Artificial photosynthesis over graphene–semiconduc better?

Chemical Society Reviews 43, 8240-8254 DOI: 10.1039/c4cs00213j

Citation Report

#	Article	IF	CITATIONS
1	The Rational Design of a Singleâ€Component Photocatalyst for Gasâ€Phase CO ₂ Reduction Using Both UV and Visible Light. Advanced Science, 2014, 1, 1400013.	5.6	182
2	Synthesis of Multiwalled Carbon Nanotubes-Titania Nanomaterial for Desulfurization of Model Fuel. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	25
3	Enhancing the visible light photocatalytic performance of ternary CdS–(graphene–Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. Journal of Materials Chemistry A, 2014, 2, 19156-19166.	5.2	130
4	In situ synthesis of hierarchical In ₂ S ₃ –graphene nanocomposite photocatalyst for selective oxidation. RSC Advances, 2014, 4, 64484-64493.	1.7	28
5	The encapsulation of CdS in carbon nanotubes for stable and efficient photocatalysis. Journal of Materials Chemistry A, 2014, 2, 20939-20946.	5.2	88
6	Surface charge modification for improvement of photocatalytic H ₂ production over a La ₂ Ti ₂ O ₇ /graphene nanocomposite. RSC Advances, 2014, 4, 60437-60444.	1.7	16
7	A novel quinone/reduced graphene oxide composite as a solid-phase redox mediator for chemical and biological Acid Yellow 36 reduction. RSC Advances, 2014, 4, 47297-47303.	1.7	36
8	Noncovalently Functionalized Graphene-Directed Synthesis of Ultralarge Graphene-Based TiO ₂ Nanosheet Composites: Tunable Morphology and Photocatalytic Applications. Journal of Physical Chemistry C, 2014, 118, 27325-27335.	1.5	54
9	Palladium nanoparticles on noncovalently functionalized graphene-based heterogeneous catalyst for the Suzuki–Miyaura and Heck–Mizoroki reactions in water. RSC Advances, 2014, 4, 48322-48330.	1.7	34
10	Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability. Scientific Reports, 2015, 5, 15511.	1.6	28
12	Photocatalytically Renewable Microâ€electrochemical Sensor for Realâ€Time Monitoring of Cells. Angewandte Chemie - International Edition, 2015, 54, 14402-14406.	7.2	44
13	Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures. Nanoscale Research Letters, 2015, 10, 458.	3.1	15
14	Design of a Metal Oxide–Organic Framework (MoOF) Foam Microreactor: Solarâ€Induced Direct Pollutant Degradation and Hydrogen Generation. Advanced Materials, 2015, 27, 7713-7719.	11.1	86
15	Cl-Doped ZnO Nanowire Arrays on 3D Graphene Foam with Highly Efficient Field Emission and Photocatalytic Properties. Small, 2015, 11, 4785-4792.	5.2	71
17	3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for Highâ€Rate Performance Sodiumâ€Ion Batteries. ChemSusChem, 2015, 8, 2948-2955.	3.6	70
18	Rapid Formation of 1D Titanate Nanotubes Using Alkaline Hydrothermal Treatment and Its Photocatalytic Performance. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	6
19	Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires. Applied Surface Science, 2015, 349, 343-352.	3.1	58
20	Photocatalytic fabrics based on reduced graphene oxide and TiO2 coatings. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 199, 62-76.	1.7	26

#	Article	IF	CITATIONS
21	Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Applied Surface Science, 2015, 349, 279-286.	3.1	93
22	Olefin difunctionalizations via visible light photocatalysis. Tetrahedron Letters, 2015, 56, 3732-3742.	0.7	196
23	Excellent visible-light-driven photocatalytic performance of Cu ₂ O sensitized NaNbO ₃ heterostructures. New Journal of Chemistry, 2015, 39, 6171-6177.	1.4	36
24	A highly photoactive, visible-light-driven graphene/2D mesoporous TiO ₂ photocatalyst. Green Chemistry, 2015, 17, 3972-3978.	4.6	84
25	Improved light absorption and photocatalytic activity of Zn,N-TiO2â^'x rich in oxygen vacancies synthesized by nitridation and hydrogenation. New Journal of Chemistry, 2015, 39, 2417-2420.	1.4	9
26	Enhanced photocatalytic activity exhibited by PTh/[Fe(CN) ₃ (NO)(bpy)]·4H ₂ O nanocomposite fibers via a synergistic approach. RSC Advances, 2015, 5, 107209-107221.	1.7	16
27	Construction of multifunctional films based on graphene–TiO2 composite materials for strain sensing and photodegradation. RSC Advances, 2015, 5, 104785-104791.	1.7	18
28	What if the Electrical Conductivity of Graphene Is Significantly Deteriorated for the Graphene–Semiconductor Composite-Based Photocatalysis?. ACS Applied Materials & Interfaces, 2015, 7, 27948-27958.	4.0	50
29	Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nature Communications, 2015, 6, 8817.	5.8	193
30	Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 2015, 36, 2071-2088.	6.9	113
31	Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environmental Research, 2015, 137, 176-184.	3.7	89
32	Yolk–shell Au@CeO2 microspheres: Synthesis and application in the photocatalytic degradation of methylene blue dye. Surface and Coatings Technology, 2015, 271, 119-126.	2.2	32
33	Photocatalytic synthesis of anilides from nitrobenzenes under visible light irradiation: 2 in 1 reaction. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 58-62.	1.7	4
34	Plasmon-enhanced photocatalytic properties of nano Ag@AgBr on single-crystalline octahedral Cu2O (1 1 1) microcrystals composite photocatalyst. Applied Surface Science, 2015, 330, 94-103.	3.1	38
35	Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Research, 2015, 8, 1834-1846.	5.8	114
36	Facile Fabrication of S-TiO ₂ /l²-SiC Nanocomposite Photocatalyst for Hydrogen Evolution under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2015, 3, 245-253.	3.2	50
37	Graphene-Templated Bottom-up Fabrication of Ultralarge Binary CdS–TiO ₂ Nanosheets for Photocatalytic Selective Reduction. Journal of Physical Chemistry C, 2015, 119, 7184-7194.	1.5	59
38	From a polyoxotitanium cage to TiO ₂ /C composites, a novel strategy for nanoporous materials. Journal of Materials Chemistry A, 2015, 3, 1837-1840.	5.2	10

#	Article	IF	CITATIONS
39	The dual role of palladium in enhancing the photocatalytic activity of CdS dispersed on NaY-zeolite. Physical Chemistry Chemical Physics, 2015, 17, 6896-6904.	1.3	30
40	SrNb ₂ O ₆ nanoplates as efficient photocatalysts for the preferential reduction of CO ₂ in the presence of H ₂ O. Chemical Communications, 2015, 51, 3430-3433.	2.2	44
41	Two-Dimensional MoS ₂ Nanosheet-Coated Bi ₂ S ₃ Discoids: Synthesis, Formation Mechanism, and Photocatalytic Application. Langmuir, 2015, 31, 4314-4322.	1.6	178
42	1D CdS nanowire–2D BiVO ₄ nanosheet heterostructures toward photocatalytic selective fine-chemical synthesis. RSC Advances, 2015, 5, 16476-16483.	1.7	60
43	Fabrication of Au/Graphene-Wrapped ZnO-Nanoparticle-Assembled Hollow Spheres with Effective Photoinduced Charge Transfer for Photocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 3524-3531.	4.0	123
44	In Situ Dissolution–Diffusion toward Homogeneous Multiphase Ag/Ag ₂ S@ZnS Core–Shell Heterostructures for Enhanced Photocatalytic Performance. Journal of Physical Chemistry C, 2015, 119, 1667-1675.	1.5	37
45	Throwing New Light on the Reduction of CO ₂ . Advanced Materials, 2015, 27, 1957-1963.	11.1	145
46	A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO ₂ /graphene for sodium-ion batteries. Nanoscale, 2015, 7, 3164-3172.	2.8	130
47	Tuning the charge transfer route by p–n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 4803-4810.	5.2	87
48	MoS ₂ /Graphene Composite Anodes with Enhanced Performance for Sodiumâ€Ion Batteries: The Role of the Twoâ€Đimensional Heterointerface. Advanced Functional Materials, 2015, 25, 1393-1403.	7.8	657
49	Synthesis of Ag3PO4–Bi2O2CO3 composites with high visible-light photocatalytic activity. Materials Letters, 2015, 147, 69-71.	1.3	20
50	Magnetically separable CdFe ₂ O ₄ /graphene catalyst and its enhanced photocatalytic properties. Journal of Materials Chemistry A, 2015, 3, 3576-3585.	5.2	60
51	Self-Assembly of Semiconductor Nanoparticles/Reduced Graphene Oxide (RGO) Composite Aerogels for Enhanced Photocatalytic Performance and Facile Recycling in Aqueous Photocatalysis. ACS Sustainable Chemistry and Engineering, 2015, 3, 277-282.	3.2	117
52	Synthesis of bismuth oxyiodides and their composites: characterization, photocatalytic activity, and degradation mechanisms. RSC Advances, 2015, 5, 23450-23463.	1.7	176
53	Component-Controlled Synthesis and Assembly of Cu–Pd Nanocrystals on Graphene for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 5347-5357.	4.0	60
54	Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. Journal of Hazardous Materials, 2015, 291, 83-92.	6.5	119
55	Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light. Applied Surface Science, 2015, 340, 9-17.	3.1	75
56	Promoting Visibleâ€Light Photocatalysis with Palladium Species as Cocatalyst. ChemCatChem, 2015, 7, 2047-2054.	1.8	24

