351	Generating Cyan Fluorescence with De Novo Tripeptides: An In Vitro Mutation Study on the Role of Single Amino Acid Residues and Their Sequence. ChemBioChem, 2019, 20, 2324-2330.	1.3	10

#	ARTICLE 3D Print Technology for Cell Culturing. , 2019, , 83-114.	IF	CITATIONS
353	The de novo design of α-helical peptides for supramolecular self-assembly. Current Opinion in Biotechnology, 2019, 58, 175-182.	3.3	61
354	Topological Design of Star Glycopolymers for Controlling the Interaction with the Influenza Virus. Bioconjugate Chemistry, 2019, 30, 1192-1198.	1.8	36
355	Nanoarchitectonics for Biology. , 2019, , 209-229.		3
356	<i>In situ</i> hydrogelation of bicalutamide-peptide conjugates at prostate tissue for smart drug release based on pH and enzymatic activity. Nanoscale, 2019, 11, 5030-5037.	2.8	22
357	Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering. Journal of the American Chemical Society, 2019, 141, 4886-4899.	6.6	211
358	Dissipative Selfâ€Assembly of Peptides. Israel Journal of Chemistry, 2019, 59, 898-905.	1.0	20
359	Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials, 2019, 9, 541.	1.9	41
360	Dynamic Continuum of Molecular Assemblies for Controlling Cell Fates. ChemBioChem, 2019, 20, 2442-2446.	1.3	6
361	Unraveling the Design Rules in Ultrashort Amyloid-Based Peptide Assemblies toward Shape-Controlled Synthesis of Gold Nanoparticles. Langmuir, 2019, 35, 5878-5889.	1.6	30
362	Injectable Alginate-Peptide Composite Hydrogel as a Scaffold for Bone Tissue Regeneration. Nanomaterials, 2019, 9, 497.	1.9	94
363	Tunable Supramolecular Gel Properties by Varying Thermal History. Chemistry - A European Journal, 2019, 25, 7881-7887.	1.7	32
364	Lightâ€Responsive Arylazopyrazole Gelators: From Organic to Aqueous Media and from Supramolecular to Dynamic Covalent Chemistry. Chemistry - A European Journal, 2019, 25, 6131-6140.	1.7	44
365	Selfâ€Assembled Fluorescent and Antibacterial GHK u Nanoparticles for Wound Healing Applications. Particle and Particle Systems Characterization, 2019, 36, 1800420.	1.2	28
366	Gel―and Solidâ€&tateâ€&tructure of Dialanine and Diphenylalanine Amphiphiles: Importance of Câ‹â‹â‹H Interactions in Gelation. ChemPhysChem, 2019, 20, 972-983.	1.0	17
367	On the Mechanical Properties of N-Functionalised Dipeptide Gels. Molecules, 2019, 24, 3855.	1.7	12
368	An enzyme-assisted self-delivery system of lonidamine–peptide conjugates for selectively killing cancer cells. Chemical Communications, 2019, 55, 14852-14855.	2.2	21
369	Co-assembled supramolecular hydrogels of cell adhesive peptide and alginate for rapid hemostasis and efficacious wound healing. Soft Matter, 2019, 15, 8603-8610.	1.2	69

ARTICLE IF CITATIONS Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. 370 1.2 9 Journal of Physical Chemistry B, 2019, 123, 10582-10593. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D 371 Bioprinting. ACS Applied Materials & amp; Interfaces, 2019, 11, 46419-46426. A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and 372 7.3 149 Electrogenic Cell Soft Substrate. ACS Nano, 2019, 13, 163-175. Stimuli-Responsive Structural Transformation of Self-Assembled Dendron-Peptide Conjugate and Its Triggered Cargo Release. Macromolecular Research, 2019, 27, 105-108. Molecular bionics $\hat{a} \in \hat{a}$ engineering biomaterials at the molecular level using biological principles. 374 5.7 35 Biomaterials, 2019, 192, 26-50. Physicochemical properties, immunostimulatory activity of the Lachnum polysaccharide and polysaccharide-dipeptide conjugates. Carbohydrate Polymers, 2019, 206, 446-454. 5.1 Stimuli-responsive supramolecular systems guided by chemical reactions. Polymer Journal, 2019, 51, 376 1.3 39 371-380. Pros and Cons: Supramolecular or Macromolecular: What Is Best for Functional Hydrogels with 11.1 78 Advanced Properties?. Advanced Materials, 2020, 32, e1906012. Self-assembly and hydrogel formation ability of Fmoc-dipeptides comprising α-methyl-L-phenylalanine. 378 1.3 35 Polymer Journal, 2020, 52, 923-930. 379 A guide to supramolecular polymerizations. Polymer Chemistry, 2020, 11, 1083-1110. 99 Self-assembly of chiral supra-amphiphiles. Materials Chemistry Frontiers, 2020, 4, 155-167. 380 3.2 36 Hybrid Interfaces Made of Nanotubes and Backbone-Altered Dipeptides Tune Neuronal Network Architecture. ACS Chemical Neuroscience, 2020, 11, 162-172. A Comprehensive Study on Self-Assembly and Gelation of C₁₃-Dipeptidesâ€"From Design 382 2.6 13 Strategies to Functionalities. Biomacromolecules, 2020, 21, 670-679. Combining chemistry and topography to fight biofilm formation: Fabrication of micropatterned 2.5 surfaces with a peptide-based coating. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111365. Desuccinylation-Triggered Peptide Self-Assembly: Live Cell Imaging of SIRT5 Activity and Mitochondrial 384 6.6 84 Activity Modulation. Journal of the American Chemical Society, 2020, 142, 18150-18159. Designing peptide nanoparticles for efficient brain delivery. Advanced Drug Delivery Reviews, 2020, 160, 52-77. 33 Supramolecular secondary helical structures in solid-state <i>N</i>-protected amino acids. 386 2.8 3 Nanoscale, 2020, 12, 20610-20620. Accessing Highly Tunable Nanostructured Hydrogels in a Short Ionic Complementary Peptide Sequence via pH Trigger. Langmuir, 2020, 36, 12107-12120.

