Native chemical ubiquitination using a genetically incom

Chemical Communications 50, 7971-7974 DOI: 10.1039/c4cc03721a

Citation Report

#	Article	IF	CITATIONS
1	Chemical Methods for Protein Ubiquitination. Topics in Current Chemistry, 2014, 362, 89-106.	4.0	15
2	Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids, 2015, 47, 1283-1299.	1.2	16
3	Chemical and Biological Tools for the Preparation of Modified Histone Proteins. Topics in Current Chemistry, 2015, 363, 193-226.	4.0	11
4	Chemical Synthesis of K48‣inked Diubiquitin by Incorporation of a Lysine‣inked Auxiliary Handle. European Journal of Organic Chemistry, 2016, 2016, 2665-2670.	1.2	7
5	Chemical ubiquitination for decrypting a cellular code. Biochemical Journal, 2016, 473, 1297-1314.	1.7	9
6	Genetic incorporation of 1,2-aminothiol functionality for site-specific protein modification via thiazolidine formation. Organic and Biomolecular Chemistry, 2016, 14, 5282-5285.	1.5	18
7	Quasi-Racemic X-ray Structures of K27-Linked Ubiquitin Chains Prepared by Total Chemical Synthesis. Journal of the American Chemical Society, 2016, 138, 7429-7435.	6.6	173
8	Semisynthetic UbH2A reveals different activities of deubiquitinases and inhibitory effects of H2A K119 ubiquitination on H3K36 methylation in mononucleosomes. Organic and Biomolecular Chemistry, 2016, 14, 835-839.	1.5	36
9	Programming Post-Translational Control over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid. ACS Synthetic Biology, 2017, 6, 1572-1583.	1.9	13
10	The convergent chemical synthesis of histone H3 protein for site-specific acetylation at Lys56 and ubiquitination at Lys122. Chemical Communications, 2017, 53, 4148-4151.	2.2	26
11	Thiazolidine-Masked α-Oxo Aldehyde Functionality for Peptide and Protein Modification. Bioconjugate Chemistry, 2017, 28, 325-329.	1.8	24
12	Chemical Synthesis of K34â€Ubiquitylated H2B for Nucleosome Reconstitution and Singleâ€Particle Cryoâ€Electron Microscopy Structural Analysis. ChemBioChem, 2017, 18, 176-180.	1.3	38
13	A diubiquitin-based photoaffinity probe for profiling K27-linkage targeting deubiquitinases. Chemical Communications, 2017, 53, 10208-10211.	2.2	18
14	Biological and Physicochemical Functions of Ubiquitylation Revealed by Synthetic Chemistry Approaches. International Journal of Molecular Sciences, 2017, 18, 1145.	1.8	4
15	Chemical Synthesis of Natural Polyubiquitin Chains through Auxiliary-Mediated Ligation of an Expressed Ubiquitin Isomer. Organic Letters, 2018, 20, 329-332.	2.4	19
16	Recent developments in peptide ligation independent of amino acid side-chain functional group. Science China Chemistry, 2018, 61, 97-112.	4.2	33
17	Total chemical and semisynthetic approaches for the preparation of ubiquitinated proteins and their applications. Science China Chemistry, 2018, 61, 251-265.	4.2	25
18	Thiazolidin-5-imine Formation as a Catalyst-Free Bioorthogonal Reaction for Protein and Live Cell Labeling. Organic Letters, 2018, 20, 7790-7793.	2.4	7

ITATION REDO

	CITATION R	EPORT	
#	Article	IF	CITATIONS
19	A Highly Efficient Synthesis of Polyubiquitin Chains. Advanced Science, 2018, 5, 1800234.	5.6	23
20	Semisynthesis of Ubiquitin and SUMO-Rhodamine 110-Clycine through Aminolysis of Boc-Protected Thioester Counterparts. Journal of Organic Chemistry, 2019, 84, 14861-14867.	1.7	5
21	Auxiliary-assisted chemical ubiquitylation of NEMO and linear extension by HOIP. Communications Chemistry, 2019, 2, 111.	2.0	7
22	Acid-sensitive auxiliary assisted atypical diubiquitin synthesis exploiting thiol-ene coupling. Tetrahedron Letters, 2019, 60, 151123.	0.7	2
23	Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chemical Reviews, 2019, 119, 7328-7443.	23.0	367
25	Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes. Science China Chemistry, 2019, 62, 299-312.	4.2	21
26	Cysteine-Aminoethylation-Assisted Chemical Ubiquitination of Recombinant Histones. Journal of the American Chemical Society, 2019, 141, 3654-3663.	6.6	62
27	Thiirane linkers directed histone H2A diubiquitination suggests plasticity in 53BP1 recognition. Chemical Communications, 2019, 55, 12639-12642.	2.2	6
28	Examination of the Deubiquitylation Site Selectivity of USP51 by Using Chemically Synthesized Ubiquitylated Histones. ChemBioChem, 2019, 20, 221-229.	1.3	26
29	Chemoenzymatic Semisynthesis of Proteins. Chemical Reviews, 2020, 120, 3051-3126.	23.0	142
30	Blue LED light-activated RAFT polymerization of PEG acrylate with high chain-end fidelity for efficient PEGylation. Polymer Chemistry, 2020, 11, 5238-5248.	1.9	10
31	Development and application of ubiquitin-based chemical probes. Chemical Science, 2020, 11, 12633-12646.	3.7	45
32	Toolbox for chemically synthesized histone proteins. Current Opinion in Chemical Biology, 2020, 58, 10-19.	2.8	9
33	Discovery of a fluorescigenic pyrazoline derivative targeting ubiquitin. Biochemical and Biophysical Research Communications, 2020, 528, 256-260.	1.0	4
35	Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. Journal of Peptide Science, 2022, 28, e3381.	0.8	1
36	State of the art in (semi-)synthesis of Ubiquitin- and Ubiquitin-like tools. Seminars in Cell and Developmental Biology, 2022, 132, 74-85.	2.3	12