A microbial ecosystem beneath the West Antarctic ice s

Nature 512, 310-313 DOI: 10.1038/nature13667

Citation Report

#	Article	IF	CITATIONS
2	Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Frontiers in Microbiology, 2014, 5, 594.	1.5	62
5	Microbes eat rock under ice. Nature, 2014, 512, 256-257.	13.7	5
6	Developing a hot-water drill system for the WISSARD project: 1. Basic drill system components and design. Annals of Glaciology, 2014, 55, 285-297.	2.8	33
7	Terrestrial Subsurface Ecosystem. , 2015, , 84-111.		1
8	Earth as a Microbial Habitat. , 2015, , 22-33.		1
9	Is the Traditional Pedologic Definition of Soil Meaningful in the Modern Context?. Soil Horizons, 2015, 56, 1.	0.3	20
10	MSLED: The Micro Subglacial Lake Exploration Device. Underwater Technology, 2015, 33, 3-17.	0.3	7
11	Melting glacier impacts community structure of <scp>B</scp> acteria, <scp>A</scp> rchaea and <scp>F</scp> ungi in a <scp>C</scp> hilean <scp>P</scp> atagonia fjord. Environmental Microbiology, 2015, 17, 3882-3897.	1.8	40
12	3 Microbial Evolution in the Cryosphere. , 0, , .		0
13	Development of a borehole deployable remotely operated vehicle for investigation of sub-ice aquatic environments. , 2015, , .		7
14	Metagenomics of extreme environments. Current Opinion in Microbiology, 2015, 25, 97-102.	2.3	117
15	Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau. Chinese Journal of Oceanology and Limnology, 2015, 33, 1391-1401.	0.7	17
16	Cryospheric ecosystems: a synthesis of snowpack and glacial research. Environmental Research Letters, 2015, 10, 110201.	2.2	45
17	Report from the 10th International Congress on Extremophiles. Genomics Data, 2015, 5, 337-339.	1.3	1
18	Using non-enzymatic chemistry to influence microbial metabolism. Current Opinion in Chemical Biology, 2015, 25, 71-79.	2.8	28
19	The changing form of Antarctic biodiversity. Nature, 2015, 522, 431-438.	13.7	277
20	High geothermal heat flux measured below the West Antarctic Ice Sheet. Science Advances, 2015, 1, e1500093.	4.7	126
21	Optimized DNA extraction and metagenomic sequencing of airborne microbial communities. Nature Protocols, 2015, 10, 768-779.	5.5	115

2

	C	CITATION REPORT	
#	Article	IF	CITATIONS
22	The pH of Enceladus' ocean. Geochimica Et Cosmochimica Acta, 2015, 162, 202-219.	1.6	205
23	Rock comminution as a source of hydrogen for subglacial ecosystems. Nature Geoscience, 2015, 8, 851-855.	5.4	82
24	Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nature Communications, 2015, 6, 6831.	5.8	130
25	Microbial ecology of Antarctic aquatic systems. Nature Reviews Microbiology, 2015, 13, 691-706.	13.6	150
26	Microbial ecology of the cryosphere: sea ice and glacial habitats. Nature Reviews Microbiology, 2015, 13, 677-690.	, 13.6	344
27	Volcanism-induced, local wet-based glacial conditions recorded in the Late Amazonian Arsia Mons tropical mountain glacier deposits. Icarus, 2015, 250, 18-31.	1.1	24
28	Sources, cycling and export of nitrogen on the Greenland Ice Sheet. Biogeosciences, 2016, 13, 6339-	-6352. 1.3	64
29	Microbial Community Structure of Subglacial Lake Whillans, West Antarctica. Frontiers in Microbiology, 2016, 7, 1457.	1.5	74
30	Physiological Ecology of Microorganisms in Subglacial Lake Whillans. Frontiers in Microbiology, 2016, 7, 1705.	1.5	47
31	Modulating the Gut Micro-Environment in the Treatment of Intestinal Parasites. Journal of Clinical Medicine, 2016, 5, 102.	1.0	21
32	Assessing the subglacial lake coverage of Antarctica. Annals of Glaciology, 2016, 57, 109-117.	2.8	14
33	Chemical sensors for in situ data collection in the cryosphere. TrAC - Trends in Analytical Chemistry, 2016, 82, 348-357.	5.8	15
34	Biogeochemistry and microbial diversity in the marine cavity beneath the McMurdo Ice Shelf, Antarctica. Limnology and Oceanography, 2016, 61, 572-586.	1.6	37
35	Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140293.	1.6	29
36	Microbiology: lessons from a first attempt at Lake Ellsworth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140291.	1.6	15
37	Discovery of relict subglacial lakes and their geometry and mechanism of drainage. Nature Communications, 2016, 7, ncomms11767.	5.8	29
38	Drainage networks, lakes and water fluxes beneath the Antarctic ice sheet. Annals of Glaciology, 201 57, 96-108.	6, 2.8	23
39	Perennial ice and snowâ€covered land as important ecosystems for birds and mammals. Journal of Biogeography, 2016, 43, 3-12.	1.4	41