#	Article	IF	CITATIONS
57	Raspberrylike SiO ₂ @Reduced Graphene Oxide@AgNP Composite Microspheres with High Aqueous Dispersity and Excellent Catalytic Activity. ACS Applied Materials & Interfaces, 2015, 7, 6041-6046.	4.0	44
58	Photocatalytic hydrogen production over CdS: effects of reaction atmosphere studied by in situ Raman spectroscopy. Journal of Materials Chemistry A, 2015, 3, 5701-5707.	5.2	51
59	In situ preparation of N–ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. Journal of Materials Chemistry A, 2015, 3, 17050-17063.	5.2	96
60	Effect of Gd3+ doping and reaction temperature on structural and optical properties of CdS nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 200, 59-66.	1.7	20
61	Preparation of three dimensional graphene foam–WO3 nanocomposite with enhanced visible light photocatalytic activity. Materials Chemistry and Physics, 2015, 162, 686-691.	2.0	25
62	Efficient visible light photocatalytic activity and enhanced stability of BiOBr/Cd(OH) ₂ heterostructures. New Journal of Chemistry, 2015, 39, 7153-7163.	1.4	24
63	One-dimensional CdS nanowires–CeO ₂ nanoparticles composites with boosted photocatalytic activity. New Journal of Chemistry, 2015, 39, 6756-6764.	1.4	43
64	Ag/g-C ₃ N ₄ catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale, 2015, 7, 13723-13733.	2.8	216
65	Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale, 2015, 7, 13278-13292.	2.8	120
66	TiO2 Immobilized on Manihot Carbon: Optimal Preparation and Evaluation of Its Activity in the Decomposition of Indigo Carmine. International Journal of Molecular Sciences, 2015, 16, 1590-1612.	1.8	9
67	Structural design of TiO ₂ -based photocatalyst for H ₂ production and degradation applications. Catalysis Science and Technology, 2015, 5, 4703-4726.	2.1	223
68	Facile hydrothermal-carbonization preparation of carbon-modified Sb 2 S 3 composites for photocatalytic degradation of methyl orange dyes. Vacuum, 2015, 120, 96-100.	1.6	22
69	Carbon dioxide-enhanced photosynthesis of methane and hydrogen from carbon dioxide and water over Pt-promoted polyaniline–TiO ₂ nanocomposites. Chemical Communications, 2015, 51, 13654-13657.	2.2	35
70	Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst. Carbon, 2015, 94, 599-606.	5.4	62
71	CVD growth of large-area graphene over Cu foil by atmospheric pressure and its application in H2 evolution. Solid State Sciences, 2015, 46, 84-88.	1.5	11
72	Noble metal free naphthylbisimide/TiO ₂ /graphene: an efficient H ₂ evolution photocatalyst. New Journal of Chemistry, 2015, 39, 6925-6934.	1.4	6
73	Efficient visible-light photocatalytic degradation system assisted by conventional Pd catalysis. Scientific Reports, 2015, 5, 9561.	1.6	32
74	CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015, 5, 1500010.	10.2	694

#	Article	IF	Citations
75	Visible Light Photocatalysis of Ni-Deposited TiO2 Nanotubes for Methyl Orange Degradation in Alkaline Medium. Acta Metallurgica Sinica (English Letters), 2015, 28, 858-865.	1.5	4
76	Enhanced solar photodegradation of toxic pollutants by long-lived electrons in Ag–Ag2O nanocomposites. Applied Catalysis B: Environmental, 2015, 176-177, 637-645.	10.8	38
77	You can't have an energy revolution without transforming advances in materials, chemistry and catalysis into policy change and action. Energy and Environmental Science, 2015, 8, 1682-1684.	15.6	22
78	Transformation of polymer-ZnO core–shell nanofibers into ZnO hollow nanofibers: Intrinsic defect reorganization in ZnO and its influence on the photocatalysis. Applied Catalysis B: Environmental, 2015, 176-177, 646-653.	10.8	56
79	Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide–CdS/ZnS heterostructure photocatalysts. New Journal of Chemistry, 2015, 39, 5150-5160.	1.4	77
80	A unique Z-scheme 2D/2D nanosheet heterojunction design to harness charge transfer for photocatalysis. Journal of Materials Chemistry A, 2015, 3, 11006-11013.	5.2	117
81	What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag ₃ PO ₄ /g-C ₃ N ₄ , band–band transfer or a direct Z-scheme?. Physical Chemistry Chemical Physics, 2015, 17, 11577-11585.	1.3	155
82	Preparation and characterization of Ag2O/SWNTs photocatalysts and its photodegradation on tetracycline. Journal of Industrial and Engineering Chemistry, 2015, 30, 64-70.	2.9	50
83	CdS-decorated triptycene-based polymer: durable photocatalysts for hydrogen production under visible-light irradiation. Catalysis Science and Technology, 2015, 5, 3368-3374.	2.1	37
84	A "uniform―heterogeneous photocatalyst: integrated p–n type CuInS ₂ /NaInS ₂ nanosheets by partial ion exchange reaction for efficient H ₂ evolution. Chemical Communications, 2015, 51, 9381-9384.	2.2	22
85	Hydrothermal synthesis of bismuth oxybromide–bismuth oxyiodide composites with high visible light photocatalytic performance for the degradation of CV and phenol. RSC Advances, 2015, 5, 30851-30860.	1.7	147
86	Facile hydrothermal-carbonization approach to carbon-modified BiVO4 composites with enhanced photocatalytic activity. Materials Science in Semiconductor Processing, 2015, 35, 90-95.	1.9	19
87	Photocatalytic degradation of phenol over novel rod shaped Graphene@BiPO4 nanocomposite. Journal of Physics and Chemistry of Solids, 2015, 85, 132-137.	1.9	19
88	BaTiO ₃ –graphene nanocomposites: synthesis and visible light photocatalytic activity. New Journal of Chemistry, 2015, 39, 4407-4413.	1.4	67
89	Enhanced visible light photocatalytic activity of alkaline earth metal ions-doped CdSe/rGO photocatalysts synthesized by hydrothermal method. Applied Catalysis B: Environmental, 2015, 172-173, 174-184.	10.8	123
90	Commercialization of graphene-based technologies: a critical insight. Chemical Communications, 2015, 51, 7090-7095.	2.2	74
91	Nonaqueous synthesis of TiO ₂ –carbon hybrid nanomaterials with enhanced stable photocatalytic hydrogen production activity. Journal of Materials Chemistry A, 2015, 3, 10060-10068.	5.2	23
92	Fabrication and Photocatalytic Properties of TiO ₂ /Reduced Graphene Oxide/Ag Nanocomposites with UV/Vis Response. European Journal of Inorganic Chemistry, 2015, 2015, 2222-2228.	1.0	24

#	Article	IF	CITATIONS
93	In2S3 nanomaterial as a broadband spectrum photocatalyst to display significant activity. Applied Catalysis B: Environmental, 2015, 176-177, 83-90.	10.8	135
94	Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science, 2015, 342, 154-167.	3.1	363
95	One-dimension-based spatially ordered architectures for solar energy conversion. Chemical Society Reviews, 2015, 44, 5053-5075.	18.7	367
96	Hierarchical heterostructures of p-type BiOCl nanosheets on electrospun n-type TiO2 nanofibers with enhanced photocatalytic activity. Catalysis Communications, 2015, 67, 6-10.	1.6	70
97	Insight into the Effect of Highly Dispersed MoS ₂ versus Layer-Structured MoS ₂ on the Photocorrosion and Photoactivity of CdS in Graphene–CdS–MoS ₂ Composites. Journal of Physical Chemistry C, 2015, 119, 27234-27246.	1.5	254
98	High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 2015, 6, 8561.	5.8	63
100	Controllable synthesis of phosphate-modified BiPO ₄ nanorods with high photocatalytic activity: surface hydroxyl groups concentrations effects. RSC Advances, 2015, 5, 99712-99721.	1.7	24
101	Communication: Unraveling the 4He droplet-mediated soft-landing from ab initio-assisted and time-resolved density functional simulations: Au@4He300/TiO2(110). Journal of Chemical Physics, 2015, 142, 131101.	1.2	37
102	Reduced Graphene Oxide/Mesoporous TiO ₂ Nanocomposite Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 23521-23526.	4.0	180
103	Synthesis of magnetically recoverable ferrite (MFe2O4, M Co, Ni and Fe)-supported TiO2 photocatalysts for decolorization of methylene blue. Catalysis Communications, 2015, 72, 127-132.	1.6	47
104	Striving Toward Noble-Metal-Free Photocatalytic Water Splitting: The Hydrogenated-Graphene–TiO ₂ Prototype. Chemistry of Materials, 2015, 27, 6282-6296.	3.2	81
105	Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites. Nanoscale, 2015, 7, 18062-18070.	2.8	67
106	One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis. Applied Surface Science, 2015, 358, 146-151.	3.1	94
107	Pt/single-stranded DNA/graphene nanocomposite with improved catalytic activity and CO tolerance. Journal of Materials Chemistry A, 2015, 3, 10353-10359.	5.2	32
108	Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 2015, 115, 10307-10377.	23.0	1,017
109	Electrostatic self-assembly of CdS nanowires-nitrogen doped graphene nanocomposites for enhanced visible light photocatalysis. Journal of Energy Chemistry, 2015, 24, 145-156.	7.1	35
110	Fabrication of efficient visible light activated Cu–P25–graphene ternary composite for photocatalytic degradation of methyl blue. Applied Surface Science, 2015, 356, 707-718.	3.1	57
111	Au nanoparticle homogeneously decorated C@TiO ₂ for enhanced visible-light-driven photocatalytic activity. RSC Advances, 2015, 5, 103790-103796.	1.7	5

#	Article	IF	CITATIONS
112	Preparation of multi-branched Au–ZnO hybrid nanocrystals on graphene for enhanced photocatalytic performance. Materials Letters, 2015, 161, 379-383.	1.3	15
113	Graphene Oxide Regulated Tin Oxide Nanostructures: Engineering Composition, Morphology, Band Structure, and Photocatalytic Properties. ACS Applied Materials & Interfaces, 2015, 7, 27167-27175.	4.0	60
114	RGO–TiO2–ZnO composites: Synthesis, characterization, and application to photocatalysis. Applied Catalysis A: General, 2015, 491, 52-57.	2.2	93
115	Hierarchically CdS Decorated 1D ZnO Nanorodsâ€2D Graphene Hybrids: Low Temperature Synthesis and Enhanced Photocatalytic Performance. Advanced Functional Materials, 2015, 25, 221-229.	7.8	394
116	Fabrication of hydrophilic S/In2O3 core–shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation. Applied Surface Science, 2015, 324, 188-197.	3.1	31
117	Electronic effects of ligand substitution on metal–organic framework photocatalysts: the case study of UiO-66. Physical Chemistry Chemical Physics, 2015, 17, 117-121.	1.3	233
118	Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis. Nanoscale, 2015, 7, 861-866.	2.8	81
119	Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: A theoretical and experimental study. Applied Surface Science, 2016, 387, 750-758.	3.1	95
120	The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices. Chemical Record, 2016, 16, 1591-1634.	2.9	58
121	Logic Control of Interfaceâ€Induced Chargeâ€Trapping Effect for Ultrasensitive Gas Detection with Allâ€Mirrorâ€Image Symmetry. Advanced Materials Technologies, 2016, 1, 1600067.	3.0	10
122	Charge Carriers Separation at the Graphene/(101) Anatase TiO ₂ Interface. Advanced Materials Interfaces, 2016, 3, 1500624.	1.9	37
123	Single-Electron Activation of CO ₂ on Graphene-Supported ZnO Nanoclusters: Effects of Doping in the Support. Journal of Physical Chemistry C, 2016, 120, 16732-16740.	1.5	14
124	CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	10.2	253
125	Remarkable Dependence of Exciplex Decay Rate on Through-Space Separation Distance between Porphyrin and Chemically Converted Graphene. Journal of Physical Chemistry C, 2016, 120, 28337-28344.	1.5	16
126	Effect of specific surface area on photoelectrochemical properties of TiO2 nanotubes, nanosheets and nanowires coated with TiC thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 126-133.	2.0	18
127	Graphene oxide–TiO ₂ composite: an efficient heterogeneous catalyst for the green synthesis of pyrazoles and pyridines. New Journal of Chemistry, 2016, 40, 5053-5060.	1.4	45
128	The role of adsorption in the photocatalytic decomposition of Orange II on carbon-modified TiO2. Journal of Molecular Liquids, 2016, 220, 504-512.	2.3	31
129	Catalysis under Cover: Enhanced Reactivity at the Interface between (Doped) Graphene and Anatase TiO ₂ . Journal of the American Chemical Society, 2016, 138, 7365-7376.	6.6	69

