A three-dimensional human neural cell culture model o

Nature 515, 274-278 DOI: 10.1038/nature13800

Citation Report

#	Article	IF	CITATIONS
1	Opportunities and Limitations of Modelling Alzheimer's Disease with Induced Pluripotent Stem Cells. Journal of Clinical Medicine, 2014, 3, 1357-1372.	1.0	12
2	Models of β-amyloid induced Tau-pathology: the long and "folded―road to understand the mechanism. Molecular Neurodegeneration, 2014, 9, 51.	4.4	220
3	New tools for the evaluation of patients with neurodegenerative diseases. Neurodegenerative Disease Management, 2014, 4, 403-405.	1.2	0
4	New dimensions in Alzheimer's modelling. Nature Reviews Drug Discovery, 2014, 13, 887-887.	21.5	3
5	Lightening the load in synthetic biology. Nature Biotechnology, 2014, 32, 1198-1200.	9.4	4
7	The Evolution of Preclinical Alzheimer's Disease: Implications for Prevention Trials. Neuron, 2014, 84, 608-622.	3.8	568
8	New dimensions in Alzheimer's modelling. Nature Reviews Neuroscience, 2014, 15, 765-765.	4.9	0
9	LRP/LR Antibody Mediated Rescuing of Amyloid-β-Induced Cytotoxicity is Dependent on PrPc in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 49, 645-657.	1.2	24
10	Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function. Scientific Reports, 2015, 5, 15410.	1.6	23
11	Advances in 3D neuronal cell culture. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	18
12	The New Conceptualization of Alzheimer's Disease under the Microscope of Influential Definitions of Disease. Psychopathology, 2015, 48, 359-367.	1.1	9
13	Cell Sheetâ€Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates. Advanced Healthcare Materials, 2015, 4, 2388-2407.	3.9	65
14	Dimeric bis (heptyl)â€Cognitin Blocks Alzheimer's βâ€Amyloid Neurotoxicity Via the Inhibition of Aβ Fibrils Formation and Disaggregation of Preformed Fibrils. CNS Neuroscience and Therapeutics, 2015, 21, 953-961.	1.9	12
15	Alzheimer's in 3D culture: Challenges and perspectives. BioEssays, 2015, 37, 1139-1148.	1.2	83
16	Long-Term Interrelationship between Brain Metabolism and Amyloid Deposition in Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2015, 48, 123-133.	1.2	8
17	Lessons from Toxicology: Developing a 21st-Century Paradigm for Medical Research. Environmental Health Perspectives, 2015, 123, A268-72.	2.8	57
18	Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems. Viruses, 2015, 7, 3835-3856.	1.5	26
19	Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins. Frontiers in Molecular Neuroscience, 2015, 8, 8.	1.4	19

#	Article	IF	CITATIONS
20	A Î ³ -Secretase Inhibitor, but Not a Î ³ -Secretase Modulator, Induced Defects in BDNF Axonal Trafficking and Signaling: Evidence for a Role for APP. PLoS ONE, 2015, 10, e0118379.	1.1	37
21	Ionizing Radiation-Induced Adaptive Response in Fibroblasts under Both Monolayer and 3-Dimensional Conditions. PLoS ONE, 2015, 10, e0121289.	1.1	19
22	Using Human iPSC-Derived Neurons to Model TAU Aggregation. PLoS ONE, 2015, 10, e0146127.	1.1	62
23	Vitamin D and Alzheimer's Disease: Neurocognition to Therapeutics. International Journal of Alzheimer's Disease, 2015, 2015, 1-11.	1.1	63
24	Editorial (Thematic Issue: View of Excellent ROAD from the CAR). Current Alzheimer Research, 2015, 12, 96-99.	0.7	2
25	A Human-Based Integrated Framework forAlzheimer's Disease Research. Journal of Alzheimer's Disease, 2015, 47, 857-868.	1.2	16
26	Systems biology of neurodegenerative diseases. Integrative Biology (United Kingdom), 2015, 7, 758-775.	0.6	40
27	Clinical strategies and animal models for developing senolytic agents. Experimental Gerontology, 2015, 68, 19-25.	1.2	125
28	Probing disorders of the nervous system using reprogramming approaches. EMBO Journal, 2015, 34, 1456-1477.	3.5	45
29	Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nature Neuroscience, 2015, 18, 800-806.	7.1	582
30	γ-Secretase modulators reduce endogenous amyloid β ₄₂ levels in human neural progenitor cells without altering neuronal differentiation. FASEB Journal, 2015, 29, 3335-3341.	0.2	10
31	Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Human Molecular Genetics, 2015, 24, 5260-5269.	1.4	116
32	Massachusetts Alzheimer's Disease Research Center: Progress and challenges. Alzheimer's and Dementia, 2015, 11, 1241-1245.	0.4	7
33	Preventing Alzheimer's disease by means of natural selection. Journal of the Royal Society Interface, 2015, 12, 20140919.	1.5	21
34	Inhibition of protein aggregation and amyloid formation by small molecules. Current Opinion in Structural Biology, 2015, 30, 50-56.	2.6	259
35	Drug Repositioning Approaches for the Discovery of New Therapeutics for Alzheimer's Disease. Neurotherapeutics, 2015, 12, 132-142.	2.1	58
36	Learning from the past and looking to the future: Emerging perspectives for improving the treatment of psychiatric disorders. European Neuropsychopharmacology, 2015, 25, 599-656.	0.3	113
37	Progression of Seedâ€Induced <scp>A</scp> β Deposition within the Limbic Connectome. Brain Pathology, 2015, 25, 743-752.	2.1	45

#	Article	IF	CITATIONS
38	The ITM2B (BRI2) gene is a target of BCL6 repression: Implications for lymphomas and neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 742-748.	1.8	9
39	Effect of amyloidâ€Î² (<scp>A</scp> β) immunization on hyperphosphorylated tau: a potential role for glycogen synthase kinase <scp>(GSK</scp>)â€3β. Neuropathology and Applied Neurobiology, 2015, 41, 445-457.	1.8	17
40	On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials, 2015, 52, 26-43.	5.7	105
41	Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimerââ,¬â"¢s disease. Frontiers in Cellular Neuroscience, 2015, 9, 191.	1.8	284
42	Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclei Science, 2015, 349, 1255555.	^{n.} 6.0	753
43	Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9734-9739.	3.3	187
44	Drug Discovery Goes Three-Dimensional: Goodbye to Flat High-Throughput Screening?. Assay and Drug Development Technologies, 2015, 13, 262-265.	0.6	68
45	Developing predictive assays: The phenotypic screening "rule of 3― Science Translational Medicine, 2015, 7, 293ps15.	5.8	153
46	Metabolic Profiles Delineate the Effect of Shengmai San on Alzheimer's Disease in Rats. , 2015, , 363-371.		1
47	Cenetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimer's and Dementia, 2015, 11, 792-814.	0.4	241
48	Peptidomimetic β-Secretase Inhibitors Comprising a Sequence of Amyloid-β Peptide for Alzheimer's Disease. Journal of Medicinal Chemistry, 2015, 58, 5408-5418.	2.9	6
49	A 3D human neural cell culture system for modeling Alzheimer's disease. Nature Protocols, 2015, 10, 985-1006.	5.5	209
50	Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer's disease models. Molecular Aspects of Medicine, 2015, 43-44, 54-65.	2.7	24
51	Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System. Molecular Therapy - Nucleic Acids, 2015, 4, e242.	2.3	43
52	Cell-Based Screening: Extracting Meaning from Complex Data. Neuron, 2015, 86, 160-174.	3.8	37
53	Advances in Reprogramming-Based Study of Neurologic Disorders. Stem Cells and Development, 2015, 24, 1265-1283.	1.1	20
54	APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons. Cell Reports, 2015, 11, 689-696.	2.9	158
55	Molecular basis for mid-region amyloid-β capture by leading Alzheimer's disease immunotherapies. Scientific Reports, 2015, 5, 9649.	1.6	73

#	Article	IF	CITATIONS
56	Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2725-34.	3.3	317
57	The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Science OA, 2015, 1, FSO11.	0.9	75
58	Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System. Stem Cells and Development, 2015, 24, 1852-1864.	1.1	34
59	Probing the Secrets of Alzheimer's Disease Using Human-induced Pluripotent Stem Cell Technology. Neurotherapeutics, 2015, 12, 121-125.	2.1	20
60	Seeking the right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine, 2015, 10, 685-688.	1.7	65
61	Molecular mechanisms linking amyloid β toxicity and Tau hyperphosphorylation in Alzheimer׳s disease. Free Radical Biology and Medicine, 2015, 83, 186-191.	1.3	101
62	Does the difference between PART and Alzheimer's disease lie in the age-related changes in cerebral arteries that trigger the accumulation of Aβ and propagation of tau?. Acta Neuropathologica, 2015, 129, 763-766.	3.9	37
63	Novel patented therapeutic approaches targeting the 37/67 kDa laminin receptor for treatment of cancer and Alzheimer's disease. Expert Opinion on Therapeutic Patents, 2015, 25, 567-582.	2.4	37
64	Calcium sensing receptor mediated the excessive generation of β-amyloid peptide induced by hypoxia inÂvivo and inÂvitro. Biochemical and Biophysical Research Communications, 2015, 459, 568-573.	1.0	23
65	Three-Dimensional Neural Spheroid Culture: An <i>In Vitro</i> Model for Cortical Studies. Tissue Engineering - Part C: Methods, 2015, 21, 1274-1283.	1.1	111
66	Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 14042-14056.	1.7	89
67	Estrogen receptor β in Alzheimer's disease: From mechanisms to therapeutics. Ageing Research Reviews, 2015, 24, 178-190.	5.0	70
68	Propagation of prions causing synucleinopathies in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4949-58.	3.3	191
69	In vitro bioengineered model of cortical brain tissue. Nature Protocols, 2015, 10, 1362-1373.	5.5	87
70	Access to Clinical Therapeutics. Clinical Therapeutics, 2015, 37, 1601-1603.	1.1	0
71	Organotypic brain slice cultures: A review. Neuroscience, 2015, 305, 86-98.	1.1	324
72	Recent Advances from the Bench Toward the Bedside in Alzheimer's Disease. EBioMedicine, 2015, 2, 94-95.	2.7	5
73	Alzheimer's disease and other dementias: advances in 2014. Lancet Neurology, The, 2015, 14, 4-6.	4.9	40

#	Article	IF	CITATIONS
74	Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells. , 2016, , .		1
75	Modeling Alzheimer's Disease with Induced Pluripotent Stem Cells: Current Challenges and Future Concerns. Stem Cells International, 2016, 2016, 1-12.	1.2	17
76	Cells and Organs on Chipâ \in "A Revolutionary Platform for Biomedicine. , 0, , .		7
77	Advances in Stem Cell Research- A Ray of Hope in Better Diagnosis and Prognosis in Neurodegenerative Diseases. Frontiers in Molecular Biosciences, 2016, 3, 72.	1.6	11
78	Neuronal Gene Targets of NF-κB and Their Dysregulation in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2016, 9, 118.	1.4	116
79	iPS Cells—The Triumphs and Tribulations. Dentistry Journal, 2016, 4, 19.	0.9	8
80	Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes. PLoS ONE, 2016, 11, e0161969.	1.1	405
81	Calcium-Sensing Receptors of Human Neural Cells Play Crucial Roles in Alzheimer's Disease. Frontiers in Physiology, 2016, 7, 134.	1.3	35
82	Nontargeted Metabolite Profiling of Induced Pluripotent Stem Cells (iPSCs) Derived Neural Cells: Insights Into Mechanisms of Brain Diseases. , 0, , .		0
83	Expectations for the Methodology and Translation of Animal Research: A Survey of the General Public, Medical Students and Animal Researchers in North America. ATLA Alternatives To Laboratory Animals, 2016, 44, 361-381.	0.7	6
84	Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Drug Development Research, 2016, 77, 109-123.	1.4	49
85	Neural Engineering. , 2016, , .		8
86	Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions. Advanced Healthcare Materials, 2016, 5, 1104-1111.	3.9	31
87	Induced pluripotent stem cells in Alzheimer's disease: applications for disease modeling and cell-replacement therapy. Molecular Neurodegeneration, 2016, 11, 39.	4.4	57
88	Human Neural Tissue Construct Fabrication Based on Scaffoldâ€Free Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1931-1938.	3.9	30
89	In Vitro Modeling of Nervous System: Engineering of the Reflex Arc. , 2016, , 261-298.		1
90	Moving from the Dish to the Clinical Practice: A Decade of Lessons andÂPerspectives from the Pre-Clinical andÂClinical Stem Cell Studies forÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2016, 53, 1209-1230.	1.2	5
91	Creation of a library of induced pluripotent stem cells from Parkinsonian patients. Npj Parkinson's Disease, 2016, 2, 16009.	2.5	74

#	Article	IF	CITATIONS
92	3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish― Molecular Neurodegeneration, 2016, 11, 75.	4.4	109
93	Immunization with Small Amyloid-β-derived Cyclopeptide Conjugates Diminishes Amyloid-β-Induced Neurodegeneration in Mice. Journal of Alzheimer's Disease, 2016, 52, 1111-1123.	1.2	5
94	Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers. Journal of Materials Chemistry B, 2016, 4, 3305-3312.	2.9	33
95	Challenges, solutions, and recommendations for Alzheimer's disease combination therapy. , 2016, 12, 623-630.		39
96	Neural stem cell neural differentiation in 3D extracellular matrix and endoplasmic reticulum stress microenvironment. RSC Advances, 2016, 6, 34959-34969.	1.7	8
97	High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases. Drug Discovery Today, 2016, 21, 1355-1366.	3.2	16
98	Efficient synthesis of longer Aβ peptides via removable backbone modification. Organic and Biomolecular Chemistry, 2016, 14, 5012-5018.	1.5	25
99	Alzheimer's Disease Mechanisms and Emerging Roads to Novel Therapeutics. Annual Review of Neuroscience, 2016, 39, 57-79.	5.0	97
101	Bioengineered cell culture systems of central nervous system injury and disease. Drug Discovery Today, 2016, 21, 1456-1463.	3.2	5
102	Conversion of Synthetic Aβ to <i>In Vivo</i> Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model. Journal of Neuroscience, 2016, 36, 5084-5093.	1.7	41
103	Utilization of stem cells to model Parkinson's disease – current state and future challenges. Future Neurology, 2016, 11, 171-186.	0.9	9
104	Rab-mediated membrane trafficking and the control of epithelial cell polarity. Journal of Cell Biology, 2016, 213, 301-303.	2.3	7
105	Revisiting rodent models: Octodon degus as Alzheimer's disease model?. Acta Neuropathologica Communications, 2016, 4, 91.	2.4	46
106	Multitasking Microglia and Alzheimer's Disease: Diversity, Tools and Therapeutic Targets. Journal of Molecular Neuroscience, 2016, 60, 390-404.	1.1	12
107	Modeling neurodegenerative disorders in adult somatic cells: A critical review. Frontiers in Biology, 2016, 11, 232-245.	0.7	5
108	Nanoengineering neural stem cells on biomimetic substrates using magnetofection technology. Nanoscale, 2016, 8, 17869-17880.	2.8	13
109	Real-time monitoring of amyloid growth in a rigid gel matrix. Analytical Biochemistry, 2016, 511, 13-16.	1.1	2
110	Walking the tightrope: proteostasis and neurodegenerative disease. Journal of Neurochemistry, 2016, 137, 489-505.	2.1	176