ARTICLE IF CITATIONS # Concentration- and Temperature-Responsive Reversible Transition in Amide-Functionalized 388 12 1.6 Surface-Active Ionic Liquids: Micelles to Vesicles to Organogel. ACS Omega, 2020, 5, 24272-24284. Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coordination Chemistry Reviews, 2020, 421, 213418. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and 390 2.6 69 diagnosis. Biomaterials Science, 2020, 8, 4975-4996. Pathway-Dependent Preferential Selection and Amplification of Variable Self-Assembled Peptide Nanostructures and Their Biological Activities. ACS Applied Materials & amp; Interfaces, 2020, 12, 4.0 52445-52456. Coassembly of C₁₃-Dipeptides: Gelations from Solutions and Precipitations. 392 3 2.6 Biomacromolecules, 2020, 21, 5256-5268. Chirality-driven molecular packing structure difference and potential application for 3D printing of a series of bola-type Ala–Phe dipeptides. New Journal of Chemistry, 2020, 44, 20726-20733. 1.4 Bifunctional Peptide–Polymer Conjugate-Based Fibers via a One-Pot Tandem Disulfide Reduction 394 1.6 4 Coupled to a Thio-Bromo "Click〕Reaction. ACS Omega, 2020, 5, 19020-19028. Assembled peptides for biomimetic catalysis., 2020, , 383-413. Self-assembled biotin-phenylalanine nanoparticles for the signal amplification of surface plasmon 396 2.5 15 resonance biosensors. Mikrochimica Acta, 2020, 187, 473. Alleviating Cellular Oxidative Stress through Treatment with Superoxideâ€Triggered Persulfide 1.6 Prodrugs. Angewandte Chemie, 2020, 132, 16841-16847. Salicylic Acid Appended Naphthalene Diimide Organic Linkers: A Systematic Investigation towards 398 2 0.7 Electronic Aspects. ChemistrySelect, 2020, 5, 12672-12678. Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing 399 Water Molecules: Modeling and Data Analysis. Nanomaterials, 2020, 10, 1999. Tryptophan-Based Self-Assembling Peptides with Bacterial Flocculation and Antimicrobial Properties. 400 1.6 19 Langmuir, 2020, 36, 11316-11323. A combined experimental and computational approach reveals how aromatic peptide amphiphiles 3.2 self-assemble to form ion-conducting nanohelices. Materials Chemistry Frontiers, 2020, 4, 3022-3031. Supramolecular Architectures of Nucleic Acid/Peptide Hybrids. International Journal of Molecular 402 10 1.8 Sciences, 2020, 21, 9458. One-Pot Construction of Multicomponent Supramolecular Materials Comprising Self-Sorted Supramolecular Architectures of DNA and Semi-Artificial Glycopeptides. ACS Applied Bio Materials, 2020, 3, 9082-9092. Current Progress in Cross-Linked Peptide Self-Assemblies. International Journal of Molecular 404 1.8 13 Sciences, 2020, 21, 7577. Oral delivery of self-assembling bioactive peptides to target gastrointestinal tract disease. Food and 2.1 Function, 2020, 11, 9468-9488.

#	Article	IF	CITATIONS
406	Synthesis, experimental and <i>in silico</i> studies of <i>N</i> -fluorenylmethoxycarbonyl- <i>O</i> - <i>tert</i> -butyl- <i>N</i> -methyltyrosine, coupled with CSD data: a survey of interactions in the crystal structures of Fmoc–amino acids. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 328-345.	0.2	9
407	Nonâ€Equilibrium Polymerization of Crossâ€Î² Amyloid Peptides for Temporal Control of Electronic Properties. Angewandte Chemie, 2020, 132, 13608-13612.	1.6	8
408	Molecular-Level Control over Plasmonic Properties in Silver Nanoparticle/Self-Assembling Peptide Hybrids. Journal of the American Chemical Society, 2020, 142, 9158-9162.	6.6	26
409	Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomaterials, 2020, 10, 887.	1.9	30
410	Small Molecules Organic Coâ€Assemblies as Functional Nanomaterials. European Journal of Organic Chemistry, 2020, 2020, 5305-5318.	1.2	2
411	DHF-BAHPC molecule exerts ameliorative antioxidant status and reduced cadmium-induced toxicity in zebrafish (Danio rerio) embryos. Environmental Toxicology and Pharmacology, 2020, 79, 103425.	2.0	7
412	Guest-responsive supramolecular hydrogels expressing selective sol–gel transition for sulfated glycosaminoglycans. Polymer Journal, 2020, 52, 939-946.	1.3	7
413	Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Frontiers in Bioengineering and Biotechnology, 2020, 8, 504.	2.0	50
414	Heterochirality Restricts the Self-Assembly of Phenylalanine Dipeptides Capped with Highly Aromatic Groups. Journal of Physical Chemistry B, 2020, 124, 5913-5918.	1.2	11
415	Glycosyltransferase-Induced Morphology Transition of Glycopeptide Self-Assemblies with Proteoglycan Residues. ACS Macro Letters, 2020, 9, 929-936.	2.3	10
416	Controlling Neuronal Cell Growth through Composite Laminin Supramolecular Hydrogels. ACS Biomaterials Science and Engineering, 2020, 6, 2832-2846.	2.6	30
417	Tetrafluoroaryl azide as an N-terminal capping group for click-to-dissolve diphenylalanine hydrogels. RSC Advances, 2020, 10, 9234-9244.	1.7	5
418	Amino Acid Residues Vary the Selfâ€Assembly and Photophysical Properties of Diphenylamine yanostilbeneâ€Capped Amphiphiles. ChemPhotoChem, 2020, 4, 481-486.	1.5	8
419	100th Anniversary of Macromolecular Science Viewpoint: Synthetic Protein Hydrogels. ACS Macro Letters, 2020, 9, 512-524.	2.3	58
420	Designer Selfâ€Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer. Advanced Science, 2020, 7, 1903718.	5.6	77
421	Spontaneous Aminolytic Cyclization and Selfâ€Assembly of Dipeptide Methyl Esters in Water. ChemSystemsChem, 2020, 2, e200013.	1.1	9
422	Formation and Modulation of Nanotubular Assemblies of Oligourea Foldamers in Aqueous Conditions using Alcohol Additives. ChemPlusChem, 2020, 85, 2243-2250.	1.3	7
423	Alleviating Cellular Oxidative Stress through Treatment with Superoxideâ€Triggered Persulfide Prodrugs. Angewandte Chemie - International Edition, 2020, 59, 16698-16704.	7.2	40