#	Article	IF	CITATIONS
130	Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Applied Surface Science, 2016, 371, 590-595.	3.1	180
131	Efficient and stable perovskite solar cells based on functional graphene-modified P3HT hole-transporting layer. RSC Advances, 2016, 6, 36356-36361.	1.7	41
132	Contamination-free suspended graphene structures by a Ti-based transfer method. Carbon, 2016, 103, 305-310.	5.4	15
133	Study the molecular structure of poly(Îμ-caprolactone)/graphene oxide and graphene nanocomposite nanofibers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 484-492.	1.5	18
134	Facile fabrication of reduced graphene oxide/CuI/PANI nanocomposites with enhanced visible-light photocatalytic activity. RSC Advances, 2016, 6, 44851-44858.	1.7	35
135	Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Materials Horizons, 2016, 3, 270-282.	6.4	95
136	Carbon-based H2-production photocatalytic materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 27, 72-99.	5.6	252
137	Graphene oxide: Exploiting its unique properties toward visible-light-driven photocatalysis. Applied Materials Today, 2016, 4, 9-16.	2.3	110
138	Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy, 2016, 30, 59-68.	8.2	92
139	One-pot low-temperature synthesis of TiO ₂ nanowire/rGO composites with enhanced photocatalytic activity. RSC Advances, 2016, 6, 94092-94097.	1.7	12
140	Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. Journal of Energy Chemistry, 2016, 25, 927-935.	7.1	127
141	Decorating geometry- and size-controlled sub-20 nm Pd nanocubes onto 2D TiO ₂ nanosheets for simultaneous H ₂ evolution and 1,1-diethoxyethane production. Journal of Materials Chemistry A, 2016, 4, 18366-18377.	5.2	90
142	Green synthesis of Au-rGO nanocomposite and its catalytic activity in nitro-reduction and degradation of dyes. Materials Research Express, 2016, 3, 105007.	0.8	14
143	Insight into the Origin of Boosted Photosensitive Efficiency of Graphene from the Cooperative Experiment and Theory Study. Journal of Physical Chemistry C, 2016, 120, 27091-27103.	1.5	37
144	Synthesis, Characterization and Catalytic Activity of CdSâ€Graphene Oxide Nanocomposites. ChemistrySelect, 2016, 1, 2332-2340.	0.7	10
145	Porous GaN photoelectrode fabricated by photo-assisted electrochemical etching using ionic liquid as etchant. Materials Letters, 2016, 182, 363-366.	1.3	20
146	Oneâ€Pot Solvothermal Synthesis of TiO ₂ Nanobelt/Graphene Composites for Selective Renal Cancer Cells Destruction. Chinese Journal of Chemistry, 2016, 34, 53-58.	2.6	7
147	Sub-coherent growth of ZnO nanorod arrays on three-dimensional graphene framework as one-bulk high-performance photocatalyst. Applied Surface Science, 2016, 390, 266-272.	3.1	46

#	Article	IF	CITATIONS
148	High Efficiency Epitaxialâ€Graphene/Siliconâ€Carbide Photocatalyst with Tunable Photocatalytic Activity and Bandgap Narrowing. Advanced Materials Interfaces, 2016, 3, 1600413.	1.9	9
149	Three-Dimensional Graphene–TiO ₂ Nanocomposite Photocatalyst Synthesized by Covalent Attachment. ACS Omega, 2016, 1, 351-356.	1.6	48
150	Advanced Materials for Biomedical Engineering Applications. , 2016, , 384-420.		0
151	Effect of hybridization on the value-added activated carbon materials. International Journal of Industrial Chemistry, 2016, 7, 249-264.	3.1	13
152	Reduced Graphene Oxide as a Metalâ€Free Catalyst for the Lightâ€Assisted Fentonâ€Like Reaction. ChemCatChem, 2016, 8, 2642-2648.	1.8	46
153	Plasmon-enhanced strong visible light photocatalysis by defect engineered CVD graphene and graphene oxide physically functionalized with Au nanoparticles. Catalysis Science and Technology, 2016, 6, 7101-7112.	2.1	24
154	2D Metals by Repeated Size Reduction. Advanced Materials, 2016, 28, 8170-8176.	11.1	68
155	CdSâ€Nanoparticlesâ€Decorated Perpendicular Hybrid of MoS ₂ and Nâ€Doped Graphene Nanosheets for Omnidirectional Enhancement of Photocatalytic Hydrogen Evolution. ChemCatChem, 2016, 8, 2557-2564.	1.8	25
156	A Reduced Graphene Oxide (rGO)â€Ferroelectrics Hybrid Nanocomposite as High Efficient Visible‣ightâ€Đriven Photocatalyst. ChemistrySelect, 2016, 1, 6020-6025.	0.7	7
157	Enhanced photoelectrochemical water oxidation of bismuth vanadate via a combined strategy of W doping and surface RGO modification. Physical Chemistry Chemical Physics, 2016, 18, 31803-31810.	1.3	35
158	Vertically aligned ZnO–Au@CdS core–shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application. Journal of Materials Chemistry A, 2016, 4, 18804-18814.	5.2	122
159	Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects. Scientific Reports, 2016, 6, 22267.	1.6	24
160	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	5.2	836
161	Challenges and Perspectives in Designing Artificial Photosynthetic Systems. Chemistry - A European Journal, 2016, 22, 9870-9885.	1.7	64
162	Theoretical Studies of Oxygen Reactivity of Freeâ€Standing and Supported Boronâ€Doped Graphene. ChemSusChem, 2016, 9, 1061-1077.	3.6	12
163	Fabrication of graphene–TiO2 nanocomposite with improved photocatalytic degradation for acid orange 7 dye under solar light irradiation. Bulletin of Materials Science, 2016, 39, 759-767.	0.8	14
164	Facile fabrication of an organic semiconductor/graphene microribbon heterojunction by self-assembly. RSC Advances, 2016, 6, 52878-52883.	1.7	2
165	Novel synthesis of quaternary nanocomposites based on chemical vapor grown graphene for photocatalytic hydrogen evolution. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 487-493.	1.0	0

#	Article	IF	CITATIONS
166	Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today, 2016, 11, 351-372.	6.2	283
167	Natureâ€Inspired Design of Artificial Solarâ€toâ€Fuel Conversion Systems based on Copper Phosphate Microflowers. ChemSusChem, 2016, 9, 1575-1578.	3.6	10
168	The Synthesis of CuS Hexagonal Nanosheet-Graphene for Use as a High Performance Photocatalyst. Nano, 2016, 11, 1650054.	0.5	3
169	Oneâ€pot selfâ€assembly and photoreduction synthesis of silver nanoparticleâ€decorated reduced graphene oxide/MILâ€125(Ti) photocatalyst with improved visible light photocatalytic activity. Applied Organometallic Chemistry, 2016, 30, 289-296.	1.7	149
170	Enhanced photovoltaic performance with co-sensitization of a ruthenium(<scp>ii</scp>) sensitizer and an organic dye in dye-sensitized solar cells. RSC Advances, 2016, 6, 7897-7901.	1.7	24
171	Photocatalytic conversion of CO ₂ over graphene-based composites: current status and future perspective. Nanoscale Horizons, 2016, 1, 185-200.	4.1	180
172	Soft-templated synthesis of Mn ₃ O ₄ microdandelions for the degradation of alizarin red under visible light irradiation. RSC Advances, 2016, 6, 4531-4539.	1.7	25
173	Photocatalytic water oxidation via combination of BiVO ₄ –RGO and molecular cobalt catalysts. Chemical Communications, 2016, 52, 3050-3053.	2.2	42
174	Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination. Nanoscale Research Letters, 2016, 11, 13.	3.1	26
175	Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting. Chemical Engineering Journal, 2016, 290, 465-476.	6.6	64
176	Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. International Reviews in Physical Chemistry, 2016, 35, 1-36.	0.9	288
177	Activating "Invisible―Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene–Metal Contact. ACS Nano, 2016, 10, 1042-1049.	7.3	12
178	Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2365-2402.	5.2	368
179	Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18, 3628-3639.	4.6	101
180	Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chemical Society Reviews, 2016, 45, 3088-3121.	18.7	294
181	Cationic and anionic azo-dye removal from water by sulfonated graphene oxide nanosheets in Nafion membranes. New Journal of Chemistry, 2016, 40, 3654-3663.	1.4	49
182	Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. Journal of Physics and Chemistry of Solids, 2016, 93, 82-90.	1.9	73
183	3D nanospherical Cd Zn1â^'S/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance. Applied Surface Science, 2016, 365, 227-239.	3.1	45