#	ARTICLE A decade of progress in tissue engineering. Nature Protocols, 2016, 11, 1775-1781.	IF 5.5	Citations
112	The amyloid hypothesis of Alzheimer's disease at 25Âyears. EMBO Molecular Medicine, 2016, 8, 595-608.	3.3	4,226
113	Drug development in Alzheimer's disease: the path to 2025. Alzheimer's Research and Therapy, 2016, 8, 39.	3.0	323
114	Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications. Stem Cell Reports, 2016, 7, 557-570.	2.3	64
115	The Genetic Basis of Alzheimer's Disease. , 2016, , 547-571.		5
116	Hydrogel-encapsulated 3D microwell array for neuronal differentiation. Biomedical Materials (Bristol), 2016, 11, 015019.	1.7	16
117	High-Throughput Toxicity and Phenotypic Screening of 3D Human Neural Progenitor Cell Cultures on a Microarray Chip Platform. Stem Cell Reports, 2016, 7, 970-982.	2.3	55
118	Benefits of Strategic Small-Scale Targeted Screening. Assay and Drug Development Technologies, 2016, 14, 329-332.	0.6	2
119	The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nature Communications, 2016, 7, 12082.	5.8	56
121	CNS disease models with human pluripotent stem cells in the CRISPR age. Current Opinion in Cell Biology, 2016, 43, 96-103.	2.6	19
122	Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks. Scientific Reports, 2016, 6, 33285.	1.6	16
123	Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Scientific Reports, 2016, 6, 30028.	1.6	469
124	Polymer Thin Films with Tunable Acetylcholine-like Functionality Enable Long-Term Culture of Primary Hippocampal Neurons. ACS Nano, 2016, 10, 9909-9918.	7.3	14
125	Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration. Journal of Tissue Engineering, 2016, 7, 204173141667192.	2.3	8
126	PET Imaging as a Diagnostic Tool in Alzheimer's Disease. Methods in Pharmacology and Toxicology, 2016, , 199-213.	0.1	0
127	The Genetic Basis of Alzheimer's Disease. , 2016, , 23-37.		5
128	Inhibition of Tau Aggregation as a Basis for Treatment and Prevention of Alzheimer's Disease. , 2016, , 385-436.		1
129	Direct Tracking of Amyloid and Tau Dynamics in Neuroblastoma Cells Using Nanoplasmonic Fiber Tip Probes. Nano Letters, 2016, 16, 3989-3994.	4.5	20

#	Article	IF	Citations
130	The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF. Differentiation, 2016, 92, 183-194.	1.0	10
131	Apolipoprotein E as a Therapeutic Target in Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs, 2016, 30, 773-789.	2.7	93
132	Ion channel regulation by β-secretase BACE1 – enzymatic and non-enzymatic effects beyond Alzheimer's disease. Channels, 2016, 10, 365-378.	1.5	26
133	Reelin-immunoreactive neurons in entorhinal cortex layer II selectively express intracellular amyloid in early Alzheimer's disease. Neurobiology of Disease, 2016, 93, 172-183.	2.1	58
134	Automated longitudinal monitoring of in vivo protein aggregation in neurodegenerative disease C. elegans models. Molecular Neurodegeneration, 2016, 11, 17.	4.4	42
135	Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics. Trends in Biotechnology, 2016, 34, 722-732.	4.9	186
136	Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses. Acta Biomaterialia, 2016, 42, 114-126.	4.1	43
137	Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Molecular and Cellular Neurosciences, 2016, 73, 96-103.	1.0	31
138	Live imaging of microtubule dynamics in organotypic hippocampal slice cultures. Methods in Cell Biology, 2016, 131, 107-126.	0.5	11
139	Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Engineering - Part C: Methods, 2016, 22, 221-249.	1.1	151
140	Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Molecular and Cellular Neurosciences, 2016, 73, 13-31.	1.0	100
141	Development of a Scalable, High-Throughput-Compatible Assay to Detect Tau Aggregates Using iPSC-Derived Cortical Neurons Maintained in a Three-Dimensional Culture Format. Journal of Biomolecular Screening, 2016, 21, 804-815.	2.6	50
142	The use of human neurons for novel drug discovery in dementia research. Expert Opinion on Drug Discovery, 2016, 11, 355-367.	2.5	12
143	Utilizing stem cells for three-dimensional neural tissue engineering. Biomaterials Science, 2016, 4, 768-784.	2.6	60
144	Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales. Interface Focus, 2016, 6, 20150081.	1.5	8
145	Alzheimer's disease. Lancet, The, 2016, 388, 505-517.	6.3	2,430
146	Translating the Science of Aging into Therapeutic Interventions. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a025908.	2.9	56
147	Alzheimer's disease via enhanced calcium signaling caused by the decrease of endoplasmic reticulum–mitochondrial distance. Medical Hypotheses, 2016, 89, 28-31.	0.8	16

#	Article	IF	CITATIONS
148	Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3185-3190.	3.3	136
149	Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomedical Materials (Bristol), 2016, 11, 022001.	1.7	82
150	Brain Aggregates: An Effective <i>In Vitro</i> Cell Culture System Modeling Neurodegenerative Diseases. Journal of Neuropathology and Experimental Neurology, 2016, 75, 256-262.	0.9	9
151	Accelerating stem cell trials for Alzheimer's disease. Lancet Neurology, The, 2016, 15, 219-230.	4.9	76
152	Biomimetic on-a-chip platforms for studying cancer metastasis. Current Opinion in Chemical Engineering, 2016, 11, 20-27.	3.8	47
153	Alzheimer's disease: The amyloid hypothesis on trial. British Journal of Psychiatry, 2016, 208, 1-3.	1.7	112
154	Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathologica, 2016, 131, 549-569.	3.9	129
155	Direct High Affinity Interaction between Aβ42 and GSK3α Stimulates Hyperphosphorylation of Tau. A New Molecular Link in Alzheimer's Disease?. ACS Chemical Neuroscience, 2016, 7, 161-170.	1.7	40
156	Linking CSF and cognition in Alzheimer's disease: Reanalysis of clinical data. Experimental Gerontology, 2016, 73, 107-113.	1.2	5
157	Photochemical Patterning of Cellular Microenvironments. , 2016, , 27-46.		0
157 158	Photochemical Patterning of Cellular Microenvironments. , 2016, , 27-46. Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 489-510.	4.2	0
	Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for	4.2 0.2	
158	Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 489-510. Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer's and Parkinson's		72
158 159	Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 489-510. Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer's and Parkinson's Diseases. Biosystems and Biorobotics, 2016, , 293-325. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical,	0.2	72 2
158 159 160	Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 489-510. Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer's and Parkinson's Diseases. Biosystems and Biorobotics, 2016, , 293-325. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Molecular Neurobiology, 2016, 53, 4833-4864. Tau neurotoxicity and rescue in animal models of human Tauopathies. Current Opinion in	0.2	72 2 52
158 159 160 161	Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 489-510. Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer's and Parkinson's Diseases. Biosystems and Biorobotics, 2016, , 293-325. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Molecular Neurobiology, 2016, 53, 4833-4864. Tau neurotoxicity and rescue in animal models of human Tauopathies. Current Opinion in Neurobiology, 2016, 36, 52-58.	0.2	72 2 52 54
158 159 160 161	Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 489-510. Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer's and Parkinson's Diseases. Biosystems and Biorobotics, 2016, , 293-325. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Molecular Neurobiology, 2016, 53, 4833-4864. Tau neurotoxicity and rescue in animal models of human Tauopathies. Current Opinion in Neurobiology, 2016, 36, 52-58. Microscale Technologies for Cell Engineering. , 2016, , .	0.2 1.9 2.0	72 2 52 54 3

#	Article	IF	CITATIONS
167	Cellular self-assembly and biomaterials-based organoid models of development and diseases. Acta Biomaterialia, 2017, 53, 29-45.	4.1	45
168	LncRNAs: macromolecules with big roles in neurobiology and neurological diseases. Metabolic Brain Disease, 2017, 32, 281-291.	1.4	58
169	Chromosome conformation and gene expression patterns differ profoundly in human fibroblasts grown in spheroids versus monolayers. Nucleus, 2017, 8, 383-391.	0.6	12
170	Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain. Neuron, 2017, 93, 1066-1081.e8.	3.8	204
171	Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. SLAS Discovery, 2017, 22, 583-601.	1.4	55
172	Clearance of cerebral Aβ in Alzheimer's disease: reassessing the role of microglia and monocytes. Cellular and Molecular Life Sciences, 2017, 74, 2167-2201.	2.4	199
173	Recent Progress in Alzheimer's Disease Research, Part 1: Pathology. Journal of Alzheimer's Disease, 2017, 57, 1-28.	1.2	75
174	Testing the Amyloid Hypothesis with a Humanized AD Mouse Model. Neuron, 2017, 93, 987-989.	3.8	8
175	TARPs and AMPA Receptors: Function Follows Form. Neuron, 2017, 93, 989-991.	3.8	2
176	Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomaterialia, 2017, 54, 1-20.	4.1	136
177	Biological basis for amyloidogenesis in Alzheimer'S disease. Biochemistry (Moscow), 2017, 82, 122-139.	0.7	25
178	Understanding Alzheimer's disease by global quantification of protein phosphorylation and sialylated N-linked glycosylation profiles: A chance for new biomarkers in neuroproteomics?. Journal of Proteomics, 2017, 161, 11-25.	1.2	23
179	Paving the Way Toward Complex Blood-Brain Barrier Models Using Pluripotent Stem Cells. Stem Cells and Development, 2017, 26, 857-874.	1.1	40
180	Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathologica, 2017, 134, 187-205.	3.9	288
181	Pharmacological and Toxicological Properties of the Potent Oral <i>γ</i> -Secretase Modulator BPN-15606. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 31-44.	1.3	36
182	Reprogramming cells from Gulf War veterans into neurons to study Gulf War illness. Neurology, 2017, 88, 1968-1975.	1.5	11
183	Pharmacological tools based on imidazole scaffold proved the utility of PDE10A inhibitors for Parkinson's disease. Future Medicinal Chemistry, 2017, 9, 731-748.	1.1	11
185	Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. Trends in Neurosciences, 2017, 40, 347-357.	4.2	327

#	Article	IF	CITATIONS
186	Diagnostic Biomarkers of Alzheimer's Disease as Identified in Saliva using 1H NMR-Based Metabolomics. Journal of Alzheimer's Disease, 2017, 58, 355-359.	1.2	100
187	The Exceptional Vulnerability of Humans to Alzheimer's Disease. Trends in Molecular Medicine, 2017, 23, 534-545.	3.5	74
188	A Novel Three-Dimensional Culture System for Oligodendrocyte Precursor Cells. Stem Cells and Development, 2017, 26, 1078-1085.	1.1	12
189	The Emerging Role of Innate Immunity in Alzheimer's Disease. Neuropsychopharmacology, 2017, 42, 362-362.	2.8	10
190	Toward modeling the human nervous system in a dish: recent progress and outstanding challenges. Regenerative Medicine, 2017, 12, 15-23.	0.8	2
191	Novel human neuronal tau model exhibiting neurofibrillary tangles and transcellular propagation. Neurobiology of Disease, 2017, 106, 222-234.	2.1	48
192	Adapting tissue-engineered in vitro CNS models for high-throughput study of neurodegeneration. Journal of Tissue Engineering, 2017, 8, 204173141769792.	2.3	9
193	Imaging Mass Spectrometry. Methods in Molecular Biology, 2017, , .	0.4	3
194	Endocytic uptake of monomeric amyloid-β peptides is clathrin- and dynamin-independent and results in selective accumulation of Aβ(1–42) compared to Aβ(1–40). Scientific Reports, 2017, 7, 2021.	1.6	80
195	Concise Review: Induced Pluripotent Stem Cell-Based Drug Discovery for Mitochondrial Disease. Stem Cells, 2017, 35, 1655-1662.	1.4	29
196	The Future in Disease Models for Mass Spectrometry Imaging, Ethical Issues, and the Way Forward. Methods in Molecular Biology, 2017, 1618, 191-201.	0.4	0
197	Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges. New Biotechnology, 2017, 39, 190-198.	2.4	42
198	Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer's disease. Progress in Neurobiology, 2017, 156, 189-213.	2.8	54
199	Modeling tau pathology in human stem cell derived neurons. Brain Pathology, 2017, 27, 525-529.	2.1	11
200	Deriving, regenerating, and engineering CNS tissues using human pluripotent stem cells. Current Opinion in Biotechnology, 2017, 47, 36-42.	3.3	7
201	Stem cell models of Alzheimer's disease: progress and challenges. Alzheimer's Research and Therapy, 2017, 9, 42.	3.0	112
202	Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer's disease. Pharmacological Research, 2017, 120, 68-87.	3.1	67
203	Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks. Biofabrication, 2017, 9, 025007.	3.7	34

ARTICLE IF CITATIONS Soft Hydrogels Featuring In-Depth Surface Density Gradients for the Simple Establishment of 3D Tissue 204 13 1.4 Models for Screening Applications. SLAS Discovery, 2017, 22, 635-644. Alzheimer's disease: experimental models and reality. Acta Neuropathologica, 2017, 133, 155-175. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in 206 1.5 71 Alzheimer's disease. Neurobiology of Aging, 2017, 51, 156-166. Automated quantification of three-dimensional organization of fiber-like structures in biological tissues. Biomaterials, 2017, 116, 34-47. Direct Conversion of Human Fibroblasts into Neural Progenitors Using Transcription Factors 208 2.3 34 Enriched in Human ESC-Derived Neural Progenitors. Stem Cell Reports, 2017, 8, 54-68. Dickkopf 3 (Dkk3) Improves Amyloid-Î² Pathology, Cognitive Dysfunction, and Cerebral Glucose 209 Metabolism in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 1.2 60, 733-746. Three-dimensional neuronal cell culture: in pursuit of novel treatments for neurodegenerative 210 0.8 5 disease. MRS Communications, 2017, 7, 320-331. Tau-based therapies in neurodegeneration: opportunities and challenges. Nature Reviews Drug 211 21.5 193 Discovery, 2017, 16, 863-883. Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve 212 0.8 18 regeneration. MRS Communications, 2017, 7, 391-415. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, 1.7 Sandwich-Type Neuronâ€"Astrocyte Coculture. ACS Chemical Neuroscience, 2017, 8, 2607-2612. Human TAUP301L overexpression results in TAU hyperphosphorylation without neurofibrillary tangles 214 29 1.6 in adult zebrafish brain. Scientific Reports, 2017, 7, 12959. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with 1.0 Alzheimer's disease. Epigenomics, 2017, 9, 1455-1468. Overexpression of let-7a increases neurotoxicity in a PC12 cell model of Alzheimer's disease via 216 0.8 18 regulating autophagy. Experimental and Therapeutic Medicine, 2017, 14, 3688-3698. Soluble Gamma-secretase Modulators Attenuate Alzheimer's Î²-amyloid Pathology and Induce 217 2.7 Conformational Changes in Presenilin 1. EBioMedicine, 2017, 24, 93-101. 218 Microglia emerge as central players in brain disease. Nature Medicine, 2017, 23, 1018-1027. 15.2 1.208 A Mouse Model of Alzheimer's Disease with Transplanted Stem-Cell-Derived Human Neurons. Neuroscience Bulletin, 2017, 33, 766-768. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in 220 1.6 15 vivo maturation in the adult mouse cerebellum. Scientific Reports, 2017, 7, 8863. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1Î"E9 murine model of Alzheimer's disease. Scientific Reports, 2017, 7, 1.6 10411.