#	Article	IF	CITATIONS
40	A decade of progress in observing and modelling Antarctic subglacial water systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140294.	1.6	61
41	Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology, 2016, 44, 347-350.	2.0	43
42	Physical processes in Subglacial Lake Whillans, West Antarctica: Inferences from sediment cores. Earth and Planetary Science Letters, 2016, 444, 56-63.	1.8	37
43	The distribution of basal water between Antarctic subglacial lakes from radar sounding. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140297.	1.6	51
44	The AMADEE-15 Mars simulation. Acta Astronautica, 2016, 129, 277-290.	1.7	20
45	Physicochemical properties of bottom ice from Dome Fuji, inland East Antarctica. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1230-1250.	1.0	7
47	Heterotrophic bacteria in Antarctic lacustrine and glacial environments. Polar Biology, 2016, 39, 2207-2225.	0.5	12
48	Antarctic subglacial lake exploration: first results and future plans. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140466.	1.6	21
49	Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140296.	1.6	18
50	Bridging the divide: a model-data approach to Polar & Alpine Microbiology. FEMS Microbiology Ecology, 2016, 92, fiw015.	1.3	8
51	Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH. Applied and Environmental Microbiology, 2016, 82, 1838-1845.	1.4	47
52	Enabling clean access into Subglacial Lake Whillans: development and use of the WISSARD hot water drill system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140305.	1.6	15
53	Helicopter-borne transient electromagnetics in high-latitude environments: An application in the McMurdo Dry Valleys, Antarctica. Geophysics, 2016, 81, WA87-WA99.	1.4	34
54	A multi-parametric assessment of decontamination protocols for the subglacial Lake Ellsworth probe. Journal of Microbiological Methods, 2016, 123, 87-93.	0.7	4
55	Technologies for retrieving sediment cores in Antarctic subglacial settings. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150056.	1.6	24
56	Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140290.	1.6	64
57	Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph. Applied and Environmental Microbiology, 2016, 82, 1486-1495.	1.4	62
58	Studies of melting ice using CO2 laser for ice drilling. Cold Regions Science and Technology, 2016, 121, 11-15.	1.6	11