#	Article	IF	CITATIONS
184	Band gap and Schottky barrier engineered photocatalyst with promising solar light activity for water remediation. RSC Advances, 2016, 6, 15678-15685.	1.7	10
185	Au-decorated GaOOH nanorods enhanced the performance of direct methanol fuel cells under light illumination. Applied Catalysis B: Environmental, 2016, 185, 133-140.	10.8	46
186	Toward the Waste-Free Synthesis of Fine Chemicals with Visible Light. Organic Process Research and Development, 2016, 20, 403-408.	1.3	49
187	MoS 2 -graphene/ZnIn 2 S 4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Applied Catalysis B: Environmental, 2016, 188, 13-22.	10.8	235
188	Preparation of graphene–TiO ₂ nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. Journal of Experimental Nanoscience, 2016, 11, 722-736.	1.3	45
189	Synthesis of Mo-doped TiO ₂ nanowires/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation. RSC Advances, 2016, 6, 23809-23815.	1.7	23
190	Multifunctional photocatalytic performances of recyclable Pd-NiFe 2 O 4 /reduced graphene oxide nanocomposites via different co-catalyst strategy. Applied Catalysis B: Environmental, 2016, 190, 1-11.	10.8	78
191	Titania-coated nanosilica–cobalt ferrite composites: Structure and photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 319-320, 40-52.	2.0	12
192	Synergistic Effects in Nanoengineered HNb ₃ O ₈ /Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO ₂ into Renewable Fuels. Langmuir, 2016, 32, 254-264.	1.6	37
193	Novel synthesis process for solar-light-active porous carbon-doped CuO nanoribbon and its photocatalytic application for the degradation of an organic dye. RSC Advances, 2016, 6, 4170-4182.	1.7	12
194	ZnO quantum dots-graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye. Journal of Alloys and Compounds, 2016, 663, 738-749.	2.8	84
195	Solar–Chemical Energy Conversion by Photocatalysis. Green Chemistry and Sustainable Technology, 2016, , 249-282.	0.4	1
196	UV-assisted synthesis of reduced graphene oxide zinc sulfide composite with enhanced photocatalytic activity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 204, 8-14.	1.7	46
197	Enhanced Photocatalysis of Graphene and TiO ₂ Dual-Coupled Carbon Nanofibers Post-treated at Various Temperatures. Industrial & Engineering Chemistry Research, 2016, 55, 45-53.	1.8	14
198	Photodegradation of organic dyes based on anatase and rutile TiO ₂ nanoparticles. RSC Advances, 2016, 6, 2746-2759.	1.7	117
199	Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology, 2016, , .	0.4	51
200	SnTCPP-modified ZnO nanorods prepared via a simple co-precipitation method: application as a new photocatalyst for photodegradation and photoreduction processes. Research on Chemical Intermediates, 2016, 42, 4697-4714.	1.3	14
201	Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: An efficient photocatalyst promoter. Catalysis Communications, 2016, 74, 104-109.	1.6	51

#	Article	IF	CITATIONS
202	TiO2–SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Applied Catalysis B: Environmental, 2016, 184, 119-131.	10.8	115
203	Facile synthesis of CdS/C core–shell nanospheres with ultrathin carbon layer for enhanced photocatalytic properties and stability. Applied Surface Science, 2016, 362, 126-131.	3.1	49
204	The endeavour to advance graphene–semiconductor composite-based photocatalysis. CrystEngComm, 2016, 18, 24-37.	1.3	89
205	Ordered self-assembly of amphipathic graphene nanosheets into three-dimensional layered architectures. Nanoscale, 2016, 8, 197-203.	2.8	26
206	Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS. Journal of Materials Science, 2016, 51, 779-787.	1.7	31
207	The application of heterogeneous visible light photocatalysts in organic synthesis. Catalysis Science and Technology, 2016, 6, 349-362.	2.1	201
208	A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chemistry, 2016, 18, 594-607.	4.6	238
209	Preparation of graphene/TiO ₂ nanotube array photoelectrodes and their photocatalytic activity for the degradation of alachlor. Catalysis Science and Technology, 2016, 6, 1892-1902.	2.1	23
210	Graphene–CdS nanocomposite inactivation performance toward Escherichia coli in the presence of humic acid under visible light irradiation. Chemical Engineering Journal, 2016, 284, 41-53.	6.6	68
211	Biomolecule-assisted self-assembly of CdS/MoS 2 /graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Applied Catalysis B: Environmental, 2016, 182, 504-512.	10.8	175
212	Photocatalytic decolorization of reactive red 198 dye by a TiO2–activated carbon nano-composite derived from the sol–gel method. Research on Chemical Intermediates, 2016, 42, 2461-2471.	1.3	17
213	TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide. Applied Catalysis B: Environmental, 2016, 180, 637-647.	10.8	199
214	TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chemical Engineering Journal, 2016, 283, 29-46.	6.6	317
215	Sensitivity analysis of the photoactivity of Cu–TiO2/ZnO during advanced oxidation reaction by Adaptive Neuro-Fuzzy Selection Technique. Measurement: Journal of the International Measurement Confederation, 2016, 77, 155-174.	2.5	23
216	Graphene and its nanocomposites as a platform for environmental applications. Chemical Engineering Journal, 2017, 315, 210-232.	6.6	108
217	Heteroatom Nitrogen- and Boron-Doping as a Facile Strategy to Improve Photocatalytic Activity of Standalone Reduced Graphene Oxide in Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 4558-4569.	4.0	128
218	Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nature Communications, 2017, 8, 14224.	5.8	318
219	Reduced Graphene Oxide – Zinc Sulfide Composite for Solar Light Responsive Photo Current Generation and Photocatalytic 4â€Nitrophenol Reduction. ChemistrySelect, 2017, 2, 537-545.	0.7	41

#	Article	IF	Citations
220	Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chemical Reviews, 2017, 117, 1445-1514.	23.0	658
221	Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Research, 2017, 10, 1673-1696.	5.8	376
222	Hybrid TiO ₂ /graphene derivatives nanocomposites: is functionalized graphene better than pristine graphene for enhanced photocatalytic activity?. Catalysis Science and Technology, 2017, 7, 1423-1432.	2.1	20
223	One-step synthesis of flowerlike C/Fe2O3 nanosheet assembly with superior adsorption capacity and visible light photocatalytic performance for dye removal. Carbon, 2017, 116, 59-67.	5.4	43
224	Plasmon-Sensitized Graphene/TiO ₂ Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 7075-7083.	4.0	121
225	A Brief Review of the Synthesis and Catalytic Applications of Grapheneâ€Coated Oxides. ChemCatChem, 2017, 9, 2432-2442.	1.8	33
226	Reduced Graphene Oxide ―Zinc Phthalocyanine Composites as Fascinating Material for Optoelectronic and Photocatalytic Applications. ChemistrySelect, 2017, 2, 3297-3305.	0.7	23
227	Interesting Ag ₃ PO ₄ concave rhombic dodecahedra: the same face with different morphologies and photocatalytic properties. RSC Advances, 2017, 7, 23977-23981.	1.7	12
228	Spectroscopic Investigation on rGO:ZnO Composites Nanostructures. Springer Proceedings in Physics, 2017, , 63-69.	0.1	3
229	Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids. Journal of the American Chemical Society, 2017, 139, 6682-6692.	6.6	120
230	Synthesis of N-doped graphene-functionalized Zn _{1.231} Ge _{0.689} N _{1.218} O _{0.782} solid solution as a photocatalyst for CO ₂ reduction and oxidation of benzyl alcohol under visible-light irradiation. Journal of Materials Chemistry A, 2017, 5, 10998-11008.	5.2	27
231	Ultrathin MoS 2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 212, 7-14.	10.8	167
232	Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 132-164.	5.6	54
233	Membranes for artificial photosynthesis. Energy and Environmental Science, 2017, 10, 1320-1338.	15.6	65
234	Enhanced sunlight photocatalytic activity of silver nanoparticles decorated on reduced graphene oxide sheet. Korean Journal of Chemical Engineering, 2017, 34, 2079-2085.	1.2	13
235	Improving Photocatalytic Performance from Bi2WO6@MoS2/graphene Hybrids via Gradual Charge Transferred Pathway. Scientific Reports, 2017, 7, 3637.	1.6	53
236	One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: An efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Applied Catalysis B: Environmental, 2017, 218, 758-769.	10.8	138
237	Manganese Copper Sulfide Nanocomposites: Structure Tailoring and Photo/Electrocatalytic Hydrogen Generation. ChemCatChem, 2017, 9, 4148-4154.	1.8	10

#	Article	IF	CITATIONS
238	Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials. Chemistry - A European Journal, 2017, 23, 15244-15275.	1.7	39
239	Efficient Conjugated Polymer–Methyl Viologen Electron Transfer System for Controlled Photo-Driven Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 10355-10359.	4.0	66
240	Metal-free, robust, and regenerable 3D graphene–organics aerogel with high and stable photosensitization efficiency. Journal of Catalysis, 2017, 346, 21-29.	3.1	86
241	Occurrence of photoinduced charge separation by the modulation of the electronic coupling between pyrene dimers and chemically converted graphenes. Chemical Communications, 2017, 53, 1025-1028.	2.2	7
242	Binary metal oxide nanoparticle incorporated composite multilayer thin films for sono-photocatalytic degradation of organic pollutants. Applied Surface Science, 2017, 418, 119-127.	3.1	18
243	Mn ₃ O ₄ /graphene nanocomposites: outstanding performances as highly efficient photocatalysts and microwave absorbers. RSC Advances, 2017, 7, 826-839.	1.7	59
244	Insight into the Role of Size Modulation on Tuning the Band Gap and Photocatalytic Performance of Semiconducting Nitrogen-Doped Graphene. Langmuir, 2017, 33, 3161-3169.	1.6	36
245	One dimensional CdS based materials for artificial photoredox reactions. Journal of Materials Chemistry A, 2017, 5, 2387-2410.	5.2	190
246	A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO ₂ and utilization of nanocarbon materials. Dalton Transactions, 2017, 46, 15615-15627.	1.6	20
247	Tailoring CO ₂ Reduction with Doped Silicon Nanocrystals. Advanced Sustainable Systems, 2017, 1, 1700118.	2.7	15
248	Green Synthesis of Fe ₃ O ₄ /RGO Nanocomposite with Enhanced Photocatalytic Performance for Cr(VI) Reduction, Phenol Degradation, and Antibacterial Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 10551-10562.	3.2	235
249	New Titanium Dioxide-Based Heterojunction Nanohybrid for Highly Selective Photoelectrochemical–Electrochemical Dual-Mode Sensors. ACS Applied Materials & Interfaces, 2017, 9, 37166-37183.	4.0	62
250	Construction of a Noble-Metal-Free Photocatalytic H ₂ Evolution System Using MoS ₂ /Reduced Graphene Oxide Catalyst and Zinc Porphyrin Photosensitizer. Journal of Physical Chemistry C, 2017, 121, 24452-24462.	1.5	81
251	Two-dimensional nanomaterials for photocatalytic CO ₂ reduction to solar fuels. Sustainable Energy and Fuels, 2017, 1, 1875-1898.	2.5	156
252	Catalysts Encapsulated in Nanostructured Carbon Systems. , 2017, , 71-122.		1
253	An unsaturated metal site-promoted approach to construct strongly coupled noble metal/HNb ₃ O ₈ nanosheets for efficient thermo/photo-catalytic reduction. Nanoscale, 2017, 9, 14654-14663.	2.8	30
254	Nanocomposites and Its Importance in Photocatalysis. Springer Series on Polymer and Composite Materials, 2017, , 41-67.	0.5	3
255	Self-assembled three-dimensional flowerlike Mn _{0.8} Cd _{0.2} S microspheres as efficient visible-light-driven photocatalysts for H ₂ evolution and CO ₂ reduction. Catalysis Science and Technology, 2017, 7, 3802-3811.	2.1	48