#	Article	IF	CITATIONS
222	The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 2017, 18, 573-584.	4.9	528
223	A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues. Scientific Reports, 2017, 7, 5051.	1.6	14
224	Nanoplasmonic fiber tip probe detects significant reduction of intracellular Alzheimer's disease-related oligomers by curcumin. Scientific Reports, 2017, 7, 5722.	1.6	6
225	Human induced pluripotent stem cells as a research tool in Alzheimer's disease. Psychological Medicine, 2017, 47, 2587-2592.	2.7	27
226	Present and future of modeling human brain development in 3D organoids. Current Opinion in Cell Biology, 2017, 49, 47-52.	2.6	88
227	PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease. Stem Cell Reports, 2017, 9, 1885-1897.	2.3	239
228	Tuning hydrogels through metal-based gelation triggers. Journal of Materials Chemistry B, 2017, 5, 9412-9417.	2.9	18
229	Monitoring and manipulating cellular crosstalk during kidney fibrosis inside a 3D in vitro co-culture. Scientific Reports, 2017, 7, 14490.	1.6	15
230	Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Research, 2017, 25, 139-151.	0.3	95
231	Modelling APOE ɛ3/4 allele-associated sporadic Alzheimer's disease in an induced neuron. Brain, 2017, 140, 2193-2209.	3.7	21
232	Alzheimer's Disease: Insights from Genetic Mouse Models and Current Advances in Human IPSC-Derived Neurons. Advances in Neurobiology, 2017, 15, 3-29.	1.3	4
233	Simplified Murine 3D Neuronal Cultures for Investigating Neuronal Activity and Neurodegeneration. Cell Biochemistry and Biophysics, 2017, 75, 3-13.	0.9	11
234	I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology. Acta Biomaterialia, 2017, 48, 68-78.	4.1	97
235	Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Research Bulletin, 2017, 129, 66-73.	1.4	32
236	Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing. Toxicology in Vitro, 2017, 38, 124-135.	1.1	50
237	Multiple comorbid neuropathologies in the setting of Alzheimer's disease neuropathology and implications for drug development. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 83-91.	1.8	94
238	Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nature Nanotechnology, 2017, 12, 322-328.	15.6	111
239	Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. Mutation Research - Reviews in Mutation Research, 2017, 773, 242-262.	2.4	25

#	Article	IF	Citations
240	Rodent Models for Alzheimer's Disease in Drug Discovery. , 2017, , 235-247.		5
241	Photobiomodulation with Near Infrared Light Helmet in a Pilot, Placebo Controlled Clinical Trial in Dementia Patients Testing Memory and Cognition. Journal of Neurology and Neuroscience, 2017, 08, .	0.4	114
242	Neurophysiological Changes Induced by Chronic Toxoplasma gondii Infection. Pathogens, 2017, 6, 19.	1.2	53
243	Stem cells in neurodegeneration: mind the gap. , 2017, , 81-100.		0
244	Amyloid β-Exposed Human Astrocytes Overproduce Phospho-Tau and Overrelease It within Exosomes, Effects Suppressed by Calcilytic NPS 2143—Further Implications for Alzheimer's Therapy. Frontiers in Neuroscience, 2017, 11, 217.	1.4	88
245	A <i>Ĵ²</i> Peptide Originated from Platelets Promises New Strategy in Anti-Alzheimer's Drug Development. BioMed Research International, 2017, 2017, 1-10.	0.9	25
247	Functional Characterization of Resting and Adenovirus-Induced Reactive Astrocytes in Three-Dimensional Culture. Experimental Neurobiology, 2017, 26, 158-167.	0.7	15
248	Dissociating Normal Aging from Alzheimer's Disease: A View from Cognitive Neuroscience. Journal of Alzheimer's Disease, 2017, 57, 331-352.	1.2	123
249	In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells. PLoS ONE, 2017, 12, e0186636.	1.1	55
250	Patient-Oriented Research. , 2017, , 9-23.		2
251	3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. Journal of Biomedical Science, 2017, 24, 59.	2.6	129
252	Human iPSC Models in Drug Discovery: Opportunities and Challenges. , 2017, , 48-73.		4
253	Fabrication of In Vitro Cancer Microtissue Array on Fibroblast-Layered Nanofibrous Membrane by Inkjet Printing. International Journal of Molecular Sciences, 2017, 18, 2348.	1.8	18
254	Human Induced Pluripotent Stem Cells and the Modelling of Alzheimer's Disease: The Human Brain Outside the Dish. The Open Neurology Journal, 2017, 11, 27-38.	0.4	15
255	Cell model for the identification and characterization of prion-like components from Alzheimer brain tissue. Biochemical and Biophysical Research Communications, 2018, 497, 857-862.	1.0	0
256	Translational potential of human brain organoids. Annals of Clinical and Translational Neurology, 2018, 5, 226-235.	1.7	31
257	Role of cellular prion protein in interneuronal amyloid transmission. Progress in Neurobiology, 2018, 165-167, 87-102.	2.8	22
258	Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell, 2018, 173, 677-692.e20.	13.5	376

ARTICLE IF CITATIONS # Clinical Trials for Disease-Modifying Therapies in Alzheimer's Disease: A Primer, Lessons Learned, and a 259 1.2 108 Blueprint for the Future. Journal of Alzheimer's Disease, 2018, 64, S3-S22. Materials for Neural Differentiation, Transâ€Differentiation, and Modeling of Neurological Disease. 11.1 Advanced Materials, 2018, 30, e1705684. Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. 261 11.6 78 Nature Biomedical Engineering, 2018, 2, 540-554. A new Alzheimer's disease cell model using B cells to induce beta amyloid plaque formation and increase TNF alpha expression. International Immunopharmacology, 2018, 59, 106-112. Lab-on-chip technology for chronic disease diagnosis. Npj Digital Medicine, 2018, 1, 7. 263 5.7 99 MiR-21 attenuates apoptosis-triggered by amyloid-Î² via modulating PDCD4/ PI3K/AKT/GSK-3Î² pathway in SH-SY5Y cells. Biomedicine and Pharmacotherapy, 2018, 101, 1003-1007. 264 2.5 The Evolution of Polystyrene as a Cell Culture Material. Tissue Engineering - Part B: Reviews, 2018, 24, 265 2.5168 359-372. Intracellular tracing of amyloid vaccines through direct fluorescent labelling. Scientific Reports, 266 1.6 2018, 8, 2437. Human Neurospheroid Arrays for In Vitro Studies of Alzheimer's Disease. Scientific Reports, 2018, 8, 267 98 1.6 2450. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid Î2-Protein by Promoting 1.6 Microglial Phagocytosis. Scientific Reports, 2018, 8, 1144. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends in 269 4.9 78 Biotechnology, 2018, 36, 457-472. Is Parkinson's Disease a Neurodevelopmental Disorder and Will Brain Organoids Help Us to 1.1 Understand It?. Stem Cells and Development, 2018, 27, 968-975. The rise of three-dimensional human brain cultures. Nature, 2018, 553, 437-445. 27113.7 373 Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem 1.6 Cells. Tissue Engineering - Part A, 2018, 24, 1125-1137. Opportunities for organoids as new models of aging. Journal of Cell Biology, 2018, 217, 39-50. 273 2.344 Microsystems for Singleâ€Cell Analysis. Advanced Biology, 2018, 2, 1700193. 274 CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 275 5.8 123 transcripts. Nature Communications, 2018, 9, 152. Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathologica, 2018, 135, 276 811-826.

#	Article	IF	CITATIONS
277	Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. Journal of Proteomics, 2018, 182, 21-33.	1.2	40
278	Water-insoluble, nanocrystalline, and hydrogel fibrillar scaffolds for biomedical applications. Polymer Journal, 2018, 50, 637-647.	1.3	12
279	Tau Phosphorylation is Impacted by Rare AKAP9 Mutations Associated with Alzheimer Disease in African Americans. Journal of NeuroImmune Pharmacology, 2018, 13, 254-264.	2.1	19
280	Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction. Acta Biomaterialia, 2018, 71, 271-278.	4.1	9
281	Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 34-53.	2.5	24
282	Aβ propagation and strains: Implications for the phenotypic diversity in Alzheimer's disease. Neurobiology of Disease, 2018, 109, 191-200.	2.1	57
283	In Vitro Microfluidic Models for Neurodegenerative Disorders. Advanced Healthcare Materials, 2018, 7, 1700489.	3.9	98
284	Threeâ€Dimensional Models of the Human Brain Development and Diseases. Advanced Healthcare Materials, 2018, 7, 1700723.	3.9	73
285	Derivation of Cortical Spheroids from Human Induced Pluripotent Stem Cells in a Suspension Bioreactor. Tissue Engineering - Part A, 2018, 24, 418-431.	1.6	35
286	Depressive and anxiety symptoms and cortical amyloid deposition among cognitively normal elderly persons: the Mayo Clinic Study of Aging. International Psychogeriatrics, 2018, 30, 245-251.	0.6	52
287	3D neural tissue models: From spheroids to bioprinting. Biomaterials, 2018, 154, 113-133.	5.7	207
288	Lessons Learned from Alzheimer Disease: Clinical Trials with Negative Outcomes. Clinical and Translational Science, 2018, 11, 147-152.	1.5	224
289	PREVENTION OF ALZHEIMER'S DISEASE IN CHINESE POPULATIONS: STATUS, CHALLENGES AND DIRECTIONS. journal of prevention of Alzheimer's disease, The, 2018, 5, 1-5.	1.5	7
290	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	0.9	121
291	iPSC Modeling of Presenilin1 Mutation in Alzheimer's Disease with Cerebellar Ataxia. Experimental Neurobiology, 2018, 27, 350-364.	0.7	25
292	Rosmarinic Acid Derivatives' Inhibition of Glycogen Synthase Kinase-3β Is the Pharmacological Basis of Kangen-Karyu in Alzheimer's Disease. Molecules, 2018, 23, 2919.	1.7	24
293	Stem cell models of human synapse development and degeneration. Molecular Biology of the Cell, 2018, 29, 2913-2921.	0.9	26
294	Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Neuron, 2018, 100, 783-797.	3.8	94

#	Article	IF	CITATIONS
295	Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer's disease associated phenotypes. PLoS ONE, 2018, 13, e0209150.	1.1	53
296	Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease –conformist, nonconformist, and realistic prospects for AD pathogenesis. Translational Neurodegeneration, 2018, 7, 34.	3.6	77
297	Is Alzheimer's Also a Stem Cell Disease? – The Zebrafish Perspective. Frontiers in Cell and Developmental Biology, 2018, 6, 159.	1.8	30
298	Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Synuclein Propagation in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 413.	1.8	9
299	Functional and Sustainable 3D Human Neural Network Models from Pluripotent Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 4278-4288.	2.6	40
300	The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 1602-1614.	0.4	305
301	Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochemical Research, 2018, 43, 2179-2198.	1.6	27
302	Building Models of Brain Disorders with Three-Dimensional Organoids. Neuron, 2018, 100, 389-405.	3.8	237
303	Elucidating the Interactive Roles of Glia in Alzheimer's Disease Using Established and Newly Developed Experimental Models. Frontiers in Neurology, 2018, 9, 797.	1.1	44
304	Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell, 2018, 175, 615-632.	13.5	105
305	Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Current Genomics, 2018, 19, 522-602.	0.7	65
306	Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies. Neuron, 2018, 100, 1322-1336.e7.	3.8	330
307	Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Molecular Neurodegeneration, 2018, 13, 57.	4.4	164
308	A novel lysosomeâ€toâ€mitochondria signaling pathway disrupted by amyloidâ€Î² oligomers. EMBO Journal, 2018, 37, .	3.5	47
309	Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science, 2018, 361, .	6.0	536
310	Rodent models for Alzheimer disease. Nature Reviews Neuroscience, 2018, 19, 583-598.	4.9	240
311	3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochemistry International, 2018, 120, 191-199.	1.9	27
312	Modeling amyloid beta and tau pathology in human cerebral organoids. Molecular Psychiatry, 2018, 23, 2363-2374.	4.1	249