#	Article	IF	CITATIONS
59	Bacterial community structure in intertidal sediments of Fildes Peninsula, maritime Antarctica. Polar Biology, 2017, 40, 339-349.	0.5	28
61	Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environmental Microbiology, 2017, 19, 2935-2948.	1.8	130
62	Enrichment and Physiological Characterization of a Cold-Adapted Nitrite-Oxidizing Nitrotoga sp. from an Eelgrass Sediment. Applied and Environmental Microbiology, 2017, 83, .	1.4	40
63	The microbiome of glaciers and ice sheets. Npj Biofilms and Microbiomes, 2017, 3, 10.	2.9	215
64	Hydrological controls on glacially exported microbial assemblages. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1049-1061.	1.3	25
65	Detection and Diversity of the Nitrite Oxidoreductase Alpha Subunit (nxrA) Gene of Nitrospina in Marine Sediments. Microbial Ecology, 2017, 73, 111-122.	1.4	27
67	The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum. Nature Communications, 2017, 8, 15425.	5.8	21
68	Calculating the balance between atmospheric CO 2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Global Biogeochemical Cycles, 2017, 31, 709-727.	1.9	25
69	Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications. Geophysical Research Letters, 2017, 44, 9823-9832.	1.5	27
70	The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics. Journal of Glaciology, 2017, 63, 755-771.	1.1	19
71	Evidence for a palaeo-subglacial lake on the Antarctic continental shelf. Nature Communications, 2017, 8, 15591.	5.8	32
73	Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nature Geoscience, 2017, 10, 582-586.	5.4	72
74	Rocks control the chemical composition of surface water from the high Alpine Zermatt area (Swiss) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
75	Nearshore mixing and nutrient delivery along the western Antarctic Peninsula. Antarctic Science, 2017, 29, 397-409.	0.5	4
77	Characterization of a cold-active bacterium isolated from the South Pole "lce Tunnel― Extremophiles, 2017, 21, 891-901.	0.9	6
78	4. Microbiology of Antarctic Edaphic and Lithic Habitats. , 2017, , 47-72.		2
79	Extremophile Mikroorganismen. , 2017, , .		1
80	Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments. Biogeosciences, 2017, 14, 1445-1455.	1.3	34

#	Article	IF	CITATIONS
81	Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains. Cryosphere, 2017, 11, 381-405.	1.5	38
82	Geochemical Processes Leading to the Precipitation of Subglacial Carbonate Crusts at Bossons Glacier, Mont Blanc Massif (French Alps). Frontiers in Earth Science, 2017, 5, .	0.8	8
83	Psychrophiles and Psychrotrophs. , 2017, , .		12
84	Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic. Science Advances, 2018, 4, eaar4353.	4.7	39
85	Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. nov., a psychrophilic, moderate halophile from Blood Falls, an antarctic subglacial brine. FEMS Microbiology Ecology, 2018, 94, .	1.3	19
86	Cause of Cambrian Explosion - Terrestrial or Cosmic?. Progress in Biophysics and Molecular Biology, 2018, 136, 3-23.	1.4	34
87	A 60-year international history of Antarctic subglacial lake exploration. Geological Society Special Publication, 2018, 461, 7-21.	0.8	10
88	Chemical characteristics of the ice cores obtained after the first unsealing of subglacial Lake Vostok. Geological Society Special Publication, 2018, 461, 187-196.	0.8	6
89	Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biology, 2018, 41, 417-421.	0.5	48
90	Glaciolacustrine Processes. , 2018, , 309-334.		10
91	Occupied and Empty Regions of the Space of Extremophile Parameters. , 2018, , 199-230.		5
92	Microbial processes in the weathering crust aquifer of a temperate glacier. Cryosphere, 2018, 12, 3653-3669.	1.5	17
93	Glacial Erosion Liberates Lithologic Energy Sources for Microbes and Acidity for Chemical Weathering Beneath Glaciers and Ice Sheets. Frontiers in Earth Science, 2018, 6, .	0.8	16
94	Where Angels Fear to Tread: Developments in Cave Ecology. Ecological Studies, 2018, , 497-532.	0.4	3
95	Low-Temperature Sulfidic-Ice Microbial Communities, Borup Fiord Pass, Canadian High Arctic. Frontiers in Microbiology, 2018, 9, 1622.	1.5	10
96	Identification of Microbial Dark Matter in Antarctic Environments. Frontiers in Microbiology, 2018, 9, 3165.	1.5	26
97	The hunt for life below Antarctic ice. Nature, 2018, 564, 180-182.	13.7	4
98	Genomic profiling of four cultivated <i>Candidatus</i> Nitrotoga spp. predicts broad metabolic potential and environmental distribution. ISME Journal, 2018, 12, 2864-2882.	4.4	42