#	Article	IF	CITATIONS
424	Using Small-Angle Scattering and Contrast Matching to Understand Molecular Packing in Low Molecular Weight Gels. Matter, 2020, 2, 764-778.	5.0	49
425	Self-Assembly Evolution of <i>N</i> -Terminal Aromatic Amino Acids with Transient Supramolecular Chirality. Journal of Physical Chemistry Letters, 2020, 11, 1490-1496.	2.1	9
426	Nanoscale Self-Assembly for Therapeutic Delivery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 127.	2.0	170
427	Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy. Acta Biomaterialia, 2020, 106, 278-288.	4.1	38
428	The Role of Hydrophobicity in the Stability and pH-Switchability of (RXDX) ₄ and Coumarin–(RXDX) ₄ Conjugate I²-Sheets. Journal of Physical Chemistry B, 2020, 124, 1723-1732.	1.2	3
429	Linker-Regulated H ₂ S Release from Aromatic Peptide Amphiphile Hydrogels. Biomacromolecules, 2020, 21, 1171-1178.	2.6	19
430	Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chemical Society Reviews, 2020, 49, 1144-1172.	18.7	498
431	Unusual Two‣tep Assembly of a Minimalistic Dipeptideâ€Based Functional Hypergelator. Advanced Materials, 2020, 32, e1906043.	11.1	73
432	Design and Molecular dynamic Investigations of 7,8-Dihydroxyflavone Derivatives as Potential Neuroprotective Agents Against Alpha-synuclein. Scientific Reports, 2020, 10, 599.	1.6	41
433	Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Selfâ€Assembly. Small, 2020, 16, e1907309.	5.2	196
434	High-Efficiency Fluorescence through Bioinspired Supramolecular Self-Assembly. ACS Nano, 2020, 14, 2798-2807.	7.3	49
435	Nonâ€Equilibrium Polymerization of Crossâ€Î² Amyloid Peptides for Temporal Control of Electronic Properties. Angewandte Chemie - International Edition, 2020, 59, 13506-13510.	7.2	38
436	Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy. Progress in Materials Science, 2020, 112, 100667.	16.0	21
437	Intracellular self-assembly of supramolecular gelators to selectively kill cells of interest. Polymer Journal, 2020, 52, 883-889.	1.3	17
438	Visible-light photooxidation in water by ¹ O ₂ -generating supramolecular hydrogels. Chemical Science, 2020, 11, 4239-4245.	3.7	19
439	Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. ACS Applied Materials & Interfaces, 2020, 12, 21433-21440.	4.0	63
440	Configurationâ€Controlled Crystal and/or Gel Formation of Protected d â€Clucosamines Supported by Promiscuous Interaction Surfaces and a Conformationally Heterogeneous Solution State. Chemistry - A European Journal, 2020, 26, 11643-11655.	1.7	3
441	Molecular Architectonics of Cyclic Dipeptide Amphiphiles and Their Application in Drug Delivery. ACS Applied Bio Materials, 2020, 3, 3413-3422.	2.3	11

#	Article	IF	CITATIONS
442	Using Rheo-Small-Angle Neutron Scattering to Understand How Functionalised Dipeptides Form Gels. Organic Materials, 2020, 02, 108-115.	1.0	6
443	Guest induced morphology transitions of star shaped pillar[5]arene trimer via endo host-guest and "exo-wall―electron-transfer interactions. Chinese Chemical Letters, 2021, 32, 371-374.	4.8	12
444	Application of Nanofibers Based on Natural Materials as Catalyst in Organic Reactions. Journal of Industrial and Engineering Chemistry, 2021, 94, 1-61.	2.9	15
445	Fluorinated peptide biomaterials. Peptide Science, 2021, 113, e24184.	1.0	29
446	Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids. ChemBioChem, 2021, 22, 585-591.	1.3	3
447	Coâ€assembled Supramolecular Gel of Dipeptide and Pyridine Derivatives with Controlled Chirality. Angewandte Chemie - International Edition, 2021, 60, 2099-2103.	7.2	67
448	Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core–shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomaterials Science, 2021, 9, 942-959.	2.6	9
449	Helical secondary structures and supramolecular tilted chirality in N-terminal aryl amino acids with diversified optical activities. Chinese Chemical Letters, 2021, 32, 1390-1396.	4.8	18
450	Coâ€assembled Supramolecular Gel of Dipeptide and Pyridine Derivatives with Controlled Chirality. Angewandte Chemie, 2021, 133, 2127-2131.	1.6	8
451	Structural, mechanical, and biological characterization of hierarchical nanofibrous Fmoc-phenylalanine-valine hydrogels for 3D culture of differentiated and mesenchymal stem cells. Soft Matter, 2021, 17, 57-67.	1.2	13
453	Controlling the formation and alignment of low molecular weight gel â€~noodles'. Chemical Communications, 2021, 57, 8782-8785.	2.2	9
454	Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides. Nanoscale, 2021, 13, 10566-10578.	2.8	14
455	New antimicrobial self-assembling short lipopeptides. Organic and Biomolecular Chemistry, 2021, 19, 6797-6803.	1.5	6
456	Molecular design of peptide amphiphiles for controlled self-assembly and drug release. Journal of Materials Chemistry B, 2021, 9, 3326-3334.	2.9	8
457	Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures. Nanomedicine, 2021, 16, 139-163.	1.7	14
458	Tuning the mechanistic pathways of peptide self-assembly by aromatic interactions. Chemical Communications, 2021, 57, 1603-1606.	2.2	24
459	Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with a high filtration efficiency, low air resistance and high moisture permeation. Journal of Materials Chemistry A, 2021, 9, 14093-14100.	5.2	84
460	Lipase sensing by naphthalene diimide based fluorescent organic nanoparticles: a solvent induced manifestation of self-assembly. Soft Matter, 2021, 17, 2170-2180.	1.2	12