#	Article	IF	CITATIONS
313	An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Acta Biomaterialia, 2018, 74, 168-179.	4.1	9
314	Modeling Late-Onset Sporadic Alzheimer's Disease through BMI1 Deficiency. Cell Reports, 2018, 23, 2653-2666.	2.9	44
315	Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth. ACS Applied Materials & Interfaces, 2018, 10, 17004-17017.	4.0	30
316	3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity. Developmental Cell, 2018, 46, 85-101.e8.	3.1	118
317	Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer's Disease. Stem Cells International, 2018, 2018, 1-14.	1.2	31
318	Elements of organoid design. , 2018, , 27-42.		2
319	A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease. Nature Neuroscience, 2018, 21, 941-951.	7.1	458
320	Modeling Alzheimer's disease brains in vitro. Nature Neuroscience, 2018, 21, 899-900.	7.1	17
321	A New Fluorogenic Small-Molecule Labeling Tool for Surface Diffusion Analysis and Advanced Fluorescence Imaging of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Based on Silicone Rhodamine: SiR-BACE1. Journal of Medicinal Chemistry, 2018, 61, 6121-6139.	2.9	29
322	3D-cultured neural stem cell microarrays on a micropillar chip for high-throughput developmental neurotoxicology. Experimental Cell Research, 2018, 370, 680-691.	1.2	11
323	Human-Induced Pluripotent Stem Cell-Derived Neurons to Model and Gain Insights into Alzheimer's Disease Pathogenesis. , 2018, , 3-12.		0
324	Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact. International Journal of Molecular Sciences, 2018, 19, 2245.	1.8	102
325	Exosome Theranostics: Biology and Translational Medicine. Theranostics, 2018, 8, 237-255.	4.6	739
326	Recent Advances: Decoding Alzheimer's Disease With Stem Cells. Frontiers in Aging Neuroscience, 2018, 10, 77.	1.7	26
327	Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease. Frontiers in Neuroscience, 2018, 12, 56.	1.4	29
328	Modeling Neurological Diseases With Human Brain Organoids. Frontiers in Synaptic Neuroscience, 2018, 10, 15.	1.3	136
329	2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration, 2018, 13, 27.	4.4	157
330	Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the Aβ42-Treated Forebrain Spheroids Derived from Human Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 2922-2933.	2.6	25

#	Article		CITATIONS
331	A Novel Cell Penetrating Peptide for the Differentiation of Human Neural Stem Cells. Biomolecules, 2018, 8, 48.	1.8	10
332	Modelling Alzheimer's disease: Insights from <i>in vivo</i> to <i>in vitro</i> three-dimensional culture platforms. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1944-1958.	1.3	18
333	Peptide Nanofiber Substrates for Long-Term Culturing of Primary Neurons. ACS Applied Materials & Interfaces, 2018, 10, 25127-25134.	4.0	16
334	Alzheimer's Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron, 2018, 99, 56-63.e3.	3.8	470
335	Hydrogel-incorporating unit in a well: 3D cell culture for high-throughput analysis. Lab on A Chip, 2018, 18, 2604-2613.	3.1	19
336	An inorganic overview of natural Aβ fragments: Copper(II) and zinc(II)-mediated pathways. Coordination Chemistry Reviews, 2018, 369, 1-14.	9.5	14
337	Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Frontiers in Neuroscience, 2018, 12, 504.	1.4	39
338	Go with the Flow—Microfluidics Approaches for Amyloid Research. Chemistry - an Asian Journal, 2018, 13, 3437-3447.	1.7	12
339	Nanomaterial-involved neural stem cell research: Disease treatment, cell labeling, and growth regulation. Biomedicine and Pharmacotherapy, 2018, 107, 583-597.	2.5	10
340	3D Printed Stemâ€Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds. Advanced Functional Materials, 2018, 28, 1801850.	7.8	173
342	Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells?. Alcoholism: Clinical and Experimental Research, 2018, 42, 1572-1590.	1.4	11
343	Epigenetic alterations mediate iPSC normalization of DNA-repair expression and TNR stability in Huntington's disease. Journal of Cell Science, 2018, 131, .	1.2	9
344	Misfolded Protein Linked Strategies Toward Biomarker Development for Neurodegenerative Diseases. Molecular Neurobiology, 2019, 56, 2559-2578.	1.9	2
345	Neuro-regeneration Therapeutic for Alzheimer's Dementia: Perspectives on Neurotrophic Activity. Trends in Pharmacological Sciences, 2019, 40, 655-668.	4.0	21
346	Blood–Brain Barrier Dysfunction in a 3D In Vitro Model of Alzheimer's Disease. Advanced Science, 2019, 6, 1900962.	5.6	168
347	Mouse induced pluripotent stem cells-derived Alzheimer's disease cerebral organoid culture and neural differentiation disorders. Neuroscience Letters, 2019, 711, 134433.	1.0	15
348	Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Current Topics in Behavioral Neurosciences, 2019, 42, 159-183.	0.8	9
349	Modelling mitochondrial dysfunction in Alzheimer's disease using human induced pluripotent stem cells. World Journal of Stem Cells, 2019, 11, 236-253.	1.3	13

#	Article	IF	CITATIONS
350	Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Scientific Reports, 2019, 9, 11055.	1.6	119
351	Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiology of Disease, 2019, 132, 104562.	2.1	20
352	Gamma secretase modulators and BACE inhibitors reduce AÎ ² production without altering gene expression in Alzheimer's disease iPSC-derived neurons and mice. Molecular and Cellular Neurosciences, 2019, 100, 103392.	1.0	8
353	Complement C3 Is Activated in Human AD Brain and Is Required for Neurodegeneration in Mouse Models of Amyloidosis and Tauopathy. Cell Reports, 2019, 28, 2111-2123.e6.	2.9	271
354	Alzheimer's in a dish – induced pluripotent stem cell-based disease modeling. Translational Neurodegeneration, 2019, 8, 21.	3.6	23
355	The First Generation of iPSC Line from a Korean Alzheimer's Disease Patient Carrying APP-V715M Mutation Exhibits a Distinct Mitochondrial Dysfunction. Experimental Neurobiology, 2019, 28, 329-336.	0.7	6
356	All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Frontiers in Neuroscience, 2019, 13, 582.	1.4	39
357	Tau Aggregation Correlates with Amyloid Deposition in Both Mild Cognitive Impairment and Alzheimer's Disease Subjects. Journal of Alzheimer's Disease, 2019, 70, 455-465.	1.2	6
358	Induction of Neuroinflammation and Neurotoxicity by Synthetic Hemozoin. Cellular and Molecular Neurobiology, 2019, 39, 1187-1200.	1.7	22
359	A Snapshot on the Current Status of Alzheimer's Disease, Treatment Perspectives, <i>in-Vitro</i> and <i>in-Vivo</i> Research Studies and Future Opportunities. Chemical and Pharmaceutical Bulletin, 2019, 67, 1030-1041.	0.6	8
360	Significant Upregulation of Alzheimer's βâ€Amyloid Levels in a Living System Induced by Extracellular Elastin Polypeptides. Angewandte Chemie - International Edition, 2019, 58, 18703-18709.	7.2	36
362	Tau interactome analyses in CRISPR-Cas9 engineered neuronal cells reveal ATPase-dependent binding of wild-type but not P301L Tau to non-muscle myosins. Scientific Reports, 2019, 9, 16238.	1.6	23
363	Automated Live-Cell Imaging of Synapses in Rat and Human Neuronal Cultures. Frontiers in Cellular Neuroscience, 2019, 13, 467.	1.8	19
364	A Curcumin Analog Reduces Levels of the Alzheimer's Disease-Associated Amyloid-β Protein by Modulating AβPP Processing and Autophagy. Journal of Alzheimer's Disease, 2019, 72, 761-771.	1.2	20
365	A Human Embryonic Stem Cell Model of Aβ-Dependent Chronic Progressive Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 1007.	1.4	6
366	Calcilytic NPS 2143 Reduces Amyloid Secretion and Increases sAβPPα Release from PSEN1 Mutant iPSC-Derived Neurons. Journal of Alzheimer's Disease, 2019, 72, 885-899.	1.2	6
367	3-D geometry and irregular connectivity dictate neuronal firing in frequency domain and synchronization. Biomaterials, 2019, 197, 171-181.	5.7	8
368	Overview of Transgenic Mouse Models for Alzheimer's Disease. Current Protocols in Neuroscience, 2019, 89, e81.	2.6	78

#	Article	IF	CITATIONS
369	Convergence of human cellular models and genetics to study neural stem cell signaling to enhance central nervous system regeneration and repair. Seminars in Cell and Developmental Biology, 2019, 95, 84-92.	2.3	4
370	Developing Effective Alzheimer's Disease Therapies: Clinical Experience and Future Directions. Journal of Alzheimer's Disease, 2019, 71, 715-732.	1.2	89
371	Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the Cellular Behaviors of Isogenic Cortical Spheroids. Cells, 2019, 8, 993.	1.8	29
372	Detection of all adult Tau isoforms in a 3D culture model of iPSC-derived neurons. Stem Cell Research, 2019, 40, 101541.	0.3	24
373	Modeling of Alzheimer's Disease and Outlooks for its Therapy Using Induced Pluripotent Stem Cells. Neurochemical Journal, 2019, 13, 215-228.	0.2	0
374	Nanogroove-Enhanced Hydrogel Scaffolds for 3D Neuronal Cell Culture: An Easy Access Brain-on-Chip Model. Micromachines, 2019, 10, 638.	1.4	14
375	Cost-Effective Cosmetic-Grade Hyaluronan Hydrogels for ReNcell VM Human Neural Stem Cell Culture. Biomolecules, 2019, 9, 515.	1.8	7
376	Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 2019, 179, 312-339.	13.5	1,675
377	Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. Materials, 2019, 12, 3218.	1.3	32
378	Heat Shock Factor 1 Is a Direct Antagonist of AMP-Activated Protein Kinase. Molecular Cell, 2019, 76, 546-561.e8.	4.5	28
379	Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports, 2019, 13, 684-699.	2.3	46
380	Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer's Disease Neurons. Cell Stem Cell, 2019, 24, 363-375.e9.	5.2	220
381	Stem Cell-Derived Neurons as Cellular Models of Sporadic Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 67, 893-910.	1.2	16
382	Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cellular and Molecular Neurobiology, 2019, 39, 181-209.	1.7	44
383	Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiology of Disease, 2019, 127, 1-12.	2.1	13
384	Challenges and Opportunities in Central Nervous System Drug Discovery. Trends in Chemistry, 2019, 1, 612-624.	4.4	46
385	Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiology of Disease, 2019, 130, 104503.	2.1	24
386	Engineering microsystems to recapitulate brain physiology on a chip. Drug Discovery Today, 2019, 24, 1725-1730.	3.2	14

#	Article	IF	CITATIONS
387	Develop a 3D neurological disease model of human cortical glutamatergic neurons using micropillar-based scaffolds. Acta Pharmaceutica Sinica B, 2019, 9, 557-564.	5.7	17
388	The extracellular matrix enriched with membrane metalloendopeptidase and insulinâ€degrading enzyme suppresses the deposition of amyloidâ€beta peptide in Alzheimer's disease cell models. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1759-1769.	1.3	12
389	Use of human pluripotent stem cell-derived cells for neurodegenerative disease modeling and drug screening platform. Future Medicinal Chemistry, 2019, 11, 1305-1322.	1.1	23
390	Assessing drug response in engineered brain microenvironments. Brain Research Bulletin, 2019, 150, 21-34.	1.4	10
392	LRP::FLAG Rescues Cells from Amyloid-β-Mediated Cytotoxicity Through Increased TERT Levels and Telomerase Activity. Journal of Alzheimer's Disease, 2019, 69, 729-741.	1.2	5
393	Cholinergic Differentiation of Human Neuroblastoma SH-SY5Y Cell Line and Its Potential Use as an In vitro Model for Alzheimer's Disease Studies. Molecular Neurobiology, 2019, 56, 7355-7367.	1.9	118
394	Brain organoids: advances, applications and challenges. Development (Cambridge), 2019, 146, .	1.2	385
395	The complexity of tau in Alzheimer's disease. Neuroscience Letters, 2019, 705, 183-194.	1.0	200
396	The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration. Cells, 2019, 8, 242.	1.8	14
397	Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. , 2019, 9, 565-611.		88
398	Experimental models to study prion disease pathogenesis and identify potential therapeutic compounds. Current Opinion in Pharmacology, 2019, 44, 28-38.	1.7	12
399	Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biology, 2019, 9, 180177.	1.5	59
400	Engineering three-dimensional microenvironments towards <i>in vitro</i> disease models of the central nervous system. Biofabrication, 2019, 11, 032003.	3.7	37
401	Relevance of the interplay between amyloid and tau for cognitive impairment in early Alzheimer's disease. Neurobiology of Aging, 2019, 79, 131-141.	1.5	23
402	Recapitulating Parkinson's disease pathology in a three-dimensional human neural cell culture model. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	31
403	Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Advanced Drug Delivery Reviews, 2019, 148, 239-251.	6.6	83
404	Modeling G2019S-LRRK2 Sporadic Parkinson's Disease in 3D Midbrain Organoids. Stem Cell Reports, 2019, 12, 518-531.	2.3	223
405	Effects of Species-Specific Genetics on Alzheimer's Mouse Models. Neuron, 2019, 101, 351-352.	3.8	9

#	Article	IF	CITATIONS
406	One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. Journal of Parkinson's Disease, 2019, 9, 265-281.	1.5	19
407	Development of surface functionalization strategies for 3Dâ€printed polystyrene constructs. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2566-2578.	1.6	4
408	Induction of Autophagy and Activation of SIRTâ€1 Deacetylation Mechanisms Mediate Neuroprotection by the Pomegranate Metabolite Urolithin A in BV2 Microglia and Differentiated 3D Human Neural Progenitor Cells. Molecular Nutrition and Food Research, 2019, 63, e1801237.	1.5	50
409	Nanoparticles. , 2019, , 51-57.		0
410	3D bioprinting for high-throughput screening: Drug screening, disease modeling, and precision medicine applications. Applied Physics Reviews, 2019, 6, .	5.5	91
411	Î ³ -Secretase and its modulators: Twenty years and beyond. Neuroscience Letters, 2019, 701, 162-169.	1.0	46
412	rAAV-based brain slice culture models of Alzheimer's and Parkinson's disease inclusion pathologies. Journal of Experimental Medicine, 2019, 216, 539-555.	4.2	48
413	The application of patient-derived induced pluripotent stem cells for modeling and treatment of Alzheimer's disease. Brain Science Advances, 2019, 5, 21-40.	0.3	18
414	Deficits in the Blood-Brain Barrier Play a Role in Alzheimer's Disease Pathology. Neurology Today: an Official Publication of the American Academy of Neurology, 2019, 19, 31-35.	0.0	0
415	Diagnosis and Treatment of Alzheimer's Disease in Elderly and Senile Age. Advances in Gerontology, 2019, 9, 439-446.	0.1	0
416	Significant Upregulation of Alzheimer's βâ€Amyloid Levels in a Living System Induced by Extracellular Elastin Polypeptides. Angewandte Chemie, 2019, 131, 18876-18882.	1.6	12
417	iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells, 2019, 8, 1438.	1.8	41
418	Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Frontiers in Bioengineering and Biotechnology, 2019, 7, 400.	2.0	55
420	TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nature Communications, 2019, 10, 5630.	5.8	96
421	Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicological Sciences, 2019, 167, 58-76.	1.4	67
422	Highâ€ŧhroughput identification of factors promoting neuronal differentiation of human neural progenitor cells in microscale 3D cell culture. Biotechnology and Bioengineering, 2019, 116, 168-180.	1.7	25
423	Neural tissue microphysiological systems in the era of patient-derived pluripotent stem cells. , 2019, , 249-296.		3
424	Influence of Hydrophobic Cross-Linkers on Carboxybetaine Copolymer Stimuli Response and Hydrogel Biological Properties. Langmuir, 2019, 35, 1631-1641.	1.6	17