	CITATION	KEPORT	
#	Article	IF	CITATIONS
99	Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome, 2018, 6, 123.	4.9	22
100	Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature, 2018, 558, 430-434.	13.7	113
101	Viruses in Polar Lake and Soil Ecosystems. Advances in Virus Research, 2018, 101, 39-54.	0.9	36
102	Phylogenetic Analysis: Early Evolution of Life. , 2019, , 938-952.		3
103	Ice sheets matter for the global carbon cycle. Nature Communications, 2019, 10, 3567.	5.8	87
104	Coring of Antarctic Subglacial Sediments. Journal of Marine Science and Engineering, 2019, 7, 194.	1.2	13
105	Sustained Antarctic Research: A 21st Century Imperative. One Earth, 2019, 1, 95-113.	3.6	54
106	Biomolecular self-assembly under extreme Martian mimetic conditions. Molecular Physics, 2019, 117, 3398-3407.	0.8	7
107	Astrobiologie - die Suche nach außerirdischem Leben. , 2019, , .		2
108	Ecological Stoichiometry of the Mountain Cryosphere. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	51
109	EXCLUSIVE: Tiny animal carcasses found in buried Antarctic lake. Nature, 2019, 565, 405-406.	13.7	5
110	Prospects for metazoan life in sub-glacial Antarctic lakes: the most extreme life on Earth?. International Journal of Astrobiology, 2019, 18, 416-419.	0.9	3
111	Evidence for Pathways of Concentrated Submarine Groundwater Discharge in East Antarctica from Helicopter-Borne Electrical Resistivity Measurements. Hydrology, 2019, 6, 54.	1.3	17
112	Low Temperature and Neutral pH Define " <i>Candidatus</i> Nitrotoga sp.―as a Competitive Nitrite Oxidizer in Coculture with Nitrospira defluvii. Applied and Environmental Microbiology, 2019, 85, .	1.4	37
113	Microbial diversity of an Antarctic subglacial community and highâ€resolution replicate sampling inform hydrological connectivity in a polar desert. Environmental Microbiology, 2019, 21, 2290-2306.	1.8	20
114	Modelled composition of cryogenically produced subglacial brines, Antarctica. Antarctic Science, 2019, 31, 165-166.	0.5	3
115	The Geochemistry of Englacial Brine From Taylor Glacier, Antarctica. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 633-648.	1.3	31
116	H2 Metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica. Journal of Microbiology, 2019, 57, 1095-1104.	1.3	8

#	Article	IF	CITATIONS
117	Subglacial meltwater supported aerobic marine habitats during Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25478-25483.	3.3	23
118	Methane beneath Greenland's ice sheet is being released. Nature, 2019, 565, 31-32.	13.7	7
119	Topological properties controlled by light. Nature, 2019, 565, 32-33.	13.7	3
120	Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends in Microbiology, 2019, 27, 105-117.	3.5	652
121	The Ecological Role of Micro-organisms in the Antarctic Environment. Springer Polar Sciences, 2019, ,	0.0	11
122	Patterns of Microorganisms Inhabiting Antarctic Freshwater Lakes with Special Reference to Aquatic Moss Pillars. Springer Polar Sciences, 2019, , 25-43.	0.0	2
124	Ceres: Astrobiological Target and Possible Ocean World. Astrobiology, 2020, 20, 269-291.	1.5	43
125	How to survive winter?. , 2020, , 101-125.		1
126	Vertebrate viruses in polar ecosystems. , 2020, , 126-148.		0
128	Life in the extreme environments of our planet under pressure. , 2020, , 151-183.		Ο
129	Chemical ecology in the Southern Ocean. , 2020, , 251-278.		1
133	Physiological traits of the Greenland sharkSomniosus microcephalusobtained during the TUNU-Expeditions to Northeast Greenland. , 2020, , 11-41.		0
134	Metazoan adaptation to deep-sea hydrothermal vents. , 2020, , 42-67.		4
135	Extremophiles populating high-level natural radiation areas (HLNRAs) in Iran. , 2020, , 68-86.		1
137	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0
138	The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.		0
139	The Southern Ocean: an extreme environment or just home of unique ecosystems?. , 2020, , 218-233.		1
140	Metabolic and taxonomic diversity in antarctic subglacial environments. , 2020, , 279-296.		2