ARTICLE IF CITATIONS # Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. 2.9 29 461 Journal of Materials Chemistry B, 2021, 9, 4444-4458. Effect of C₁₂H₂₅Oâ€" substituent position on the self-assembly behaviour of 1.4 C₆H₅COO–Ala–Ala dipeptide. New Journal of Chemistry, 2Ó21, 45, 12585-12592. Recent Advances on Supramolecular Gels: From Stimuli-Responsive Gels to Co-Assembled and 463 1.0 34 Self-Sorted Systems. Organic Materials, 2021, 03, 025-040. The origin of supramolecular chirality in 1-ferrocenyl amino acids. Dalton Transactions, 2021, 50, 464 9695-9699. Dynamics in supramolecular nanomaterials. Soft Matter, 2021, 17, 5850-5863. 465 1.2 9 Fabrication of fluorescent nanospheres by heating PEGylated tetratyrosine nanofibers. Scientific 1.6 Reports, 2021, 11, 2470. <i>In situ</i>self-assembled peptide nanofibers for cancer theranostics. Biomaterials Science, 2021, 9, 467 2.6 17 5427-5436. Exploiting and controlling gel-to-crystal transitions in multicomponent supramolecular gels. Chemical Science, 2021, 12, 9720-9725. 468 3.7 469 Understanding gel-to-crystal transitions in supramolecular gels. Soft Matter, 2021, 17, 7221-7226. 1.2 16 High-Throughput Peptide Derivatization toward Supramolecular Diversification in Microtiter Plates. 7.3 AČS Nano, 2021, 15, 4034-4044. Synthesis and Self-Assembly Properties of Bola-Amphiphilic Glycosylated Lipopeptide-Type Supramolecular Hydrogels Showing Colour Changes Along with Gél–Sol Transition. International 471 4 1.8 Journal of Molecular Sciences, 2021, 22, 1860. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Frontiers 30 in Bioengineering and Biotechnology, 2021, 9, 641372. Controllable Selfâ€Assembly of Peptideâ€Cyanine Conjugates In Vivo as Fineâ€Tunable Theranostics. 474 7.2 51 Angewandte Chemie - International Edition, 2021, 60, 7809-7819. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomaterials Science and Engineering, 2021, 7, 4136-4163. 2.6 66 Controllable Selfâ€Assembly of Peptideâ€Cyanine Conjugates In Vivo as Fineâ€Tunable Theranostics. 476 10 1.6 Angewandte Chemie, 2021, 133, 7888-7898. Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile. ACS Applied Materials & amp; Interfaces, 2021, 13, 11672-11682. Peptide-based scaffolds for the culture and maintenance of primary human hepatocytes. Scientific 478 1.6 25 Reports, 2021, 11, 6772. 479 Realizing tissue integration with supramolecular hydrogels. Acta Biomaterialia, 2021, 124, 1-14. 4.1

#	Article	IF	CITATIONS
480	Selective chiral recognition of achiral species in nanoclay coassemblies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126152.	2.3	1
481	Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Reports Physical Science, 2021, 2, 100391.	2.8	10
482	A Comprehensive Landscape for Fibril Association Behaviors Encoded Synergistically by Saccharides and Peptides. Journal of the American Chemical Society, 2021, 143, 6622-6633.	6.6	19
483	Enzyme-Induced Supramolecular Order in Pyrene Dipeptide Hydrogels for the Development of an Efficient Energy-Transfer Template. Biomacromolecules, 2021, 22, 2393-2407.	2.6	9
484	Fmoc-PEG Coated Single-Wall Carbon Nanotube Carriers by Non-covalent Functionalization: An Experimental and Molecular Dynamics Study. Frontiers in Bioengineering and Biotechnology, 2021, 9, 648366.	2.0	6
485	Aqueous Self-assembly of Peptide-Diketopyrrolopyrrole Conjugates with Variation of N-alkyl Side Chain and π-Core Lengths. Organic Materials, 0, 03, .	1.0	0
486	Controlling Nucleopeptide Hydrogel Self-Assembly and Formation for Cell-Culture Scaffold Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2605-2614.	2.6	12
487	Self-Assembly of Ferrocenyl Phenylalanine into Nanohelical Arrays via Kinetic Control. ACS Applied Bio Materials, 2021, 4, 4744-4752.	2.3	5
488	Self-assembling crystalline peptide microrod for neuromorphic function implementation. Matter, 2021, 4, 1702-1719.	5.0	33
489	Tuneable Hybrid Hydrogels via Complementary Self-Assembly of a Bioactive Peptide with a Robust Polysaccharide. ACS Biomaterials Science and Engineering, 2021, 7, 3340-3350.	2.6	20
490	In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis. Chemical Research in Chinese Universities, 2021, 37, 855-869.	1.3	2
491	Denting Nanospheres with a Short Peptide. Chinese Journal of Polymer Science (English Edition), 0, , 1.	2.0	8
492	Concentration Dependence of a Hydrogel Phase Formed by the Deprotonation of the Imidazole Side Chain of Glycylhistidylglycine. Langmuir, 2021, 37, 6935-6946.	1.6	3
493	Self-Supporting Hydrogels Based on Fmoc-Derivatized Cationic Hexapeptides for Potential Biomedical Applications. Biomedicines, 2021, 9, 678.	1.4	14
494	Short Peptides as Tunable, Switchable, and Strong Gelators. Journal of Physical Chemistry B, 2021, 125, 6760-6775.	1.2	12
495	Co-assembly of Peptides and Carbon Nanodots: Sensitive Analysis of Transglutaminase 2. ACS Applied Materials & Interfaces, 2021, 13, 36919-36925.	4.0	17
496	Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angewandte Chemie, 2021, 133, 18357-18364.	1.6	6
497	In situ Activatable Peptide-based Nanoprobes for Tumor Imaging. Chemical Research in Chinese Universities, 2021, 37, 889-899.	1.3	4