#	Article	IF	CITATIONS
256	Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis. ChemistrySelect, 2017, 2, 6163-6177.	0.7	23
257	Polythiophene–Peptide Biohybrid Assemblies for Enhancing Photoinduced Hydrogen Evolution. Advanced Electronic Materials, 2017, 3, 1700161.	2.6	18
258	Photoelectrochemical aptasensing of thrombin based on multilayered gold nanoparticle/graphene-TiO 2 and enzyme functionalized graphene oxide nanocomposites. Electrochimica Acta, 2017, 249, 243-252.	2.6	17
259	A combustion synthesis route for magnetically separable graphene oxide–CuFe ₂ O ₄ –ZnO nanocomposites with enhanced solar light-mediated photocatalytic activity. New Journal of Chemistry, 2017, 41, 10568-10583.	1.4	70
260	Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	22
261	Preparation and enhanced photocatalytic hydrogen-evolution activity of ZnGa ₂ O ₄ /N-rGO heterostructures. RSC Advances, 2017, 7, 53145-53156.	1.7	26
262	Graphene-supported mesoporous titania nanosheets for efficient photodegradation. Journal of Colloid and Interface Science, 2017, 505, 711-718.	5.0	18
263	Ag–CuO–ZnO metal–semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation. Nanoscale, 2017, 9, 11574-11583.	2.8	96
264	Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. Materials Horizons, 2017, 4, 885-894.	6.4	108
265	Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression. Frontiers of Physics, 2017, 12, 1.	2.4	2
266	Comparison of photocatalytic reaction-induced selective corrosion with photocorrosion: Impact on morphology and stability of Ag-ZnO. Applied Catalysis B: Environmental, 2017, 201, 348-358.	10.8	72
267	Facile synthesis of GO/ZnO–Ag nanocomposite and evaluation of rhodamine B dye under sun light. Journal of Materials Science: Materials in Electronics, 2017, 28, 354-362.	1.1	12
268	Reduced graphene oxide wrapped Bi2WO6 hybrid with ultrafast charge separation and improved photoelectrocatalytic performance. Applied Surface Science, 2017, 392, 51-60.	3.1	62
269	Excellent visible light photocatalytic properties of novel graphene based CdLa2S4/TiO2heterojunction nanocomposite. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 1-11.	1.0	5
270	Carbon-ZnO core-shell nanospheres: Facile fabrication and application in the visible-light photocatalytic decomposition of organic pollutant dyes. Materials Chemistry and Physics, 2017, 185, 73-82.	2.0	20
271	Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Applied Catalysis B: Environmental, 2017, 200, 448-457.	10.8	433
272	Photocatalytic reduction of CO 2 with H 2 O over graphene oxide-supported oxygen-rich TiO 2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chemical Engineering Journal, 2017, 308, 248-255.	6.6	141
273	Enhanced Photovoltaic Performance via Co-sensitization of Ruthenium (II)-Based Complex Sensitizers with Metal-Free Indoline Dye in Dye-Sensitized Solar Cells. Organic Photonics and Photovoltaics, 2017, 5, .	1.3	4

#	Article	IF	CITATIONS
274	Photoredox catalysis over graphene aerogel-supported composites. Journal of Materials Chemistry A, 2018, 6, 4590-4604.	5.2	171
275	TiO2-Bi2O3/(BiO)2CO3-reduced graphene oxide composite as an effective visible light photocatalyst for degradation of aqueous bisphenol A solutions. Catalysis Today, 2018, 315, 237-246.	2.2	35
276	Synthesis of environment-friendly graphene reinforced slag-based nanocomposite and performance of photocatalytic H2 generation. Ferroelectrics, 2018, 522, 36-44.	0.3	9
277	Graphene Grown on Anatase–TiO ₂ Nanosheets: Enhanced Photocatalytic Activity on Basis of a Well-Controlled Interface. Journal of Physical Chemistry C, 2018, 122, 6388-6396.	1.5	28
278	Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis. Journal of Colloid and Interface Science, 2018, 525, 187-195.	5.0	40
279	Longâ€Lasting Nonâ€hydrogenated Dark Titanium Dioxide: Medium Vacuum Anneal for Enhanced Visible Activity of Modified Multiphase Photocatalysts. ChemCatChem, 2018, 10, 2949-2954.	1.8	17
280	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	5.2	49
281	Highly Efficient and Stable CO ₂ Reduction Photocatalyst with a Hierarchical Structure of Mesoporous TiO ₂ on 3D Graphene with Few-Layered MoS ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 5718-5724.	3.2	110
282	ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Applied Surface Science, 2018, 447, 802-815.	3.1	123
283	Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide. Physical Chemistry Chemical Physics, 2018, 20, 6959-6969.	1.3	53
284	Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 2018, 47, 2165-2216.	18.7	412
285	Noble Metalâ€Free Nanocatalysts with Vacancies for Electrochemical Water Splitting. Small, 2018, 14, e1703323.	5.2	250
286	Water on Graphene-Coated TiO2: Role of Atomic Vacancies. ACS Applied Materials & Interfaces, 2018, 10, 5793-5804.	4.0	14
287	Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226, 373-383.	10.8	167
288	Engineering nanoscale p–n junction <i>via</i> the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 3181-3194.	5.2	143
289	Illustration of charge transfer in graphene-coated hexagonal ZnO photocatalysts using Kelvin probe force microscopy. RSC Advances, 2018, 8, 885-894.	1.7	12
290	Promoting Charge Separation in Semiconductor Nanocrystal Superstructures for Enhanced Photocatalytic Activity. Advanced Materials Interfaces, 2018, 5, 1701694.	1.9	33
291	2â€Electron Reduction of CO ₂ by Graphene Supported Ru Complexes – on the Role of Electron Donation ChemElectroChem, 2018, 5, 2105-2112.	1.7	10

#	Article	IF	CITATIONS
292	Synergetic combination of 1D-2D g-C3N4 heterojunction nanophotocatalyst for hydrogen production via water splitting under visible light irradiation. Renewable Energy, 2018, 127, 433-443.	4.3	46
293	Design of Copper and Titanium Dioxide Nanoparticles Doped with Reduced Graphene Oxide for Hydrogen Evolution by Water Splitting. Russian Journal of Physical Chemistry A, 2018, 92, 968-975.	0.1	6
294	Solvothermal fabrication of MoS2 anchored on ZnIn2S4 microspheres with boosted photocatalytic hydrogen evolution activity. International Journal of Hydrogen Energy, 2018, 43, 6977-6986.	3.8	65
295	Photocatalytic organic transformations: Simultaneous oxidation of aromatic alcohols and reduction of nitroarenes on CdLa2S4 in one reaction system. Applied Catalysis B: Environmental, 2018, 233, 1-10.	10.8	44
296	Graphene growth by molecular beam epitaxy: an interplay between desorption, diffusion and intercalation of elemental C species on islands. Nanoscale, 2018, 10, 7396-7406.	2.8	17
297	Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 2018, 224, 563-571.	10.8	114
298	Solar Light Responsive Photocatalytic Activity of Reduced Graphene Oxide–Zinc Selenide Nanocomposite. Journal of Materials Engineering and Performance, 2018, 27, 2617-2621.	1.2	9
299	Rational utilization of highly conductive, commercial Elicarb graphene to advance the graphene-semiconductor composite photocatalysis. Applied Catalysis B: Environmental, 2018, 224, 424-432.	10.8	45
300	Construction of organic–inorganic cadmium sulfide/diethylenetriamine hybrids for efficient photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2018, 512, 77-85.	5.0	42
301	Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 53-107.	3.1	386
302	Understanding the synergistic effects, optical and electronic properties of ternary Fe/C/Sâ€doped TiO ₂ anatase within the DFT <i>+ U</i> approach. International Journal of Quantum Chemistry, 2018, 118, e25505.	1.0	12
303	Hybridization of graphene oxide with commercial graphene for constructing 3D metal-free aerogel with enhanced photocatalysis. Applied Catalysis B: Environmental, 2018, 226, 16-22.	10.8	79
304	Solvent-free and room temperature visible light-induced C–H activation: CdS as a highly efficient photo-induced reusable nano-catalyst for the C–H functionalization cyclization of <i>t</i> -amines and C–C double and triple bonds. Green Chemistry, 2018, 20, 5540-5549.	4.6	38
305	Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Applied Energy Materials, 2018, 1, 6657-6693.	2.5	370
306	In Situâ€Fabricated 2D/2D Heterojunctions of Ultrathin SiC/Reduced Graphene Oxide Nanosheets for Efficient CO ₂ Photoreduction with High CH ₄ Selectivity. ChemSusChem, 2018, 11, 4237-4245.	3.6	48
307	An adaptive geometry regulation strategy for 3D graphene materials: towards advanced hybrid photocatalysts. Chemical Science, 2018, 9, 8876-8882.	3.7	29
308	Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects. ACS Catalysis, 2018, 8, 11191-11225.	5.5	166
310	Overview on microfluidic reactors in photocatalysis: Applications of graphene derivatives. Catalysis Today, 2018, 315, 79-92.	2.2	49

#	Article	IF	CITATIONS
311	Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 2018, 6, 12876-12931.	5.2	215
312	A hybrid molecular photoanode for efficient light-induced water oxidation. Sustainable Energy and Fuels, 2018, 2, 1979-1985.	2.5	20
313	Single step synthesis of Schottky-like hybrid graphene - titania interfaces for efficient photocatalysis. Scientific Reports, 2018, 8, 8154.	1.6	14
314	Preparation of graphene oxide/semiconductor oxide composites by using atomic layer deposition. Applied Surface Science, 2018, 453, 245-251.	3.1	32
315	Photoinduced in Situ Deposition of Uniform and Well-Dispersed PtO ₂ Nanoparticles on ZnO Nanorods for Efficient Catalytic Reduction of 4-Nitrophenol. ACS Applied Materials & Interfaces, 2018, 10, 23154-23162.	4.0	60
316	Performance enhancement of dye-sensitized solar cells via cosensitization of ruthenizer Z907 and organic sensitizer SQ2. International Journal of Energy Research, 2018, 42, 3957-3965.	2.2	34
317	6.5 Metal Matrix Nanocomposites. , 2018, , 97-137.		5
318	Advances in materials engineering of CdS coupled with dual cocatalysts of graphene and MoS ₂ for photocatalytic hydrogen evolution. Pure and Applied Chemistry, 2018, 90, 1379-1392.	0.9	4
319	Hydrogen Generation Over Cobalt Containing Microporous Aluminohosphates Photo-Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
320	Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Applied Catalysis B: Environmental, 2018, 238, 434-443.	10.8	85
321	Graphene oxide modified cobalt metallated porphyrin photocatalyst for conversion of formic acid from carbon dioxide. Journal of CO2 Utilization, 2018, 27, 107-114.	3.3	37
322	Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018, 47, 4981-5037.	18.7	344
323	Hydrothermal Synthesis of molybdenum disulfide (MoS2) and study of structure, optical, electrical and high Antibacterial properties. Optik, 2018, 174, 154-162.	1.4	22
324	Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity. Beilstein Journal of Nanotechnology, 2018, 9, 1550-1557.	1.5	10
325	Visibleâ€ŧoâ€NIR Photon Harvesting: Progressive Engineering of Catalysts for Solarâ€Powered Environmental Purification and Fuel Production. Advanced Materials, 2018, 30, e1802894.	11.1	237
326	Boron doped graphene oxide with enhanced photocatalytic activity for organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 130-139.	2.0	64
327	Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 344-354.	2.0	30
328	Earth-Abundant MoS ₂ and Cobalt Phosphate Dual Cocatalysts on 1D CdS Nanowires for Boosting Photocatalytic Hydrogen Production. Langmuir, 2019, 35, 11056-11065.	1.6	77