#	Article	IF	CITATIONS
425	3D Cultures of Parkinson's Disease‧pecific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. Advanced Science, 2019, 6, 1800927.	5.6	92
426	Brain organoids: a next step for humanized Alzheimer's disease models?. Molecular Psychiatry, 2019, 24, 474-478.	4.1	50
427	The Astrocyte–Neuron Interface: An Overview on Molecular and Cellular Dynamics Controlling Formation and Maintenance of the Tripartite Synapse. Methods in Molecular Biology, 2019, 1938, 3-18.	0.4	20
428	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	13.1	230
429	FACSâ€Mediated Isolation of Neuronal Cell Populations From Virusâ€Infected Human Embryonic Stem Cell–Derived Cerebral Organoid Cultures. Current Protocols in Stem Cell Biology, 2019, 48, e65.	3.0	13
430	Fabrication of thinâ€layer matrigelâ€based constructs for threeâ€dimensional cell culture. Biotechnology Progress, 2019, 35, e2733.	1.3	11
431	Minimalistic in vitro systems for investigating tau pathology. Journal of Neuroscience Methods, 2019, 319, 69-76.	1.3	3
432	Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson's disease. Neurobiology of Disease, 2019, 122, 72-82.	2.1	48
433	Human-Derived Brain Models: Windows into Neuropsychiatric Disorders and Drug Therapies. Assay and Drug Development Technologies, 2020, 18, 79-88.	0.6	8
434	Human pluripotent stem cell–derived models and drug screening in CNS precision medicine. Annals of the New York Academy of Sciences, 2020, 1471, 18-56.	1.8	54
435	Modeling Emergent Properties in the Brain Using Tissue Models to Investigate Neurodegenerative Disease. Neuroscientist, 2020, 26, 224-230.	2.6	3
436	Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Molecular Psychiatry, 2020, 25, 254-274.	4.1	78
437	Modeling Alzheimer's disease with iPSC-derived brain cells. Molecular Psychiatry, 2020, 25, 148-167.	4.1	263
438	The Promise and Perils of Compound Discovery Screening with Inducible Pluripotent Cell-Derived Neurons. Assay and Drug Development Technologies, 2020, 18, 97-103.	0.6	2
439	Lithium chloride reduced the level of oxidative stress in brains and serums of APP/PS1 double transgenic mice via the regulation of GSK3β/Nrf2/HO-1 pathway. International Journal of Neuroscience, 2020, 130, 564-573.	0.8	16
440	The puzzle of preserved cognition in the oldest old. Neurological Sciences, 2020, 41, 441-447.	0.9	4
441	High-content imaging of 3D-cultured neural stem cells on a 384-pillar plate for the assessment of cytotoxicity. Toxicology in Vitro, 2020, 65, 104765.	1.1	10
442	Microphysiological models of neurological disorders for drug development. Current Opinion in Biomedical Engineering, 2020, 13, 119-126.	1.8	18

ARTICLE IF CITATIONS # Organoid and pluripotent stem cells in Parkinson's disease modeling: an expert view on their value to 443 2.5 21 drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 427-441. Back to the origins: Human brain organoids to investigate neurodegeneration. Brain Research, 2020, 444 1.1 1727, 146561. SH‣Y5Y and LUHMES cells display differential sensitivity to MPP+, tunicamycin, and epoxomicin in 2D 445 7 1.3 and 3D cell culture. Biotechnology Progress, 2020, 36, e2942. Amyloid-Î²-independent regulators of tau pathology in Alzheimer disease. Nature Reviews Neuroscience, 338 2020, 21, 21-35. Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of "prion-like― 447 2.0 5 Protein Assembly and Behavior. Frontiers in Bioengineering and Biotechnology, 2020, 8, 570692. Sowing the Seeds of Discovery: Tau-Propagation Models of Alzheimer's Disease. ACS Chemical Neuroscience, 2020, 11, 3499-3509. 448 1.7 Construction of a 3D brain extracellular matrix model to study the interaction between microglia 449 1.2 6 and T cells in coâ€culture. European Journal of Neuroscience, 2021, 53, 4034-4050. Dietary Fatty Acid Factors in Alzheimer's Disease: A Review. Journal of Alzheimer's Disease, 2020, 78, 450 1.2 10 887-904. Potential Role for Herpesviruses in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 78, 451 1.2 6 855-869. Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. 4.4 Molecular Neurodegeneration, 2020, 15, 61. Recent progress in translational engineered <i>in vitro</i>models of the central nervous system. 453 3.7 64 Brain, 2020, 143, 3181-3213. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathologica, 2020, 140, 831-849. From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Research Reviews, 2020, 64, 456 5.0 31 101126. Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Medicinal Research Reviews, 2020, 40, 2386-2426. 5.0 61 The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Frontiers 458 1.8 65 in Cell and Developmental Biology, 2020, 8, 579659. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H2O2â[~] 154 production. Nature Neuroscience, 2020, 23, 1555-1566. The iNs and Outs of Direct Reprogramming to Induced Neurons. Frontiers in Genome Editing, 2020, 2, 7. 460 2.7 7 Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture 28 systems: focus on Alzheimer's disease. Stem Cell Reviews and Reports, 2022, 18, 696-717.

		CITATION R	EPORT	
#	Article		IF	Citations
462	Synergy between amyloid- \hat{l}^2 and tau in Alzheimerâ \in ${}^{\rm IM}{\rm s}$ disease. Nature Neuroscience, 20)20, 23, 1183-1193.	7.1	579
463	Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular I International Journal of Molecular Sciences, 2020, 21, 5467.	Dystrophies.	1.8	9
464	InÂVivo Chimeric Alzheimer's Disease Modeling of Apolipoprotein E4 Toxicity in Hun Reports, 2020, 32, 107962.	ian Neurons. Cell	2.9	30
465	Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist, 2021, 27, 388-426.		2.6	11
466	Brain organoids: Human 3D models to investigate neuronal circuits assembly, function a dysfunction. Brain Research, 2020, 1746, 147028.	nd	1.1	25
467	A microfiber scaffold-based 3D <i>in vitro</i> human neuronal culture model of Alzheime Biomaterials Science, 2020, 8, 4861-4874.	's disease.	2.6	16
468	Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Thera Functional Materials, 2020, 30, 2002931.	эу. Advanced	7.8	7
469	Urolithin-A attenuates neurotoxoplasmosis and alters innate response towards predator Behavior, & Immunity - Health, 2020, 8, 100128.	odor. Brain,	1.3	6
470	Induced pluripotent stem cells as a platform to understand patientâ€specific responses anaesthetics. British Journal of Pharmacology, 2020, 177, 4581-4594.	to opioids and	2.7	7
471	APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease pation cerebral organoids. Nature Communications, 2020, 11, 5540.	ent iPSC-derived	5.8	172
472	Gene expression and functional deficits underlie TREM2-knockout microglia responses ir models of Alzheimer's disease. Nature Communications, 2020, 11, 5370.	ı human	5.8	160
473	Molecular imaging of Alzheimer's disease–related gamma-secretase in mice and n Journal of Experimental Medicine, 2020, 217, .	onhuman primates.	4.2	17
474	Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells and Cellular Neurosciences, 2020, 109, 103553.	3. Molecular	1.0	19
475	3D brain tissue physiological model with co-cultured primary neurons and glial cells in hy Journal of Tissue Engineering, 2020, 11, 204173142096398.	drogels.	2.3	14
476	3D In Vitro Neuron on a Chip for Probing Calcium Mechanostimulation. Advanced Biolog e2000080.	y, 2020, 4,	3.0	3
477	A miniaturized hydrogel-based <i>in vitro</i> model for dynamic culturing of human cell overexpressing beta-amyloid precursor protein. Journal of Tissue Engineering, 2020, 11, 204173142094563.	5	2.3	15
478	Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Scree Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 6867.	ning in	1.8	26
479	Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-or 2020, 107, 1000-1013.	nics. Neuron,	3.8	24

#	Article	IF	CITATIONS
480	Alzheimer's Retinopathy: Seeing Disease in the Eyes. Frontiers in Neuroscience, 2020, 14, 921.	1.4	61
481	Microphysiological Systems for Neurodegenerative Diseases in Central Nervous System. Micromachines, 2020, 11, 855.	1.4	10
482	CAR (CARSKNKDC) Peptide Modified ReNcell-Derived Extracellular Vesicles as a Novel Therapeutic Agent for Targeted Pulmonary Hypertension Therapy. Hypertension, 2020, 76, 1147-1160.	1.3	19
483	Impact of Four Common Hydrogels on Amyloid-β (Aβ) Aggregation and Cytotoxicity: Implications for 3D Models of Alzheimer's Disease. ACS Omega, 2020, 5, 20250-20260.	1.6	12
484	Neural progenitor cell pyroptosis contributes to Zika virus-induced brain atrophy and represents a therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23869-23878.	3.3	56
485	Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible. Cells, 2020, 9, 2441.	1.8	12
486	The inhibition of LSD1 via sequestration contributes to tau-mediated neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29133-29143.	3.3	24
487	Discovery of new epigenomics-based biomarkers and the early diagnosis of neurodegenerative diseases. Ageing Research Reviews, 2020, 61, 101069.	5.0	7
488	From in vitro to in vivo reprogramming for neural transdifferentiation: An approach for CNS tissue remodeling using stem cell technology. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1739-1751.	2.4	6
489	A 3D human brain–like tissue model of herpes-induced Alzheimer's disease. Science Advances, 2020, 6, eaay8828.	4.7	159
490	The current landscape in Alzheimer's disease research and drug discovery. Drug Discovery Today, 2020, 25, 943-945.	3.2	18
491	The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules, 2020, 25, 2439.	1.7	37
492	The Role of P2X7 Receptor in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 94.	1.4	44
493	Collagen hydrogel confinement of Amyloid-β (Aβ) accelerates aggregation and reduces cytotoxic effects. Acta Biomaterialia, 2020, 112, 164-173.	4.1	11
494	Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs, 2020, 34, 673-695.	2.7	19
495	Generating ventral spinal organoids from human induced pluripotent stem cells. Methods in Cell Biology, 2020, 159, 257-277.	0.5	13
496	The Use of Patient-Derived Induced Pluripotent Stem Cells for Alzheimer's Disease Modeling. Progress in Neurobiology, 2020, 192, 101804.	2.8	15
497	A CX3CR1 Reporter hESC Line Facilitates Integrative Analysis of In-Vitro-Derived Microglia and Improved Microglia Identity upon Neuron-Glia Co-culture. Stem Cell Reports, 2020, 14, 1018-1032.	2.3	16

#	Article	IF	CITATIONS
498	Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	205
499	A Three-Dimensional Alzheimer's Disease Cell Culture Model Using iPSC-Derived Neurons Carrying A246E Mutation in PSEN1. Frontiers in Cellular Neuroscience, 2020, 14, 151.	1.8	25
500	Modelling neurodegenerative diseases with <scp>3D</scp> brain organoids. Biological Reviews, 2020, 95, 1497-1509.	4.7	30
501	LRP::FLAG Reduces Phosphorylated Tau Levels in Alzheimer's Disease Cell Culture Models. Journal of Alzheimer's Disease, 2020, 76, 753-768.	1.2	2
502	Retinal and Brain Organoids: Bridging the Gap Between in vivo Physiology and in vitro Micro-Physiology for the Study of Alzheimer's Diseases. Frontiers in Neuroscience, 2020, 14, 655.	1.4	16
503	Popular three-dimensional models: Advantages for cancer, Alzheimer's and cardiovascular diseases. Tissue and Cell, 2020, 65, 101367.	1.0	1
504	Biophysical studies of protein misfolding and aggregation inin vivomodels of Alzheimer's and Parkinson's diseases. Quarterly Reviews of Biophysics, 2020, 53, e22.	2.4	13
505	Protein folding and assembly in confined environments: Implications for protein aggregation in hydrogels and tissues. Biotechnology Advances, 2020, 42, 107573.	6.0	29
506	Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer's. Drug Delivery, 2020, 27, 864-875.	2.5	28
507	Midbrain Organoids: A New Tool to Investigate Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 359.	1.8	46
508	In vitro Models of Neurodegenerative Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 328.	1.8	149
509	Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer's disease. Nature Communications, 2020, 11, 1377.	5.8	88
510	Cell-Based Assays in Cancer Research. , 0, , .		1
511	Modeling the complex genetic architectures of brain disease. Nature Genetics, 2020, 52, 363-369.	9.4	35
512	Pathological manifestation of the induced pluripotent stem cellâ€derived cortical neurons from an earlyâ€onset Alzheimer's disease patient carrying a presenilinâ€1 mutation (S170F). Cell Proliferation, 2020, 53, e12798.	2.4	14
513	Modeling and Targeting Alzheimer's Disease With Organoids. Frontiers in Pharmacology, 2020, 11, 396.	1.6	71
514	Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Advanced Functional Materials, 2020, 30, 1909146.	7.8	50
515	Induced pluripotent stem cells as models of human neurodevelopmental disorders. , 2020, , 99-127.		0

# 516	ARTICLE Cellular response to synthetic polymers. , 2020, , 269-319.	IF	CITATIONS
517	Upregulation of Alzheimer's Disease Amyloid-β Protein Precursor in Astrocytes Both in vitro and in vivo. Journal of Alzheimer's Disease, 2020, 76, 1071-1082.	1.2	18
518	Neural In Vitro Models for Studying Substances Acting on the Central Nervous System. Handbook of Experimental Pharmacology, 2020, 265, 111-141.	0.9	11
519	Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiology of Disease, 2020, 138, 104788.	2.1	23
520	Compound-based Chinese medicine formula: From discovery to compatibility mechanism. Journal of Ethnopharmacology, 2020, 254, 112687.	2.0	71
521	A co-culture nanofibre scaffold model of neural cell degeneration in relevance to Parkinson's disease. Scientific Reports, 2020, 10, 2767.	1.6	18
522	Multiscale brain research on a microfluidic chip. Lab on A Chip, 2020, 20, 1531-1543.	3.1	20
523	Human-Induced Pluripotent Stem Cells and Herbal Small-Molecule Drugs for Treatment of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 1327.	1.8	10
524	A three-dimensional dementia model reveals spontaneous cell cycle re-entry and a senescence-associated secretory phenotype. Neurobiology of Aging, 2020, 90, 125-134.	1.5	11
525	Neurodegeneration in a dish: advancing human stem-cell-based models of Alzheimer's disease. Current Opinion in Neurobiology, 2020, 61, 96-104.	2.0	10
526	OCIAD1 contributes to neurodegeneration in Alzheimer's disease by inducing mitochondria dysfunction, neuronal vulnerability and synaptic damages. EBioMedicine, 2020, 51, 102569.	2.7	10
527	Advancement in the modelling and therapeutics of Parkinson's disease. Journal of Chemical Neuroanatomy, 2020, 104, 101752.	1.0	102
528	Brain Organoids: A Promising Living Biobank Resource for Neuroscience Research. Biopreservation and Biobanking, 2020, 18, 136-143.	0.5	15
529	Human in vitro systems for examining synaptic function and plasticity in the brain. Journal of Neurophysiology, 2020, 123, 945-965.	0.9	10
530	Emerging technologies to study glial cells. Clia, 2020, 68, 1692-1728.	2.5	32
532	Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. International Journal of Molecular Sciences, 2020, 21, 908.	1.8	65
533	Monocular Deprivation Affects Visual Cortex Plasticity Through cPKCÎ ³ -Modulated GluR1 Phosphorylation in Mice. , 2020, 61, 44.		5
534	Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nature Reviews Drug Discovery, 2020, 19, 447-462.	21.5	73