#	Article	IF	CITATIONS
498	Fluorescence Spectroscopy of Porphyrins and Phthalocyanines: Some Insights into Supramolecular Self-Assembly, Microencapsulation, and Imaging Microscopy. Molecules, 2021, 26, 4264.	1.7	12
499	Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angewandte Chemie - International Edition, 2021, 60, 18209-18216.	7.2	44
500	Amphiphilic Histidine-Based Oligopeptides Exhibit pH-Reversible Fibril Formation. ACS Macro Letters, 2021, 10, 984-989.	2.3	8
502	Selfâ€Assembly of a Pyridineâ€Based Amphiphile Complexed with Regioisomeric Dihydroxy Naphthalenes into Supramolecular Nanotubes with Different Inner Diameters. Chemistry - A European Journal, 2021, 27, 12566-12573.	1.7	1
503	Stimuli-Responsive Nucleotide–Amino Acid Hybrid Supramolecular Hydrogels. Gels, 2021, 7, 146.	2.1	3
504	Peptide-based nanomaterials: Self-assembly, properties and applications. Bioactive Materials, 2022, 11, 268-282.	8.6	132
505	Bioinspired self-assembled nanoparticles with stable fluorescent properties in wide visible light region. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126962.	2.3	5
506	Peptide-Based Supramolecular Systems Chemistry. Chemical Reviews, 2021, 121, 13869-13914.	23.0	171
507	Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Frontiers in Chemistry, 2021, 9, 739791.	1.8	16
508	Nitric oxide releasing nanofibrous Fmoc-dipeptide hydrogels for amelioration of renal ischemia/reperfusion injury. Journal of Controlled Release, 2021, 337, 1-13.	4.8	23
509	Functional supramolecular systems: design and applications. Russian Chemical Reviews, 2021, 90, 895-1107.	2.5	93
510	Altered Peptide Selfâ€Assembly and Coâ€Assembly with DNA by Modification of Aromatic Residues. ChemMedChem, 2021, 16, 3559-3564.	1.6	2
511	Hierarchical self-assemblies of carnosine asymmetrically functioned perylene diimide with high optoelectronic response. Journal of Colloid and Interface Science, 2021, 601, 746-757.	5.0	10
512	Construction of spatially organized, peptide/peptide derivative containing nanocomposites. Materials Advances, 2021, 2, 5803-5823.	2.6	0
513	Selfâ€Assembly Propensity Dictates Lifetimes in Transient Naphthalimide–Dipeptide Nanofibers. Chemistry - A European Journal, 2020, 26, 8372-8376.	1.7	25
514	Peptide Self-Assembly and Its Modulation: Imaging on the Nanoscale. Advances in Experimental Medicine and Biology, 2019, 1174, 35-60.	0.8	5
515	Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chemical Reviews, 2020, 120, 2347-2407.	23.0	147
516	Binary Supramolecular Gel of Achiral Azobenzene with a Chaperone Gelator: Chirality Transfer, Tuned Morphology, and Chiroptical Property. Langmuir, 2017, 33, 12419-12426.	1.6	39

#	Article	IF	CITATIONS
517	Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity. ACS Nano, 2020, 14, 7025-7037.	7.3	59
518	Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces. Nanoscale, 2016, 8, 14814-14820.	2.8	62
519	Molecular dynamics simulations reveal disruptive self-assembly in dynamic peptide libraries. Organic and Biomolecular Chemistry, 2017, 15, 6541-6547.	1.5	15
520	Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials. Protein and Peptide Letters, 2020, 27, 688-697.	0.4	15
521	Role of Thermolysin in Catalytic-Controlled Self-Assembly of Fmoc-Dipeptides. CCS Chemistry, 2020, 2, 317-328.	4.6	19
522	Effects of silver-graphene oxide on seed germination and early growth of crop species. PeerJ, 2020, 8, e8387.	0.9	12
523	Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. ACS Applied Materials & Interfaces, 2021, 13, 49692-49704.	4.0	24
524	Antiviral Activity of Peptide-Based Assemblies. ACS Applied Materials & Interfaces, 2021, 13, 48469-48477.	4.0	8
525	Comparing Dimerization Free Energies and Binding Modes of Small Aromatic Molecules with Different Force Fields. Molecules, 2021, 26, 6069.	1.7	3
527	Design and Synthesis of Peptides for Developing Biomaterials. RSC Soft Matter, 2020, , 1-18.	0.2	0
528	Self-assembled Peptide Nanostructures for Antibacterial Applications. RSC Soft Matter, 2020, , 395-428.	0.2	1
529	Forming Low-Molecular-Weight Hydrogels by Electrochemical Methods. Methods in Molecular Biology, 2021, 2208, 179-188.	0.4	0
530	Highly Tough, Stretchable, and Enzymatically Degradable Hydrogels Modulated by Bioinspired Hydrophobic Î ² -Sheet Peptides. Biomacromolecules, 2021, 22, 4846-4856.	2.6	12
531	Self-Assembled Peptides and Their Applications. International Journal of Life Sciences and Biotechnology, 0, , .	0.2	0
532	Peptide Engineering Strategies. RSC Soft Matter, 2020, , 47-75.	0.2	0
533	Drug Delivery Applications of Peptide Materials. RSC Soft Matter, 2020, , 291-334.	0.2	3
534	Protecting Group-Directed Diversity in the Morphology of Self-Assembled Ant-Aib Dipeptides: Garland-Like Architecture and Nanovesicle Formation. ACS Applied Bio Materials, 2021, 4, 8343-8355.	2.3	3
535	Perturbation effect of single polar group substitution on the Self-Association of amphiphilic peptide helices. Journal of Colloid and Interface Science, 2022, 610, 1005-1014.	5.0	2