#	Article	IF	CITATIONS
329	In-situ synthesis of TiO2/La2O2CO3/rGO composite under acidic/basic treatment with La3+/Ti3+ as mediators for boosting photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2019, 44, 23669-23688.	3.8	20
330	Preparation of the heterojunction catalyst N-doping carbon quantum dots/P25 and its visible light photocatalytic activity. Scientific Reports, 2019, 9, 9971.	1.6	15
331	3D graphene-based gel photocatalysts for environmental pollutants degradation. Environmental Pollution, 2019, 253, 365-376.	3.7	204
332	Design and photophysical studies of iridium(<scp>iii</scp>)–cobalt(<scp>iii</scp>) dyads and their application for dihydrogen photo-evolution. Dalton Transactions, 2019, 48, 15567-15576.	1.6	19
333	Ultrasoundâ€Assisted Photoâ€Reduction Synthesis of Ag/Bi ₂ WO ₆ Microspheres for Photocatalytic H ₂ Evolution. ChemCatChem, 2019, 11, 6391-6397.	1.8	12
334	A new biocompatible ternary Layered Double Hydroxide Adsorbent for ultrafast removal of anionic organic dyes. Scientific Reports, 2019, 9, 16225.	1.6	63
335	Carbon-Based Nanomaterials via Heterojunction Serving as Photocatalyst. Frontiers in Chemistry, 2019, 7, 713.	1.8	42
336	Growth and photocatalytic behavior of transparent reduced GO–ZnO nanocomposite sheets. Nanotechnology, 2019, 30, 485601.	1.3	23
337	Enhancing photodegradation of 2,4,6 trichlorophenol and organic pollutants in industrial effluents using nanocomposite of TiO2 doped with reduced graphene oxide. Egyptian Journal of Aquatic Research, 2019, 45, 321-328.	1.0	27
338	Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy and Environmental Science, 2019, 12, 59-95.	15.6	373
339	Enhanced photoreduction of CO2 into methanol by facet-dependent Cu2O/reduce graphene oxide. Journal of CO2 Utilization, 2019, 33, 171-178.	3.3	62
340	Gold nanorods-based hybrids with tailored structures for photoredox catalysis: fundamental science, materials design and applications. Nano Today, 2019, 27, 48-72.	6.2	104
341	Visible light promoted difunctionalization reactions of alkynes. Chinese Journal of Catalysis, 2019, 40, 1003-1019.	6.9	65
342	Magnetic TiO2/NiFe2O4/reduced graphene oxide nanocomposite as a recyclable photocatalyst for photocatalytic removal of methylene blue under visible light. Journal of Alloys and Compounds, 2019, 803, 291-306.	2.8	67
343	Toward large-scale water treatment using nanomaterials. Nano Today, 2019, 27, 11-27.	6.2	94
344	Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. Journal of Environmental Chemical Engineering, 2019, 7, 103132.	3.3	103
345	Electrical conductivity of undoped bilayer Graphene: Beyond nearest neighbor approximation. Chemical Physics, 2019, 525, 110384.	0.9	4
346	Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe ₂ O ₃ : Allâ€Solidâ€State Zâ€Scheme System for Photocatalytic Overall Water Splitting. Angewandte Chemie, 2019, 131, 7176-7180.	1.6	64

#	Article	IF	CITATIONS
347	Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe ₂ O ₃ : Allâ€Solidâ€State Zâ€Scheme System for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 7102-7106.	7.2	268
348	Nanocarbon composites for poisonous gas degradation. , 2019, , 383-399.		1
349	BiOBr nanosheets-decorated TiO2 nanofibers as hierarchical p–n heterojunctions photocatalysts for pollutant degradation. Journal of Materials Science, 2019, 54, 8426-8435.	1.7	61
350	Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catalysis, 2019, 9, 4642-4687.	5.5	432
352	Polymeric Semiconductors as Efficient Photocatalysts for Water Purification and Solar Hydrogen Production. Environmental Chemistry for A Sustainable World, 2019, , 125-153.	0.3	1
353	Efficient photoredox conversion of alcohol to aldehyde and H ₂ by heterointerface engineering of bimetal–semiconductor hybrids. Chemical Science, 2019, 10, 3514-3522.	3.7	90
354	Controlled adsorption and release of amoxicillin in GO/HA composite materials. SN Applied Sciences, 2019, 1, 1.	1.5	7
355	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
356	Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catalysis Science and Technology, 2019, 9, 5882-5905.	2.1	70
357	Facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation. Materials Science in Semiconductor Processing, 2019, 89, 6-17.	1.9	122
358	Rational Design of Efficient Semiconductor-based Photocatalysts via Microdroplets: A Review. KONA Powder and Particle Journal, 2019, 36, 201-214.	0.9	8
359	Silicon nanowires@Co3O4 arrays film with Z‑scheme band alignment for hydrogen evolution. Catalysis Today, 2019, 335, 294-299.	2.2	18
360	Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese Journal of Polymer Science (English Edition), 2019, 37, 101-114.	2.0	12
361	Enhanced visible-light-driven photocatalytic H2 evolution on the novel nitrogen-doped carbon dots/CuBi2O4 microrods composite. Journal of Alloys and Compounds, 2019, 775, 511-517.	2.8	95
362	Photoassisted CO ₂ Conversion to Fuels. ChemCatChem, 2019, 11, 342-356.	1.8	41
363	Magnetically actuated graphene coated polyurethane foam as potential sorbent for oils and organics. Arabian Journal of Chemistry, 2020, 13, 1752-1762.	2.3	30
364	Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arabian Journal of Chemistry, 2020, 13, 3498-3520.	2.3	282
365	Controlling the surface chemistry of graphene oxide: Key towards efficient ZnO-GO photocatalysts. Catalysis Today, 2020, 357, 350-360.	2.2	50

#	Article	IF	CITATIONS
366	Exploring the visible light driven photocatalysis by reduced graphene oxide supported Ppy/CdS nanocomposites for the degradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112129.	2.0	44
367	POSS-tetraaniline modified graphene for active corrosion protection of epoxy-based organic coating. Chemical Engineering Journal, 2020, 383, 123160.	6.6	109
368	An <i>in situ</i> ion exchange grown visible-light-driven Z-scheme AgVO ₃ /AgI graphene microtube for enhanced photocatalytic performance. New Journal of Chemistry, 2020, 44, 1579-1587.	1.4	14
369	Novel ternary p-ZnIn2S4/rGO/n-g-C3N4 Z-scheme nanocatalyst with enhanced antibiotic degradation in a dark self-biased fuel cell. Ceramics International, 2020, 46, 9567-9574.	2.3	24
370	Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Topics in Current Chemistry, 2020, 378, 7.	3.0	78
371	Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nature Communications, 2020, 11, 5181.	5.8	205
372	Electrochemical impedance spectroscopy correlation among graphene oxide/carbon fibers (GO/CF) composites and GO structural parameters produced at different oxidation degrees. Journal of Materials Research and Technology, 2020, 9, 10841-10853.	2.6	12
373	Recent development on BN-based photocatalysis: A review. Materials Science in Semiconductor Processing, 2020, 120, 105256.	1.9	36
374	Metal–organic frameworks for water purification. , 2020, , 241-283.		5
375	A nanostructured MOF/reduced graphene oxide hybrid for enhanced photocatalytic efficiency under solar light. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114678.	1.7	31
376	A Whole-Cell Inorganic-Biohybrid System Integrated by Reduced Graphene Oxide for Boosting Solar Hydrogen Production. ACS Catalysis, 2020, 10, 13290-13295.	5.5	56
377	Visible-light-driven photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol over CdS@MoS2 heterostructures. Science China Materials, 2020, 63, 2239-2250.	3.5	67
378	Nafion-Endowed Graphene Super-Anticorrosion Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 15344-15353.	3.2	22
379	A photoredox catalysed Heck reaction via hole transfer from a Ru(ii)-bis(terpyridine) complex to graphene oxide. RSC Advances, 2020, 10, 42930-42937.	1.7	7
380	Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catalysis, 2020, 10, 6262-6280.	5.5	211
381	Energy level alignment of graphene oxide and its derivatives with ZnO. Journal of Electron Spectroscopy and Related Phenomena, 2020, 243, 146953.	0.8	3
382	Enhanced visible/near-infrared light harvesting and superior charge separation via 0D/2D all-carbon hybrid architecture for photocatalytic oxygen evolution. Carbon, 2020, 167, 724-735.	5.4	26
383	Water decontamination by 3D graphene based materials: A review. Journal of Water Process Engineering, 2020, 36, 101404.	2.6	37