#	Article	IF	CITATIONS
535	lf Human Brain Organoids Are the Answer to Understanding Dementia, What Are the Questions?. Neuroscientist, 2020, 26, 438-454.	2.6	23
536	Biomaterials and Culture Systems for Development of Organoid and Organ-on-a-Chip Models. Annals of Biomedical Engineering, 2020, 48, 2002-2027.	1.3	33
537	Modeling neurological disorders using brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 4-14.	2.3	23
538	Modelling neurodegenerative disease using brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 60-66.	2.3	25
539	Fabrication techniques of biomimetic scaffolds in threeâ€dimensional cell culture: A review. Journal of Cellular Physiology, 2021, 236, 741-762.	2.0	51
540	Nontraditional systems in aging research: an update. Cellular and Molecular Life Sciences, 2021, 78, 1275-1304.	2.4	8
541	Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Molecular and Cellular Neurosciences, 2021, 110, 103568.	1.0	30
542	Modeling Al̂242 Accumulation in Response to Herpes Simplex Virus 1 Infection: Two Dimensional or Three Dimensional?. Journal of Virology, 2021, 95, .	1.5	12
543	Assessment of the Effects of Altered Amyloid-Beta Clearance on Behavior following Repeat Closed-Head Brain Injury in Amyloid-Beta Precursor Protein Humanized Mice. Journal of Neurotrauma, 2021, 38, 665-676.	1.7	5
544	β-amyloid: The known unknowns. Ageing Research Reviews, 2021, 65, 101212.	5.0	27
545	Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays for Interfacing with a Peripheral Nerve-on-a-Chip. ACS Biomaterials Science and Engineering, 2021, 7, 3018-3029.	2.6	26
546	Human mini-brain models. Nature Biomedical Engineering, 2021, 5, 11-25.	11.6	49
547	Enhanced Neuronal Activity and Asynchronous Calcium Transients Revealed in a 3D Organoid Model of Alzheimer's Disease. ACS Biomaterials Science and Engineering, 2021, 7, 254-264.	2.6	37
548	Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease. Trends in Molecular Medicine, 2021, 27, 263-279.	3.5	37
549	Modeling brain development and diseases with human cerebral organoids. Current Opinion in Neurobiology, 2021, 66, 103-115.	2.0	15
550	Targeting increased levels of APP in Down syndrome: Posiphenâ€mediated reductions in APP and its products reverse endosomal phenotypes in the Ts65Dn mouse model. Alzheimer's and Dementia, 2021, 17, 271-292.	0.4	25
551	Comparison of Cerebrospinal Fluid Amyloidogenic Nanoplaques With Core Biomarkers of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 608628.	1.7	3
552	3D Alzheimer's disease in a dish: Implications for drug discovery. , 2021, , 311-331.		1

#	Article	IF	CITATIONS
553	Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology, 2021, 142, 477-530.	1.0	15
554	<i>In vitro</i> and <i>in vivo</i> models for anti-amyloidosis nanomedicines. Nanoscale Horizons, 2021, 6, 95-119.	4.1	13
555	Microvascular Alterations in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2020, 14, 618986.	1.8	41
556	Use of human induced pluripotent stem cells (hiPSC)-derived neuronal models to study the neuropathogenesis of the protozoan parasite, Toxoplasma gondii. , 2021, , 215-237.		0
557	Human Dental Pulp Stem Cells Display a Potential for Modeling Alzheimer Disease-Related Tau Modifications. Frontiers in Neurology, 2020, 11, 612657.	1.1	3
558	Stem cell-derived three-dimensional (organoid) models of Alzheimer's disease: a precision medicine approach. Neural Regeneration Research, 2021, 16, 1546.	1.6	3
559	Combining bioscaffolds and iPSCs in the treatment of neural trauma and Alzheimer's disease. , 2021, , 123-162.		0
560	Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 1203.	1.8	26
561	A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nature Communications, 2021, 12, 280.	5.8	88
562	Toward three-dimensional in vitro models to study neurovascular unit functions in health and disease. Neural Regeneration Research, 2021, 16, 2132.	1.6	21
563	Recapitulation of Endogenous 4R Tau Expression and Formation of Insoluble Tau in Directly Reprogrammed Human Neurons. SSRN Electronic Journal, 0, , .	0.4	1
564	<i>In Vitro</i> Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 7839-7853.	4.0	34
565	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, 0, 3, 1.	1.0	7
566	In vitro comparison of major memory-support dietary supplements for their effectiveness in reduction/inhibition of beta-amyloid protein fibrils and tau protein tangles: key primary targets for memory loss. Scientific Reports, 2021, 11, 3001.	1.6	4
567	Engineering organoids. Nature Reviews Materials, 2021, 6, 402-420.	23.3	497
568	Chronic and Acute Manipulation of Cortical Clutamate Transmission Induces Structural and Synaptic Changes in Co-cultured Striatal Neurons. Frontiers in Cellular Neuroscience, 2021, 15, 569031.	1.8	5
569	Reconstituting neurovascular unit with primary neural stem cells and brain microvascular endothelial cells in threeâ€dimensional matrix. Brain Pathology, 2021, 31, e12940.	2.1	15
570	Advances in microfluidic <i>in vitro</i> systems for neurological disease modeling. Journal of Neuroscience Research, 2021, 99, 1276-1307.	1.3	56

#	Article	IF	CITATIONS
571	Biologia Futura: the importance of 3D organoids—a new approach for research on neurological and rare diseases. Biologia Futura, 2021, 72, 281-290.	0.6	1
572	Heterotypic interactions in amyloid function and disease. FEBS Journal, 2022, 289, 2025-2046.	2.2	18
573	Stem Cell Therapies in Alzheimer's Disease: Applications for Disease Modeling. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 207-217.	1.3	22
574	Epithelial Cells in 2D and 3D Cultures Exhibit Large Differences in Higher-order Genomic Interactions. Genomics, Proteomics and Bioinformatics, 2022, 20, 101-109.	3.0	4
575	Pericytes and the Neurovascular Unit: The Critical Nexus of Alzheimer Disease Pathogenesis?. Exploratory Research and Hypothesis in Medicine, 2021, 000, 000-000.	0.1	0
577	Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease. Tissue Engineering - Part C: Methods, 2021, 27, 213-224.	1.1	15
578	Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist, 2022, 28, 572-593.	2.6	11
579	Evaluation of Fluorinated Cromolyn Derivatives as Potential Therapeutics for Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 80, 775-786.	1.2	6
580	Culture Variabilities of Human iPSC-Derived Cerebral Organoids Are a Major Issue for the Modelling of Phenotypes Observed in Alzheimer's Disease. Stem Cell Reviews and Reports, 2022, 18, 718-731.	1.7	40
581	Neural priming of adipose-derived stem cells by cell-imprinted substrates*. Biofabrication, 2021, 13, 035009.	3.7	12
582	Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. International Journal of Molecular Sciences, 2021, 22, 4334.	1.8	14
583	Highâ€Throughput Screening of Compound Neurotoxicity Using 3D ultured Neural Stem Cells on a 384â€Pillar Plate. Current Protocols, 2021, 1, e107.	1.3	3
584	Continuous Monitoring of Tau-Induced Neurotoxicity in Patient-Derived iPSC-Neurons. Journal of Neuroscience, 2021, 41, 4335-4348.	1.7	10
585	Applications of brain organoids in neurodevelopment and neurological diseases. Journal of Biomedical Science, 2021, 28, 30.	2.6	44
586	Brain organoids: A promising model to assess oxidative stressâ€induced central nervous system damage. Developmental Neurobiology, 2021, 81, 653-670.	1.5	15
587	Mesenchymal Stem Cell-Derived Exosomes Ameliorate Alzheimer's Disease Pathology and Improve Cognitive Deficits. Biomedicines, 2021, 9, 594.	1.4	55
589	Emerging Brainâ€Pathophysiologyâ€Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brainsâ€onâ€aâ€Chip. Advanced Healthcare Materials, 2021, 10, e2002119.	3.9	27
590	Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. Cell Death and Disease, 2021, 12, 498.	2.7	38

ARTICLE IF CITATIONS Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. 591 1.0 13 Neuropsychiatric Disease and Treatment, 2021, Volume 17, 1311-1339. Axonal generation of amyloid-Î² from palmitoylated APP in mitochondria-associated endoplasmic 29 reticulum membranes. Cell Reports, 2021, 35, 109134. Late-life sleep duration associated with amnestic mild cognitive impairment. International 593 0.6 3 Psychogeriatrics, 2023, 35, 439-448. Organoids: A new approach in toxicity testing of nanotherapeutics. Journal of Applied Toxicology, 594 2022, 42, 52-72. Nanogold induces anti-inflammation against oxidative stress induced in human neural stem cells 595 1.9 22 exposed to amyloid-beta peptide. Neurochemistry International, 2021, 145, 104992. Intranasally Administered L-Myc-Immortalized Human Neural Stem Cells Migrate to Primary and Distal Sites of Damage after Cortical Impact and Enhance Spatial Learning. Stem Cells International, 2021, 1.2 2021, 1-11. 598 Bio-Inspired Hydrogels via 3D Bioprinting., 0,,. 3 Engineering <i>in vitro</i> human neural tissue analogs by 3D bioprinting and electrostimulation. APL 599 3.3 Bioengineering, 2021, 5, 020901. Microfabricated disk technology: Rapid scale up in midbrain organoid generation. Methods, 2022, 203, 601 1.9 15 465-477. Genome-encoded cytoplasmic double-stranded RNAs, found in <i>C9ORF72</i> ALS-FTD brain, propagate 5.8 neuronal loss. Science Translational Medicine, 2021, 13, . Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. International Journal of 603 9 1.8 Molecular Sciences, 2021, 22, 8196. Influence of Simulated Deep Brain Stimulation on the Expression of Inflammatory Mediators by Human 604 1.8 Central Nervous System Cells In Vitro. NeuroMolecular Medicine, 2022, 24, 169-182. Astrocytic interleukin-3 programs microglia and limits Alzheimer's disease. Nature, 2021, 595, 701-706. 606 13.7 157 3D biomaterial models of human brain disease. Neurochemistry International, 2021, 147, 105043. Phenotypic screening system using three-dimensional (3D) culture models for natural product 608 1.0 3 screening. Journal of Antibiotics, 2021, 74, 660-666. Increased maturation of iPSC-derived neurons in a hydrogel-based 3D culture. Journal of 609 Neuroscience Methods, 2021, 360, 109254. Klotho inhibits neuronal senescence in human brain organoids. Npj Aging and Mechanisms of Disease, 610 4.518 2021, 7, 18. Preclinical <i>in vivo</i> longitudinal assessment of KG207-M as a disease-modifying Alzheimer's 611 2.4 disease therapeutic. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 788-801.

#	Article	IF	CITATIONS
612	What is the gold standard model for Alzheimer's disease drug discovery and development?. Expert Opinion on Drug Discovery, 2021, 16, 1415-1440.	2.5	9
614	Optimization of cerebral organoids: a more qualified model for Alzheimer's disease research. Translational Neurodegeneration, 2021, 10, 27.	3.6	14
615	Engineered Aging Cardiac Tissue Chip Model for Studying Cardiovascular Disease. Cells Tissues Organs, 2022, 211, 348-359.	1.3	5
616	Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology?. International Journal of Molecular Sciences, 2021, 22, 8769.	1.8	12
617	Genetic and environmental factors in Alzheimer's and Parkinson's diseases and promising therapeutic intervention via fecal microbiota transplantation. Npj Parkinson's Disease, 2021, 7, 70.	2.5	44
618	The Amyloid-β Pathway in Alzheimer's Disease. Molecular Psychiatry, 2021, 26, 5481-5503.	4.1	478
620	Bioengineering Approaches for the Advanced Organoid Research. Advanced Materials, 2021, 33, e2007949.	11.1	48
621	Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer's disease in nonhuman primates. IScience, 2021, 24, 103207.	1.9	9
622	Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer's disease. Bioactive Materials, 2022, 11, 192-205.	8.6	15
623	Improved modeling of human AD with an automated culturing platform for iPSC neurons, astrocytes and microglia. Nature Communications, 2021, 12, 5220.	5.8	38
624	Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells International, 2021, 2021, 1-16.	1.2	10
625	Organoids: An Emerging Tool to Study Aging Signature across Human Tissues. Modeling Aging with Patient-Derived Organoids. International Journal of Molecular Sciences, 2021, 22, 10547.	1.8	8
626	Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography. Biomedical Optics Express, 2021, 12, 6928.	1.5	5
627	Engineered Human Induced Pluripotent Cells Enable Genetic Code Expansion in Brain Organoids. ChemBioChem, 2021, 22, 3208-3213.	1.3	3
629	Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture. Journal of Biological Chemistry, 2021, 297, 101108.	1.6	4
630	Alternative platelet activation pathways and their role in neurodegenerative diseases. Neurobiology of Disease, 2021, 159, 105512.	2.1	14
631	lcariin ameliorate Alzheimer's disease by influencing SIRT1 and inhibiting Aβ cascade pathogenesis. Journal of Chemical Neuroanatomy, 2021, 117, 102014.	1.0	22
632	Chronic MC-LR exposure promoted AÎ ² and p-tau accumulation via regulating Akt/GSK-3Î ² signal pathway. Science of the Total Environment, 2021, 794, 148732.	3.9	8