#	Article	IF	CITATIONS
536	Open chain pseudopeptides as hydrogelators with reversible and dynamic responsiveness to pH, temperature and sonication as vehicles for controlled drug delivery. Journal of Molecular Liquids, 2022, 348, 118051.	2.3	7
537	Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Frontiers in Chemistry, 2021, 9, 770102.	1.8	39
538	Insights into the co-assemblies formed by different aromatic short-peptide amphiphiles. Polymer Chemistry, 2021, 12, 6832-6845.	1.9	15
539	Dissymmetrical tails-regulated helical nanoarchitectonics of amphiphilic ornithines: nanotubes, bundles and twists. Nanoscale, 2022, 14, 1001-1007.	2.8	7
540	NGIWY-Amide: A Bioinspired Ultrashort Self-Assembled Peptide Gelator for Local Drug Delivery Applications. Pharmaceutics, 2022, 14, 133.	2.0	7
541	Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chemical Science, 2022, 13, 909-933.	3.7	9
542	Controlled aggregation properties of single amino acids modified with protecting groups. New Journal of Chemistry, 2022, 46, 4746-4755.	1.4	5
543	Coiled oil Helical Nanoâ€Assemblies: Shape Persistent, Thixotropic, and Tunable Chiroptical Properties. ChemistrySelect, 2022, 7, .	0.7	3
544	Organic/inorganic hydrogels by simultaneous self-assembly and mineralization of aromatic short-peptides. Inorganic Chemistry Frontiers, 2022, 9, 743-752.	3.0	11
545	Electrofabrication of large volume di- and tripeptide hydrogels <i>via</i> hydroquinone oxidation. Soft Matter, 2022, 18, 1064-1070.	1.2	9
546	Self-assembly of Fmoc-amino acids in capillary confined space forming a parallel ordered fiber network for application in vascularization. Biomaterials Science, 2022, 10, 1470-1475.	2.6	7
547	The Impact of Tyrosine Iodination on the Aggregation and Cleavage Kinetics of MMP-9-Responsive Peptide Sequences. ACS Biomaterials Science and Engineering, 2022, 8, 579-587.	2.6	8
548	Biomolecules-guided Molecular Architectonics to Nanoarchitectonics. RSC Nanoscience and Nanotechnology, 2022, , 337-360.	0.2	0
549	Selfâ€Assembling Peptideâ€Based Hydrogels for Wound Tissue Repair. Advanced Science, 2022, 9, e2104165.	5.6	99
550	Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. Advanced Science, 2022, 9, e2103820.	5.6	35
551	Fluorine Effect in the Gelation Ability of Low Molecular Weight Gelators. Gels, 2022, 8, 98.	2.1	5
552	Dynamics Study of the Selfâ€assembly of Amphipathic Heptapeptide and Its Application in Glucosidase Mimetic. ChemNanoMat, 0, , .	1.5	0
553	Study on the self-assembly of aromatic antimicrobial peptides based on different PAF26 peptide sequences. E-Polymers, 2022, 22, 276-284.	1.3	5

#	Article	IF	CITATIONS
554	Emerging low-molecular weight nucleopeptide-based hydrogels: state of the art, applications, challenges and perspectives. Nanoscale, 2022, 14, 4908-4921.	2.8	19
555	Aromatic interactions directing peptide nano-assembly. Advances in Protein Chemistry and Structural Biology, 2022, 130, 119-160.	1.0	5
556	Handedness inversion of the self-assemblies of lipotetrapeptides regulated by the shift of the methyl group. New Journal of Chemistry, 0, , .	1.4	0
557	Directed Discovery of Tetrapeptide Emulsifiers. Frontiers in Chemistry, 2022, 10, 822868.	1.8	9
558	Modulating vectored non-covalent interactions for layered assembly with engineerable properties. Bio-Design and Manufacturing, 2022, 5, 529-539.	3.9	6
559	Controlled Hydrolysis of Odorants Schiff Bases in Low-Molecular-Weight Gels. International Journal of Molecular Sciences, 2022, 23, 3105.	1.8	8
560	Enzymatic Noncovalent Synthesis for Targeting Subcellular Organelles. ChemPlusChem, 2022, 87, e202200060.	1.3	3
561	Cooperative Metal Ion Coordination to the Short Selfâ€Assembling Peptide Promotes Hydrogelation and Cellular Proliferation. Macromolecular Bioscience, 2022, 22, e2100462.	2.1	14
562	Capture Phosphates via Peptide Selfâ€assembly to Construct Templates Assisting Mineralization. ChemNanoMat, 2022, 8, .	1.5	1
563	Arginine-peptide complex-based assemblies to combat tumor hypoxia for enhanced photodynamic therapeutic effect. Nano Research, 2022, 15, 5183-5192.	5.8	9
564	Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence. Nature Communications, 2022, 13, 1710.	5.8	47
565	Fmoc-protected amino acids as luminescent and circularly polarized luminescence materials based on charge transfer interaction. Chinese Chemical Letters, 2022, 33, 4918-4923.	4.8	7
566	Stretchy and disordered: Toward understanding fracture in soft network materials via mesoscopic computer simulations. Journal of Chemical Physics, 2022, 156, 160901.	1.2	8
567	Tailoring supramolecular short peptide nanomaterials for antibacterial applications. Coordination Chemistry Reviews, 2022, 460, 214481.	9.5	48
568	Solvent-Modulated Chiral Self-Assembly: Selective Formation of Helical Nanotubes, Nanotwists, and Energy Transfer. ACS Applied Materials & Interfaces, 2022, 14, 1765-1773.	4.0	24
569	Molecular Functionalization and Emergence of Long-Range Spin-Dependent Phenomena in Two-Dimensional Carbon Nanotube Networks. ACS Nano, 2021, 15, 20056-20066.	7.3	10
570	Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chemical Society Reviews, 2022, 51, 3535-3560.	18.7	29
571	Micro- and Nanocapsules Based on Artificial Peptides. Molecules, 2022, 27, 1373.	1.7	2