#	Article	IF	CITATIONS
384	Mitigating the charge recombination by the targeted synthesis of Ag2WO4/Bi2Fe4O9 composite: The facile union of orthorhombic semiconductors towards efficient photocatalysis. Journal of Alloys and Compounds, 2020, 842, 155876.	2.8	32
385	Dielectrophoretic borophene tweezer: Sub-10â€⁻mV nano-particle trapping. Applied Surface Science, 2020, 527, 146859.	3.1	4
386	Photocatalytic properties of grapheneâ€supported titania clusters from densityâ€functional theory. Journal of Computational Chemistry, 2020, 41, 1921-1930.	1.5	10
387	Ultrathin and Smallâ€Size Graphene Oxide as an Electron Mediator for Perovskiteâ€Based Zâ€Scheme System to Significantly Enhance Photocatalytic CO ₂ Reduction. Small, 2020, 16, e2002140.	5.2	73
388	Hierarchically nanostructured functional materials for artificial photosynthesis. , 2020, , 229-255.		0
389	Investigation of the band gap and photocatalytic properties of CeO2/rGO composites. Molecular Catalysis, 2020, 486, 110874.	1.0	12
390	Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	5.2	140
391	Chitosan-Based N-Doped Carbon Materials for Electrocatalytic and Photocatalytic Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 4708-4727.	3.2	123
392	Graphene-based hybrid photocatalysts: a promising route toward high-efficiency photocatalytic water remediation. , 2020, , 325-359.		0
393	Grapheneâ€based catalysts for electrochemical carbon dioxide reduction. , 2020, 2, 158-175.		75
394	Surface/Interface Engineering of Carbonâ€Based Materials for Constructing Multidimensional Functional Hybrids. Solar Rrl, 2020, 4, 1900577.	3.1	52
395	Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Advanced Functional Materials, 2020, 30, 2002528.	7.8	162
396	Heterogeneous Photocatalysis. Topics in Current Chemistry Collections, 2020, , .	0.2	2
397	Photocatalytic activity enhanced via surface hybridization. , 2020, 2, 308-349.		68
398	Interplay between Mesocrystals of CaTiO ₃ and Edge Sulfur Atom Enriched MoS ₂ on Reduced Graphene Oxide Nanosheets: Enhanced Photocatalytic Performance under Sunlight Irradiation. ChemPhotoChem, 2020, 4, 427-444.	1.5	72
399	Hierarchical Ordered Dualâ€Mesoporous Polypyrrole/Graphene Nanosheets as Biâ€Functional Active Materials for Highâ€Performance Planar Integrated System of Microâ€Supercapacitor and Gas Sensor. Advanced Functional Materials, 2020, 30, 1909756.	7.8	106
400	Endowing chloroplasts with artificial "cell walls―using metal–organic frameworks. Nanoscale, 2020, 12, 11582-11592.	2.8	7
401	Carbon-supported semiconductor nanoparticles as effective photocatalysts for water and wastewater treatment. , 2020, , 245-278.		14

#	Article	IF	CITATIONS
402	Preparation of Multiferroic YFeO ₃ Nanofibers and the Photocatalytic Activity under Visible Irradiation. Integrated Ferroelectrics, 2020, 206, 105-111.	0.3	3
403	Performance enhancement of dye-sensitized solar cells via co-sensitization of ruthenium (II) based N749 dye and organic sensitizer RK1. Solar Energy, 2020, 203, 260-266.	2.9	57
404	The surface chemistry of graphene-based materials: functionalization, properties, and applications. Interface Science and Technology, 2020, 31, 453-474.	1.6	7
405	Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution. Applied Surface Science, 2020, 522, 146356.	3.1	97
406	High photoelectrochemical performance of reduced graphene oxide wrapped, CdS functionalized, TiO ₂ multi-leg nanotubes. Nanotechnology, 2020, 31, 275701.	1.3	8
407	Synergetic Hybridization Effect of Homogeneously Mixed Inorganic and Graphene Nanosheets on the Photocatalytic Activity of Semiconductor. Solar Rrl, 2021, 5, 2000411.	3.1	6
408	Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating. Journal of Materials Science and Technology, 2021, 67, 226-236.	5.6	123
409	Recent advances in photocatalytic removal of organic and inorganic pollutants in air. Journal of Cleaner Production, 2021, 278, 123895.	4.6	103
410	Enhanced fluorescence of photosynthetic pigments through conjugation with carbon quantum dots. Photosynthesis Research, 2021, 147, 1-10.	1.6	15
411	Enhanced visible light-driven photocatalytic activity of reduced graphene oxide/cadmium sulfide composite: Methylparaben degradation mechanism and toxicity. Chemosphere, 2021, 264, 128481.	4.2	35
412	CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. Journal of Environmental Chemical Engineering, 2021, 9, 104756.	3.3	147
413	Inhibiting photocatalytic electron-hole recombination by coupling MIL-125(Ti) with chemically reduced, nitrogen-containing graphene oxide. Applied Surface Science, 2021, 541, 148503.	3.1	24
414	Langmuir-Blodgett based growth of rGO wrapped TiO2 nanostructures and their photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125652.	2.3	4
415	Environmental Remediation Through Carbon Based Nano Composites. Green Energy and Technology, 2021, , .	0.4	10
416	Efficient solar light-driven hydrogen generation using an Sn ₃ O ₄ nanoflake/graphene nanoheterostructure. RSC Advances, 2021, 11, 29877-29886.	1.7	7
417	Applications of MAX phases and MXenes as catalysts. Journal of Materials Chemistry A, 2021, 9, 19589-19612.	5.2	59
418	State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: photocatalysis. Nanoscale Advances, 2021, 3, 1887-1900.	2.2	51
419	Recent Progress in Photocatalytic Antibacterial. ACS Applied Bio Materials, 2021, 4, 3909-3936.	2.3	100

	Сіт	ATION REPORT	
#	Article	IF	CITATIONS
420	Design of earth-abundant Z-scheme g-C ₃ N ₄ /rGO/FeOOH ternary heterojunctions with excellent photocatalytic activity. CrystEngComm, 2021, 23, 1991-1998.	1.3	17
421	Graphene-based frustrated Lewis pairs as bifunctional catalysts for CO ₂ reduction <i>via</i> the dissociative chemisorption of molecular H ₂ : a periodic density functional perspective. New Journal of Chemistry, 2021, 45, 9959-9966.	1.4	3
422	Freestanding Photocatalytic Materials Based on 3D Graphene for Degradation of Organic Pollutants. Chemistry in the Environment, 2021, , 337-366.	0.2	0
423	RuxPdy Alloy Nanoparticles Uniformly Anchored on Reduced Graphene Oxide Nanosheets (RuxPdy@rGO): A Recyclable Catalyst. ACS Omega, 2021, 6, 1415-1425.	1.6	13
425	Carbon Nanocomposites: The Potential Heterogeneous Catalysts for Organic Transformations. Current Organic Chemistry, 2021, 25, 332-350.	0.9	7
426	TiO ₂ -graphene composite as an application of photoelectrochemical photodetectors with enhanced performances. Inorganic and Nano-Metal Chemistry, 2022, 52, 315-321.	0.9	2
429	ZnIn2S4/g-C3N4 Nanocomposite for Proficient Elimination of Hg (II) under Visible Light. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3829-3841.	1.9	1
430	An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. Chemical Record, 2021, 21, 1811-1844.	2.9	29
431	Rational Optimization of Tether Binding Length between the Redox Groups and the Polymer Backbone in Electroactive Redox Enzyme Nanocapsules for High-Performance Enzymatic Biofuel Cell. ACS Applied Energy Materials, 2021, 4, 5034-5042.	2.5	2
432	Hybridization of Molecular and Graphene Materials for CO ₂ Photocatalytic Reduction with Selectivity Control. Journal of the American Chemical Society, 2021, 143, 8414-8425.	6.6	64
433	Photocatalytic Degradation of Sulfolane Using a LED-Based Photocatalytic Treatment System. Catalysts, 2021, 11, 624.	1.6	12
434	Graphene quantum dots piecing together into graphene on nano Au for overall water splitting. Carbon, 2021, 178, 265-272.	5.4	17
435	Photothermal catalytic CO2 reduction over nanomaterials. Chem Catalysis, 2021, 1, 272-297.	2.9	150
436	Graphene oxide based semiconductor photocatalysts for degradation of organic dye in waste water: A review on fabrication, performance enhancement and challenges. Inorganic Chemistry Communication, 2021, 129, 108630.	1.8	76
437	Synergy of semiconductor components of non-covalent functionalized (PdS doped)-G CdS NPs composite provide efficient photocatalytic water reduction under visible light. Applied Surface Science, 2021, 554, 149646.	3.1	5
438	Chromium and cerium co-doped magnetite/reduced graphene oxide nanocomposite as a potent antibacterial agent against S.Âaureus. Chemosphere, 2021, 274, 129988.	4.2	11
439	TiO2@hollow carbon spheres: A photocatalyst for hydrogen generation under visible irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 417, 113355.	2.0	7
440	Metal/Metal Oxide Modified Graphene Nanostructures for Electrical Biosensing Applications: A Review. IEEE Sensors Journal, 2021, 21, 17629-17642.	2.4	8

#	Article	IF	CITATIONS
441	Synthesis of catalysts by pyrolysis of Cu-chitosan complexes and their evaluation in the hydrogenation of furfural to value-added products. Molecular Catalysis, 2021, 512, 111774.	1.0	4
442	Roles of Graphene Oxide in Heterogeneous Photocatalysis. ACS Materials Au, 2021, 1, 37-54.	2.6	56
443	Investigation of surface interaction in rGO-CdS photocatalyst for hydrogen production: An insight from XPS studies. International Journal of Hydrogen Energy, 2021, 46, 26757-26769.	3.8	43
444	Enhancement of Interfacial Charge Transfer of TiO ₂ /Graphene with Doped Ca ²⁺ for Improving Electrical Conductivity. ACS Applied Materials & Interfaces, 2021, 13, 41875-41885.	4.0	36
445	Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation. Applied Catalysis B: Environmental, 2021, 291, 120127.	10.8	127
447	RuO ₂ Nanoparticle-Embedded Graphitic Carbon Nitride for Efficient Photocatalytic H ₂ Evolution. ACS Applied Nano Materials, 2021, 4, 11700-11708.	2.4	17
448	Light-driven catalytic conversion of CO2 with heterogenized molecular catalysts based on fourth period transition metals. Coordination Chemistry Reviews, 2021, 443, 214018.	9.5	43
449	A strategy to construct (reduced graphene oxide, γ-Fe2O3)/C3N4 step-scheme photocatalyst for visible-light water splitting. Catalysis Communications, 2021, 157, 106327.	1.6	7
450	Bio-inspired graphene-based nano-systems for biomedical applications. Nanotechnology, 2021, 32, 502001.	1.3	38
451	Van der waals heterostructures by single cobalt sites-anchored graphene and g-C3N4 nanosheets for photocatalytic syngas production with tunable CO/H2 ratio. Applied Catalysis B: Environmental, 2021, 295, 120261.	10.8	51
452	Competitive role of nitrogen functionalities of N doped GO and sensitizing effect of Bi2O3 QDs on TiO2 for water remediation. Journal of Environmental Sciences, 2021, 108, 107-119.	3.2	19
453	Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental, 2021, 297, 120389.	10.8	49
454	Preparation and application of 0D-2D nanomaterial hybrid heterostructures for energy applications. Materials Today Advances, 2021, 12, 100169.	2.5	20
455	Selective graphene-like metal-free 2D nanomaterials and their composites for photocatalysis. Chemosphere, 2021, 284, 131254.	4.2	26
456	Perovskite-type lanthanum ferrite based photocatalysts: Preparation, properties, and applications. Journal of Energy Chemistry, 2022, 66, 314-338.	7.1	88
457	Design and performance of Fe3O4@SiO2/MoO3/polydopamine-graphene oxide composites for visible light photocatalysis. Emergent Materials, 2021, 4, 1425-1439.	3.2	10
458	Ultrathin 2D Photocatalysts: Electronic‣tructure Tailoring, Hybridization, and Applications. Advanced Materials, 2018, 30, 1704548.	11.1	409
459	Unraveling the enhanced photocatalytic decomposition efficacy of the Al-doped ZnO nanoparticles@graphene sheets. Journal Physics D: Applied Physics, 2020, 53, 465111.	1.3	8