#	Article	IF	CITATIONS
141	Analytical astrobiology: the search for life signatures and the remote detection of biomarkers through their Raman spectral interrogation. , 2020, , 301-318.		1
142	Adaptation/acclimatisation mechanisms of oxyphototrophic microorganisms and their relevance to astrobiology. , 2020, , 319-342.		0
143	Life at the extremes. , 2020, , 343-354.		0
144	Microorganisms in cryoturbated organic matter of Arctic permafrost soils. , 2020, , 234-250.		0
147	Successional trajectory of bacterial communities in soil are shaped by plant-driven changes during secondary succession. Scientific Reports, 2020, 10, 9864.	1.6	26
148	Detecting and Searching for subglacial lakes through airborne radio-echo sounding in Princess Elizabeth Land (PEL), Antarctica. E3S Web of Conferences, 2020, 163, 04002.	0.2	2
149	Microbial Community Structure and Metabolic Networks in Polar Glaciers. , 0, , .		1
150	The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of Geophysics, 2020, 58, e2019RC000663.	9.0	49
151	Refuges of Antarctic diversity. , 2020, , 181-200.		32
152	Chemical weathering signatures from Mt. Achernar Moraine, Central Transantarctic Mountains I: Subglacial sediments compared with underlying rock. Geochimica Et Cosmochimica Acta, 2020, 283, 149-166.	1.6	7
153	Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nature Ecology and Evolution, 2020, 4, 686-687.	3.4	60
154	Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005420.	1.0	26
155	Development of Antarctic Science. , 2020, , 648-665.		0
156	Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Science Reviews, 2020, 216, 1.	3.7	43
157	Trimethylamine <i>N</i> -oxide (TMAO) resists the compression of water structure by magnesium perchlorate: terrestrial kosmotrope <i>vs.</i> Martian chaotrope. Physical Chemistry Chemical Physics, 2020, 22, 4924-4937.	1.3	10
158	Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Subâ€Ice Marine Environment. Global Biogeochemical Cycles, 2020, 34, no.	1.9	29
159	Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water (Switzerland), 2020, 12, 260.	1.2	117
160	Physiological and genomic characterization of a new â€~ <i>Candidatus</i> Nitrotoga' isolate. Environmental Microbiology, 2020, 22, 2365-2382.	1.8	26