#	Article	IF	CITATIONS
572	A novel PD-L1 targeting peptide self-assembled nanofibers for sensitive tumor imaging and photothermal immunotherapy in vivo. Nano Research, 2022, 15, 7286-7294.	5.8	11
573	Development of a Hybrid-Resolution Force Field for Peptide Self-Assembly Simulations: Optimizing Peptide–Peptide and Peptide–Solvent Interactions. Journal of Chemical Information and Modeling, 2022, 62, 2744-2760.	2.5	7
574	Structure and Dynamics of Supramolecular Polymers: Wait and See. ACS Macro Letters, 2022, 11, 711-715.	2.3	10
575	Biodesigned bioinks for 3D printing via divalent crosslinking of self-assembled peptide-polysaccharide hybrids. Materials Today Advances, 2022, 14, 100243.	2.5	3
576	Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112522.	2.5	4
579	A review of 3D printing in orthopedic oncology. Journal of 3D Printing in Medicine, 2022, 6, 147-161.	1.0	6
580	Urea-Modified Self-Assembling Peptide Amphiphiles That Form Well-Defined Nanostructures and Hydrogels for Biomedical Applications. ACS Applied Bio Materials, 2022, 5, 4599-4610.	2.3	6
581	Domination of H-Bond Interactions in the Solvent-Triggering Gelation Process. Langmuir, 0, , .	1.6	1
582	Unravelling the Supramolecular Driving Forces in the Formation of CO2-Responsive Pseudopeptidic Low-Molecular-Weight Hydrogelators. Gels, 2022, 8, 390.	2.1	0
583	In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism. Journal of the American Chemical Society, 2022, 144, 12219-12228.	6.6	20
584	Polyaniline Functionalized Peptide Self-Assembled Conductive Hydrogel for 3D Cell Culture. Gels, 2022, 8, 372.	2.1	5
585	Synthesis, Self-Assembly, and Cell Responses of Aromatic IKVAV Peptide Amphiphiles. Molecules, 2022, 27, 4115.	1.7	0
586	Controlled-Alignment Patterns of Dipeptide Micro- and Nanofibers. ACS Nano, 2022, 16, 10372-10382.	7.3	9
587	Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. Langmuir, 2022, 38, 8733-8747.	1.6	6
588	Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. Journal of Controlled Release, 2022, 348, 1028-1049.	4.8	12
589	Solvent―and Substrateâ€Induced Chiroptical Inversion in Amphiphilic, Biocompatible Glycoconjugate Supramolecules: Shapeâ€Persistent Gelation, Selfâ€Healing, and Antibacterial Activity. Chemistry - A European Journal, 2022, 28, .	1.7	7
590	Silk-derived peptide nanospirals assembled by self-propelled worm-like filaments. Nano Research, O, , .	5.8	0
591	A heterochiral diphenylalanine auxin derivative empowers remarkable mechanical integrity with promising Antiinflammatory and Antimicrobial Performances. New Journal of Chemistry, 2022, 46, 18262-18270.	1.4	5

#	Article	IF	CITATIONS
592	Bioactive Peptide Nano-assemblies with pH-Triggered Shape Transformation for Antibacterial Therapy. ACS Applied Nano Materials, 2022, 5, 12019-12034.	2.4	7
593	Threeâ€ligand Coâ€assembled 2D Au(I)â€Thiolate Nanosheets. Chemistry - A European Journal, 2022, 28, .	1.7	1
594	Co-assembled C13-dipeptide hydrogels by Gallic Acid (CA) and epigallocatechin gallate (EGCG) with antibacterial activity. Food Bioscience, 2022, 49, 101962.	2.0	4
595	Peptide nanocatalysts. , 2023, , 173-206.		1
596	Peptide-based nanomaterials: applications and challenges. , 2023, , 133-171.		0
597	Probing the self-assembly and anti-glioblastoma efficacy of a cinnamoyl-capped dipeptide hydrogelator. Organic and Biomolecular Chemistry, 2022, 20, 7458-7466.	1.5	2
598	Charge screening wormlike micelles affects extensional relaxation time and noodle formation. Chemical Communications, 2022, 58, 10388-10391.	2.2	2
599	Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomaterials Science and Engineering, 2022, 8, 3690-3716.	2.6	36
600	Polymer Chemistry in Living Cells. Accounts of Chemical Research, 2022, 55, 2998-3009.	7.6	20
601	Forbidden Secondary Structures Found in Gel-Forming Fibrils of Glycylphenylalanylglycine. Journal of Physical Chemistry B, 2022, 126, 8080-8093.	1.2	3
602	Long-range ordered amino acid assemblies exhibit effective optical-to-electrical transduction and stable photoluminescence. Acta Biomaterialia, 2022, 154, 135-144.	4.1	7
603	An atomistic view of rigid crystalline supramolecular polymers derived from short amphiphilic, α,β hybrid peptide. Polymer Chemistry, 0, , .	1.9	0
604	Chiroptical coassemblies between organic carboxylic acids and amino acid derivatives with C3-symmetry. Chinese Chemical Letters, 2023, 34, 107955.	4.8	3
605	Chirality-Induced Spin Selectivity in Heterochiral Short-Peptide–Carbon-Nanotube Hybrid Networks: Role of Supramolecular Chirality. ACS Nano, 2022, 16, 16941-16953.	7.3	12
606	Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels, 2022, 8, 706.	2.1	16
608	Two-Dimensional Triblock Peptide Assemblies for the Stabilization of Pickering Emulsions with pH Responsiveness. ACS Applied Materials & Interfaces, 2022, 14, 53228-53240.	4.0	4
609	Influence of central sidechain on self-assembly of glycine-x-glycine peptides. Soft Matter, 2023, 19, 394-409.	1.2	3
610	Molecular packing structural transition driven handedness inversion of circularly polarized luminescence of phenothiazine substituted Phe–Phe dipeptides. New Journal of Chemistry, 0, , .	1.4	3