#	Article	IF	Citations
460	Electronic properties of graphene/ZnO 2D-2D composite. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2018, 21, 65-72.	0.3	5
461	Graphene Oxide and Its Derivatives: Their Synthesis and Use in Organic Synthesis. Current Organic Chemistry, 2019, 23, 188-204.	0.9	11
462	Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications. Journal of Environmental Chemical Engineering, 2021, 9, 106506.	3.3	23
464	TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air. , 2018, , 1-17.		1
465	TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air. , 2019, , 589-605.		0
466	Reduced graphene oxide supported on Gd2MoO6-ZnO nanorod photocatalysts used for the effective reduction of hexavalent chromium. Separation and Purification Technology, 2022, 281, 119872.	3.9	23
467	A state of the art overview of carbon-based composites applications for detecting and eliminating pharmaceuticals containing wastewater. Chemosphere, 2022, 288, 132535.	4.2	21
468	One-pot soft integration fabrication of graphene-induced phase transition to form dimension control contact In2S3/G heterojunction hybrids for enhancing visible photocatalytic purification performances. Journal of Alloys and Compounds, 2022, 895, 162589.	2.8	5
469	Carbon-Based Nanocomposites: Preparation and Application in Environmental Pollutants Removal. Green Energy and Technology, 2021, , 203-229.	0.4	3
470	Challenges and future prospects of graphene-based hybrids for solar fuel generation: moving towards next generation photocatalysts. Materials Advances, 2022, 3, 142-172.	2.6	31
471	Recent advances of nickel hydroxide-based cocatalysts in heterogeneous photocatalysis. Catalysis Communications, 2022, 162, 106371.	1.6	18
472	2D sp ² Carbonâ€Conjugated Covalent Organic Framework with Pyreneâ€Tethered TEMPO Intercalation for Photocatalytic Aerobic Oxidation of Sulfides into Sulfoxides. Solar Rrl, 2022, 6, 2100608.	3.1	13
473	An Overview of Graphene-Based 2D/3D Nanostructures for Photocatalytic Applications. Topics in Catalysis, 0, , 1.	1.3	7
474	Inorganicâ€Organic Hybrid Membrane based on Pillarareneâ€intercalated MXene Nanosheets for Efficient Water Purification. Angewandte Chemie, 0, , .	1.6	1
475	Inorganic–Organic Hybrid Membrane Based on Pillarareneâ€Intercalated MXene Nanosheets for Efficient Water Purification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
476	Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. Chinese Journal of Catalysis, 2022, 43, 708-730.	6.9	65
477	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	7.3	37
478	Facile in-situ synthesis of reduced graphene oxide/TiO ₂ nanocomposite: a promising material for the degradation of methyl orange. Inorganic and Nano-Metal Chemistry, 2023, 53, 167-177.	0.9	5

ARTICLE IF CITATIONS Graphene Supercapacitor Electrode of Liquid Hydrocarbons using CVD Process., 2022,,. 479 1 Photocatalytic Anaerobic Oxidation of Aromatic Alcohols Coupled With H2 Production Over CsPbBr3/GO-Pt Catalysts. Frontiers in Chemistry, 2022, 10, 833784. 480 1.8 Synthesis of reduced graphene oxide incorporated bimetallic (Cu/Bi) nanorods based photocatalyst 481 materials for the degradation of gallic acid and bacteria. Journal of Industrial and Engineering 2.9 9 Chemistry, 2022, 110, 447-455. Photocatalytic Synthesis of Oxidized Graphite Enabled by Grey TiO₂ and Direct Formation 482 of a Visibleâ€Lightâ€Active Titania/Graphene Oxide Nanócomposite. ChemPhotoChem, 2022, 6, . Nanometer-thick defective graphene films decorated with oriented ruthenium nanoparticles. Higher activity of 101 vs 002 plane for silane-alcohol coupling and hydrogen transfer reduction. Journal of 483 3.1 4 Catalysis, 2022, 407, 342-352. Synergetic Nanoarchitectonics of Defects and Cocatalysts in Oxygen-Vacancy-Rich BiVO₄/reduced graphene oxide Mott–Schottky Heterostructures for Photocatalytic Water Oxidation. ACS Applied Materials & amp; Interfaces, 2022, 14, 12180-12192. 4.0 Synthesis of ternary Ni2P@UiO-66-NH2/Zn0.5Cd0.5S composite materials with significantly improved 485 6.9 42 photocatalytic H2 production performance. Chinese Journal of Catalysis, 2022, 43, 1295-1305. Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. 486 3.3 14 Journal of Environmental Chemical Engineering, 2022, 10, 107527. Challenges surrounding nanosheets and their application to solar-driven photocatalytic water 487 2.6 5 treatment. Materials Advances, 2022, 3, 4103-4131. Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and 10.1 future. EnergyChem, 2022, 4, 100074. Recent Advances in Photocatalytic Removal of Organic and Inorganic Pollutants in Air. SSRN 489 0 0.4 Electronic Journal, O, , . Integrating photogenerated charge carriers for hydrogen production on noble-metal free 490 5.9 dual-photocatalyst under visible light. Composités Part B: Engineering, 2022, 241, 110012. Spin polarized graphene monolayer of van der Waals heterojunction for photocatalytic H2O overall 491 10.8 13 splitting. Applied Catalysis B: Environmental, 2022, 315, 121569. Plasmonic and bi-piezoelectric enhanced photocatalysis using PVDF/ZnO/Au nanobrush. Nanophotonics, 2022, 11, 3339-3349. Photocatalytic Anaerobic Dehydrogenation of Alcohols over Metal Halide Perovskites: A New Acid-Free Scheme for H₂ Production. Journal of Physical Chemistry Letters, 2022, 13, 493 10 2.1 6559-6565. Economic and facile approach for synthesis of graphene–titanate nanocomposite for water 494 reclamation. Journal of Contaminant Hydrology, 2022, 250, 104052. Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of 495 2.27 nanobionics in agriculture. Environmental Science: Nano, 2022, 9, 3659-3683. Hematite Fe2O3@nitrogen-doped graphene core-shell photocatalyst for efficient cephalexin 2.3 degradation under visible light irradiation. Ceramics International, 2022, 48, 34533-34542.

#	Article	IF	CITATIONS
497	Oxygen vacancy engineering of TiO2-x nanostructures for photocatalytic CO2 reduction. Carbon Letters, 2022, 32, 1671-1680.	3.3	10
498	Enhancement of formaldehyde removal by graphene, S, and N doping on TiO2 nanocomposite photocatalyst. Journal of Physics and Chemistry of Solids, 2022, 170, 110961.	1.9	6
499	Construction of rGO-coupled C3N4/C3N5 2D/2D Z-scheme heterojunction to accelerate charge separation for efficient visible light H2 evolution. Applied Catalysis B: Environmental, 2022, 318, 121822.	10.8	65
500	Introducing phosphorus and sulfur into nickel-zeolite imidazolium framework-based carbon to form junction for enhanced photocatalytic H2 generation. Materials Today Chemistry, 2022, 26, 101128.	1.7	1
501	Carbon dots and miniaturizing fabrication of portable carbon dot-based devices for bioimaging, biosensing, heavy metal detection and drug delivery applications. Journal of Materials Chemistry C, 2022, 10, 15277-15300.	2.7	3
502	Selective oxidation of CH ₄ to valuable HCHO over a defective rTiO ₂ /GO metal-free photocatalyst. Catalysis Science and Technology, 2022, 12, 5869-5878.	2.1	0
503	Highly efficient photodegradation of magnetic GO-Fe3O4@SiO2@CdS for phenanthrene and pyrene: Mechanism insight and application assessment. Science of the Total Environment, 2023, 857, 159254.	3.9	11
504	Photocatalytic and Adsorptive Removal of Liquid Textile Industrial Waste with Carbon-Based Nanomaterials. Green Energy and Technology, 2023, , 1-73.	0.4	0
505	Atomically dispersed Pt inside MOFs for highly efficient photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 0, , .	1.3	0
507	The influence of graphene oxide on structural, optical, and catalytic properties of LaFeO3 nanoparticles synthesized by hydrothermal method. Chemical Data Collections, 2022, 42, 100968.	1.1	3
508	One-pot synthesis of a CaBi2O4/graphene hybrid aerogel as a high-efficiency visible-light-driven photocatalyst. Journal of Physics and Chemistry of Solids, 2023, 174, 111164.	1.9	5
509	Interfacial engineering of CdS for efficient coupling photoredox. Chinese Chemical Letters, 2023, 34, 108022.	4.8	5
510	Advanced sustainable carbon material from babassu biomass and its adsorption performance. Journal of Physics and Chemistry of Solids, 2023, 176, 111188.	1.9	2
511	Nano-antivirals: A comprehensive review. Frontiers in Nanotechnology, 0, 4, .	2.4	7
512	A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites. Catalysts, 2023, 13, 111.	1.6	10
513	Semiconductor quantum dots: a versatile platform for photoredox organic transformation. Journal of Materials Chemistry A, 2023, 11, 3262-3280.	5.2	21
514	Current trends in nanocatalysis for green chemistry and its applications- a mini-review. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100788.	3.2	4
515	Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results in Engineering, 2023, 17, 100920.	2.2	40

#	Article	IF	CITATIONS
516	Recent Developments and Perspectives of Cobalt Sulfide-Based Composite Materials in Photocatalysis. Catalysts, 2023, 13, 544.	1.6	16
517	Novel Graphene Oxide/Zinc Phthalocyanine Composites Bearing 3â€Chloroâ€4â€Fluorophenoxy: Potential Usage for Sono/Photochemical Applications. ChemistrySelect, 2023, 8, .	0.7	1
520	Progress of research on the sustainable preparation of graphene and its derivatives. , 2023, , 239-304.		0
534	Analytical techniques for the characterization of graphene oxide. Comprehensive Analytical Chemistry, 2024, , .	0.7	0