#	Article	IF	CITATIONS
633	Can platelet activation result in increased plasma Aβ levels and contribute to the pathogenesis of Alzheimer's disease?. Ageing Research Reviews, 2021, 71, 101420.	5.0	15
634	Velvet antler polypeptide-loaded polyvinyl alcohol-sodium alginate hydrogels promote the differentiation of neural progenitor cells in 3D towards oligodendrocytes in vitro. European Journal of Pharmaceutical Sciences, 2021, 167, 106003.	1.9	4
635	A simple human cell model for TAU trafficking and tauopathy-related TAU pathology. Neural Regeneration Research, 2022, 17, 770.	1.6	6
636	Pluripotent stem cell–derived brain-region-specific organoids. , 2021, , 1-43.		0
637	Patterning of interconnected human brain spheroids. Lab on A Chip, 2021, 21, 3532-3540.	3.1	7
638	Reprogramming Fibroblasts to Neural Stem Cells by Overexpression of the Transcription Factor Ptf1a. Methods in Molecular Biology, 2020, 2117, 245-263.	0.4	2
639	Systems Biology Methods for Alzheimer's Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials. Methods in Molecular Biology, 2018, 1750, 31-66.	0.4	36
640	Advances in Retinal Imaging: Retinal Amyloid Imaging. , 2020, , 83-122.		3
641	Three-Dimensional Models for Studying Neurodegenerative and Neurodevelopmental Diseases. Advances in Experimental Medicine and Biology, 2020, 1195, 35-41.	0.8	1
642	Relationship Between Tau, β Amyloid and α-Synuclein Pathologies. Advances in Experimental Medicine and Biology, 2019, 1184, 169-176.	0.8	7
643	Heat Shock Proteins and Protein Quality Control in Alzheimer's Disease. , 2018, , 269-298.		5
644	Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 1081-1094.	2.5	8
651	Elevated endothelial Sox2 causes lumen disruption and cerebral arteriovenous malformations. Journal of Clinical Investigation, 2019, 129, 3121-3133.	3.9	27
652	Farnesoid X Receptor (FXR) Aggravates Amyloid-β-Triggered Apoptosis by Modulating the cAMP-Response Element-Binding Protein (CREB)/Brain-Derived Neurotrophic Factor (BDNF) Pathway In Vitro. Medical Science Monitor, 2019, 25, 9335-9345.	0.5	23
653	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, 0, 3, 1.	1.0	10
654	Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0163072.	1.1	127
655	Cytokine-mediated inflammation mediates painful neuropathy from metabolic syndrome. PLoS ONE, 2018, 13, e0192333.	1.1	26
656	DEFINING DISEASE MODIFYING THERAPY FOR ALZHEIMER'S DISEASE. journal of prevention of Alzheimer's disease, The, 2017, 4, 1-7.	1.5	65

#	Article	IF	CITATIONS
657	Phosphoproteomics identifies microglial Siglecâ€F inflammatory response during neurodegeneration. Molecular Systems Biology, 2020, 16, e9819.	3.2	20
658	Recapitulating Amyloid ß and Tau Pathology in Human Neural Cell Culture Models—Clinical Implications. US Neurology, 2015, 11, 102.	0.2	19
659	A Cure for Sanfilippo Syndrome? A Summary of Current Therapeutic Approaches and their Promise. Medical Research Archives, 2020, 8, .	0.1	23
660	Alzheimerrs Disease-Associated -amyloid Is Rapidly Seeded by <i>herpesviridae</i> to Protect Against Brain Infection. SSRN Electronic Journal, 0, , .	0.4	1
661	Nutrient-induced Mitochondrial Activation (NiMA): A Novel Lysosome-to-Mitochondria Signaling Pathway Disrupted by Amyloid Oligomers. SSRN Electronic Journal, 0, , .	0.4	1
662	Preventing the Spread of Alzheimer's Disease Neuropathology: A Role for Calcilytics?. Current Pharmaceutical Biotechnology, 2015, 16, 696-706.	0.9	12
663	Organotypic Brain Slices of ADULT Transgenic Mice: A Tool to Study Alzheimer's Disease. Current Alzheimer Research, 2019, 16, 172-181.	0.7	10
664	Targeting Tau Hyperphosphorylation via Kinase Inhibition: Strategy to Address Alzheimer's Disease. Current Topics in Medicinal Chemistry, 2020, 20, 1059-1073.	1.0	33
665	The application of patient-derived induced pluripotent stem cells for modeling and treatment of Alzheimer's disease. Brain Science Advances, 2019, 5, 21-40.	0.3	2
666	Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow. Annals of Integrative Molecular Medicine, 2019, 2, 90-114.	0.0	14
667	Alzheimer's Disease Prevention and Treatment: Case for Optimism. Annals of Integrative Molecular Medicine, 2019, 2, 0115-0130.	0.0	5
668	Modelling neurodegenerative diseases in vitro : Recent advances in 3D iPSC technologies. AIMS Cell and Tissue Engineering, 2018, 2, 1-23.	0.4	7
669	Novel advancements in three-dimensional neural tissue engineering and regenerative medicine. Neural Regeneration Research, 2015, 10, 352.	1.6	15
670	Spinal cord organoids add an extra dimension to traditional motor neuron cultures. Neural Regeneration Research, 2019, 14, 1515.	1.6	17
671	Structure-based inhibitors of amyloid beta core suggest a common interface with tau. ELife, 2019, 8, .	2.8	81
672	Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. ELife, 2019, 8, .	2.8	143
673	Protective effect and mechanism of docosahexaenoic acid on the cognitive function in female APP/PS1 mice. Food and Function, 2021, 12, 11435-11448.	2.1	8
675	Active constituent of Polygala tenuifolia attenuates cognitive deficits by rescuing hippocampal neurogenesis in APP/PS1 transgenic mice. BMC Complementary Medicine and Therapies, 2021, 21, 267.	1.2	9

		Citation Re	PORT	
# 676	ARTICLE The Unifying Hypothesis of Alzheimer's Disease: Heparan Sulfate Proteoglycans/Glycosaminogly		IF 1.7	Citations 34
677	Are Key as First Hypothesized Over 30 Years Ago. Frontiers in Aging Neuroscience, 2021, 13, 71068 In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Ster Cells. Molecules, 2021, 26, 6077.		1.7	12
678	The Way Forward: Translation. , 2016, , 593-622.			0
680	HSF1 is a Direct, Master AMPK Antagonist to Control Protein Cholesteroylation. SSRN Electronic Journal, 0, , .		0.4	0
683	Stem Cell Therapy: A Great Leap Forward in Alzheimer's Treatment. , 2019, , 167-182.			0
684	News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA an Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics. Annals of Integrative Molecu Medicine. 2019. 2. 0131-0173.		0.0	4
687	Dreidimensionale Zellkultursysteme. Der Experimentator, 2020, , 189-220.		0.0	0
691	Does a â€~Brain in a Dish' Plus Herpes Equal Alzheimer's Disease?. Neurology Today: an Official Publication of the American Academy of Neurology, 2020, 20, 10-11.		0.0	0
692	Advances in Modeling Alzheimer's Disease In Vitro. Advanced NanoBiomed Research, 2021, 1, 2100	097.	1.7	10
693	3D hydrogel models of the neurovascular unit to investigate blood–brain barrier dysfunction. Neuronal Signaling, 2021, 5, NS20210027.		1.7	20
695	Reconstruction of Alzheimer's Disease Cell Model In Vitro via Extracted Peripheral Blood Molecu Cells from a Sporadic Patient. Stem Cells International, 2020, 2020, 1-10.	lar	1.2	2
696	A Synergistic Engineering Approach to Build Human Brain Spheroids. Methods in Molecular Biology, 2021, 2258, 151-169.		0.4	1
697	Modeling the Blood–Brain Barrier to Understand Drug Delivery in Alzheimer's Disease. , 0, , 11	.7-134.		3
698	In vitro disease and organ model. , 2020, , 629-668.			0
699	Chemical Probes in Cellular Assays for Target Validation and Screening in Neurodegeneration. Chemical Biology, 2020, , 276-319.		0.1	0
700	Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nature Reviews Neurology, 2022, 18, 25-39.		4.9	30
702	Mechanisms that synergistically regulate Îsecretase processing of APP and AÎα protein levels: rele to pathogenesis and treatment of Alzheimer's disease. Discovery Medicine, 2017, 23, 121-128.	vance	0.5	6
703	Viable human brain microvessels for the study of aging and neurodegenerative diseases. Microvascular Research, 2022, 140, 104282.		1.1	0

#	Article	IF	CITATIONS
704	Harnessing cerebral organoids for Alzheimer's disease research. Current Opinion in Neurobiology, 2022, 72, 120-130.	2.0	17
705	Layer-by-layer self-assembly of hollow dextran sulfate/chitosan-coated zein nanoparticles loaded with crocin: Fabrication, structural characterization and potential biological fate. Food Hydrocolloids, 2022, 125, 107420.	5.6	32
706	Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Frontiers in Cell and Developmental Biology, 2021, 9, 764732.	1.8	15
707	3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice. Cell Death and Disease, 2021, 12, 1096.	2.7	28
708	Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta Pharmacologica Sinica, 2022, 43, 1670-1685.	2.8	31
709	Structural biology of cell surface receptors implicated in Alzheimer's disease. Biophysical Reviews, 2022, 14, 233-255.	1.5	5
710	The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nature Reviews Neuroscience, 2022, 23, 53-66.	4.9	203
711	Neurodegenerative brain models vs. cell replacement or restoration therapy: A review on promises and pitfalls. Biochemical and Biophysical Research Communications, 2021, 585, 124-131.	1.0	5
712	Crry silencing alleviates Alzheimer's disease injury by regulating neuroinflammatory cytokines and the complement system. Neural Regeneration Research, 2022, 17, 1841.	1.6	7
713	Functional mechanical attributes of natural and synthetic gel-based scaffolds in tissue engineering: strain-stiffening effects on apparent elastic modulus and compressive toughness. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105066.	1.5	6
714	Capturing the third dimension in drug discovery: Spatially-resolved tools for interrogation of complex 3D cell models. Biotechnology Advances, 2022, 55, 107883.	6.0	7
715	Engineered models for studying blood-brain-barrier-associated brain physiology and pathology. Organoid, 0, 1, e10.	0.0	2
716	Organoids for modeling prion diseases. Cell and Tissue Research, 2023, 392, 97-111.	1.5	6
717	Synaptic dysfunction in early phases of Alzheimer's Disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 417-438.	1.0	27
719	Amyloid-beta peptide and tau protein crosstalk in Alzheimer's disease. Neural Regeneration Research, 2022, 17, 1666.	1.6	87
720	Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cellular and Molecular Life Sciences, 2022, 79, 78.	2.4	12
721	Emerging Threeâ€Dimensional Integrated Systems for Biomimetic Neural InÂVitro Cultures. Advanced Materials Interfaces, 2022, 9, .	1.9	10
722	Challenges of Organoid Research. Annual Review of Neuroscience, 2022, 45, 23-39.	5.0	59

#	ARTICLE	IF	CITATIONS
724	Biomaterials-based strategies for <i>in vitro</i> neural models. Biomaterials Science, 2022, 10, 1134-1165.	2.6	7
725	A Matrigel-based 3D construct of SH-SY5Y cells models the α-synuclein pathologies of Parkinson's disease. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	8
726	A multimodal 3D neuro-microphysiological system with neurite-trapping microelectrodes. Biofabrication, 2022, 14, 025004.	3.7	11
727	Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. International Journal of Molecular Sciences, 2022, 23, 624.	1.8	8
728	In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients, 2022, 14, 363.	1.7	13
729	Reactive Astrocytes Contribute to Alzheimer's Disease-Related Neurotoxicity and Synaptotoxicity in a Neuron-Astrocyte Co-culture Assay. Frontiers in Cellular Neuroscience, 2021, 15, 739411.	1.8	7
730	Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Reviews and Reports, 2022, 18, 792-820.	1.7	25
731	Induced Pluripotent Stem Cell-Derived Neural Culture Model of Alzheimer's Disease: A 3D Organoid Approach. Journal of Biomaterials and Tissue Engineering, 2022, 12, 888-896.	0.0	0
732	iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell, 2022, 29, 189-208.	5.2	71
733	Inhibiting Autophagy Pathway of PI3K/AKT/mTOR Promotes Apoptosis in SK-N-SH Cell Model of Alzheimer's Disease. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	14
734	Converging multi-modality datasets to build efficient drug repositioning pipelines against Alzheimer's disease and related dementias. Medical Review, 2022, .	0.3	0
735	Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines. Nature Neuroscience, 2022, 25, 226-237.	7.1	66
736	Targeting MicroRNA-485-3p Blocks Alzheimer's Disease Progression. International Journal of Molecular Sciences, 2021, 22, 13136.	1.8	20
737	Generation of iPSC-Derived Brain Organoids for Drug Testing and Toxicological Evaluation. Methods in Molecular Biology, 2022, 2474, 93-105.	0.4	2
738	Toward Understanding Neurodegeneration Using Brain Organoids. Pancreatic Islet Biology, 2022, , 91-107.	0.1	0
739	Development of early biomarkers of Alzheimer's disease: A precision medicine perspective. , 2024, , 511-525.		0
740	Unraveling pathological mechanisms in neurological disorders: the impact of cell-based and organoid models. Neural Regeneration Research, 2022, 17, 2131.	1.6	6
741	Alzheimer's disease amyloid-β pathology in the lens of the eye. Experimental Eye Research, 2022, 221, 108974.	1.2	5

#	Article	IF	CITATIONS
742	A Matter of Timing: Rudy Tanzi on Alzheimer's Disease. , 2022, 1, 15-20.		0
743	Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review). Biomedical Reports, 2022, 16, 27.	0.9	11
744	Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells, 2022, 11, 1120.	1.8	5
745	Alzheimer's Disease Drug Development: A Research and Development Ecosystem. , 2022, , 1-24.		2
746	Association of the Protein-Quality-Control Protein Ubiquilin-1 With Alzheimer's Disease Both in vitro and in vivo. Frontiers in Neuroscience, 2022, 16, 821059.	1.4	2
747	Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer's Disease Patients. International Journal of Molecular Sciences, 2022, 23, 3245.	1.8	13
748	Engineering Nanointerfaces of Au ₂₅ Clusters for Chaperone-Mediated Peptide Amyloidosis. Nano Letters, 2022, 22, 2964-2970.	4.5	4
749	Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 854992.	1.4	12
750	Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia, 2022, 70, 1267-1288.	2.5	51
751	An approach to measuring protein turnover in human induced pluripotent stem cell organoids by mass spectrometry. Methods, 2022, 203, 17-27.	1.9	5
752	Mitigating Effect of Estrogen in Alzheimer's Disease-Mimicking Cerebral Organoid. Frontiers in Neuroscience, 2022, 16, 816174.	1.4	10
753	Degradation and inhibition of epigenetic regulatory protein BRD4 exacerbate Alzheimer's disease-related neuropathology in cell models. Journal of Biological Chemistry, 2022, 298, 101794.	1.6	8
754	Cell models for Down syndrome-Alzheimer's disease research. Neuronal Signaling, 2022, 6, NS20210054.	1.7	3
755	Emerging three-dimensional neuronal culture assays for neurotherapeutics drug discovery. Expert Opinion on Drug Discovery, 2022, 17, 619-628.	2.5	3
756	Deciphering the prion-like behavior of pathogenic protein aggregates in neurodegenerative diseases. Neurochemistry International, 2022, 155, 105307.	1.9	5
757	Cell models for Alzheimer's and Parkinson's disease: At the interface of biology and drug discovery. Biomedicine and Pharmacotherapy, 2022, 149, 112924.	2.5	18
758	Recent advances in blood and gut microbiota biomarkers for Alzheimer's disease. Scientia Sinica Vitae, 2021, , .	0.1	0
759	Mitochondria-Microbiota Interaction in Neurodegeneration. Frontiers in Aging Neuroscience, 2021, 13, 776936.	1.7	7