#	Article	IF	CITATIONS
161	Environmentally clean access to Antarctic subglacial aquatic environments. Antarctic Science, 2020, 32, 329-340.	0.5	13
162	Bacterial and archaeal communities in deep sea waters near the Ninetyeast Ridge in Indian Ocean. Journal of Oceanology and Limnology, 2021, 39, 582-597.	0.6	9
163	Hot-water drilling for exploration of the Antarctic subglacial environments. Journal of the Japanese Society of Snow and Ice, 2021, 83, 13-25.	0.0	0
164	Dynamic flows create potentially habitable conditions in Antarctic subglacial lakes. Science Advances, 2021, 7, .	4.7	12
165	Numerical analysis of the close-contact heat transfer of the electro-thermal drilling probes for glacier-ice exploration. Journal of Mechanical Science and Technology, 2021, 35, 1309-1317.	0.7	4
166	Numerical Investigation on the Evolution of Thin Liquid Layer and Dynamic Behavior of an Electro-Thermal Drilling Probe during Close-Contact Heat Transfer. Applied Sciences (Switzerland), 2021, 11, 3443.	1.3	1
167	Abundance, community structure and diversity of nitrifying bacterial enrichments from low and high saline brackishwater environments. Letters in Applied Microbiology, 2021, 73, 96-106.	1.0	3
168	Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by Serratia liquefaciens Exposed to Sub-Zero Temperatures. Life, 2021, 11, 459.	1.1	Ο
169	Exploration of an ice-cliff grounding zone in Antarctica reveals frozen-on meltwater and high productivity. Communications Earth & Environment, 2021, 2, .	2.6	2
170	Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Annals of Glaciology, 2021, 62, 340-352.	2.8	29
171	Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica. Communications Earth & Environment, 2021, 2, .	2.6	9
172	Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminutionâ€derived hydrogen. MicrobiologyOpen, 2021, 10, e1200.	1.2	3
173	First Insights into the Microbiology of Three Antarctic Briny Systems of the Northern Victoria Land. Diversity, 2021, 13, 323.	0.7	5
174	A FRAMEWORK FOR TRANSDISCIPLINARY RADIOCARBON RESEARCH: USE OF NATURAL-LEVEL AND ELEVATED-LEVEL 14C IN ANTARCTIC FIELD RESEARCH. Radiocarbon, 0, , 1-14.	0.8	3
175	A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics. Journal of Glaciology, 2022, 68, 319-336.	1.1	3
176	Physiology of the Nitrite-Oxidizing Bacterium Candidatus Nitrotoga sp. CP45 Enriched From a Colorado River. Frontiers in Microbiology, 2021, 12, 709371.	1.5	4
177	Global change on the Blue Planet. Communications Earth & Environment, 2021, 2, .	2.6	2
178	Antarctica as a reservoir of planetary analogue environments. Extremophiles, 2021, 25, 437-458.	0.9	13

#	Article	IF	CITATIONS
179	Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Applied Microbiology and Biotechnology, 2021, 105, 7123-7139.	1.7	19
180	Surface Expression and Apparent Timing of Subglacial Lake Oscillations Controlled by Viscous Ice Flow. Geophysical Research Letters, 2021, 48, e2021GL094658.	1.5	4
181	Extremophiles in Antarctica: Life at Low Temperatures. , 2017, , 99-131.		4
182	Microbiology of Subglacial Environments. , 2017, , 83-110.		37
183	Lakes under the ice: Antarctica's secret garden. Nature, 2014, 512, 244-246.	13.7	5
184	Diversity of <i>Archaea</i> in Bottom Sediments of the Discharge Areas With Oil- and Gas-Bearing Fluids in Lake Baikal. Geomicrobiology Journal, 2018, 35, 50-63.	1.0	14
185	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society of the Pacific, 2020, 132, 102001.	1.0	29
188	Antarctic ecosystems in transition – life between stresses and opportunities. Biological Reviews, 2021, 96, 798-821.	4.7	53
189	Distribution characteristics and controlling factors of nitrifying microorganisms in freshwater and sediment of eutrophic zones in Lake Taihu in autumn. Hupo Kexue/Journal of Lake Sciences, 2017, 29, 1312-1323.	0.3	2
190	A dictionary- and rule-based system for identification of bacteria and habitats in text. , 2016, , .		9
191	The role of electrical conductivity in radar wave reflection from glacier beds. Cryosphere, 2020, 14, 4495-4506.	1.5	18
193	The Geochemistry of Glacial Meltwaters. , 2022, , 290-304.		2
194	Theoretical and experimental research to remove hot water out of drill hose of deep hot-water drilling system. Polar Science, 2022, 31, 100747.	0.5	0
195	Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?. Cryosphere, 2021, 15, 4655-4673.	1.5	15
196	Extreme Organismen und Transspermie. , 2017, , 83-152.		0
199	Extreme Organismen und Transspermie. , 2019, , 115-192.		0
200	Discoveries from Other Ice-Covered Lakes. , 2019, , 135-141.		0
203	Microbial diversity in extreme environments. Nature Reviews Microbiology, 2022, 20, 219-235.	13.6	153