#	Article	IF	CITATIONS
611	Modification Strategies for Ionic Complementary Self-Assembling Peptides: Taking RADA16-I as an Example. Polymers, 2022, 14, 5221.	2.0	2
612	Transferring Micellar Changes to Bulk Properties via Tunable Self-Assembly and Hierarchical Ordering. ACS Nano, 2022, 16, 20497-20509.	7.3	2
613	Fluorescent Nanoassemblies in Water Exhibiting Tunable LCST Behavior and Responsive Light Harvesting Ability. Chemistry - A European Journal, 2023, 29, .	1.7	11
614	Hydroxyapatite-Tethered Peptide Hydrogel Promotes Osteogenesis. Gels, 2022, 8, 804.	2.1	3
615	π‣ystem Functionalization Transforms Amyloidogenic Peptide Fragment of Human Islet Amyloid Polypeptide into a Super Hydrogelator. Chemistry - an Asian Journal, 2023, 18, .	1.7	2
616	Self-Assembly of Peptide: Structure, Function, and Advanced Application in Biomedicine. Current Pharmaceutical Design, 2022, 28, 3525-3526.	0.9	4
617	Hydrogels with intrinsic antibacterial activity prepared from naphthyl anthranilamide (NaA) capped peptide mimics. Scientific Reports, 2022, 12, .	1.6	6
618	Micelle-like Nanoassemblies of Short Peptides Create Antimicrobial Selectivity in a Conventional Antifungal Drug. ACS Applied Nano Materials, 2023, 6, 1432-1440.	2.4	3
619	New Hydrogels Based on Agarose/Phytagel and Peptides. Macromolecular Bioscience, 2023, 23, .	2.1	4
620	Self-Assembly of Tunable Intrinsically Disordered Peptide Amphiphiles. Biomacromolecules, 2023, 24, 98-108.	2.6	5
621	Supramolecular Peptide Nanofiber/PLGA Nanocomposites for Enhancing Pulmonary Drug Delivery. ACS Applied Materials & Interfaces, 2022, 14, 56498-56509.	4.0	11
622	Nanofibrous polypeptide hydrogels with collagen-like structure as biomimetic extracellular matrix. Journal of Leather Science and Engineering, 2023, 5, .	2.7	4
623	Chiral implications on Fmoc-dipeptide self-assembly and catalytic kinetics of thermolysin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130863.	2.3	1
624	Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. Journal of Colloid and Interface Science, 2023, 636, 113-133.	5.0	16
625	Exploring chemical space and structural diversity of supramolecular peptide materials. , 2023, 2, 100030.		3
626	Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chemical Communications, 2023, 59, 3383-3398.	2.2	3
627	Integrating Computation, Experiment, and Machine Learning in the Design of Peptideâ€Based Supramolecular Materials and Systems. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
628	Integrating Computation, Experiment, and Machine Learning in the Design of Peptideâ€Based Supramolecular Materials and Systems. Angewandte Chemie, 2023, 135, .	1.6	1

#	Article	IF	CITATIONS
629	Heterogeneous Nucleation in Protein Crystallization. Biomimetics, 2023, 8, 68.	1.5	2
630	Carbodiimideâ€Fueled Assembly of Ï€â€Conjugated Peptides Regulated by Electrostatic Interactions**. ChemSystemsChem, 2023, 5, .	1.1	4
631	Designed peptide amphiphiles as scaffolds for tissue engineering. Advances in Colloid and Interface Science, 2023, 314, 102866.	7.0	9
632	Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels, 2023, 9, 199.	2.1	4
633	Metal ion-assisted supramolecular gelation. Pure and Applied Chemistry, 2023, .	0.9	0
634	Solvent-controlled self-assembly of Fmoc protected aliphatic amino acids. Physical Chemistry Chemical Physics, 2023, 25, 11522-11529.	1.3	2
635	Functional chromopeptide nanoarchitectonics: molecular design, self-assembly and biological applications. Chemical Society Reviews, 2023, 52, 2688-2712.	18.7	39
636	Exploration of the Nucleation Pathway for Supramolecular Fibers. Journal of Chemical Information and Modeling, 2023, 63, 2419-2426.	2.5	2
637	Molecular dynamics study of low molecular weight gel forming salt-triggered dipeptide. Scientific Reports, 2023, 13, .	1.6	1
652	Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Medicinal Chemistry, 2023, 14, 1603-1628.	1.7	2
656	Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chemical Society Reviews, 2023, 52, 6191-6220.	18.7	12
657	Peptide Amphiphile Nanomaterials. , 2023, , 145-194.		Ο
658	Mixed cyclo di-amino acids structured edible oils: a potential hardstock fat mimic. Soft Matter, 2023, 19, 6871-6874.	1.2	0
659	Mechanisms and influencing factors of peptide hydrogel formation and biomedicine applications of hydrogels. Soft Matter, 2023, 19, 7479-7493.	1.2	1
672	Supramolecular gels $\hat{a} \in $ a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. Soft Matter, 0, , .	1.2	0
675	Smart Biomaterials in Drug Delivery Applications. Engineering Materials, 2023, , 323-360.	0.3	Ο
681	<i>In situ</i> peptide assemblies for bacterial infection imaging and treatment. Nanoscale, 2024, 16, 3211-3225.	2.8	0
683	Stimuli-responsive peptide hydrogels for biomedical applications. Journal of Materials Chemistry B, 2024, 12, 1748-1774.	2.9	0

#	Article	IF	CITATIONS
689	Characterization of amyloid-like metal-amino acid assemblies with remarkable catalytic activity. Methods in Enzymology, 2024, , .	0.4	0