#	Article	IF	CITATIONS
760	Alzheimer's Disease: Current Perspectives and Advances in Physiological Modeling. Bioengineering, 2021, 8, 211.	1.6	6
761	Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 858429.	1.7	9
762	Preparation and application of taste bud organoids in biomedicine towards chemical sensation mechanisms. Biotechnology and Bioengineering, 2022, 119, 2015-2030.	1.7	2
772	Synthetic amyloid beta does not induce a robust transcriptional response in innate immune cell culture systems. Journal of Neuroinflammation, 2022, 19, 99.	3.1	6
773	Expression-based Genome-Wide Association Study Links OPN and IL1-RA with Newly Diagnosed Type 1 Diabetes in Children. Journal of Clinical Endocrinology and Metabolism, 2022, , .	1.8	0
774	Advances in Recapitulating Alzheimer's Disease Phenotypes Using Human Induced Pluripotent Stem Cell-Based In Vitro Models. Brain Sciences, 2022, 12, 552.	1.1	4
775	DNA Damage Increases Secreted Aβ40 and Aβ42 in Neuronal Progenitor Cells: Relevance to Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 88, 177-190.	1.2	5
776	Screening neuroprotective compounds in herpes-induced Alzheimer's disease cell and 3D tissue models. Free Radical Biology and Medicine, 2022, 186, 76-92.	1.3	4
778	Infection and inflammation: New perspectives on Alzheimer's disease. Brain, Behavior, & Immunity - Health, 2022, 22, 100462.	1.3	17
779	Molecular Insights into Cell Type-specific Roles in Alzheimer's Disease: Human Induced Pluripotent Stem Cell-based Disease Modelling. Neuroscience, 2023, 518, 10-26.	1.1	5
781	Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell, 2022, 29, 918-932.e8.	5.2	20
782	Neuroimmune contributions to Alzheimer's disease: a focus on human data. Molecular Psychiatry, 2022, 27, 3164-3181.	4.1	20
783	Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype?. Translational Psychiatry, 2022, 12, .	2.4	64
784	Application and prospects of high-throughput screening for <i>in vitro </i> neurogenesis. World Journal of Stem Cells, 2022, 14, 393-419.	1.3	1
785	Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder. Nature Communications, 2022, 13, .	5.8	11
786	Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Opportunities. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	5
787	Comprehensive Characterization of CK1δ-Mediated Tau Phosphorylation in Alzheimer's Disease. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
788	Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Advanced Healthcare Materials, 2022, 11, .	3.9	2

#	Article	IF	CITATIONS
789	Transcription-associated DNA DSBs activate p53 during hiPSC-based neurogenesis. Scientific Reports, 2022, 12, .	1.6	4
790	The Amyloid Cascade Hypothesis 2.0: On the Possibility of Once-in-a-Lifetime-Only Treatment for Prevention of Alzheimer's Disease and for Its Potential Cure at Symptomatic Stages. Journal of Alzheimer's Disease Reports, 2022, 6, 369-399.	1.2	6
791	Ultrasound shear-wave computed tomography for elasticity imaging. Applied Physics Letters, 2022, 121, 043702.	1.5	1
792	Adoption of Conservation Agriculture as a Driver of Sustainable Farming: Opportunities, Constraints, and Policy Issues. , 0, , .		0
793	Adeno-associated virus (AAV) 9-mediated gene delivery of Nurr1 and Foxa2 ameliorates symptoms and pathologies of Alzheimer disease model mice by suppressing neuro-inflammation and glial pathology. Molecular Psychiatry, 0, , .	4.1	7
794	GPCR kinases generate an APH1A phosphorylation barcode to regulate amyloid-β generation. Cell Reports, 2022, 40, 111110.	2.9	4
795	A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discovery, 2022, 8, .	3.1	3
796	Current progress of cerebral organoids for modeling Alzheimer's disease origins and mechanisms. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
797	DNGR-1-tracing marks an ependymal cell subset with damage-responsive neural stem cell potential. Developmental Cell, 2022, 57, 1957-1975.e9.	3.1	7
798	An in vitro workflow of neuron-laden agarose-laminin hydrogel for studying small molecule-induced amyloidogenic condition. PLoS ONE, 2022, 17, e0273458.	1.1	1
799	USP10 deubiquitinates Tau, mediating its aggregation. Cell Death and Disease, 2022, 13, .	2.7	7
800	An insight into the iPSCs-derived two-dimensional culture and three-dimensional organoid models for neurodegenerative disorders. Interface Focus, 2022, 12, .	1.5	2
801	Blood–brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. Lab on A Chip, 2022, 22, 3579-3602.	3.1	20
802	A sporadic Alzheimer's blood-brain barrier model for developing ultrasound-mediated delivery of Aducanumab and anti-Tau antibodies. Theranostics, 2022, 12, 6826-6847.	4.6	18
803	The role of Aβ in Alzheimer's Disease as an Evolutionary Outcome of Optimized Innate Immune Defense. journal of prevention of Alzheimer's disease, The, 0, , .	1.5	0
804	Herpes Simplex Virus Infection Increases Beta-Amyloid Production and Induces the Development of Alzheimer's Disease. BioMed Research International, 2022, 2022, 1-11.	0.9	4
805	Impact of the Flavonoid Quercetin on β-Amyloid Aggregation Revealed by Intrinsic Fluorescence. Journal of Physical Chemistry B, 2022, 126, 7229-7237.	1.2	7
806	Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells, 2022, 11, 2803.	1.8	14

#	Article	IF	CITATIONS
807	Building in vitro models of the brain to understand the role of <i>APOE</i> in Alzheimer's disease. Life Science Alliance, 2022, 5, e202201542.	1.3	2
808	A next-generation iPSC-derived forebrain organoid model of tauopathy with tau fibrils by AAV-mediated gene transfer. Cell Reports Methods, 2022, 2, 100289.	1.4	10
809	Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays?. International Journal of Molecular Sciences, 2022, 23, 11527.	1.8	4
811	Human cerebral organoids — a new tool for clinical neurology research. Nature Reviews Neurology, 2022, 18, 661-680.	4.9	49
812	Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model. Nature Communications, 2022, 13, .	5.8	14
813	Recent advances in optical imaging through deep tissue: imaging probes and techniques. Biomaterials Research, 2022, 26, .	3.2	22
815	Human Brain Banking as a Convergence Platform of Neuroscience and Neuropsychiatric Research. , 2022, 1, .		1
816	Amyloid Aβ25-35 Aggregates Say â€~NO' to Long-Term Potentiation in the Hippocampus through Activation of Stress-Induced Phosphatase 1 and Mitochondrial Na+/Ca2+ Exchanger. International Journal of Molecular Sciences, 2022, 23, 11848.	1.8	2
817	Tools for studying human microglia: In vitro and in vivo strategies. Brain, Behavior, and Immunity, 2023, 107, 369-382.	2.0	7
818	Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders. , 2023, , 173-200.		0
819	Advantages and limitations of hiPSC-derived neurons for the study of neurodegeneration. , 2023, , 243-261.		0
820	Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Reviews in Biomedical Engineering, 2024, 17, 243-263.	13.1	2
821	Exploring the neurogenic differentiation of human dental pulp stem cells. PLoS ONE, 2022, 17, e0277134.	1.1	15
822	A 3D-induced pluripotent stem cell-derived human neural culture model to study certain molecular and biochemical aspects of Alzheimer's disease. In Vitro Models, 2022, 1, 447-462.	1.0	1
823	Alteration in the Synaptic and Extrasynaptic Organization of AMPA Receptors in the Hippocampus of P301S Tau Transgenic Mice. International Journal of Molecular Sciences, 2022, 23, 13527.	1.8	5
826	Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer's Disease. Methods in Molecular Biology, 2023, , 105-133.	0.4	3
827	Infectious origin of Alzheimer's disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathogens, 2022, 18, e1010929.	2.1	22
828	Role of primary aging hallmarks in Alzheimer´s disease. Theranostics, 2023, 13, 197-230.	4.6	8

#	Article	IF	CITATIONS
829	Possible cause of Alzheimer's disease related to HSV-1 infection and signal transmission. , 2022, , .		0
830	Brain organoids: Establishment and application. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
832	BACE2: A Promising Neuroprotective Candidate for Alzheimer's Disease. Journal of Alzheimer's Disease, 2023, 94, S159-S171.	1.2	2
834	A primary rodent triculture model to investigate the role of glia-neuron crosstalk in regulation of neuronal activity. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1
835	A Comprehensive Update of Cerebral Organoids between Applications and Challenges. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-10.	1.9	2
836	Association of Phosphorylated Tau Biomarkers With Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography. JAMA Neurology, 2023, 80, 188.	4.5	55
837	Modelling Alzheimer's disease using human brain organoids: current progress and challenges. Expert Reviews in Molecular Medicine, 2023, 25, .	1.6	3
838	Bone Tissue and the Nervous System: What Do They Have in Common?. Cells, 2023, 12, 51.	1.8	5
839	Substitution of PINK1 Gly411 modulates substrate receptivity and turnover. Autophagy, 2023, 19, 1711-1732.	4.3	7
840	The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. Advanced Science, 2023, 10, .	5.6	9
841	A threeâ€dimensional spheroid coâ€culture system of neurons and astrocytes derived from Alzheimer's disease patients for drug efficacy testing. Cell Proliferation, 0, , .	2.4	0
842	The cellular model for Alzheimer's disease research: PC12 cells. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	14
843	Alzheimer's disease and synapse Loss: What can we learn from induced pluripotent stem Cells?. Journal of Advanced Research, 2023, 54, 105-118.	4.4	5
844	Amyloid beta accumulations and enhanced neuronal differentiation in cerebral organoids of Dutch-type cerebral amyloid angiopathy patients. Frontiers in Aging Neuroscience, 0, 14, .	1.7	2
845	Newly Synthesized Creatine Derivatives as Potential Neuroprotective and Antioxidant Agents on In Vitro Models of Parkinson's Disease. Life, 2023, 13, 139.	1.1	2
846	Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges. ALTEX: Alternatives To Animal Experimentation, 0, , .	0.9	2
847	iPS cell technologies toward overcoming neurological diseases. Folia Pharmacologica Japonica, 2023, 158, 57-63.	0.1	0
848	3D in vitro modelling of human patient microglia: A focus on clinical translation and drug development in neurodegenerative diseases. Journal of Neuroimmunology, 2023, 375, 578017.	1.1	1

~			_		
CI	ΓΑΤ	ION	RE	PO	RT

#	ARTICLE	IF	CITATIONS
849	The Amyloid Cascade Hypothesis 2.0: Generalization of the Concept. Journal of Alzheimer's Disease Reports, 2023, 7, 21-35.	1.2	4
850	Low glucose induced Alzheimer's diseaseâ€like biochemical changes in human induced pluripotent stem cellâ€derived neurons is due to dysregulated Oâ€GlcNAcylation. Alzheimer's and Dementia, 2023, 19, 4872-4885.	0.4	4
851	Alzheimer Hastalığı'nda In Vivo ve In Vitro Modeller. , 2023, 6, 54-77.		0
852	Comprehensive Bibliometric Analysis of Stem Cell Research in Alzheimer's Disease from 2004 to 2022. Dementia and Geriatric Cognitive Disorders, 2023, 52, 47-73.	0.7	10
853	Tau–RNA complexes inhibit microtubule polymerization and drive disease-relevant conformation change. Brain, 2023, 146, 3206-3220.	3.7	7
854	The Amyloid-Beta Clearance: From Molecular Targets to Glial and Neural Cells. Biomolecules, 2023, 13, 313.	1.8	8
855	Two-step method fabricating a 3D nerve cell model with brain-like mechanical properties and tunable porosity vascular structures via coaxial printing. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113202.	2.5	3
856	The Biological Behaviors of Neural Stem Cell Affected by Microenvironment from Host Organotypic Brain Slices under Different Conditions. International Journal of Molecular Sciences, 2023, 24, 4182.	1.8	1
857	Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. American Journal of Physiology - Cell Physiology, 2023, 324, C893-C909.	2.1	5
858	Use of in vitro derived human neuronal models to study host-parasite interactions of Toxoplasma gondii in neurons and neuropathogenesis of chronic toxoplasmosis. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	0
859	Susceptibility of Ovine Bone Marrow-Derived Mesenchymal Stem Cell Spheroids to Scrapie Prion Infection. Animals, 2023, 13, 1043.	1.0	1
860	Inflammation-Mediated Responses in the Development of Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2023, , 39-70.	0.8	1
861	Human brain organoid code of conduct. Frontiers in Molecular Medicine, 0, 3, .	0.6	3
862	3D cell culture model: From ground experiment to microgravity study. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	2
864	Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering, 2023, 10, 449.	1.6	0
865	Lowering levels of reelin in entorhinal cortex layer II-neurons results in lowered levels of intracellular amyloid-1². Brain Communications, 2023, 5, .	1.5	3
867	APP mediates tau uptake and its overexpression leads to the exacerbated tau pathology. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	3
868	Engineering Neurovascular Unit and Blood–Brain Barrier for Ischemic Stroke Modeling. Advanced Healthcare Materials, 2023, 12, .	3.9	3

#	Article	IF	CITATIONS
869	The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells, 2023, 12, 1204.	1.8	1
885	Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discovery, 2023, 9, .	2.0	5
887	"lf You Change the Way You Look atÂThings, Things You Look atÂChange― , 2023, , 575-635.		0
897	Multi-Target-Directed Ligand Approach in Anti-Alzheimer's Drug Discovery. , 2023, , 285-319.		0