#	Article	IF	CITATIONS
204	Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nature Communications, 2022, 13, 117.	5.8	17
205	Subglacial lakes and their changing role in a warming climate. Nature Reviews Earth & Environment, 2022, 3, 106-124.	12.2	54
206	Radar sounding survey over Devon Ice Cap indicates the potential for a diverse hypersaline subglacial hydrological environment. Cryosphere, 2022, 16, 379-395.	1.5	4
207	Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C). Scientific Drilling, 0, 30, 101-112.	1.0	2
208	Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai–Tibet Plateau. Environmental Microbiomes, 2022, 17, 12.	2.2	7
209	Some like it cold: the cellular organization and physiological limits of coldâ€ŧolerant nitriteâ€oxidizing <i>Nitrotoga</i> . Environmental Microbiology, 2022, 24, 2059-2077.	1.8	9
210	Diversity and Effect of Increasing Temperature on the Activity of Methanotrophs in Sediments of Fildes Peninsula Freshwater Lakes, King George Island, Antarctica. Frontiers in Microbiology, 2022, 13, 822552.	1.5	12
211	Cryosphere Microbiome Biobanks for Mountain Glaciers in China. Sustainability, 2022, 14, 2903.	1.6	3
218	A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science, 2022, 376, 640-644.	6.0	17
219	DNA/RNA Preservation in Glacial Snow and Ice Samples. Frontiers in Microbiology, 2022, 13, .	1.5	4
220	Advances in Defining Ecosystem Functions of the Terrestrial Subsurface Biosphere. Frontiers in Microbiology, 2022, 13, .	1.5	4
221	Continuous Loss of Global Lake Ice Across Two Centuries Revealed by Satellite Observations and Numerical Modeling. Geophysical Research Letters, 2022, 49, .	1.5	4
222	Glaciers as microbial habitats: current knowledge and implication. Journal of Microbiology, 2022, 60, 767-779.	1.3	6
223	Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles. Nature Communications, 2022, 13, .	5.8	4
224	Blue on red: Chemical conditions of liquid water emerging on simulated martian regolith. Icarus, 2023, 389, 115263.	1.1	2
225	Bacterioplankton seasonality in deep high-mountain lakes. Frontiers in Microbiology, 0, 13, .	1.5	0
226	Differential patterns and assembly processes of bacterial communities from distinct microhabitats in a subtropical estuary. Frontiers in Marine Science, 0, 9, .	1.2	2
227	Hot-water rescue ice drilling system to recover subglacial lake exploring sonde: General concept. Polar Science, 2022, , 100919.	0.5	0

#	Article	IF	CITATIONS
228	Iron Minerals Influence the Assembly of Microbial Communities in a Basaltic Glacial Catchment. FEMS Microbiology Ecology, 0, , .	1.3	1
229	Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs. Environmental Microbiology, 2023, 25, 1022-1040.	1.8	4
230	Influence of electro-thermal probe tip shape on thin liquid layer evolution and penetration speed in glaciers. Journal of Mechanical Science and Technology, 2023, 37, 527-535.	0.7	0
231	DNA repair enzymes of the Antarctic Dry Valley metagenome. Frontiers in Microbiology, 0, 14, .	1.5	0
232	Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica. ISME Communications, 2023, 3, .	1.7	6
233	Heterogeneous melting near the Thwaites Glacier grounding line. Nature, 2023, 614, 471-478.	13.7	18
234	Radiocarbon Constraints on Carbon Release From the Antarctic Ice Sheet Into the Amundsen Sea Embayment. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	0
235	Metagenomic analyses of a microbial assemblage in a subglacial lake beneath the Vatnajökull ice cap, Iceland. Frontiers in Microbiology, 0, 14, .	1.5	1
236	Prediction of subglacial lake melt source regions from site characteristics. Antarctic Science, 0, , 1-14.	0.5	0
237	A method for successful collection of multicores and gravity cores from Antarctic subglacial lakes. Limnology and Oceanography: Methods, 2023, 21, 279-294.	1.0	3
255	Microbial Communities in Glacial Environments: Key Players in Cryosphere Carbon Cycling and the Emergence of CECs. , 2024, , 39-55.		0